

 168 Int. J. Services and Operations Management, Vol. 17, No. 2, 2014

 Copyright © 2014 Inderscience Enterprises Ltd.

Development and analysis of hybrid genetic
algorithms for flow shop scheduling with sequence
dependent setup time

Rajesh Vanchipura
Department of Mechanical Engineering,
Government Engineering College,
Thrissur, Kerala − 680 009, India
E-mail: rajeshvanchipura@gmail.com

R. Sridharan*
Department of Mechanical Engineering,
National Institute of Technology Calicut,
Kerala − 673 601, India
E-mail: sreedhar@nitc.ac.in
*Corresponding author

Abstract: This paper deals with the development and analysis of hybrid
genetic algorithms for flow shop scheduling problems with sequence dependent
setup time. A constructive heuristic called setup ranking algorithm is used for
generating the initial population for genetic algorithm. Different variations of
genetic algorithm are developed by using combinations of types of initial
populations and types of crossover operators. For the purpose of
experimentation, 27 group problems are generated with ten instances in each
group for flow shop scheduling problems with sequence dependent setup time.
An existing constructive algorithm is used for comparing the performance of
the algorithms. A full factorial experiment is carried out on the problem
instances developed. The best settings of genetic algorithm parameters are
identified for each of the groups of problems. The analysis reveals the superior
performance of hybrid genetic algorithms for all the problem groups.

Keywords: flow shop; sequence dependent setup time; SDST; hybrid genetic
algorithm; parameter tuning.

Reference to this paper should be made as follows: Vanchipura, R. and
Sridharan, R. (2014) ‘Development and analysis of hybrid genetic algorithms
for flow shop scheduling with sequence dependent setup time’, Int. J. Services
and Operations Management, Vol. 17, No. 2, pp.168–193.

Biographical notes: Rajesh Vanchipura is an Assistant Professor at
Government Engineering College, Thrissur, Kerala. He received MTech degree
in Industrial Engineering and Management from National Institute of
Technology Calicut. He also holds an MBA degree in Operations and
Marketing Management from Amrita School of Business, Amrita Vishwa
Vidyapeetham, Coimbatore. His research interests are in the areas of
development of algorithms for scheduling problems, development of
metaheuristics, operations management, and multi-criteria decision-making. He
has published papers in refereed international journals and proceedings of
international and national conferences. Currently, he is pursuing research in the
area of development and analysis of algorithms for flow shop scheduling with
sequence dependent setup time.

 Development and analysis of hybrid genetic algorithms for flow shop 169

Sridharan R. is a Professor of Industrial Engineering in the Department of
Mechanical Engineering at the National Institute of Technology Calicut, India.
He received his PhD in 1995 from the Department of Mechanical Engineering
at the Indian Institute of Technology Bombay, India. His research interests
include modelling and analysis of decision problems in supply chain
management, job shop production systems and flexible manufacturing systems.
He has published papers in the refereed international journals and proceedings
of international and national conferences. Currently, he is a Professor and the
Head of the Department of Mechanical Engineering at the National Institute of
Technology Calicut, Kerala, India.

1 Introduction

One of the realistic variations of flow shop scheduling problems is the one with sequence
dependent setup time (SDST). In practical scheduling situations, setup times do exist
between two consecutive jobs on a machine. It can be observed in various manufacturing,
service and information processing operations. Setup times are conveniently added to
processing times rather than considering it separately. The importance and benefits of
incorporating setup times in scheduling research has been investigated by many
researchers (Allahverdi and Soroush, 2008). The setup times considered in this study are
dependent on the sequence in which jobs are processed on a machine. The SDSTs are
found in chemical, textile, pharmaceutical, food processing, metal processing, paper
manufacturing, semiconductor manufacturing, web applications, and many other
industries (Eren, 2011; Allahverdi et al., 2008). Some researchers have used SDST
consideration in their research works (Sabouni and Logendran, 2013; Tanaka and Araki,
2013; Pargar and Zandieh, 2012; Gómez-Gasquet et al., 2012; Bozorgirad and
Logendran, 2012; Bouabda et al., 2011; Magableh and Mason, 2010; Vinod and
Sridharan, 2008a, 2008b). The present study also considers the setup time as separable,
i.e., the job is not physically required to perform the setup. The problem addressed in the
present study involves scheduling a set of n jobs which are available for processing on m
machines where the setup time is SDST i.e., the setup time of job on a machine is
dependent on the previous processed job on the same machine. The objective of the
problem is to find the permutation schedule which minimises the makespan assuming no
pre-emption of operations. The problem is commonly known in the literature as flow
shop scheduling problem with SDST or SDST flow shop. This problem is denoted as
F|sijk, prmu|Cmax, where the first field describes the machine environment (F stands for an
m-machine flow shop), the second field provides details of processing characteristics and
constraints (sijk stands for SDSTs and prmu means that the order or permutation in which
the jobs go through the first machine is maintained throughout the system) and the third
field contains the objective to be minimised. Here, sijk is the known, deterministic and
non-negative time span required for setting up machine i when job k is preceded by job j.

Even though, the scheduling area has received much attention from researchers over
the years (Amiri et al., 2013; Srinivasan and Srirangacharyulu, 2012; Joseph and
Sridharan, 2011; Joo and Min 2011; Boudhar and Tchikou, 2010; Kanagasabapathi et al.,
2010; Soroush and Alqallaf, 2009; Kanyalkar and Adil, 2009; Lawrynowicz, 2007),
research works carried out in SDST flow shop scheduling problem is very much limited.

 170 R. Vanchipura and R. Sridharan

The computational complexity is one of the reasons for lesser number of research works
in the area. The SDST flow shop scheduling problem is considered as NP complete
(Gupta, 1986). The complexity of the problem demands the development and use of
computationally less intensive heuristics for the problem. Constructive algorithms with
lesser complexity for such problems are difficult to construct and therefore are rare.
Rios-Mercado and Bard (1998) propose a constructive heuristic algorithm called
NEHRB, which is an extension of the well-known NEH heuristic (Nawaz et al., 1983).
On the contrary, improvement algorithms such as metaheuristics and random search
algorithms are considered as the popular choice and are found more frequently in the
literature. Metaheuristics are general procedure heuristics which can be applied to
different problems. The metaheuristics come under the category of improvement
algorithms. Metaheuristics have been applied to the general scheduling problems by
several researchers (Sobhani and Wong, 2013; Kumar and Sivakumar, 2013; Nguyen and
Kachitvichyanukul, 2012; AitZai et al., 2012; Kasemset and Kachitvichyanukul, 2012;
Solimanpur and Rastgordani, 2012; Defersha and Chen, 2011; Ramanan et al., 2011;
Amuthakkannan et al., 2010; Laha and Mandal, 2007; Arumugam et al., 2007). However,
there have been a few applications of metaheuristics in scheduling SDST flow shop.
Parthasarathy and Rajendran (1997) develop a simulated annealing algorithm to minimise
mean weighted tardiness in a flow shop with SDSTs. Ruiz et al. (2005) develop two
heuristics based on genetic algorithm (GA) for flow shop with SDST using makespan
criteria. Gajpal et al. (2006) consider the makespan objective and present an ant colony
algorithm for flow shop scheduling with sequence dependent setups.

