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Abstract: This paper focus on the scheduling problem of a flow shop operating 
in a sequence dependent setup time (SDST) environment. Two constructive 
algorithms of contrasting characteristics are analysed for the performance with 
respect to change in problem size; the first algorithm is processing time-based 
and the second algorithm is setup time-based. The problem size is characterised 
by the variables namely, number of jobs and number of machines. An extensive 
performance analysis of the two constructive algorithms has been carried out 
using 960 SDST flow shop benchmark problem instances. The graphical 
analysis of the results reveals the correlation between the relative performance 
of the algorithms and problem size. The study shows that the performance of 
the setup time-based algorithm increases with increase in number of jobs and 
decreases with increase in number of machines. The coefficient of variation 
analysis is used to investigate the performance variation of the algorithm with 
change in number of machines. The analysis reveals that as the number 
machines increases, the coefficient of variation of the summed setup time 
matrix decreases which causes the change in performance of the setup  
time-based algorithm. 

Keywords: flow shop; sequence dependent setup time; SDST; heuristic 
algorithm; coefficient of variation. 
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1 Introduction 

Flow shop scheduling is an extensively researched combinatorial optimisation problem. 
Generally, all scheduling problems invariably involve setup times apart from the actual 
processing times of jobs. The setup time includes time required for preparing the 
machine, tools, process, or the work itself for further processing. For example, a finite 
amount of time is incurred in positioning work-in-process material, obtaining tools, 
loading the tool, return tooling, cleanup, etc. In most situations, the setup time is added to 
the processing time, in order to reduce the complexity of the problem. However, there are 
many applications which require explicit treatment of setup time (Allahverdi et al., 1999). 
The present study addresses the problem of scheduling a flow shop operating in a 
sequence dependent setup time (SDST) environment. Consideration of SDST separately 
in flow shop scheduling problem certainly makes the problem close to reality. Its benefits 
can be seen in the production floor in terms of accurate completion time estimate and 
accurate delivery time promises. 

The problem considered in the present research involves scheduling a set of n jobs 
which are available for processing on m machines with SDST, i.e., the setup time of a job 
on a machine is dependent on the previously processed job on the same machine. The 
objective of the problem is to find the permutation schedule which minimises the 
makespan assuming no pre-emption of operations. In the literature, the problem is known 
as flow shop scheduling with SDST. The presence of SDST is observed in many practical 
situations across different industry. Such situations are found in various shop 
configurations and environments such as: 
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1 in printing industry, where the machine cleaning depends on the colour of the current 
and immediately following orders 

2 in textile industry applications, where setup for weaving and dying operations 
depends on the job sequence 

3 in the container and bottle industry, where the settings change depending on the sizes 
and shapes of the container 

4 in manufacturing of chemical compounds, where the extent of the cleaning depends 
on both the chemical most recently processed and the chemical about to be processed 
(Allahverdi et al., 1999, 2008; Eren, 2010). 

Similar situations arise in pharmaceutical, food processing, metal processing, paper 
manufacturing, and many other industries. In these situations, SDST plays a major role 
and must be considered explicitly while modelling the problem. 

In industrial scheduling, the number of jobs requiring processing and number 
machines available for processing often vary with the situations based on the typical 
nature and scale of the manufacturing shops. The number of jobs (n) and the number of 
machines (m) are the two parameters that define the problem size (n × m). It is very  
much possible that as the problem size parameters change, the performance of the 
heuristics used for scheduling also may vary. The motivation of the present study is to 
find the effect of problem size on the relative performance of heuristics. The size of a 
problem increases when there is an increase in the number jobs or an increase  
in the number of machines or an increase in both. Thus, in the present study, these two 
problem size varibles are analysed seperately with respect to the performance of two 
existing heuristics. The first constructive heuristic algorithm, NEHRB heuristic 
developed by Rios-Mercado and Bard (1998) considers only processing time for 
constructing the sequence. The second constructive heuristic, fictitious job setup  
ranking algorithm (FJSRA) uses setup time data along with processing time data for 
constructing the sequence (Vanchipura and Sridharan, 2012). Thus, the two heurstics 
differ in the methodology of constructing the sequence. The performance of these 
heuristics is analysed for 12 different size problems at eight different levels of setup  
time (96 groups of problems). The benchmark problems developed by Vanchipura  
and Sridharan (2012) for SDST flow shop are used in the present study for 
experimentation. The results of these exhaustive experiments are used for finding the 
relative performance improvement. Initially, a graphical analysis is carried out to 
investigate performance variation. A coefficient of variation analysis of the setup times is 
used to explain the variation in performance of the two algorithms with increasing 
number of machines. To the best knowledge of the authors, the performance of  
different scheduling algorithms for the SDST flow shop under varying problem size 
parameters is an area unexplored by the researchers. The present study fills this research 
gap. 

