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1. INTRODUCTION 

In mixed-model manufacturing lines, which are common in 
Just-in-time (JIT) and Douki Seisan (DS) ideologies, several 
variants of one or more products can be handled. This 
flexibility determines the order in which the units are treated 
to drastically reduce intermediate stocks and to capitalize on 
the time available for manufacturing.  

In these settings, we can choose two basic categories of 
objectives (Boysen et al., 2009): (A) Minimize the work 
overload or lost work that may appear due to production 
programs with mixed products; and (B) minimize the levels 
of stocks in the system in accordance with JIT manufacturing 
method. 

For category A, in addition to a relative focus on maximizing 
the total amount of work completed (Yano and 
Rachamadugu, 1991), the excess effort that must be applied 
over time for certain operations can be modulated. 

Using this perspective, sequencing problems can be grouped 
into three categories: (1) Mixed-model sequencing; (2) Car 
sequencing; and (3) Level scheduling.  

Within this framework, Boysen et al. (2009) provided an up-
to-date review of the literature. The present study can be 
placed in category A.1/3, and focuses on the minimization of 
the total work overload in mixed-model sequences 
maintaining the production mix in the working day. 

Overload, or excess effort, is a measurement, in units of time, 
of work that cannot be completed at the standard work pace 
established, within the time granted to the workstations 
(cycle). This overload may arise when the processing time of 
a unit at a workstation is greater than the cycle time (Yano 
and Rachamadugu, 1991), although there may be a certain 
amount of play associated with extended cycles, which is 
called the length of the workstation or the time window. 

When faced with a foreseeable workstation overload, at least 
three types of measures can be taken: (I) stop the line and 
complete the pending work using reinforcements (Okamura 
and Yamashina, 1979; Rabbani et al., 2011); (II) let the unit 
pass and finish the pending work in a final line at a later time. 
(Yano and Rachamadugu, 1991; Bolat, 2003; Tsai, 1995); 
and (III) increase productive activity above the standard, 
using the assistance of reinforcement operators (Cevikcan 
and Durmusoglu, 2011) or previously programmed robotized 
systems. The present study considered measures in categories 
II and III for handling work overloads. 

On the other hand, the Level scheduling problems class 
focuses on obtaining regular sequences in production and 
consumption of components, among them are: (1) Product 
Rate Variation (PRV), which is used to preserve the 
production mix (Miltenburg, 1989) and (2) Output Rate 
Variation (ORV), based on the manner of sequencing the 
mixed products units, used at Toyota plants to maintain a 
constant consumption of components over time (Monden, 
1983). The preservation of the production mix is a desirable 
property in JIT (Toyota) and Douki Seisan (Nissan) 
philosophies. We will introduce this property to the problem.  

Mixed-Model Sequencing Problem with Workload 
Minimization (MMSP-W) is an NP-hard problem (Yano and 
Rachamadugu, 1991). Given the complexity of the problem, 
and the size of the case study presented in Bautista and Cano 
(2011) related to Nissan Barcelona powertrain plant, our 
objective is to find a computationally competitive procedure 
to solve the problem. For this reason, in this paper, we 
proposed a procedure based on Bounded Dynamic 
Programming (BDP). This procedure combines features of 
dynamic programming with features of branch and bound 
algorithms. The principles of the BDP have been described 
by Bautista et al. (1996).  

Our proposal contains the following: (1) a model for the 
problem; (2) a new procedure based on dynamic 
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programming to solve this problem, BDP-2, that uses linear 
programming to obtain bounds for the problem; (3) a 
mathematical model to obtain the overload of a given 
subsequence to use it as a part of the lower bound of the 
problem; (4) reduction of the search space of the procedure 
through pseudo-dominances; and (5) a computational 
experiment with reference instances from the literature to 
compare the results offered by BDP-2 with those offered by 
integer linear programming and previous procedures.  

This paper is organized as follows. Section 2 presents a 
model for the MMSP-W with serial workstations, unrestricted 
interruption of the operations and production mix restrictions. 
Section 3 shows an illustrative example. Section 4 describes 
the basic elements and the application of the proposed BDP 
procedure. Section 5 describes the computational experiments 
with reference instances from the literature. Finally, Section 6 
shows the conclusions of the study. 

2. MODEL FOR THE PROBLEM 

The MMSP-W consists of sequencing 

! 

T  products, of which 

! 

di  are of type 

! 

i  (  

! 

i = 1,…,| I |). A unit of product type 

! 

i  
requires to each processor (operator, robot, etc...) of the 
workstation 

! 

k  (  

! 

k = 1,…,|K |) a standard processing time, 

! 

pi ,k . 
The standard time assigned to each processor to work on any 
product unit is the cycle time 

! 

c . When a cycle ends at the 
workstation 

! 

k , the processor can work on the product in 
progress in an additional positive time 

! 

lk " c, being 

! 

lk  the 
time window. 

