
Modeling and scheduling no-wait open shop problems

B. Naderi a, M. Zandieh b,n

a Department of Industrial Engineering, Faculty of Engineering, Kharazmi University, Tehran, Iran
b Department of Industrial Management, Accounting and Management Faculty, Shahid Beheshti University, G.C., Tehran, Iran

a r t i c l e i n f o

Article history:
Received 21 September 2012
Accepted 4 January 2014
Available online 4 July 2014

Keywords:
Scheduling
Open shop
No-wait
Mixed integer linear programming
Genetic algorithm
Variable neighborhood search

a b s t r a c t

This paper studies the problem of scheduling open shops with no intermediate buffer, called no-wait
open shops under makespan minimization. No-wait scheduling problems arise in many realistic
production environments such as hot metal rolling, the plastic molding, chemical and pharmaceutical,
food processing and several other industries. To tackle such problems, we first develop three different
mathematical models, mixed integer linear programs, by which we can solve the problem to optimality.
Besides the models, we propose novel metaheuristics based on genetic and variable neighborhood
search algorithms to solve the large-sized problems in an acceptable computational time. The key point
in any scheduling solver is the procedure of encoding and decoding schemes. In this paper, we propose a
simple yet effective tailor-made procedure of encoding and decoding schemes for no-wait open shop
problems. The operators of the proposed metaheuristics are designed so as to consider the specific
encoding scheme of the problem. To evaluate the performance of models and metaheuristics, we
conduct two computational experiments. The first includes small-sized instances by which we compare
the mathematical models and assess general performance of the proposed metaheuristics. In the second
experiment, we further evaluate the potential of metaheuristics on solving some benchmarks in the
literature of pure open shops. The results show that the models and metaheuristics are effective to deal
with the no-wait open shop problems.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

In general, scheduling problems can be described by a set of
n jobs that need to be processed by a set of m machines. The
problem is called a flow shop if all the jobs follow the same
processing route through the machines, i.e., they are first pro-
cessed on machine 1, then on machine 2, and so on until machine
m. If each job has its own processing route to go through
machines, the problem is a job shop. Now, if there are no
predetermined processing routes for the jobs, the problem
becomes an open shop. In other words, in open shops, there are
two decisions to make, the determination of the processing routes
of the jobs as well as job sequence on each machine (Pinedo,
2008). The following assumptions are usually characterized to
open shops. All the jobs are independent and available for their
process at time 0. All machines are continuously available. Each
machine can at most process one job at a time. The process of a job
on a machine cannot be interrupted. There are infinite buffers

between all machines. There is no transportation time between
machines. The objective function is the minimization of makespan.

Some of the common assumptions in open shop scheduling
impede many of the possible practical applications of this impor-
tant problem. For example, the existence of an infinite storage
capacity between machines is one of these assumptions (Pang,
2013). This is, jobs can unlimitedly wait for machines to be
available. In many scheduling environments, however, due to
characteristics of the jobs or the processing technology, the
operations of a job must be performed without any interruption
between machines, which is known as no-wait restriction. Typical
application of no-wait scheduling problems arises in hot metal
rolling industries, where the heated metal has to undergo a set of
operations at continuously high temperatures before it is cooled in
order to prevent defects. Similarly, in the plastic molding and
silverware production industries, a set of operations must be
performed to immediately follow one another to prevent degrada-
tion. Other examples include chemical and pharmaceutical indus-
tries, food processing industries, and advanced manufacturing
environments. For a detailed explanation of the applications on
no-wait scheduling problems, the papers by Goyal and
Sriskandarajah (1988), Hall and Sriskandarajah (1996) could
be good references. In spite of its practical applications and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ijpe

Int. J. Production Economics

http://dx.doi.org/10.1016/j.ijpe.2014.06.011
0925-5273/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ98 21 22431842.
E-mail address: m_zandieh@sbu.ac.ir (M. Zandieh).

Int. J. Production Economics 158 (2014) 256–266

www.sciencedirect.com/science/journal/09255273
www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2014.06.011
http://dx.doi.org/10.1016/j.ijpe.2014.06.011
http://dx.doi.org/10.1016/j.ijpe.2014.06.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2014.06.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2014.06.011&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpe.2014.06.011&domain=pdf
mailto:m_zandieh@sbu.ac.ir
http://dx.doi.org/10.1016/j.ijpe.2014.06.011


theoretical issues, as shown in the survey paper by Hall and
Sriskandarajah (1996), no-wait open shop scheduling (NW-OSS)
has given far less attention than the other scheduling problems
such as no-wait flow shops. According to three folds notation of
Graham et al. (1979), the problem of no-wait open shop schedul-
ing to minimize makespan can be classified as O=nwt=Cmax.

Adiri and Amit (1984) consider NW-OSS where all operations
have equal processing times and present a dispatching rule to
minimize total completion time. Sidney and Sriskandarajah (1999)
study two-machine NW-OSS and introduce a heuristic to solve the
problem. As cited by Liaw et al. (2005), Yao and Soewandi (2000)
and Yao and Lai (2002) address the problem of two-machine NW-
OSS and propose a heuristic and a genetic algorithm, respectively.
Liaw et al. (2005) also consider the same problem of two-machine
NW-OSS. They propose a branch-and-bound armed with some
dominance rules as well as a two-phase heuristic. Lin et al. (2008)
study NW-OSS with movable dedicated machines. The objective is
the minimization of total occupation time of all the machines.
They introduce a mixed integer program, however unfortunately
non-linear, to formulate the problem. They also propose a two-
phase heuristic whose first phase constructs an initial sequence
and the second phase improves that sequence. As far as we
reviewed and as summarized by Table 1, almost none of
the existing papers consider classical multi-machine NW-OSS.
There is almost no attempt to linearly model the problem. There
is no systematic encoding and decoding schemes for NW-OSS.
Only one paper presents a metaheuristic for a relevant problem,
not similar one.

It is known that the problem of two-machine no-wait open
shop scheduling is strongly NP-hard (Sahni and Cho, 1979). Since
this problem is a specific case of NW-OSS where m¼2, we can
conclude general multi machines NW-OSS is also NP-hard. Two
common approaches to tackle the scheduling problems are the
utilization of mathematical programming and heuristic appro-
aches (Stafford Jr. et al., 2005). Due to the great advance recently
obtained in capacity of computers and creation of fast optimiza-
tion software, presentation of MILP models is becoming more and
more interesting among the researchers. We develop a total of
three different MILP models to formulate the no-wait open shops.
We also carry out an experiment to analyze and compare the
performance of the proposed models.