The rest of the paper is organised as follows. Section 2 provides a review of the 
relevant literature. Section 3 describes the problem formulation for SDST flow shop. 
Section 4 explains the solution methodology. The details of experimentation are provided 
in Section 5. The results and discussion are provided in Section 6. Concluding remarks 
and scope for further research are presented in Section 7. 
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2 Review of relevant literature 

Allahverdi et al. (1999) present a review of flow shop scheduling problem with SDST. 
Later, Allahverdi et al. (2008) provide an extensive review of the scheduling literature on 
models with setup times. Gupta (1986) proves the NP-completeness of the SDST flow 
shop scheduling problem. Due to this complexity, the SDST version is relatively less 
explored compared to the general flow shop scheduling problem. Metaheuristics are 
found to be the suitable methodologies for this category of problems. Parthasarathy and 
Rajendran (1997) develop a simulated annealing (SA) algorithm to minimise mean 
weighted tardiness for a flow shop with SDSTs. They use a method namely, random 
insertion perturbation scheme for generating the neighbourhood solution sequence for SA 
algorithm. The SA heuristic is evaluated against existing heuristics and the results of 
computational evaluation reveal that the proposed heuristic performs much better. Ruiz  
et al. (2005) proposed a heuristic based on genetic algorithms. They use randomised 
NEHRB heuristic in two occasions: 

1 for initial generating initial population 

2 for restarting the population in case of premature convergence which helps the GA to 
perform better compared to the normal GA. 

Gajpal et al. (2006) present an ant colony optimisation algorithm for flow shop 
scheduling with sequence dependent setups for the makespan objective. An existing ant 
colony algorithm and the proposed ant colony algorithm are compared with two existing 
heuristics. Extensive computational investigation reveals that the proposed ant colony 
algorithm provides promising and better results, as compared to the solutions obtained 
using the existing ant colony algorithm and the existing heuristics. Apart from these 
metaheuristics, there are a few research works that develop local-search and greedy 
heuristics. Ruiz and Stutzle (2008) present two simple local search-based iterated greedy 
algorithms. Two different optimisation objectives namely, minimisation of makespan and 
minimisation of total weighted tardiness are considered. Extensive experiments and 
statistical analyses demonstrate that despite their simplicity, the iterated greedy 
algorithms emerge as state-of-the-art methods for both the objectives. Tseng et al. (2005) 
develop a penalty-based heuristic algorithm and compare their heuristic with an existing 
index heuristic algorithm. Rajendran and Ziegler (2003) proposed two heuristics for the 
SDST flow shop scheduling problem with a combination of two objectives namely, 
weighted flow time and weighted tardiness. They present a heuristic in which two single 
objective constructive algorithms are used to generate two separate sequences and the 
best sequence is selected. 

There are variations of the SDST flow shop namely, flexible flow shop with SDST, 
no wait flow shop with SDST, which also find application of such intelligent 
metaheuristics. Ruiz and Morato (2006) present a heuristic based on genetic algorithm for 
scheduling a hybrid flow shop with SDST. Logendran et al. (2006) develop three tabu 
search-based algorithms for the same problem. Zandieh and Gholami (2009) present an 
immune algorithm for a hybrid SDST flow shop with machines that suffer from 
stochastic breakdowns. Wang et al. (2011) used a SA approach for a hybrid SDST flow 
shop with the objective of minimising makespan. A water flow-like approach is used by 
Pargar and Zandieh (2012) in their study to minimise the weighted sum of makespan and 
total tardiness for a hybrid SDST flow shop. Varmazyar and Salmasi (2012) present 
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several metaheuristic algorithms based on tabu search and imperialistic competitive 
algorithm for SDST flow shop scheduling problem with the objective of minimising the 
number of tardy jobs. Wang et al. (2011) used a SA approach for a hybrid SDST flow 
shop with the objective of minimising makespan. 

Constructive algorithms for SDST flow shop are found rarely in the literature.  
Rios-Mercado and Bard (1998) present a constructive heuristic for the SDST flow shop 
scheduling problem with the objective of minimisation of makespan. The heuristic is an 
extension of the well known constructive algorithm namely, NEH heuristic for general 
flow shop developed by Nawaz et al. (1983). The heuristic is known as NEHRB 
heuristic. It uses the processing time data for constructing the sequence. Vanchipura and 
Sridharan (2012) present a determistic constructive algorithm known as FJSRA which 
uses setup time data along with processing time data for constructing the sequence. The 
present study focuses on the analysis of the performance of NEHRB and FJSRA under 
different size of SDST scheduling problem. 

