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(GÉNIE INDUSTRIEL)
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RÉSUMÉ

Dans cette thèse, nous étudions le problème de tarification sur un réseau sous des hypo-

thèses d’incertitude (stochastiques). Elle comporte cinq chapitres. Les premier et deuxième

chapitres sont une introduction générale et une introduction à la programmation biniveau,

au modèle biniveau pour la tarification sur un réseau et à la programmation stochastique,

respectivement. Mes deux articles soumis sont contenus dans les chapitres 3 et 4 et nous

concluons cette thèse par le chapitre 5.

Dans le chapitre 3, nous considérons une extension stochastique à deux étapes du modèle

de tarification biniveau introduit par Labbé et al. (1998). Dans la première étape, le meneur

(leader), au niveau supérieur, fixe les tarifs sur un sous-ensemble d’arcs du réseau dans le but

de maximiser son revenu, tandis qu’au niveau inférieur, les flots sont affectés aux chemins

les moins onéreux du réseau de transport multiflots. Dans la deuxième étape, on introduit

une incertitude sur la demande et les coûts (qui deviennent stochastiques) et ajoutons la

contrainte que les nouveaux tarifs ne doivent pas être trop éloignés de ceux obtenus à la

première étape. Nous considérons deux types de tolérances, une absolue et l’autre propor-

tionnelle pour chaque arc tarifé du réseau, afin d’éviter le problème de tarifs excessifs. Nous

reformulons notre modèle biniveau stochastique à deux étapes en un problème biniveau sto-

chastique à une étape (standard) afin de déterminer une borne supérieure valide du revenu.

Ceci nous a permis de mettre en évidence certaines propriétés de la fonction objectif tel que

son caractère continu et linéaire par morceaux, dans le cas de la tolérance absolue. Nous

appliquons notre approche à trois petits exemples de réseaux de transport aériens ayant des

topologies, des commodités et des scénarios différents. Nous comparons la validité de notre

modèle en comparant la solution stochastique obtenue en remplaçant les terms aléatoires par

leur espérance. Enfin, nous présentons des résultats numériques pour des instances générées

aléatoirement, sur du réseaux à 40 nœuds et 200 arcs, pour diverses formulations du modèle.

L’analyse des résultats numériques montre que le modèle qui suppose des tarifs égaux sur
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les deux étapes est plus complexe en raison de la limitation sévère sur les tarifs. Par ailleurs,

le modèle où la demande est la seule variable aléatoire est moins complexe à puisque, plus

court chemin du suiveur est le même dans les deux phases (étapes).

Au chapitre 4, nous présentons trois variantes du problème de tarification biniveau sto-

chastique en définissant le temps de déplacement, la fiabilité du chemin et la capacité des

lienes comme des variables aléatoires. Dans la première variante, nous introduisons des désu-

tilités stochastiques au niveau du meneur. Ces dernières sont modélisées comme fonction des

coûts fixes, des tarifs, des délais et de la fiabilité. Les deux dernières désutilités (délai et fiabi-

lité) représentent la situation où les meneurs sont prêts à compromettre leur temps d’arrivée

cible (deadline) pour une plus grande fiabilité. Pour ce faire, les termes de désutilité sont

exprimés par des quotients du délai sur la fiabilité, où et le numérateur le dénominateur sont

aléatoires. Le modèle considère l’espérance mathématique de la fonction objectif du leader

et un comportement “wait and see” (attente - action) pour le suiveur. Un exemple illustre

l’application du modèle à des réseaux de télécommunications ou des compagnies aériennes.

Nous effectuons également une analyse de sensibilité à l’égard des variations des pénalités

sur les délais et les dates limites (deadline) de différents ensembles de coûts fixes. Dans la

deuxième variante, on considère un modèle qui prend en compte plusieurs caractéristiques de

la première variante avec deux différences majeures : (1) une pénalité sur le délai est encourue

par le leader et (2) la fiabilité d’un arc est maintenant fonction du flot qui le traverse, ainsi

que et d’une capacité aléatoire. Une contrainte probabiliste, dont le rôle est d’éviter le débor-

dement et d’assurer le fonctionnement fiable du système, est alors imposée au leader. Dans

ce contexte, le choix du trajet du suiveur n’est pas influencé par la fiabilité des trajets car la

contrainte imposée au niveau supérieur assure un niveau de service adéquat. Nous reformu-

lons le modèle comme un problème de programmation linéaire mixte en nombres entiers, en

transformant les contraintes probabilistes en contraintes linéaires. Nous montrons alors que

la fonction du revenu est continu par rapport au vecteur de capacité. Nous illustrons l’appli-

cation du modèle à un réseau de transport et nous montrons comment les changements dans
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le seuil de probabilité et le paramètre de proportion de la capacité de conception affectent le

revenu. Enfin, la troisième variante considère la congestion, ce qui est un problème fréquent

dans les transports urbains (résultant de conditions météorologiques, de travaux, de demande

excédentaire) et dans les télécommunications (résultant du trafic et de la dégradation du ré-

seau). En général la congestion est directement liée à la qualité de service. Contrairement à la

deuxième variante où la qualité de service est imposée à l’aide d’une contrainte probabiliste,

la troisième variante modélise explicitement la congestion par une fonction volume-délai du

type BPR (Bureau of Public Roads). Nous présentons un exemple et une analyse de sensibi-

lité du revenu en fonction des changements des paramètres de proportion de la capacité de

conception et du seuil de probabilité.
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ABSTRACT

This dissertation studies the network pricing problem (NPP) under uncertainty assump-

tions. It has five chapters. The first and second chapters give a general introduction to this

thesis and the second chapter provides an introduction to bilevel programming (BP), the BP

model of NPP, and stochastic programming. Chapters 3 and 4 contain my two submitted

papers and we conclude this thesis in Chapter 5.

In Chapter 3, we consider a two-stage stochastic extension of the bilevel pricing model

introduced by Labbé et al. (1998). In the first stage, the leader sets tariffs on a subset of

arcs of a transportation network with the goal of maximizing profits, and at the lower level,

flows are assigned to the cheapest paths of a multicommodity transportation network. In

the second stage, we introduce uncertain information (stochastic demand and market prices)

and the constraint that tariffs should not differ too greatly from those set in the first stage.

We consider two forms of predetermined threshold restrictions (absolute restriction (AR) and

proportional restriction (PR)) on each tariff arc of the network to avoid the excessive-tariff

problem. We further provide a single-stage reformulation of the two-stage SBP to calculate a

valid upper bound for the revenue. We derive a few propositions to show some properties of

the value function of our model such as its continuity and piecewise linearity in the AR case.

We present three small airline-network examples with different network topologies, numbers

of commodities, and outcomes of the random variables. We also give the stochastic and the

expected solution of the expected value (EEV) solutions to indicate the value of the model

and the stochastic solution. Finally, we present numerical results for randomly generated

instances with 40 nodes and 200 arcs for various formulations of the model. The analysis

of the numerical results shows that the model that assumes equal tariffs for both stages is

more complex because of the tight restriction on the tariffs. The model that assumes that

the demand is the only random variable is less complex because of the shortest-path equality



ix

for the follower problems in both stages.

In Chapter 4, we introduce three variations of the stochastic bilevel pricing problem by

considering delay, path/link reliability, and link capacity as random variables. In the first

variation, we introduce stochastic disutility at the user level. This is modeled as a function

of fixed costs, tariffs, tardiness, and reliability, and represents the situation where users are

ready to compromise their target arrival time (deadline) for higher reliability. To achieve

this goal, the disutility terms are expressed as the ratio of tardiness to reliability, both the

numerator and denominator being random. The model considers the expectation form of

the leader’s objective function and wait and see behavior for the follower. An example is

presented to show the application of the model to telecom/airline networks. We also carry

out a sensitivity analysis with respect to changes in the tardiness penalties and deadlines

for different sets of fixed costs. In the second variation, we consider a framework that takes

into account several features from the first variation. However, there are two differences.

First, a tardiness penalty is incurred by the leader. Second, the reliability of an arc is

now related to the flow that it carries and to a random capacity. A chance constraint,

whose role is to prevent overflow and ensure the reliable performance of the system, is then

imposed on the leader. In this setting, the path choice of the follower is not influenced

by the reliability of the paths, since the constraint imposed at the upper level ensures a

predetermined level of service. We reformulate the model as a linear MIP by transforming

the chance constraints to linear constraints and show that the value function of the revenue is

a continuous function with respect to the design-capacity proportion parameter. We illustrate

the application of the model to telecom/transportation networks and show how changes in

the probability level and the proportion parameter can change the revenue. Finally, the third

variation considers congestion, which is a common issue in urban transportation (arising from

construction, weather conditions, excess demand) and in telecommunications (arising from

traffic, network degradation). It is directly related to the “quality of service.” In contrast

with the second variation, where the quality of service is enforced by a chance constraint, the



x

third variation explicitly models congestion via a volume-delay function of the BPR (Bureau

of Public Roads). We present an example and a sensitivity analysis to show the effects on

the revenue of changes in the design-capacity proportion parameter and the probability level.
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CHAPITRE 1

INTRODUCTION

1.1 Motivation

Nowadays, businesses are more competitive than ever before. Therefore, many companies,

especially those which supply perishable products such as airline seats and hotel rooms, apply

pricing policies and revenue management (RM). RM is the practice of maximizing expected

revenues or profits by selling products or services to the right customers at the right time and

the right price. This practice helps companies such as airlines, hotels, car rental firms, and

even manufacturers to predict and influence market demand, to allocate limited resources to

a variety of customers, and to optimize price availability in order to maximize the profit.

RM began at American Airlines, which developed in the 1960s the first totally automated

computer-reservation system. In the 1970s, the airline industry began to pay more attention

to the management of its products, by using information systems to store information about

its products and customers. The RM concept then appeared in the Littlewood (1972) rule ;

this rule is considered the basis of the RM decision that checks whether to accept or to reject

a demand by the evaluation of the expected displacement costs. Research then began into

RM perspectives and problems such as pricing, resource allocation, and forecasting. Industrial

applications included the transportation, telecommunication, hotel, and car rental industries.

Later, companies further developed their RM systems to cope with deregulated markets and

balances of supply and demand especially under uncertainty conditions.

Today, pricing policies and decisions are considered fundamental business challenges, es-

pecially for service providers. They play a primary role at both the strategy and planning

levels. This is probably because of the highly competitive business environment, where ad-

justing the price is considered the most effective way to influence the customer’s motivation.
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However, the evolution of information technology and the internet and a rise in unexpected

events have forced managers to deal with pricing issues dynamically. They use stochastic

models to consider the unexpected events that may affect decisions that must be taken in

advance.

This thesis focuses on the network pricing problem (NPP) under uncertainty ; it be-

longs to the class of NP-hard problems. We deal with some market-uncertainty aspects such

as demand, competitor’s price, and delay in airline, transportation, and telecommunication

networks to present pricing models that maximize revenue under market uncertainties. In

general, for competitive markets, comprehensive pricing models must contain stochastic, dy-

namic, and game-theoretic elements. Customers emphasize price, and so suppliers try to offer

prices that attract customers while maximizing revenue. Therefore, it is important to define

a mathematical model of the pricing problem that considers the customer’s behavior versus

the prices and competition situation of the market. Labbé et al. (1998) present a bilevel

programming (BP) model of the pricing problem ; it considers a game-theoretic approach

between the leader who wants to maximize revenue and the follower who wants to minimize

disutility. However, this model does not consider stochastic aspects. Our work aims to capture

the stochastic aspects of the market to embed in the NPP presented by Labbé et al. (1998).

Precisely, our research objective is to integrate stochastic programming (SP) approaches such

as two-stage SP and chance-constrained programming (CCP) into the BP framework and to

apply the algorithm to the NPP.

This thesis is organized as follows.

Chapter 2- This chapter provides the literature review and introduces the basic concepts

including bilevel programming, stochastic programming, and NPP. Further we provide the

basic notation used in this thesis.

Chapter 3- This chapter presents our first paper, in which we applied the SP approach

to the NPP. Our main contributions are :
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– we present a two-stage stochastic extension of a bilevel program and a generic pricing

model ;

– we provide some properties of a general stochastic bilevel program (a two-stage sto-

chastic bilevel program (SBP) with recourse in the first level) ;

– we present some properties of the two-stage stochastic bilevel pricing model ;

– we apply the model to a transportation network ; and

– we present numerical results to indicate the size of problems that can be solved in a

reasonable time.

Chapter 4- This chapter presents our second paper where we again applied the SP approach

to the NPP. Our main contributions are :

– we explore some random parameters relating to quality of service issues for telecom and

transportation networks ;

– we model three variations of the stochastic NPP (one with the expected form of the first

level’s objective function and two with chance constraints in the first-level problem) ;

– we present some properties of the second variation ; and

– we discuss applications of the models to transportation and telecommunication net-

works.

Finally, in Chapter 5, we present conclusions and discuss possible future work.
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CHAPITRE 2

BASIC NOTATIONS AND LITERATURE REVIEW

2.1 Bilevel Programming (BP)

In the real world, companies compete for the best positions from management and econo-

mic points of view. There are three known game strategies : win-win, win-fail, and fail-win.

The Stackelberg game as a strategic game is the most interesting game between market

players ; it is studied by Stackelberg (1952). The BP approach is the most useful tool to mo-

del these games. BP considers two players where each player seeks to optimize his objective

function by controlling one set of actives (variables) subject to constraints. These problems

consist of two programs where the second program is considered a constraint for the first.

That is, some of the first-program variables are constrained to be an optimal solution of the

second program. This structure of BP is closely related to a Stackelberg game.

The original formulation of BP was presented by Bracken and McGill (1974) as a hierar-

chical optimization problem involving two levels and formulated as the mathematical program

max
x∈X

F (x, y)

s.t. G(x, y) ≤ 0,

min
y∈Y

f(x, y),

s.t. g(x, y) ≤ 0,

(2.1)

where the first-level and second-level problems are usually called the leader (or outer) and
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follower (or inner) problems respectively. We define these levels as follows :

First level


min

(x,y)∈Z
F (x, y)

s.t. G(x, y) ≤ 0,

and

Second level


y ∈ arg min

z∈Y
f(x, z)

s.t. g(x, z) ≤ 0,

where Z = X × Y , F : Z → < and y is the solution of the follower problem for a given x.

The BP problem gives the optimal value of the first-level problem by the solution of one set

of variables allowed for an optimization problem (second level).

1. The feasible set (or constraint region) of BP is

FS = {(x, y) : (x, y) ∈ Z, G(x, y) ≤ 0, g(x, y) ≤ 0} .

2. For each x ∈ X, the second-level feasible set is

FS(x) = {y : y ∈ Y, g(x, y) ≤ 0} .

3. For each x from the first level the set of optimal solutions (or rational reaction set) of

the second level is

RR(x) =

{
y : y ∈ arg min

z
{f(x, z) : z ∈ FS(x)}

}
.

4. Finally, the feasible set of BP is

IR = {(x, y) : (x, y) ∈ FS, y ∈ RR(x)} .
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The feasible set of the BP problem is called the induced (inducible) region and is usually

nonconvex. This set can be disconnected or even empty in the presence of leader constraints

involving y. The compactness of the induced region is important for the existence of an opti-

mal solution. This property can be guaranteed by the appropriate conditions. BP problems

are usually nonconvex and nondifferentiable and therefore hard to solve. The main property

of BP is that it is strongly NP hard even if all functions are linear (Vicente and Calamai,

1994; Ben-Ayed and Blair, 1990). Vicente and Calamai (1994) prove that obtaining a local

optimum is also NP-hard. The optimal solution of BP also need not be Pareto optimal. For

the continuous form of BP if the lower level problem is convex then it can be replaced by

the KKT conditions under an appropriate constraint qualification. Generally, the convexity

of the BP problem does not guarantee the convexity of the inducible region. In other words,

restricting the upper and lower levels’ objective and constraint functions to be continuous

and bounded does not guarantee the existence of a solution.

BP algorithms use either continuous or combinatorial or both approaches, to find local

and global solutions. Optimality conditions for BP problems have been studied by several

researchers. Savard and Gauvin (1994) present necessary optimality conditions based on the

steepest-descent direction and Bard (1998) gives detailed information on BP properties and

solution methods. Generally, the solution methods and algorithms can be classified based on

the different BP forms : linear, nonlinear, bilinear, or quadratic programs with continuous

and/or discrete variables. Algorithms for BP problems may be classified into six classes :

extreme-point approaches (for the linear case), branch-and-bound (B&B), complementarity

pivot, descent methods, penalty function methods, and trust-region methods. For instance,

Savard (1989) specified problems including linear BPs where at least one optimal solution can

be located at an extreme point of the constraint region or feasible set without any particular

assumptions over upper-level constraints.
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2.1.1 BP applications : BP model of network pricing problem (NPP)

When the upper level decisions depend on the lower level decisions, the BP approach can

be applied to model NPPs in different fields such as highway toll setting (Labbé et al. (1998),

Brotcorne et al. (2000), Brotcorne et al. (2001)), airline revenue management (Côté et al.