As we earlier mentioned, the second common way to solve
such a problem is heuristic approaches which can be divided into
two main groups: constructive and improvement heuristics. Con-
structive heuristics are those build a sequence quickly by a fixed
predetermined rule. Therefore, they always yield the same results
for a given instance. Improvement heuristics (so-called metaheur-
istics) are those iteratively improve a (or some) sequence(s)
produced by random or by the constructive heuristics. Besides
the presentation of models, we aim at providing tools to solve the
large-sized problems. To do so, we need to establish a procedure to

encode and decode solutions. The encoding and decoding schemes
are almost the key point in the success of any algorithm, and the
most problem-specific feature of any algorithm in the production
scheduling problems. It should be designed in such a way that it
has high adaptability to any operator and great simplicity to code.
It also should avoid infeasible solutions in order to save the
algorithms' computational time by searching only feasible space.
No-wait scheduling problems need more meticulous care than
pure problems due to high possibility of generating infeasible
solutions. The situation becomes even more vital in open shop
problems in comparison with the other scheduling problems. This
paper establishes a tailor-made procedure of encoding and decod-
ing schemes for no-wait open shop problems that keeps all above-
mentioned characteristics. Afterwards, we propose three high
performing metaheuristics based on variable neighborhood search
(VNS) and genetic algorithm (GA). VNS is known to be a powerful,
yet simple to understand and code metaheuristic. In this paper, we
develop two different VNSs centered on curtailed and greedy
fashions. Besides the VNSs, we apply an GA incorporating with
some powerful operators. Model's efficiency and metaheuristics'
capability to solve the problem studied here are investigated on
two computational evaluations including small- and large-sized
instances.

The rest of paper is organized as follows. Section 2 develops
three different mixed integer linear programs. Section 3 presents a
novel procedure of the encoding and decoding schemes. Section 4
introduces the proposed metaheuristics. Section 5 describes the
experimental design to evaluate the posed methods including the
mathematical models and algorithms. Finally, Section 6 gives some
interesting conclusions and future studies.

2. Problem formulation

Even though MILP models might not be an efficient solution
method for all problem sizes, they are a natural way to attack
scheduling problems (Stafford Jr. et al., 2005). This section presents
three different MILP models to formulate no-wait open shop
problems based on three different variables. We analyze differ-
ences between the models. For example, we compare the number
of binary and continuous variables as well as the number of
constraints required for each model to formulate the same sized
problem; also, we study their possible impact on performance of
the models. We have the following similar notations in all the
three models:

Parameters

n The number of jobs
m The number of machines
Oj;i The operation of job j on machine i
Pj;i The processing time of Oj;i

Table 1
Papers in literature of no-wait open shops.

Author Year Problem description Model Algorithm Algorithm description

Exact Heuristic Metaheuristic

Adiri and Amit 1984 The same processing times for all jobs ✓ Dispatching rule
Sidney and Sriskandarajah 1999 Two-machine ✓ Approximation algorithm
Yao and Soewandi 2000 Two-machine ✓ –

Yao and Lai 2002 Two-machine ✓ Genetic algorithm
Liaw et al. 2005 Two-machine ✓ Branch and bound
Lin et al. 2007 Movable dedicated machines and minimization

of total occupation time of all machines
✓ ✓ An iterative improvement

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266 257



M A large positive number

Variables

Cj;i The completion time of Oj;i ð1Þ

Sj The starting time of job j ð2Þ

2.1. Model 1

Model 1 uses binary variables (BV) that show the relative
sequence of different operations of a job as well as the relative
order of the jobs on each machine. This type of BV is first proposed
by Rios-Mercado and Bard (1998) for flow shop problems. Due to
the identity of these BVs, Model 1 is called sequence-based model.
Note for every machine we introduce a dummy job 0 which
precedes the first job on that machine; and for every job, a
dummy machine 0 that precedes the first operation of that job.
It is necessary to indicate that the model requires the big M. The
following notations are established:

Indices

k Job index {0, 1, 2, …, n}
j Job index {1, 2, …, n}
l Machine index {0, 1, 2, …, m}
i Machine index {1, 2, …, m}

Variables

Xj;i;l Binary variable that takes value 1 if Oj;i is processed
immediately after Oj;l, and 0 otherwise. la i
Yj;i;k Binary variable that takes value 1 if Oj;i is processed
immediately after Ok;i, and 0 otherwise. ka j

Variables in (1) and (2)
Model 1 formulates NW-OSS as follows:
Minimize Cmax

Subject to:

∑
n

k ¼ 0;ka j
Yj;i;k ¼ ∑

m

l ¼ 0;la i
Xj;i;l ¼ 1 8 j;i ð3Þ

∑
n

j ¼ 1;jak
Yj;i;kr1 8 i;kϵf1; 2;::; ng ð4Þ

∑
m

i ¼ 1;ia l
Xj;i;lr1 8 j;lϵf1;2;::; mg ð5Þ

∑
n

j ¼ 1
Yj;i;0 ¼ 1 8 i ð6Þ

∑
m

i ¼ 1
Xj;i;0 ¼ 1 8 j ð7Þ

Yj;i;kþYk;i;jr1 8 i;j;k4 j ð8Þ

Xj;i;lþXj;l;ir1 8 j;i;l4 i ð9Þ

Cj;irSjþ ∑
m

l ¼ 1
Pj;i 8 j;i ð10Þ

Cj;iZSjþPj;i 8 j;i ð11Þ

Cj;iZCj;lþPj;i�ð1�Xj;i;lÞ �M 8 j;i;la i ð12Þ

Cj;iZCk;iþPj;i�ð1�Yj;i;kÞ �M 8 j;i;ka j ð13Þ

CmaxZCj;i 8 j;i ð14Þ

Xj;i;lAf0; 1g 8 j;i;la i ð15Þ

Yj;i;kAf0; 1g 8 j;i;ka j ð16Þ

where

Cj;0 ¼ C0;i ¼ 0:

Constraint set (3) states that every operation is scheduled once.
Constraint sets (4) and (5) ensure that every operation must have
at most one succeeding operation in processing route of the jobs
and in job order of every machine. Constraint sets (6) and (7)
enforce that dummy job 0 and machine 0 must have exactly one
successor. Constraint sets (8) and (9) state that an operation
cannot be both predecessor and successor of another operation
at the same time. Constraint sets (10) and (11) are to assure that
no-wait restrictions are held. Constraint set (12) ensures that Oj;i

cannot start before Oj;l completes if Oj;l precedes Oj;i. Constraint set
(13) specifies that if Oj;i is processed immediately after Ok;i, it
cannot begin before Ok;i completes. Constraint set (14) calculates
makespan. Ultimately, Constraint sets (15) and (16) define the
decision variables.