3 Problem formulation 

A flow shop scheduling problem involves a set of n jobs to be processed on a set of m 
machines, with all the jobs processed in the same order. It is assumed that setup time is 
sequence dependent, i.e., the setup time of a job on a machine is determined by knowing 
the predecessor of the job. The objective of the problem is to find a sequence for the 
processing of the jobs on the machines so that the total completion time or makespan of 
the schedule is minimised. 

Notations 

n total number of jobs to be scheduled 

i index of machine 

m total number of machines in the flow shop 

j index of job 

pij processing time of job j on machine i 

sijk setup time on machine i, when job k is preceded by job j 

σ ordered set of jobs already scheduled, out of n jobs; partial sequence 

nσ number of jobs in the partial sequence, σ 

q(σ, i) completion time of partial sequence σ on machine i 

q(σj, i) completion time of job j on machine i, when job j is appended to the partial 
sequence σ. 

For calculating the start and completion times of jobs on machines in the permutation 
flow shop, recursive equations are used as follows. 

The completion time of σj on machine i is determined using the following recursive 
equation: 

{ }( , ) max ( , ) , ( , 1)ijk ijq σj i q σ i s q σj i p= + − +  (1) 
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where q (Φ, i) = 0 and q(σ, 0) = 0, for all σ and i, with Φ denoting a null schedule. It is 
assumed that sijk exists for all jobs where j = Φ for all machines. It is also assumed that 
setup of a machine can be done without the job being available at the machine. 

The flow time of job j, Cj, is given by: 

( , )jC q σj m=  (2) 

When all the jobs are scheduled, the makespan M is obtained as follows: 

{ }max , 1, 2, ,jM C j n= = …  (3) 

4 Solution methodology 

Two constructive algorithms are considered in this study. These algorithms are NEHRB 
(Rios-Mercado and Bard, 1998) and FJSRA (Vanchipura and Sridharan, 2012). The 
FJSRA heuristic uses setup time data along with the processing time data for obtaining 
the sequence. The algorithms are tested on the benchmark problem developed by 
Vanchipura and Sridharan (2012) which includes 12 different size problems. The 
performance variation of the two constructive algorithms are analysed with the problem 
size parameters (number of jobs and number of machines). The two existing constructive 
algorithms are described in the following sub-sections. 

4.1 NEHRB heuristic algorithm 

This heuristic is based on NEH heuristic (Nawaz et al., 1983) for flow shop scheduling 
problem. The procedure adopted in NEH heuristic consists of inserting a job into the best 
available position of the partial sequence. Rios-Mercado and Bard (1998) extend the 
NEH heuristic to solve the SDST flow shop scheduling problem. This procedure is 
known as NEHRB heuristic. This algorithm uses multiple iterations in which there is a 
partial schedule at each iteration. The largest processing time rule is applied to select the 
next job to be inserted into the partial sequence. The makespan obtained is compared at 
each stage and the best sequence is selected. This procedure is continued till the final 
sequence is obtained. An illustration NEHRB heuristic is provided in Appendix 1. 

4.2 Fictitious job setup ranking algorithm 

FJSRA is developed by giving importance to setup time along with processing time 
(Vanchipura and Sridharan, 2012). The principle behind this algorithm is that as the setup 
time between jobs is reduced, the makespan also will get reduced. FJSRA is based on the 
concept of fictitious jobs. A pair of jobs with minimum setup time between them is 
treated as a fictitious job and the processing time of the fictitious job is the sum of the 
processing time of the pair of jobs involved in the fictitious job. The algorithm starts with 
the summed setup time matrix which is the sum of setup time matrices for all the 
machines. The summed setup time matrix shows the sum of all setup time on all 
machines of all two-job combinations. This matrix gives a measure of setup time between 
different combinations of jobs. From the setup time matrix, the pairs of jobs with 
minimum value of summed setup time are identified as the fictitious jobs. The first two 
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fictitious jobs with maximum fictitious processing time form the partial sequence. Then, 
the fictitious job with the next highest summed up processing time is considered and 
inserted in all possible positions in the partial sequence. Partial makespan values of all 
sequences are found out and the sequence with minimum makespan value is made the 
next partial sequence. The algorithm repeats these steps to get the best sequence. An 
illustration of the heuristic is provided in Appendix 2. 