When it is not possible to complete all of the work required 
by the demand plan, overload is generated. The objective of 
the problem is to maximize the total work performed, which 
is equivalent to minimizing the total overload generated (see 
Theorem 1 in Bautista and Cano, 2011). 

For the MMSP-W with serial workstations, unrestricted 
interruption of the operations, production mix restrictions 
(pmr) and work overload minimization, we take as reference 
the M4U3 model, proposed by Bautista et al. (2012a). The 
parameters and variables of the extended model M4U3_pmr 
are presented below. 
Parameters 
K Set of workstations (  

! 

k = 1,…, K )   

! 

bk   Number of homogeneous processors at workstation k  

! 

I  Set of product types (  

! 

i = 1,…, I )  

! 

di  Programmed demand of product type i  

! 

pi ,k  Processing time required by a unit of type i at workstation k for each 
homogeneous processor (at normal activity)  

! 

T  Total demand; obviously, 

! 

di = Ti=1
I"   

! 

t  Position index in the sequence (  

! 

t = 1,…,T )  

! 

c  Cycle time, the standard time assigned to workstations to process 
any product unit  

! 

lk  Time window, the maximum time that the workstation k is allowed 
to work on any product unit, where lk – c > 0 is the maximum time 
that the work in process is held at workstation k  

Variables 

! 

xi ,t  Binary variable equal to 1 if a product unit i (  

! 

i = 1,…, I ) is assigned 
to the position t (  

! 

t = 1,…,T ) of the sequence, and to 0 otherwise  

! 

sk ,t  Start instant of the operation in tth unit of the sequence of products at 

workstation k (  

! 

k = 1,…, K ) 

! 

ˆ s k ,t  Positive difference between the start instant and the minimum start 

instant of the tth operation at workstation k. ŝk,t = sk,t ! (t + k ! 2)c"# $%
+  

(with 

! 

x[ ]+ = max{0,x}) 

! 

vk ,t  Processing time applied by the tth unit of the sequence of products at 
workstation k for each homogeneous processor (at normal activity). 

! 

wk ,t  Overload generated for the tth unit of the product sequence at 
workstation k for each homogeneous processor (at normal activity); 
measured in time  

! 

" k ,t  Processing time required by the tth unit of the sequence of products 
at workstation k for each homogeneous processor (at normal 
activity) 

  
Model M4U3_pmr: 
               Min W = bk wk, tt=1

T
!( )k=1

K
! "Max V = bk vk, tt=1

T
!( )k=1

K
!  (1) 

Subject to: 

! 

xi ,tt=1
T" = di    

! 

"i = 1,…, I  (2) 

! 

xi ,t = 1i=1
I"    

! 

"t = 1,…,T  (3) 

! 

vk ,t + wk ,t = pi ,ki=1
I" xi ,t    

! 

"k = 1,…, K ;   

! 

"t = 1,…,T  (4) 

! 

ˆ s k ,t " ˆ s k ,t#1 + vk ,t#1 # c     

! 

"k = 1,…, K ;  

! 

"t = 2,…,T  (5) 

! 

ˆ s k ,t " ˆ s k#1,t + vk#1,t # c     

! 

"k = 2,…, K ;  

! 

"t = 1,…,T  (6) 

! 

ˆ s k ,t + vk ,t " lk    

! 

"k = 1,…, K ;   

! 

"t = 1,…,T  (7)   

! 

ˆ s k ,t " 0    

! 

"k = 1,…, K ;   

! 

"t = 1,…,T  (8) 

! 

vk ,t " 0    

! 

"k = 1,…, K ;   

! 

"t = 1,…,T  (9) 

! 

wk ,t " 0    

! 

"k = 1,…, K ;   

! 

"t = 1,…,T  (10) 

! 

xi ,t " 0,1{ }     

! 

"i = 1,…, I ;   

! 

"t = 1,…,T  (11)  

! 

ˆ s 1,1 = 0  (12) 

! 

xi ," # t $
di
T

% 

& 
% 

' 

( 
' " =1

t)     

! 

"i = 1,…, I ;   

! 

"t = 1,…,T  (13) 

! 

xi ," # t $
di
T

% 

& 
& 

' 

( 
( " =1

t)     

! 

"i = 1,…, I ;   

! 

"t = 1,…,T  (14) 

In the model, the equivalent objective functions (1) are 
represented by the total overload (W) and total work 
performed (V). Constraint (2) requires that the programmed 
demand to be satisfied. Constraint (3) indicates that only one 
product unit can be assigned to each position of the sequence. 
Constraint (4) establishes the relation between the processing 
times applied to each unit at each workstation and the 
overload generated in each unit at each workstation. 
Constraints (5)-(8) constitute the set of relative start instants 
of the operations at each station and the processing times 
applied to the products for each processor. Constraints (9) 
and (10) indicate that the processing times applied to the 
products and the generated overloads, respectively, are not 
negative. Constraint (11) requires the assigned variables to be 
binary. Constraint (12) fixes the start of operations. The 
constraints (13) and (14) are those that incorporate the 
preservation property of the production mix desired in JIT 
(Toyota) and Douki Seisan (Nissan) philosophies. 

