
lable at ScienceDirect

Journal of Natural Gas Science and Engineering 21 (2014) 10e18
Contents lists avai
Journal of Natural Gas Science and Engineering

journal homepage: www.elsevier .com/locate/ jngse
Optimal operation of trunk natural gas pipelines via an
inertia-adaptive particle swarm optimization algorithm

Xia Wu a, *, Changjun Li a, b, Wenlong Jia a, Yufa He c

a School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China
b CNPC Key Laboratory of Oil & Gas Storage and Transportation, Southwest Petroleum University, Chengdu 610500, China
c CNOOC Research Institute, Beijing 100027, China
a r t i c l e i n f o

Article history:
Received 28 May 2014
Received in revised form
22 July 2014
Accepted 23 July 2014
Available online 15 August 2014

Keywords:
Natural gas pipeline
Operation optimization
Particle swarm optimization
Mathematical model
* Corresponding author.
E-mail address: gamy-rushy@126.com (X. Wu).

http://dx.doi.org/10.1016/j.jngse.2014.07.028
1875-5100/© 2014 Elsevier B.V. All rights reserved.
a b s t r a c t

The trunk natural gas pipeline is the main transmission line between the gas fields and consumers. In
this paper, an optimization model is built for the trunk natural gas pipelines, aiming in balancing the
maximum operation benefit and the maximum transmission amount. The weight sum method was used
to combine these two optimization goals into one hybrid objective function, and the weight value of each
single objective function was determined by the scale method which was derived from the Analytic
Hierarchy Method (AHP). Besides, the constraints concerning about the node's pressure, flow rate and
temperature. The compressor's power and status, the pipe's pressure and temperature equations were
also incorporated into the model. In view of the non-linear characteristic of the model, the particle
swarm optimization (PSO) algorithm was employed to solve it, and the adaptive inertia weight adjusting
method was adopted to improve the basic PSO for its premature defect. The improved PSO is named the
inertia-adaptive PSO (IAPSO) algorithm. Finally, the operation optimization model was applied to a real
trunk gas pipeline, and the IAPSO as well as other four PSO algorithms were adopted to solve the model.
The IAPSO shows faster convergence speed and better solution results than those of the other four PSO
algorithms. The achievements provide a good way to balance the gas pipeline's operation benefit and
transportation amount.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Natural gas is a low-carbon, clean and high-quality energy
source. The pipelines play an important role in the transmission
and distribution of natural gases, because of its convenience,
economy and reliability (Mokhatab and Poe, 2012). Based on the
functions, the natural gas pipelines are usually divided into gath-
ering pipelines, trunk pipelines and delivering pipelines. The trunk
pipelines are the main transmission lines between the gas fields
and consumers. Generally, they are long-distance and large-
amount transmission pipelines with high pressures. By the end of
the year 2012, the United States has the longest trunk gas trans-
mission pipelines in the world, which had reached more than
330 000 km (Tubb, 2012). China had built more than 85 000 km
trunk gas pipelines by the same time (Tubb, 2012).

Typically, there are four kinds of components in the trunk
pipeline system: pipes, gas sources, consumers and compressors
(Vasconcelos et al., 2013). A schematic of the long-distance trunk
natural gas pipeline is depicted in Fig. 1. Theoretically, pipeline
operators can make lots of feasible operation schemes with
different flow rates and pressures, as long as sufficient gases are
transported to the consumers. These schemes typically involve
different operation benefits and pipeline's reliability (Chebouba
et al., 2009). For example, larger amounts of gases require higher
transmission pressures. As the pressures are mainly boosted by the
installed compressors, more energy will be needed to drive the
compressors. So, the increasing of gas transmission amount may
not necessarily enhance the gas sales benefit. Besides, the higher
pressures may reduce the reliability of the pipeline. Thus, how to
balance the pipeline's transportation amount, operation benefits
and reliability is a challenge for operators.

Generally, there are two kinds of methods to determine the
pipeline's optimal operation scheme. The first method is named the
schemes comparisonmethod or comprehensive evaluationmethod
(Li et al., 2012). Its principle is comparing and choosing the best
scheme from a set of existed and feasible schemes. So the optimal
scheme is limited by original scheme sets. The other method is
called mathematical optimization method (Mohamadi et al., 2014;
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Fig. 1. A typical long-distance trunk gas pipeline system.
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Pardalos and Resende, 2002). It determines the optimal scheme by
building and solving a mathematical optimization model. The
model typically contains an objective function and lots of con-
straints. The objective function represents the optimization goal,
and the constraints are used to limit the variables within the spe-
cific bounds. Obviously, the latter method is more likely to get
global optimal schemes when compared with the previous one
(Borraz-S�anchez and Haugland, 2013; Wu et al., 2000). However,
the operation optimization model of trunk natural gas pipelines
usually contains both continuous and discrete optimization vari-
ables, linear and non-linear constraints. These features make the
feasible domain of the optimization problem non-convex and
discontinuous (Chebouba et al., 2009; Ehrhardt and Steinbach,
2005), and the solution of the model could be very difficult.