5 Experimentation 

Experimentation is carried out on the benchmark problems developed for flow shop 
scheduling problems with SDST (Vanchipura and Sridharan, 2012). The benchmark 
problems involve 12 different sizes of problems at eight different levels of setup time 
which forms 960 problem instances (96 groups of problems with 10 instances in each 
group). The different sizes of problem are 20 jobs × 5 machines, 20 × 10, 20 × 20, 50 × 5, 
50 × 10, 50 × 20, 100 × 5, 100 × 20, 100 × 20, 200 × 10, 200 × 20 and 500 × 20. The 
setup time data has been generated for each problem size using eight different 
proportions of maximum setup time to maximum processing time. These proportions are 
5%, 10%, 25%, 50%, 75%, 100%, 125% and 150%. Corresponding to these proportions, 
setup times are generated using eight different uniform distributions viz., U(1, 5),  
U(1, 10), U(1, 25), U(1, 50), U(1, 75), U(1, 100), U(1, 125) and U(1, 150). The 
constructive algorithms (NEHRB and FJSRA) are coded in MATLAB and tested using 
the 960 problem instances developed. 

6 Results and discussion 

The makespan values are obtained for all the 12 problem sizes at eight different levels of 
setup time. Average makespan obtained using each of the heuristics, NEHRB and 
FJSRA, for each of the problem sizes are presented in Table 1. 

Table 1 clearly shows that for smaller problems, NEHRB is found to be the better 
algorithm and FJSRA is better for larger problems. The purpose of this study is to analyse 
this performance variation with problem size. The makespan results obtained shows that 
the makespan values are found to vary drastically with change in problem size and setup 
time level. This necessitates a normalisation of the makespan results for the purpose of 
comparison. This can be done by determining the Relative Performance Improvement 
(RPI) for each of the problem instances. Since RPI is the percentage improvement in 
makespan, it can be used to compare groups of problems which have entirely different 
makespan values. The Relative Performance Improvement used for the comparison of the 
heuristic algorithms among groups is computed as follows. 

max max

max
Relative Performance Improvement

NEHRB C FJSRA C
EHRB C

−
=  

where 

NEHRB Cmax makespan found using NEHRB heuristic 

FJSRA Cmax makespan found using FJSRA heuristic. 
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Table 1 Average makespan for NEHRB and FJSRA for different problem sizes 
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Figure 1 Average relative performance improvement for different problem sizes  
(see online version for colours) 

 

The RPI values are determined for each problem instance and the average RPI values for 
each group are calculated by taking the average of the RPI values of the respective 
problem instances in the group. The study is focused on finding the effect of problem size 
on the performance of the two algorithms. Hence, average RPI values are obtained for 
each of the problem sizes for the comparison of the performance variation of the heuristic 
algorithms. Figure 1 shows the average RPI values for 12 problem sizes. 

Figure 1 shows that for larger problems, the improvement is in the positive range 
indicating a relatively better performance of the setup time-based algorithm FJSRA. 
Figure 1 also shows that the RPI of the setup time-based algorithm increases as the 
problem size increases. The relative improvement with respect to problem size shows a 
zigzag pattern. This is due to the fact that the problem size parameters, namely, number 
of jobs and number of machines, are not increasing simultaneously and continuously. For 
example, for the first three problems, the number of jobs remains constant and the 
number of machines increases. Figure 1 shows that for every increase in the number of 
jobs, there is a sudden jump in improvement. As the number of machines increases, there 
is a gradual decrease in improvement. The above observation shows that the relative 
performance is correlated with the problem size parameters, namely, number of jobs and 
number of machines. This aspect of the problem necessitates further graphical analysis 
based on RPI values which is presented under the follwing cases. 

1 relative performance with increasing number of machines 

2 relative performance with increasing number of jobs. 

6.1 Relative performance with increasing number of machines 

Here, the different problem sizes in the benchmark set are segregated in such a way that 
problem groups with the same number of machines form a set of problem groups. For 
example, the three problems with size such as 20 × 5, 20 × 10 and 20 × 20 form a set of 
20 job problems. In a similar manner, there are sets of 50 job problems, 100 job problems 
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and 200 job problems. The average RPI values are plotted for different sets of problem 
groups as shown in Figures 2 to 5. 

