
 1

A hybrid heuristic algorithm for the no-wait flowshop

problem with sequence-dependent setup times

Zhanbin Wu

School of Computer Science and Engineering, Southeast University, Nanjing, P.R. China

Xia Zhu

School of Computer Science and Engineering, Southeast University, Nanjing, P.R. China

Jatinder N. D. Gupta

College of Business Administration, University of Alabama in Huntsville, Huntsville, Al

35899, USA

Xiaoping Li

School of Computer Science and Engineering, Southeast University, Nanjing, P.R. China

(xpli@seu.edu.cn)

Abstract
We consider the NP-hard no-wait flowshop scheduling problem with sequence-dependent

setup times to minimize makespan. We propose a hybrid heuristic which combines the

iterated greedy process with local search method based on a block swap operator.

Experimental results show that the proposed heuristic is comparatively more effective

than the existing metaheuristics.

Keywords: No-wait flowshop, Setup time, Makespan

Introduction

The no-wait flowshop scheduling problems (NWFSP) have been investigated for many

years. In a NWFSP, all jobs visit each machine in the same order. Each machine can only

process one job at a time. The operations of the same job are processed contiguously

from start to end without interruptions either on or between machines. Such situations are

widespread in many practical applications. In steel manufacturing, for example, different

operations (such as molding into ingots, unmolding, reheating, and rolling) must be done

in no-wait fashion. Similar situations can also be found in chemical and pharmaceutical

industries. Hall and Sriskandarajah (1996) and MacCarthy and Liu (1993) conducted

surveys on NWFSP.

 In recent years, a great deal of attention is being paid on no-wait flowshop

scheduling problems involving setup times. It is reasonable to separate setup times from

 2

processing times because they are always not ignorable in real industrial environments.

Generally, there are two types of setup times: sequence independent setup times (SIST),

and sequence dependent setup times (SDST). Further, these setup times could be

completed in anticipation of the arrival of a job on a machine or be attached to the job. In

the former case, idle time of a machine can be used to perform part or all of the needed

setup to processing the next job. In this paper, we deal with situations involving

anticipatory setup times.

 Recently, SDST-FSP with makespan minimization has attracted great attention.

Ruiz et al. (2005) proposed two genetic algorithms, named GA, and HGA, that

outperformed several existing algorithms including the HYBRID algorithm developed by

Ríos-Mercado and Bard (1999). Gupta et al. (2005) developed a penalty-based (PB)

heuristic algorithm for the same problem and compared their heuristic with a saving

index (SI) algorithm. Overall the proposed algorithm outperformed SI algorithm. Later,

Ruiz and Stützle (2008) proposed two iterated greedy (IG) algorithms. The first IG

algorithm was a straightforward adaption of the IG principle, while the second

incorporated a simple descent local search. Experimental results showed that their

algorithms performed better than the genetic algorithms developed by Ruiz et al. (2005).

An ant colony optimization (ACO) algorithm was proposed by Mirabi (2011) to solve the

same problem. He also presented a new approach for computing the initial pheromone

values. The proposed algorithm was tested on randomly generated problem instances and

results indicated it was very competitive when compared with GA and HGA (Ruiz et al.

2005).

 However, the existing research to solve the flowshop problem with sequence

dependent setup times and no-wait (SDST-NWFSP) constraints is quite scarce. Gupta

(1986) showed that the SDST-NWFSP problem is NP-hard in the strong sense.

Therefore, no polynomial time algorithm exists to find an optimal solution. Realizing this,

Gupta (1986) showed that the SDST-NWFSP problem is equivalent to a asymmetric TSP

and can be solved using any solution techniques to solve the TSP problem. Later on,

Bianco et al. (1999) addressed SDST-NWFSP with release dates to minimize makespan

and showed that it was equivalent to the asymmetric TSP with additional visiting time

constraints. They proposed a mathematical formulation, two lower bounds, and a

heurisitic, called BIH. Allahverdi and Aldowaisan (2001) designed heuristic SL1~SL5

based on iterated insertion operation for the 2-machine flowshop with setup and

removable times to minimize total flowtime and presented five heuristics. Basing on a

structural property, Araújo and Nagano (2010) proposed GAPH1~GAPH4 for solving the

SDST-NWFSP. Experimental results showed the proposed algorithm outperformed BIH

(Bianco et al. 1999) and TRIPS (Brown et al. 2004).

