
Patents Find prior art Discuss this application View PDF Download PDF

Publication number US20140136252 A1
Publication type Application
Application number US 13/655,934
Publication date May 15, 2014
Filing date Oct 19, 2012
Priority date Oct 31, 2011

Also published as CN104662566A, WO2013066902A2,
WO2013066902A3

Inventors David Everton Norman

Original Assignee Applied Materials, Inc.

Export Citation BiBTeX, EndNote, RefMan

Patent Citations (9), Non-Patent Citations (11), Classifications (3),
Legal Events (1)

External Links: USPTO, USPTO Assignment, Espacenet

CLAIMS (20)

1. A method comprising:

receiving user input of scheduling problem data, the scheduling problem
data relating to a scheduling problem and comprising one or more stations
and a plurality of tasks to be performed by at least one station;

constructing a graph problem using the scheduling problem data, the graph
problem comprising a graph;

cutting the graph into sub-graphs using a cut algorithm to create a cut
result that satisfies a threshold;

identifying one or more task exceptions from the sub-graphs in the cut
result, wherein the one or more task exceptions is a task that can be
assigned to more than one sub-graph; and

creating, by a computing system, a plurality of scheduling sub-problems
pertaining to the at least one task exception using the cut result.

2. The method of claim 1, wherein the cut that satisfies the threshold
comprises the cut resulting in a fewest number of task exceptions, the
cut resulting in a fewest number of types of tasks, or the cut resulting
in a fewest number of task recipes being exceptions.

3. The method of claim 1, wherein the graph comprises a plurality of
nodes representing stations pertaining to the scheduling problem and
one or more lines connecting pairs of the plurality of nodes to

Method and system for splitting scheduling
problems into sub-problems
US 20140136252 A1

ABSTRACT

A computing system receives user input of scheduling problem data. The
scheduling problem data relates to a scheduling problem and includes one or
more stations and tasks to be performed by at least one station. The computing
system constructs a graph problem using the scheduling problem data. The
graph problem includes a graph. The computing system cuts the graph into
sub-graphs using a cut algorithm to create a cut result that satisfies a threshold
and identifies one or more task exceptions from the sub-graphs in the cut result.
The one or more task exceptions are tasks that can be assigned to more than
one sub-graph. The computing system creates scheduling sub-problems
pertaining to the one or more task exceptions using the cut result.

DESCRIPTION

TECHNICAL FIELD
Implementations of the present disclosure relate to scheduling
generally, and more particularly, to splitting scheduling problems into
sub-problems.

BACKGROUND
A difficulty in addressing a manufacturing scheduling problem can be
related to the problem size. Typical manufacturing scheduling
problems involve a large number of stations and a significant number
of tasks to be performed on the stations. For example, scheduling can
depend on a number of tools, a number of lots, a sequential order of
operations, constraints, etc. Traditional scheduling systems spend a
great amount of time and computing resources in solving a scheduling
problem that involves many variables and factors. The difficulty grows
very fast as the size of the scheduling problem grows. For this reason,
large scheduling problems can be impossible to solve directly.

BRIEF DESCRIPTION OF THE DRAWINGS
The present disclosure is illustrated by way of example, and not by
way of limitation, in the figures of the accompanying drawings in which
like references indicate similar elements. It should be noted that
different references to “an” or “one” implementation in this disclosure
are not necessarily to the same implementation, and such references
mean at least one.
FIG. 1 is a block diagram illustrating a scheduling system utilizing a
scheduling problem splitter module.

IMAGES (8)

[0001]

[0002]

[0003]

[0004]

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

[0006][0007][0008][0009][0010][0011][0012][0013][0014][0015][0016][0017][0018][0019][0020][0021][0022][0023][0024][0025][0026][0027][0028][0029][0030][0031][0032][0033][0034][0035][0036][0037][0038][0039]

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

1 of 8 6/27/17 08:10 



nodes.

4. The method of claim 1, wherein constructing the graph further
comprises:

assigning a weight to at least one of a node in the graph
representing a station or a line in the graph connecting a pair of
nodes, wherein the line represents at least one task relating to the
stations corresponding to the connected pair of nodes, and the
weight indicates at least one of a number of tasks associated with
the stations corresponding to the pair of nodes, a percentage of
tasks associated with the stations corresponding to the pair of
nodes, or a task priority.

5. The method of claim 1, further comprising:

sending data indicating the plurality of scheduling sub-problems to
a scheduling system to schedule tasks times based on the data.