Many researchers have studied the solution method of gas
pipeline's operation optimization model since Wong and Larson
(1968) applied the dynamic programming (DP) to the fuel cost
minimization problem in 1968. However, the computation amount
of the DP algorithm increases exponentially with the amount of
problem's dimension. So it is not practical to the large and
complicate pipeline networks. Percell and Ryan researched the
generalized reduced gradient (GRG) method (Percell and Ryan,
1987). Compared with the DP algorithm, the GRG method over-
comes the dimensionality problem, and it can be applied to
complicated structure networks. By using the linearizationmethod,
the non-linear model can be transformed into a linear model. Then
the linear programming (LP) method can be used to solve the
problem (De Wolf and Smeers, 2000). But the final results are
dependent on the initial search point. In other words, the LP al-
gorithm is also easily entrapped into the local optimum results if
the initial search point is not set properly (Feldman, 1988).

Different with above traditional methods, some newly emerged
evolutionary optimization algorithms and artificial intelligence al-
gorithms explore the feasible domain based on stochastic evolution
rather than on gradient information (Dong et al., 2012). Thus, they
are effective to solve the discrete and nonlinear optimization
problem. In recent years, many evolution algorithms have been
applied to optimization problems successfully, such as the ant
colony optimization (ACO) (Chebouba et al., 2009), differential
evolution algorithm (DE) (Qin et al., 2009), simulated annealing
optimization (Rodríguez et al., 2013) and the genetic algorithm
(GA) (Li et al., 2011). Haddad solved theminimum fuel consumption
problem by using three algorithms: particle swarm optimization
(PSO) (Regis, 2014; Zheng and Wu, 2012), GA (Mohamadi et al.,
2014) and the sequential quadratic programming. They found
that the PSO algorithm has the best and fastest results.

Although many significant achievements have been met in the
field of gas pipeline operation optimization, they mainly focus on
the minimum fuel consumption problem or least gas purchase
problem (Haddad and Behbahani, 2013). Scarcely literatures have
considered both the operation benefits and transmission amount.

This paper builds an operation optimization model for natural
gas pipelines, which considers the maximum operation benefits
and transportation amount in a hybrid objective function. The
nodes' pressure, flow rate and temperature constraints as well as
the compressors' constraints are included in the model. The PSO
algorithm is applied to solve model. However, the basic PSO (BPSO)
easily entraps into the premature convergence. The premature
convergence occurs when the most of the particles' positions of the
swarm stop changing over successive iterations, although the
global optimum remains undiscovered. In order to overcome the
premature defect, the adaptive inertia weight adjusting method is
introduced into the BPSO algorithm, and the IAPSO is developed
and employed to solve the model successfully.
2. Mathematical model

The trunk natural gas pipeline system is composed of pipes,
compressors, sources and consumers (Vasconcelos et al., 2013). We
define the pipes and compressors as elements, gas sources and
consumers as nodes (Li et al., 2011). So the elements are connected
by nodes. Based on these definitions, this section illustrates the
objective functions and constraints of the operation optimization
model in details.
2.1. Objective functions

(1) Maximum operation benefit objective function

The maximum operation benefit is defined as the sales income
minus the costs. These costs include gas purchasing cost, pipeline's
operation cost, management cost and compressors running cost.
Finally, it can be written as follows (Li et al., 2011).

max f1 ¼
XNn

i¼1

ðSiQniÞ �
XNp

j¼1

�
Rjfm

��XNc

l¼1

ðHlClWlÞ (1)

where Qni is the inflow/outflow rate at the ith node, inflow rate is
set as a positive value and outflow rate as a negative value, m3/s; Si
is the sale income or purchase cost coefficient of gas at the ith node,
dollar/m3; fm is a function of management and operation, it is
dependent on pressure, flow rate and pipeline length; Rj is the
management and operation cost coefficient of the jth pipeline,
dollar/km; Hl is the status of the compressor (Hl ¼ 0 if the
compressor is OFF; Hl ¼ 1 if the compressor is ON); Cl is the cost
coefficient of the lth compressor station, dollar/kW;Wl is the power
of the lth compressor station, kW; Nn, Np, Nc are the total number of
nodes, pipelines and compressors respectively.

(2) Maximum transmission amount objective function

Sometimes, the operators need large amount of gases in order to
meet the contract matters. However, the maximum transmission
amount may not lead to the maximum operation benefit. So the
maximum transmission amount function is necessary and irre-
placeable. This function is defined as the total gas volume that flows
into the pipeline (Li et al., 2011). It can be calculated by Eq. (2):



X. Wu et al. / Journal of Natural Gas Science and Engineering 21 (2014) 10e1812
max f2 ¼
XNn

i¼1

ðbQniÞ (2)

where b is a coefficient. If the node is a gas source, b ¼ 1; Other-
wise, b ¼ 0.