The present study develops and analyses hybrid GAs for scheduling SDST flow
shops. A constructive heuristic called setup ranking algorithm (SRA) is used for
developing the proposed hybrid GAs (Vanchipura and Sridhran, 2012). To the best
knowledge of the authors, this is first application of hybrid metaheuristic for solving
SDST flow shop scheduling problem operating in a SDST environment. Generally, a
metaheuristic has a drawback that it may end up in local optimum. This drawback can be
reduced to some extent by tuning the parameters of the metaheuristic. In the literature,
many researchers have used parameter tuning for different metaheuristics (Komarudin
and Wong, 2012; Vinay and Sridharan, 2012; Lessmann et al., 2011). Full factorial
experimentation is one method for tuning the parameters of the metaheuristic. Here,
metaheuristics need to be tested for all possible combinations of parameters at different
levels. GA make use of two operators namely, crossover operator and mutation operator.
Three different existing crossover operators namely, partially matched crossover (PMX),
similar block 2 point order crossover (SB2OX) and similar job 2 point order crossover
(SJ2OX) are used as the crossover operators for GA. The performance of metaheuristics
is also dependent upon the initial solutions given to the metaheuristic. The present study
considers three different initial populations, namely, Random population, SRA
population and SRA population + Random population. The possible combinations of
crossover operators and population types result in nine different variations of GA. Out of
the nine variations; six of them use either SRA population or SRA population + Random
population. They are hybrid GAs since they use a different algorithm to obtain input
population for the GA. The crossover probability and mutation probability are the other
parameters that need to be optimised for GA. In the present study, four different levels of
probabilities for both crossover and mutation are considered. Thus, three levels of initial
population, three levels of crossover types, four levels of crossover probability and four
levels of mutation probability lead to 144 combinations. All these combinations are tested

 Development and analysis of hybrid genetic algorithms for flow shop 171

for 270 problem instances. Statistical analysis based on four-factor ANOVA has been
carried out on the results obtained. Using the ANOVA results, the problems are grouped
into three cases based on the interactions among the factors. The best settings of GA
parameters are identified for each of the groups of problems.

The rest of the paper is organised as follows. Section 2 provides formulation of the
SDST flow shop scheduling problem. Section 3 deals with the solution methodology.
Section 4 describes the details of experimentation. Section 5 presents the results and the
analyses. Section 6 provides the conclusion.

2 Formulation of the flow shop scheduling problem with SDSTs

The flow shop scheduling problem considered in the present study involves a set of n
jobs to be processed on a set of m machines all in the same order. The objective of this
problem is to minimise the time at which the last job in the sequence finishes processing
on its last machine, i.e., minimise the makespan. The following assumptions are made:

• Each job is available at time zero.

• Each job can be processed at most on one machine at the same time.

• Each machine can process only one job at a time.

• No pre-emption is allowed, i.e., the processing of a job on a machine cannot be
interrupted.

• The setup times of the jobs on machines are separable; the job is not necessary to do
the setup.

• Setup time is dependent on the sequence in which the jobs are processed.

• The SDST is asymmetric; i.e., sijk ≠ sikj.

• All the processing times and setup times are known in advance.

• In-process inventory is allowed.

• The machines are continuously available.

Notations

n Total number of jobs to be scheduled

i Index of machine; (i − 1) indicates the previous machine in the sequence

m Total number of machines in the flow shop

j Index of job, (j − 1) indicates the previous job processed in the machine

pij Processing time of job j on machine i

sijk Setup time on machine i, when job k is preceded by the job j

σ Ordered set of jobs already scheduled, out of n jobs; partial sequence

 172 R. Vanchipura and R. Sridharan

q(σ, i) Completion time of partial sequence σ on machine i (i.e., the release time of
machine i after processing all jobs in the partial sequence σ)

q(σj, i) Completion time of job j on machine i, when job j is appended to the partial
sequence σ.

For calculating the start and completion times of jobs on machines in the permutation
flow shop, recursive equations are used as follows.

The completion time of σj on machine i is determined using the following recursive
equation (Gajpal et al., 2006):

{ }(,) max (,) , (, 1)ijk ijq j i q i s q j i pσ σ σ= + − + (1)

where q(Φ, i) = 0 and q(σ, 0) = 0, for all σ and i, with Φ denoting a null schedule. It is
assumed that sijk exists for all jobs where j = Φ for all machines. The completion time for
the current partial sequence σ on machine i is q(σ, i). Now, consider the case when new
job j is added to the partial sequence σ. The processing of job j can be started only after
the occurrence of the two events namely,

1 completion of processing of previous job on the same machine i and the setup for job
j on the machine q(σ, i) + sijk

2 completion of the immediately preceding operation of job j on the previous machine
q(σj, i − 1).

Hence, equation (1) provides the completion time of job j on machine i. This equation
can be applied to find the completion time of job j on the last machine m which is the
total completion time of job j and it is given by the following equation.

(,)jc q j mσ= (2)

When all the jobs are scheduled, the makespan M is obtained as follows:

max{ , 1, 2,..., }jM c j n= = (3)

Example

Consider the following instance of SDST flow shop with four jobs and three machines.
Table 1 shows the processing time matrix for the jobs. The SDSTs for the three machines
are given in Tables 2, 3 and 4. Using the above formulation, makespan values are
obtained for the example problem instance.
Table 1 Processing time matrix

 Job

 0 1 2 3 4
1 0 12 15 10 12
2 0 2 11 12 11 M

ac
hi

ne

3 0 13 10 13 9

 Development and analysis of hybrid genetic algorithms for flow shop 173

Table 2 Setup time matrix for Machine 2

 Job

 0 1 2 3 4

0 - 4 3 1 0
1 0 - 4 1 3
2 0 0 - 2 1
3 0 2 2 - 1 M

ac
hi

ne

4 0 0 1 2 -

Table 3 Setup time matrix for Machine 1

 Job

 0 1 2 3 4

0 - 2 4 1 3
1 0 - 2 7 2
2 0 0 - 1 1
3 0 4 1 - 1 M

ac
hi

ne

4 0 1 2 3 -

Table 4 Setup time matrix for Machine 3

 Job

 0 1 2 3 4

0 - 0 1 3 0
1 0 - 0 1 2
2 0 0 - 3 2
3 0 4 2 - 1 M

ac
hi

ne

4 0 1 2 2 -

For a sequence S = {3 2 1 4}, a feasible schedule can be prepared as shown in Figure 1
and the corresponding makespan Cmax = 73.

Figure 1 Gant chart for the schedule for the example (see online version for colours)

The formulation gives the procedure for finding makespan for a given sequence. In flow
shop, sequences are possible. Since the present study considers only permutation
schedules, there are n sequences. The combinatorial problem becomes more complex by
the addition of SDSTs. Clearly, the above problem, even with a moderate size is difficult
to solve optimally. Thus, the present study focuses on the use of metaheuristic procedures
for solving the problem.

 174 R. Vanchipura and R. Sridharan

3 Solution methodology

The flow shop with SDST is considered as NP complete (Gupta, 1986). It is well-known
that the general flow shop scheduling problem is NP hard and the presence of SDST
makes it further hard. The very nature of the problem makes it difficult to get an optimal
solution for even small size problems. Metaheuristic is the suitable solution methodology
in such situations. But, the literature shows relatively lesser number of applications of
such heuristics for SDST flow shop. The present study develops and analyses hybrid GAs
for scheduling SDST flow shop. A constructive heuristic called SRA is used in the
development of the proposed hybrid GAs. GA is a non-traditional optimisation technique
that mimics natural evolution and genetics. It revolves around the natural reproduction
process and the survival of the fittest strategies. The GA has been successfully applied for
various optimisation problems (Charles and Udhayakumar, 2012; Pal and Gupta, 2012).
In the present study, three different types of initial population and three different types of
crossover operators are used. The details of the type of crossover operators and the types
of population are provided in the following section.