(2003)), network pricing (Bouhtou et al. (2003)), telecommunications (Altman and Wynter

(2004), Bouhtou et al. (2006), Bouhtou et al. (2007a)), and supply chain pricing (Shouping

and Baozhuang (2007), Gao et al. (2011)). Dempe et al. (2005) present a mixed-integer BP

model with binary variables in the follower problem to model the problem of minimizing the

cash-out penalties of a natural gas shipper, and Bard et al. (2000) applied the approach to

model tax credits in biofuel production. Recently, Li et al. (2011) applied it to model the

game behavior between government and companies in the trading of waterfront resources ;

they presented a solution approach based on sensitivity analysis.

Consider a network represented by a graph G(N,Λ) with node set N and arc set Λ. The

arcs of graph G are divided into two sets, Λ1 and Λ2. Arc set Λ1 is a set of tariff (taxed)

arcs controlled by the leader and arc set Λ2 is a set of tariff-free (untaxed) arcs. A set K

of commodities models the demand. The goal is to determine the right tariffs on arc set

Λ1 to maximize the leader’s revenue. Users (customers or followers) on the network choose

their route from origin to destination according to the shortest path with respect to the total

disutility costs. As far, the paths with the same total disutility are available then it is assumed

that the users choose the path that is more profitable for the leader. This assumption can be

satisfied by a small change in the fixed costs of the tariff arcs.

The arc formulation of the bilevel network pricing problem introduced by Labbé et al.

(1998) is as follows :
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max
t

t
∑
k∈K

xk

min
xk,yk

(c+ t)
∑
k∈K

xk + d
∑
k∈K

yk,

s.t. Axk +Byk = bk, ∀k ∈ K,

xk, yk ≥ 0, ∀k ∈ K,

(2.2)

where t is the vector of tariff variables controlled by the leader, and xk and yk are the flow

vectors of commodity k on the tariff and tariff-free arcs respectively. Vectors c and d are

the fixed costs on the tariff and tariff-free arcs respectively. (A,B) is the node-arc incidence

matrix that characterizes the flow-conservation constraints in the lower level, and bk is the

commodity demand vector defined as follows :

bki =


nk, if i = O(k),

−nk, if i = D(k),

0, otherwise,

where nk represents the amount of commodity k to be shipped from the origin O(k) to the

destination D(k). We define the set of all paths for commodity k to be Lk, and the set of

arcs included in path ρ by Λρ. Lk1 is the subset of paths that include at least one tariff arc.

Then the path reformulation of Program (2.2) is
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max
t,T

∑
k∈K

∑
ρ∈Lk1

Tρfρ

s.t.
∑
a∈Λρ1

ta = Tρ, ∀k ∈ K, ∀ρ ∈ Lk1,

min
r

∑
k∈K

[ ∑
ρ∈Lk1

Tρfρ +
∑
ρ∈Lk

∑
a∈ρ

cafρ
]
,

s.t.
∑
ρ∈Lk

fρ = nk, ∀k ∈ K,

fρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk,

(2.3)

where c is the vector of fixed costs. The leader’s constraint refers to the relationship between

the path and arc tariffs, and the first follower’s constraint refers to the flow conservation

constraints where variable fρ denotes the flow of commodity k assigned to path ρ ∈ Lk.

In this thesis we consider the following general assumptions for the above pricing model

(see (Labbé et al., 1998)) :

1. There is at least one path for each user that is composed only of tariff-free (untaxed)

arcs. This guarantees that the upper level of the leader’s profit is bounded from above.

2. There does not exist a pricing procedure that makes a profit and has a negative cost

cycle in the network. Thus, the lower level of the optimal solution corresponds to a set

of shortest paths.

We make the following assumption for the models presented in our second paper (3) :

3. The market prices are fixed and will not change when the operator sets its tariff. The

client’s demand is fixed and can be split between different paths.

Given the above assumptions Labbé et al. (1998) provided the feasible upper bound

Γ(∞)−Γ(0) for the leader’s profit ; it is the difference between the follower’s optimal objectives

corresponding to infinite and zero tariffs. In other words, Γ(0) is the value of the follower’s

objective corresponding to a shortest path solution when t = 0, and Γ(∞) is the value of the



10

follower’s objective when the tariff is infinite. This upper bound is finite whenever the fixed

costs are nonnegative.

Labbé et al. (1998) study the complexity of the BP of the pricing model (2.2) on a

transportation network. They assume a single-user transportation network and show that

this problem is NP-hard when the tariff is restricted by a given lower bound. Bouhtou et al.

(2002) prove the NP-hardness of the pricing problem without a lower-bound assumption on

the taxes by modifying the proof given by Labbé et al. (1998). Later, Grigoriev et al. (2007)

and Roch et al. (2005) improved this NP-hardness result and presented a polynomial-time

approximation approach to solve the NPP.

We now discuss solution procedures for the NPP and in particular exact methods, which

are often based on the optimality conditions of the lower-level shortest paths. As mentio-

ned before, if we replace the lower-level problem by the KKT conditions and linearize the

complementarity slackness conditions, the BP model for the NPP becomes a mixed-integer

program and can be solved by known methods. The best references for the exact methods

are Dewez (2004) and Didi-Biha et al. (2006), where Dewez (2004) presented a method based

on the cutting-plane approach and Didi-Biha et al. (2006) provided a method based on a

path formulation of Program (2.2). Later Brotcorne et al. (2011) extended the exact me-

thod presented by Didi-Biha et al. (2006) by developing an efficient path generation method

and applying column generation approach. Generally, solution methods based on the path

formulation perform better than the mixed-integer formulation.

Brotcorne et al. (2001) and Bouhtou et al. (2007b) presented primal-dual heuristic pro-

cedures based on a single-level reformulation of NPP, and Brotcorne et al. (2012) developed

an efficient tabu-search metaheuristic framework to solve large instances.
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2.2 Stochastic Programming (SP)

Stochastic programming (SP) is a mathematical programming framework used to model

problems under uncertainty. These programs are more difficult to formulate and solve than

general deterministic mathematical programs. The main advantage of using SP is the abi-

lity to perform optimality analysis under uncertainty ; sensitivity analysis must be used to

review the impact of uncertainty in general mathematical programs. Stochastic models are

mainly introduced for economic models subject to uncertainty in demand and price changes.

However, these models are also used in the engineering sciences, such as civil, mechanical,

and aerospace engineering. Bilevel and dynamic programming approaches are tools used for

modeling problems with two or more stages, but the stochastic approach is more important

for long-term planning because it uses the information and data that form the basis of fu-

ture events. Managers and decision-makers can make decisions by considering the risk of all

scenarios and forming an overall optimal strategy.

A generic stochastic program is as follows :

max
x∈X

F (x, ω)

s.t. G(x, ω) ≤ 0,

(2.4)

where X ⊆ Rn and it is assumed that the functions F and G are not accurately known. These

functions depend on a pair of variables (x, ξ(ω)) where ω is a random experiment vector or a

possible generalization of ξ, and ξ is a real random-variable vector that varies over a support

set Ξ in a probability space (Ω,F , P ). Ω denotes the set of all random events, F is a set

of random events, and P is the set of probabilities. Further, we assume that the probability

distribution p ∈ P is given and is independent of x, so that for all x, F (x, ·) : Ξ → R and

G(x, ·) : Ξ→ R are random variables.
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2.2.1 Two-stage and multi-stage SP

The two-stage SP problems or SP problems with recourse are the most well-developed mo-

dels. The decision-maker can take decisions before or after realizing outcomes in the first-stage

and second-stage respectively. In other words, second-stage decisions are made in response to

the realized outcomes and the term “recourse” refers to the possibility of choosing a solution

given specific realizations of the random variables. Decisions that are taken before are called

first-stage decisions and those taken after are second-stage decisions. Normally the first-stage

and second-stage decision variables are considered proactive and reactive, corresponding to

the planning and operating decisions. According to the above definition, the two-stage SBP

is as follows :

max
x

F1(x) +Q(x)

s.t. G1(x) ≤ 0,

(2.5)

where

Q(x) = Eξ [Φ(x, ξ(ω))] , ξ : Ω→ <r,

is the recourse and, for any outcome ξ = ξ(ω) ∈ Ξ,

Φ(x, ξ(ω)) = max
x′(ω)

F2(x′(ω), ω)

s.t. G2(x, x′(ω), ω) ≤ 0.

where x is known as the first-stage decision and x′ is the second-stage variable determined

after outcome ξ(ω) is realized. In the linear case of Program (2.6), a special form of the

recourse program is called the fixed-recourse program ; here the matrix of coefficients in the

second-stage program is fixed, i.e., it is not subject to uncertainty. Further, if it is assumed

that the second-stage coefficients matrix is an identity then two-stage recourse is called simple

recourse, and if the second-stage program is feasible for every first-stage feasible decision then
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the two-stage recourse is called relatively complete recourse. A general approach to solve a

linear two-stage SP is the L-shaped method, which was developed by Slyke and Wets (1969)

and extended by Birge and Louveaux (1988) by applying a multicut generation procedure.

In some problems the outcomes are realized sequentially. The problem can then be divided

into multiple stages over time and the outcomes. Program (2.6) can be extended to a multi-

stage SP problem for applications such as long-term planning in project management where

success is sensitive and depends on information change and future events. In a multi-stage

SP model, the scenario information and data can be organized into a tree structure.

The two-stage recourse problem to define a multi-stage stochastic program (MSP) as

follows :

max
x1

F1(x1) +Q(x1)

s.t. G1(x1) ≤ 0,

(2.6)

where

Q(x1) = Eξ1 [Φ(x1, ξ1(ω1))] , ξ1 : Ω1 → <r1 ,

and, for any outcome ξ1 = ξ1(ω1) ∈ Ξ, we replace the recourse program of Program (2.6) to

generalize the two stages to S stages as follows :

Φ(xs−1, ξs(ωs)) = max
x′s(ωs)

F2(x′s(ωs), ωs) + Eξs+1|ξs [Φs+1(xs, ξs+1(ωs+1))]

s.t. G2,s(xs−1, x
′
s(ωs), ωs) ≤ 0,

where s = 2, ..., S and ξs : Ωs → <rs . Further, for each realization ωs of ξs, Φ(xS, ·) = 0

and ξs is the history of the random variables up to time s. We define the history process by

ξs
def
= {ξ1, ...ξs}. Also, the Eξs+1|ξs term is the expected value according to the conditional of

ξs+1 on ξs. Birge (1985) presented an extension of the L-shaped method to multi-stage SP

problems.
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2.2.2 Chance-constrained programming (CCP)

One of the main consequences of uncertainty in the context of decision-making is the

possibility of infeasibility in the future. In many instances, we must make our decision before

the future realization. Decision problems that consider risk-aversion issues use chance (or

probabilistic) constraints to express the feasibility of the problem. Therefore, CCP problems

are SP problems that consider chance constraints. Such models are known as anticipative

models.

We consider a form of Program (2.4) with no random parameters in the objective function

and then we introduce the chance constrained program as follows :

max
x∈X

F (x)

s.t. p(x) ≥ α,
(2.7)

where again X ⊆ Rn,

p(x) = Pr{G(x, ω) ≤ 0},

and α ∈ [0, 1] denotes the probability/reliability level and the choice of α is left to the

decision-maker. The complement 1− p(x) refers to the risk of infeasibility associated with x

and the values α = 0 and α = 1 correspond to extremely risky and conservative attitudes.

Program (2.7) is called a joint chance constrained (JCC) program when there may be mul-

tiple inequalities in the system G(x, ω) ≤ 0. The separate (or individual) chance constrained

(SCC) program, for αi ∈ [0, 1], i = 1, ...,m, is as follows :

max
x∈X

F (x)

s.t. Pr{Gi(x, ω) ≤ 0} ≥ αi, ∀i = 1, ...,m.
(2.8)

Normally a suitable feasible solution of the JCC problem can be obtained by solving the SCC

problem and choosing αi = 1 − 1− α
m

. The feasible sets of the JCC and SCC problems are
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as follows :

C(α) = {x ∈ Rn : p(x) ≥ α, }, α ∈ [0, 1],

Ci(αi) = {x ∈ Rn : pi(x) ≥ αi}, αi ∈ [0, 1], i = 1, ...,m,

where

C(α) =
m⋂
i=1

Ci(αi),

for α = (α1, ...αm) ∈ [0, 1]m.

More details on JCC, SCC, and solution methods based on the properties of the distribu-

tion function F and feasible set C(α) have been provided by Kall and Wallace (1994), Birge

and Louveaux (1997), and Kall and Mayer (2010).

2.3 Notations

We now summarize the notation, basic variables, and parameters used in Chapters 3 and

4. We denote all random variables, parameters, and the second-stage variables of the two-

stage SP by adding the prime symbol (′) to the deterministic parameters and the first-stage

variables of the two-stage SP. We use the following notation :

Sets :

N set of nodes of graph G ;

Λ set of arcs/links of graph G ;

Λ1 set of tariff arcs of graph G ;

Λ2 set of tariff-free arcs of graph G ;

K set of commodities ;

Lk set of paths available to commodity k ;

Lk1 set of paths available to commodity k that contain at least one tariff arc ;

Lk2 set of paths available to commodity k that contain only tariff-free arcs ;



16

Λρ set of arcs common to set Λ and path ρ ;

Π set of constraints corresponding to threshold values ;

(Ω,F , P ) probability space ;

Ω set of all random events ;

F set of all subsets of Ω ;

Ξ set of outcomes of the random variable ξ, i.e., support of the random variable ξ ;

Lk(ξ) set of paths available to commodity k corresponding to outcome ξ ;

Lk1(ξ) set of paths available to commodity k that contain at least one tariff arc correspon-

ding to outcome ξ ;

Lk2(ξ) set of paths available to commodity k that contain only tariff-free arcs corresponding

to outcome ξ ;

Indices :

a ∈ Λ arc index ;

k ∈ K commodity index ;

ρ ∈ Lk path index for each commodity k ;

ξ = ξ(ω) ∈ Ξ outcome index ;

ρ′ ∈ Lk(ξ) path index for each commodity k corresponding to outcome ξ ;

Matrix and vectors :

(A,B) node-arc incidence matrix that characterizes flow conservation constraints ;

c vector of fixed costs on tariff arcs (in Chapter 3, we refer to c as the vector of fixed

costs on tariff and tariff-free arcs) ;

d vector of fixed costs on tariff-free arcs ;

C vector of design (or target) capacity of tariff arcs ;

δ vector of threshold values on tariffs to avoid unplanned tariff increases (or decreases) ;
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θ vector of proportion of maximum protection of tariff arcs ;

b vector of demands for commodities ;

τ arc vector of free flow travel time on arcs ;

τnode vector of free flow travel time on nodes ;

p̄ vector of penalty costs for one unit of tardiness of commodities ;

darc(ξ) vector of random delay variables on arcs corresponding to outcome ξ ;

dnode(ξ) vector of random delay variables on nodes corresponding to outcome ξ ;

ξ vector of random variables and ξ : Ω→ <r ;

C ′(ξ) vector of random capacity of tariff arcs corresponding to outcome ξ ;

Parameters :

nk number of users of commodity k ;

O(k) origin node of commodity k ;

D(k) destination node of commodity k ;

∆ small positive number ;

σ small positive number less than one ;

M arbitrary large constant number ;

Γ(t) lower-level optimal value for given tariff vector t ;

α, β reliability/probability levels ;

H vector of travel time limits or preferred arrival times at the destination for commo-

dities ;

Γ′ξ(t
′) lower-level optimal value for given tariff vector t′ corresponding to outcome ξ ;

g(ξ) vector of random travel time functions on paths corresponding to outcome ξ ;

h(ξ) vector of random availability of paths corresponding to outcome ξ ;

Variables :
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t vector of arc tariff variables controlled by leader ;

T vector of path tariff variables ;

xk vector of arc flow variables of commodity k on tariff arcs (in Chapter 3, we refer to

x as the vector of flow variables on tariff and tariff-free arcs) ;

yk vector of arc flow variables of commodity k on tariff-free arcs ;

rρ vector of path choice variables of commodity k ;

f vector of path flow variables of commodity k ;

λ vector of dual variables associated with the first-stage follower constraints.