(3) Hybrid objective function

Generally, both the operation benefit and transportation
amount are important goals in the operation scheme. In some
cases, the pipeline operators need to balance the operation benefit
and the transportation amount. Then, above two objective func-
tions should be integrated into one new function. The weight sum
method is used here to build the hybrid objective function, and is
expressed as follows:

max f ¼ af1 þ bf2 (3)

where f1 is the maximum operation benefit objective function; f2 is
the maximum transmission amount objective function; a and b are
weight factors, a þ b ¼ 1.

Due to the objective functions f1 and f2 have different di-
mensions, the logarithms dimensionless method is used to make
those two functions dimensionless. This method is commonly used
in the artificial neural network (Psichogios and Ungar, 1992).

The weights a and b reflect the relative importance between the
operation benefit and transmission amount objectives. Hence, their
values have a crucial influence on the optimization results.
Generally, the weights can be determined according to the opera-
tor's intentions and experiences. In order to compare the relative
importance of the two objectives and determine the weights
quantity, this paper adopts the scale method derived from the
Analytic Hierarchy Method (AHP) (Li et al., 2012). The scales and
their definitions are listed in Table 1.

2.2. Constraints

The trunk natural gas pipeline is designed for running in specific
pressure, temperature and flow rate ranges. The optimization re-
sults must not fall beyond the limitations of these design param-
eters. Besides, the natural gas flowing within the pipeline should
satisfy the basic mass, momentum and energy conservation laws
(Mokhatab and Poe, 2012). All of these limitations are summarized
as the constraints of the model. The details are illustrated as
follows.

(1) The outflow and inflow rate constraint

The long-distance trunk gas pipeline always hasmany consumer
and source nodes. At the consumer node, the gas flow rate should
not fall below the request minimal outflow rate. At the source node,
the gas inflow rate should not fall beyond themaximumproduction
amount of the gas field. So the flow rate constraint can bewritten as
follows (Zheng et al., 2010).
Table 1
The scales and definitions of relative importance.

Value a/b Explanation

1 f1 is of the same importance as f2
3 f1 is a slightly more important than f2
5 f1 is significantly more important than f2
7 f1 is much more important than f2
9 f1 is extremely more important than f2
2, 4, 6, 8 Intermediate values of importance
Cut down The ratio, b/a
Qnimin � Qni � Qnimax i ¼ 1;2;…Nn (4)

where Qni is the flow rate of the ith node, m3/s; Qnimin is the min-
imum allowable inflow/outflow rate of the ith node, m3/s; Qnimax is
the maximum allowable inflow/outflow rate of the ith node, m3/s.

(2) The node pressure constraint

Similar to the flow rate constraint at each node, the node
pressure must be limited by the maximum and minimum values.
For instance, the pressure at the compressor's inlet must maintain
beyond the required minimum suction pressure, and the distribu-
tion pressure must not be higher than pipeline's maximum allow-
able operation pressure. Thus, the node pressure constraint can be
expressed as follows (Li et al., 2011):

Pnimin � Pni � Pnimax i ¼ 1;2;…;Nn (5)

where Pni is the pressure at the ith node, Pa; Pnimin is the minimum
allowable pressure at the ith node, Pa; Pnimax is the maximum
allowable pressure of the ith node, Pa.

(3) The node temperature constraint

The volume of the natural gas expands with the temperature
increasing. As a result, the volume flow rate increases, and the
pipeline's transmission ability is decreased. Besides the high tem-
perature constraint, there is also a low temperature limitation. The
lowest temperature must maintain beyond the natural gas's hy-
drocarbon dew point and water dew point (Mokhatab and Poe,
2012). Otherwise, the liquid hydrocarbon or water condensation
appears in the pipeline (Galatro and Marín-Cordero, 2014), which
will decrease the pipeline's transportation efficiency and induce
the pipe material's corrosion. Thus, the node pressure constraint
can be expressed as follows (Li et al., 2011):

Tnimin � Tni � Tnimax i ¼ 1;2;…;Nn (6)

where Tni is the temperature at the ith node, K; Tnimin is the mini-
mum temperature at the ith node, K; Tnimax is the maximum
allowable pressure of the ith node, K.

(4) Flow rate balance equation of nodes

According to the mass conservation law, the mass inflow rate
should be equal to the outflow rate at any node. This constraint can
be expressed by Eq. (7):X
k2Ui

aikMik ¼ 0 i ¼ 1;2;…;Nn; k ¼ 1;2;…;Ne (7)

where Ui is the set of elements that connect to the ith node; Mik is
the absolute mass flow rate of the kth element that connect to the
ith node, kg/s; aik is constant, aik ¼ 1 if the kth element comes out
from the ith node t; aik ¼ �1 if kth element goes into the ith node;
Ne ¼ Nc þ Np.