3.1 Three types of initial population

GA is an improvement algorithm and it needs an initial population of solution sequences
to start with. The initial populations are very important to GA due to the fact that the
performance of GA depends on the quality of this initial population. The size of the
population is normally taken as the length of the solution sequence. Since GA is an
improvement algorithm, a quick convergence is obtained when it is provided with a good
quality initial population. It is quite obvious that better chromosomes or solution
sequences are closer to the optimal solution and result in quick convergence of GA. But,
quick convergence has a possible risk of the solution getting trapped in local optimum. In
the present study, three different types of initial populations are considered. These are

1 SRA population

2 Random population

3 SRA population + Random population.

In random population, chromosomes or solution sequences are constructed in random
order. SRA population employs a new heuristic called SRA for the purpose of
constructing a population. The solution sequences developed by SRA are better in terms
of closeness to optimal solution. On the other hand, the random population is truly
random and cannot demonstrate any quality or closeness to optimal solution. The third
initial population is a mix of SRA population and random population; therefore, it lies
somewhere in between the SRA population and random population in terms of quality.
The logic of SRA is explained in the following section.

3.1.1 Setup ranking algorithm

SRA is a sequence construction procedure primarily based on the setup time between
jobs (Vanchipura and Sridharan, 2012). Since the processing time remains constant,
decrease in setup time could lead to a reduced makespan. Usually, constructive
algorithms are designed to give one sequence as output. But, SRA is a constructive

 Development and analysis of hybrid genetic algorithms for flow shop 175

algorithm specially designed to create multiple number of sequences. In constructing the
sequence of jobs, SRA considers the SDST of consecutive jobs and not the processing
time of jobs. The fundamental principle behind this algorithm is that as the setup time
between jobs is reduced, the makespan also will get reduced. The algorithm starts with
the summed setup time matrix, SST. The matrix SST is obtained by the matrix addition
operation on the setup time matrices of all the machines. This matrix shows the sum of all
setup time on all machines of all two-job combinations. This matrix gives a measure of
setup time between jobs and can be used for ranking combinations of jobs from the
lowest setup time sum to the maximum setup time sum to get the sorted summed setup
time matrix, SSST. The SSST matrix shows the best combinations of jobs in terms of
setup time. Each job combinations of the matrix SSST can be used as seed for new
sequence which will lead to multiple sequences with reduced setup time. If n jobs are
considered, there will be n2 seed sequences. For example, the first job combination in
SSST is taken as the seed of the sequence. The complete sequence is built by adding the
lowest possible combination on either side of the seed or partial sequence. The sorting of
summed setup time is the major computation of the algorithm with computational
efficiency of the order of n2. Summing the setup time matrix operation has computational
efficiency of the order of n. Hence, the computational complexity of this algorithm is
O(n2). The details of the algorithm are presented in the following section.

3.1.2 Procedure of SRA

Input: Processing time and setup time matrices.

Output: Feasible schedule and makespan.

 Step 1: Set σ = 0

Step 2:

1

,
m

jk ijk
i

sst s
=

=∑ for , j k∀

 where sstjk represents jth row kth column element of SST.

 Step 3: Sort the elements of SST in ascending order to get SSST.

 Step 4: Select the Min (SSST)

 Step 5: Select the jobs associated with Min (SSST) as seed sequence.

 While nσ < n, do

 Step 5a: Find eligible jobs in the partial sequence.

 Step 5b: List all possible combinations for eligible jobs.

 Step 5c: Find the job with minimum rank.

 Step 5d: Append to partial sequence.

 Step 6: Output σ

 Step 7: Stop

3.2 Types of crossover operators

Crossover operation is the mechanism employed in GA for producing new chromosomes
or solution sequences from the mating pool (the existing set of solutions). The new

 176 R. Vanchipura and R. Sridharan

strings are created by exchanging information among chromosomes in the mating pool.
In most crossover operators, two strings are picked from the mating pool at random
and some portions of the strings are exchanged between the strings. Simply
exchanging portions between strings does not work with flow shop problems because this
will lead to duplication of jobs in the strings, thus making the strings infeasible. Hence,
special types of crossover operators are generally designed for flow shop scheduling
problems. PMX is the commonly used crossover operator in flow shop problems. Other
crossover operators that are specifically designed for these problems are SJ2OX, and
SB2OX (Ruiz and Maroto, 2006). The SJ2OX operator proceeds as follows: At first, both
parents are examined on a position-by-position basis and the building blocks of jobs are
directly copied to the offspring [Figure 2(a)]. Then, two random cut points are drawn and
section between these is directly copied to the offspring and finally the missing elements
are copied in the relative order as it appears in the other parent [Figure 2(b) and
Figure 2(c)].

Figure 2 SJ2OX procedure (a) the common jobs in both parents are copied over to the offspring
(b) jobs between two randomly chosen cut point are inherited from the parent (c) the
missing elements in the offspring are copied in the relative order of the other parent

(a)

(b)

 Development and analysis of hybrid genetic algorithms for flow shop 177

Figure 2 SJ2OX procedure (a) the common jobs in both parents are copied over to the offspring
(b) jobs between two randomly chosen cut point are inherited from the parent (c) the
missing elements in the offspring are copied in the relative order of the other parent
(continued)

(c)

In SB2OX, the first step of SJ2OX is modified by considering blocks of at least two
consecutive identical jobs. In SJ2OX, individual jobs in identical positions are copied to
offspring but, in SB2OX at least two jobs are required in the identical positions so that it
can be copied.

3.3 Mutation and crossover probabilities

The probabilities of mutation and crossover are the other two important factors that will
determine the performance of genetic algorithm. Convergence is generally considered as
a performance criteria for GA. The improvement in the solution value of the problem is
negligible for each of the iteration after convergence. But, a quick convergence does not
necessarily mean that the solution is close to optimum. It is also possible that the solution
is converging to a local optimum. Both crossover and mutation try to reduce the chance
of the algorithm getting trapped in a local optimum. When the crossover and mutation
probability is high, there will be lesser chances for a quick convergence and getting
trapped in a local optimum. But, increasing the probability of crossover and mutation will
extend the possible termination of the GA at specified convergence criteria. Hence, it is
very much essential to find the best settings for the levels of probability of crossover and
mutation. In the present study, both crossover probability and mutation probability are
tested at four different levels each.

4 Experimentation

The experimentation is carried out in two stages:

1 identification of benchmark problems for SDST flow shop scheduling problem

2 testing of hybrid GA.

 178 R. Vanchipura and R. Sridharan

The benchmark problems for SDST flow shop presented in research paper by Vanchipura
and Sridhran (2012) are considered for experiments. These problems are developed by
augmenting setup time matrices for each machine in the Taillard benchmark problems
(Taillard, 1993). Three different levels of setup times namely, 50%, 100% and 150% are
developed using uniform distributions, U(1, 50), U(1, 100), U(1, 150) respectively.
Nine different sizes of Taillard flow shop benchmark problems, 20 × 5, 20 × 10, 20 × 20,
50 × 5, 50 × 10, 50 × 20, 100 × 5, 100 × 10, and 100 × 20 are considered for the
development of benchmark SDST flow shop scheduling problems. These problem groups
are formed by taking different combinations of machines (5, 10 and 20) and jobs (20, 50
and 100). Ten instances are developed for each of the 27 groups of problems (three levels
of setup time × three levels of number of machines × three levels of number of jobs) thus
constituting 270 problem instances.