2.2. Model 2

In this model, BVs specify the operations' position in both
processing route of a job and job order of a machine; so, it is called
position-based model. This type of the BV is first proposed by
Wagner (1959) for flow shop problems. It does not need to define
dummy job 0. For model 2, we establish the following notations:

Indices

j, e Job index {1, 2, …, n}
k, Position index for jobs {1, 2, …, n}
i, r Machine index {1, 2, …, m}
l Position index for machines {1, 2, …, m}

Variables
Xj;i;k Binary variable that takes value 1 if Oj;i occupies k-th position
in the processing route of job j, and 0 otherwise.

Yj;i;l Binary variable that takes value 1 if job j occupies l-th position
in the job order of machine i, and 0 otherwise.

Variables in (1) and (2)
Model 2 characterizes NW-OSS as follows:
Minimize Cmax

Subject to:

∑
m

k ¼ 1
Xj;i;k ¼ ∑

n

l ¼ 1
Yj;i;l ¼ 1 8 j;i ð17Þ

∑
m

i ¼ 1
Xj;i;k ¼ 1 8 j;k ð18Þ

∑
n

j ¼ 1
Yj;i;l ¼ 1 8 i;l ð19Þ

Cj;iZSjþPj;i 8 j;i ð20Þ

Cj;irSjþ ∑
m

l ¼ 1
Pj;i 8 j;i ð21Þ

Cj;iZCj;rþPj;i�ð1�Xj;i;kÞdM� 1� ∑
k�1

t ¼ 1
Xj;r;t

� �
dM 8 j;i;r;k41 ð22Þ

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266258



Cj;iZCe;iþPj;i�ð1�Yj;i;lÞdM� 1� ∑
l�1

t ¼ 1
Ye;i;t

� �
dM 8 j;i;e;l41 ð23Þ

CmaxZCj;i 8 i;j ð24Þ

Xj;i;kAf0; 1g 8 j;i;k ð25Þ

Yj;i;lAf0; 1g 8 j;i;l ð26Þ

Constraint set (17) assures that every operation must exactly
occupy one position in the processing route of every job and job
order of every machine. Constraint set (18) ensures that n posi-
tions of every job must be occupied once, and Constraint set (19)
states that m positions of every machine must be assigned once.
Constraint sets (20) and (21) hold no-wait restriction. Constraint
set (22) assures that Oj;i begins only after Oj;r finishes if Oj;i

occupies a position after Oj;r . Similarity, Constraint set (23) is to
ensure that Oj;i is processed after the completion of Oe;i. Constraint
set (24) computes makespan, and Constraint sets (25) and (26)
define the decision variables.

2.3. Model 3

We develop another sequence-based model with the following
specifications. In the processing route of each job j, for each pair of
Oj;i and Oj;r , there is a variable which shows whether Oj;i is
processed after Oj;r or not (notice, not necessarily immediately).
This type of the BV is first proposed by Manne (1960) for job shop
problems. In Model 3, the notations are as follows:

Indices

j; k Job index {1, 2, …, n}
i; l Machine index {1, 2, …, m}

Variables

Xj;i;l Binary variable that takes value 1 if Oj;i is processed after
Oj;l, and 0 otherwise. iA{1, 2, …, m�1}, l4 i
Yj;i;k Binary variable that takes value 1 if Oj;i is processed after
Ok;i, and 0 otherwise. j A {1, 2, …, n�1}, k4 j

Variables in (1) and (2)
NW-OSS is again formulated as follows:
Minimize Cmax

Subject to:

Cj;iZSjþPj;i 8 j;i ð27Þ

Cj;irSjþ ∑
m

l ¼ 1
Pj;i 8 j;i ð28Þ

Cj;iZCj;lþPj;i�Mdð1�Xj;i;lÞ 8 j;i A f1; 2; …; m�1g;l4 i ð29Þ

Cj;lZCj;iþPj;l�MdXj;i;l 8 j;i A f1; 2; …; m�1g;l4 i ð30Þ

Cj;iZCk;iþPj;i�Mdð1�Yj;i;kÞ 8 i;jA f1; 2; …; n�1g;k4 j ð31Þ

Ck;iZCj;iþPk;i�MdYj;i;k 8 i;jA f1; 2; …; n�1g;k4 j ð32Þ

CmaxZCj;i 8 j;i ð33Þ

Xj;i;l Af0; 1g 8 j;i A f1; 2; …; m�1g; l 4 i ð34Þ

Yj;i;kAf0; 1g 8 i;j A f1; 2; …; n�1g; k 4 j ð35Þ
Constraint sets (27) and (28) ensure the no-wait restriction.

Constraint sets (29) and (30) are the dichotomous pairs of
constraints relating each pair of operations in processing route of

every job; and similarity, Constraint sets (31) and (32) are the
dichotomous pairs of constraints for each pair of jobs in job order
of every machine. Constraint set (33) calculates makespan. Con-
straint sets (34) and (35) define the decision variables.

Now, we intend to compare the models with respect to the
required numbers of binary variables, continuous variables and con-
straints for a same sized problem with n and m. Table 2 summarizes
the results. Model 3 has the least number of BVs where Models 1 and
2 have the same number of BVs. Relative proportion of BVs required by
Model 3 against the other models is ððnþm�2Þ=2ðnþmÞÞ; that is, its
number of BVs is even less than the half of those of Models 1 and 2. All
the models have the same number of continuous variables. Model
1 has fewer constraints as Model 2 does. Model 3 again formulate the
problems by the least number of constraints.

3. The procedure of encoding and decoding schemes

The encoding scheme is the procedure of making a solution
recognizable for algorithms and plays an important role in the
effectiveness of the algorithms. The decoding scheme is a com-
plementary procedure that turns an encoded solution into a
schedule. The effective procedures should have simplicity to code
and high adaptability to any operators. Another necessary feature,
even most important, for any procedure is to avoid infeasible
solutions. In this case, algorithms are capable of saving their
computational time by searching only feasible solution space.
No-wait scheduling problems need more meticulous care than
pure problems due to high possibility of generating infeasible
solutions. The situation becomes even more vital in open shop
problems in comparison with the other scheduling problems such
as no-wait flow shops. In this paper, we establish encoding and
decoding schemes for no-wait open shop problems that have all
above-mentioned characteristics. We introduce the proposed
encoding and decoding schemes.