(5) The centrifugal compressor's power constraint

The centrifugal compressor is themost complicate equipment in
the long-distance gas pipeline system. The compressor must be
operated between the surge zone and the stonewall zone. Typically,
the details of the compressor's model contains a set of polynomial
formulations which depicts relationship between the inlet volu-
metric flow rate, speed, adiabatic head, adiabatic efficiency as well
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as the stone zone and surge zone (Wu et al., 2000). Many literatures
concluded that the optimization of the compressor's operating
parameters is a very difficult task (Haddad and Behbahani, 2013;
Wu et al., 2000). In this paper, a simplified compressor model is
introduced to reduce the complexity of the optimization model.

The simplified model uses the maximum and minimum powers
to guarantee the normal operation of the compressor. The com-
pressor's power constraint is expressed by Eq. (8).

Wlmin � Wl � Wlmax l ¼ 1;2;…;Nc (8)

where Wl is the power of the lth compressor, kW; Wlmin is mini-
mum allowable power of the lth compressor station, kW; Wlmax is
maximum allowable power of the lth compressor station, kW.

The centrifugal compressor's power can be calculated by Eq. (9).

W ¼ 0:0167PsQs
m

m�1
hp

h
3
m�1
m � 1

i
(9)

where 3 is the compressor ratio, Pd=Ps; Pd is the compressor's
discharge pressure, kPa; Ps is the compressor's suction pressure,
kPa; Qs is the volume flow rate at the suction pressure Ps, m3/min;
hp is the compressor's efficiency; m is the polytropic exponent of
the gas (Khan and Lee, 2012).

There are five variables in Eq. (9), but only three of them, which
are Pd, Ps and Qs, are independent. The parameter m is determined
by the pressure and gas composition, and the parameter hp is
dependent on the compressor's inherent performance. Further-
more, if the lengths of the suction and discharge pipes are ignored,
Pd and Ps are approximately equal to the pressures at downstream/
upstream nodes. This approximation method can be illustrated
by Fig. 2.

(6) Compressor's status constraint

There are two statuses of the compressor: On or OFF. The
constraint is explained by following equation.

Hl

�¼ 1 if the compressor in ON
¼ 0 if the compressor in OFF

(10)

On the other hand, the compressor's status can be obtained
based on the compressor ratio. If the compressor ratio is equal to
unity, the status is OFF. If the compressor ratio is larger than unity,
the status is ON.

(7) The compressor's temperature equation

The temperature of the natural gas also changes with the
compression of the gas. The temperature change across the
compressor can be calculated by Eq. (11)

Td ¼ Ts 3
m�1
m (11)

where Ts is the suction temperature, K; Td is the discharge tem-
perature, K.
A compressor
Pnup Pndown

Ps Pd

Fig. 2. Approximation method of the compressor's pressures.
Similar to the compressor's suction and discharge pressures,
above two temperatures also can be replaced by the upstream and
downstream nodes' temperatures.

(8) The pipeline's pressure equation

The pipeline's pressure equation describes the relationship be-
tween the gas flow rate and pressures at inlet and outlet of the pipe.
The equation is derived from the one-dimensional momentum
conservation equation. It takes the following form (Li, 2008).

Mj ¼
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
P2Qjð1� C1DhÞ � P2Zj

i
D5

lZRTaL
�
1� C1Dh

2

�
vuuuut j ¼ 1;2;…;Np (12)

C1 ¼ 2g
ZRTa

(13)

where PQj is the jth pipe's inlet pressure, Pa; PZj is the jth pipe's
outlet pressure, Pa;Mj is themass flow rate in the jth pipe, kg/s; Ta is
the pipe's average temperature, K; L is the pipe length, m; D is the
internal diameter, m; Dh is the elevation difference between the
inlet and outlet of the pipe, m; Z is the compressibility factor, which
can be obtained by equation of state (Poling et al., 2000); g is the
gravity acceleration, 9.8 m/s2; R is the gas constant, 8.314 J/(mol K);
l is the friction factor, which can be calculated by the Cole-
brookeWhite correlation (Mokhatab and Poe, 2012):

1ffiffiffi
l

p ¼ �2lg
�

k

3:7D
þ 2:51
Re

ffiffiffi
l

p
�

(14)

where k is the absolute roughness of the pipe's internal wall, m; Re
is the Reynold number.

Based on the environment temperature and the inlet tempera-
ture, the average temperature Ta can be calculated by Eq. (15)
(Mokhatab and Poe, 2012).

Ta ¼ T0 þ
�
Tnup � T0

�1� exp
�
� KpD

MCp

�
�KpD

MCp
L

(15)

where Cp is the specific heat capacity of the gas, J/(kg K); Tnup is the
temperature at the pipe's inlet node, K; T0 is the environment
temperature, K; K is the pipe's overall heat transfer coefficient, W/
(m2 K).

Similar to Fig. 2, a pipeline is typically connected with its up-
stream node and downstream node. Thus, pipe's inlet pressure PQj
and outlet pressure PZj are equal to the upstream node and
downstream node pressures Pnup, Pndown respectively. Finally, there
is only one independent variable in Eq. (12), which is the mass flow
rate Mj in the pipe.