Figure 2 RPI plot for 20 jobs with increasing number of machine (see online version for colours) 

 

Figure 3 RPI plot for 50 jobs with increasing number of machines (see online version  
for colours) 

 

Figure 4 RPI plot for 100 jobs with increasing number of machines (see online version  
for colours) 

 



   

 

   

   
 

   

   

 

   

   214 R. Vanchipura and R. Sridharan    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 5 RPI plot for 200 jobs with increasing number of machines (see online version  
for colours) 

 

From Figures 2 to 5, it is evident that there is a decrease in RPI with an increase in the 
number of machines. This shows that as the problem size increases, the relative 
improvement obtained for FJSRA decreases. For larger size problems, it is observed that 
the improvement is in the positive range even though the improvement is decreasing 
(Figures 4 and 5). The decreasing relative performance of FJSRA algorithm is due to the 
decreased significance of setup time as the number of machines increases. This can be 
further explained with help of coefficient of variation of the setup time matrices. The 
FJSRA algorithm starts with summed setup time matrix which is the basis for 
determining the best sequence. In other words, if there is more variation in summed setup 
time, the FJSRA algorithm performs well and a lesser variation in summed setup time 
matrix results in the inferior performance of the algorithm. Hence, it is required to find 
out the variation involved in the summed setup time matrix. However, as number of 
machines increases, the number of setup time matrices also increases, resulting in the 
higher means of elements of setup time matrix. Here, it is obvious that as the problem 
size increases, the mean of the elements of summed setup time matrix also increases. The 
coefficient of variation is a more useful measure in order to study the variation involved 
in summed setup time matrix. The coefficient of variation is a dimensionless number. 
Hence, when comparing between data sets with different units or widely different means, 
the coefficient of variation is recommended for comparison instead of the standard 
deviation. In the present study, it is found that the coefficient of variation decreases  
with increasing number of machines. Figure 6 shows the decreasing trend of  
coefficient of variation for problem sizes with 20 jobs and 5, 10, and 20 machines (i.e., 
for SDST 20 × 5, SDST 20 × 10 and SDST 20 × 20 problem sizes). 

The FJSRA heuristic uses summed setup time matrix for determining the best pairs of 
jobs. As the number of machines increases, the coefficient of variation of setup time in 
the summed setup time matrix decreases. Figure 6 shows the decreasing trend of 
coefficient of variation for problem sizes with 20 jobs. The decreasing coefficient of 
variation reflects the decreasing variation in summed setup time matrix elements which in 
turn results in the decreased performance of the FJSRA algorithm as shown in Figure 2. 
Similarly, coefficient of variation is computed for problem sizes having 50 jobs and 100 
jobs as shown in Figures 7 and 8. 
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Figure 6 Coefficient of variation for 20 jobs problems with increasing number of machines  
(see online version for colours) 

 

Figure 7 Coefficient of variation for 50 jobs problems with increasing number of machines  
(see online version for colours) 

 

Figure 8 Coefficient of variation for 100 jobs problems with increasing number of machines  
(see online version for colours) 

 

Both the Figures 7 and 8 show the decreasing trend of coefficient of variation which 
result in the decreasing performance of FJSRA as observed in Figures 3 and 4 
respectively. 
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6.2 Relative performance with increasing number of jobs 

For this analysis, the problems in the benchmark set are segregated in such a way that 
problems with the same number of machines form a set of problem group. Thus, the three 
groups of problems formed are five machine problems (SDST 20 × 5, SDST 50 × 5 and 
SDST 100 × 5), ten machines problems (SDST 20 × 10, SDST 50 × 10, SDST 100 × 10 
and SDST 200 × 10) and 20 machines problems (SDST 20 × 20, SDST 50 × 20,  
SDST 100 × 20, SDST 200 × 20 and SDST 500 × 20). The average RPI values are ploted 
for each of the problems groups seperately as shown in Figures 9, 10 and 11 for the 5 
machines, 10 machines and 20 machines problem groups respectively. 

Figures 9, 10 and 11 show the increasing trend of the average RPI values indicating 
the better performance of the FJSRA with increasing number of jobs. When the number 
of jobs increases, the setup time becomes more significant which leads to an improved 
performance of setup time-based algorithms. This is evident from the pattern of variation 
depicted in Figures 9 to 11. Since FJSRA gives more prominence to setup time, the 
algorithm provides better performance. The existing algorithm NEHRB gives relatively 
less importance to setup time and this is the reason for the inferior performance of the 
NEHRB algorithm in comparison with FJSRA for problems with lesser number of jobs 

Figure 9 RPI plot for five machines with increasing number of job (see online version  
for colours) 

 

Figure 10 RPI plot for ten machines with increasing number of job (see online version  
for colours) 
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Figure 11 RPI plot for 20 machines with increasing number of job (see online version  
for colours) 

 

7 Conclusions 

This paper presents the analysis of two different constructive algorithms for SDST flow 
shop scheduling. The first constructive heuristic algorithm, NEHRB heuristic considers 
only processing time for constructing the sequence. The second constructive heuristic, 
FJSRA uses setup time data along with processing time data for constructing the 
sequence. The objective of the study is to find the relative performance of these two 
algorithms with increasing problem size. The problem size is characterised by the 
varibles namely, number of jobs and number of machines analysed. Eexperimentation is 
carried out on benchmark problems involving 960 problem instances. Relative 
performance improvement analysis and statistical analysis are carried out. The analysis 
reveals that FJSRA emerges as the better algorithm for larger-size problems and for 
smaller-size problems with higher level of setup time. 