Two commonly used encoding schemes in the literature of the
open shop are permutation list and rank matrix (Liaw, 2000; Bräsel
et al., 2008; Andresen et al., 2008). Permutation list is an ordered list of
all the operations. By scanning the permutation from left to right, the
relative starting times of operations in which they are processed are
merely expressed. As a result, the process of each operation must not
begin before its previous operations on the permutation start. The
rank matrix is a matrix in which each row shows the operations order
of one job on different machines, and each column characterizes the
operations order of all jobs on one machine. Similar to the permuta-
tion list, an operation cannot begin before the previous operations in
the operation order of the corresponding machine and job complete.
In both cases, the relative order of jobs on machines is exactly and
strictly determined, while in NW-OSS, very often this leads to the
generation of infeasible solutions.

For the sake of simplicity, let us describe it by an example.
Suppose we have a problem with n¼3 and m¼2, summing up to
6 operations. Table 3 shows the processing times of the operations.
In the case of permutation list, fO22;O11; O32;O21;O11;O31g is one

Table 2
Comparison of models' characteristics.

Model No. of BVs No. of CVs Number of constraints

1 nmðnþmÞ nþnm nm 4þ3n
2 þ3m

2

� �þnþm
2 nmðnþmÞ nþnm nmð5þ2nm�n�mÞþn2þm2

3 nm
2 ðnþm�2Þ nþnm nmð1þnþmÞ

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266 259



of those permutations ending up with an infeasible solution. That
is, Job 1 cannot be the first job on Machine 1 while on Machine 2,
Job 1 is processed after Jobs 2 and 3 because no-wait restrictions
are not kept.

In the case of the rank matrix, the following matrix can be
stated as one of those matrices generating the infeasible solutions.
In other words, it is impossible to process Job 2 as a first job on
Machine 1 and as third job on Machine 2; and at the same time,
the no-wait restrictions are held.

M1 M2
J1
J2
J3

2 3
1 4
3 1

2
64

3
75

As it could be seen in the previous example, the commonly used
encoding schemes of regular open shops are not effective for the
case of NW-OSS. NW-OSS needs a specific encoding scheme
adapted to no-wait constraints. In NW-OSS, besides the processing
route of each job, one just needs to determine the starting time of
each job j ðSjÞ instead of the operations, because the starting times
of the all the operations of job j can be calculated through Sj. In
both permutation list and rank matrix, an encoded solution becomes
infeasible if the starting times of the operations cannot be equal to
the starting times of those operations considering no-wait con-
straints. Therefore, many encoded solutions are likely to end up
infeasible.

We have tested several procedures from simple to complicated
ones. Finally, it turned out that the following procedure could
possess all it takes to be an effective encoding scheme. The
proposed encoding scheme has two main parts:

Part (1)- A permutation showing relative order of the jobs
rather than the operations.
Part (2)- A matrix whose rows determine the relative sequence
of operations of each job. Unlike the rank matrix, each column
does not show the job order on the machines.

In this case, we just determine the relative order of the jobs and
the processing route of each job. Therefore, by a proper decoding
procedure, it always ends up with a feasible solution. All the
possible solutions of NW-OSS could be covered by this type of
encoding scheme. Considering previous examples, one of the
solutions is

Part ð1Þ� Job order : 2 1 3
� �

Part ð2Þ�Machine order for each job :

J1
J2
J3

2 1
1 2
1 2

2
64

3
75 ð36Þ

Part 1 of this encoded solution means that S2rS1rS3.
Part 2 specifies the processing routes. Job 1 is processed first on
Machine 2, then Machine 1, Job 2 on Machine 1 then Machine 2 and
Job 3 on Machine 2 then Machine 1.

We need a decoding scheme to turn an encoded solution into a
schedule. The procedure must clarify the least possible starting
times of the jobs in such a way that no-wait constraints are met. To
this end, we set the starting time of the first job in Part 1 as 0.
Then, to find the earliest possible starting time of subsequent job,
we first set the starting time to be 0. The first operation of that job
is scheduled. If any overlap happens between this operation and
previously scheduled operations on the same machine, the start-
ing time is set to as the first possible starting time that avoids any
overlap. Then, the second operation in processing route of the job
is scheduled. Again, if any overlap occurs between this operation
and previously scheduled operations on that machine, we have to
restart from the first operation in order to hold no-wait con-
straints. The procedure repeats until all the operations of the job
are scheduled. Fig. 1 shows the pseudo code of the decoding
scheme.

Let us numerically illustrate the procedure by decoding the
solution in Eq (36). Job 2 is the first job to process. The completion
times of its operations become: O21¼6 and O22¼15 (Fig. 2, Step 1).
The next job is Job 1. Its first operation ðO12Þ finishes on 5 time
units. It has no overlap with O22 (Fig. 2, Step 2); therefore, we go
for its subsequent operation, i.e. O11. If we schedule O11 in no-wait
manner, there is the overlap between O11 and O21. So, the earliest
possible starting time of O11is 6; consequently, S1 ¼ 1. We sche-
dule O12 and O11 with this updated starting time (Fig. 2, Step 3).
The same procedure is applied to schedule Job 3 (Fig. 2, Step 4).

4. The proposed metaheuristics

This paper proposes two metaheuristics to tackle the problem.
The first one is a novel variable neighborhood search algorithm

Table 3
The processing times of the example with n¼3 and m¼2.

Job Machine

1 2

1 7 5
2 6 9
3 8 12

Fig. 1. The pseudo code of the decoding scheme.

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266260



with very simple structure. The second one is a genetic algorithm
in which we adapt some high performing operators to the type of
the proposed encoding scheme. Our goal is to develop very simple
yet effective algorithms for the problem. The following subsections
describe in details the two metaheuristics.

4.1. Variable neighborhood search algorithm

One of well-known metaheuristics applied to combinatorial
optimization problems is variable neighborhood search (VNS). The
VNS is regarded as a local search based metaheuristic. Unlike
iterated local search (ILS) algorithms iterating over one constant
type of the local search approach, VNS explores solution spaces by
more than one type of local search approach. The central observa-
tions of VNS are: (1) A local minimum one neighborhood structure
is not necessarily the locally minimal with respect to another
neighborhood structure. (2) A global optimum is the locally
optimal with respect to all neighborhood structures. VNS has been
applied with success to other scheduling problems including
single machine (Liao and Cheng, 2007), flowshops (Naderi et al.,
2009), job shops (Roshanaei et al., 2009) and the other problems
(Divsalar et al., 2013).

The proposed encoding scheme has two separate parts; i.e. job
order and processing route of each job. To generate a neighbor-
hood of the current solution, we have two alternatives: (1) To
introduce an operator changing an encoded solutions in both parts
and (2) to propose one separate operator for each part of an
encoded solution.