The next stage is the development of the metaheuristics based on GA. The main
objective at this stage is the development of hybrid GAs with the best settings of the
parameters. Three different types of initial populations and three different types of
crossover operators are used in the study. The possible combinations of population types
and crossover operators result in nine different variations of GA. Out of the nine
variations, six of them use either SRA population or SRA population + Random
population. They are hybrid GAs since they use a different algorithm to obtain initial
population for the GA. The remaining three variations of GA are the GA based
metaheuristic without hybridisation. The SRA heuristic combined with GA forms the
structure of the hybrid GAs. SRA is a constructive heuristic used for constructing
multiple solution sequences as explained in the preceding section. The factors such as the
initial population type set at three levels, crossover operator type set at three levels,
crossover probability set at four levels and the mutation probability set at four levels
result in 144 combinations. A comprehensive full factorial experiment is carried out for
all 144 combinations on 27 groups of problems. All these 144 combinations are tested on
270 problem instances developed and the corresponding makespan values are obtained.
Four-factor ANOVA is carried out on the results obtained to determine the significant
factors for each of the 27 problem groups. It is obvious that the makespan values of
different problem in these problem groups will differ. This implies that there is no need to
compare and prove the statistical difference of makespan values of different problems in
these problem groups. Hence, it is more appropriate to test the significance of each of the
factors for each of the 27 groups of problems separately. The different factors and their
levels used in the analysis are provided in Table 5.
Table 5 Experimental factors and their levels

Factor Levels

Population type, A Random SRA SRA+ Random -
Crossover type, B PMX SJ2OX SB2OX -
Probability of crossover, Pc, C 0.1 0.2 0.3 0.4
Probability of mutation, pm, D 0.1 0.2 0.3 0.4

All the factors are used for optimising the GA developed. But, the first factor, namely,
the population type can also be used for validating the hybrid GA. If the analysis reveals
that population type is significant, it means changing the initial population will affect the
performance of the algorithm. Moreover, if SRA is the best setting for the initial

 Development and analysis of hybrid genetic algorithms for flow shop 179

population, it validates the superiority of the hybrid GAs. Thus, the full factorial
statistical experiment is carried out with two objectives:

1 to validate the superiority of the hybrid algorithms

2 to optimise the parameters of GA.

5 Results and discussion

Nine different variations of GA at 16 different combinations of mutation and crossover
probabilities, presented in the study are tested for 27 groups of problems with ten
problem instances in each. The makespan results obtained are analysed statistically. Since
the experiment is carried out on problem sets of varying sizes, the makespan values vary
considerably from problem to problem. Normalisation of parameters will be more
appropriate for the comparison of performance. Hence, a percentage deviation measure,
relative performance index (RPI) is used for the purpose of normalisation. For calculating
RPI, a base makespan sequence is required. The constructive algorithm NEHRB
(Rios-Mercado and Bard, 1998) is used for this purpose. GAs are improvement
algorithms whereas NEHRB is a constructive algorithm. It may be noted that NEHRB is
used not for comparison purpose but only as a base on which improvement of GA can be
measured. A positive deviation indicates that there is an improvement over NEHRB;
otherwise there is no improvement. The percentage deviation from NEHRB can be
expressed as follows

max max

max
Relative performance index

C NEHRB C GA
C NEHRB

−
=

where,

CmaxNEHRB makespan values found using NEHRB heuristic

CmaxGAB makespan values found using GA.

RPI values are calculated for all the problem groups. Each problem group is determined
by the number of machines, number of jobs and the setup time percentage. The analysis
is carried out for each problem group separately and the best parameter values are found
out for each. The analysis is carried out in two stages. In the first stage, a four-factor
ANOVA is carried out and the significant factors are found out for each of the 27
problem groups. In the second stage, the best parameter settings are identified for the
significant factors found in the first stage. The analyses are performed using
STATGRAPHICS 5.1.

5.1 Stage 1: four-factor ANOVA

A four-factor ANOVA is carried out for all the 27 groups of problems separately to
determine the significant factors and interactions. Statistically, a factor/interaction is
significant implies that the factor/interaction has a significant effect on the response
variable. The F-ratios for each factor and for each interaction up to three factors are found
out. This forms the basis for deciding the significance. The level of significance for the

 180 R. Vanchipura and R. Sridharan

test has been chosen as 5% (α = 0.05). All the 27 instances are analysed separately using
this method. The significant factors and interaction are found out for each case. The
results obtained for the problem set (20 × 5 at 50% setup time) are shown in Table 6 as an
example. Due to space limitations, the outputs for the remaining sets are not provided.
Table 6 ANOVA results for the problem with 20 jobs, 5 machines at 50% setup time

Source of variation DOF SUMSQR MEANSQR F value P Value

Main effects A: Initial population 2 0.263541 0.131770 113.2744* 0.0001
 B: Crossover operator 2 0.000691 0.000345 0.2972 0.7429
 C: Crossover probability 3 0.004681 0.001560 1.3412 0.2594
 D: Mutation probability 3 0.084729 0.028243 24.2788* 0.0001
Interactions AB 4 0.000300 0.000075 0.0644 0.9924
 AC 6 0.001516 0.000253 0.2173 0.9714
 AD 6 0.018012 0.003000 2.5809* 0.0173
 BC 6 0.000903 0.000150 0.1294 0.9927
 BD 6 0.001756 0.000292 0.2516 0.9587
 CD 9 0.003244 0.000360 0.3098 0.9719
 ABC 12 0.002334 0.000194 0.1672 0.9994
 ABD 12 0.004814 0.000401 0.3448 0.9806
 ACD 18 0.009059 0.000503 0.4326 0.9813
 BCD 18 0.014119 0.000784 0.6743 0.8391
 ABCD 36 0.017480 0.000485 0.4174 0.9991

Note: *indicates the F-ratio significant at 5% significance level.

From Table 6, it can be inferred that the initial population type (A), the probability of
mutation (D) and the interaction between these factors (AD) are significant. Interestingly,
the crossover type, a prominent factor in GA, does not come out as a significant factor in
the analysis. The main reason for this is the similarity between the crossover operators
PMX, SJ2OX and SB2OX. The solution similarity between the crossover operators,
SJOX and SBOX has been explained in Section 3.2. Moreover, if same jobs are not found
in the parents, SJ2OX and SB2OX function like PMX. Even though same jobs or job
blocks can be found in the two sequences selected as parents, it is quite unlikely to find
them in exactly identical positions. These explanations lead to the conclusion that in most
of the situations, the crossover operator will function like PMX even when the crossover
operator selected is SJ2OX or SB2OX. The other factor, probability of mutation is also
not significant for this particular group of problem. In a similar manner, all the 27 groups
of problems are analysed. Table 7 shows the consolidated summary of the significant
factors and the significant interactions for all the 27 groups considered in the experiment.

