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Abstract: This paper deals with the development and analysis of hybrid 
genetic algorithms for flow shop scheduling problems with sequence dependent 
setup time. A constructive heuristic called setup ranking algorithm is used for 
generating the initial population for genetic algorithm. Different variations of 
genetic algorithm are developed by using combinations of types of initial 
populations and types of crossover operators. For the purpose of 
experimentation, 27 group problems are generated with ten instances in each 
group for flow shop scheduling problems with sequence dependent setup time. 
An existing constructive algorithm is used for comparing the performance of 
the algorithms. A full factorial experiment is carried out on the problem 
instances developed. The best settings of genetic algorithm parameters are 
identified for each of the groups of problems. The analysis reveals the superior 
performance of hybrid genetic algorithms for all the problem groups. 
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1 Introduction 

One of the realistic variations of flow shop scheduling problems is the one with sequence 
dependent setup time (SDST). In practical scheduling situations, setup times do exist 
between two consecutive jobs on a machine. It can be observed in various manufacturing, 
service and information processing operations. Setup times are conveniently added to 
processing times rather than considering it separately. The importance and benefits of 
incorporating setup times in scheduling research has been investigated by many 
researchers (Allahverdi and Soroush, 2008). The setup times considered in this study are 
dependent on the sequence in which jobs are processed on a machine. The SDSTs are 
found in chemical, textile, pharmaceutical, food processing, metal processing, paper 
manufacturing, semiconductor manufacturing, web applications, and many other 
industries (Eren, 2011; Allahverdi et al., 2008). Some researchers have used SDST 
consideration in their research works (Sabouni and Logendran, 2013; Tanaka and Araki, 
2013; Pargar and Zandieh, 2012; Gómez-Gasquet et al., 2012; Bozorgirad and 
Logendran, 2012; Bouabda et al., 2011; Magableh and Mason, 2010; Vinod and 
Sridharan, 2008a, 2008b). The present study also considers the setup time as separable, 
i.e., the job is not physically required to perform the setup. The problem addressed in the 
present study involves scheduling a set of n jobs which are available for processing on m 
machines where the setup time is SDST i.e., the setup time of job on a machine is 
dependent on the previous processed job on the same machine. The objective of the 
problem is to find the permutation schedule which minimises the makespan assuming no 
pre-emption of operations. The problem is commonly known in the literature as flow 
shop scheduling problem with SDST or SDST flow shop. This problem is denoted as 
F|sijk, prmu|Cmax, where the first field describes the machine environment (F stands for an 
m-machine flow shop), the second field provides details of processing characteristics and 
constraints (sijk stands for SDSTs and prmu means that the order or permutation in which 
the jobs go through the first machine is maintained throughout the system) and the third 
field contains the objective to be minimised. Here, sijk is the known, deterministic and 
non-negative time span required for setting up machine i when job k is preceded by job j. 

Even though, the scheduling area has received much attention from researchers over 
the years (Amiri et al., 2013; Srinivasan and Srirangacharyulu, 2012; Joseph and 
Sridharan, 2011; Joo and Min 2011; Boudhar and Tchikou, 2010; Kanagasabapathi et al., 
2010; Soroush and Alqallaf, 2009; Kanyalkar and Adil, 2009; Lawrynowicz, 2007), 
research works carried out in SDST flow shop scheduling problem is very much limited. 
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The computational complexity is one of the reasons for lesser number of research works 
in the area. The SDST flow shop scheduling problem is considered as NP complete 
(Gupta, 1986). The complexity of the problem demands the development and use of 
computationally less intensive heuristics for the problem. Constructive algorithms with 
lesser complexity for such problems are difficult to construct and therefore are rare.  
Rios-Mercado and Bard (1998) propose a constructive heuristic algorithm called 
NEHRB, which is an extension of the well-known NEH heuristic (Nawaz et al., 1983). 
On the contrary, improvement algorithms such as metaheuristics and random search 
algorithms are considered as the popular choice and are found more frequently in the 
literature. Metaheuristics are general procedure heuristics which can be applied to 
different problems. The metaheuristics come under the category of improvement 
algorithms. Metaheuristics have been applied to the general scheduling problems by 
several researchers (Sobhani and Wong, 2013; Kumar and Sivakumar, 2013; Nguyen and 
Kachitvichyanukul, 2012; AitZai et al., 2012; Kasemset and Kachitvichyanukul, 2012; 
Solimanpur and Rastgordani, 2012; Defersha and Chen, 2011; Ramanan et al., 2011; 
Amuthakkannan et al., 2010; Laha and Mandal, 2007; Arumugam et al., 2007). However, 
there have been a few applications of metaheuristics in scheduling SDST flow shop. 
Parthasarathy and Rajendran (1997) develop a simulated annealing algorithm to minimise 
mean weighted tardiness in a flow shop with SDSTs. Ruiz et al. (2005) develop two 
heuristics based on genetic algorithm (GA) for flow shop with SDST using makespan 
criteria. Gajpal et al. (2006) consider the makespan objective and present an ant colony 
algorithm for flow shop scheduling with sequence dependent setups. 

