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Abstract  

In this paper we study the possibility of generalizing a monocriteria model to a multicriteria partition 

problem and show the reason why exact algorithms are not efficient in solving the problem. The 

mathematical model studied is a modified version of a mono-objective model from Mehrotra [1] and 

applied to the biobjetive case using the ε-constraint method. Research conducted concludes that the 

studied multicriteria model is not suitable to solve the problem due not only to the high computational 

requirements needed to run the model, as well as the difficulty of ensuring the fundamental constraints 

of integrality, contiguity and ―absence of holes'''. Kruskal's algorithm applied to multicriteria partitioning 

problem [2] shows satisfactory results, managing to secure the general constraints of contiguity and 

integrality without requiring a high computational effort, with very low execution times compared with 

the exact method. 
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1 Introduction 

Multicriteria Partitioning Problems have 

been gaining great importance and are starting 

to be used to be used in various areas in order 

to improve the decision making process in 

these same areas. This problem results from 

the need to make a partition of a given set 

(which can be a territory, a group of people, 

etc.), according to several objectives that, in 

general, are in conflict. Problems of this type 

are usually modeled by partitioning a graph 

into connected sub graphs. Thus, the graph 

that represents the study set, say the area, is 

comprised of nodes which represent the 

elementary territorial units, and edges that 

represent the boundaries between these 

elementary units. The resulting sub graphs 

representing a partition of the partition and are 

often referred to as clusters. 

The research done in this area have some 

limitations. The most common is related to the 

computation time. In smaller problems is 

possible to use exact methods and still reach 

an optimal solution in a relatively low 

processing time.  However, the problems of 

larger dimensions, which represent most of the 

problems found in the literature, take a long 

time to process the solutions, becoming 

impeditive to use these methods in large scale 

problems. In these cases it is necessary to use 

heuristics and meta-heuristic, which do not 
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guarantee that the obtained solutions are 

optimal. Another limitation is related to the 

restrictions necessary for proper formation of 

clusters, particularly constraints of contiguity, 

integrality and restrictions relating to the 

prevention of obtaining solutions with 

embedded areas, also known as "absence of 

holes". The implementation of these 

restrictions in the problem can hinder the 

resolution of such problems at the 

computational level. In addition to these two 

limitations, which are related to restrictions, 

most works found in the literature use only one 

objective function, however, in most real 

problem decision situations are inherently 

multidimensional and multi-objective. 

One of the most popular applications of 

multicriteria partitioning problems is political 

districting, this is a common in the United 

States, and where it is used to avoid 

manipulation of district boundaries in order to 

give advantage to a particular party during 

elections [3-7]. Besides political districting 

which is the most common problem in the 

literature, there are also many studies on 

various topics such as zoning or school 

districts [8], [9], marine reserves [10], power 

distribution networks [11] and assignment of 

commercial zones to vendors [12], [13]. All 

these problems have in common a need to 

change the boundaries of the territory in study 

in order to optimize certain objectives. 

Currently in the Portuguese context there 

is an interesting application of the multicriteria 

partition problem, it is the case of fusion/ 

extinction of the parishes of each county. This 

intervention seeks to improve the efficiency of 

resource allocation, increasing the coverage 

area of each municipality. 

2 Research Questions 

The literature review leads us to make the 

approach to our problem in light of three key 

issues: 

- Does the monocriteria model can easily 

be generalized to the case multicriteria without 

jeopardizing the very definition of clusters? 

- If the first issue is resolved or if there is a 

way to get around it, are there exact efficient 

algorithms to solve this problem? 

- Does the multicriteria model useful in 

practice and in decision situations in a real 

context where we can apply it? 

In order to answer these questions we are 

going to: identify, analyze and evaluate 

different multicriteria optimization methods with 

respect to computational effort required and 

the quality of the results obtained, to identify 

the most common objectives in literature and 

how to implement them in the model. 

3 Problem objectives and restrictions 

The partitioning problem is usually addressed 

using graph theory, with the nodes of the graph 

corresponding to the territorial units, and the 

edges representing the boundary between 

units. Most problems in the literature have 

common objectives and restrictions that must 

be met in order to obtain feasible solutions, 

those will be explained in the following sections 

of the paper. 