Also, in this work we will use to measure the non-regularity 
of a sequence the next quadratic function: 

! 

"Q (X ) = Xi ,t # t $
di
T

% 
& ' 

( 
) * 

2

i=1

I

+
t=1

T

+   (15) 

where Xi,t = xi,!
!=1

t

!  (  

! 

"i = 1,…, I ;  

! 

"t = 1,…,T ) is the cumulative 

production. 
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Fig. 1. Gantt chart for the optimum solutions for the example provided by M_4U3 (top) and M_4U3_pmr (bottom). 

3. AN ILLUSTRATIVE EXAMPLE 

To illustrate the model formulated above, we present the 
following example: There are six units of product (T=6), of 
which three are type A, one is type B and two are type C, with 
a total work required V0=104. The units are processed at three 
workstations (|K|=3) with different numbers of processors 
(bk); the processing times for each processor (at normal 
activity) for each type of unit i (A, B, C) at each workstation k 
(

! 

m1 , 

! 

m2 , 

! 

m3) are listed in Table 1. 

Table 1. Processing times (

! 

pi ,k ), number of homogeneous 
processors (

! 

bk ) and total work (

! 

V0) required by each type of 
unit at each workstation 

 A (

! 

dA =3) B (

! 

dB =1) C (

! 

dC =2) 

! 

bk  

! 

m1  5 4 3 1 

! 

m2  5 4 4 2 

! 

m3  4 3 5 1 
Total 19 (

! 

V0(A) = 57) 15 (

! 

V0(B) = 15) 16 (

! 

V0(C) = 32) 

! 

V0 = 104 

Furthermore, c = 4 (cycle time) and 

! 

lk = 6  for 

! 

k = 1,...,3  
(length of the workstation or time window). 

Fig. 1 shows a Gantt diagram of the optimal solutions offered 
by models M4U3 (top) and M_4U3_pmr (bottom). The 
sequence of products that presents the minimum total 
overload for M4U3 is C-C-B-A-A-A. The total work 
performed is V=101, and the overload, which is concentrated 
between workstations 

! 

m1  and 

! 

m2 , is W=3 (the grey area in 
Fig.1). The non-regularity for M_4U3 is 9.05. The sequence 

of products that presents the minimum total overload for 
M4U3_pmr is C-A-B-A-C-A (affected by the production mix 
restrictions). The total work performed is V=101, and the 
overload, which is concentrated between workstations 

! 

m1  
and 

! 

m2 , is W=3. The non-regularity for M_4U3_pmr is 2.05. 

4. BDP FOR THE MMSP-W WITH PMR 

This section presents the basic elements of the BDP 
procedure (BDP-2) applied to the resolution on MMSP-W 
with serial workstations, unrestricted interruption of the 
operations and production mix restrictions. 

4.1  Bounds for the problem 

Given a vertex of the stage t, reached through a partial 
sequence 

! 

" (t) = "1," 2,...," t{ }, the overall bound for W and a 
partial bound for the complement 

! 

R(" (t))  associated to the 
sequence or segment 

! 

" (t)  can be determined according to the 
schema presented in Fig. 2. 

 

Fig. 2. Bound scheme for a partial sequence π(t). 
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To obtain the overload associated to 

! 

" (t) , in each stage of 
the procedure we use a mathematical model. Given the 
subsequence 

! 

" (t) = ("1," 2,...," t )  of products, the processing 
times for each workstation k and each cycle 

! 

" , 

! 

p"# ,k , are 
known. We can define a mathematical model where the 
assignment variables has been removed: 

Min W (! (t)) = bk wk,""=1

t
!( )k=1

K
!  (16) 

Subject to: 

! 

" k ,# = p$# ,k  

! 

k = 1,..., K ;

! 

" = 1,...,t  (17) 

! 

" k ,# $ wk ,# % 0  

! 

k = 1,..., K ;

! 

" = 1,...,t  (18) 

! 

ˆ s k ," # ˆ s k ," $1 + % k ," $1 $ wk ," $1 $ c  

! 

k = 1,..., K ;

! 

" = 2,...,t  (19) 

! 

ˆ s k ," # ˆ s k$1," + % k$1," $ wk$1," $ c  

! 

k = 2,..., K ;

! 

" = 1,...,t  (20) 

! 

ˆ s k ," + # k ," $ wk ," % lk  

! 

k = 1,..., K ;

! 