The present study develops and analyses hybrid GAs for scheduling SDST flow 
shops. A constructive heuristic called setup ranking algorithm (SRA) is used for 
developing the proposed hybrid GAs (Vanchipura and Sridhran, 2012). To the best 
knowledge of the authors, this is first application of hybrid metaheuristic for solving 
SDST flow shop scheduling problem operating in a SDST environment. Generally, a 
metaheuristic has a drawback that it may end up in local optimum. This drawback can be 
reduced to some extent by tuning the parameters of the metaheuristic. In the literature, 
many researchers have used parameter tuning for different metaheuristics (Komarudin 
and Wong, 2012; Vinay and Sridharan, 2012; Lessmann et al., 2011). Full factorial 
experimentation is one method for tuning the parameters of the metaheuristic. Here, 
metaheuristics need to be tested for all possible combinations of parameters at different 
levels. GA make use of two operators namely, crossover operator and mutation operator. 
Three different existing crossover operators namely, partially matched crossover (PMX), 
similar block 2 point order crossover (SB2OX) and similar job 2 point order crossover 
(SJ2OX) are used as the crossover operators for GA. The performance of metaheuristics 
is also dependent upon the initial solutions given to the metaheuristic. The present study 
considers three different initial populations, namely, Random population, SRA 
population and SRA population + Random population. The possible combinations of 
crossover operators and population types result in nine different variations of GA. Out of 
the nine variations; six of them use either SRA population or SRA population + Random 
population. They are hybrid GAs since they use a different algorithm to obtain input 
population for the GA. The crossover probability and mutation probability are the other 
parameters that need to be optimised for GA. In the present study, four different levels of 
probabilities for both crossover and mutation are considered. Thus, three levels of initial 
population, three levels of crossover types, four levels of crossover probability and four 
levels of mutation probability lead to 144 combinations. All these combinations are tested 
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for 270 problem instances. Statistical analysis based on four-factor ANOVA has been 
carried out on the results obtained. Using the ANOVA results, the problems are grouped 
into three cases based on the interactions among the factors. The best settings of GA 
parameters are identified for each of the groups of problems. 

The rest of the paper is organised as follows. Section 2 provides formulation of the 
SDST flow shop scheduling problem. Section 3 deals with the solution methodology. 
Section 4 describes the details of experimentation. Section 5 presents the results and the 
analyses. Section 6 provides the conclusion. 

2 Formulation of the flow shop scheduling problem with SDSTs 

The flow shop scheduling problem considered in the present study involves a set of n 
jobs to be processed on a set of m machines all in the same order. The objective of this 
problem is to minimise the time at which the last job in the sequence finishes processing 
on its last machine, i.e., minimise the makespan. The following assumptions are made: 

• Each job is available at time zero. 

• Each job can be processed at most on one machine at the same time. 

• Each machine can process only one job at a time. 

• No pre-emption is allowed, i.e., the processing of a job on a machine cannot be 
interrupted.  

• The setup times of the jobs on machines are separable; the job is not necessary to do 
the setup. 

• Setup time is dependent on the sequence in which the jobs are processed. 

• The SDST is asymmetric; i.e., sijk ≠ sikj. 

• All the processing times and setup times are known in advance. 

• In-process inventory is allowed. 

• The machines are continuously available. 

Notations 

n Total number of jobs to be scheduled 

i Index of machine; (i − 1) indicates the previous machine in the sequence 

m Total number of machines in the flow shop 

j Index of job, (j − 1) indicates the previous job processed in the machine 

pij   Processing time of job j on machine i 

sijk  Setup time on machine i, when job k is preceded by the job j 

σ  Ordered set of jobs already scheduled, out of n jobs; partial sequence 
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q(σ, i) Completion time of partial sequence σ on machine i (i.e., the release time of 
machine i after processing all jobs in the partial sequence σ) 

q(σj, i) Completion time of job j on machine i, when job j is appended to the partial 
sequence σ. 

For calculating the start and completion times of jobs on machines in the permutation 
flow shop, recursive equations are used as follows. 

The completion time of σj on machine i is determined using the following recursive 
equation (Gajpal et al., 2006): 

{ }( , ) max ( , ) , ( , 1)ijk ijq j i q i s q j i pσ σ σ= + − +  (1) 

where q(Φ, i) = 0 and q(σ, 0) = 0, for all σ and i, with Φ denoting a null schedule. It is 
assumed that sijk exists for all jobs where j = Φ for all machines. The completion time for 
the current partial sequence σ on machine i is q(σ, i). Now, consider the case when new 
job j is added to the partial sequence σ. The processing of job j can be started only after 
the occurrence of the two events namely, 

1 completion of processing of previous job on the same machine i and the setup for job 
j on the machine q(σ, i) + sijk 

2 completion of the immediately preceding operation of job j on the previous machine 
q(σj, i − 1). 

Hence, equation (1) provides the completion time of job j on machine i. This equation 
can be applied to find the completion time of job j on the last machine m which is the 
total completion time of job j and it is given by the following equation. 

( , )jc q j mσ=  (2) 

When all the jobs are scheduled, the makespan M is obtained as follows: 

max{ , 1, 2,..., }jM c j n= =  (3) 

Example 

Consider the following instance of SDST flow shop with four jobs and three machines. 
Table 1 shows the processing time matrix for the jobs. The SDSTs for the three machines 
are given in Tables 2, 3 and 4. Using the above formulation, makespan values are 
obtained for the example problem instance. 
Table 1 Processing time matrix 

  Job 

 0 1 2 3 4 
1 0 12 15 10 12 
2 0 2 11 12 11 M

ac
hi

ne
 

3 0 13 10 13 9 
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Table 2 Setup time matrix for Machine 2 

  Job 

  0 1 2 3 4 

0 - 4 3 1 0 
1 0 - 4 1 3 
2 0 0 - 2 1 
3 0 2 2 - 1 M

ac
hi

ne
 

4 0 0 1 2 - 

Table 3 Setup time matrix for Machine 1 

  Job 

  0 1 2 3 4 

0 - 2 4 1 3 
1 0 - 2 7 2 
2 0 0 - 1 1 
3 0 4 1 - 1 M

ac
hi

ne
 

4 0 1 2 3 - 

Table 4 Setup time matrix for Machine 3 

  Job 

  0 1 2 3 4 

0 - 0 1 3 0 
1 0 - 0 1 2 
2 0 0 - 3 2 
3 0 4 2 - 1 M

ac
hi

ne
 

4 0 1 2 2 - 

For a sequence S = {3 2 1 4}, a feasible schedule can be prepared as shown in Figure 1 
and the corresponding makespan Cmax = 73. 