3.1 Common Restrictions 

The partitioning problem uses some general 

restrictions that seek to ensure the correct 

formation of clusters, the most common 

restrictions are contiguity, integrity and 

"absence of holes". The contiguity requirement 

obliges a cluster to be contiguous, i.e. it has to 

be possible to travel between two points in a 

cluster without having to pass another cluster 
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[14], [15]. The ―absence of holes‖ prevents the 

formation of solutions with embedded areas 

[16]. And the integrality prevents the use of one 

node in more than one cluster, each node has 

one and only one cluster.  

Another common constraints are the 

capacity constraints. These constraints can be 

used limit both the number of clusters existing 

in the plan as the number of possible territorial 

units within each cluster [17]. 

3.2 Common Objectives 

Districting problems are intended to group a 

set of territorial units in clusters, this grouping 

is done based on several goals that are 

chosen by the decision makers. The objectives 

frequently used in the literature are as follows: 

- Compactness, the clusters formed must 

have a compact geometric shape close to a 

circle or square, is very common in political 

districting problems in order to avoid the 

creation districts with partisan advantage [6], 

[7]; 

- Homogeneity, clusters should have 

similar features, the distribution of the 

population with respect to gender, age, 

ethnicity, should be common among clusters, 

there must be a socio-economic homogeneity 

[12]; 

- Similarity, clusters formed should not 

present major deviations from the initial 

settings before the plan was implemented. This 

is particularly important in situations where the 

reconfiguration of the clusters have a major 

impact on their administration, or in the lives of 

its inhabitants [8], [13]. 

4 Capacitated Clustering Problem 

One version of this problem is the Capacitated 

Clustering Problem (CCP), a case where the 

problem is formulated with various restrictions. 

Although those may hinder the resolution at 

the computational level, they ensure a high 

level of flexibility in shaping the problem 

allowing it to be as close to reality as possible. 

4.1 Mathematical Model 

Given a graph 𝐺 = 𝐺(𝑉, 𝐸) with 𝑛 nodes and 

weighting coefficients 𝑤𝑖𝑗  and 𝑐𝑖𝑗 for the edges 

(𝑖, 𝑗) ∈ 𝐸. A cluster is a group of connected 

nodes and respective edges. And the weight of 

the cluster is given by the sum of the weights 

of the edges that belong to the cluster. The 

problem aims to partition the nodes of the 

graph into clusters so as to maximize the total 

weight of the clusters. Be 𝑦𝑖𝑗𝑘 a binary variable 

with value one if the edge (𝑖, 𝑗) belongs to 

cluster 𝑘, and zero otherwise, the problem can 

be formulated as follows [1]: 

𝑍1 =  𝑀𝑎𝑥 ∑ 𝑤𝑖𝑗 × 𝑦𝑖𝑗𝑘

𝑖𝑗𝑘

 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝑍2 = ∑ 𝑐𝑖𝑗 × 𝑦𝑖𝑗𝑘

𝑖𝑗𝑘

 

∑ 𝑥𝑖𝑘
𝑘

= 1,   𝑖 ∈ 𝑉, 

𝑦𝑖𝑗𝑘 ≤ 𝑥𝑖𝑘 , 

𝑦𝑖𝑗𝑘 ≤ 𝑥𝑗𝑘 , 

𝑦𝑖𝑗𝑘 ≥ 𝑥𝑖𝑘 + 𝑥𝑗𝑘 − 1, 

𝑥𝑖𝑘  ∈ *0,1+, 

𝑦𝑖𝑗𝑘 ∈ *0,1+. 

 

The restriction ∑ 𝑥𝑖𝑘𝑘 = 1 requires each 

node to belong to only one cluster, in order to 

fulfill the integrality constraints. The following 

three constraints require the nodes belonging 

to the same edge to be part of the same 



4 
 

cluster. The last two constraints indicate that 

the variables are binary. 

In this case, the objective function, 𝑍1, is 

maximized, while the function 𝑍2 is used as a 

restriction iteratively, each time the model is 

run ε is incremented to the maximum limit of 

the function, 𝑍2, in this way we obtain several 

of possible combinations of 𝑍1 and 𝑍2. This 

multiobjective optimization method is known ε-

constraint [18]. 