The following variables are defined as the above variables corresponding to outcome ξ :

t′(ξ) vector of arc tariff variables controlled by leader ;

T ′(ξ) vector of path tariff variables ;

x′k(ξ) vector of arc flow variables of commodity k on tariff arcs ;

y′k(ξ) vector of arc flow variables of commodity k on tariff-free arcs ;

r′ρ′(ξ) vector of path choice variables of commodity k ;

λ′(ξ) vector of dual variables associated with the second-stage follower constraints ;

u(ξ) vector of path tardiness variables ;

Functions :

U(·) first-stage lower-level disutility function ;

Q(·) expected value of recourse ;

U ′(·, ξ) second-stage stochastic lower-level disutility function ;

Φ(·, ξ) second-stage value.
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CHAPITRE 3

TWO-STAGE STOCHASTIC BILEVEL PROGRAMMING OVER A

TRANSPORTATION NETWORK

RÉSUMÉ

Nous considérons une extension stochastique sur deux étapes (ou périodes) du modèle bini-

veau pour la tarification de réseau introduit par Labbé et al. (1998). À la première étape, le

meneur (leader) fixe les tarifs sur un sous-ensemble d’arcs du réseau dans le but de maximiser

son revenu, tandis qu’au second niveau les flots sont affectés sur les chemins les moins chers

du réseau de transport multiflots. À la deuxième étape (ou période), la situation se répète

sous la contrainte que les tarifs de la seconde période sont contraints à ne pas varier plus que

d’un certain pourcentage préétabli de ceux de la première période. Enfin nous analysons les

propriétés théoriques du modèle et présentons quelques résultats numériques.
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Two-stage stochastic bilevel programming over a

transportation network

Shahrouz Mirza Alizadeh, Patrice Marcotte and Gilles Savard

ABSTRACT

We consider a two-stage stochastic extension of the bilevel pricing model introduced by Labbé

et al. (1998). In the first-stage, the leader sets tariffs on a subset of arcs of a transportation

network, with the aim of maximizing profits while, at the lower level, flows are assigned

to cheapest paths of a multicommodity transportation network. In the second-stage, the

situation repeats itself under the constraint that tariffs should not differ too widely from those

set at the first-stage. We analyze properties of the model and provide numerical illustrations

Key words : Revenue Management, Pricing, Bilevel Programming, Stochastic Programming

Submitted to : Journal of Transportation Research Part B on November 8, 2012
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3.1 Introduction

Designing an efficient pricing policy can significantly improve the position of a product

and/or service provider. The key to successful revenue maximization actually rests on the

knowledge of customers’ options vis-à-vis the products (or services) supplied by the firm and

its competitors. These features are well captured by the bilevel pricing model introduced

by Labbé et al. (1998), where a revenue-maximizing leader anticipates the reaction to its

decisions of cost-minimizing followers. The focus of the present work is the extension of this

model to a stochastic environment characterized by market uncertainties.

The bilevel programming paradigm has been adapted to pricing issues in various fields,

such as highway toll setting (Labbé et al. (1998), Brotcorne et al. (2000)), airline revenue

management (Côté et al. (2003)), network pricing (Bouhtou et al. (2003)) and telecommuni-

cations (Altman and Wynter (2004), Bouhtou et al. (2006), Bouhtou et al. (2007a)). Actually

a stochastic programming extension of bilevel programming, whose underlying principles have

been laid out by Patriksson and Wynter (1999), has been proposed by Patriksson and Wynter

(1997) for addressing a structural optimization problem, and by Christiansen et al. (2001) to

formulate a topology optimization model in structural mechanics. More recently, Patriksson

(2008) extended the scope of bilevel traffic models by taking explicitly into account stochas-

tic data fluctuations. Closer to our application, Fampa et al. (2008) used stochastic bilevel

programming (SBP) to model the strategic-bidding process that takes place in a wholesale

energy market. The model assumes that the economic payment of each provider depends

on the ability of its management to yield price and quantity bids. This SBP maximizes the

expected profit at the upper level, and minimizes operational costs at the lower level. In

contrast with the Nash equilibrium approach adopted by Hobbs et al. (2000), the bidding

process is based on scenarios embedded within a Stackelberg (bilevel) framework. Carrion

et al. (2009) present an SBP where a retailer optimizes its medium-term revenue at a given

risk level, assuming that pool prices, demand, and competitor prices are random. Always in

the realm of energy modeling, a bilevel multi-stage stochastic programming model has been
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presented by Kalashnikov et al. (2010) to formulate the natural gas cash-out problem. More

recently, Cooper et al. (2012) assessed the performance of strategies that are oblivious to

competition, in the context of a duopoly, focusing on the dynamic estimation of prices and

demand parameters by both players.

The aim of this paper is to understand the properties of the network bilevel pricing

problem and to estimate the loss of revenue due to neglecting randomness. It is structured

as follows. In Section 3.2, we provide a preliminary view of two-stage stochastic program-

ming. In Section 3.3, we introduce the two-stage network pricing model, whose mathematical

properties are investigated in Section 3.4. In Section 3.5 we illustrate the various concepts

through two examples, while numerical tests on a larger instance are presented and analyzed

in Section 3.6. In a concluding section, we open avenues for further research.

3.2 Two-stage stochastic bilevel programming

Bilevel programming (BP) allows the natural modelling of hierarchical situations where

a subset of decision variables is not under the control of the main optimizer (leader/upper

level) but is controlled by a follower (lower level) who optimizes its own objective function

with respect to the parameters set by the leader. Mathematically, it is expressed as

max
x,y

F1(x, y)

s.t. G1(x, y) ≤ 0,

y ∈ arg min
ŷ

f1(x, ŷ),

s.t. g1(x, ŷ) ≤ 0.

(3.1)

In the sequel, and in order to simplify notation, we will only specify the programs of the leader

and the follower, since they contain all the information relevant to the bilevel program.
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We now introduce a two-stage stochastic model, where the first-stage decisions are made

before observing the random outcome at the second-stage. The second-stage decision corres-

ponds to a “recourse”, once all randomness has been removed. Notationwise, we consider a

random vector ξ with realizations ξ and support Ξ, in a probability space (Ω,F , P ), where

Ω denotes the set of all random events and F the set of all subsets of Ω. The two-stage SBP

is formulated as follows :

max
x

F1(x, y) +Q(x, y)

s.t. G1(x, y) ≤ 0,

min
y

f1(x, y)

s.t. g1(x, y) ≤ 0,

(3.2)

where

Q(x, y) = Eξ [Φ(x, y, ξ)] , ξ : Ω→ <r,

and, for any outcome ξ(ω) ∈ Ξ (ω ∈ Ω),

Φ(x, y, ξ(ω)) = max
x′(ω)

F2(x′(ω), y′(ω), ω)

s.t. G2(x′(ω), y′(ω), x, y, ω) ≤ 0,

min
y′(ω)

f2(x′(ω), y′(ω), ω)

s.t. g2(x′(ω), y′(ω), x, ω) ≤ 0.

It is easy to show that the above program can be reformulated as the “standard” bilevel

program
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max
x,x′

F1(x, y) + Eξ [F2(x′(ξ), y′(ξ), ξ)]

s.t. G1(x, y) ≤ 0,

G2(x′(ω), y′(ω), x, y, ω) ≤ 0, ∀ω ∈ Ω,

min
y,y′

f1(x, y) + Eξ [f2(x′(ξ), y′(ξ), ξ)]

s.t. g1(x, y) ≤ 0,

g2(x′(ω), y′(ω), x, ω) ≤ 0, ∀ω ∈ Ω.

(3.3)

Alternatively, if all lower level problems are convex and regular (assuming some constraint

qualification is satisfied) and if all functions involved are continuously differentiable, then the

SBP can be equivalently stated as the “standard” stochastic program

max
x,y
µ

F1(x, y) +Q(x, y)

s.t. G1(x, y) ≤ 0,

∇yf1(x, y) + µ∇yg1(x, y) = 0,

µg1(x, y) = 0,

g1(x, y) ≤ 0,

µ ≥ 0,

(3.4)

where

Q(x, y) = Eξ [Φ(x, y, ξ)] , ξ : Ω→ <r,
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and, for any outcome ξ(ω) ∈ Ξ,

Φ(x, y, ξ(ω)) = max
x′(ω),y′(ω)
µ′(ω)

F2(x′(ω), y′(ω), ω)

s.t. G2(x′(ω), y′(ω), x, y, ω) ≤ 0,

∇y′(ω)f2(x′(ω), y′(ω), ω) + µ′(ω)∇y′(ω)g2(x′(ω), y′(ω), x, ω) = 0,

µ′(ω)g2(x′(ω), y′(ω), x, ω) = 0,

g2(x′(ω), y′(ω), x, ω) ≤ 0,

µ′(ω) ≥ 0,

where µ and µ′(ω) (for each ω ∈ Ω) are the multipliers associated with the first- and second-

stage follower subproblems, respectively. Under suitable assumptions, such as the finiteness

of the set Ω (i.e. discrete-distribution assumption), the two-stage SP (3.4) can be expressed

as the single level program

max
x,y,µ
x′,y′,µ′

F1(x, y) + Eξ [F2(x′(ξ), y′(ξ), ξ)]

s.t. G1(x, y) ≤ 0,

∇yf1(x, y) + µ∇yg1(x, y) = 0,

µg1(x, y) = 0,

g1(x, y) ≤ 0,

µ ≥ 0,

G2(x′(ω), y′(ω), x, y, ω) ≤ 0,

∇y′(ω)f2(x′(ω), y′(ω), ω) + µ′(ω)∇y′(ω)g2(x′(ω), y′(ω), x, ω) = 0,

µ′(ω)g2(x′(ω), y′(ω), x, ω) = 0,

g2(x′(ω), y′(ω), x, ω) ≤ 0,

µ′(ω) ≥ 0,


∀ω ∈ Ω.

(3.5)
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3.3 A Two-Stage bilevel pricing model

Let us consider a multicommodity transportation network built around a graphG(N,Λ, K)

with node set N , arc set Λ, and commodity set K, each commodity (origin-destination pair) k

being endowed with a demand nk. The set Λ is partitioned into the subsets Λ1 and Λ2 of tariff

and tariff-free arcs, respectively. The bilevel network pricing problem introduced by Labbé

et al. (1998) consists in maximizing the revenue raised from tariffs, knowing that user flows

are assigned to cheapest paths. Since large tariffs will drive users towards tariff-free paths,

the optimal trade-off is achieved by solving the bilevel mathematical program

max
t

t
∑
k∈K

xk

min
x,y

(c+ t)
∑
k∈K

xk + d
∑
k∈K

yk

s.t. Axk +Byk = bk, ∀k ∈ K,

xk, yk ≥ 0, ∀k ∈ K,

(3.6)

where t is the vector of tariff variables controlled by the leader, xk and yk are the flows of

commodity k on the tariff and tariff-free arcs, the vectors c and d are the fixed costs on the

tariff and tariff-free arcs, and (A,B) denotes the node-arc incidence matrix that characterizes

the flow-conservation constraints at the lower level. The vectors bk, which express nodal

balance, are defined as

bki =


nk, if i = O(k),

−nk, if i = D(k),

0, otherwise.

We now extend this model to a two-stage stochastic framework where all scenarios share a

common network structure, but may differ in the values of the cost and demand parameters.

As frequently occurs in practice, we impose that tariff increases (or decreases) cannot exceed
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a predetermined threshold δa on each toll arc a of the network. Under a risk-neutrality

assumption, this yields the mathematical program

max
t

t
∑
k∈K

xk +Q(t)

min
x,y

(c+ t)
∑
k∈K

xk + d
∑
k∈K

yk

s.t. Axk +Byk = bk, ∀k ∈ K,

xk, yk ≥ 0, ∀k ∈ K,

(3.7)

where

Q(t) = Eξ [Φ(t, ξ)] , ξ : Ω→ <2,

and, for any outcome ξ(ω) ∈ Ξ, the recourse takes the form of the bilevel program

Φ(t, ξ(ω)) = max
t′(ω)

t′(ω)
∑
k∈K

x′k(ω)

s.t. (t, t′(ω)) ∈ Π,

min
x′,y′

(c′(ω) + t′(ω))
∑
k∈K

x′k(ω) + d′(ω)
∑
k∈K

y′k(ω)

s.t. Ax′k(ω) +By′k(ω) = b′k(ω), ∀k ∈ K,

x′k(ω), y′k(ω) ≥ 0, ∀k ∈ K,

where the set Π is defined as either

Π = {(t, t′(ω)) : |t′a(ω)− ta| ≤ δa,∀a ∈ Λ1} (3.8)

if tariff changes are limited in absolute values (absolute restriction, AR in short) or

Π = {(t, t′(ω)) : |t′a(ω)− ta| ≤ δa |ta| ,∀a ∈ Λ1} (3.9)
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if tariff changes are limited proportionally (proportional restriction, PR in short). It is clear

that, if δ = ∞, the first- and second-stage programs can be solved independently of each

other, and that the formulation is devoid of interest. Also, due to its structure, the problem

can alternatively be formulated as the single-stage bilevel program

max
t,t′

t
∑
k∈K

xk + Eξ
[
t′(ξ)

∑
k∈K

x′k(ξ)
]

s.t. (t, t′(ω)) ∈ Π, ∀ω ∈ Ω,

min
x,x′

y,y′

U(t, x, y) + Eξ [U ′(t′(ξ), x′(ξ), y′(ξ), ξ)]

s.t. Axk +Byk = bk, ∀k ∈ K,

Ax′k(ω) +By′k(ω) = b′k(ω), ∀k ∈ K, ∀ω ∈ Ω,

xk, yk, x′k(ω), y′k(ω) ≥ 0, ∀k ∈ K, ∀ω ∈ Ω.

(3.10)

where

U(t, x, y) = (c+ t)
∑
k∈K

xk + d
∑
k∈K

yk

and

U ′(t′(ξ), x′(ξ), y′(ξ), ξ) = (c′(ω) + t′(ξ))
∑
k∈K

x′k(ξ) + d′(ξ)
∑
k∈K

y′k(ξ).

An interesting instance of Program (3.7) occurs when tariffs are not allowed to vary from

one stage to the next (δ = 0), and the cost vectors c′(ω) and d′(ω) on the tariff and tariff-free

arcs assume common values c and d for all scenarios ω, respectively. If both these conditions

are realized, the shortest paths for the first- and second-stage follower problems will agree

for any realization ω ∈ Ω, and the two-stage SBP (3.7) reduces to the single stage bilevel

program
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max
t

t
∑
k∈K

xk

min
x,y

(c+ t)
∑
k∈K

xk + d
∑
k∈K

yk

s.t. Axk +Byk = bk + Eξ
[
b′k(ξ)

]
, ∀k ∈ K,

xk, yk ≥ 0, ∀k ∈ K.

(3.11)

We close this section with a path reformulation that will prove useful in the sequel. To

this aim, we denote by Lk the set of paths available to commodity k, by Λρ
1 the set of tariff

arcs belonging to path ρ and by rρ the indicator variable that takes value one if the flow of

commodity k is assigned to path ρ ∈ Lk, and zero otherwise. At the second-stage, r′ρ′(ω) is

the path choice variable associated with scenario ω for every path ρ′ ∈ L′k(ω) and commodity

k. This yields the bilevel formulation

R(δ) = max
t,t′

∑
k∈K

nk
∑

ρ∈Lk,a∈Λρ1

tarρ + Eξ

[∑
k∈K

n′k(ξ)
∑

ρ′∈L′k(ξ),a∈Λρ
′

1

t′a(ξ)r
′
ρ′(ξ)

]
s.t. (t, t′(ω)) ∈ Π(δ), ∀ω ∈ Ω,

min
r,r′

U(t, r) + Eξ [U ′(t′(ξ), r′(ξ), ξ)]

s.t.
∑
ρ∈Lk

rρ = 1, ∀k ∈ K,

∑
ρ′∈L′k(ω)

r′ρ′(ω) = 1, ∀k ∈ K, ∀ω ∈ Ω,

rρ ≥ 0, r′ρ′(ω) ≥ 0,


∀k ∈ K, ∀ρ ∈ Lk,

∀ω ∈ Ω,

∀ρ′ ∈ L′k(ω),

(3.12)
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where

U(t, r) =
∑

k∈K,ρ∈Lk
nk
(∑
a∈Λρ1

(ca + ta)rρ +
∑
a∈Λρ2

darρ

)
and

U ′(t′(ξ), r′(ξ), ξ) =
∑

k∈K,ρ′∈L′k(ξ)

n′k(ξ)

( ∑
a∈Λρ

′
1

(c′a(ξ) + t′a(ξ))r
′
ρ′(ξ) +

∑
a∈Λρ

′
2

d′a(ξ)r
′
ρ′(ξ)

)
.

Replacing, at each stage, the lower level linear programs by their primal-dual optimality

conditions yields the bilinear program

max
t,r,λ
t′,r′,λ′

∑
k∈K

nk
∑

ρ∈Lk,a∈Λρ1

tarρ + Eξ

[∑
k∈K

n′k(ξ)
∑

ρ′∈L′k(ξ),a∈Λρ
′

1

t′a(ξ)r
′
ρ′(ξ)

]
s.t. (ta, t

′
a(ω)) ∈ Π(δ), ∀ω ∈ Ω,∀a ∈ Λ1,∑

ρ∈Lk
rρ = 1, ∀k ∈ K,

∑
ρ′∈L′k(ω)

r′ρ′(ω) = 1, ∀k ∈ K, ∀ω ∈ Ω,

λk ≤ nk
∑
a∈Λρ1

(ca + ta), ∀k ∈ K, ∀ρ ∈ Lk,

λk ≤ nk
∑
a∈Λρ2

da, ∀k ∈ K, ∀ρ ∈ Lk,

λ′k(ω) ≤ n′k(ω)
∑
a∈Λρ

′
1

(c′a(ω) + t′a(ω)),

 ∀k ∈ K, ∀ω ∈ Ω,

∀ρ′ ∈ L′k(ω),

λ′k(ω) ≤ n′k(ω)
∑
a∈Λρ

′
2

d′a(ω),

 ∀k ∈ K, ∀ω ∈ Ω,

∀ρ′ ∈ L′k(ω),

U(t, r) + Eξ [U ′(t′(ξ), r′(ξ), ξ)] =
∑
k∈K

(λk + Eξ
[
λ′k(ξ)

]
),

rρ ≥ 0, r′ρ′(ω) ≥ 0,


∀k ∈ K, ∀ρ ∈ Lk,

∀ω ∈ Ω,

∀ρ′ ∈ L′k(ω).