 In this paper, the m-machines SDST-NWFSP to minimize makespan is considered.

A hybrid heuristic (IGBS) which combines the iterated greedy process with local search

method based on block swap operator (BS) is proposed to solve the considered problem.

In the proposed algorithm, the well-known NEH algorithm is used to generate an initial

solution. Then, an IG method is deployed to avoid becoming trapped in a local optimum,

followed by a BS method to find a good solution in a short time.

 The rest of the paper is organized as follows: After introducing and defining the

SDST-NWFS problem, we discuss the details of the proposed algorithm. The

effectiveness and efficiency of the proposed algorithm are then empirically compared

 3

with existing algorithms and the comparison results are reported. Finally, the paper

concludes with some fruitful directions for future research.

Problem Description

The SDST-NWFSP can be described as follows: A set of n jobs is to be processed on a

set of m machines. Let)...,,(10 nJJJ=π denote the scheduling sequence or permutation of

jobs to be processed, where
0J is a virtual job whose setup times and processing times are

zero, and tji is the processing time of job
iJ on machine j,

ijk
S is the sequence dependent

setup time between two adjacent jobs (
iJ ,

j
J) on machine k,

ij
D is the distance between

the finish times of the two adjacent jobs (
iJ ,

j
J) on machine m. According to Li (2005),

the make span ofπ and
ij

D can be calculated by the following equations.

 n-1

Cmax (π) =∑ π
]1[],[+iiD (1)

 i = 0

 m

Dij = Max {∑ (tp,j - tp,i)+ tk,i + Sijk} (2)

 k = 1,2,...,m p = k

 Then, the SDST-NWFSP is one of finding a permutation schedule π such that the

makespan Cmax (π) is minimum.

The proposed algorithm

Our proposed IGBS algorithm is a hybrid heuristic approach which considers the

intensification and diversification of algorithms for solving flowshop problems. Firstly, it

uses the well known NEH method to generate an initial solution, as a good initial solution

may speed up the search effectiveness. If the termination criterion is not satisfied, an

iterated greedy (IG) method is then used to improve the solution and explore a large

solution space. Then, BS is used as a local search method to find better solutions. It has to

be noted that BS may take a lot of time. That is to say, if the stopping criterion is elapsed

CPU time, there is little time to explore a large solution space. The frequency of IG and

BS should, therefore, be controlled in one loop. The pseudo-code of the proposed IGBS

algorithm can be depicted as follows:

 IGBS Algorithm:

1. Generate the initial sequence
bestπ .

1π =

bestπ

2. While not (stopping criterion) do

tπ = IG (

1π).

 If (rand < β), BS (
tπ).

 If (f (
tπ) < f (

1π)),
1π =

tπ

 If (f (
tπ) < f (

bestπ))
bestπ =

tπ

3. Return
bestπ .

 Here, the stopping criterion is the maximum CPU time or maximum iterate number

 4

N depending on the compared algorithms, and rand is a random number uniformly

distributed in the range [0, 1]. β is a threshold value which is determined later.

Initial solution generation

Nawaz et al. (1983) proposed the famous NEH heuristic for solving the traditional FSP

with the makespan criterion. Here, it is used to generate an initial solution. Firstly, the

jobs are sorted in a decreasing order of their total processing times on all machines. Then,

the first two jobs are taken to generate a partial sequence with minimum makespan. Then

the rest of the jobs are inserted into the partial sequence step by step with the smallest

makespan increment. The pseudo-code of NEH is showed as follows:

NEH procedure:

1: Arrange the jobs by decreasing sums of their total processing times. Let π denote the

resulting sequence.

2: Take the first two jobs from π, and generate a partial sequence
1π with minimum

makespan. Set k = 2.