4.2 Results 

Using a graph with 13 nodes with random 

values for the weights 𝑤𝑖𝑗  and 𝑐𝑖𝑗 as an 

example, and requiring the number of clusters 

to be exactly six, with more than two and less 

than three nodes per cluster, the time the 

program took to run the model was 35 minutes, 

a value quite high considering the small size of 

the problem and the fact that we are only using 

two goals. The values obtained for the two 

functions 𝑍1 and 𝑍2 are shown in Figure 1. 

 

Figure 1 – Solutions for the integer programming 
method  

These solutions are using the ε – 

constraint method. As seen in the graph, most 

of the solutions are dominated, the only values 

worth considering by the decision maker are 

(28, 58), (36, 56) and (38, 48). 

So far the mathematical model allows to 

solve small districting problems, both mono 

and multicriteria. However, it is not possible to 

ensure compliance with contiguity and 

―absence of holes‖ restrictions without making 

a few changes to the model. The model is also 

not suitable for larger problems. 

5 Kruskal’s Algorithm  

The algorithm consists of selecting the edges 

in descending order of weight until there have 

been selected 𝑛 − 1 edges, 𝑛 being the total 

number of nodes of the graph. The selection of 

edges is performed so as not to allow the 

formation of cycles. Thus, if the selection of the 

highest weighted edge results in the formation 

of a cycle, it should be selected the following 

edge. This algorithm is used to obtain the 

maximum spanning tree [2].  

5.1 Kruskal’s partitioning 

Although Kruskal’s main use is to create a 

spanning tree, it can also be used in the 

partitioning problem. This is done by cutting 

the (𝑘 − 1) lowest weighted edges of the 

spanning tree obtained from the algorithm, or 

stopping the algorithm after the selection of 

(𝑛 −  𝑘 ) edges, being 𝑘 the number of 

intended clusters. This way we will get 𝑘 

smaller spanning trees each one 

corresponding to a cluster. 

Using this heuristic for partitioning problems 

allows us to avoid the problems present in the 

study of the exact method, in particular the 

contiguity restriction, and the problems 

associated with the high computational effort 

required to run the model, which prevented us 

from working on larger problems. However, this 

heuristic is only for the monocriteria case and 

must be adapted to the multicriteria case. 

38; 48 
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36; 53 
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5.2 Multicriteria Kruskal’s partitioning 

Initially the graph and the respective weights of 

the edges, (𝑤1 , 𝑤2), are defined. Then is 

made the deliberation of the weights based on 

the value λ, which varies between 0 and 1, 

using the following function: 

𝑊(𝑥) = (1 − 𝜆)w1(𝑥) + 𝜆 w2(𝑥) 

After the new weights assigned to the 

edges, Kruskal’s Algorithm is used to obtain 

the solution as explained in the previous 

section. The function above allows us to obtain 

different solutions based on the weighting 

coefficient λ, some solutions will value more 

𝑤1 , while other will value more 𝑤2, but in the 

end we will obtain a set of solutions based on 

those two weights for the decision maker to 

choose from. 

5.3 Capacity constraints 

The algorithm as it is does not ensure the 

compliance with capacity restrictions, the cuts 

made on the spanning tree are made by the 

value of the weights, and can result in clusters 

with several different sizes, being impossible to 

control how many nodes we allow in each 

cluster. For that purpose it was made a 

different algorithm to change the boundaries of 

the clusters, or in other words, to change 

nodes between neighbor clusters. This is done 

in four steps briefly explained bellow. 

Step one: Connect isolated nodes to 

extreme nodes belonging to clusters above the 

minimum limit, cutting the existing connection 

to the other cluster. If possible the lowest 

weighted connected edge is cut and the 

highest weighted edge is connected. This is 

only done for the cases where the minimum 

limit is above one. 

Step two: Some nodes of the clusters 

above the maximum limit are connected to 

those bellow the maximum limit, always cutting 

the existing connections before making the 

new one. This is done to eliminate the clusters 

above the maximum limit. 