The ‘NS’ entry in Table 7 indicates that the factor is not significant. For each problem
group, the significant factors are ranked according to their relative order of significance.
The number entry in Table 7 shows the ranking of factors for that particular problem.
Three factor interactions are not shown in Table 7 as they are not found significant in any
of the cases considered. The type of crossover operator is found to be not significant for
any of the problem groups considered. The reason is the similarity between the crossover
operators considered. Two of the two-factor interactions AC and AD are found to be

 Development and analysis of hybrid genetic algorithms for flow shop 181

significant for some of the problems. AC and AD represent the interaction of probability
of crossover (C) and probability of mutation (D) with the population type (A)
respectively.
Table 7 Consolidated summary of the significant factors and interactions for the problem

groups

Problem size
n × m Setup time level A B C D AB AC AD BC BD CD

20 × 5 50% 1 NS - 2 NS NS 3 NS NS NS
 100% 1 NS - 2 NS NS 3 NS NS NS
 150% 1 NS - 2 NS NS 3 NS NS NS
20 × 10 50% 2 NS 3 1 NS NS NS NS NS NS
 100% 1 NS 3 2 NS NS NS NS NS NS
 150% 1 NS 3 2 NS NS NS NS NS NS
20 × 20 50% 3 NS 2 1 NS NS NS NS NS NS
 100% 1 NS 3 2 NS NS NS NS NS NS
 150% 1 NS NS 2 NS NS 3 NS NS NS
50 × 5 50% 1 NS 3 2 NS 5 4 NS NS NS
 100% 1 NS 3 2 NS 5 4 NS NS NS
 150% 1 NS 3 2 NS 5 4 NS NS NS
50 × 10 50% 1 NS 3 2 NS NS 4 NS NS NS
 100% 1 NS 3 2 NS 5 4 NS NS NS
 150% 1 NS 3 2 NS 5 4 NS NS NS
50 × 20 50% 1 NS 3 2 NS NS NS NS NS NS
 100% 1 NS 3 2 NS NS 4 NS NS NS
 150% 1 NS 3 2 NS 5 4 NS NS NS
100 × 5 50% 1 NS 3 2 NS 4 5 NS NS NS
 100% 1 NS 3 2 NS 5 4 NS NS NS
 150% 1 NS 5 2 NS 4 3 NS NS NS
100 × 10 50% 1 NS 3 2 NS 4 5 NS NS NS
 100% 1 NS 3 2 NS 5 4 NS NS NS
 150% 1 NS 4 2 NS 3 5 NS NS NS
100 × 20 50% 1 NS 3 2 NS 4 5 NS NS NS
 100% 1 NS 3 2 NS 5 4 NS NS NS
 150% 1 NS 3 2 NS 4 5 NS NS NS

Note: NS indicates the factor/interaction is not significant at 5% significance level

5.2 Stage 2: finding the best parameter settings for the significant factors

The second stage involves finding the best settings of the significant factors which are
identified for all the problem groups. Best setting refers to the levels at which each
significant factor is set so that the best results are obtained with the GA. The preceding
section has already found out the significant factors and interactions for each problem

 182 R. Vanchipura and R. Sridharan

group. All the problems are categorised into three cases based on the number of
interactions as shown in Table 8. The analysis for each of these three cases is provided in
following sub-sections.
Table 8 Problems grouped into three cases based on the number of significant interactions

Problems
Cases Problem size

n × m
% setup time

Significant factors
and interactions Remarks

1 20 × 10 50 D, A, C
 20 × 10 100 A, D, C
 20 × 10 150 A, D, C
 20 × 20 50 D, C, A
 20 × 20 100 A, D, C
 50 × 20 50 A, D, C

Two-factor interactions
are not significant

2 20 × 5 50 A, D, AD
 20 × 5 100 A, D, AD
 20 × 5 150 A, D, AD
 20 × 20 150 A, D, AD
 50 × 10 50 A, D, C, AD
 50 × 20 100 A, D, C, AD

One two-factor
interaction effect is

significant

3 50 × 5 50 A, D, C, AD, AC
 50 × 5 100 A, D, C, AD, AC
 50 × 5 150 A, D, C, AD, AC
 50 × 10 100 A, D, C, AD, AC
 50 × 10 150 A, D, C, AD, AC
 50 × 20 150 A, D, C, AD, AC
 100 × 5 50 A, D, C, AC, AD
 100 × 5 100 A, D, C, AD, AC
 100 × 5 150 A, D, AD, AC, C
 100 × 10 50 A, D, C, AC, AD
 100 × 10 100 A, D, C, AD, AC
 100 × 10 150 A, D, AC, C, AD
 100 × 20 50 A, D, C, AC, AD
 100 × 20 100 A, D, C, AD, AC
 100 × 20 150 A, D, C, AC, AD

Two two-factor
interaction effects are

significant

Note: Factors: A − initial population; B − crossover operator: C − crossover probability:
D − mutation probability.

5.2.1 Case 1: no two-factor interaction is significant

There are six problem groups that come under this category. These are three 20 × 10 size
problems at 50%, 100% and 150% setup time proportions, two 20 × 20 size problems at
50% and 100% setup time proportions and one 50 × 20 size problem at 50% setup time

 Development and analysis of hybrid genetic algorithms for flow shop 183

proportion. When no two-factor interaction is significant, each factor can be set
independently at the best level. This can be done using a means plot. A means plot is a
graph of response variable against factor levels. The response variable value used is an
average of all the responses for that level at all combinations of other factors. Here, RPI
values are taken as response variable in this experiment. For example, the procedure is
explained with the help of the problem, 20 × 10 at 50% setup time proportion. For the
problem set considered, factors A, C, and D representing initial population type,
crossover probability, and mutation probability respectively are significant with no
significant interaction among these factors.

Figure 3 Means plot of factor A (population type) for 20 × 10 problem at 50% setup time

Figure 4 Means plot of factor C (Crossover probability) for 20 × 10 problem at 50% setup time

 184 R. Vanchipura and R. Sridharan

Figure 5 Means plot of factor D (Mutation probability) for 20 × 10 problem at 50% setup time

Figures 3 to 5 show the means plot for the three factors. The highest level of percentage
improvement is identified from the respective plots, and the levels corresponding to the
highest point is chosen as the best parameter setting for the factor. The best parameter
values identified for the 20 × 10 problem at 50% setup time are as follows.

• Population type: SRA

• Crossover probability: 0.4

• Mutation probability: 0.02

The same procedure is repeated for the other problems in Case 1 and the results are
presented in Table 9.
Table 9 Best setting of parameters for Case 1 problems

Best settings for factor Problem
n × m % setup time

A C D

20 × 10 50 SRA 0.4 0.02

20 × 10 100 SRA 0.4 0.02

20 × 10 150 SRA 0.3 0.02

20 × 20 50 SRA 0.4 0.02

20 × 20 100 SRA 0.4 0.02

50 × 20 50 SRA 0.4 0.02

Table 9 shows that for the factor A (the population type), SRA is the best setting for all
the problems. The crossover probability is different for different problems in the set but,
the mutation probability remains the same.