Figure 1 Gant chart for the schedule for the example (see online version for colours) 

 

The formulation gives the procedure for finding makespan for a given sequence. In flow 
shop, sequences are possible. Since the present study considers only permutation 
schedules, there are n sequences. The combinatorial problem becomes more complex by 
the addition of SDSTs. Clearly, the above problem, even with a moderate size is difficult 
to solve optimally. Thus, the present study focuses on the use of metaheuristic procedures 
for solving the problem. 
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3 Solution methodology 

The flow shop with SDST is considered as NP complete (Gupta, 1986). It is well-known 
that the general flow shop scheduling problem is NP hard and the presence of SDST 
makes it further hard. The very nature of the problem makes it difficult to get an optimal 
solution for even small size problems. Metaheuristic is the suitable solution methodology 
in such situations. But, the literature shows relatively lesser number of applications of 
such heuristics for SDST flow shop. The present study develops and analyses hybrid GAs 
for scheduling SDST flow shop. A constructive heuristic called SRA is used in the 
development of the proposed hybrid GAs. GA is a non-traditional optimisation technique 
that mimics natural evolution and genetics. It revolves around the natural reproduction 
process and the survival of the fittest strategies. The GA has been successfully applied for 
various optimisation problems (Charles and Udhayakumar, 2012; Pal and Gupta, 2012). 
In the present study, three different types of initial population and three different types of 
crossover operators are used. The details of the type of crossover operators and the types 
of population are provided in the following section. 

3.1 Three types of initial population 

GA is an improvement algorithm and it needs an initial population of solution sequences 
to start with. The initial populations are very important to GA due to the fact that the 
performance of GA depends on the quality of this initial population. The size of the 
population is normally taken as the length of the solution sequence. Since GA is an 
improvement algorithm, a quick convergence is obtained when it is provided with a good 
quality initial population. It is quite obvious that better chromosomes or solution 
sequences are closer to the optimal solution and result in quick convergence of GA. But, 
quick convergence has a possible risk of the solution getting trapped in local optimum. In 
the present study, three different types of initial populations are considered. These are 

1 SRA population 

2 Random population 

3 SRA population + Random population. 

In random population, chromosomes or solution sequences are constructed in random 
order. SRA population employs a new heuristic called SRA for the purpose of 
constructing a population. The solution sequences developed by SRA are better in terms 
of closeness to optimal solution. On the other hand, the random population is truly 
random and cannot demonstrate any quality or closeness to optimal solution. The third 
initial population is a mix of SRA population and random population; therefore, it lies 
somewhere in between the SRA population and random population in terms of quality. 
The logic of SRA is explained in the following section. 

3.1.1 Setup ranking algorithm 

SRA is a sequence construction procedure primarily based on the setup time between 
jobs (Vanchipura and Sridharan, 2012). Since the processing time remains constant, 
decrease in setup time could lead to a reduced makespan. Usually, constructive 
algorithms are designed to give one sequence as output. But, SRA is a constructive 
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algorithm specially designed to create multiple number of sequences. In constructing the 
sequence of jobs, SRA considers the SDST of consecutive jobs and not the processing 
time of jobs. The fundamental principle behind this algorithm is that as the setup time 
between jobs is reduced, the makespan also will get reduced. The algorithm starts with 
the summed setup time matrix, SST. The matrix SST is obtained by the matrix addition 
operation on the setup time matrices of all the machines. This matrix shows the sum of all 
setup time on all machines of all two-job combinations. This matrix gives a measure of 
setup time between jobs and can be used for ranking combinations of jobs from the 
lowest setup time sum to the maximum setup time sum to get the sorted summed setup 
time matrix, SSST. The SSST matrix shows the best combinations of jobs in terms of 
setup time. Each job combinations of the matrix SSST can be used as seed for new 
sequence which will lead to multiple sequences with reduced setup time. If n jobs are 
considered, there will be n2 seed sequences. For example, the first job combination in 
SSST is taken as the seed of the sequence. The complete sequence is built by adding the 
lowest possible combination on either side of the seed or partial sequence. The sorting of 
summed setup time is the major computation of the algorithm with computational 
efficiency of the order of n2. Summing the setup time matrix operation has computational 
efficiency of the order of n. Hence, the computational complexity of this algorithm is 
O(n2). The details of the algorithm are presented in the following section. 

3.1.2 Procedure of SRA 

Input: Processing time and setup time matrices. 

Output: Feasible schedule and makespan. 

 Step 1: Set σ = 0 

 
Step 2: 

1

,
m

jk ijk
i

sst s
=

=∑  for ,  j k∀  

 where sstjk represents jth row kth column element of SST. 

 Step 3: Sort the elements of SST in ascending order to get SSST. 

 Step 4: Select the Min (SSST) 

 Step 5: Select the jobs associated with Min (SSST) as seed sequence. 

 While nσ < n, do 

  Step 5a: Find eligible jobs in the partial sequence. 

  Step 5b: List all possible combinations for eligible jobs. 

  Step 5c: Find the job with minimum rank. 

  Step 5d: Append to partial sequence. 

 Step 6: Output σ 

 Step 7: Stop 

3.2 Types of crossover operators 

Crossover operation is the mechanism employed in GA for producing new chromosomes 
or solution sequences from the mating pool (the existing set of solutions). The new 
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strings are created by exchanging information among chromosomes in the mating pool. 
In most crossover operators, two strings are picked from the mating pool at random  
and some portions of the strings are exchanged between the strings. Simply  
exchanging portions between strings does not work with flow shop problems because this 
will lead to duplication of jobs in the strings, thus making the strings infeasible. Hence, 
special types of crossover operators are generally designed for flow shop scheduling 
problems. PMX is the commonly used crossover operator in flow shop problems. Other 
crossover operators that are specifically designed for these problems are SJ2OX, and 
SB2OX (Ruiz and Maroto, 2006). The SJ2OX operator proceeds as follows: At first, both 
parents are examined on a position-by-position basis and the building blocks of jobs are 
directly copied to the offspring [Figure 2(a)]. Then, two random cut points are drawn and 
section between these is directly copied to the offspring and finally the missing elements 
are copied in the relative order as it appears in the other parent [Figure 2(b) and  
Figure 2(c)]. 