Step three: This is exactly the opposite of 

the step two. The clusters below the minimum 

limit are connected to nodes of clusters above 

the minimum limit, also cutting an old 

connection before creating a new one. This is 

done to eliminate the clusters below the 

minimum limit. 

Step four:  This is used only if the steps 

above are not enough to get a feasible 

solution. It usually happens if there are no 

possible connections between neighbor 

clusters. For example, if we have three clusters 

and we want to pass a node from cluster one 

(above the maximum) to cluster three (below 

the minimum), but these two clusters are not 

neighbors, this is, they do not have at least a 

non-connected edge between them, we have 

to give one node to cluster two from cluster 

one, even if cluster two passes the maximum, 

and then give one node from cluster two to 

cluster three. It is as if we are pushing a 

connection from one cluster to another till it 

reaches the intended cluster. 

This algorithm is to be used right after the 

Kruskal’s, the obtained configurations are then 

converted to the original weights in order to 

calculate the solutions, in terms of z1 and z2, for 

each value of λ. 

5.4 Critical analysis of the algorithm 

The use of this algorithm allows the resolution 

of the partitioning problem ensuring the 

constraints of contiguity, integrality and 

capacity, and the resolution of large problems. 

However, unlike the multicriteria integer 

programming model, the algorithm does not 

guarantee the achievement of optimal 
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solutions. The initial solution obtained from the 

cuts to the Kruskal’s spanning tree would be 

an optimum result if the capacity constrains 

were not implemented, but in most cases they 

are implemented and the reorganization of the 

clusters is necessary, even though this process 

is made in a way that minimizes the losses 

with each change, the solution is usually 

inferior to the optimum. 

Other limitation of the algorithm is related 

to the restriction ―absence of holes‖, the data 

structures used in the design of the algorithm 

does not allow the identification of solutions 

with embedded areas.  Therefore it is not 

possible to prevent these occurrences, as 

happened with the integer programming 

model. 

6 Applications 

The algorithm was used in two graphs based 

on real cases, the district of Lisbon and 

municipality of Elvas. 

6.1  District of Lisbon 

In this case we have 16 nodes, each one 

representing a municipality, and the objective 

is to create six clusters between one and four 

nodes each. The weights are shown in Figure 

2. 

The solutions obtained from the algorithm 

are in the graphic from Figure 3.  

 

Figure 2 – Graph of the district of   Lisbon



 

Figure 3 – Solutions for the district of Lisbon

In this example we obtained three non-

dominated solutions, represented in the graph 

as blue paralelograms, and the remaining 

solutions, represented by squares, are all 

dominated. 

6.2 Municipality of Elvas 

In this case we have 11 nodes, each one 

representing a parish, and the objective is to 

create four clusters between two and three 

nodes each. The weights are shown in Figure 

4. 

The solutions obtained from the algorithm 

are in the graphic from Figure 5. 
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Figure 4 – Graph of the municipality of Elvas

 

 

Figure 5 – Solutions for the municipality of Elvas

 In this example we obtained two non-

dominated solutions (blue circles), and one 

dominated (orange square).  

7 Final Conclusions 

In the case of exact methods we conclude 

that although the solutions are optimal, the 

model does not guarantee the general 

constraints of contiguity and ―absence of holes, 

and requires a large computational effort for 

larger problems, whether in terms of the 

number of objectives, or the number of 

elementary units considered. 

The Kruskal algorithm applied to the 

partition problem ensures the general 

constraints of contiguity and integrality, it is not 

yet possible to ensure the restriction of 

"absence of holes", and is easily applied to 

multicriteria case using a procedure similar to 

the ε - constraint method.  To ensure capacity 
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constraints is necessary to use a 

complementary algorithm to reorganize the 

clusters according to these same restrictions. 

This new algorithm was implemented in JAVA 

using as starting point the spanning tree 

obtained from a version of Kruskal’s algorithm 

found in the literature [2]. 

Although the quality of the solutions is 

inferior in the algorithm, the lower processing 

times, and the compliance with the contiguity 

restriction makes it the most suitable method of 

the two to solve multicriteria partitioning 

problems. 
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