In the case of alternative 1, it seems that the length of
neighborhoods is too large; therefore, the algorithm essentially
performs a random search through search space with next
possible state chosen practically uniformly over search space.
Consequently, we select the second alternative and introduce
two different types of local searches to explore the search space.
In this case, the proposed algorithm is classified as an VNS. We
introduce two types of VNSs whose local searches incorporating
two different principles: greedy and curtailed insertion fashions.
In greedy fashion, many neighbors are generated from the current
solution and the best one is selected. In curtailed fashion, one
single neighbor is produced and then it is accepted or rejected by
an acceptance criterion. On one hand, the algorithms using

curtailed local searches (CLS) are certainly faster than those using
greedy local searches (GLS). On the other hand, algorithms using
GLSs are likely more precise and systematic than those using CLSs.
To evaluate the performances of both greedy and curtailed fash-
ions, we develop two VNSs each of which applies one fashion
along with a same framework. The VNS based on CLS is called VNS
(CLS), and the VNS based on GLS is called VNS(GLS).

4.1.1. Variable neighborhoods search (curtailed fashion)
In VNS(CLS), we construct a VNS employing two types of

local searches based on the curtailed fashion. The two local
searches are:

Local search 1 (LS1): The first local search is centered on the
first part of an encoded solution. That is, it changes the job
sequence as follows: one randomly selected job is relocated into
a new random position in the sequence.

Local search 2 (LS2): The second local search focuses on the
second part of an encoded solution i.e. it reinvestigates the
processing routes of jobs as follows: for each job j, chosen at
random without repetition, the following procedure is applied
until no improvement is obtained in three consecutive iterations:
one randomly selected machine is reinserted into a new random
position in the processing route of job j.

Framework: VNS(CLS) starts from a randomly generated solu-
tion, and explores the solution space by applying two above-
mentioned local searches in a specific framework. Let the current
solution be β. An iteration VNS could be described as follows:
current solution β undergoes LS1. Therefore, a new candidate
solution β

0
, however inferior, is generated. Then, LS2 is applied

to the β
0
. The nature of LS2 operates in such a way that only

superior solutions are accepted. As a result, never does it worsen
the β

0
. Despite possible improvement made by LS2, the β

0
might

be still inferior to the β. After completion of LS2, we must decide
whether or not the β

0
replaces the β as current solution of next

iteration. The β
0
is accepted only if it ameliorates the β (i.e. it

improves Cmax value), it is prone to stagnation situations of the
search in consequence of inadequate diversification capability.
Hence, the inferior β

0
is even accepted if the following acceptance

criterion is satisfied: a counter increases by one unit if β
0
is worse

than β. If the counter shows a value less than 10 and any

Fig. 2. The Gantt chart of the example decoded by the proposed procedure.

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266 261



improvement is made (i.e. Cmax β
0� �
oCmaxðβÞ), the counter restarts

form 0. When the counter takes value 10, it means no better
solution from neighborhood solutions of β is found after 10
consecutive iterations of VNS(CLS). Therefore, very likely the
algorithm gets stuck in a local optimum. From now on, any inferior
solution β

0
is accepted if

randr ρ� Cmax β
0� ��CmaxðβÞ

CmaxðβÞ

 !" #

where rand is a random number uniformly distributed over (0, 1),
and ρ is an adjustable parameter that specifies the probability of
acceptance of inferior solutions. If any solution is accepted, the
counter is again reset. The stopping criterion is set to as a fixed
computational time of n�m� 0:5 s. Fig. 3 outlines the procedure
of the VNS(CLS).

4.1.2. Variable neighborhood search (greedy fashion)
VNS(GLS) is a bi-local search algorithm based on the greedy

fashion. The specifications of VNS(GLS) could be described as
follows:

Local search 3 (LS3): Like LS1, the third local search focuses on
the first part of an encoded solution. In LS3, one randomly selected
job is relocated into all the possible positions in the job order.

Local search 4 (LS4): Like LS2, the forth local search is centered
on the second part of an encoded solution. Its procedure is as
follows: for each job j, selected at random without repetition, all
the machines, one by one again chosen at random with no
duplication, are reinserted into all the possible positions in the
processing route of job j. For each job j, the procedure iterates until
no progress is obtained by relocation of one machine in the
processing routes of the jobs.

Framework: In VNS(GLS), a typical iteration is performed as
follows: current solution β suffers from LS3 i.e. a job is removed
and reinserted into all the possible positions. The best location for
that job is selected. Then, the β undergoes LS4, i.e. the processing
route of each job j is re-investigated. If no improvement is made in
a predetermined number of consecutive iterations, an operator
called shaking is applied to extricate the algorithm from the
probable local optimum. In this shaking operator, the positions
of three jobs are randomly regenerated. To reduce the risk of
jumping into a further area, we produce 10 neighbors by shaking
operator and choose the best one. When shaking operator is
applied the counter restarts. We have the same stopping criterion
as that of VND(CLS) (Fig. 4).

4.2. Genetic algorithm

Genetic algorithm (GA) is one of the well-known and historical
population based metaheuristics. There is almost no NP-hard
problem not being attacked by GAs in the literature. This is so
because GAs' framework is very adaptable to any operators and
problems. Many papers (Bennell et al., 2013; Ruiz et al., 2006;
Zhang et al., 2013) report the effectiveness of GA. This paper
develops a simple GA having powerful operators. They are high
performing operators of the literature that are adapted to the
proposed encoding scheme. GA begins from a set of solutions,
called population. A typical iteration of GA, called generation, is as
follows. Some of the solutions of current population, called
parents, are chosen by a random procedure, called selection
mechanism. An operator, called crossover, combines the parents
and produces new solutions, called offspring. The offspring prob-
ably undergoes another operator, called mutation, for further
changes. In each generation, some of the best solutions of previous

Fig. 3. Outline of the proposed VNS(CLS).

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266262



generations are directly brought into the current generation, called
elite strategy. GA evolves until a stopping criterion is fulfilled.

We now describe the specifications of the proposed GA. Initial
solutions (popsize) are randomly generated. Two of the best
solutions of the current population are directly copied into the
next population. Selection mechanism is tournament method
which could be stated as follows: to select a parent two solutions
are randomly selected, then the better chosen solution is accepted
as a parent. Since crossovers usually need two parents, the
procedure is executed twice. The crossover is “similar job
2-point order” or SJ2OX first proposed by Ruiz et al. (2006) for
the permutation flowshops. By crossover, we intend to improve
the job order (i.e. part1 of an encoded solution). Since the part1 is
the permutation of the jobs, we apply the SJ2OX on it. SJ2OX has
three steps:

1) Two parents are compared on a position-by-position basis. If
we have identical jobs in the same positions, they are copied
over to both offspring.