(3.13)
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Note that, for a limited number of scenarios and admissible paths, the solution to the

above program can, through a reformulation proposed for the deterministic case (see Labbé

et al. (1998)), be obtained from an off-the-shelf MIP solver.

3.4 Model properties

Some properties of Program (3.7), such as NP-hardness, are directly inherited from the

deterministic case (Roch et al. (2005)). Indeed, denoting by Γ(t) the lower level optimal value

for a given tariff vector t, Γ(∞)−Γ(0) is an upper bound on the firm’s revenue. Since similar

bounds Γ′ω(∞)−Γ′ω(0) apply to each scenario ω, it follows that the revenue of the stochastic

bilevel program is bounded above by

Γ(∞)− Γ(0) + Eξ
[
Γ′ξ(∞)− Γ′ξ(0)

]
.

The remainder of the section is devoted to a sensitivity analysis of the revenue function with

respect to the scalar parameter δ. Notation wise, it will be useful to refer explicitly to this

parameter when denoting sets and solutions : Π(δ), (t(δ), t′(ω, δ)), (rρ(δ), r
′
ρ′(ω, δ)). The use

of a star next to toll vectors will refer to optimal tolls.

It is straightforward that the revenue is an increasing function of δ. Our main results

will be concerned with continuity and piecewise linearity under the AR (absolute restriction)

case.

Proposition 3.4.1 Under the AR case, the value function R(δ) of Program (3.12) is a

continuous and piecewise linear function of the parameter δ.

Proof. Let δ̂ be an arbitrary positive number. We shall prove that, for an arbitrary positive

number ε, there exists a positive number ∆ such that

‖δ − δ̂‖∞ ≤ ∆⇒ |R(δ)−R(δ̂)| ≤ ε,
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where ‖ · ‖∞ denotes the infinity (or maximum) norm.

Continuity from the left. Let δa = δ̂a −∆. We create a feasible δ-solution by multiplying

the optimal δ̂-solution by 1− σ, where σ is a positive number less than one :

t(δ) ← (1− σ)t∗(δ̂)

t′(ω, δ) ← (1− σ)t′∗(ω, δ̂).

Since path tariffs all decrease in a proportional fashion, even though the shortest path

of each commodity may change, the optimal revenue under new tariffs will be at least (1 −

σ)R(δ̂). Let us define, for each ρ ∈ Lk and k ∈ K, Tρ =
∑
a∈ρ

ta and Uρ∗ = Cρ∗ + Tρ∗ where

ρ∗ denotes the shortest path of commodity k with respect to the optimal δ̂-solution. Similar

definitions can also be considered for each ρ′ ∈ L′k(ω) (k ∈ K and ω ∈ Ξ). Then, following

four partitions of each set Lk are considered to discuss about changes of shortest path and

total revenue under the new tariffs.

First partition is a subset of set Lk so that for each path ρ from this subset Tρ = Tρ∗

and Uρ = Uρ∗ . Therefore all paths with these properties are dominated and by decreasing all

tariffs proportionally the revenue corresponding to commodity k will decrease proportionally

under new tariffs. Besides, as far as the total revenue is the linear function of the commodities’

revenues, the total revenue will decrease proportionally and its optimal value will be at least

(1− σ)R(δ̂).

Second and third partitions are subsets of set Lk so that for each path ρ from this subset

Tρ < Tρ∗ and Uρ = Uρ∗ , or Tρ ≤ Tρ∗ and Uρ∗ < Uρ. It is clear that, all paths of these partitions

are extremely dominated and the revenue corresponding to commodity k will decrease pro-

portionally as long as all tariffs decrease proportionally. However, according to the linearity of

the revenue function, the total revenue will decrease proportionally and the optimal revenue

will be at least (1− σ)R(δ̂).
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Fourth partition is a subset of set Lk so that for each path ρ from this subset Tρ∗ < Tρ and

Uρ∗ < Uρ. So, under the new tariffs, the paths with these properties can dominate the shortest

path of commodity k for certain values of σ. So, even if the shortest path of commodity k is

dominated by a path ρ under new tariffs, the revenue corresponding to path ρ is greater than

the revenue corresponding to the shortest path ρ∗ because Tρ∗ < Tρ. Consequently, according

to the linearity of the revenue function, the total revenue will decrease proportionally under

new tariffs and its optimal value will be at least (1− σ)R(δ̂) under the new tariffs.

Moreover since, for every scenario ω there holds

|t′a(ω, δ)− ta(δ)| = (1− σ)|t′∗a (ω, δ̂)− t∗a(δ̂)|

≤ (1− σ)δ̂,

it follows that the perturbed solution is feasible and achieves a revenue equal to (1−σ)R(δ̂),

and thus the optimal revenue associated with δ is at least (1− σ)R(δ̂). By setting σ = ∆/δ̂

and ∆ = (δ̂/R(δ̂))ε, straightforward algebra yields R(δ) ≥ (1 −∆/δ̂)R(δ̂) = R(δ̂) − ε, from

which the conclusion follows.

Continuity from the right. If an arbitrary small increase from δ̂ to δ yields a jump in the

revenue function, then a contradiction is obtained by working backwards from δ the preceding

argument, i.e., through a proportional decrease of tariffs.

Let t∗(δ) and t′∗(ω, δ) denote an optimal δ-solution, and assume that the corresponding

difference in revenues M = R(δ) − R(δ̂) is larger than some positive number ε. A feasible

δ̂-solution is then obtained by multiplying the optimal δ-solution by 1−σ, where σ is a proper

positive number less than one :
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t(δ̂) ← (1− σ)t∗(δ)

t′(ω, δ̂) ← (1− σ)t′∗(ω, δ).

Since the path tariffs all decrease in a proportional fashion, as already discussed, even though

the shortest path of each commodity may change the revenue will be at least (1 − σ)R(δ̂).

Moreover since, for every scenario ω and tariff arc a there holds

|t′a(ω, δ̂)− ta(δ̂)| = (1− σ)|t′∗a (ω, δ)− t∗a(δ)|

≤ (1− σ)(δ̂ + ∆),

it follows that the perturbed solution is feasible and achieves a revenue equal to (1−σ)R(δ),

and thus the optimal revenue associated with δ̂ is at least (1 − σ)R(δ). By setting σ =

∆/(δ̂ + ∆) and ∆ = δ̂ε/(R(δ)− ε) from left hand-side continuity at point δ, we have

R(δ)−R(δ̂) ≤ ∆

δ̂ + ∆
R(δ)

≤ ε

which contradicts our assumption and concludes the proof.

Piecewise linearity. Whenever the lower level shortest paths are unique, the bilinear for-

mulation (3.13) reduces to a linear program in the tariff variables t and t′. It follows from

standard results in linear programming that the value function is piecewise linear concave,

with its slope possibly shifting downwards at points where the lower level solution is not

unique. �

The extension of the previous result to the PR case is not straightforward. While it is

true that the revenue function varies continuously with the parameter δ when the lower
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level solution is unique, we could only prove continuity over the whole range of values of δ

for problems involving but a single tariff arc (we omit the proof). As regards the piecewise

linearity, the result actually does not hold. Indeed, as we will be shown in the next section,

continuity pieces are hyperbolic.

3.5 Two illustrative examples

In this section, we illustrate the model through two small examples that involve a firm

optimizing over a two-period horizon where it is assumed that c′(ω) = c for every scenario ω.

We also compare the optimal value of the recourse problem (RP) versus that obtained from

a deterministic model based on the expected values of the random parameters (EEV), where

the latter is obtained in two phases. First, we solve the expected value problem corresponding

to Program (3.2)

max
x,y

F (x, y, ω̄), (3.14)

where ω̄ = E[ξ] and

F (x, y, ω̄) = F1(x, y) + Φ(x, y, ω̄).

Let (x̄, ȳ) be a first-stage optimal solution of Program (3.14). Then EEV is defined as

EEV = Eξ [F (x̄, ȳ, ξ)] . (3.15)

Throughout this paper, a mixed-integer reformulation of Program (3.12) is obtained by re-

placing the follower problem with its primal-dual (KKT) optimality conditions and solved

using CPLEX 11.0 under both the AR and PR cases.
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3.5.1 First example

Let us consider the network of Figure 3.1, where fixed costs are displayed next to the

corresponding arcs. The demands associated with commodities a − c and a − d are set to

n1 = 2 and n2 = 3 respectively.

Free arcs

Tariff arc

d

68

1

a

c
b1

1 + t

Figure 3.1 Transportation network (first example).

The data corresponding to each of two scenarios are displayed in Table 3.1 below. Throu-

ghout this paper, the abbreviations SC, OD, PROB and REV will refer to scenario, commo-

dity, probability of a scenario and revenue, respectively. Table 3.2 provides available paths of

each commodity. The parameter δ is set to 0.2.

Table 3.1 Random data for the two scenarios (first example).

SC PROB d′ac d′ad d′bc d′bd n′1 n′2

1 0.30 7.50 5.20 2.04 1.00 1 3

2 0.70 7.40 7.00 1.00 3.00 3 2

Table 3.2 Available paths (first example).

OD PATH OD PATH

a− c ρ1
1 : a− c a− d ρ2

1 : a− d
ρ1

2 : a− b− c ρ2
2 : a− b− d
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The optimal solutions for the absolute and proportional restrictions are displayed in Table

3.3. Columns STAGE I and STAGE II refer to the first- and second-stage solutions, respec-

tively, while columns SC I and SC II refer to the solutions of the second-stage problem with

respect to the first and second scenarios respectively. For this example, the added value of

the stochastic solution for the AR and PR cases are 0.26 and 0, respectively.

Table 3.3 RP and EEV solutions under the AR and PR cases (first example).

STAGE I STAGE II

RES SOL OD Tariff SC I Tariff SC II Tariff REV

AR RP a− c ρ1
2 3.20 ρ1

2 3.20 ρ1
2 3.00 30.34

a− d ρ2
2 ρ2

2 ρ2
2

EEV a− c ρ1
2 4.00 ρ1

2 4.20 ρ1
2 4.20 30.08

a− d ρ2
2 ρ2

1 ρ2
1

PR RP a− c ρ1
2 4.00 ρ1

2 3.20 ρ1
2 4.80 33.92

a− d ρ2
2 ρ2

2 ρ2
1

EEV a− c ρ1
2 4.00 ρ1

2 3.20 ρ1
2 4.80 33.92

a− d ρ2
2 ρ2

2 ρ2
1

More interesting than raw data is the sensitivity information with respect to the strategic

parameter δ that is shown in Table 3.4 and, Figures 3.2 and 3.3. Note that, under the PR

case, the revenue function is piecewise continuous, each piece corresponding to a hyperbola.

Under either restriction, the revenue function is not concave and converges finitely to the

value 35.18, as δ increases.
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Table 3.4 Revenue, tariff, and path changes for different values of δ under the AR and PR
cases (first example).

STAGE I STAGE II

RES δ OD Tariff SC I Tariff SC II Tariff REV

AR [0.00, 0.10] a− c ρ1
2 4.00 ρ1

2 4 + δ ρ1
2 4 + δ 29.6 + 2.4δ

a− d ρ2
2 ρ2

1 ρ2
1

[0.10, 0.662] a− c ρ1
2 3 + δ ρ1

2 3.20 ρ1
2 3.00 29.34 + 5δ

a− d ρ2
2 ρ2

2 ρ2
2

[0.662, 0.80] a− c ρ1
2 3.2 + δ ρ1

2 3.20 ρ1
2 3.2 + 2δ 26.56 + 9.2δ

a− d ρ2
2 ρ2

2 ρ2
1

[0.80, 1.40] a− c ρ1
2 4.00 ρ1

2 3.20 ρ1
2 4 + δ 32.24 + 2.1δ

a− d ρ2
2 ρ2

2 ρ2
1

δ ≥ 1.40 a− c ρ1
2 4.00 ρ1

2 3.20 ρ1
2 5.40 35.18

a− d ρ2
2 ρ2

2 ρ2
1

PR [0.00, 0.043] a− c ρ1
2 4.00 ρ1

2 4(1 + δ) ρ1
2 4(1 + δ) 29.6 + 9.6δ

a− d ρ2
2 ρ2

1 ρ2
1

[0.043, 0.16] a− c ρ1
2

3

1− δ
ρ1

2 3.20 ρ1
2 3.00 29.34− 14.34δ

1− δ
a− d ρ2

2 ρ2
2 ρ2

2

[0.16, 0.20] a− c ρ1
2

3.2

1− δ
ρ1

2 3.20 ρ1
2

3.2(1 + δ)

1− δ
26.56 + 2.88δ

1− δ
a− d ρ2

2 ρ2
2 ρ2

1

[0.20, 0.35] a− c ρ1
2 4.00 ρ1

2 3.20 ρ1
2 4(1 + δ) 32.24 + 8.4δ

a− d ρ2
2 ρ2

2 ρ2
1

δ ≥ 0.35 a− c ρ1
2 4.00 ρ1

2 3.20 ρ1
2 5.40 35.18

a− d ρ2
2 ρ2

2 ρ2
1
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Figure 3.2 Sensitivity with respect to δ (first example) : (A) The AR case (B) Zoom in.
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Figure 3.3 Sensitivity with respect to δ (first example) : (A) The PR case (B) zoom in.
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3.5.2 Second example

Our second example involves the network of Figure 3.4, that involves the single commodity

a−f with demand 8, three tariff arcs (dotted arcs on the picture), the two scenarios of Table

3.5, and the vector of δ-values set to (0.25, 0.10, 0.20). Travel costs are shown next to the

corresponding arcs. Available paths are specified in Table 3.6.

Free arcs

Tariff arcs

ed

a

f

c

1

b

15

12t3

3

3

25

t1

10

1 + t2

Figure 3.4 Network diagram (second example).

Table 3.5 Data for the two scenarios (second example).

SC PROB d′ab d′ac d′ad d′cf d′db d′df d′eb d′ef n′af

1 0.50 3.00 9.20 5.90 1.50 4.50 14.60 1.70 11.90 8

2 0.50 4.10 9.70 6.00 3.20 3.00 13.90 0.60 13.30 3

Tables 3.7 and 3.8 display the stochastic and expected solutions under the AR and PR

cases for the unconstrained and nonnegative tariff assumptions, respectively. Note that, al-

though the tariffs are different, yet the revenues are equal for both restrictions.
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Table 3.6 Available paths for commodity a− f (second example).

ρ1 : a− c− f
ρ2 : a− b− c− f
ρ3 : a− e− b− c− f
ρ4 : a− e− f
ρ5 : a− d− b− c− f
ρ6 : a− d− e− b− c− f
ρ7 : a− d− e− f
ρ8 : a− f

Table 3.7 RP and EEV solutions under the AR and PR cases (second example).

STAGE I STAGE II

RES SOL Tariff SC I Tariff SC II Tariff REV

AR RP ρ3 (−0.95, 7.80, 2.00) ρ3 (−1.20, 7.70, 2.20) ρ3 (−0.70, 7.90, 2.20) 91.60

EEV ρ3 (2.00, 5.65, 0.00) ρ1 (1.75, 5.55, 0.20) ρ3 (2.25, 5.75, 0.20) 73.20

PR RP ρ3 (1.73, 5.77, 0.00) ρ3 (1.30, 5.20, 0.00) ρ3 (1.74, 6.35, 0.00) 98.24

EEV ρ3 (2.00, 6.00, 0.00) ρ1 (1.50, 5.40, 0.00) ρ3 (1.50, 6.60, 0.00) 76.15

Table 3.8 RP and EEV solutions under the AR and PR cases and the nonnegative tariffs

(second example).

STAGE I STAGE II

RES SOL Tariff SC I Tariff SC II Tariff REV

AR RP ρ3 (0.25, 6.60, 0.00) ρ3 (0.00, 6.50, 0.00) ρ3 (0.50, 6.70, 0.00) 91.60

EEV ρ3 (2.00, 5.65, 0.00) ρ1 (1.75, 5.55, 0.20) ρ3 (2.25, 5.75, 0.20) 73.20

PR RP ρ3 (1.73, 5.77, 0.00) ρ3 (1.30, 5.20, 0.00) ρ3 (2.16, 5.93, 0.00) 98.24

EEV ρ3 (2.00, 6.00, 0.00) ρ1 (1.50, 5.40, 0.00) ρ3 (1.50, 6.60, 0.00) 76.15
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Table 3.9 provides the complete stochastic and expected optimal solutions under the AR

and PR cases for different values of the vector δ (all of its entries are equal). At critical points

0.152, 0.4, and 0.75, the solution of the lower level is not unique (AR case). Nonuniqueness

occurs at critical points 0.037, 0.0625, 0.08, 0.12, and 0.187 under the PR case. In Figure 3.5,

the value of the revenue is plotted against the value of δ, in both the AR and PR cases. A

more complex extension of this example, that involves two commodities and four outcomes,

is thoroughly analyzed in 4.6.
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Figure 3.5 Sensitivity with respect to δ (second example) : (A) The AR case (B) The PR

case.
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3.6 Larger instances

In this section, we present numerical results pertaining to randomly generated instances

involving 40 nodes and 200 arcs. Similar to Didi-Biha et al. (2006), random arcs are appended

to a “backbone” cycle, ensuring that there always exist alternative tariff-free paths, and that

the network is connected. For the sake of comparison, we have investigated several situations,

each one corresponding to a specific set of assumptions :

– Case 1 : Base case.