It is a well-known fact that the solution quality to flow shop scheduling problem 
depends on number of jobs and number of machines. However, the present study 
analyses the performance variation of two constructive algorithms. Moreover, the present 
study also analyses the problem size parameters (number of jobs, n and number of 
machines, m). The study shows that the performance of the setup time-based algorithm 
FJSRA increases with increase in number of jobs. On the other hand, the performance of 
FJSRA decreases with increase in number of machines. A coefficient of variation 
analysis carried out in the present study investigates the reason for the decreased 
performance of FJSRA, which is a major contribution of this paper. The analysis reveals 
that as the number machines increases, the coefficient of variation of the summed setup 
time matrix decreases which causes the reduced performance of FJSRA. 

SDST flow shop situation can be observed in various manufacturing and service 
industries. The size of the scheduling problem involved in such industries and situations 
often vary. The analysis carried out in the present research brings out the fact that the 
performance of the two constructive algorithms changes with change in problem size. As 
the number of machines in a problem situation increases, the performance of the setup 
time-based algorithm decreases. The processing time-based algorithm, NEHRB is suited 
for scheduling jobs in such situations. When the number jobs are relatively high, the 
setup time-based algorithm FJSRA is more appropriate. The performance variation of the 
two algorithms with respect to the number of jobs and the number machines identified in 
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the present study is the major contribution of the paper. Moreover, the coefficient of 
variation analysis used for the purpose of investigating the effect of increasing number of 
machines is a novel approach. The present study provides guidelines for choosing the 
correct algorithm for different situations so as to develop a better schedule that minimises 
the total completion time of jobs or makespan. In an increasingly competitive world of 
manufacturing, improving the schedules by as little as 1% can have a significant financial 
impact. 

Considering the importance of due-date fulfilment in determining service level, the 
industry demands research with due-date consideration. Hence, attention needs to be 
directed towards customer-driven performance measures such as minimising the total 
weighted earliness and tardiness, weighted number of tardy jobs, etc. The high 
computational requirements of the problem considered in the present research make 
metaheuristics as a promising solution methodology. The possibility of non-permutation 
schedule in flow shop with SDST can also be explored. 
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Appendix 1 

Illustration of NEHRB heuristic 

An example problem in which six jobs need processing on four different machines is 
considered. Table A1 shows the processing time matrix. The setup time matrices for 
machines 1, 2, 3 and 4 are provided in Tables A2, A3, A4 and A5 respectively. 
Table A1 Processing time matrix 

Jobs 
 

J1 J2 J3 J4 J5 J6 
M1 5 7 0 1 1 5 
M2 2 4 9 3 7 8 
M3 5 4 9 3 1 7 

M
ac

hi
ne

s 

M4 6 10 8 7 7 9 
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Table A2 Setup time matrix for machine 1 

 J0 J1 J2 J3 J4 J5 J6 

J0 - 9 3 7 2 0 7 
J1 0 - 5 5 9 6 6 
J2 0 9 - 8 6 2 2 
J3 0 9 0 - 5 2 10 
Ji 0 7 5 5 - 1 7 
Ji 0 0 1 5 1 - 8 
J6 0 8 7 1 7 5 - 

Table A3 Setup time matrix for machine 2 

 J0 J1 J2 J3 J4 J5 J6 

J0 - 10 6 8 5 4 8 
J1 0 - 1 1 2 4 8 
J2 0 8 - 1 4 5 4 
J3 0 7 6 - 3 4 0 
Ji 0 10 2 1 - 4 2 
Ji 0 5 3 10 9 - 1 
J6 0 7 3 4 5 9 - 

Table A4 Setup time matrix for machine 3 

 J0 J1 J2 J3 J4 J5 J6 
J0 0 4 10 3 7 7 5 
J1 0 - 7 7 2 1 10 
J2 0 2 - 0 6 9 7 
J3 0 2 4 - 5 10 2 
Ji 0 9 6 4 - 2 4 
Ji 0 5 1 6 2 - 4 
J6 0 6 3 3 6 3 - 

Table A5 Setup time matrix for machine 4 

 J0 J1 J2 J3 J4 J5 J6 

J0 0 8 10 7 3 6 1 
J1 0 - 9 9 8 3 6 
J2 0 0 - 4 3 2 2 
J3 0 4 1 - 6 5 7 
Ji 0 7 6 0 - 1 3 
Ji 0 5 7 4 8 - 7 
J6 0 10 5 3 1 6 - 
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The NEHRB heuristic uses the processing time data to construct the sequence. The 
algorithms starts with finding summed processing time for each jobs. The sums of the 
processing time are calculated shown in Table A6. 
Table A6 Sum of processing time for job 