6. The method of claim 1, wherein the plurality of tasks are processed
in a specified flow order.

7. The method of claim 1, wherein the plurality of tasks relate to
manufacturing semiconductors.

8. A non-transitory computer readable storage medium including instructions
that, when executed by a processing device, cause the processing device to
perform a method comprising:

receiving user input of scheduling problem data, the scheduling problem
data relating to a scheduling problem and comprising one or more stations
and a plurality of tasks to be performed by at least one station;

constructing a graph problem using the scheduling problem data, the graph
problem comprising a graph;

cutting the graph into sub-graphs using a cut algorithm to create a cut
result that satisfies a threshold;

identifying one or more task exceptions from the sub-graphs in the cut
result, wherein the one or more task exceptions is a task that can be
assigned to more than one sub-graph; and

creating, by the processing device, a plurality of scheduling sub-problems
pertaining to the at least one task exception using the cut result.

9. The non-transitory computer readable storage medium of claim 8,
wherein the cut that satisfies the threshold comprises the cut resulting
in a fewest number of task exceptions, the cut resulting in a fewest
number of types of tasks, or the cut resulting in a fewest number of
task recipes being exceptions.

10. The non-transitory computer readable storage medium of claim 8,
wherein the graph comprises a plurality of nodes representing stations
pertaining to the scheduling problem and one or more lines connecting
pairs of the plurality of nodes to represent tasks relating to the stations
corresponding to the connected nodes.

11. The non-transitory computer readable storage medium of claim 8,
wherein constructing the graph further comprises:

assigning a weight to at least one of a node in the graph
representing a station or a line in the graph connecting a pair of
nodes, wherein the line represents at least one task relating to the
stations corresponding to the connected pair of nodes, and the
weight indicates at least one of a number of tasks associated with
the stations corresponding to the pair of nodes, a percentage of

splitter module.
FIGS. 3A-D illustrate example graphs representing a scheduling
problem.
FIG. 4 illustrates one implementation of a method for splitting a
scheduling problem into scheduling sub-problems.
FIG. 5 illustrates example scheduling sub-problems and an example
task exception.
FIG. 6 illustrates an example computer system.

DETAILED DESCRIPTION
Implementations of the disclosure are directed to a method and
system for splitting a scheduling problem into scheduling
sub-problems. A computing system receives user input of scheduling
problem data. The scheduling problem data identifies stations and
tasks to be performed by at least one station. The computing system
constructs a graph problem using the scheduling problem data. The
graph problem can include a graph, which the computing system can
partition into sub-graphs using a cut algorithm to create a cut result
that satisfies a threshold. Examples of a threshold can include, and
are not limited to, creating a cut result that has the fewest task
exceptions, creating a cut result that has the fewest number of types of
tasks, creating a cut result that has the fewest number of task recipes
that are exceptions. The computing system identifies task exceptions
from the sub-graphs. A task exception can be a task that can be
assigned to more than one sub-graph. The computing system creates
scheduling sub-problems using the cut result. Implementations greatly
reduce the amount of time and resources used to solve a
manufacturing scheduling problem by automatically splitting a large
scheduling problem into sub-problems and identifying one or more
task exceptions associated with the sub-problems.
FIG. 1 is a block diagram illustrating a manufacturing system 100
including a fabrication system data source (e.g., manufacturing
execution system (MES) 101), a dispatcher 103, and a scheduling
system 105 communicating, for example, via a network. 120. The
network 120 can be a local area network (LAN), a wireless network, a
mobile communications network, a wide area network (WAN), such as
the Internet, or similar communication system.
In one implementation, the scheduling system 105 includes a
scheduling problem splitter module 107. In another implementation,
the scheduling system 105 communicates with an external scheduling
problem splitter module 107, for example, via the network 120. The
MES 101, dispatcher 103, scheduling system 105, and scheduling
problem splitter module 107 can be individually hosted by any type of
computing device including server computers, gateway computers,
desktop computers, laptop computers, tablet computer, notebook
computer, PDA (personal digital assistant), mobile communications
devices, cell phones, smart phones, hand-held computers, or similar
computing device. Alternatively, any combination of MES 101,
dispatcher 103, scheduling system 105, and scheduling problem
splitter module 107 can be hosted on a single computing device
including server computers, gateway computers, desktop computers,
laptop computers, mobile communications devices, cell phones, smart
phones, hand-held computers, or similar computing device.
A scheduling system 105 can receive input relating to a scheduling
problem from a scheduling problem splitter module 107 to create a
schedule of when one or more tasks can be performed and on which
stations (tool). A schedule can be a list of tasks that each station
processes. The schedule can include the task start times. Stations can
be certified to run certain tasks. A task can be a task used in the
manufacturing of semiconductors and there can be different types of
tasks. Examples of tasks can include, and are not limited to, a task to
manufacture a product, a task to use a reticle manufacturing tool, a

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

2 of 8 6/27/17 08:10 



nodes, or a task priority.