 Development and analysis of hybrid genetic algorithms for flow shop 185

5.2.2 Case 2: one two-factor interaction is significant

The problems that come under this category are the 20 × 5 size problem at 50%, 100%
and 150% setup time proportions, 20 × 20 size problem at 150% setup time proportion,
50 × 10 size problem at 50% setup time proportion and 50 × 20 size problem at 100%
setup time proportion. Here, one two-factor interaction is significant and hence the levels
of factors cannot be set independently. A multiple comparison test is required to find the
best settings for the significant factors. STATGRAPHICS 5.1 software is used to carry
out the multiple comparison tests. The test uses the Fishers least significant difference
(LSD) test. The test compares the means obtained using different settings and checks
whether there exists a significant difference between them. In the test, the difference
between means and pairs of settings are computed and the difference is said to be
significant if it exceeds the LSD value. Based on this test, homogeneous groups are
identified. Homogeneous groups are groups within which there is no statistically
significant difference between means. The factor levels can be set at any level
corresponding to the levels of the most prominent homogeneous group, i.e., the one in
which mean makespan is minimum. The procedure is explained with the 20 × 5 problem
set at 50% setup time proportion. Here, A (population type), D (mutation probability) and
AD interactions are significant. The factor A has three levels and factor D has four levels.
Thus, 12 different combinations of A and D are possible for the interaction AD. For
example, A1D1 represents both A and D at first level, i.e., population type is Random
and probability of mutation is 0.005 and A3D4 represents both at last levels, i.e.,
population type is SRA+ Random and probability of mutation is 0.02. The inputs for the
analysis are the makespan values found out at each combination. Each combination has
ten makespan values as input (ten problem instances in each combination). The average
of these makespan values at each combination is used in the LSD procedure. The results
of statistical multiple comparison test carried out for the above problem are presented in
Table 10.
Table 10 Multiple comparison test results for 20 × 5 size Case 2 problem at 50% setup time

level

Factor level combinations Mean Homogeneous groups

A2D4 1700.05 a
A2D3 1708.95 a b
A3D4 1710.97 a b c
A2D2 1712.60 a b c
A3D3 1718.05 b c d
A2D1 1725.52 b c d e
A3D2 1726.85 c d e
A3D1 1733.19 d e f
A1D4 1740.86 e f
A1D3 1749.43 f
A1D2 1769.55 g
A1D1 1794.83 h

 186 R. Vanchipura and R. Sridharan

Table 10 shows the factor level combinations, the average makespan values and the
homogenous groups. The combinations with the same lower case letters represent
homogeneous groups. Here, A2D4, A2D3, A3D4, and A2D2 belong to the same group
labelled ‘a’ and A2D3, A3D4, A2D2, A3D3, and A2D1 belong to the same group
labelled ‘b’ and so on. Any combination in group ‘a’ can be set as the best factor level,
but for the sake of uniformity, the combination with the least average makespan in group
‘a’ is taken as the best setting. In this case, A2D4 turns out to be the best. So, the best
setting is factor A at second level and factor D at fourth level as follows.

• Population type: SRA

• Mutation probability: 0.02

The procedure is repeated for obtaining the factor levels for the remaining problem sizes.
The consolidated results are presented in Table 11.
Table 11 Best setting of parameters for Case 2 problems

Best settings for factor
Problem % setup time

A C D

20 × 5 50 SRA NS 0.02

20 × 5 100 SRA NS 0.02

20 × 5 150 SRA NS 0.02

20 × 20 150 SRA NS 0.02

50 × 10 50 SRA 0.4 0.02

50 × 20 100 SRA 0.4 0.02

Note: NS indicates the factor/interaction is not significant

Table 11 shows that for factor A (population type), SRA is the best setting for all the
problems. The crossover probability is significant only for some of the problems in the
set. The mutation probability is significant for all the problems with the probability value
set at 0.02.

5.2.3 Case 3: two two-factor interactions are significant

The third case involves problems which have two two-factor interactions significant. The
problems that come under this category are 50 × 5 size problem at 50%, 100% and 150%
setup time proportions, 50 × 10 size problem at 100% and 150% setup time proportions,
50 × 20 size problem at 150% setup time proportion, and 100 × 5, 100 × 10 and 100 × 20
size problem at 50%, 100% and 150% setup time proportions. Since two factor
interactions are significant, the procedure of Case 2 can be applied here. The procedure is
described below with the help of 100 × 5 problem set at 50% setup time level. The two
interactions AC and AD are significant in the problem considered while the interaction
AC is slightly more significant than the interaction AD. The levels for A and C are set
first by analysing AC interaction, and then the corresponding level for D is set by
analyzing AD interaction. The results of the multiple comparison tests are provided in
Tables 12 and 13.

 Development and analysis of hybrid genetic algorithms for flow shop 187

Table 12 Multiple comparison test results for Case III problem − AC factor level combination

Factor level combinations, AC Mean Homogeneous groups

A2C3 6789.39 a
A2C4 6729.93 a
A2C1 6798.27 a
A2C2 6801.45 a
A3C4 6805.72 a
A3C3 6817.85 a
A3C2 6820.02 a
A3C1 6828.63 a
A1C4 7409.63 b
A1C3 7436.48 b c
A1C2 7475.73 c
A1C1 7529.05 d

Table 13 Multiple comparison test results for Case 3 problem − AD factor level combination

Factor level combinations, AD Mean Homogeneous groups

A2D4 6778.06 a
A2D3 6785.43 a
A2D2 6800.88 a
A3D4 6805.16 a b
A3D3 6809.02 a b
A3D2 6815.52 a b
A2D1 6817.68 a b
A3D1 6842.52 b
A1D4 7401.38 c
A1D3 7434.97 c d
A1D2 7475.48 d
A1D1 7540.07 e

From Table 12, the levels of A and C are set as A2C3, i.e., initial population type is SRA
corresponding to A2 and the crossover probability is 0.3 corresponding to C3. Now, the
level of D has to be set such that the initial population type is A2. From Table 13, it can
be found that A2D4 is the best setting. Hence, the level of D is set at D4, i.e., mutation
probability is 0.02. Thus, the best settings for the example problem are as follows.

• Population type: SRA

• Crossover probability: 0.3

• Mutation probability: 0.02

The above procedure is repeated for all the problem sets of this category. Table 14
summarises the results for all the problems in Case 3.

 188 R. Vanchipura and R. Sridharan

Table 14 Best setting of parameters for Case 3 problems

Best settings for factor Problem
n × m % setup time

A C D

50 × 5 50 SRA 0.4 0.02
50 × 5 100 SRA 0.1 0.02
50× 5 150 SRA 0.3 0.02
50 × 10 100 SRA 0.4 0.02
50 × 10 150 SRA 0.3 0.02
50 × 20 150 SRA 0.4 0.02
100 × 5 50 SRA 0.3 0.02
100 × 5 100 SRA 0.1 0.02
100 × 5 150 SRA 0.2 0.02
100 × 10 50 SRA 0.4 0.02
100 × 10 100 SRA 0.4 0.02
100 × 10 150 SRA 0.1 0.02
100 × 20 50 SRA 0.4 0.02
100 × 20 100 SRA 0.4 0.02
100 × 20 150 SRA 0.2 0.02

Table 14 shows that for factor A (the population type), SRA is the best setting for all the
problems. The crossover probability is different for different problems in the set but, the
mutation probability remains the same. The statistical analyses are carried out for all the
problems and the best parameter settings are identified for each problem. The summary
of the results are presented in Table 15.
Table 15 Summary of results

Factor Levels Number of problem groups for which the
factor level is the best setting

Type of population Random 0
 SRA 27
 SRA+ Random 0
Crossover probability 0.100 3
 0.200 2
 0.300 4
 0.400 14
Mutation Probability 0.005 0
 0.010 0
 0.015 0
 0.020 27

For the population type, regardless of the problem set, SRA population always gives
better results compared to random initialization or a combination of the two. This leads to
the major finding that the hybrid GA (genetic algorithm which uses SRA heuristic based

 Development and analysis of hybrid genetic algorithms for flow shop 189

initial population) performs better in all the problem sets. This proves the superiority of
the hybrid genetic algorithm. The other two factors that are found to be significant are the
mutation probability and the crossover probability. The study also identifies the best
crossover probability and the best mutation probability for each problem group.
Interestingly, crossover operator type is not found to be significant for any of the problem
groups. The best mutation probability is 0.02 in every problem instance. But, crossover
probability varies with problem sets and percentage of setup time, with 0.4 being the best
value in the majority of the problem sets.