Job 1 2 3 4 5 6 

Sum of processing time 18 25 26 14 16 29 

The jobs are sorted based on the summed processing time and presented in Table A7. 
Table A7 Sorted sum of processing time for jobs 

Job 6 3 2 1 5 4 

Sum of processing time 29 26 25 18 16 14 

Initialisation 

Set of unscheduled jobs, u = {1, 2, 3, 4, 5, 6}; Partial sequence, σ = {0}; Makespan = 0. 

1st iteration 

The job with maximum processing time, i.e., job 6 with processing time 29, is removed 
from u and added to the partial sequence, σ. 

Set of unscheduled jobs, u = {1, 2, 3, 4, 5}; Partial sequence σ = {0 – 6};  
Makespan = 29. 

2nd iteration 

The next job with the highest processing time in the set of unscheduled jobs is removed, 
i.e., job 3, and added to the partial sequence, σ. The different possibilities of inserting the 
job in the partial sequence are evaluated in the Table A8. Here, both the sequences are 
found to have the same makespan value. Hence, arbitrarily {0 – 6 – 3} is chosen as the 
partial sequence. 
Table A8 possible sequences and the corresponding makespan 

Sequence Makespan 

{0 – 3 – 6} 50 
{0 – 6 – 3} 50 

Set of unscheduled jobs, u = {1, 2, 4, 5}; partial sequence, σ = {0 – 6 – 3};  
makespan = 50. 

3rd iteration 

The next job with the highest processing time from the set of unscheduled jobs is 
removed and added to the partial sequence σ. The different possibilities of inserting the 
job in the partial sequence are evaluated in the Table A9. The best sequence is selected as 
the partial sequence. 
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Table A9 possible sequences and corresponding makespan 

Sequence Makespan 

{0 – 2 – 6 – 3} 56 

{0 – 6 – 2 – 3} 63 

{0 – 6 – 3 – 2} 61 

4th iteration 

Set of unscheduled jobs, u = {1, 4, 5}; partial sequence σ = {0 – 2 – 6 – 3};  
makespan = 56. The new partial sequence σ is {0 – 2 – 6 – 3} with makespan value as 56. 
The next job with the highest processing time from the set of unscheduled jobs is 
removed and added to the partial sequence, σ. The different possibilities of inserting the 
job in the partial sequence are evaluated in Table A10. The best sequence is selected as 
the partial sequence. 
Table A10 possible sequences and corresponding makespan 

Sequence Makespan 

{0 – 1 – 2 – 6 – 3} 72 

{0 – 2 – 1 – 6 – 3} 73 

{0 – 2 – 6 – 1 – 3} 75 

{0 – 2 – 6 – 3 – 1} 66 

Set of unscheduled jobs, u = {4, 5}; partial sequence, σ = {0 – 2 – 6 – 3 – 1};  
makespan = 66. 

5th iteration 

The sequence with the lowest makespan, {0 – 2 – 6 – 3 – 1} is taken as the new partial 
sequence, σ, with makespan value as 66. The next job with the highest processing time 
from the set of unscheduled job is removed added to the partial sequence, σ. The different 
possibilities of inserting the job in the partial sequence are evaluated in Table A11. The 
best sequence is selected as the partial sequence. 
Table A11 possible sequences and corresponding makespan 

Sequence Makespan 

{0 – 5 – 2 – 6 – 3 – 1} 70 

{0 – 2 – 5 – 6 – 3 – 1} 75 

{0 – 2 – 6 – 5 – 3 – 1} 80 

{0 – 2 – 6 – 3 – 5 – 1} 79 

{0 – 2 – 6 – 3 – 1 – 5} 76 

Set of unscheduled jobs, u = {5}; partial sequence, σ = {0 – 2 – 6 – 3 – 1 – 5};  
makespan = 70. 
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6th iteration 

The sequence with the lowest makespan, {0 – 2 – 6 – 3 – 1 – 5} is taken as the new 
partial sequence, σ, with makespan value as 70. Now, the remaining job is added to the 
partial sequence, σ. The different possibilities of inserting the job in the partial sequence 
are evaluated in the Table A12. The best sequence is selected as the partial sequence. 
Table A12 Possible sequences and corresponding makespan 

Sequence Makespan 

{0 – 4 – 5 – 2 – 6 – 3 – 1} 78 
{0 – 5 – 4 – 2 – 6 – 3 – 1} 82 
{0 – 5 – 2 – 4 – 6 – 3 – 1} 79 
{0 – 5 – 2 – 6 – 4 – 3 – 1} 77 
{0 – 5 – 2 – 6 – 3 – 4 – 1} 86 
{0 – 5 – 2 – 6 – 3 – 1 – 4} 85 

Set of unscheduled jobs, u = { }; partial sequence, σ = {0 – 5 – 2 – 6 – 4 – 3 – 1}; 
makespan = 77. 