– Case 2 : Nonnegative tariffs.

– Case 3 : δ =∞ (decoupled stages).

– Case 4 : Nonnegative tariffs and δ =∞ (decoupled stages).

– Case 5 : δ = 0 (equal tariffs at both stages).

– Case 6 : Nonnegative tariffs and δ = 0 (equal tariffs at both stages).

– Case 7 : δ = 0 (equal tariffs at both stages) and deterministic cost structure.

– Case 8 : Nonnegative tariffs, δ = 0 (equal tariffs at both stages) and deterministic cost

structure.

In Tables 3.10–3.12, labels ‘%Tariff’, ‘#OD’, and ‘#SC’ refer to the percentage of tariff

arcs, the number of commodities, and the number of scenarios, respectively. Computational

time was limited to six hours and the average CPU time corresponding to five random

instances is reported in seconds. Columns ‘CPU-T’ and ‘#Opt’ display the average CPU

time and the number of instances solved to optimality within the allotted time, respectively.

Since large values of the parameter δ yield a decoupled system, one could expect that the

corresponding instances are numerically easier to solve. However, the tables tell a different

story, i.e., the complexity of Program (3.10) may or may not increase with the value of δ. It

was also observed that including nonnegativity constraints did not impact the computational

time significantly.
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At an another extreme, when δ is set to zero, one might expect that the smaller number of

variables resulting from equal tariffs at both stages eases the computational burden. Again,

and contrary to intuition, this is not the case. Indeed, according to Tables 3.11 and 3.12,

one can observe that Cases 5 and 6 are as challenging as Cases 1 and 2. In contrast, the

assumption of deterministic and equal fixed travel costs at both stages of the stochastic

programs (Cases 7 and 8), implies that shortest paths are the same at both stages, which

makes for instances that scale much better.

In order to assess the maximal size of problems that could be addressed to optimality, we

varied the percentage of tariff arcs, the number of commodities and the number of scenarios.

According to our tests, at most one instance can be solved for problems involving 5% tariff

arcs, 50 commodities, and two outcomes. In Cases 5 and 6, the maximum number of com-

modities and outcomes that could be addressed is 40 and 20, respectively. If we increase the

percentage of tariff arcs, the maximum size (with the notable exceptions of Cases 7 and 8)

involves 30 commodities and 2 outcomes for 10% tariff arcs, 20 commodities and 2 outcomes

for 15% tariff arcs, and 20 commodities and 2 outcomes for 20% tariff arcs.
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Table 3.10 Results for Didi Network (larger instances).

AR case PR case
% # # Case 1 Case 2 Case 1 Case 2

Tariff OD SC CPU-T #Opt CPU-T #Opt CPU-T #Opt CPU-T #Opt
5 5 2 1.87 5 0.75 5 0.26 5 0.26 5
5 5 4 26.91 5 1.14 5 0.32 5 0.31 5
5 5 8 351.56 5 3.93 5 1.26 5 1.25 5
5 10 2 49.71 5 9.17 5 3.72 5 3.28 5
5 10 4 83.41 5 11.48 5 2.86 5 2.82 5
5 10 8 875.27 3 86.72 5 105.61 5 92.59 5
5 20 2 137.05 3 615.40 5 335.45 5 322.64 5
5 20 4 149.61 1 153.29 3 70.49 3 67.16 3
5 20 8 960.60 1 1007.41 3 2474.48 3 2234.36 3
5 30 2 9961.13 2 899.28 3 2678.31 3 3024.45 3
5 30 4 - 0 - 0 1203.89 1 1016.32 1
5 30 8 - 0 - 0 - 0 - 0
5 40 2 - 0 6419.89 2 2284.95 1 2271.55 1
5 40 4 - 0 - 0 - 0 - 0
5 40 8 - 0 - 0 - 0 - 0
5 50 2 - 0 495.61 1 293.15 1 259.56 1
5 50 4 - 0 - 0 - 0 - 0
10 5 2 496.28 5 310.36 5 725.97 5 354.31 5
10 5 4 20.29 4 13.58 4 96.69 4 1.11 4
10 5 8 1056.18 4 987.39 4 787.50 3 4.20 4
10 10 2 48.11 3 32.87 3 30.70 3 23.79 4
10 10 4 588.35 3 1436.34 3 1945.78 3 321.95 4
10 10 8 2187.39 2 2610.53 2 20251.69 1 646.30 4
10 20 2 190.97 2 241.45 2 639.65 2 22.73 2
10 20 4 - 0 15221.37 1 - 0 2171.06 2
10 20 8 - 0 - 0 - 0 - 0
10 30 2 - 0 - 0 4537.59 1 425.68 1
10 30 4 - 0 - 0 - 0 - 0
15 5 2 2043.35 5 180.79 4 9.70 4 952.23 5
15 5 4 963.56 3 2954.89 3 82.13 4 7.33 4
15 5 8 3750.32 1 3689.99 1 396.38 2 364.27 3
15 10 2 45.40 2 65.52 2 126.59 3 8365.98 4
15 10 4 - 0 201.35 1 - 0 - 0
15 10 8 - 0 1179.94 1 - 0 - 0
15 20 2 - 0 - 0 503.71 1 991.27 2
20 5 2 35.07 4 2554.77 4 330.44 5 708.64 5
20 5 4 84.19 1 84.67 1 369.80 2 1648.94 2
20 5 8 - 0 - 0 - 0 508.88 2
20 10 2 5599.52 4 5425.45 4 644.59 4 2647.49 3
20 10 4 275.36 1 - 0 - 0 7334.49 2
20 10 8 - 0 - 0 - 0 - 0
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3.7 Conclusion and Future Work

In this paper, we have analyzed a two-stage stochastic bilevel pricing problem and its refor-

mulation as a single-stage SBP, focusing on sensitivity analysis with respect to the constraints

linking the tariffs at the two stages of the stochastic program. Several avenues for future re-

search are open. They include the theoretical analysis of the situation involving continuous

random variables, together with the development of a suitable numerical approach that takes

advantage of the network structure, and does not simply relies on a straightforward extension

of techniques developed in the deterministic case. On the modelling side, the extension of the

model to an arbitrary number of stages, either in closed loop or open loop (“feedback Sta-

ckelberg”) poses formidable challenges, both from the theoretical and computational points

of view, and requires investigation.



50

Appendix

Appendix A : Example 2 revisited

Let us consider a two-commodity extension of the network depicted in Figure 3.4 where

origin-destination pairs a−c and d−f are endowed with respective demands n1 = 8 and n2 =

5. Table 3.13 lists each random market price d′j (j = {1, ..., 8}) and random demand n′k (k =

1, 2). These are generated according to discrete uniform distributions [dj(1− τ), dj(1 + τ)]

and
[
nk(1− η), nk(1 + η)

]
, respectively. Note that the first outcome represents the most

favorable case with respect to the parameters τ and η, and the fourth outcome the least

favorable.

Table 3.13 Random market prices and demands.

SC PROB τ η d′ab d′ac d′ad d′cf d′db d′df d′eb d′ef n′ac n′df

1 0.20 0.10 0.20 3.00 9.10 4.80 1.90 3.30 14.00 1.10 12.80 8 5

2 0.30 0.25 0.30 2.40 10.60 4.00 1.50 2.60 11.90 1.10 14.70 7 5

3 0.30 0.25 0.30 3.40 8.60 5.40 1.80 2.70 11.60 1.10 10.40 9 4

4 0.20 0.40 0.40 4.00 6.30 6.80 2.30 1.80 18.20 0.90 16.40 11 7

Table 3.14 lists paths for the first and second commodities (a − c and d − f) associated

with the second example network (Figure 3.4).
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Table 3.14 Available paths for commodities a− c and d− f .

OD PATH OD PATH

a− c ρ1
1 : a− c d− f ρ2

1 : d− b− c− f

ρ1
2 : a− b− c ρ2

2 : d− e− b− c− f

ρ1
3 : a− e− b− c ρ2

3 : d− e− f

ρ1
4 : a− d− b− c ρ2

4 : d− f

ρ1
5 : a− d− e− b− c
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3.7.1 Results under the AR case

Tables 3.15–3.16 provide the stochastic and expected optimal solutions under the AR

case, for both unconstrained or nonnegative tariffs. In tables 3.15, 3.16, 3.19, and 3.20, la-

bel ‘EV’ refers to the expected revenue corresponding to four scenarios. The values of the

stochastic solutions are 23.85 and 22.27, respectively, and show that the added cost of sol-

ving the stochastic model is reasonable. It can also be observed from Tables 3.16 and 3.16

that, somewhat counterintuitively, a larger revenue can be obtained by restricting oneself to

nonnegative tariffs, when stochasticity is ignored.

Table 3.15 RP solution under the AR case : unrestricted/nonnegative tariffs.

SC OD Tariff REV EV

STAGE I a− c ρ1
3 (0.25, 6.60, 1.40) 94.80

d− f ρ2
2

STAGE II 1 a− c ρ1
3 (0.30, 6.70, 1.60) 97.50

d− f ρ2
2

2 a− c ρ1
3 (0.50, 6.70, 1.50) 91.40

d− f ρ2
2

3 a− c ρ1
3 (0.00, 6.50, 1.20) 89.30

d− f ρ2
2

4 a− c ρ1
1 (0.00, 6.70, 1.20) 46.90

d− f ρ2
1



83.09

Total REV (STAGE I+STAGE II) = 177.89
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Figure 3.6 (A) illustrates the revenue growth under the AR case, as δ increases, with

Figure 3.6 (B) zooming in on the interval [0, 1]. Table 3.17 displays the optimal tariffs,

second-stage revenue, and total revenue for different values of δ under the AR case.

0 2 4 6 8 10
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180

195

210

225

δ

R
ev

en
ue

0 0.25 0.5 0.75 1
165

180

195

205

δ

(A) (B)

Figure 3.6 Sensitivity with respect to δ : (A) The AR case (B) Zoom in.
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Table 3.17 Revenue and tariff changes for different values of δ under the AR case.

δ Tariff Q REV

[0.00, 0.125] (δ, 6.50 + δ, 1.20 + δ) 79.19 + 27.60δ 169.69 + 53.60δ

[0.125, 0.15] (δ, 6.50 + δ, 1.20 + δ) 79.99 + 21.20δ 170.49 + 47.20δ

[0.15, 0.25] (δ, 6.50 + δ, 1.20 + δ) 80.89 + 15.20δ 171.39 + 41.20δ

[0.25, 0.30] (δ, 6.50 + δ, 1.20 + δ) 81.39 + 13.20δ 171.89 + 39.20δ

[0.30, 0.428] (δ, 6.50 + δ, 1.20 + δ) 82.65 + 9.00δ 173.15 + 35.00δ

[0.428, 0.45] (δ, 6.50 + δ, 0.90 + δ) 82.35 + 13.20δ 171.35 + 39.20δ

[0.45, 0.55] (δ, 6.50 + δ, 0.90 + δ) 84.24 + 9.00δ 173.24 + 35.00δ

[0.55, 0.636] (δ, 6.50 + δ, 0.90 + δ) 86.55 + 4.80δ 175.55 + 30.80δ

[0.636, 0.65] (δ, 6.50 + δ, 1.20 + δ) 83.65 + 7.00δ 174.15 + 33.00δ

[0.65, 0.75] (δ, 6.50 + δ, 1.20 + δ) 86.38 + 2.80δ 176.88 + 28.80δ

[0.75, 0.80] (1.50− δ, 6.50 + δ, 1.20 + δ) 84.88 + 4.80δ 187.38 + 14.80δ

[0.80, 0.13] (1.50− δ, 6.50 + δ, 2) 83.20 + 6.90δ 189.70 + 11.90δ

[0.13, 1.11] (1.50− δ, 6.50 + δ, 1.20 + δ) 86.35 + 4.80δ 187.35 + 14.80δ

[1.11, 1.15] (1.50− δ, 6.50 + δ, 2.00) 86.35 + 4.80δ 192.85 + 9.80δ

[1.15, 1.45] (1.50− δ, 6.50 + δ, 2.00) 88.65 + 2.80δ 195.15 + 7.80δ

[1.45, 1.50] (−2.10 + δ, 6.50 + δ, 2.00) 98.33 176.03 + 21.00δ

[1.50, 1.80] (−3.60 + 2δ, 8.00, 2.00) 100.43− 1.40δ 185.63 + 14.60δ

[1.80, 7.80] (0.00, 8.00, 2.00) 95.39 + 1.40δ 209.39 + 1.40δ

δ ≥ 7.80 (0.00, 8.00, 2.00) 106.31 220.31
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Table 3.18 Optimal paths for different values of δ under the AR case.

SC OD δ ∈ [0.00, 0.13] δ ∈ [0.13, 1.45] δ ∈ [1.45,∞)

STAGE I a− c ρ1
3 ρ1

3 ρ1
3

d− f ρ2
2 ρ2

2 ρ2
2

STAGE II 1 a− c ρ1
3 ρ1

3 ρ1
3

d− f ρ2
2 ρ2

2 ρ2
2

2 a− c ρ1
3 ρ1

3 ρ1
3

d− f ρ2
2 ρ2

2 ρ2
2

3 a− c ρ1
3 ρ1

3 ρ1
3

d− f ρ2
2 ρ2

2 ρ2
2

4 a− c ρ1
1 ρ1

1 ρ1
3

d− f ρ2
1 ρ2

2 ρ2
1
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3.7.2 Results under the PR case

Tables 3.19–3.20 provide the stochastic and expected optimal solutions under the PR case.

However according to the inequality RP ≥ EEV, the value of the stochastic solution shows

the expected benefit obtained by solving the stochastic model instead of its deterministic

counterpart. As observed earlier, restriction to nonnegative tariffs can actually yield higher

revenues, when stochasticity is ignored (see Tables 3.19 and 3.20).

Table 3.19 RP solution under the PR case : unrestricted/nonnegative tariffs.

SC OD Tariff REV EV

STAGE I a− c ρ1
3 (0.40,6.89,1.87) 102.13

d− f ρ2
2

STAGE II 1 a− c ρ1
3 (0.30, 6.70, 2.20) 100.50

d− f ρ2
2

2 a− c ρ1
3 (0.50, 6.80, 1.50) 92.60

d− f ρ2
2

3 a− c ρ1
3 (0.30, 6.20, 1.50) 89.30

d− f ρ2
2

4 a− c ρ1
1 (0.30, 7.58, 1.50) 53.04

d− f ρ2
1



85.28

Total REV (STAGE I+STAGE II) = 187.41
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Figure 3.7 (A) presents the revenue for different values of δ under the PR case. Figure

3.7 (B) zooms in on the interval [0, 8].
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Figure 3.7 Sensitivity with respect to δ : (A) The PR case (B) Zoom in.

For simple examples, it is possible to obtain closed form expressions for the revenue,

expressed as a function of the key parameter δ. This is achived in Table 3.21 for the PR case.

Nonuniqueness of the lower level paths can be observed at the critical points corresponding

to δ-values such as δ = 0.462, 2.88 or 8.80.
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Table 3.21 Revenue and tariff changes for different values of δ under the PR case.

δ Tariff Q REV

[0.00, 0.03] (0, 6.50
1−δ ,

1.20
1−δ )

79.19+25.61δ
1−δ

169.69+25.61δ
1−δ

[0.03, 0.05] (0, 6.50
1−δ ,

1.20
1−δ ) 82.43 ↑ 83.73 175.73 ↑ 17.89

[0.05, 0.18] (0, 6.50
1−δ ,

1.20
1−δ )

82.65−62.05δ
1−δ

173.15−62.05δ
1−δ

[0.18, 0.23] (0, 7.92 ↑ 8, 1.46 ↑ 1.94) 87.17 ↑ 86.88 197.53 ↑ 200.62

[0.23, 0.25] (0, 8, 1.50
1−δ ) 84.31 + 11.2δ 180.81−177.11δ−11.2δ2

1−δ

[0.25, 0.36] (0, 8, 2) 81.91 + 20.8δ 195.91 + 20.80δ

[0.36, 0.37] (0, 8, 2) 73.48 + 44.2δ 187.486 + 44.2δ

[0.37, 0.38] (0, 8, 2) 86.8 + 8.2δ 200.806 + 8.2δ

[0.38, 0.462] (0, 8, 2) 84.07 + 15.4δ 198.07 + 15.4δ

[0.462, 0.525] (0,8,0.90
1−δ ) 87.64 + 11.20δ 196.14−180.44δ−11.2δ2

1−δ

[0.525, 0.55] (0,8,0.90
1−δ ) 93.52 202.02−197.52δ

1−δ

[0.55, 1.10] (0, 8, 2) 91.21 + 4.20δ 205.21 + 4.2δ

[1.10, 2.88] (0, 8, 2) 95.83 209.83

[2.88, 4.71] (−1, 9, 3) 96.79 + 1.40δ 205.79 + 1.4δ

[4.71, 6.80] (−7.80
1+δ

, 9.00, 3.00) 106.31 160.91+223.31δ
1+δ

[6.80, 8.80] (−1.00, 9.00, 3.00) 106.31 215.31

δ ≥ 8.80 (− 7.8
1−δ , 8 + 7.80

1−δ , 2) 106.31 259.31−220.31δ
1−δ
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Table 3.22 Optimal paths for different values of δ under the PR case.