6 Conclusions

This paper has dealt with the development and analysis of hybrid GAs for flow shop
scheduling problem in a SDST environment. Twenty-seven different sizes of SDST flow
shop scheduling problems are used for experimentation. Different combinations of jobs
(20, 50 and 100) and machines (5, 10 and 20) are used at three different setup time levels
(50%, 100% and 150%). The factors (parameters of GA) considered in the experimental
analysis are the population type, the crossover operator type, the crossover probability
and the mutation probability. Three different types of initial population and three
different types’ crossover operators are used in the study. The three different initial
populations are Random population, SRA population and SRA population + Random
population. The SRA heuristic used to provide better initial population for genetic
algorithm. The possible combinations of population types and crossover operators result
in nine different variations of GA. The GAs which uses either SRA population or SRA
population + Random population are called hybrid genetic algorithms.

A four-factor ANOVA is carried out initially for each of the 27 problem groups
separately to identify the significant factors and their interactions. Based on the results
obtained from ANOVA, the 27 problems are grouped into three categories. The best
parameters for the Case 1 are determined from the means plot of the significant
parameters. For Case 2 and Case 3, a multiple comparison test is employed to arrive at
the best settings for the significant factors. The best settings for the genetic algorithm
parameters are identified for each of the groups of problems.

The development of the SRA-based hybrid genetic algorithm is the major
contribution of the present study. Another relevant finding from the results obtained is
that the best parameter settings of the GA changes with the variation in problem size and
also with setup time level. The non-significance of the type of crossover operators in the
performance of GA-based algorithms is another relevant finding from the present study.
Moreover, GAs based on SRA population always provide better performance regardless
of the problem set. This proves the superiority of the hybrid GA (genetic algorithm which
uses SRA heuristic-based initial population) for all the problem sets.

One of the standard assumptions in operations scheduling is that setup times are
included in the processing times. However, setup time is encountered in manufacturing
firms such as printing, plastics manufacturing, metal and chemical processing, paper
industry etc. The trend in manufacturing towards production of batches or unit production
to satisfy demand and avoid inventory has made more relevant the scheduling problem
with SDSTs. In such cases, improving the schedules by as little as one percent can have a
significant financial impact. The present study proposes a hybrid genetic algorithm with

 190 R. Vanchipura and R. Sridharan

the objective minimising the total completion time of jobs (makespan) which in many
ways influences the lead time. Reductions in manufacturing lead time can generate
numerous benefits including lower inventory levels, improved quality, lower costs, and
lesser forecasting error. Hence, the present study has significant implications for
operations managers.

The high computational requirements of the SDST flow shop scheduling problem
make the metaheuristics as a practical and effective solution methodology. Since the
hybrid algorithms emerge as more effective in the present study, different types of hybrid
metaheuristics can be experimented for the SDST flow shop scheduling problem.
Considering the importance of due-date fulfilment in determining the service level, more
studies are required using the due-date consideration. The customer-driven performance
measures such as minimising the total earliness and tardiness, number of tardy jobs, and
maximum tardiness can be investigated. Since SDST environment is not restricted to
manufacturing, various SDST scheduling problems encountered in service operations can
be analysed.

Acknowledgements

The authors express their thanks to the editor and the reviewers for their constructive
comments and suggestions which have immensely helped to bring this paper to the
present form.

References
AitZai, A., Benmedjdoub, B. and Boudhar, M. (2012) ‘A branch and bound and parallel genetic

algorithm for the job shop scheduling problem with blocking’, International Journal of
Operational Research, Vol. 14, No. 3, pp.343−365.

Allahverdi, A. and Soroush, H.M. (2008) ‘The significance of reducing setup times/setup costs’,
European Journal of Operational Research, Vol. 187, No. 3, pp.978–984.

Allahverdi, A., Ng, C.T., Cheng, T.C.E. and Kovalyov, M.Y. (2008) ‘A survey of scheduling
problems with setup times or costs’, European Journal of Operational Research, Vol. 187,
No. 3, pp.985–1032.

Amiri, M., Abtahi, A-M. and Damghani, K. (2013) ‘Solving a generalised precedence multi-
objective multi-mode time-cost-quality trade-off project scheduling problem using a modified
NSGA-II algorithm’, International Journal of Services and Operations Management, Vol. 14,
No. 3, pp.355−372.

Amuthakkannan, R., Babu, C.K. and Kannan, S.M. (2010) ‘An approach to the minimisation of
makespan in the textile industry using ant colony optimisation’, International Journal of
Services and Operations Management, Vol. 7, No. 2, pp. 215−230.

Arumugam, C., Raja, K. and Selladurai, V. (2007) ‘Agility in two-stage hybrid flow shop parallel
machine scheduling through simulated annealing’, International Journal of Services and
Operations Management, Vol. 3 No. 3, pp. 332−354.

Bouabda, R., Jarboui, B., Eddaly, M. and Rebaï, A. (2011) ‘A branch and bound enhanced genetic
algorithm for scheduling a flowline manufacturing cell with sequence dependent family setup
times’, Computers & Operations Research, Vol. 38, No. 1, pp.387–393.

Boudhar, M. and Tchikou, H. (2010) ‘Scheduling with arranged multi-purpose machines’,
International Journal of Operational Research, Vol. 8, No. 3, pp.379−397.

 Development and analysis of hybrid genetic algorithms for flow shop 191

Bozorgirad, M.A. and Logendran, R. (2012) ‘Sequence-dependent group scheduling problem
on unrelated-parallel machines’, Expert Systems with Applications, Vol. 39, No. 10,
pp.9021–9030.

Charles, V. and Udhayakumar, A. (2012) ‘Genetic algorithm for chance constrained reliability
stochastic optimisation problems’, International Journal of Operational Research, Vol. 14,
No. 4, pp.417−432.

Defersha, F.M. and Chen, M. (2011) ‘A genetic algorithm for one-job m-machine flowshop lot
streaming with variable sublots’, International Journal of Operational Research, Vol. 10,
No. 4, pp.458−468.

Eren T.A. (2011) ‘Bi-criteria m-machine flow shop scheduling with sequence-dependent setup
times’, Applied Mathematical Modeling, Vol. 34, No. 2, pp.284−293.

Gajpal, Y., Rajendran, C. and Ziegler, H. (2006) ‘An ant colony algorithm for scheduling in flow
shops with sequence-dependent setup times of jobs’, International Journal of Advanced
Manufacturing Technology, Vol. 30, Nos. 5−6, pp.416−424.

Gómez-Gasquet, P., Andrés, C. and Larioa, F.C. (2012) ‘An agent-based genetic algorithm for
hybrid flowshops with sequencedependentsetup times to minimise makespan’, Expert Systems
with Applications, Vol. 39, No. 9, pp.8095−8107.

Gupta, J.N.D. (1986) ‘Flow shop schedules with sequence dependent setup times’, Journal of
Operations Research Society Japan, Vol. 29, No. 3, pp.206−19.