12. The non-transitory computer readable storage medium of claim 8,
further comprising:

sending data indicating the plurality of scheduling sub-problems to
a scheduling system to schedule tasks times based on the data.

13. The non-transitory computer readable storage medium of claim 8,
wherein the plurality of tasks relate to manufacturing semiconductors.

14. A system comprising:

a memory; and

a processing device coupled with the memory to:

receive user input of scheduling problem data, the scheduling problem
data relating to a scheduling problem and comprising one or more
stations and a plurality of tasks to be performed by at least one station;

construct a graph problem using the scheduling problem data, the
graph problem comprising a graph;

cut the graph into sub-graphs using a cut algorithm to create a cut
result that satisfies a threshold;

identify one or more task exceptions from the sub-graphs in the cut
result, wherein the one or more task exceptions is a task that can be
assigned to more than one sub-graph; and

create a plurality of scheduling sub-problems pertaining to the at least
one task exception using the cut result.

15. The system of claim 14, wherein the cut that satisfies the threshold
comprises the cut resulting in a fewest number of task exceptions, the
cut resulting in a fewest number of types of tasks, or the cut resulting
in a fewest number of task recipes being exceptions.

16. The system of claim 14, wherein the graph comprises a plurality of
nodes representing stations pertaining to the scheduling problem and
one or more lines connecting pairs of the plurality of nodes to
represent tasks relating to the stations corresponding to the connected
nodes.

17. The system of claim 14, wherein constructing the graph further
comprises:

assigning a weight to at least one of a node in the graph
representing a station or a line in the graph connecting a pair of
nodes, wherein the line represents at least one task relating to the
stations corresponding to the connected pair of nodes, and the
weight indicates at least one of a number of tasks associated with
the stations corresponding to the pair of nodes, a percentage of
tasks associated with the stations corresponding to the pair of
nodes, or a task priority.

18. The system of claim 14, further comprising:

sending data indicating the plurality of scheduling sub-problems to
a scheduling system to schedule tasks times based on the data.

19. The system of claim 14, wherein the plurality of tasks are
processed in a specified flow order.

20. The system of claim 14, wherein the plurality of tasks relate to
manufacturing semiconductors.

wafers, etc.
The scheduling problem splitter module 107 can identify a scheduling
problem and automatically split the scheduling problem into smaller
scheduling sub-problems. A scheduling problem can involve a set of
tasks T and a set (e.g., set S) of stations, also known as tools. For
example, a scheduling problem may involve forty to fifty stations and
more than two thousand tasks. Each task can be processed on one or
more stations. The scheduling problem splitter module 107 can split a
scheduling problem if there exist disjoint subsets of tasks, such as task
subset T1 and task subset T2, such that T is the union of task subset
T1 and task subset T2, and similar disjoint subsets of stations, such as
station subset S1 and station subset S2, such that set S is the union of
station subset S1 and station subset S2, and where the tasks in task
subset T1 can only process on stations in station subset S1 and tasks
in task subset T2 can only process on stations in station subset S2.
The scheduling problem splitter module 107 can automatically convert
a manufacturing scheduling problem into a graph theory problem and
can apply a cut algorithm to the graph theory problem to solve the
problem. The scheduling problem splitter module 107 can convert the
solution from the graph theory problem format back into a format for
the scheduling problem, where the scheduling problem can be
represented by smaller sub-problems and one or more task exceptions
associated with the sub-problems. The scheduling problem splitter
module 107 can provide data reflecting the smaller scheduling
sub-problems to the scheduling system 105, which can use the data to
provisionally schedule the times for various tasks to be performed. In
one implementation, the scheduling system 105 is coupled to a factory
system data source (e.g., MES 101, ERP) to receive lot data and
equipment status data and uses the scheduling sub-problem data, lot
data, and equipment status data to provisionally schedule tasks to be
performed. In one implementation, scheduling system 105 can include
a graphical user interface (GUI) generator 111 to create and provide a
user interface 109 (e.g., GUI) to a user (e.g., an industrial engineer).
User interface 109 can enable a user (e.g., an industrial engineer) to
model a provisional schedule. In one implementation, the scheduling
system 105 provides the entire schedule to a dispatcher 103. The
dispatcher 103 can be integrated through the MES 101 to dispatch, for
example, wafer lots accordingly.
FIG. 2 is a block diagram of one implementation of a scheduling
problem splitter module 200. In one implementation, the scheduling
problem splitter module 200 can be the same as the scheduling
problem splitter module 107 of FIG. 1. The scheduling problem splitter
module 200 can include a graph creator sub-module 205, a graph
cutter sub-module 210, a problem translator sub-module 215, and a
user interface (UI) generator sub-module 225.
The user interface generator sub-module 225 can generate a user
interface 202 that can receive a set of scheduling problem data 251 as
user input for a scheduling problem. The scheduling problem splitter
module 200 can also receive a set of scheduling problem data 251 or
a portion of the scheduling problem data 251 from another system in a
manufacturing system. The scheduling problem data 251 can define
tasks to be performed (e.g., a set of tasks T) and a set (e.g., set S) of
stations or tools for performing the tasks. The scheduling problem data
251 can also describe whether a task can be processed on one or
more stations and can identify one or more stations for performing the
task. The scheduling problem data 251 can be stored in a data store
250 that is coupled to the scheduling problem splitter module 200.
There can be multiple sets of scheduling problem data 251 for multiple
scheduling problems stored in the data store 250. The data store 250
can be a persistent storage unit. A persistent storage unit can be a
local storage unit or a remote storage unit. Persistent storage units