Figure 2 SJ2OX procedure (a) the common jobs in both parents are copied over to the offspring 
(b) jobs between two randomly chosen cut point are inherited from the parent (c) the 
missing elements in the offspring are copied in the relative order of the other parent 

 

(a) 

 

(b) 
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Figure 2 SJ2OX procedure (a) the common jobs in both parents are copied over to the offspring 
(b) jobs between two randomly chosen cut point are inherited from the parent (c) the 
missing elements in the offspring are copied in the relative order of the other parent 
(continued) 

 
(c) 

In SB2OX, the first step of SJ2OX is modified by considering blocks of at least two 
consecutive identical jobs. In SJ2OX, individual jobs in identical positions are copied to 
offspring but, in SB2OX at least two jobs are required in the identical positions so that it 
can be copied. 

3.3 Mutation and crossover probabilities 

The probabilities of mutation and crossover are the other two important factors that will 
determine the performance of genetic algorithm. Convergence is generally considered as 
a performance criteria for GA. The improvement in the solution value of the problem is 
negligible for each of the iteration after convergence. But, a quick convergence does not 
necessarily mean that the solution is close to optimum. It is also possible that the solution 
is converging to a local optimum. Both crossover and mutation try to reduce the chance 
of the algorithm getting trapped in a local optimum. When the crossover and mutation 
probability is high, there will be lesser chances for a quick convergence and getting 
trapped in a local optimum. But, increasing the probability of crossover and mutation will 
extend the possible termination of the GA at specified convergence criteria. Hence, it is 
very much essential to find the best settings for the levels of probability of crossover and 
mutation. In the present study, both crossover probability and mutation probability are 
tested at four different levels each. 

4 Experimentation 

The experimentation is carried out in two stages: 

1 identification of benchmark problems for SDST flow shop scheduling problem 

2 testing of hybrid GA. 
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The benchmark problems for SDST flow shop presented in research paper by Vanchipura 
and Sridhran (2012) are considered for experiments. These problems are developed by 
augmenting setup time matrices for each machine in the Taillard benchmark problems 
(Taillard, 1993). Three different levels of setup times namely, 50%, 100% and 150% are 
developed using uniform distributions, U(1, 50), U(1, 100), U(1, 150) respectively.  
Nine different sizes of Taillard flow shop benchmark problems, 20 × 5, 20 × 10, 20 × 20, 
50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, and 100 × 20 are considered for the 
development of benchmark SDST flow shop scheduling problems. These problem groups 
are formed by taking different combinations of machines (5, 10 and 20) and jobs (20, 50 
and 100). Ten instances are developed for each of the 27 groups of problems (three levels 
of setup time × three levels of number of machines × three levels of number of jobs) thus 
constituting 270 problem instances. 

The next stage is the development of the metaheuristics based on GA. The main 
objective at this stage is the development of hybrid GAs with the best settings of the 
parameters. Three different types of initial populations and three different types of 
crossover operators are used in the study. The possible combinations of population types 
and crossover operators result in nine different variations of GA. Out of the nine 
variations, six of them use either SRA population or SRA population + Random 
population. They are hybrid GAs since they use a different algorithm to obtain initial 
population for the GA. The remaining three variations of GA are the GA based 
metaheuristic without hybridisation. The SRA heuristic combined with GA forms the 
structure of the hybrid GAs. SRA is a constructive heuristic used for constructing 
multiple solution sequences as explained in the preceding section. The factors such as the 
initial population type set at three levels, crossover operator type set at three levels, 
crossover probability set at four levels and the mutation probability set at four levels 
result in 144 combinations. A comprehensive full factorial experiment is carried out for 
all 144 combinations on 27 groups of problems. All these 144 combinations are tested on 
270 problem instances developed and the corresponding makespan values are obtained. 
Four-factor ANOVA is carried out on the results obtained to determine the significant 
factors for each of the 27 problem groups. It is obvious that the makespan values of 
different problem in these problem groups will differ. This implies that there is no need to 
compare and prove the statistical difference of makespan values of different problems in 
these problem groups. Hence, it is more appropriate to test the significance of each of the 
factors for each of the 27 groups of problems separately. The different factors and their 
levels used in the analysis are provided in Table 5. 
Table 5 Experimental factors and their levels 

Factor Levels 

Population type, A Random SRA SRA+ Random - 
Crossover type, B PMX SJ2OX SB2OX - 
Probability of crossover, Pc, C 0.1 0.2 0.3 0.4 
Probability of mutation, pm, D 0.1 0.2 0.3 0.4 

All the factors are used for optimising the GA developed. But, the first factor, namely, 
the population type can also be used for validating the hybrid GA. If the analysis reveals 
that population type is significant, it means changing the initial population will affect the 
performance of the algorithm. Moreover, if SRA is the best setting for the initial 
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population, it validates the superiority of the hybrid GAs. Thus, the full factorial 
statistical experiment is carried out with two objectives: 

1 to validate the superiority of the hybrid algorithms 

2 to optimise the parameters of GA. 