3: Update k=k+1, select the kth job from π and insert it in k possible positions of
1π .

Select the one with the minimum partial makespan and declare it as the current
1

π .

4: If k = n, return
1

π , stop; else return to Step 3.

An iterated greedy method (IG)

The basic IG algorithm starts from some initial solution and then iterates through a main

loop in which a partial candidate solution sd is obtained by removing a number of

solution components from a complete candidate solution s. Then, a complete solution s1 is

re-constructed starting with sd by inserting the removed jobs. The number of removed

solution components is kept constant.

 The proposed IG method contains three main procedures. Firstly, it chooses k jobs

among all the jobs randomly, and removes them from the job sequence, where  α×= nk ,

and α is a fraction ranging from [0, 1]. These removed jobs form a new sequence,

called
Rπ . Thus, the schedule sequence is decomposed into two subsequences: one is the

sequence without the removed jobs, namely
Dπ ; the other is

Rπ . Secondly, a new sequence

1π is generated from
Dπ using the NEH method without the initial sorting procedure.

Finally, the reinsertion phase performs k steps in which the jobs in
R

π are reinserted into
1π .

The pseudo-code of IG is showed as follows:

IG procedure:

1. For i =1 to  α×n

Remove a job randomly from π, and insert it into
R

π .

2. Use NEH method to generate a new partial sequence
1

π from
D

π .

3. Generate a random number r uniformly distributed in the range [0, 1].

4. For i =1 to  α×n

 len = the length of
1π .

 Insert the job)(R iπ into all possible positions j of
1π . And select the position with

 minimum makespan as the final insertion position. If (r <0.5), 1 ≤ j ≤ len. Else,

 len/2 ≤ j ≤ len.

 5

5. Return
2π .

A Local search method

To further improve the performance of the IG method, a local search method based on

block swap (BS) is proposed. In fact, it is a common hybrid constructive method with

local search. The basic idea is as follows. Suppose the current scheduling sequence is π.

Firstly, generating an integer set I: }Z i,21|{ ∈−≤≤= niiI . Next, an integer і from set I is

picked and to generate an integer set J: }Z j,11|{ ∈−≤≤+= njijJ . Also, we randomly select

an integer j from set J and generate set K: }Zk ,1|{ ∈≤≤+= nkjkK . An integer k is

randomly picked from K, and switch the jobs],...,,[
][]2[]1[jii

πππ ++ and],...,,[
][]2[]1[kjj

πππ ++ to

generate a new sequence]),,...,,,([
][],...,1[][],...,1[][]1[][]0[1 nkjikji

πππππππππ +++= . If)(1πf ≤)(πf , the

sequence
1π will be returned. Otherwise, the next loop will not end until the stopping

criterion is satisfied. The detailed steps of the BS procedure are as follows.

BS procedure:

1. Suppose the input sequence is π. }Z i,21|{ ∈−≤≤= niiI .

2. Select i randomly from I, }{iII −← , }Z j,11|{ ∈−≤≤+= njijJ .

3. Select j randomly from J, }{ jJJ −← , }Zk ,1|{ ∈≤≤+= nkjkK .

4. Select k randomly from K, }{kKK −← , and generate new sequence
1

π .

5. If)(1πf ≤)(πf , return
1
π . Stop.

6. If (termination criterion), go to 4.

7. If (J≠∅), go to 3.

8. If (I≠∅), go to 2.

9. Return
1
π .

 The termination criterion depends on the compared algorithms. When comparing

with heuristics BIH (Bianco et al.1999) and GAPH1~GAPH3 (Araújo and Nagano 2010),

the termination criterion is K≠∅. The used CPU time will be recorded. Otherwise, IGBS

chooses the remained CPU time && K≠∅ as termination criterion when compared with

metaheuristics HGA (Ruiz et al. 2005), IG_LS (Ruiz and Stützle 2008), and ACO

(Mirabi 2011) with the same CPU time.