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

3 of 8 6/27/17 08:10 



unit, electronic storage unit (main memory) or similar storage unit. Persistent storage units can be a monolithic
device or a distributed set of devices. A ‘set’, as used herein, refers to any positive whole number of items.
The graph creator sub-module 205 can use the scheduling problem data 251 for a particular scheduling problem
to convert the scheduling problem format to a graph problem format. The graph creator sub-module 205 can
construct a graph problem to represent the scheduling problem. The graph creator sub-module 205 can create a
graph 253 for the graph problem. A graph 253 can be stored in a data store 250. There can be graphs 253 for
various scheduling problems stored in the data store 250. A graph 253 can be a mathematical structure used to
model pair wise relations between objects from a certain collection. A graph 253 can refer to a collection of
vertices or nodes and a collection of edges that connect pairs of vertices (nodes). An edge is also hereinafter
referred to as a line. A graph 253 can include graph properties, for example, and not limited to, each station (e.g.,
s1, s2, . . . sn) in the set S of stations for the scheduling problem can be a node in the graph, and there can be an
edge (line) in the graph 253 connecting the nodes corresponding to a pair of stations to indicate that there is at
least one task that can run on the pair of stations.
The scheduling problem data 251 can include one or more weight types and/or weight values, for example, as
defined by user input. The graph creator sub-module 205 can assign a weight to each pair of connected stations
in a graph 253 indicating, for example, the importance that the stations are connected based on, such as,
constraints pertaining to the stations. The graph creator sub-module 205 can assign a weight to a line in a graph
253 based on the scheduling problem data 251. Examples of weight types that can be calculated can include,
and are not limited to, the percentage of tasks that can run on both of the connected stations, where the
percentage is weighted based on the importance of the task (e.g., task priority, for example, based on user input),
the percentage of operations or route steps that can be processed on both of the connected stations, the
percentage of operations or route steps that can be processed on both of the connected stations, weighted by
the percentage of expected lots for that operation, and a percentage indicating the importance of one task in
relation to another (e.g., task 1 should be followed by task 2). Implementations apply both to job shop scheduling,
where each task is independent, and to flow shop scheduling, where tasks represent multiple operations for a
single manufacturing lot and where the tasks for a lot should be processed in a certain order. The weight value
assigned to a line can reflect a flow shop schedule to indicate the importance of adjacent operations (also known
as a precedent constraint). The graph creator sub-module 205 can further adjust a weight based on other
parameters, such as, and not limited to, physical distance between the stations, physical similarity between the
stations, brand or station type.
FIG. 3A is an example graph 300 for a scheduling problem. The scheduling problem data for the scheduling
problem may include stations s1, s2, s3, and s4, and tasks t1-t11. The graph 300 may include a node (e.g.,
nodes 301A-D) for each station. The graph 300 may include lines (e.g., lines 303A-F) that connect pairs of nodes
indicating there is some task that can run on both stations corresponding to the connected nodes. The lines
303A-F can be assigned based on the scheduling problem data. For example, the scheduling problem data may
specify that the task t1 can be processed on station s1; the tasks t2, t3, and t4 can be processed on stations s1
and s2; the tasks t5 and t6 can be processed on stations 2; the task t7 can be processed on station s3; the tasks
t8 and t9 can be processed on stations s3 and s4; the task t10 can be processed on station s4; the task t11 can
be processed on stations s2 and s3. Based on this data, for example, there may be a line 303A in the graph 300
connecting node 301A, which may represent station s1, to node 30B, which may represent station s2, to indicate
that there is at least one task (e.g., t2, t3, t4) that may run on both stations s1 and s2. The lines 303A-F can also
be assigned weights (e.g., 305A-F). In one implementation, a line weight indicates the number of tasks that can
be processed on both of the stations corresponding to the nodes connected by the line. FIG. 3B is an example
graph 350 having weights assigned based on the number of tasks that can be processed on both of the stations.
For example, a value of ‘3’ may be assigned as the weight 307 to line 303A to indicate that both stations, s1 and
s2, can process three tasks (e.g., t2, t3, and t4) as defined by the scheduling problem data. In another
implementation, a line weight indicates a flow shop schedule to reflect the importance of adjacent operations.
Returning to FIG. 2, the graph cutter sub-module 210 can partition a graph 253 into sub-graphs to split a
scheduling problem into scheduling sub-problems to create a cut result 255 that satisfies a threshold. Examples
of a threshold can include, and are not limited to, creating a cut result 255 that has the fewest task exceptions,
creating a cut result 255 that has the fewest number of types of tasks, creating a cut result 255 that has the
fewest number of task recipes that are exceptions. A task exception can be a task that can be performed on
stations in more than one sub-graph. For example, a task exception may be a task that can be performed by
stations in station subset S1 and stations in station subset S2. The graph cutter sub-module 210 can cut lines of
a graph 253 by applying a cut algorithm to create a cut result 255. The cut result 255 can represent sub-graphs
of a graph 253, which has been partitioned. The cut result 255 can be stored in the data store 250. A cut can be
a partition of the vertices (nodes) of a graph 253 into two disjoint subsets. The size of a cut C=(S,T) can be the
number of lines in the cut-set. If the lines are weighted, the value of the cut can be the sum of the weights. In one
implementation, the graph cutter sub-module 210 applies a minimal cut algorithm to the graph 253, which is an
algorithm that makes a minimum cut to cut the graph 253 into two sub-graphs (e.g., G1 and G2). Various cut
algorithms to split a graph into any number of sub-graphs can be used. A cut can be a minimum cut if the cut set