2) Two random cut points are taken and the jobs between these
two points are directly copied to the offspring.

3) The missing jobs of each offspring are copied in the relative
order of the other parent. After crossover, we should select an
operator working on part2 of an encoded solution because the
algorithm takes care of part1 by crossover. To this end, we
make use of the above-mentioned local search 2 employed by
VNS(CLS). That is, each offspring generated by crossover under-
goes LS2.

Mutation procedure is as follows: each offspring suffers LS1 (i.e.
one job in part1 of encoding scheme is shifted to a new random
position) if a predefined mutation criterion is satisfied. Each
offspring undergoes the mutation: (1) if it is not a unique solution
or (2) if a randomly generated number, uniformly distributed
between (0, 1), is less than 0.2. By employing a mutation operator,
we expect the GA to diversify the solutions in each population and
avoid convergence to local optima. It seems the great choice of the
mutation can greatly influence GA's performance. In this regard,
we develop two GAs: one without the mutation, called GA, and the
other incorporating the mutation, called MGA. We again use the
same stopping criterion as we used for VNSs. The pseudo code of
the proposed MGA is shown in Fig. 5.

Fig. 4. Pseudo code of the proposed VNS(GLS).

Fig. 5. The pseudo code of the proposed MGA.

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266 263



5. Computational evaluation

This section first tunes the parameters of the proposed meta-
heuristics, then the efficiency of the proposed MILP models is
evaluated on a computational experiment including small-sized
instances. Afterwards, we investigate the general performance of
the proposed metaheuristics (i.e. VNS(CLS), VNS(GLS), GA and
MGA) against the optimal points obtained by the models. More-
over, we further evaluate the performance of the algorithms
against benchmarks in the literature of pure open shops. Since
existing optimal solutions of the benchmarks are for pure open
shops, they cannot be used for the evaluation. In this case, we use
a performance measure named Relative Percentage Deviation
(RPD) obtained by the following formula:

RPD¼ Algsol�Minsol

Minsol
100 ð37Þ

where Minsol and Algsolare is the lowest Cmax for a given instance
obtained by any of algorithms and the solution obtained by a given
algorithm. We implement the MILP models in CPLEX 10 and the
other algorithms in Borland Cþþ and run on a PC with 2.0 GHz
Intel Core 2 Duo and 2 GB of RAM memory. The stopping criterion
used when testing all instances with the metaheuristics is set to a
computational time limit fixed to n�m� 0:5 s. This stopping
criterion permits for more time as the number of jobs or machines
increases.

5.1. Parameter tuning of the proposed metaheuristics

To set the parameter of the algorithms, we generate a set of 30
instances. We have (n, m): (5, 5), (10, 10), (20, 20). The processing
times are uniformly distributed on [1, 99]. There are 10 instances

for each combination of n and m. Since each of the proposed
algorithms has at most one parameter that needs to be tuned, we
utilize the analysis of variance (ANOVA) to conduct the
experiment.

VNS(CLS) has only one parameter, ρ, that is used in acceptance
criterion of VNS(CLS). We examine the values of 0, 0.2, 0.4 and 0.6.
By considering value 0 (meaning that only better solution is
accepted), we can evaluate the presence of systematic acceptance
criterion. Fig. 6 shows the results of the experiment (means and
least significant difference or LSD) for ρ. As it could be seen, ρ of 10
works better than the other values.

MGA (and GA) also has one parameter: number of solutions in
the population (popsize). We consider popsize¼10, 20, 30 and 40.
Fig. 7 plots the means and LSD intervals. popsize of 20 outperforms
the other levels.

5.2. Evaluation of the MILP models on small-sized instances

This subsection compares the efficiency of the MILP models to
solve NW-OSS problems. We generated a set of different instances
as follows. We have 10 problem sizes ranging from (n�m)¼
(3�3), up to (6�6). The processing times are randomly distrib-
uted over (1, 99). For each problem size, we generate 2 instances.
The MILP models are allowed a maximum of 900 s (15 min) of
computational time.

Table 4 shows the results obtained by different models. If an
instance is solved to optimality by one of the models, in the
corresponding interchange in Table 4, makespan and computa-
tional time (in second) of the model is reported; otherwise, it is

Fig. 6. The means plot and LSD intervals for the different levels of ρ.

Fig. 7. The means plot and LSD intervals for the different levels of popsize.

Table 4
The results obtained by the models for NW-OSS.

n�m Instances Model 1 Model 2 Model 3

Cmax Time Cmax Time Cmax Time

3�3 1 125 0.05 125 0.05 125 0.01
2 244 0.05 244 0.03 244 0.03

3�4 1 275 1.04 275 5.52 275 0.08
2 239 0.28 239 1.79 239 0.06

4�3 1 189 1.53 189 0.0.81 189 0.06
2 280 20.30 280 9.75 280 0.19

4�4 1 218 290.41 218 642.91 218 0.20
2 322 229.02 322 548.69 322 0.44

4�5 1 – – – – 316 1.64
2 – – – – 337 2.73

5�4 1 – – – – 307 28.30
2 – – – – 309 17.89

5�5 1 – – – – 369 137.80
2 – – – – 305 4.43

5�6 1 – – – – 430 695.90
2 – – – – 326 108.64

Table 5
The RPDs obtained by the algorithms on the small-sized instances.

n�m Algorithms

VNS(CLS) VNS(GLS) GA MGA

3�3 2 2 2 2
3�4 2 2 2 2
4�3 2 2 1 2
4�4 2 2 1 2
4�5 2 1 1 2
5�4 2 1 0 1
5�5 1 1 0 0
5�6 0 0 0 0
Ave. 88% 69% 44% 69%

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266264



marked with “�”, i.e. the corresponding model does not optimally
solve the given instances. For example, the first instance of
problem size (5�5) is only solved by Model 3 in 10.9 s. The
performance of Models 1 and 2 are similar to each other. The both
solve the problem sizes up to (4�4). It might be interesting to
state that Model 1 is slightly faster than Model 2 on average.
Obviously, the highest performing MILP is Model 3 which manages
to solve the instances up to (5�6).