SC OD δ ∈ [0.00, 0.462] δ ∈ [0.462, 2.88] δ ∈ [2.88, 8.80] δ ∈ [8.80,∞)

STAGE I a− c ρ1
3 ρ1

3 ρ1
3 ρ1

3

d− f ρ2
2 ρ2

2 ρ2
1 ρ2

2

STAGE II 1 a− c ρ1
3 ρ1

3 ρ1
3 ρ1

3

d− f ρ2
2 ρ2

2 ρ2
2 ρ2

2

2 a− c ρ1
3 ρ1

3 ρ1
3 ρ1

3

d− f ρ2
2 ρ2

2 ρ2
2 ρ2

2

3 a− c ρ1
3 ρ1

3 ρ1
3 ρ1

3

d− f ρ2
2 ρ2

2 ρ2
2 ρ2

2

4 a− c ρ1
1 ρ1

1 ρ1
3 ρ1

1

d− f ρ2
1 ρ2

2 ρ2
1 ρ2

2
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CHAPITRE 4

STOCHASTIC NETWORK PRICING : A THEME AND THREE

VARIATIONS

RÉSUMÉ

Dans cet article, nous poursuivons l’étude de la tarification biniveau stochastique sur deux

étapes (ou période) introduite dans Alizadeh et al. (2012), où les péages doivent être dé-

terminés sur un sous-ensemble d’arcs du réseau dans le but de maximiser les profits. Nous

considérons trois variations. Dans la première variation, nous supposons que la désutilité des

navetteurs intègre le délai et les conditions de fiabilité. Dans la seconde variation, nous in-

troduisons des contraintes aléatoires au niveau du meneur dont la pertinence se justifie par

des applications au domaine du transport ou des télécommunications. Dans la troisième va-

riation du modèle, nous intégrons la congestion associée aux capacités aléatoires sur les arcs

du réseau. Enfin pour chaque modèle, nous proposons une formulation en programmation

mathématique et présentons quelques résultats numériques.
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Stochastic network pricing and three variations

Shahrouz Mirza Alizadeh, Patrice Marcotte and Gilles Savard

ABSTRACT

Pursuing on the theme of two-stage bilevel stochastic pricing introduced in Alizadeh et al.

(2012), where profit-maximizing tariffs must be determined on a subset of arcs of a trans-

portation network, we consider three variations. In the first one, it is assumed that the

disutility of commuters incorporates tardiness and reliability terms. The second variation

involves chance constraints at the leader level, and is relevant to the realm of transporta-

tion/telecommunication. The third model embeds congestion associated with random capa-

cities along the arcs of the transportation network. For each model, we provide a mathematical

programming formulation, and illustrate their features through numerical examples.

Key words : Pricing, Bilevel Programming, Stochastic Programming, Mixed Integer Pro-

gramming

Submitted to : EURO Journal on Transportation and Logistics (EJTL) on November 8, 2012
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4.1 Introduction

In competitive markets, service providers must cope with different aspects of uncertainty

or risk, some of them related to an imperfect knowledge of demand, or of their competitors’

policies. With respect to demand, a firm would like to base a pricing policy on the sensi-

tivity of its potential customers to service delay or service reliability, taking into account

the time-varying and game-theoretic issues that impact the decision process. In recent years,

researchers have realized that this process fits the bilevel programming paradigm, whereby

a ‘leader’ firm takes explicitly into account the rational reaction of customers within its

optimization framework.

Our starting point is the pricing model of Labbé et al. (1998), where profit-maximizing

tariffs have to be set on a prescribed subset of arcs of a multicommodity transportation

network, knowing that demand is assigned to shortest paths with respect to the sum of

initial costs and tariffs. In a series of ensuing works, this modeling approach was adapted

by Bouhtou et al. (2002), Altman and Wynter (2004), Bouhtou et al. (2006), and Bouhtou

et al. (2007a) to the pricing of telecommunication networks, and by Shouping and Baozhuang

(2007) and Gao et al. (2011) in the realm of supply chains.

While the above mentioned studies took place in a deterministic setting, stochastic bilevel

programs have been the topic of articles by Patriksson and Wynter (1997), Christiansen et al.

(2001), Wynter et al. (2002), and Werner (2005), with respective applications in structural

optimization, network planning, and telecommunications. Also relevant to our study is the

work of Audestad et al. (2006), who applied the stochastic programming paradigm to the

analysis of competitive telecommunication markets. More precisely, the authors analyze a

game that takes place between several agents, namely the owner of the network, the custo-

mers, and virtual operators who lease capacity from the network owner, with the objective

of maximizing the joint profit of the market owner and the virtual operators, under either a

deterministic or stochastic setting. One can also mention Kosuch et al. (2012), who consider
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the problem of simultaneously determining product prices, together with capacities that arise

as stochastic right-hand-sides of multiknapsack constraints, and where chance constraints are

applied to each capacity. The role of the lower level is to enforce the purchase of cheapest

products.

More recently, Alizadeh et al. (2012) introduced a two-stage stochastic model for network

pricing, where each stage is endowed with a bilevel structure. In this model, second-stage

costs and demands may be random, and constraints link the price levels at both stages of the

program. They develop mathematical properties of the model, and provide a reformulation

as a standard bilevel program that can be numerically addressed by ‘standard’ techniques.

In the telecommunication industry, the pricing issue must be addressed by network opera-

tors who offer end-to-end services, while facing competition, uncertainty, risk averse clients,

and other quality of service (QoS) concerns. In this realm, customers select a QoS that best

suits their needs with respect to delay (related to congestion), reliability, costs, or other re-

levant metrics. Since the trade-off values of each customer with respect to these features, or

even the measure of these features themselves, cannot be evaluated with great accuracy, it is

natural to cast the pricing problem within a stochastic framework. Besides, a traditional and

large source of randomness is demand for each service per se. Therefore, stochastic optimiza-

tion is relevant to a large variety of telecommunication network problems, especially at the

design, planning and support levels. The interested reader is referred to Gaivoronski (2005),

who illustrates the power of stochastic programming tools for addressing problems that arise

in the telecommunication industry at the technological, network and enterprise levels.

Motivated by the above-mentioned frameworks of application, the present work focuses

on three stochastic variations on the network pricing theme, each one embedding aspects

that are relevant to real-life applications in transportation or telecommunications. These

incorporate features such as link capacity, path delay, punctuality, and network reliability.

Throughout, we assume that delays are random and that links may become unavailable, due

to congestion or random connection failures. For each model, we specify how randomness
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enters the mathematical formulation, and provide numerical illustrations based on mixed

integer linear reformulations of the original bilevel programs.

The structure of the paper is as follows. The first section introduces a two-stage stochastic

bilevel model, and more specifically its pricing version. Each of the following three sections

is devoted to one variation, including its formulation and a numerical illustration. The first

variation deals with stochastic disutilities that involve a tardiness term on top of the actual

travel delay, as arises in daily commuting from home to work. The second variation addresses

delay and reliability issues, two features that are common in transportation/telecom networks.

In this model, tardiness enters the leader’s objective through a penalty term, while chance

constraints are used to restrict overcapacity. The third variation, which mostly applies to road

networks, explicitly considers congestion, through the introduction of volume-delay curves.

Following a conclusion, and in order not to disrupt the presentation, the appendix discusses

very shortly the computational complexity of the problem, provides upper bounds that are

valid for the second and third variations, and mentions a continuity result.

4.2 Stochastic Bilevel programming

Bilevel programming allows the natural modelling of hierarchical situations where a subset

of decision variables is not under the direct control of the main optimizer (leader, or upper

level) but is controlled by a follower (user, or lower level) who optimizes its own objective

function with respect to parameters set by the leader. Mathematically, it is expressed as

max
x,y

F1(x, y)

s.t. G1(x, y) ≤ 0,

y ∈ arg min
ŷ

f1(x, ŷ),

s.t. g1(x, ŷ) ≤ 0.

(4.1)
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In the sequel, and in order to simplify the notation, we will only specify the programs of the

leader and the follower, since they contain all the information relevant to the bilevel program.

We now introduce the stochastic bilevel programming (SBP) frameworks that will be used

to formulate the three variations. The first one involves random parameters at the follower

level, while the leader’s objective function involves an expectation. As a general rule, we

use the ‘prime’ notation to indicate the actual value of random variable associated with an

outcome ω. This yields :

max
x

Eξ [F1(x, y′(ξ))]

s.t. G1(x, y′(ω)) ≤ 0, ∀ω ∈ Ω,

min
y′(ω)

f1(x, y′(ω), ω),

s.t. g1(x, y′(ω), ω) ≤ 0,

 ∀ω ∈ Ω,

(4.2)

where ξ (ξ : Ω → <r) is a continuous random vector with realizations ξ (ξ = ξ(ω)) in some

probability space (Ω,F , P ), with Ω denoting the set of all random events, and F the set of

all subsets of Ω. In this ‘wait and see’ framework, the follower solves a deterministic program,

while the risk-neutral leader must factor randomness within its optimization process.

The second SBP takes the form of a chance-constrained bilevel program. Such constraints

are introduced as a measure of quality, and also as a means to limit exposure to risk, and

may be embedded either at the upper or lower level, or at both, as formulated below :
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max
x

F (x, y)

s.t. G1(x, y) ≤ 0,

Pr{G2(x, ξ) ≥ H(ξ)} ≥ α,

min
y

f1(x, y),

s.t. g1(x, y) ≤ 0,

Pr{g2(y, ξ) ≥ h(ξ)} ≥ β,

(4.3)

where G2(x, ξ) and g2(y, ξ) are frequently assumed, to be linear functions with respect to

x and y, respectively. The threshold α and β are reliability parameters belonging to (0, 1),

which can also be interpreted as the risk levels deemed acceptable by the decision makers.

Values close to zero correspond to a risky behaviour, and values close to one to a conservative

attitude.

Let us now focus our attention on a multicommodity transportation network built around

a graph G(N,Λ, K) with node set N , arc set Λ, and commodity set K, each commodity k

(origin-destination pair) being endowed with a demand nk. The set Λ is partitioned into the

subsets Λ1 and Λ2 of tariff and tariff-free arcs, respectively. The set of paths available for

commodity k is denoted by Lk, the set of tariff arcs belonging to path ρ by Λρ
1, and the set of

paths including at least one tariff arc by Lk1. The bilevel network pricing problem introduced

by Labbé et al. (1998) consists in maximizing the revenue raised from tariffs, knowing that

user flows are assigned to cheapest paths. Since large tariffs will drive users to tariff-free
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paths, the optimal trade-off is achieved by solving the bilevel mathematical program

max
t,T

∑
k∈K

nk
∑
ρ∈Lk1

Tρrρ

s.t. Tρ =
∑
a∈Λρ1

ta, ∀k ∈ K, ∀ρ ∈ Lk1,

min
r

∑
k∈K

nk
[ ∑
ρ∈Lk1

Tρrρ +
∑
ρ∈Lk

∑
a∈ρ

carρ
]
,

s.t.
∑
ρ∈Lk

rkρ = 1, ∀k ∈ K,

rρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk,

(4.4)

where t is the vector of tariff variables controlled by the leader, T the vector of revenue raised

from the various paths, and c the vector of fixed costs along the arcs. The leader constraint

establishes compatibility between tariffs and revenues, while the follower’s constraints consist

in flow conservation and flow nonnegativity. The proportion of flow from commodity k as-

signed to path ρ is denoted by rkρ , and it has been shown that, without loss of generality,

this variable can be restricted to the values zero or one, i.e., it can be considered as an in-

dicator function, in the absence of capacities. Throughout, we will make the following basic

assumptions :

1. For each commodity, there exists at least one path composed entirely of tariff-free arcs,

and whose availability (probability of being available) is strictly positive.

2. There does not exist a pricing procedure that yields positive returns and simultaneously

generates a negative-cost cycle. This assumption ensures that the lower level flows are

assigned to shortest paths.

3. Competition prices are fixed and are not influenced by the leader’s tariffs.

4. Demand is fixed and can be split between the paths of the network.

Note that the first two assumptions imply that the upper level revenue is bounded from

above. In the following sections, we extend Program (4.4) to the stochastic framework intro-
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duced at the beginning of this section.

4.3 First variation : Stochastic disutility

In the first variation, we introduce stochastic disutility at the user level. Disutility is mo-

delled as a function of fixed costs, tariffs, tardiness and reliability, and represents a situation

where users are ready to compromise their target arrival time for higher reliability. To achieve

this goal, the disutility terms are expressed as the ratio of tardiness over reliability, both the

numerator and denominator being random.

In this model, darc
a (ξ) and dnode

j (ξ) denote random delays along the arcs and nodes, respec-

tively, Hk refers to the target time (deadline) to destination D(k) associated with commodity

k, and p̄k is the penalty associated with one unit of tardiness, the latter being equal to

max
{

0, gρ(ω)−Hk
}

(4.5)

where the total random delay along a given path ρ ∈ Lk is given by

gρ(ξ) =
∑
a∈ρ

darc
a (ξ) +

∑
j∈ρ|j 6=D(k)

dnode
j (ξ). (4.6)

As mentioned previously, network links may become unavailable, due to unforeseen fai-

lures. We assume that the leader has perfect knowledge about the state of its own tariff links,

but not those of the competition. In order to model this situation, we introduce an exogenous

measure of the availability ha(ξ) ∈ (0, 1] of a tariff-free link. Assuming independence between

the links, the availability of a path is thus given by

h′ρ(ξ) =
∏
a∈ρ

ha(ξ) for ∀k ∈ K, ρ ∈ Lk.

The first variation is then expressed as the mathematical program
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max
t,T

Eξ

[∑
k∈K

nk
∑
ρ∈Lk1

Tρr
′
ρ(ξ(ω))

]
s.t.

∑
a∈Λρ1

ta = Tρ, ∀k ∈ K, ∀ρ ∈ Lk1,

min
r

∑
k∈K

nk
∑
ρ∈Lk

[
(Tρ +

∑
a∈ρ

ca + p̄k max
{

0, gρ(ω)−Hk
}

)/h′ρ(ω)
]
r′ρ(ω),

s.t.
∑
ρ∈Lk

r′ρ(ω) = 1, ∀k ∈ K,

r′ρ(ω) ≥ 0, ∀k ∈ K,


∀ω ∈ Ω,

(4.7)

where r′ρ(ω) is the indicator variable corresponding to outcome ω, that takes value one if the

flow of commodity k is assigned to path ρ ∈ Lk, and zero otherwise. As mentioned before, the

‘prime’ symbol refers to the actual value of the random variable associated with an outcome

ω. For instance, c′ρ(ω) denotes the fixed cost of path ρ ∈ Lk for any realization ω ∈ Ω, i.e.,

c′ρ(ω) = (
∑
a∈ρ

ca + p̄k max
{

0, gρ(ω)−Hk
}

)/h′ρ(ω).

In the standard fashion, we rewrite Programs (4.7) as a mixed-integer program. To achieve

this, we introduce a variable t̂a,ρ(ω) for each path ρ ∈ Lk, tariff arc a ∈ Λ1 and outcome ω ∈ Ω,

which takes value ta if and only if commodity k is assigned to path ρ ∈ Lk going through

tariff arc a, and is equal to zero otherwise. We obtain
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max
r′,t
t̂

Eξ

[∑
k∈K
ρ∈Lk1

∑
a∈Λρ1

nk t̂a,ρ(ξ(ω))

]

s.t.
∑
ρ∈Lk

r′ρ(ω) = 1, ∀ω ∈ Ω, ∀k ∈ K,

(1/h′ρ(ω))
∑
a∈Λρ1

ta + c′ρ(ω) ≥∑
ν∈Lk1

∑
a∈Λν1

(1/h′ν(ω))t̂a,ν(ω) +
∑
ν∈Lk

c′ν(ω)rν(ω),


∀ω ∈ Ω,∀k ∈ K,

∀ρ ∈ Lk,

−Mk∗
ω (1− r′ρ(ω)) ≤ t̂a,ρ(ω)− ta ≤Mk∗

ω (1− r′ρ(ω)),

−Mk∗
ω r
′
ρ(ω) ≤ t̂a,ρ(ω) ≤Mk∗

ω r
′
ρ(ω),


∀ω ∈ Ω,∀k ∈ K,

∀ρ ∈ Lk1,∀a ∈ Λρ
1,

r′ρ(ω) ∈ {0, 1},


∀ω ∈ Ω,∀k ∈ K,

∀ρ ∈ Lk.