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

4 of 8 6/27/17 08:10 



(e.g., two elements per line that is cut), and a cut across two lines may result in four elements. The cut across the
two lines may be the minimum cut. The graph cutter sub-module 210 can cut lines based on total weight. FIG. 3C
is an example graph 370 for a scheduling problem that has lines cut based on total weight of the lines, according
to various implementations. The graph 370 may have line weights (e.g., weights 371A-F) based on the number of
tasks that can be processed on both of the stations connected by a line. The cut result from cutting the lines
based on the total weight may be, for example, two sub-graphs G1 and G2. The graph cutter sub-module can cut
the lines that have the smallest total weight. For example, lines 303B,D,E,F may be cut. FIG. 3D is an example
graph 390 for a scheduling problem that may be split into sub-graph G1 391A and sub-graph G2 391B after
cutting the lines that have the smallest total weight (e.g., line connecting s1 and s4, line connecting s2 and s3,
line connecting s1 and s3, line connecting s4 and s2).
For each sub-graph (sub-graph G1 391A and sub-graph G2 391B), the graph cutter sub-module 210 can identify
a subset (e.g., S1, S2) of the set of stations (e.g., S), where each station subset has a corresponding subset of
tasks (task subset). For example, in FIG. 3D, the graph cutter sub-module 210 may identify that the subset S1 of
stations corresponds to sub-graph G1 391A. The station subset S1 may include stations s1 and s2. The graph
cutter sub-module 210 can also identify that the subset of stations S2 may correspond to sub-graph G2 391B.
The subset station S2 may include stations s3 and s4. The graph cutter sub-module 210 can identify that station
subset S1 may have a corresponding task subset T1, and that station subset S2 may have a corresponding task
subset T2. The task subset T1 may include tasks t1-t6. The task subset T2 may include tasks t7-t10.
The graph cutter sub-module 210 can also use the sub-graphs in a cut result 255 to identify one or more tasks
exceptions. The one or more task exceptions can be grouped to form another task subset (e.g., T3). For
example, the graph cutter sub-module 210 may determine that if the graph 390 is split into sub-graph G1 391A
and sub-graph G2 391B, then there may be only one task exception. The task exception can be represented by
the weight value ‘1’ 373 which may represent task 11 (t11) that can be processed on s2 (station 2) and s3 (station
3). For example, since task t11 can be processed on stations that are in different sub-graphs, task t11 is a task
exception.
The problem translator sub-module 215 can identify sub-problems for a scheduling problem using the
sub-graphs, station subset for each sub-graph, and task subset for each sub-graph. The problem translator
sub-module 215 can convert the sub-graphs into the format of sub-problems, for example, using a template 257
and/or configuration data 259 that is stored in the data store 250. The problem translator sub-module 215 can
group a station subset and the task subset that corresponds to the station subset as a sub-problem. For
example, station subset S1 and task subset T1 may be grouped to form Sub-Problem 1, and station subset S2
and task subset T2 may be grouped to form Sub-Problem 2. The problem translator sub-module 215 can also
identify task exceptions associated with the sub-problems for the scheduling problem. For example, the problem
translator sub-module 215 may identify task t11 as a task exception associated with Sub-Problem 1 and
Sub-Problem 2. The problem translator sub-module 215 can create another set of tasks (e.g., T3) to represent
the one or more task exceptions. The smallest number of task exceptions can be an indication of optimal
sub-graphs. For example, sub-graph G1 391A and sub-graph G2 391B may result in one task exception. In this
example, the sub-graphs G1 and G2 may indicate the optimal cut of the graph.
FIG. 4 is a flow diagram of an implementation of a method 400 for splitting a scheduling problem into scheduling
sub-problems. Method 400 can be performed by processing logic that can comprise hardware (e.g., circuitry,
dedicated logic, programmable logic, microcode, etc.), software (e.g., instructions run on a processing device), or
a combination thereof. In one implementation, method 400 is performed by the scheduling problem splitter
module 107 hosted by a computing device of FIG. 1.
At block 401, processing logic receives user input of scheduling problem data. The scheduling problem data can
include data received from another system in a manufacturing system. The user input for the scheduling problem
data can include, for example, and is not limited to, the number stations, station data (e.g., status) describing
specific stations, the tasks to be performed (e.g., a set of tasks T), a set (e.g., set S) of stations or tools for
performing the tasks, weight type, and weight values. The weight types and weight values can be for stations
and/or tasks. The scheduling problem data can also describe whether a task can be processed on one or more
stations and can identify which stations can perform the task.
At block 403, processing logic constructs a graph problem using the scheduling problem data. Processing logic
can apply the weights, if any, from the user input to construct a weighted graph problem. At block 405,
processing logic cuts the graph into sub-graphs by applying a cut algorithm to create a cut result that satisfies a
threshold. Examples of a threshold can include and are not limited to, creating a cut result that has the fewest
task exceptions, creating a cut result that has the fewest number of types of tasks, creating a cut result that has
the fewest number of task recipes that are exceptions. Processing logic selects an optimal split of sub-graphs
that satisfies the threshold. The threshold can be a user-defined threshold. Processing logic can apply different
edge (line) weights when constructing the graph. The different weights can cause different types of exceptions to
be minimized. At block 407, processing logic identifies one or more task exceptions from the sub-graphs in the
cut result. At block 409, processing logic creates scheduling sub-problems pertaining to the one or more task
exceptions using the cut result. Subsequently, processing logic may provide the sub-problems and task