(9) The pipeline's temperature equation

The pipeline's temperature equation is used to predict the
temperature along the pipe. Based on the one-dimensional energy
equation, the pipeline's temperature equation can be derived as Eq.
(16):

Tndown ¼ T0 þ
�
Tnup � T0

�
exp

��L
Fr

�
þ Fr
Cp

�
JCp
�
Pnup � Pndown

�
� g sin q

	
(16)
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Fr ¼ MCp
KpD

(17)

where Tndown is the pipeline's downstream node temperature, K; J
is the JouleeThomson coefficient, K/Pa; is the pipe inclination
angle, rad.

(10) Nodeeelement matrix

Eqs. (7), (9), (11)e(17) represent the steady state simulation
model for the trunk natural gas pipeline network. When the
equations are applied to a complicated pipeline network, the
nodeeelement matrix can be used to describe the network's to-
pology. If a network is composed of Nn nodes and Ne elements, the
size of the matrix should be Nn � Ne.

A simple trunk gas pipeline network is shown in Fig. 3. Its
nodeeelement matrix is expressed by Eq. (18).

a ¼

2
664
1 �1 0 0
0 1 �1 0
0 0 1 �1
0 1 0 �1

3
775 (18)

In the matrix, each row corresponds to an element, and each
column corresponds to a node. Thus, the upstream and down-
stream node of each element can be found by searching a fixed row.
All the inflow and outflow elements that connect to the same node
can be found by searching a fixed column. By using this method, the
pipeline network with arbitrary structure can be described easily,
and the optimization model can be built for any network with any
structures.
Is it a compressor?

Build the compressor power
constraint by using Eqs.(8) and (9)

Yes

j=j+1

by using Eq.(5)

Build the node flow rate balance
equation by using Eq.(7)

i>Nn?

Initialize the element number j=1

i=i+1

Build the compressor temperature
equation by using Eq.(11)

Build the pipe equation
and temperature

equations by using
Eqs(12) to (17)

No

Yes

No

Build the node temperature
constraint by using Eq.(6)

Build the compressor status
constraint by using Eq(10)
2.3. Optimization model

According to the objective functions and constraints illustrated
previously, the optimization variables in the model are: the pres-
sure, temperature, inflow rate and outflow rate at every node, the
flow rate in every elements (pipes, compressors), status and power
of every compressor. The variables are summarized in Eq. (19).

X ¼ �Pn1;Qn1; Tn1; Pn2;Qn2; Tn2;…; PnNn
;QnNn

; TnNn
;M1;M2;…;

MNe
;W1;W2;…;WNC

;H1;H2;…;HNC

	
(19)

In Eq. (19), the pressures, flow rate and compressors' power are
continuous parameters, whereas the compressors' statuses are
discrete parameters. So it is a combinational optimization problem,
which is difficult to be solved. In order to simplify the model, the
status of the compressors is replaced by the compressor ratio 3. If
the compressor is stopped, 3¼ 1; if the compressor is working,
3>1. Then, all the discrete variables are transformed into contin-
uous variables.

The mass flow rate M is defined as the volume flow rate
multiplied the gas density, M ¼ Qr. Then, Eq. (19) can be trans-
formed into the following form.
11

4

3
2

3

4

2

Fig. 3. A simple trunk gas pipeline network.
X ¼ �Pn1;Qn1; Tn1; Pn2;Qn2; Tn2;…; PnNn
;QnNn

; TnNn
;Q1;Q2;…;

QNe
;W1;W2;…;WNC

; 31; 32;…; 3NC

	
(20)

Based on Eqs. (1)e(18) and (20), the optimization model for the
trunk natural gas pipeline operation can be written as follows.

minf ðXÞ (21)

Subject to : hiðXÞ ¼ 0 i ¼ 1;2;…;g (22)

giðXÞ � 0 i ¼ 1;2;…; x (23)

where f is the objective function; hi represents equality constraints;
gi represents inequality constraints; g and x represent the total
number of the equality constraints and inequality constraints,
respectively.

Based on the objective function and all the constraints, the
optimization model establishment procedure can be depicted by
Fig. 4.
Yes

j>Ne?

End

No

Build the objective function by
using Eq.(3)

Fig. 4. The optimization model establishment procedure.
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Although the objective function is linear, there are both linear
and non-linear constraints in the model. So the optimization model
is a non-linear model. Based on the particle swarm optimization
algorithm, the following section researched an efficient solution
method for the model.

3. Model solution

3.1. Basic particle swarm optimization (BPSO)

Particle swarm optimization (PSO) is a population-based
evolutionary optimization algorithm, which is inspired by social
behavior of bird flocking (and school of fish) (Kennedy, 2010). In
PSO, a swarm contains a set of populationmembers, which is called
the particle. Every particle has both a position and velocity. The
position represents a candidate solution in the multi-dimensional
solution space, and the velocity moves it from one position to
another over the solution space. For every position, a fitness func-
tion is applied to evaluate the particle quantitatively until the
convergence criteria are met. The particle with the best fitness
value in the neighborhood is marked as the global/local best par-
ticle. Every particle also keeps a record of its personal best position
searched so far. For the trunk natural gas pipeline, every particle
represents a candidate optimum operation solution.