Joo, S. and Min, H. (2011) ‘A multiple objective approach to scheduling the preventive
maintenance of modular aircraft components’, International Journal of Services and
Operations Management, Vol. 9, No. 1, pp.18−31.

Joseph, O.A. and Sridharan, R. (2011) ‘Development of simulation-based metamodels for the
analysis of routing flexibility, sequencing flexibility and scheduling decision rules on the
performance of an FMS’, International Journal of Operational Research, Vol. 12, No. 3,
pp.333−361.

Kanagasabapathi, B., Rajendran, C. and Ananthanarayanan, K. (2010) ‘Scheduling in resource-
constrained multiple projects to minimise the weighted tardiness and weighted earliness of
projects’, International Journal of Operational Research, Vol. 7, No. 3, pp.334−386.

Kanyalkar, A.P. and Adil, G.K. (2009) ‘Determining the optimum safety stock under rolling
schedules for capacitated multi-item production systems’, International Journal of Services
and Operations Management, Vol. 5, No. 4, pp.498−519.

Kasemset, C. and Kachitvichyanukul, V. (2012) ‘A PSO-based procedure for a bi-level multi-
objective TOC-based job-shop scheduling problem’, International Journal of Operational
Research, Vol. 14, No. 1, pp.50−69.

Komarudin and Wong, K.Y. (2012) ‘Parameter tuning of ant system using fuzzy logic controller’,
International Journal of Operational Research, Vol. 15, No. 2, pp.125−135.

Kumar, P.N.R. and Sivakumar, A.I. (2013) ‘Simulated annealing−based algorithm for the
capacitated hub routing problem’, International Journal of Services and Operations
Management, Vol. 14, No. 2, pp.221−235.

Laha, D. and Mandal, P. (2007) ‘Improved heuristically guided genetic algorithm for the flow shop
scheduling problem’, International Journal of Services and Operations Management, Vol. 3,
No. 3, pp.316−331.

Lawrynowicz, A. (2007) ‘Production planning and control with outsourcing using artificial
intelligence’, International Journal of Services and Operations Management, Vol. 3, No. 2
pp.193−209.

Lessmann, S., Caserta, M. And Arango, I.M. (2011) ‘Tuning metaheuristics: A data mining based
approach for particle swarm optimization’, Expert Systems with Applications, Vol. 38, No. 10,
pp.12826–12838.

Magableh, G.M. and Mason, S.J. (2010) ‘Minimising earliness and tardiness on parallel machines
with sequence−dependent setups’, International Journal of Operational Research, Vol. 8,
No. 1, pp.42−61.

 192 R. Vanchipura and R. Sridharan

Nawaz, M., Enscore, E.E. and Ham, I. (1983) ‘A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem’, Omega, Vol. 11, No. 1, pp.91−97.

Nguyen, S. and Kachitvichyanukul, V. (2012) ‘An efficient differential evolution algorithm for
multi-mode resource-constrained project scheduling problems’, International Journal of
Operational Research, Vol. 15, No. 4, pp.466−481.

Pal, B.B. and Gupta, S. (2012) ‘A genetic algorithm-based fuzzy goal programming approach for
solving fractional bilevel programming problems’, International Journal of Operational
Research, Vol. 14, No. 4, pp.453−471.

Pargar, F. and Zandieh, M. (2012) ‘Bi-criteria SDST hybrid flow shop scheduling with learning
effect of setup times: water flow-like algorithm approach’, International Journal of
Production Research, Vol. 50, No. 10, pp.2609−23.

Parthasarathy, S. and Rajendran, C. (1997) ‘A simulated annealing heuristic for scheduling to
minimize weighted tardiness in a flowshop with sequence dependent setup times of jobs − a
case study’, Production Planning and Control, Vol. 8, No. 5, pp.475−83.

Ramanan, T.R., Sridharan, R., Shashikant, K.S. and Haq, A.N. (2011) ‘An artificial neural network
based heuristic for flow shop scheduling problems’, Journal of Intelligent Manufacturing,
Vol. 22, No. 2, pp.279−88.

Rios-Mercado, R.Z. and Bard, J.F. (1998) ‘Heuristics for the flow line problem with setup costs’,
European Journal of Operational Research, Vol. 110, No. 1, pp.76−98.

Ruiz, R., and Maroto, C. (2006) ‘A genetic algorithm for hybrid flow shops with sequence
dependent setup times and machine eligibility’, European Journal of Operational Research,
Vol. 169, No. 3, pp.781–800.

Ruiz, R., Maroto, C. and Alcatraz, J. (2005) ‘Solving the flow shop scheduling problem with
sequence dependent setup times using advanced meta heuristic’, European Journal of
Operational Research , Vol. 165, No. 1, pp.34−54.

Sabouni, M.T.Y. and Logendran, R. (2013) ‘Carryover sequence-dependent group scheduling with
the integration of internal and external setup times’, European Journal of Operational
Research, Vol. 224, No. 1, pp.8−22.

Sobhani, F. and Wong, K.Y. (2013) ‘Optimisation of distribution quantity in a multi-product multi-
period supply chain using genetic algorithm’, International Journal of Services and
Operations Management, Vol. 14, No. 3, pp.277− 297.

Solimanpur, M. and Rastgordani, R. (2012) ‘Minimising tool switching and indexing times by ant
colony optimisation in automatic machining centres’, International Journal of Operational
Research, Vol. 13, No. 4, pp.465−479.

Soroush, H.M. and Alqallaf, F.A. (2009) ‘Minimising a weighted quadratic function of job lateness
in the stochastic single machine scheduling problem’, International Journal of Operational
Research, Vol. 6, No. 4, pp.538−572.

Srinivasan, G. and Srirangacharyulu, B. (2012) ‘Minimising variance of job completion times in a
single machine’, International Journal of Operational Research, Vol. 13, No. 1, pp.110−127.

Taillard, E. (1993) ‘Benchmarks for basic scheduling problems’, European Journal of Operational
Research, Vol. 64, No. 2, pp.278−85.

Tanaka, S. and Araki, M. (2013) ‘An exact algorithm for the single-machine total weighted
tardiness problem with sequence-dependent setup times’, Computers & Operations Research,
Vol. 40, No. 1, pp.344−352.

Vanchipura, R. and Sridharan, R. (2012) ‘Development and analysis of constructive heuristic
algorithms for flow shop scheduling problems with sequence-dependent setup times’,
International Journal of Advanced Manufacturing Technology, pp.1−17, DOI:
10.1007/s00170-012-4571-8.

 Development and analysis of hybrid genetic algorithms for flow shop 193

Vinay, V.P. and Sridharan, R. (2012) ‘Taguchi method for parameter design in ACO algorithm for
distribution–allocation in a two-stage supply chain’, International Journal of Advanced
Manufacturing Technology online first, pp.1−11, DOI: 10.1007/s00170-012-4104-5.

Vinod, V. and Sridharan, R. (2008) ‘Dynamic job-shop scheduling with sequence-dependent setup
times: simulation modeling and analysis’, International Journal of Advanced Manufacturing
Technology, Vol. 36, Nos. 3−4, pp.355−72.

Vinod, V. and Sridharan, R. (2008) ‘Scheduling a dynamic job shop production system with
sequence-dependent setups: an experimental study’, Robotics and Computer-Integrated
Manufacturing, Vol. 24, No. 3, pp.435–449.