Experimental results

The performance of IGBS is compared with HGA (Ruiz et al. 2005), IG_LS (Ruiz and

Stützle 2008), ACO (Mirabi 2011), BIH (Bianco et al.1999), and GAPH1~GAPH3

(Araújo and Nagano 2010). Since, HGA, IG_LS, and ACO algorithms are proposed for

SDST-FSP originally, they are adjusted to SDST-NWFSP by considering the no-wait

constraint. Besides, HGA, IG_LS, and ACO are metaheuristics, while BIH, and

GAPH1~GAPH3 are heuristics. The comparisons among them are divided into two parts.

Part I contains ACO, IG_LS, and HGA, and 2) Part II contains BIH, and

GAPH1~GAPH3. For part I experiments, the termination criterion of all algorithms is

based on the elapsed CPU time. The maximum CPU time is set to nxmx15 milliseconds.

In order to provide a fair comparison with existing algorithms in Part II, IGBS

termination criterion is adjusted to ensure that the IGBS does not perform a large number

of iterations. Therefore, for experiments in Part II, the IGBS algorithm terminates when

 6

the maximum number of iterations, N=10.

 These algorithms have been coded in Java and executed on a Pentium(R) 4,

3.00GHZ and 816MB of RAM. Test data from Ruiz et al. (2005) was used (which can be

downloaded from http://www.upv.es/gio/rruiz). In this data set, there are four instances

sets: SSD10, SSD50, SSD100, SSD125, and each contain 120 instances, which are

organized in 12 groups with 10 instances each. The groups contain several combinations

of the jobs and machines, that is, {20, 50, 100} × {5, 10, 20}, 200 × {10, 20}, and 500 ×

20. The processing times are distributed in the range [1, 100], while the ratio of the setup

time to processing time are at most 10%, 50%, 100%, 125% for four instances sets

respectively.

 The average relative percentage deviation (ARPD) is adopted as the performance

criterion which is defined as folllows:
 R

ARPD =∑(100
*

*)(
×

−

f

fF π)/R (3)

 i = 1

where)(πF denotes the makespan of the instance obtained by a given algorithm, and *f is

the best solution that have been calculated for this instance by all algorithms.

 Parameters α, β are tested for determination. Parameter α influences the efficiency

of construction phase. A small α may lead insufficient information provided. On the other

side, a large one will destroy some useful sequence relation among jobs. Parameter β

determines the relation between IG method and VNS method. A low value may not use

the VNS efficiently, while a large value may waste lot time in the VNS. Through

experiments, we set α =0.15, and β = 0.50.

 These algorithms are run 10 times on each instance, and the results are finally

averaged. Table 1 shows the comparison results among algorithms in Part I for the

SSD10 and SSD50, SSD100 and SSD125 set. The results are grouped by instance type

and size at each cell. Table 2 shows the comparison results among algorithms in Part II

for SSD10 SSD50, SSD100 and sets, while Table 3 gives out the results among

algorithms for SSD125 sets. Time is short for CPU time.

 The experimental results in Table 1 show that the proposed IGBS algorithm

outperforms all other algorithms in Part I by a wide margin, and the ARPD of IGBS is

zero. The second best algorithm is IG_LS. An interesting thing is that, IGBS is good at

solving large problems. For example, IG_LS and IGBS can get a good solution for

instances with combinations of 20 jobs. But, for instances with more than 20 jobs, IGBS

can get better solutions. For the SSD10 instance sets, the ARPD of IGBS is 0, the second

best algorithm is IG_LS with a 2.098% ARPD. Among all the compared algorithms,

ACO is the one that yields the worst results with a 4.632% ARPD. For combination of 20

jobs from SSD10 instance sets, the ARPD of IG_LS is 0.147%, 0.071, and 0.068%

respectively for combinations of 20 × 5, 20 × 10, and 20 × 20. For instances with more

than 100 jobs from the SSD10 instance sets, IG_LS can only get an ARPD of 4.099%,

3.566%, and 4.063% respectively for combinations of 200 × 10, 200 × 20, and 500 × 20.