There are no more jobs to be inserted into the partial sequence. Hence,  
{0 – 5 – 2 – 6 – 4 – 3 – 1} forms the final sequence with makespan value as 77. 

Appendix 2 

Illustration of FJSRA heuristic 

For the illustration of FJSRA heuristic, the example problem provided in Appendix 1 is 
used. The algorithm starts with summing the setup time matrices of each machine. In the 
present example, there are four machines and four setup time matrices as shown in  
Tables A2, A3, A4 and A5. The setup time matrices are added to get summed setup time 
matrix as shown in Table A1. 
Table A1 Summed setup time matrix 

 J0 J1 J2 J3 J4 J5 J6 

J0 0 31 29 25 17 17 21 
J1 0 - 22 22 21 14 30 
J2 0 19 - 13 19 18 15 
J3 0 22 11 - 19 21 19 
Ji 0 33 19 10 - 8 16 
Ji 0 15 12 25 20 - 20 
J6 0 31 18 11 19 23 - 

The summed setup time matrix shows the total setup time between each combination of 
jobs. FJSRA heuristic uses this information to construct the sequence. The elements of 
the summed setup time matrix are ranked according to the total setup time to get sorted 
summed setup time matrix. 
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Table A2 Sorted summed setup time matrix 

Sl. no. Job 1 Job 2 Total setup 
time Sl. no. Job 1 Job 2 Total 

setup time 
1 4 5 8 19 6 4 19 
2 4 3 10 20 3 6 19 
3 3 2 11 21 5 4 20 
4 6 3 11 22 5 6 20 
5 5 2 12 23 1 4 21 
6 2 3 13 24 3 5 21 
7 1 5 14 25 0 6 21 
8 5 1 15 26 3 1 22 
9 2 6 15 27 1 2 22 
10 4 6 16 28 1 3 22 
11 0 4 17 29 6 5 23 
12 0 5 17 30 0 3 25 
13 6 2 18 31 5 3 25 
14 2 5 18 32 0 2 29 
15 2 1 19 33 1 6 30 
16 4 2 19 34 0 1 31 
17 2 4 19 35 6 1 31 
18 3 4 19 36 4 1 33 

From Table A2, it can be found that the smallest total setup time is between jobs 4 and 5. 
The key concept involved in FJSRA algorithm is fictitious job concept. A pair of jobs 
with minimum setup time between them is treated as a fictitious job and the processing 
time of the fictitious job is the sum of the processing time of the pair of jobs involved in 
the fictitious job. The first fictitious job identified is [4 – 5] which has the lowest setup 
time between them. Similarly, other fictitious jobs are identified and their respective 
processing times are obtained as shown in Table A3. 
Table A3 Fictitious jobs and processing times 

Fictitious jobs Processing time 

[4 – 5] 30 
[3 – 2] 51 
[1 – 6] 47 

The partial sequence is initialised as σ = {0}. Then, the fictitious job with maximum 
processing time [3 – 2] is inserted into the partial sequence, σ. Now, the partial sequence 
is {0 – 3 – 2} with makespan value as 26. The next fictitious job to be inserted is [1 – 6]. 
It can be inserted in two ways as follows: 

• 1st insertion: {0 – 3 – 2 – 1 – 6}; makespan = 69 

• 2nd insertion:{0 – 1 – 6 – 3 – 2}; makespan = 74. 
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Now, the best sequence is {0 – 3 – 2 – 1 – 6} with makespan value as 69 is fixed as new 
partial sequence σ. Next, fictitious job, [4 – 5] is inserted into the sequence. The three 
different possible insertions are given below. 

• 1st insertion: {0 – 4 – 5 – 3 – 2 – 1 – 6}; makespan = 90 

• 2nd insertion; {0 – 3 – 2 – 4 – 5 – 1 – 6}; makespan = 89 

• 3rd insertion; {0 – 3 –2 – 1 – 6 – 4 – 5}; makespan = 85. 

So, the best sequence is {0 –3 –2 –1 –6 – 4 – 5} with makespan value as 85. Since there 
are no more jobs remaining to be inserted, this forms the final sequence. 