5.3. Evaluation of the metaheuristics on small-sized instances

We are going to evaluate the algorithms (i.e. VNS(CLS), VNS
(GLS), GA and MGA) against the optimal solution obtained by the
models in the previous subsection. Table 5 shows the results. The
best performing algorithm is VNS(CLS) by optimally solving 13
instances out of 16 instances (almost 88% of the instances). The
second best are obtained by both MGA and VNS(GLS) by finding
optimal solutions of 11 instances (almost 69% of the instances). GA
only provides 6 optimal solutions (almost 44% of the instances);
therefore, it is the worst performing algorithm.

5.4. Evaluation of the proposed algorithms on large-sized instances

After having investigated the general performance of the
metaheuristics, we intend to further evaluate the proposed algo-
rithms against standard benchmarks in the literature, i.e. Taillard
(1993), Brucker et al. (1997) and Guéret and Print (1998). Taillard's
benchmark includes 50 instances ranging from (n¼m¼4) to
(n¼m¼20). These instances are known to be easy to solve due
to uniform distribution of the processing times. The Brucker et al.'s
benchmark has 52 harder instances sized from (n¼m¼3) up to
(n¼m¼8). In these instances, total processing times of each job j
(i.e. ∑m

i ¼ 1Pj;iÞ and machine loads (i.e. ∑n
j ¼ 1Pj;i) are either equal to

1000 time units or very close to this value. Guéret and Print's
benchmark consists of 80 instances systematically generated from
(n¼m¼3) up to (n¼m¼10). It is said that these instances are even
harder than those previously generated by Brucker et al. (1997).

In this subsection, we also test and compare our proposed
algorithms against the adaptation of a relevant algorithm in the
close literature. The most of the methods in the literature, shown
by Table 1, are not proper to be in the comparison. The algorithm
proposed by Adiri and Amit (1984) is a dispatching rule for a case
where all the processing times are equal. The methods of Sidney
and Sriskandarajah (1999) and Liaw et al. (2005) are approxima-
tion algorithm and a branch and bound method, respectively; and
they cannot be brought into the comparison. The algorithms of Yao
and Soewandi (2000) and Yao and Lai (2002) are for the case of
two-machine NW-OSS and do not seem extendable to the case of
multi-machine NW-OSS. Hence, the only remaining choice is the
Two-Phase Solution Method (or TPSM) of Lin et al. (2008). Of
course, this method is developed for the minimization of the total
occupation time of all the machines. In this case, we adapt the
solution method so as to minimize makespan.

We use RPD (Eq. 37) to compare the algorithms. Table 6
summarizes the results of the experiments averaged for each
combination of n and m of the three benchmarks. VNS(CLS) is
the best performing algorithm with RPD of 1.44%. MGA provides
the second best results with RPD of 1.61%. TPSM is the worst
performing algorithm with RPD of 5.22%. Comparing MGA and GA
shows the importance of the mutation operator to solve the
problem studied here. Comparing VNS(CLS) and VNS(GLS) con-
cludes the algorithms utilizing the curtailed fashion is more
effective than those utilizing greedy fashion for such a complex
problem.

To further statistically analyze the results, we carry out an
“analysis of variance” or ANOVA. Due to clear difference between
GA and the other algorithms, it is excluded from the experiment.
The results demonstrate that there are significant differences

Table 6
The average RPD obtained by each of the algorithms against three well-known
benchmarks.

benchmark VNS(CLS) VNS(GLS) GA MGA TPSM

Taillard
tail_4�4 0.00 2.26 3.53 0.00 3.89
tail_5�5 1.30 3.51 4.49 2.48 5.54
tail_7�7 1.67 3.17 4.76 3.11 6.08
tail_10�10 2.66 4.46 3.68 0.13 6.35
tail_20�20 4.08 5.64 3.46 1.66 8.46

Guéret and Prins
gp03 0.00 2.97 2.41 0.00 3.21
gp04 0.00 3.98 3.05 0.00 4.80
gp05 0.48 3.90 4.50 1.89 5.06
gp06 1.56 3.49 4.93 2.34 5.18
gp07 2.15 3.10 5.33 2.49 4.73
gp08 1.26 3.77 4.91 1.53 5.04
gp09 2.32 4.54 4.83 1.06 5.10
gp010 3.05 5.69 5.43 2.80 6.82

Brucker et al.
j3 0.00 0.00 1.34 0.00 2.69
j4 0.00 2.24 3.08 1.24 3.35
j5 0.89 3.70 4.72 2.77 5.93
j6 1.61 3.87 4.46 3.33 6.46
j7 1.86 3.21 3.58 1.49 4.58
j8 1.90 4.04 4.38 2.50 5.55
Average 1.44 3.61 4.08 1.61 5.24

Fig. 8. Means plot and LSD intervals for the metaheuristics.

Fig. 9. Means plot for the metaheuristics versus the problem size.

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266 265



between the algorithms with p-value very close to 0. Fig. 8 shows
the means plot and least significant difference or LSD intervals at
95% confidence level for the different algorithms. As could be seen,
VNS(CLS) and MGA are statistically similar, while the both out-
perform VNS(GLS) and GA. It is also interesting to plot the
performance of the algorithms versus the problem size. Fig. 9
shows the means obtained by the algorithms in the different
problem sizes. In instances up to n ¼ m ¼ 8, VNS(CLS) outper-
forms MGA. In large problem sizes, MGA provides better results
than VNS(CLS).

6. Conclusions and future studies

This paper dealt with a specific case of open shop problems,
known as no-wait open shop, under makespan minimization.
Three mathematical formulations were constructed to solve the
problem to optimality. The models were in the form of mixed
integer linear programs. We then introduced an effective proce-
dure of the encoding and decoding schemes by which we were
enabled to propose novel metaheuristics based on genetic algo-
rithms and variable neighborhood search to solve the large-sized
problems in an acceptable computational time. The proposed
variable neighborhood search metaheuristics were centered on
two different concepts, greedy and curtailed fashions. The pro-
posed genetic algorithms were designed based a simple frame-
work incorporating powerful operators.

Two computational experiments were carried out to evaluate
the performances of models and metaheuristics. In the first
experiment, we generated small-sized instances by which we
compared the mathematical models and evaluated general per-
formance of the proposed metaheuristics. In the second experi-
ment, potential of metaheuristics on solving some benchmarks in
the literature of pure open shops were further evaluated. All the
results supported that the models and metaheuristics were effec-
tive to tackle the no-wait open shop problems. As an interesting
future research, one can study multi-objective no-wait open shop
problems. Another impressive research is to present a branch-and-
bound or any other exact methods.

References

Adiri, I., Amit, N., 1984. Open shop and flow shop scheduling to minimize sum of
completion times. Comput. Oper. Res. 11, 275–284.