 In Table 2 and Table 3, we can see that IGBS has the least ARPD, almost zero. The

average ARPD value of IGBS for instance sets SSD10, SSD50, SSD100, and SSD125 is

0.021%, 0.033%, 0.113%, and 0.157% respectively, while the best average among other

compared algorithms for these four instances sets is 3.643%, 3.080%, 3.306%, and

3.448% of GAPH1. For the SSD10 instances, the ARPD of IGBS ranges from 0 to 0.08%,

 7

and the average of all instances is 0.021%. The second best algorithm is GAPH1, and the

average is 3.643%, ranging from 2.016% to 5.816%. Regarding the CPU times, IGBS

takes much more time than BIH, but smaller than GAPH2. This happens in instances

SSD50, SSD100, and SSD125.

Table 1. Comparison of results for the SDST-NWFSP on instances set SSD10, SSD50,

SSD50 and SSD125 with the termination criteria set as 15m××n milliseconds maximum CPU time.

Instances ARPD ARPD

IG_LS HGA ACO IGBS IG_LS HGA ACO IGBS

Instance SSD10 Instance SSD50

20* 5 0.147 0.576 0.450 0 0.058 0.667 0.699 0

20*10 0.071 0.510 0.514 0 0.028 0.26 0.356 0

20* 20 0.068 0.208 0.314 0 0.003 0.325 0.320 0

50* 5 1.728 2.476 2.998 0 1.631 3.116 3.885 0

50*10 1.134 1.670 3.921 0 1.109 2.202 3.521 0

50* 20 0.991 1.745 4.011 0 0.941 1.968 3.546 0

100* 5 3.411 4.577 4.447 0 3.888 4.900 6.164 0

100*10 2.983 3.263 5.819 0 2.707 3.290 5.403 0

100* 20 2.914 2.590 6.480 0 2.676 2.721 5.815 0

200*10 4.099 4.449 7.360 0 4.171 4.163 7.186 0

200* 20 3.566 3.408 8.488 0 3.429 3.433 7.603 0

500* 20 4.063 4.296 10.780 0 3.815 4.205 9.482 0

Avg 2.098 2.481 4.632 0 2.038 2.604 4.498 0

Instance SSD100 Instance SSD125

20* 5 0.128 1.172 1.243 0 0.115 1.063 1.007 0

20*10 0.016 0.666 0.534 0 0.024 0.566 0.519 0

20* 20 0.032 0.194 0.334 0 0.034 0.423 0.265 0

50* 5 2.464 4.298 5.055 0 2.758 5.073 5.586 0

50*10 1.545 2.878 3.806 0 1.782 2.991 3.992 0

50* 20 1.221 1.665 3.247 0 1.194 1.896 3.193 0

100* 5 5.149 5.917 8.308 0 5.645 6.522 8.989 0

100*10 3.596 4.152 6.13 0 3.652 4.338 6.239 0

100* 20 2.467 2.968 5.178 0 2.880 3.374 5.196 0

200*10 5.037 5.171 8.011 0 5.672 5.728 8.525 0

200* 20 3.535 3.609 6.871 0 3.651 3.837 6.719 0

500* 20 4.351 4.533 8.867 0 4.768 4.893 8.720 0

Avg 2.462 3.102 4.799 0 2.681 3.392 4.913 0

 8

Table 2. Comparison of ARPD and CPU time (milliseconds) for the SDST-NWFSP on instances