5 Results and discussion 

Nine different variations of GA at 16 different combinations of mutation and crossover 
probabilities, presented in the study are tested for 27 groups of problems with ten 
problem instances in each. The makespan results obtained are analysed statistically. Since 
the experiment is carried out on problem sets of varying sizes, the makespan values vary 
considerably from problem to problem. Normalisation of parameters will be more 
appropriate for the comparison of performance. Hence, a percentage deviation measure, 
relative performance index (RPI) is used for the purpose of normalisation. For calculating 
RPI, a base makespan sequence is required. The constructive algorithm NEHRB  
(Rios-Mercado and Bard, 1998) is used for this purpose. GAs are improvement 
algorithms whereas NEHRB is a constructive algorithm. It may be noted that NEHRB is 
used not for comparison purpose but only as a base on which improvement of GA can be 
measured. A positive deviation indicates that there is an improvement over NEHRB; 
otherwise there is no improvement. The percentage deviation from NEHRB can be 
expressed as follows 

max max

max
Relative performance index

C NEHRB C GA
C NEHRB

−
=  

where, 

CmaxNEHRB makespan values found using NEHRB heuristic 

CmaxGAB makespan values found using GA. 

RPI values are calculated for all the problem groups. Each problem group is determined 
by the number of machines, number of jobs and the setup time percentage. The analysis 
is carried out for each problem group separately and the best parameter values are found 
out for each. The analysis is carried out in two stages. In the first stage, a four-factor 
ANOVA is carried out and the significant factors are found out for each of the 27 
problem groups. In the second stage, the best parameter settings are identified for the 
significant factors found in the first stage. The analyses are performed using 
STATGRAPHICS 5.1. 

5.1 Stage 1: four-factor ANOVA 

A four-factor ANOVA is carried out for all the 27 groups of problems separately to 
determine the significant factors and interactions. Statistically, a factor/interaction is 
significant implies that the factor/interaction has a significant effect on the response 
variable. The F-ratios for each factor and for each interaction up to three factors are found 
out. This forms the basis for deciding the significance. The level of significance for the 
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test has been chosen as 5% (α = 0.05). All the 27 instances are analysed separately using 
this method. The significant factors and interaction are found out for each case. The 
results obtained for the problem set (20 × 5 at 50% setup time) are shown in Table 6 as an 
example. Due to space limitations, the outputs for the remaining sets are not provided. 
Table 6 ANOVA results for the problem with 20 jobs, 5 machines at 50% setup time 

Source of variation DOF SUMSQR MEANSQR F value P Value 

Main effects A: Initial population 2 0.263541 0.131770 113.2744* 0.0001 
 B: Crossover operator 2 0.000691 0.000345 0.2972 0.7429 
 C: Crossover probability 3 0.004681 0.001560 1.3412 0.2594 
 D: Mutation probability 3 0.084729 0.028243 24.2788* 0.0001 
Interactions AB 4 0.000300 0.000075 0.0644 0.9924 
 AC 6 0.001516 0.000253 0.2173 0.9714 
 AD 6 0.018012 0.003000 2.5809* 0.0173 
 BC 6 0.000903 0.000150 0.1294 0.9927 
 BD 6 0.001756 0.000292 0.2516 0.9587 
 CD 9 0.003244 0.000360 0.3098 0.9719 
 ABC 12 0.002334 0.000194 0.1672 0.9994 
 ABD 12 0.004814 0.000401 0.3448 0.9806 
 ACD 18 0.009059 0.000503 0.4326 0.9813 
 BCD 18 0.014119 0.000784 0.6743 0.8391 
 ABCD 36 0.017480 0.000485 0.4174 0.9991 

Note: *indicates the F-ratio significant at 5% significance level. 

From Table 6, it can be inferred that the initial population type (A), the probability of 
mutation (D) and the interaction between these factors (AD) are significant. Interestingly, 
the crossover type, a prominent factor in GA, does not come out as a significant factor in 
the analysis. The main reason for this is the similarity between the crossover operators 
PMX, SJ2OX and SB2OX. The solution similarity between the crossover operators, 
SJOX and SBOX has been explained in Section 3.2. Moreover, if same jobs are not found 
in the parents, SJ2OX and SB2OX function like PMX. Even though same jobs or job 
blocks can be found in the two sequences selected as parents, it is quite unlikely to find 
them in exactly identical positions. These explanations lead to the conclusion that in most 
of the situations, the crossover operator will function like PMX even when the crossover 
operator selected is SJ2OX or SB2OX. The other factor, probability of mutation is also 
not significant for this particular group of problem. In a similar manner, all the 27 groups 
of problems are analysed. Table 7 shows the consolidated summary of the significant 
factors and the significant interactions for all the 27 groups considered in the experiment. 

The ‘NS’ entry in Table 7 indicates that the factor is not significant. For each problem 
group, the significant factors are ranked according to their relative order of significance. 
The number entry in Table 7 shows the ranking of factors for that particular problem. 
Three factor interactions are not shown in Table 7 as they are not found significant in any 
of the cases considered. The type of crossover operator is found to be not significant for 
any of the problem groups considered. The reason is the similarity between the crossover 
operators considered. Two of the two-factor interactions AC and AD are found to be 
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significant for some of the problems. AC and AD represent the interaction of probability 
of crossover (C) and probability of mutation (D) with the population type (A) 
respectively. 
Table 7 Consolidated summary of the significant factors and interactions for the problem 