In a D-dimensional solution space, the position vector of the i-th
solution is written as Xi ¼ ðxi;1; xi;2;…; xi;DÞ, and the corresponding
velocity vector is given by Vi ¼ ðvi;1; vi;2;…; vi;DÞ. The velocity and
position updating methods for the d-th dimension of i-th solution
at the (k þ 1)-th iteration step are expressed by Eqs. (24) and (25)
(Bansal et al., 2011).

vkþ1
i;d ¼ uk$vki;d þ c1r1



pbesti;d � xki;d

�
þ c2r2



gbestd � xki;d

�
(24)

xkþ1
i;d ¼ xki;d þ vkþ1

i;d (25)

where u is the inertia weight, which is used to balance the global
and local search ability; a large inertial weight is more appropriate
for global searches and a small inertia weight facilitates local
searches. c1 and c2 represent the cognition parameter and social
parameter respectively, which determine the balance influence of
the individual's knowledge and that of the group; r1 and r2 are
random numbers ranging from 0 to 1; x is the position of the par-
ticle; v is the velocity of the particle; pbesti;d is the personal best
position found so far by the d-th dimensional in the i-th solution.
gbestd is the best position found so far by all of the solutions; the
subscript i represents the solution's number; the subscript
d represent the variable number in the solution vector; the super-
script k represents the number of generation (iteration).

Besides, Eqs. (26) and (27) are used to constrain the upper and
lower bounds of particles' velocities (Kennedy, 2010).

If vi;d > vmax; vi;d ¼ vmax (26)

If vi;d < � vmax; vi;d ¼ �vmax (27)

3.2. Fitness function

Generally, the objective functions must be included in the
fitness function, and the candidate solution must satisfy the
equality constraints. In this paper, the equality constraints are
incorporated into the fitness function in the way of a penalty
function. Finally, the fitness function is expressed as follows (Tang
and Zhao, 2009).

FðXÞ ¼ �f ðXÞ þ G
Xg
i¼1

jhiðXÞj (28)

where F(X) is the fitness function; f(X) is the objective function; G is
a large positive constant; hi(X) is the real results of the equality
constraints.
3.3. Convergence criteria

Similar to some traditional iteration methods, the evolution
process of the PSO are finished when certain converge criteria are
met. Many studies (Kennedy, 2010; Zheng and Wu, 2012) have
shown that the particles aggregate if the swarm reaches a
convergence state. Because the aggregate particles have similar
fitness values, the variance of the fitness functions can be used to
develop the convergence criteria (Tang and Zhao, 2009). The vari-
ance is calculated by Eq. (29).

x2 ¼
Xz
i�1

�
FðXiÞ � Fa

F*

2
(29)

where z is the total number of the particles; F(Xi) is the fitness value
of the i-th particle; Fa is the average fitness value of all the particles;
F* is a normalization calibration factor, which is calculated by Eq.
(30).

F* ¼
(

max
1�i�z

½jFðXiÞ � Faj�; if max
1�i�z

½jFðXiÞ � Faj�>1

1; others
(30)

If the particles aggregate in a small space, the value of the
variance x2 will be smaller than a specific value. Thus, we can judge
the particles' converge state.

The BPSO has the advantages of simple and high calculation
speed. However, by far themost problematic characteristic of PSO is
its propensity to converge, prematurely, on early best solutions.
Manymethods have been developed in attempts to overcome these
defects. One of the most popular methods is adjusting the inertia
weight u (Bansal et al., 2011; Nickabadi et al., 2011).
3.4. Improvement of the particle swarm optimization

In Eq. (24), the inertia weight is used to balance the global and
local search ability. It can be seen that the term u$vki increase as the
inertiaweight. If u has a large value, the particle will search broader
solution space. If u has a small value, the evolution process will
focus on the space that near to the local best particle. Thus, the
global and local optimization performances of the algorithm can be
controlled by adjusting the inertial weight value.

In order to overcome the premature defect and enhance the
computation speed of the BPSO, this paper adopts an adaptive
inertia weight strategy to adjust the u value dynamically. This
method adjusts the inertia weight adaptively based on the distance
from the particles to the global best particle (Suresh et al., 2008). It
is expressed by Eq. (31) .

ukþ1 ¼ uk
�
1� disti

distmax

�
(31)

where u0 is a random number ranging from 0.5 to 1.0; disti is the
current Euclidean distance from the i-th particle to the global best
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particle; distmax is the maximum distance from a particle to the
global best particle. The two distances are defined by Eqs. (32) and
(33).

disti ¼
 XD

d¼1

�
gbestd � xi;d

�2!1=2

(32)

distmax ¼ max
i

ðdistiÞ (33)

As expressed by Eq. (31), the weight will increase automatically
if the particle is apart from the global best value. Otherwise, the
inertia weight will decrease. This adaptive adjustment approach
gives the PSO greater global search ability when the particles are
apart from the global best. It also gives the improved algorithm
finer local search ability when the particles approach toward the
global best particle.