set SSD10, SSD50, and SSD100

Instance BIH GAPH1 GAPH2 GAPH3 IGBS

ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time

SSD10 instances

20* 5 2.087 0 2.087 0 6.241 5 2.909 0 0.019 5

20*10 3.373 0 3.373 0 5.205 0 2.954 0 0.000 6

20*20 2.016 0 1.631 0 5.957 2 2.693 0 0.057 0

50* 5 4.783 0 4.438 20 4.923 28 5.561 8 0.000 56

50*10 2.861 0 3.045 16 4.397 47 3.605 11 0.000 36

50*20 3.168 0 3.297 17 4.367 108 3.506 6 0.000 55

100 *5 5.816 5 5.902 190 5.495 473 7.552 123 0.000 479

100*10 3.618 9 3.933 180 4.663 968 4.77 116 0.078 662

100*20 3.613 2 3.398 194 5.323 1968 3.746 130 0.000 635

200*10 4.913 30 4.989 3462 5.403 17633 5.649 2229 0.080 5711

200*20 4.051 34 3.983 3794 4.155 41030 4.289 2432 0.000 5160

 Avg 3.664 7 3.643 716 5.103 5660 4.294 460 0.021 1164

SSD50 instances

20* 5 2.552 0 2.552 0 3.881 2 3.502 2 0.000 0

20*10 2.050 0 1.725 0 5.640 0 2.789 0 0.194 0

20*20 1.817 0 1.813 0 6.603 2 2.055 0 0.045 5

50* 5 4.168 0 4.017 6 4.069 14 4.775 3 0.000 51

50*10 3.057 2 3.065 10 4.044 25 3.534 6 0.000 44

50*20 2.38 2 2.206 2 5.204 60 2.978 5 0.000 44

100 *5 4.479 3 4.512 89 4.208 234 5.852 56 0.125 542

100*10 3.300 2 3.423 93 4.151 479 4.082 63 0.000 393

100*20 2.985 2 3.098 95 4.194 999 3.455 70 0.000 454

200*10 4.214 19 4.173 1703 4.896 8989 5.268 1109 0.000 5639

200*20 3.274 16 3.300 1974 3.707 20612 3.911 1231 0.000 5219

 Avg 3.116 4 3.080 361 4.600 2856 3.836 231 0.033 1126

SSD100 instances

20* 5 3.585 0 3.828 0 3.853 2 3.119 0 0.160 2

20*10 2.528 0 2.528 0 4.327 2 3.156 0 0.000 0

20*20 1.852 0 1.674 0 4.83 2 2.194 0 0.089 3

50* 5 3.945 0 3.774 2 3.906 16 5.842 3 0.316 82

50*10 2.994 0 2.987 6 3.243 28 3.201 3 0.185 71

50*20 2.158 0 2.23 6 3.16 56 3.24 3 0.014 81

100 *5 5.477 5 5.418 94 4.143 254 6.753 59 0.303 543

100*10 3.746 5 3.583 96 3.587 488 5.022 66 0.000 626

100*20 2.977 5 2.903 96 3.844 989 3.716 63 0.000 702

200*10 4.737 16 4.785 1693 4.435 8814 5.569 1111 0.000 6349

200*20 2.716 12 2.654 1826 3.005 19601 3.239 1200 0.18 4611

 Avg 3.338 4 3.306 347 3.848 2750 4.096 228 0.113 1188

 9

Table 3. Comparison of ARPD and CPU time (milliseconds) for the SDST-NWFSP on instances

set SSD125

Instance BIH GAPH1 GAPH2 GAPH3 IGBS

ARPD Time ARPD Time ARPD Time ARPD Time ARPD Time

SSD125 instances

20* 5 3.333 0 3.431 2 4.51 2 3.139 0 0.174 3

20*10 2.012 0 1.839 0 3.488 0 2.945 0 0.095 5

20*20 1.743 0 1.705 0 4.84 3 2.083 0 0.098 0

50* 5 5.57 0 5.304 11 4.904 9 6.038 8 0000 61

50*10 2.777 0 3.015 8 3.719 28 3.692 5 0.117 44

50*20 2.255 0 2.191 3 3.343 59 2.792 3 0.000 31

100 *5 5.481 2 5.256 86 4.006 244 6.738 59 0.782 582

100*10 4.061 2 4.051 94 3.672 487 5.093 61 0.000 449

100*20 2.908 2 2.883 96 3.398 949 3.463 62 0.157 500

200*10 4.893 16 4.849 1697 3.856 8846 5.838 1097 0.379 6025

200*20 3.497 14 3.404 1853 3.495 19546 4.041 1228 0.000 6245

 Avg 3.503 3 3.448 350 3.930 2743 4.169 229 0.164 1268

Conclusions

In this paper, a hybrid heuristic algorithm which combines an iterated greedy algorithm

with local search method based on swap operator (IGBS) is proposed for solving SDST-

NWFSP to minimize makespan. IGBS comprises three components: a heuristic method to

generate an initial solution, an iterated greedy (IG) method to avoid becoming trapped in

a local optimum, followed by BS to improve the solution. The proposed algorithm is

compared with existing heuristic methods with different termination criterion. The results

show that the proposed algorithm remains efficient in terms of quality of solutions in the

same time, and get better solution with more time when compared with existing heuristic

methods.