groups 

Problem size  
n × m Setup time level A B C D AB AC AD BC BD CD 

20 × 5 50% 1 NS - 2 NS NS 3 NS NS NS 
 100% 1 NS - 2 NS NS 3 NS NS NS 
 150% 1 NS - 2 NS NS 3 NS NS NS 
20 × 10 50% 2 NS 3 1 NS NS NS NS NS NS 
 100% 1 NS 3 2 NS NS NS NS NS NS 
 150% 1 NS 3 2 NS NS NS NS NS NS 
20 × 20 50% 3 NS 2 1 NS NS NS NS NS NS 
 100% 1 NS 3 2 NS NS NS NS NS NS 
 150% 1 NS NS 2 NS NS 3 NS NS NS 
50 × 5 50% 1 NS 3 2 NS 5 4 NS NS NS 
 100% 1 NS 3 2 NS 5 4 NS NS NS 
 150% 1 NS 3 2 NS 5 4 NS NS NS 
50 × 10 50% 1 NS 3 2 NS NS 4 NS NS NS 
 100% 1 NS 3 2 NS 5 4 NS NS NS 
 150% 1 NS 3 2 NS 5 4 NS NS NS 
50 × 20 50% 1 NS 3 2 NS NS NS NS NS NS 
 100% 1 NS 3 2 NS NS 4 NS NS NS 
 150% 1 NS 3 2 NS 5 4 NS NS NS 
100 × 5 50% 1 NS 3 2 NS 4 5 NS NS NS 
 100% 1 NS 3 2 NS 5 4 NS NS NS 
 150% 1 NS 5 2 NS 4 3 NS NS NS 
100 × 10 50% 1 NS 3 2 NS 4 5 NS NS NS 
 100% 1 NS 3 2 NS 5 4 NS NS NS 
 150% 1 NS 4 2 NS 3 5 NS NS NS 
100 × 20 50% 1 NS 3 2 NS 4 5 NS NS NS 
 100% 1 NS 3 2 NS 5 4 NS NS NS 
 150% 1 NS 3 2 NS 4 5 NS NS NS 

Note: NS indicates the factor/interaction is not significant at 5% significance level 

5.2 Stage 2: finding the best parameter settings for the significant factors 

The second stage involves finding the best settings of the significant factors which are 
identified for all the problem groups. Best setting refers to the levels at which each 
significant factor is set so that the best results are obtained with the GA. The preceding 
section has already found out the significant factors and interactions for each problem 
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group. All the problems are categorised into three cases based on the number of 
interactions as shown in Table 8. The analysis for each of these three cases is provided in 
following sub-sections.  
Table 8 Problems grouped into three cases based on the number of significant interactions 

Problems 
Cases Problem size 

n × m 
% setup time 

Significant factors 
and interactions Remarks 

1 20 × 10 50 D, A, C 
 20 × 10 100 A, D, C 
 20 × 10 150 A, D, C 
 20 × 20 50 D, C, A 
 20 × 20 100 A, D, C 
 50 × 20 50 A, D, C 

Two-factor interactions 
are not significant 

2 20 × 5 50 A, D, AD 
 20 × 5 100 A, D, AD 
 20 × 5 150 A, D, AD 
 20 × 20 150 A, D, AD 
 50 × 10 50 A, D, C, AD 
 50 × 20 100 A, D, C, AD 

One two-factor 
interaction effect is 

significant 

3 50 × 5 50 A, D, C, AD, AC 
 50 × 5 100 A, D, C, AD, AC 
 50 × 5 150 A, D, C, AD, AC 
 50 × 10 100 A, D, C, AD, AC 
 50 × 10 150 A, D, C, AD, AC 
 50 × 20 150 A, D, C, AD, AC 
 100 × 5 50 A, D, C, AC, AD 
 100 × 5 100 A, D, C, AD, AC 
 100 × 5 150 A, D, AD, AC, C 
 100 × 10 50 A, D, C, AC, AD 
 100 × 10 100 A, D, C, AD, AC 
 100 × 10 150 A, D, AC, C, AD 
 100 × 20 50 A, D, C, AC, AD 
 100 × 20 100 A, D, C, AD, AC 
 100 × 20 150 A, D, C, AC, AD 

Two two-factor 
interaction effects are 

significant 

Note: Factors: A − initial population; B − crossover operator: C − crossover probability: 
D − mutation probability. 

5.2.1 Case 1: no two-factor interaction is significant 

There are six problem groups that come under this category. These are three 20 × 10 size 
problems at 50%, 100% and 150% setup time proportions, two 20 × 20 size problems at 
50% and 100% setup time proportions and one 50 × 20 size problem at 50% setup time 
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proportion. When no two-factor interaction is significant, each factor can be set 
independently at the best level. This can be done using a means plot. A means plot is a 
graph of response variable against factor levels. The response variable value used is an 
average of all the responses for that level at all combinations of other factors. Here, RPI 
values are taken as response variable in this experiment. For example, the procedure is 
explained with the help of the problem, 20 × 10 at 50% setup time proportion. For the 
problem set considered, factors A, C, and D representing initial population type, 
crossover probability, and mutation probability respectively are significant with no 
significant interaction among these factors. 

Figure 3 Means plot of factor A (population type) for 20 × 10 problem at 50% setup time 

 

Figure 4 Means plot of factor C (Crossover probability) for 20 × 10 problem at 50% setup time 
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Figure 5 Means plot of factor D (Mutation probability) for 20 × 10 problem at 50% setup time 

 

Figures 3 to 5 show the means plot for the three factors. The highest level of percentage 
improvement is identified from the respective plots, and the levels corresponding to the 
highest point is chosen as the best parameter setting for the factor. The best parameter 
values identified for the 20 × 10 problem at 50% setup time are as follows. 

• Population type: SRA 

• Crossover probability: 0.4 

• Mutation probability: 0.02 

The same procedure is repeated for the other problems in Case 1 and the results are 
presented in Table 9. 
Table 9 Best setting of parameters for Case 1 problems 

Best settings for factor Problem 
n × m % setup time 

A C D 

20 × 10 50 SRA 0.4 0.02 

20 × 10 100 SRA 0.4 0.02 

20 × 10 150 SRA 0.3 0.02 

20 × 20 50 SRA 0.4 0.02 

20 × 20 100 SRA 0.4 0.02 

50 × 20 50 SRA 0.4 0.02 

Table 9 shows that for the factor A (the population type), SRA is the best setting for all 
the problems. The crossover probability is different for different problems in the set but, 
the mutation probability remains the same. 
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5.2.2 Case 2: one two-factor interaction is significant 