Andresen, M., Bräsel, H., Morig, M., Tusch, J., Werner, F., Willenius, P, 2008.
Simulated annealing and genetic algorithms for minimizing mean flow time
in an open shop. Math. Comput. Model. 48 (7–8), 1279–1293.

Bennell, J.A., Lee, L.S., Potts, C.N., 2013. A genetic algorithm for two-dimensional bin
packing with due dates. Int. J. Prod. Econ. 145 (2), 547–560.

Bräsel, H., Herms, A., Morig, M., Tautenhahn, T., Tusch, T., Werner, F., 2008. Heuristic
constructive algorithms for open shop scheduling to minimize mean flow time.
Eur. J. Oper. Res. 189 (3), 856–870.

Brucker, P., Hurink, J., Jurisch, B., Wöstmann, B.A., 1997. A branch and bound
algorithm for the open-shop problem. Discret. Appl. Math. 76, 43–59.

Divsalar, A., Vansteenwegen, P., Cattrysse, D., 2013. A variable neighborhood search
method for the orienteering problemwith hotel selection. Int. J. Prod. Econ. 145
(1), 150–160.

Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., 1979. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann.
Discret. Math. 5, 287–326.

Goyal, S.K., Sriskandarajah, C., 1988. No-wait shop scheduling: computational
complexity and approximate algorithms. Oper. Res. 25, 220–244.

Guéret, C., Prins, C., 1998. Classical and new heuristics for the open shop problem: a
computational evaluation. Eur. J. Oper. Res. 107, 306–314.

Hall, N.C., Sriskandarajah, C.A., 1996. Survey of machine scheduling problems with
blocking and no-wait in process. Oper. Res. 44, 510–525.

Liao, C.J., Cheng, C.C., 2007. A variable neighborhood search for minimizing single
machine weighted earliness and tardiness with common due date. Comput.
Ind.l Eng. 52, 404–413.

Liaw, C.F., 2000. A hybrid genetic algorithm for the open shop scheduling problem.
Eur. J. Oper. Res. 124, 28–42.

Liaw, C.F., Cheng, C.Y., Chen, M., 2005. Scheduling two-machine no-wait open shops
to minimize makespan. Comput. Oper. Res. 32, 901–917.

Lin, H.T., Lee, H.T., Pan, W.J., 2008. Heuristics for scheduling in a no-wait open shop
with movable dedicated machines. Int. J. Prod. Econ. 111, 368–377.

Manne, A.S., 1960. On the job shop scheduling problem. Oper. Res. 8, 219–223.
Naderi, B., Zandieh, M., Fatemi Ghomi, S.M.T., 2009. A study on integrating

sequence dependent setup time flexible flow lines and preventive maintenance
scheduling. J. Intell. Manuf. 20, 683–694.

Pang, K.W., 2013. A genetic algorithm based heuristic for two machine no-wait
flowshop scheduling problems with class setup times that minimizes max-
imum lateness. Int. J. Prod. Econ. 141 (1), 127–136.

Pinedo, M.L., 2008. Scheduling: Theory, Algorithms, and Systems, third ed.. Springer
ScienceþBusiness Media, New York.

Sahni, S., Cho, Y., 1979. Complexity of scheduling shops with no-wait in process.
Math. Oper. Res. 4, 448–457.

Sidney, J.B., Sriskandarajah, C., 1999. A heuristic for the two-machine no-wait open
shop scheduling problem. Naval Res. Logist. 46, 129–145.

Stafford Jr. E.F., Tseng, F.T., Gupta, J.N.D., 2005. Comparative evaluation of MILP
flowshop models. J. Oper. Res. Soc. 56, 88–101.

Rios-Mercado, R.Z., Bard, J.F., 1998. Computational experience with a branch-and-
cut algorithm for flowshop scheduling with setups. Comput. Oper. Res. 25,
351–366.

Roshanaei, V., Naderi, B., Jolai, F., Khalili, M., 2009. A variable neighborhood search
for job shop scheduling with setup times to minimize makespan. Futur. Gener.
Comput. Syst. 25, 654–661.

Ruiz, R., Maroto, C., Alcaraz, J., 2006. Two new robust genetic algorithms for the
flowshop scheduling problem. Omega 34, 461–476.

Taillard, E., 1993. Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64,
278–285.

Wagner, H.M., 1959. An integer linear programming model for machine scheduling.
Naval Res. Logist. Q. 6, 131–140.

Yao, M.J., Lai, C.W., 2002. A genetic algorithm for the two machine open shop
scheduling problem with blocking. In: The Second Japanese-Sino Optimization
Meeting (JSOM 2002), Kyoto, Japan, pp. 25–27.

Yao, M.J., Soewandi, H., 2000. Simple heuristics for the two machine open shop
problem with blocking. J. Chin. Inst. Ind. Eng. 17 (5), 537–547.

Zhang, R., Chang, P.C., Wu, C., 2013. A hybrid genetic algorithm for the job shop
scheduling problem with practical considerations for manufacturing costs:
investigations motivated by vehicle production. Int. J. Prod. Econ. 145 (1),
38–52.

B. Naderi, M. Zandieh / Int. J. Production Economics 158 (2014) 256–266266

http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref1
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref1
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref2
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref2
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref2
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref3
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref3
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref4
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref4
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref4
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref5
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref5
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref6
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref6
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref6
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref7
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref7
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref7
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref8
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref8
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref9
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref9
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref10
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref10
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref11
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref11
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref11
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref12
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref12
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref13
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref13
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref14
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref14
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref15
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref16
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref16
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref16
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref17
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref17
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref17
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref18
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref19
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref19
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref20
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref20
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref21
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref21
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref22
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref22
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref22
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref23
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref23
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref23
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref24
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref24
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref25
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref25
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref26
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref26
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref27
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref27
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref28
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref28
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref28
http://refhub.elsevier.com/S0925-5273(14)00194-7/sbref28

	Modeling and scheduling no-wait open shop problems
	Introduction
	Problem formulation
	Model 1
	Model 2
	Model 3

	The procedure of encoding and decoding schemes
	The proposed metaheuristics
	Variable neighborhood search algorithm
	Variable neighborhoods search (curtailed fashion)
	Variable neighborhood search (greedy fashion)

	Genetic algorithm

	Computational evaluation
	Parameter tuning of the proposed metaheuristics
	Evaluation of the MILP models on small-sized instances
	Evaluation of the metaheuristics on small-sized instances
	Evaluation of the proposed algorithms on large-sized instances

	Conclusions and future studies
	References