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

5 of 8 6/27/17 08:10 



exception to a sub-problem. For example, the heuristic may be based on the bandwidth of the sub-problems. In
another example, a user (e.g., process engineer) can be notified, for example, via a scheduling system, of the
one or more task exceptions and can assign a task exception to a sub-problem. FIG. 5 illustrates example
scheduling sub-problems and an example task exception for the scheduling problem described by the graphs in
FIGS. 3A-D. For example, a process engineer may determine that Sub-problem 1 does not have enough work
and may assign the task exception task 11 to Sub-problem 1.
Returning to FIG. 4, portions of method 400 can be an iterative method. The number of iterations can be based
on a configurable and/or user-defined value. For example, processing logic can perform multiple iterations until,
for instance, a minimal number of task exceptions are identified. For example, processing logic may initially split
a graph (e.g., graph 350 in FIG. 3B), where Sub-graph 1 may include stations s1 and s4, and Sub-graph 2 may
include stations s2 and s3, at block 405. With such a split, processing logic may identify, for example, five task
exceptions. For example, tasks t2, t3, and t4 may be run on stations s1 and s2, and tasks t8 and t9 may be run
on stations s4 and s1. Subsequently, processing logic may split the graph, where Sub-graph 1 may include
stations s1 and s2, and Sub-graph 2 may include stations s4 and s3 at block 405, and identifies, for example,
one task exception (e.g., task t11 can be run on stations s2 and s3). Processing logic can compare the number of
task exceptions from the various splits and can select the split resulting in the fewest number of task exceptions
at block 405. For example, processing logic may select the split, where Sub-graph 1 may include stations s1 and
s2, and Sub-graph 2 may include stations s4 and s3, since this particular split results in one task exception.
FIG. 6 is a block diagram illustrating an example computing device 600. In one implementation, the computing
device corresponds to a computing device hosting a scheduling problem splitter module 107 of FIG. 1. The
computing device 600 includes a set of instructions for causing the machine to perform any one or more of the
methodologies discussed herein. In alternative implementations, the machine may be connected (e.g.,
networked) to other machines in a LAN, an intranet, an extranet, or the Internet. The machine may operate in the
capacity of a server machine in client-server network environment. The machine may be a personal computer
(PC), a set-top box (STB), a server, a network router, switch or bridge, or any machine capable of executing a set
of instructions (sequential or otherwise) that specify actions to be taken by that machine. Further, while only a
single machine is illustrated, the term “machine” shall also be taken to include any collection of machines that
individually or jointly execute a set (or multiple sets) of instructions to perform any one or more of the
methodologies discussed herein.
The exemplary computer device 600 includes a processing system (processing device) 602, a main memory 604
(e.g., read-only memory (ROM), flash memory, dynamic random access memory (DRAM) such as synchronous
DRAM (SDRAM), etc.), a static memory 606 (e.g., flash memory, static random access memory (SRAM), etc.),
and a data storage device 618, which communicate with each other via a bus 608.
Processing device 602 represents one or more general-purpose processing devices such as a microprocessor,
central processing unit, or the like. More particularly, the processing device 602 may be a complex instruction set
computing (CISC) microprocessor, reduced instruction set computing (RISC) microprocessor, very long
instruction word (VLIW) microprocessor, or a processor implementing other instruction sets or processors
implementing a combination of instruction sets. The processing device 602 may also be one or more special-
purpose processing devices such as an application specific integrated circuit (ASIC), a field programmable gate
array (FPGA), a digital signal processor (DSP), network processor, or the like. The processing device 602 is
configured to execute the scheduling problem splitter module 670 for performing the operations and steps