(4.8)

The first set of constraints forces, without loss of optimality, each commodity to be assigned

to a single path, while the second set ensures that only paths of minimum disutility carry

nonzero flow. A suitable value for the ‘big-M’ parameter Mk∗
ω , i.e., one that does not cut off

potentially optimal solutions, is given by :

Mk∗

ω = max
k∈K
{Γ′kω (∞)− Γ′kω (0)}

where Γ′(t) denotes the lower level optimal value corresponding to a given tariff vector t, and

Γ′ω(∞)− Γ′ω(0) is an upper bound on the firm’s revenue for outcome ω.

Remark 4.3.1 If negative tariffs are disallowed, then one can a priori (in a preprocessing

phase) remove path ν ∈ Lk if there exists a path ρ ∈ Lk such that Λρ
1 ⊆ Λν

1 and c′ρ(ω) ≤ c′ν(ω)

for every realization ω ∈ Ω. We then say that path ρ dominates path ν.



73

4.3.1 A numerical example

In this section, we illustrate the model through an example inspired from the airline/telecom

network shown in Figure 4.1, where fixed costs are displayed next to the corresponding arcs.

The demand associated with commodities a − c and d − f is set to n1 = 8 and n2 = 5 res-

pectively, and the available paths for each commodity are displayed in Table 4.1. The vector

of deadlines at destination (target arrival times) is H = (5.5, 6.3), and the vector of unit

tardiness penalties is set to p̄ = (0.2, 0.5). Table 4.2 contains the three distinct sets of fixed

cost data that were considered.

Free arcs

Tariff arcs

ed

a

f

c

1

b

15

12t3

3

3

25

t1

10

1 + t2

Figure 4.1 Example network
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Table 4.1 Available paths for commodities a− c and d− f

OD PATH OD PATH

a− c ρ1
1 : a− c d− f ρ2

1 : d− f

ρ1
2 : a− b− c ρ2

2 : d− e− f

ρ1
3 : a− e− b− c ρ2

3 : d− e− b− c− f

ρ1
4 : a− d− b− c ρ2

4 : d− b− c− f

ρ1
5 : a− d− e− b− c

Table 4.2 Fixed costs along the arcs

# ae bc de ab ac ad cf db df eb ef

1 0 1 0 3 10 5 2 3 15 1 12

2 0 0 0 7 4 4 1 11 32 2 20

3 2 1 1 2 6 2 0 4 15 2 18

In the realm of air transportation, arc and node delays allow the representation of air

travel times and ground delays, respectively. Those can be influenced by weather conditions

or technical problems, among other factors, and have a ripple effect throughout the network.

In the world of telecommunications, arc delays are related to transmission along the lines of

the network, while queueing occurs at the nodes.

Tables 4.3-4.5 list the fixed part of node delays dnode
j (j = {a, b, c, d, e, f}), link de-

lays darc
a (a ∈ {ae, bc, de, ab, ac, ad, cf, db, df, eb, ef}), and random link reliabilities of tariff-

free link ha (a ∈ {ab, ac, ad, cf, db, df, eb, ef}), respectively. These are generated according
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to discrete uniform distributions
[
υnode
j (1− η), υnode

j (1 + η)
]
, [υarc

a (1− η), υarc
a (1 + η)], and

[κa(1− η),κa(1 + η)], respectively, where vectors υarc, υnode, and refer to the free flow tra-

vel/transmission time on the arcs and through the nodes, respectively, and κ refers to the

free flow reliability on the arcs. Vectors υarc and υnode are given as

υarc = (5.34, 0.97, 4.46, 1.36, 9.95, 4.63, 1.29, 1.30, 5.78, 2.68, 3.35),

υnode = (0.32, 0.82, 1.28, 0.35, 1.78, 1.41),

and

κ = (0.95, 0.90, 0.75, 0.80, 0.70, 0.90, 0.85, 0.70).

Note that, with respect to the parameter η, the first and fourth outcomes are the most and

least favorable, respectively. Finally, throughout this paper, the abbreviations SC and PROB

will refer to a scenario and its associated reliability.

Table 4.3 Random node delays

SC PROB η dnode
a dnode

b dnode
c dnode

d dnode
e dnode

f

1 0.20 0.10 0.30 0.77 1.20 0.33 1.67 1.33

2 0.30 0.25 0.29 0.74 1.15 0.31 1.60 1.27

3 0.35 0.25 0.30 0.76 1.18 0.32 1.65 1.30

4 0.15 0.40 0.23 0.59 0.92 0.25 1.28 1.02
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Table 4.4 Random link delays

SC darc
ae darc

bc darc
de darc

ab darc
ac darc

ad darc
cf darc

db darc
df darc

eb darc
ef

1 5.02 0.91 4.19 1.28 9.35 4.35 1.21 1.22 5.43 2.52 3.15

2 4.81 0.87 4.01 1.22 8.95 4.17 1.16 1.17 5.20 2.41 3.01

3 4.94 0.90 4.13 1.26 9.20 4.28 1.19 1.20 5.35 2.48 3.10

4 3.84 0.70 3.21 0.98 7.16 3.33 0.93 0.94 4.16 1.93 2.41

Table 4.5 Random link reliability of tariff-free links

SC hab hac had hcf hdb hdf heb hef

1 0.89 0.85 0.71 0.75 0.66 0.85 0.80 0.66

2 0.85 0.81 0.67 0.72 0.63 0.81 0.77 0.63

3 0.88 0.83 0.69 0.74 0.65 0.83 0.79 0.65

4 0.68 0.65 0.54 0.58 0.50 0.65 0.61 0.50

In order to assess the loss of performance due to neglecting randomness, we will compare

the above revenues with the ones obtained from a deterministic approximation based on the

expected values of the random parameters (EEV). Those are obtained in two phases. First,

we solve the expected value problem corresponding to Program (4.2)
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max
x

F1(x, y)

s.t. G1(x, y) ≤ 0,

min
y

f1(x, y, ω̄),

s.t. g1(x, y, ω̄) ≤ 0,

(4.9)

where ω̄ = E[ξ]. Next, letting x̄ denote a first stage optimal solution of Program (4.9), we

define EEV as

max Eξ [F1(x̄, y′(ξ))]

s.t. G1(x̄, y′(ω)) ≤ 0, ∀ω ∈ Ω,

min
y′(ω)

f1(x̄, y′(ω), ω),

s.t. g1(x̄, y′(ω), ω) ≤ 0,

 ∀ω ∈ Ω.

(4.10)

Tables 4.6 and 4.7 present the stochastic and EEV solutions of Program (4.8), correspon-

ding to the given data and different sets of the fixed costs. The abbreviations OD and REV

refer to commodity and revenue, respectively, and columns ‘I’, ‘II’, ‘III’ and, ‘IV’ refer to the

scenario indices.
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Table 4.6 Stochastic optimal solutions of Program (4.8)

# OD I II III IV Tariff REV

1 a− c ρ1
2 ρ1

2 ρ1
2 ρ1

3 (−0.16, 7.35,−0.76) 58.61

d− f ρ2
1 ρ2

1 ρ2
1 ρ2

1

2 a− c ρ1
3 ρ1

3 ρ1
3 ρ1

3 (−9.89, 11.32, 4.46) 81.85

d− f ρ2
3 ρ2

3 ρ2
3 ρ2

2

3 a− c ρ1
2 ρ1

2 ρ1
2 ρ1

2 (−3.32, 3.73,−0.52) 43.48

d− f ρ2
3 ρ2

3 ρ2
3 ρ2

1

Table 4.7 EEV optimal solutions of Program (4.8)

# OD I II III IV Tariff REV

1 a− c ρ1
2 ρ1

2 ρ1
2 ρ1

3 (−0.21, 7.32,−1.61) 57.10

d− f ρ2
1 ρ2

1 ρ2
1 ρ2

2

2 a− c ρ1
1 ρ1

3 ρ1
1 ρ1

3 (−4.39, 5.83, 9.91) 29.96

d− f ρ2
4 ρ2

4 ρ2
4 ρ2

1

3 a− c ρ1
2 ρ1

2 ρ1
2 ρ1

3 (−3.77, 4.10,−0.86) 37.19

d− f ρ2
3 ρ2

1 ρ2
3 ρ2

1

From Tables 4.6 and 4.7, we observe that the loss of revenue associated with the determi-

nistic approximation can be in excess of 10%, which confirms the relevance of the stochastic

formulation. Tables 4.8 and 4.9 provide sensitivity information with respect to changes in

tardiness penalty p̄ and deadline H, for the first data set, illustrating how optimal paths
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vary. A graphical representation of the sensitivity is provided in Figures 4.2 and 4.3.

From an economic standpoint, one expects that higher penalty sensitivity will drive com-

muters to more reliable paths, usually (partially) controlled by the leader, who can then take

advantage of the situation to increase tariffs and revenues (see Figure 4.2). The impact of the

variation of the deadline H is less straightforward. Indeed, increasing H may render attractive

a previously unattractive of even infeasible tariff path, and consequently open new opportu-

nities for increasing tariffs and revenues. This can be observed in the two upper graphs of

Figure 4.3 . Alternatively, large values of H can render attractive a longer tariff-free path,

and then force the leader to lower its tariffs, leading to lower revenue, as can be seen on

the lower graph of Figure 4.3. A priori, and without solving the problem, one cannot predict

which of the two situations will occur.

Table 4.8 Sensitivity analysis with respect to p̄ for the first data set (#1)

p̄ I II III IV

[0.00, 0.02] (ρ1
3, ρ

2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
1)

[0.02, 0.15] (ρ1
3, ρ

2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
2)

[0.15, 0.31] (ρ1
2, ρ

2
3) (ρ1

2, ρ
2
3) (ρ1

2, ρ
2
3) (ρ1

3, ρ
2
2)

p̄ ≥ 0.31 (ρ1
2, ρ

2
1) (ρ1

2, ρ
2
1) (ρ1

2, ρ
2
1) (ρ1

3, ρ
2
1)
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Table 4.9 Sensitivity analysis with respect to H for the first data set (#1)

H I II III IV

[0.00, 6.30] (ρ1
2, ρ

2
1) (ρ1

2, ρ
2
1) (ρ1

2, ρ
2
1) (ρ1

3, ρ
2
1)

[6.30, 6.84] (ρ1
2, ρ

2
1) (ρ1

3, ρ
2
1) (ρ1

2, ρ
2
1) (ρ1

3, ρ
2
1)

[6.84, 7.14] (ρ1
2, ρ

2
1) (ρ1

3, ρ
2
1) (ρ1

3, ρ
2
1) (ρ1

3, ρ
2
1)

[7.14, 7.47] (ρ1
3, ρ

2
1) (ρ1

3, ρ
2
1) (ρ1

3, ρ
2
1) (ρ1

3, ρ
2
1)

[7.47, 8.86] (ρ1
3, ρ

2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
2)

H ≥ 8.86 (ρ1
3, ρ

2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
3) (ρ1

3, ρ
2
1)
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Figure 4.2 Sensitivity with respect to the tardiness penalty p̄
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Figure 4.3 Sensitivity with respect to the deadline H

4.4 Second variation : Chance constraints

We now introduce the framework of the second variation, which shares several features

with the first one. However, the differences are twofold. First, the tardiness penalty is incurred

by the leader. Second, reliability of an arc is now related to the flow that it carries, and to

a random target capacity. A chance constraint, whose role is to prevent overflow and ensure

a reliable performance level of the system, is then imposed to the leader. In this setting, the

path choice of the follower is not influenced by the reliability of the paths, since the constraint

imposed at the upper level ensures a predetermined and satisfactory level of service.

Notation-wise, the model involves a random vector of link capacities C ′(ξ) (ξ : Ω′ → <|Λ1|)

at the upper level. The role of chance constraints is then to ensure that the probability of not

meeting these target values lies below some predetermined threshold. According to the above

considerations, the corresponding model takes the form of the chance constrained bilevel
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program

max
t,T

∑
k∈K

∑
ρ∈Lk1

(
Tρ − p̄kEξ

[
max

{
0, gρ(ξ)−Hk

}] )
fρ

s.t.
∑
a∈Λρ1

ta = Tρ, ∀k ∈ K, ∀ρ ∈ Lk1,

xa =
∑
k∈K

∑
ρ∈Lk|a∈ρ

fkρ , ∀a ∈ Λ1,

Pr{xa ≥ C ′a(ξ)} ≤ αa, ∀a ∈ Λ1,

min
f

∑
k∈K

[ ∑
ρ∈Lk1

Tρf
k
ρ +

∑
ρ∈Lk

∑
a∈ρ

caf
k
ρ

]
,

s.t.
∑
ρ∈Lk

fkρ = nk, ∀k ∈ K,

fkρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk,

(4.11)

where f is the vector of path flows and gρ(ξ), defined in Equation (4.6), represents the total

delay. The parameter αa specifies the maximum risk of overloading, and may be interpreted

as a ‘protection level’ associated with link a.

According to the form of the chance constraints, setting the value of the tolerance parame-

ter α close to one reflects a risky attitude with respect to reliability requirements, but might

yield high profit. At the other end of the spectrum, setting α close to zero corresponds to a

risk averse leader. It will ensure high reliability (low congestion), at the expense of revenue.

Actually, if α = 0, then no flow at all (except for the case of infinite capacity) can be assigned

to the arcs that are in control of the leader, hence revenue (profit) is null.

In order to deal numerically with chance constraints without resorting to simulation,

the latter being computationally expensive, we make the assumption that arc capacities are

distributed according to uniform variates U [θaCa, Ca], where the parameter θ is an indicator

of the reliability of the link : the higher θa, the higher the probability that the target capacity

Ca be fully available. Low values of θa reflect a situation where disruptions may occur with

high probability, and thus that the link become partially or totally unavailable. Denoting by
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Fa the cumulative distribution function of U [θaCa, Ca], we can write

Pr{xa ≥ C ′a(ξ)} ≤ αa,

⇐⇒ xa ≤ F−1
a (αa),

⇐⇒ xa ≤ (αa + (1− αa)θa)Ca,

and it follows that Program (4.11) can be reformulated as

R(θ) = max
t,T

∑
k∈K

∑
ρ∈Lk1

(
Tρ − p̄kEξ

[
max

{
0, gρ(ξ(ω))−Hk

}] )
fρ

s.t.
∑
a∈Λρ1

ta = Tρ, ∀k ∈ K, ∀ρ ∈ Lk1,

xa =
∑
k∈K

∑
ρ∈Lk|a∈ρ

fkρ , ∀a ∈ Λ1,

xa ≤ (αa + (1− αa)θa)Ca, ∀a ∈ Λ1,

min
f

∑
k∈K

[ ∑
ρ∈Lk1

Tρfρ +
∑
ρ∈Lk

∑
a∈ρ

caf
k
ρ

]
,

s.t.
∑
ρ∈Lk

fkρ = nk, ∀k ∈ K,

fkρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk.

(4.12)

4.4.1 A numerical example

Let us again consider the network depicted in Figure 4.1, where the relevant information

is left unchanged, together with the additional data

C = (10, 20, 25), θ = (0.15, 0.20, 0.25), α = (0.05, 0.03, 0.04).