Moreover, the update position of the particle is modified as
follows avoiding the premature convergence.

xkþ1
i;d ¼ ð1� r3Þxki;d þ vkþ1

i;d (34)

where r3 is a uniformly distributed random number ranging from
�0.25 to 0.25.

The performance of IAPSO algorithm is studied by Suresh et al.
(2008). They used eight well-known benchmarks to evaluate its
performance. These benchmark functions are Sphere, Rosenbrock's,
Rastrigin's, Griewank's, Ackley's, Weierstrass. The performance of
the IAPSO algorithm was also compared with other four PSO al-
gorithms which are PSO-TVIW, HPSO-TVAC, MPSO-TVAC and
CLPSO algorithms (Suresh et al., 2008). They found that the IAPSO
has better solution quality and higher convergence speed than the
other four PSO algorithms.
Fig. 5. The optimization model solution procedure.
3.5. Procedures of solving the model with the PSO algorithms

Based on the PSO algorithms, the optimization model can be
solved by the following procedures.

Step 1: Set the total number of the particles, the maximum
number of the evolution generation kmax, the maximumvelocity
vmax, cognition parameter c1, social parameter c2 and initial
weight u0.
Step 2: Initialize the velocity randomly and position of all par-
ticles. Because the each one particle's position represents a
feasible operation scheme of the gas pipeline, the initial posi-
tions can be obtained from the pipeline's operation database or
by the pipeline steady-state simulation software. Nowadays, lots
of commercial software packages can be utilized in imple-
menting the pipeline simulation, such as the PipelineStudio and
Stoner Pipeline Simulator (SPS) (Wu et al., 2009).
Step 3: Set the generation number count k ¼ 1.
Step 4: Evaluate the fitness of each particle in the population
according to the fitness function Eq. (28).
Step 5: Compare the particle's fitness value with pbesti;d and
gbestd. Update the pbesti;d and gbestd according to the com-
parison results.
Step 6: Calculate the new inertia weight ukþ1 by using Eq. (31).
Step 7: Calculate the new velocity vkþ1

i;d by using Eq. (24).
Step 8: Update the position of each particle by using Eq. (34).
Step 9: Calculate the variance of the all the particles' fitness
functions and check whether the converge criterion is met by
using Eq. (29). If it is met, go to Step 11. Otherwise, go to Step 10.
Step 10: If k > kmax, go to Step 11. Otherwise, increment the
generation number count k ¼ k þ 1 and go to Step 4.
Step 11: Stop the program and output optimization results.

Above procedures also can be depicted by a flow chart as shown
in Fig. 5.

Based on the above optimization and its solution method, a
Visual C# computer program was developed so that optimization
results can be obtained.
4. Results and discussions

4.1. Introduction of the SeeNingeLan gas pipeline

SebeieNingxiaeLanzhou gas transmission pipeline was built in
2001. Its total length is 922 km, and the internal diameter is
660mm. The pipe's wall thickness is 17mm. Nine stations along the
pipeline distribute gases to sixteen consumers. There are four
compressor stations with eight compressors to boost the gas
pressure. The topological structure of the pipeline is depicted in
Fig. 6.

The maximum allowable operation pressure is 6.4 MPa, and the
design annular gas transportation amount is 37 � 108 m3. The ab-
solute roughness of the pipe's internal wall is 0.01 mm. The envi-
ronment temperature is 2.1 �C, and the pipeline's overall heat
transfer coefficient is 1.47W/(m2 K). The composition of the natural
gas is listed in Table 2. Based on the gas composition, the Pen-
geRobinson Equation of State (Mokhatab and Poe, 2012) is utilized



Fig. 6. The Schematic diagram of SeeNingeLan gas pipeline.

Table 2
The composition of the natural gas.

Component N2 CO2 CH4 C2H6 C3H8

Mole fraction 0.0020 0.0250 0.9684 0.0036 0.0010
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to calculate the physical parameters, including the compressibility
factor, density, specific heat capacity, JouleeThomson coefficient.
Fig. 7. The converge curves of SeeNingeLan gas pipeline.

Table 3
Optimized values related to the objective function obtained by five PSO algorithms.

Algorithm Maximum flow
rate (104 m3/d)

Operation
benefit
(104 dollar/d)

Maximum
pressure (MPa)

Minimum
pressure (MPa)

IAPSO 960.8 75.2 5.51 3.00
PSO-TVIW 893.7 65.6 5.70 2.02
HPSO-TVAC 902.6 64.9 5.65 2.56
MPSO-TVAC 932.5 70.6 5.50 2.35
CLPSO 925.3 71.8 5.67 2.68

Table 4
Inlet and outlet parameters of stations.