The problems that come under this category are the 20 × 5 size problem at 50%, 100% 
and 150% setup time proportions, 20 × 20 size problem at 150% setup time proportion, 
50 × 10 size problem at 50% setup time proportion and 50 × 20 size problem at 100% 
setup time proportion. Here, one two-factor interaction is significant and hence the levels 
of factors cannot be set independently. A multiple comparison test is required to find the 
best settings for the significant factors. STATGRAPHICS 5.1 software is used to carry 
out the multiple comparison tests. The test uses the Fishers least significant difference 
(LSD) test. The test compares the means obtained using different settings and checks 
whether there exists a significant difference between them. In the test, the difference 
between means and pairs of settings are computed and the difference is said to be 
significant if it exceeds the LSD value. Based on this test, homogeneous groups are 
identified. Homogeneous groups are groups within which there is no statistically 
significant difference between means. The factor levels can be set at any level 
corresponding to the levels of the most prominent homogeneous group, i.e., the one in 
which mean makespan is minimum. The procedure is explained with the 20 × 5 problem 
set at 50% setup time proportion. Here, A (population type), D (mutation probability) and 
AD interactions are significant. The factor A has three levels and factor D has four levels. 
Thus, 12 different combinations of A and D are possible for the interaction AD. For 
example, A1D1 represents both A and D at first level, i.e., population type is Random 
and probability of mutation is 0.005 and A3D4 represents both at last levels, i.e., 
population type is SRA+ Random and probability of mutation is 0.02. The inputs for the 
analysis are the makespan values found out at each combination. Each combination has 
ten makespan values as input (ten problem instances in each combination). The average 
of these makespan values at each combination is used in the LSD procedure. The results 
of statistical multiple comparison test carried out for the above problem are presented in 
Table 10. 
Table 10 Multiple comparison test results for 20 × 5 size Case 2 problem at 50% setup time 

level 

Factor level combinations Mean Homogeneous groups 

A2D4 1700.05 a        
A2D3 1708.95 a b       
A3D4 1710.97 a b c      
A2D2 1712.60 a b c      
A3D3 1718.05  b c d     
A2D1 1725.52  b c d e    
A3D2 1726.85   c d e    
A3D1 1733.19    d e f   
A1D4 1740.86     e f   
A1D3 1749.43      f   
A1D2 1769.55       g  
A1D1 1794.83        h 
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Table 10 shows the factor level combinations, the average makespan values and the 
homogenous groups. The combinations with the same lower case letters represent 
homogeneous groups. Here, A2D4, A2D3, A3D4, and A2D2 belong to the same group 
labelled ‘a’ and A2D3, A3D4, A2D2, A3D3, and A2D1 belong to the same group 
labelled ‘b’ and so on. Any combination in group ‘a’ can be set as the best factor level, 
but for the sake of uniformity, the combination with the least average makespan in group 
‘a’ is taken as the best setting. In this case, A2D4 turns out to be the best. So, the best 
setting is factor A at second level and factor D at fourth level as follows. 

• Population type: SRA 

• Mutation probability: 0.02 

The procedure is repeated for obtaining the factor levels for the remaining problem sizes. 
The consolidated results are presented in Table 11. 
Table 11 Best setting of parameters for Case 2 problems 

Best settings for factor 
Problem % setup time 

A C D 

20 × 5 50 SRA NS 0.02 

20 × 5 100 SRA NS 0.02 

20 × 5 150 SRA NS 0.02 

20 × 20 150 SRA NS 0.02 

50 × 10 50 SRA 0.4 0.02 

50 × 20 100 SRA 0.4 0.02 

Note: NS indicates the factor/interaction is not significant 

Table 11 shows that for factor A (population type), SRA is the best setting for all the 
problems. The crossover probability is significant only for some of the problems in the 
set. The mutation probability is significant for all the problems with the probability value 
set at 0.02. 

5.2.3 Case 3: two two-factor interactions are significant 

The third case involves problems which have two two-factor interactions significant. The 
problems that come under this category are 50 × 5 size problem at 50%, 100% and 150% 
setup time proportions, 50 × 10 size problem at 100% and 150% setup time proportions, 
50 × 20 size problem at 150% setup time proportion, and 100 × 5, 100 × 10 and 100 × 20 
size problem at 50%, 100% and 150% setup time proportions. Since two factor 
interactions are significant, the procedure of Case 2 can be applied here. The procedure is 
described below with the help of 100 × 5 problem set at 50% setup time level. The two 
interactions AC and AD are significant in the problem considered while the interaction 
AC is slightly more significant than the interaction AD. The levels for A and C are set 
first by analysing AC interaction, and then the corresponding level for D is set by 
analyzing AD interaction. The results of the multiple comparison tests are provided in 
Tables 12 and 13. 
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Table 12 Multiple comparison test results for Case III problem − AC factor level combination 

Factor level combinations, AC Mean Homogeneous groups 

A2C3 6789.39 a    
A2C4 6729.93 a    
A2C1 6798.27 a    
A2C2 6801.45 a    
A3C4 6805.72 a    
A3C3 6817.85 a    
A3C2 6820.02 a    
A3C1 6828.63 a    
A1C4 7409.63  b   
A1C3 7436.48  b c  
A1C2 7475.73   c  
A1C1 7529.05    d 

Table 13 Multiple comparison test results for Case 3 problem − AD factor level combination 

Factor level combinations, AD Mean Homogeneous groups 

A2D4 6778.06 a     
A2D3 6785.43 a     
A2D2 6800.88 a     
A3D4 6805.16 a b    
A3D3 6809.02 a b    
A3D2 6815.52 a b    
A2D1 6817.68 a b    
A3D1 6842.52  b    
A1D4 7401.38   c   
A1D3 7434.97   c d  
A1D2 7475.48    d  
A1D1 7540.07     e 

From Table 12, the levels of A and C are set as A2C3, i.e., initial population type is SRA 
corresponding to A2 and the crossover probability is 0.3 corresponding to C3. Now, the 
level of D has to be set such that the initial population type is A2. From Table 13, it can 
be found that A2D4 is the best setting. Hence, the level of D is set at D4, i.e., mutation 
probability is 0.02. Thus, the best settings for the example problem are as follows. 