discussed herein.
The computing device 600 may further include a network interface device 608. The computing device 600 also
may include a video display unit 610 (e.g., a liquid crystal display (LCD) or a cathode ray tube (CRT)), an
alphanumeric input device 612 (e.g., a keyboard), a cursor control device 614 (e.g., a mouse), and a signal
generation device 616 (e.g., a speaker).
The data storage device 618 may include a computer-readable storage medium 628 on which is stored one or
more sets of instructions (instructions of scheduling problem splitter module 670) embodying any one or more of
the methodologies or functions described herein. The scheduling problem splitter module 670 may also reside,
completely or at least partially, within the main memory 604 and/or within the processing device 602 during
execution thereof by the computing device 600, the main memory 604 and the processing device 602 also
constituting computer-readable media. The scheduling problem splitter module 670 may further be transmitted or
received over a network 620 via the network interface device 608.
While the computer-readable storage medium 628 is shown in an example implementation to be a single
medium, the term “computer-readable storage medium” should be taken to include a single medium or multiple
media (e.g., a centralized or distributed database, and/or associated caches and servers) that store the one or
more sets of instructions. The term “computer-readable storage medium” shall also be taken to include any
medium that is capable of storing, encoding or carrying a set of instructions for execution by the machine and
that cause the machine to perform any one or more of the methodologies of the present disclosure. The term
“computer-readable storage medium” shall accordingly be taken to include, but not be limited to, solid-state
memories, optical media, and magnetic media.

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

6 of 8 6/27/17 08:10 



art having the benefit of this disclosure, that implementations of the disclosure may be practiced without these
specific details. In some instances, well-known structures and devices are shown in block diagram form, rather
than in detail, in order to avoid obscuring the description.
Some portions of the detailed description are presented in terms of algorithms and symbolic representations of
operations on data bits within a computer memory. These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to most effectively convey the substance of their work to
others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps
leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually,
though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored,
transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for
reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms,
numbers, or the like.
It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated
otherwise as apparent from the above discussion, it is appreciated that throughout the description, discussions
utilizing terms such as “receiving,” “constructing,” “cutting,” “identifying,” “creating,” “assigning,” “sending,” or the
like, refer to the actions and processes of a computing device, or similar electronic computing device, that
manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer
system's registers and memories into other data similarly represented as physical quantities within the computer
system memories or registers or other such information storage devices.
Implementations of the disclosure also relate to an apparatus for performing the operations herein. This
apparatus may be specially constructed for the required purposes, or it may comprise a general purpose
computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer
program may be stored in a computer readable storage medium, such as, but not limited to, any type of disk
including optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access
memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing
electronic instructions.
It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other
implementations will be apparent to those of skill in the art upon reading and understanding the above
description. The scope of the disclosure should, therefore, be determined with reference to the appended claims,
along with the full scope of equivalents to which such claims are entitled.