 The proposed IGBS algorithm in this paper is quite general and can solve flowshop

problems under varying conditions, with or without setup time. Since the total completion

of time of a set of jobs is also very important in practical production shops, one fruitful

direction for future research is to develop solution procedures for the SDST-NWFSP with

total completion time minimization. At the same time, we want to point out that decision

making becomes very complex when many objectives should be taken into account at the

same time. Therefore, multi-objective flowshop scheduling problems have gained wide

attention both in practical and academic fields. Therefore, extending the application of

the proposed IGBS algorithm and to develop new solution procedures for the multi-

objective SDST-NWFSP is another interesting future research direction.

 References

Allahverdi, A. and T. Aldowaisan. 2001. "Minimizing total completion time in a no-wait

flowshop with sequence-dependent additive changeover times." JOURNAL OF

THE OPERATIONAL RESEARCH SOCIETY 52:449-462.

Araújo, D. C. and M. S. Nagano. 2010. "A new effective heuristic method for the no-wait

flowshop with sequence-dependent setup times problem." International Journal

of Industrial Engineering Computations 2:155-166.

 10

Bianco, L., P. Dell'Olmo and S. Giordani. 1999. "Flow shop no-wait scheduling with

sequence dependeent setup times and release dates." INFOR 37:3-19.

Brown, S. I., R. G. McGarvey and J. A. Ventura. 2004. "Total flowtime and makespan

for a no-wait m-machine flowshop with set-up times separated." Journal of the

Operational Research Society 55:614-621.

Gupta, J. N. D. 1986. “Flowshop schedules with sequence dependent setup times,"

Journal of the Operations Research Society of Japan 29:206-219.
Hall, N. G. and C. Sriskandarajah. 1996. "A survey of machine scheduling problems with

blocking and no-wait in process." Operations research 44:510-525.

MacCarthy, B. L. and J. Liu. 1993. "Addressing the gap in scheduling research: a review

of optimization and heuristic methods in production scheduling." The

International Journal of Production Research 31:59-79.

Mirabi, M. 2011. "Ant colony optimization technique for the sequence-dependent

flowshop scheduling problem." The International Journal of Advanced

Manufacturing Technology 55:317-326.

Li, X. 2005. "Heuristics for Several large-scale Flow Shop Scheduling Problems.",

Tsinghua University,(in Chinese).

Nawaz, M., E. E. Enscore and I. Ham. 1983. "A heuristic algorithm for the m-machine,

n-job flow-shop sequencing problem." Omega 11:91-95.

Ríos-Mercado, R. Z. and J. F. Bard. 1999. "An enhanced TSP-based heuristic for

makespan minimization in a flow shop with setup times." Journal of Heuristics

5:53-70.

Ruiz, R. and T. Stützle. 2007. "A simple and effective iterated greedy algorithm for the

permutation flowshop scheduling problem." European Journal of Operational

Research 177:2033-2049.

Ruiz, R. and T. Stützle. 2008. "An iterated greedy heuristic for the sequence dependent

setup times flowshop problem with makespan and weighted tardiness objectives."

European Journal of Operational Research 187:1143-1159.

Ruiz, R., C. Maroto and J. Alcaraz. 2005. "Solving the flowshop scheduling problem

with sequence dependent setup times using advanced metaheuristics." European

Journal of Operational Research 165:34-54.

Stafford, E. F. and F. T. Tseng. 2002. "Two models for a family of flowshop sequencing

problems." European Journal of Operational Research 142:282-293.