• Population type: SRA 

• Crossover probability: 0.3 

• Mutation probability: 0.02  

The above procedure is repeated for all the problem sets of this category. Table 14 
summarises the results for all the problems in Case 3. 

 



   

 

   

   
 

   

   

 

   

   188 R. Vanchipura and R. Sridharan    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 14 Best setting of parameters for Case 3 problems 

Best settings for factor Problem 
n × m % setup time 

A C D 

50 × 5 50 SRA 0.4 0.02 
50 × 5 100 SRA 0.1 0.02 
50× 5 150 SRA 0.3 0.02 
50 × 10 100 SRA 0.4 0.02 
50 × 10 150 SRA 0.3 0.02 
50 × 20 150 SRA 0.4 0.02 
100 × 5 50 SRA 0.3 0.02 
100 × 5 100 SRA 0.1 0.02 
100 × 5 150 SRA 0.2 0.02 
100 × 10 50 SRA 0.4 0.02 
100 × 10 100 SRA 0.4 0.02 
100 × 10 150 SRA 0.1 0.02 
100 × 20 50 SRA 0.4 0.02 
100 × 20 100 SRA 0.4 0.02 
100 × 20 150 SRA 0.2 0.02 

Table 14 shows that for factor A (the population type), SRA is the best setting for all the 
problems. The crossover probability is different for different problems in the set but, the 
mutation probability remains the same. The statistical analyses are carried out for all the 
problems and the best parameter settings are identified for each problem. The summary 
of the results are presented in Table 15. 
Table 15 Summary of results 

Factor Levels Number of problem groups for which the 
factor level is the best setting 

Type of population Random 0 
 SRA 27 
 SRA+ Random 0 
Crossover probability 0.100 3 
 0.200 2 
 0.300 4 
 0.400 14 
Mutation Probability 0.005 0 
 0.010 0 
 0.015 0 
 0.020 27 

For the population type, regardless of the problem set, SRA population always gives 
better results compared to random initialization or a combination of the two. This leads to 
the major finding that the hybrid GA (genetic algorithm which uses SRA heuristic based 
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initial population) performs better in all the problem sets. This proves the superiority of 
the hybrid genetic algorithm. The other two factors that are found to be significant are the 
mutation probability and the crossover probability. The study also identifies the best 
crossover probability and the best mutation probability for each problem group. 
Interestingly, crossover operator type is not found to be significant for any of the problem 
groups. The best mutation probability is 0.02 in every problem instance. But, crossover 
probability varies with problem sets and percentage of setup time, with 0.4 being the best 
value in the majority of the problem sets. 

6 Conclusions 

This paper has dealt with the development and analysis of hybrid GAs for flow shop 
scheduling problem in a SDST environment. Twenty-seven different sizes of SDST flow 
shop scheduling problems are used for experimentation. Different combinations of jobs 
(20, 50 and 100) and machines (5, 10 and 20) are used at three different setup time levels 
(50%, 100% and 150%). The factors (parameters of GA) considered in the experimental 
analysis are the population type, the crossover operator type, the crossover probability 
and the mutation probability. Three different types of initial population and three 
different types’ crossover operators are used in the study. The three different initial 
populations are Random population, SRA population and SRA population + Random 
population. The SRA heuristic used to provide better initial population for genetic 
algorithm. The possible combinations of population types and crossover operators result 
in nine different variations of GA. The GAs which uses either SRA population or SRA 
population + Random population are called hybrid genetic algorithms. 

A four-factor ANOVA is carried out initially for each of the 27 problem groups 
separately to identify the significant factors and their interactions. Based on the results 
obtained from ANOVA, the 27 problems are grouped into three categories. The best 
parameters for the Case 1 are determined from the means plot of the significant 
parameters. For Case 2 and Case 3, a multiple comparison test is employed to arrive at 
the best settings for the significant factors. The best settings for the genetic algorithm 
parameters are identified for each of the groups of problems. 

The development of the SRA-based hybrid genetic algorithm is the major 
contribution of the present study. Another relevant finding from the results obtained is 
that the best parameter settings of the GA changes with the variation in problem size and 
also with setup time level. The non-significance of the type of crossover operators in the 
performance of GA-based algorithms is another relevant finding from the present study. 
Moreover, GAs based on SRA population always provide better performance regardless 
of the problem set. This proves the superiority of the hybrid GA (genetic algorithm which 
uses SRA heuristic-based initial population) for all the problem sets. 

One of the standard assumptions in operations scheduling is that setup times are 
included in the processing times. However, setup time is encountered in manufacturing 
firms such as printing, plastics manufacturing, metal and chemical processing, paper 
industry etc. The trend in manufacturing towards production of batches or unit production 
to satisfy demand and avoid inventory has made more relevant the scheduling problem 
with SDSTs. In such cases, improving the schedules by as little as one percent can have a 
significant financial impact. The present study proposes a hybrid genetic algorithm with 
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the objective minimising the total completion time of jobs (makespan) which in many 
ways influences the lead time. Reductions in manufacturing lead time can generate 
numerous benefits including lower inventory levels, improved quality, lower costs, and 
lesser forecasting error. Hence, the present study has significant implications for 
operations managers. 

The high computational requirements of the SDST flow shop scheduling problem 
make the metaheuristics as a practical and effective solution methodology. Since the 
hybrid algorithms emerge as more effective in the present study, different types of hybrid 
metaheuristics can be experimented for the SDST flow shop scheduling problem. 
Considering the importance of due-date fulfilment in determining the service level, more 
studies are required using the due-date consideration. The customer-driven performance 
measures such as minimising the total earliness and tardiness, number of tardy jobs, and 
maximum tardiness can be investigated. Since SDST environment is not restricted to 
manufacturing, various SDST scheduling problems encountered in service operations can 
be analysed. 
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