Station
namea

Inlet
temperature
(�C)

Outlet
temperature
(�C)

Inlet
pressure
(MPa)

Outlet
pressure
(MPa)

Flow rate
(104 m3/d)

CS1 4.6 23.3 4.15 5.30 960.8
CS2 �0.9 33.5 3.13 5.44 953.3
S 1 4.3 4.3 4.48 4.48 933.3
CS3 �2.0 33.9 3.09 5.51 912.2
CS4 �1.8 34.7 3.00 5.32 895.7
S 2 8.7 8.6 4.40 4.40 642.7
S 3 5.7 �5.9 4.30 4.30 629.1
S 4 5.6 20.0 4.40 4.40 625.3
4.2. Optimization results

Set the total number of particles is 30, the maximum number of
the evolution generation kmax¼ 600, the cognitionparameter c1¼1,
social parameter c2¼1 and initial weightu0 ¼ 0:5, the convergence
value of swarm's fitness variance is 10�7. Besides, in the objective
functionEq. (3),we seta/b¼2,whichmeansa¼0.666 andb¼0.333.

In order to ensure the initial particles satisfy all the constraints,
the pipeline simulation software Stoner SPS version 9.5 was used to
generate 30 initial particles of the swarm. According to the pipe-
line's design parameters, the limitations of the optimization vari-
ables are listed as follows: 970� 104 m3=d � Q � 0m3=d,
6:4 MPa � P � 2:0 MPa, 4800 kW � W � 1300 kW, 1:0 � 3� 3:0,
�10 �C � T � 60 �C.

The optimization model is solved by five PSO algorithms: IAPSO,
PSO-TVIW, HPSO-TVAC, MPSO-TVAC and CLPSO. The convergence
curves of these five algorithms are shown in Fig. 7. The optimized
values related to the objective function are listed in Table 3.

Fig. 6 presents that the IAPSO algorithm has faster convergence
speed and smaller final converge fitness variance than the other
four PSO algorithms. Table 2 shows the scheme obtained by the
IAPSO method has larger flow rate and higher operation benefit
than those obtained by other methods. It should be noted that the
IAPSO optimization scheme has lower maximum pressure than
other schemes, which means the scheme has greater security.

Based on the IAPSO algorithm's results, the optimal operation
parameters of the pipeline are obtained. The details of the opti-
mization results are listed in Tables 4 and 5.

The results prove that the IAPSO method is efficient and reliable
when applied to solve the operation optimizationmodel for natural
gas pipelines.

It should be noted that although above five algorithms start with
the same initial particles, they finally get different results. The
different updating methods with regard to their weights, velocities
and positions may contribute to the difference results (Suresh et al.,
2008). In the future, the internal mechanism that causes these
differences should be researched.
S 5 3.6 20.0 4.30 4.30 617.2
S 6 1.7 1.7 4.20 4.20 614.5
S 7 1.7 1.7 4.20 4.20 602.6
S 8 1.1 �9.6 4.10 4.10 593.5
Lanzhou 0.7 0.4 4.00 3.90 256.0

a The station names can be located in Fig. 5.
5. Conclusions

This paper built an operation optimization model for the natural
gas pipeline including compressors, in order to balance the
operation benefit and gas transmission amount. The weight sum
method was used to combine the maximum operation benefit and
transmission amount goals into one hybrid objective function, and
the weight value of each single objective function was determined



Table 5
Optimized results for each compressor.

Station Compressor
Name

Suction
Pressure (MPa)

Discharge
pressure
(MPa)

Compressor
ratio

Status

CS1 CS1 A 4.15 4.15 1.00 OFF
CS1 B 4.15 5.30 1.28 ON

CS2 CS2 A 3.13 3.13 1.00 OFF
CS2 B 3.13 5.44 1.74 ON

CS3 CS3 A 3.09 5.51 1.78 OFF
CS3 B 3.09 3.09 1.00 ON

CS4 CS4 A 3.00 3.00 1.00 OFF
CS4 B 3.00 5.32 1.77 ON
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by the scale methodwhichwas derived from the Analytic Hierarchy
Method (AHP). Besides, the constraints concerning about the
node's pressure, flow rate and temperature. The compressor's po-
wer and status, the pipe's pressure and temperature equations
were also incorporated into the model. Especially, the compressor
ratio was adapted to replace the compressor's status. As a result, all
the discrete variables are eliminated in the model.

The operation optimization model was applied to a real trunk
gas pipeline in China, and an adaptive inertia weight adjusting
based particle swarm optimization (IAPSO) algorithm and other
four PSO algorithms were adopted to solve the non-linear optimi-
zation model. The results show that IAPSO has faster convergence
speed and better solution quality than those of the other four PSO
algorithms. These achievements show that it is feasible to balance
the gas pipeline's operation benefit and transportation amount by
using the optimization model and the IAPSO algorithm.
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