PATENT CITATIONS

Cited Patent Filing date Publication date Applicant Title

US6112023 * Feb 17, 1998 Aug 29, 2000 Lucent Technologies Inc.
Scheduling-based hardware-software
co-synthesis of heterogeneous distributed
embedded systems

US8812653 * Aug 5, 2010 Aug 19, 2014 Novell, Inc. Autonomous intelligent workload management

US20030167265 * Jun 7, 2001 Sep 4, 2003 Corynen Guy Charles
Computer method and user interface for decision
analysis and for global system optimization

US20060291390 * Jun 22, 2005 Dec 28, 2006 Bin Zhang
Determination of a state of flow through or a cut
of a parameterized network

US20080218518 * Mar 6, 2007 Sep 11, 2008 Zhou Yunhong Balancing collections of vertices in a network

US20090047677 * Jul 28, 2008 Feb 19, 2009
The Arizona Board of Regents, a body
corporate of the State of Arizona acting
for & on behalf of

Methods for generating a distribution of optimal
solutions to nondeterministic polynomial
optimization problems

US20090313596 * Jun 11, 2008 Dec 17, 2009 Bernhard Lippmann
System and Method for Integrated Circuit Planar
Netlist Interpretation

US20110029982 * Jul 30, 2009 Feb 3, 2011 Bin Zhang
Network balancing procedure that includes
redistributing flows on arcs incident on a batch of
vertices

US20110313984 * Jul 23, 2010 Dec 22, 2011 Palo Alto Research Center Incorporated
System and method for parallel graph searching
utilizing parallel edge partitioning

* Cited by examiner

NON-PATENT CITATIONS

Reference

1 *
Ascheuer, N. et al., A Cutting Plane Approach to the Sequential Ordering Problem (With Applications to Job Scheduling in Manufacturing), SIAM
J. Optimization, Vol. 3, No. 1, February 1993

2 * Ji, Xiaoyun, Graph Partition Problems with Minimum Size ConstraintsRenssler Polytechnic Institute, November 2004

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

7 of 8 6/27/17 08:10 



Reference

4 *
Lu, Yufeng, Scheduling of Wafer Test Processes in Semiconductor ManufacturingVirginia Polytechnic Institute and State University, October 26,
2001

5 * Mohring, Rolf H. et al., Solving Project Scheduling Problems by Minimum Cut ComparisonsManagement Science, Vol. 29, No. 3, March 2003

6 *
Nemhauser, G.L., A Cutting Plane Algorithm for the Single Machine Scheduling Problem with Release TimesCombinatorial Optimization, NATO
ASI Series, Vol. 82, 1992

7 * Pacciarelli, Dario, Parallel machine scheduling in a flexible manufacturing systemINFOR, Vol. 29, No. 2, May 2001

8 *
Rios-Mercado, Roger Z. et al., Computational Experience with a Branch-and-Cut Algorithm for Flowshop Scheduling with Setups, University of
Texas at Austin, May 1997

9 * Schlogel, Kirk Andrew, Graph Partitioning for Emerging Scientific SimulationsUniversity of Minesota, November 1999

10 *
Song, Yang et al., Bottleneck Station Scheduling in Semiconductor Assembly and Test Manufacturing Using Ant Colony Optimization, IEEE
Transactions on Automation Science and Engineering, Vol. 4, No. 4, October 2007

11 *
Stecco, Gabriella et al., A branch-and-cut algorithm for a production scheduling problem with sequence-dependent and time-dependent setup
times, Computers & Operations Research, Vol. 35, 2008

* Cited by examiner

CLASSIFICATIONS

U.S. Classification 705/7.13

International Classification G06Q10/06

Cooperative Classification G06Q10/06311

LEGAL EVENTS

Date Code Event Description

Oct 19, 2012 AS Assignment

Owner name: APPLIED MATERIALS, INC., CALIFORNIA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORMAN, DAVID
EVERTON;REEL/FRAME:029160/0211
Effective date: 20121019

Google Home - Sitemap - USPTO Bulk Downloads - Privacy Policy - Terms of Service - About Google Patents - Send Feedback

Data provided by IFI CLAIMS Patent Services

Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.Try the new Google Patents, with machine-classified Google Scholar results, and Japanese and South Korean patents.

Patent US20140136252 - Method and system for splitting scheduli... https://www.google.com/patents/US20140136252

8 of 8 6/27/17 08:10 