84

Table 4.10 Second variation : optimal solutions

# OD Flow Tariff REV

1 a− c (8, 0, 0, 0, 0) (−1, 9, 3) 41.22

d− f (0, 0.52, 0, 4.48)

2 a− c (8, 0, 0, 0, 0) (−15, 17, 9) 107.44

d− f (0, 0.52, 4.48, 0)

3 a− c (8, 0, 0, 0, 0) (−9, 10, 1) 44.80

d− f (0.52, 0, 0, 4.48)

Table 4.10 displays the optimal solutions of Program (4.12) (link flows, tariffs and revenue)

for the three data sets introduced earlier for the first variation. While flow is assigned to a

single path for the OD pair a− c, this is not the case for OD pair d− f , where flow is split

between two paths, in order to meet the capacity requirements set by the leader. Since path

flows at the lower level must be assigned to shortest paths, it follows that all paths that

carry positive flow are of equal and minimal costs. Moreover, since the same values of the

parameters α and θ have been uses across the three data sets, the path flow proportions do

not vary, as can be observed in Table 4.10, where we assumed identical capacities for each

data set. Sensitivity with respect to parameters α and θ is provided, for the first data set,

in Figures 4.4 and 4.5, as well as in Tables 4.11 and 4.12. When sensitivity is performed

with respect to a vector (versus one of its components), it is understood that all components

vary simultaneously and assume a common value. Note that when the parameters α2 and θ2

of tariff arc 2 are set to their initial values, varying the parameters of the two other tariff

arcs does not result in a revenue increase. The reason of this occurrence is because of less

role of the tariff arcs ae and de in the paths that the users are interested. Notwithstanding,

increasing simultaneously the three parameters results in a faster revenue increase.
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Figure 4.4 Second variation : sensitivity of revenue with respect to α
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Table 4.11 Second variation : sensitivity of revenue with respect to α

α OD Flow REV

[0.000, 0.062] a− c (8, 0, 0, 0, 0) 37.73 + 116.35α

d− f (0, 1− 16α, 0, 4 + 16α)

[0.062, 0.334] a− c (9− 16α, 0,−1 + 16α, 0, 0) 38.02 + 111.69α

d− f (0, 0, 5, 0)

[0.334, 0.764] a− c (6.5− 8.5α, 0, 1.5 + 8.5α, 0, 0) 55.50 + 59.34α

d− f (0, 0, 5, 0)

α ≥ 0.764 a− c (0, 0, 8, 0, 0) 100.85

d− f (0, 0, 5, 0)
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Table 4.12 Second variation : sensitivity of revenue with respect to θ

θ OD Flow REV

[0.000, 0.078] a− c (8, 0, 0, 0, 0) 7.13 + 216.07θ

d− f (3.4− 43.4θ, 1 + 24θ, 0, 0.6 + 19.4θ)

[0.078, 0.107] a− c (8, 0, 0, 0, 0) 12.93 + 141.73θ

d− f (0, 4.4− 19.4θ, 0, 0.6 + 19.4θ)

[0.107, 0.123] a− c (9.285− 22.25θ, 0,−1.285 + 22.25θ, 0, 0) 13 + 141.08θ

d− f (0, 4.9− 9.9θ, 0, 0.1 + 9.9θ)

[0.123, 0.334] a− c (7.5− 9.5θ, 0, 0.5 + 9.5θ, 0, 0) 13.35 + 138.23θ

d− f (0, 4.9− 9.9θ, 0, 0.1 + 9.9θ)

[0.334, 0.495] a− c (12.4− 19.4θ, 0,−4.4 + 19.4θ, 0, 0) 14.29 + 135.42θ

d− f (0, 0, 5, 0)

[0.495, 0.788] a− c (7.5− 9.5θ, 0, 0.5 + 9.5θ, 0, 0) 48.41 + 66.54θ

d− f (0, 0, 5, 0)

θ ≥ 0.788 a− c (0, 0, 8, 0, 0) 100.85

d− f (0, 0, 5, 0)

Let us focus on the first data set. In Table 4.11, we observe that the lower level solution is

not unique at the critical values 0.062, 0.334, and 0.764 of the parameter α. The same situation

occurs for θ at points 0.078, 0.107, 0.123, 0.334, 0.495, and 0.788 (see Table 4.12). It is

interesting to note that the corresponding sensitivity curves (see Figure 4.4 and Figure 4.5) are

continuous, increasing and piecewise linear, but not necessarily concave, as might have been



88

expected. The two dotted curves, corresponding to fixed values for α2 and θ2, respectively,

illustrate the role played by the second tariff arc bc. Indeed, higher values of the parameter α

relate to an increase in path reliability. Figure 4.6 shows the variation of the revenue function,

jointly in α and θ, where common values of α and θ are shown along the abscissa.
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Figure 4.6 Revenue with respect to simultaneous changes in α and θ

We close this section with a depiction of sensitivity analysis with respect to tardiness

and deadline arrival. Since the penalty is incurred on the leader, it is clear that revenue is a

decreasing (actually continuous, piecewise linear and convex) function of p̄ . If tariff links are

the most reliable, large values of p̄ force the leader to reduce its tariffs in order to prevent

the lower level flows to be assigned to less reliable paths. In contrast, revenue increases when

deadline H increases. The ‘max’ operator involved in the tardiness term makes it nonlinear,

but it need not be concave. As H goes beyond some threshold value, it becomes irrelevant,

and revenue stabilizes to some maximum value. This is illustrated in Figure 4.7.
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Figure 4.7 Sensitivity with respect to tardiness penalty p̄ and deadline H

4.5 Third variation : Congestion

Congestion is a prevalent issue in urban transportation (road works, weather conditions,

excess demand), as well as in telecommunications (traffic, network degradation), where it

is directly related to the ‘quality of service’. In contrast with the second variation, where

quality of service was enforced through a chance constraint, the third variation explicitly

models congestion via a volume-delay function of the BPR (Bureau of Public Roads) type :

υarc
a

[
1 +

(
xa

C ′a(ξ)

)m]
where, for every link a, υarc

a denotes the ‘free-flow’ travel time, xa the flow along link a, C ′a(ξ)

the random capacity of the link, and m is an exponent frequently set to the value 4. Assuming

a value of one for the value-of-time parameter that converts delays into monetary units, the
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travel delay on path ρ takes the form

gρ(x, ξ) =
∑
a∈Λρ1

υarc
a

[
1 +

( xa
C ′a(ξ)

)m]
+
∑
a∈Λρ2

υarc
a

=
∑
a∈Λρ1

υarc
a (

xa
C ′a(ξ)

)m +
∑
a∈Λρ

υarc
a . (4.13)

Assuming that customers only integrate costs (not congestion) within their objective leads

to the following bilevel formulation of the stochastic pricing problem over a network :

max
t,T

∑
k∈K

∑
ρ∈Lk1

Tρfρ

s.t.
∑
a∈Λρ1

ta = Tρ, ∀k ∈ K, ∀ρ ∈ Lk1,

Pr{gρ(x, ξ) ≤ Hk} ≥ βk, ∀k ∈ K, ∀ρ ∈ Lk1,

xa =
∑
k∈K

∑
ρ∈Lk|a∈ρ

fρ, ∀a ∈ Λ1,

min
f

∑
k∈K

[ ∑
ρ∈Lk1

Tρfρ +
∑
ρ∈Lk

∑
a∈ρ

cafρ
]
,

s.t.
∑
ρ∈Lk

fρ = nk, ∀k ∈ K,

fρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk,

(4.14)

where the leader’s chance constraints guarantee that travel time on the paths involving at

least one tariff arc respect to the target time, with some tolerance to tardiness βk that

depends on the commodity index k. Such requirement can be satisfied by attracting flow to

the reliable paths in control of the leader, striking the right balance between low tariffs (that

attract flow), and tariffs sufficiently large to prevent high congestion levels that would lead

to violations of the chance constraints.

In the model, we assume that the capacity of link a is distributed according to a discrete

uniform random variable over the interval [θC,C]. Since the number of outcomes is finite,

it is then possible to replace the chance constraints by linear constraints. To this aim, we
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introduce the auxiliary binary variables uρ(ω) for each ω ∈ Ω′, which is equal to 0 if and only

if gρ(x, ω) ≤ Hk, together with a ‘big-M’ constant M . One can then enforce the tardiness

constraints, for every commodity k, through the inequalities

gρ(x, ω)−Muρ(ω) ≤ Hk, (4.15)

Eξ [uρ(ω)] ≤ 1− βk. (4.16)

This yields the mixed integer nonlinear bilevel program

max
u,t,T

∑
k∈K

∑
ρ∈Lk1

Tρfρ

s.t. xa =
∑
k∈K

∑
ρ∈Lk|a∈ρ

fρ, ∀a ∈ Λ1,

∑
a∈Λρ1

ta = Tρ,

Eξ [uρ(ξ(ω))] ≤ 1− βk,

 ∀k ∈ K, ∀ρ ∈ Lk1,

gρ(x, ω)−Muρ(ω) ≤ Hk,

uρ(ω) ∈ {0, 1},

 ∀k ∈ K, ∀ρ ∈ Lk1, ∀ω ∈ Ω′,

min
f

∑
k∈K

[ ∑
ρ∈Lk1

Tρfρ +
∑
ρ∈Lk

∑
a∈ρ

cafρ
]
,

s.t.
∑
ρ∈Lk

fρ = nk, ∀k ∈ K,

fρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk.

(4.17)

In order to address Program (4.17) numerically, we replace the convex and link-separable

functions gρ by piecewise linear lower approximations over the intervals [0, (UBa)
m], where

the upper bound UBa is set to

UBa =
∑
k∈K

∑
ρ∈Lk|a∈ρ

nk
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for each a ∈ Λ1. This leads to the linear constraints

Xa ≥ qsaxa + wsa,

where qsa and wsa are the coefficients of the tangent line to the function (xa)
m at the point xsa,

that is, qsa = m(xsa)
m−1 and wsa = (1 −m)(xsa)

m for a ∈ Λ1 and s = 1, ..., Sa. It follows from

the convexity of gρ that this approximation is valid, i.e., it yields points (xa, Xa) that lie on

the graph and not strictly above the approximating curve (xa, Xa), at optimality. This leads

to the mixed integer program

max
t,T

∑
k∈K

∑
ρ∈Lk1

Tρfρ

s.t. Xa ≥ qsaxa + wsa, ∀a ∈ Λ1, s = 1, .., Sa,

xa =
∑
k∈K

∑
ρ∈Lk|a∈ρ

fρ,

Xa ≤ (UBa)
m,

 ∀a ∈ Λ1,

∑
a∈Λρ1

ta = Tρ,

Eξ [uρ(ξ(ω))] ≤ 1− βk,

 ∀k ∈ K, ∀ρ ∈ Lk1,

∑
a∈Λρ1

Va(ω)Xa −Muρ(ω) ≤ Hk,

uρ(ω) ∈ {0, 1},


∀k ∈ K, ∀ρ ∈ Lk1,

∀ω ∈ Ω′,

min
f

∑
k∈K

[ ∑
ρ∈Lk1

Tρfρ +
∑
ρ∈Lk

∑
a∈ρ

cafρ
]
,

s.t.
∑
ρ∈Lk

fρ = nk, ∀k ∈ K,

fρ ≥ 0, ∀k ∈ K, ∀ρ ∈ Lk,

(4.18)



93

where

Va(ω) = υarc
a /
(
C ′a(ω)

)m
.

Program (4.18) can be solved through an iterative procedure based on iteratively refining

the approximation of gρ. The algorithm is stopped as soon as the difference between to

consecutive values of the objective is less than some predetermined threshold ε. Note that,

at each iteration, the mixed integer approximation yields an upper bound on the actual

revenue. Symmetrically, a piecewise linear over-approximation of the BPR curves, yielding

an interpolation based on cords of the original power function, would have yielded a lower

bound on the actual revenue. In both cases, the iterative solutions converge to the solution of

the original solution, as the width of the subintervals involved in the partition tend to zero.

4.5.1 A numerical example

Let us consider the network and data used for the second variation. The vectors H and β

are set to (15, 11) and (0.90, 0.85), respectively, while the BPR exponent is set to 2 (quadratic

volume-delay curve). Ten outcomes of random link capacities C ′a(ξ) are generated according

to a uniform distribution [θCa, Ca], with associated probability vector

(0.05, 0.04, 0.10, 0.15, 0.01, 0.20, 0.15, 0.05, 0.10, 0.15).

Table 4.13 displays the optimal solutions of Program (4.18) for the three data sets.
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Table 4.13 Third variation : optimal solutions

OD Flow Tariff REV

1 a− c (3.91, 0, 4.09, 0, 0) (0, 8, 2) 77.92

d− f (0, 0.60, 4.40, 0)

2 a− c (4.51, 0, 3.49, 0, 0) (−15, 17, 9) 136.98

d− f (0, 0, 5, 0)

3 a− c (4.51, 0, 3.49, 0, 0) (−9, 10, 1) 58.49

d− f (0, 0, 5, 0)

For the first data set, sensitivity analysis of revenue with respect to parameters β and θ

is provided in Figures 4.8, 4.9, and Table 4.14.
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Figure 4.8 Third variation : sensitivity with respect to β
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Table 4.14 Third variation : sensitivity with respect to β (detailed flows) for the first data

set (#1)

β OD Flow REV

0.00 a− c (0, 0, 8, 0, 0) 114

d− f (0, 0, 5, 0)

(0.00, 0.2] a− c (3.46, 0, 4.54, 0, 0) 86.34

d− f (0, 0, 5, 0)

(0.20, 0.65] a− c (3.9, 0, 4.1, 0, 0) 82.79

d− f (0, 0, 5, 0)

(0.65, 0.85] a− c (3.71, 0, 4.29, 0, 0) 77.92

d− f (0, 0, 5, 0)

(0.85, 0.95] a− c (5.13, 0, 2.87, 0, 0) 72.93

d− f (0, 0, 5, 0)

(0.95, 0.99] a− c (5.13, 0, 2.87, 0, 0) 72.93

d− f (0, 0, 5, 0)

(0.99, 1.00] a− c (5.4, 0, 2.6, 0, 0) 70.78

d− f (0, 0, 5, 0)

The revenue is a decreasing, discontinuous and piecewise linear function of the probability

level β, while it is increasing and piecewise linear with respect to θ. This confirms our intuition

that high values of β tighten the chance constraints related to deadlines and allow to increase

tariffs on the links controlled by the leader.

Figure 4.10 illustrates the sensitivity of the revenue function with respect to simultaneous
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variations of α and β, both parameters taking identical values specified on the abscissa. For

some critical values, such as 0.20 or 0.65, the revenue may exhibit discontinuities downwards,

similar to what was observed when only β was increased. However, the rightmost jump shown

on the dotted curve does not translate into a jump in the solid curve since, before the abscissa

value 0.8 is reached, the constraint imposed by β is not active, and θ is large enough to allow

the maximum revenue 114 to be achieved. In other words, θ ‘offsets’ β, chance constraints

are not active and do not impact flows in Program (4.14), and the number of discontinuities

in the revenue function is reduced (by one in our example).
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Figure 4.10 Third variation : sensitivity with respect to simultaneous changes in β and θ

Finally, Figure 4.11 illustrates the sensitivity of the revenue with respect to parameters

H and C, individually, where revenue is clearly an increasing function of either of these

parameters, and stabilizes at the value 114. We observe that, while the slope corresponding

to the C-function is the smaller, the latter eventually overtakes the H-function, and reaches

the maximal value quickly.
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Figure 4.11 Third variation : sensitivity with respect to H and C, individually

4.6 Conclusion and Future Work

In this paper, we have considered three stochastic variations on the theme of bilevel

network pricing. Through reformulations as mixed integer programs, we have been able to

solve the problems for their global optima, as well as perform sensitivity analyses of the

revenue function with respect to key parameters pertaining to link capacities and tardiness

to destination. Since the MIP formulations do not scale well with problem size, future research

will focus on algorithmic approaches, either exact or heuristic, that take advantage of the

problem structure, as has been achieved for deterministic variants of bilevel pricing.
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Appendix

Appendix A : Upper bounds

Two properties of the stochastic network pricing problems considered in this paper are

worth mentioning.

1. Program (4.11) inherits NP-hardness from the basic deterministic case (Roch et al.

(2005)). Also, the upper bound on the leader’s profit derived in the deterministic case

(Program (4.4)) by Labbé et al. (1998) and extended to a stochastic environment by

Alizadeh et al. (2012), can also apply to the second variation (4.12). Precisely, it can

be computed as Γ′(∞)− Γ′(0), where Γ′ is defined as

Γ′ =
∑
k∈K

[∑
ρ∈Lk1

(
∑
a∈ρ

ca + T ′kρ + p̄kEξ
[
max

{
0, gρ(ξ)−Hk

}]
)fρ +

∑
ρ∈Lk
a∈ρ

cafρ

]

with

T ′ρ = Tρ − p̄kEξ
[
max

{
0, gρ(ξ)−Hk

}]
.

A related but slightly more complex upper bound can also be derived for the third

variation.

2. Variations two and three are reformulated as deterministic bilevel programs. It follows

(the proof is straightforward) that their objectives are continuous functions of the target

capacity vector C.
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CHAPITRE 5

GENERAL DISCUSSION and CONCLUSION

In this thesis, we studied the network pricing problem with a BP structure under uncer-

tainty. First, we presented (in Chapter 3) a two-stage stochastic bilevel pricing problem and

its reformulation as a single-stage SBP. We focused on sensitivity analysis with respect to

the constraints linking the tariffs at the two stages of the stochastic program. We considered

two forms of predetermined threshold restrictions (absolute restriction (AR) and proportio-

nal restriction (PR)) on each tariff arc of the network in the link constraints of the first-

and second-stage tariffs. We showed that the value function of our model is a continuous and

piecewise linear function in the AR case and a continuous piecewise hyperbolic in the PR

case. The numerical results show that the randomness of the fixed costs plays a more impor-

tant role than the randomness of the demands in the difficulty of different variations of the

model. There are several avenues for future research. They include the theoretical analysis of

the situation involving continuous random variables, and the development of a numerical ap-

proach that takes advantage of the network structure and does not rely on a straightforward

extension of the techniques developed in the deterministic case. On the modeling side, the

extension of the model to an arbitrary number of stages or to a two-stage SB pricing model

with capacity constraints, either in closed loop or open loop (“Stackelberg feedback”), poses

formidable challenges, both from the theoretical and computational points of view.

Second, we introduced (in Chapter 4) three variations of stochastic bilevel pricing pro-

blems based on real-life features, extending a standard framework that has been the topic of

several studies. Through reformulation as mixed integer programs, we have been able to find

global optima for these problems, and to perform sensitivity analyses of the revenue function

with respect to key parameters pertaining to link capacities and tardiness at destination.

Theoretical and numerical results showed that the value function of the second variation is
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a continuous function with respect to the design-capacity proportion parameter. We showed

that increasing the design-capacity proportion parameters, especially for those links that play

important roles in attracting users, increases the revenue significantly. Moreover, the value

function of the second variation is a discontinuous function with respect to the probability

level when we assume a discrete distribution for the random capacity variables to reformu-

late the chance constraints as linear constraints. Finally, since the MIP formulations do not

scale well with problem size, future research will have to focus on algorithmic approaches,

either exact or heuristic (such as primal-dual procedures), that take advantage of the problem

structure, as has been done for deterministic variants of bilevel pricing.
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