" = 1,...,t  (21) 

! 

ˆ f k " ˆ s k ,t + # k ,t $ wk ,t  

! 

k = 1,..., K  (22) 

! 

ˆ f k " c  

! 

k = 1,..., K  (23) 

! 

ˆ s k ," # 0  

! 

k = 1,..., K ;

! 

" = 1,...,t  (24) 

! 

wk ," # 0  

! 

k = 1,..., K ;

! 

" = 1,...,t  (25) 

! 

ˆ s 1,1 = 0   (26) 

where 

! 

ˆ f k  represents the relative finishing instants at 
workstation k of the t products sequenced. The result of the 
proposed mathematical model corresponds to 

! 

W (" (t)) . 

To obtain a bound of the overload, (

! 

LB(R(" (t)))), associated 
to the complement 

! 

R(" (t)) , we use the combination of three 
lower bounds. 

Let 

! 

d i  as the pending demand of the product i when t units of 
product has been sequenced. We can define the available 
time at workstation k, for each homogeneous processor at 
normal activity, as: 

TDk = (T ! t !1) "c+ lk  

! 

k = 1,..., K  (27) 
And the pending work at workstation k as: 

TPk = pi,k !dii=1

I
"  

! 

k = 1,..., K  (28) 

Using (27) and (28) we can define LB1(t) as: 

LB1(t) = bk ! TPk "TDk[ ]+
k=1

K
#   (29) 

For the second bound, we define a bound for each product 
(

! 

i = 1,..., I ): 

LB2(i) = bk pi,kk=1

K
! " c bkk=1

K
! " bK (lK " c)

#
$%

&
'(

+

 (30) 

Using (30) we can define LB2(t) as: 

LB2(t) = LB2(i) !dii=1

I
"   (31) 

To define the third bound, we use a mathematical model. Let 

! 

wk ,i  as the overloads that a product i can generate, in the best 
situations, at workstation k. We can define: 
MIN LW (i) = bk !wk,ik=1

K
"   (32) 

Subject to: 

! 

ˆ s k ,i " ˆ s k#1,i + pk#1,i # wk#1,i # c  

! 

k = 2,..., K  (33) 

! 

ˆ s k ,i + pk ,i " wk ,i # lk  

! 

k = 1,..., K  (34) 

! 

pk ,i " wk ,i # 0  

! 

k = 1,..., K  (35) 

! 

ˆ s k ,i " 0  

! 

k = 1,..., K  (36) 

! 

wk ,i " 0  

! 

k = 1,..., K  (37) 

! 

ˆ s 1,i = 0   (38) 

Once determined LW(i), we can determine LB3(t) as: 

! 

LB3(t) = LW (i)
i=1

I

" #di   (39) 

And finally, to determine 

! 

LB(R(" (t))), we use: 

! 

LB(R(" (t))) = max{LB1(t),LB2(t),LB3(t)}  (40) 
Then, the total bound for the problem will be: 

! 

LB(W (" (t))) = W (" (t))+ LB(R(" (t)))   (41) 

4.2 Graph associated with the problem 

Similar to Bautista and Cano (2011) we can build a linked 
graph without loops or direct cycles of T + 1 stages. The set 
of vertices in level t (t = 0,...,T) will be noted as J(t). J(t, j)    
(j = 1,..., |J(t)|) being a vertex of level t, which is defined by 
the tuple 

  

! 

! q t, j( ), " t, j( ),LB W " t, j( )( )( ),#Q
! q t, j( )( )$ 

% 
& 
' , where: 

• 
  

! 

! q t, j( ) = q1 t, j( ),…,q I t, j( )( )  is the vector of demand 
satisfied. 

• 

! 

" t, j( )  is the sequence of t units of product associated to 
the vertex. 

• 

! 

LB W " t, j( )( )( )  is a lower bound of the total overload, 

generated by the sequence 

! 

" t, j( ) , obtained using 

! 

W (" (t))  and 

! 

LB(R(" (t))). 
• 

  

! 

"Q
! q t, j( )( )  is the non-regularity 

! 

"Q X( )  of the sequence 
of products 

! 

" t, j( ) , calculated as follows: 

!Q
!q t, j( )( ) = Xi,! "! #

di
T

$

%
&

'

(
)
2

i=1

I
*

!=1

t
*   (42) 

where  Xi,!  is the cumulative production. 
The vertex J(t, j) has the following properties: 

qi t, j( )
i=1

I
! = t   (43) 

! 

t " di
T

# 

$ 
# 

% 

& 
% ' qi t, j( ) ' t " di

T
( 

# 
# 

) 

% 
%  

! 

"i #I  (44) 

In short, a vertex J(t, j) will be represented as follows: 

  

! 

J t, j( ) = t, j( ), ! q t, j( )," t, j( ),LB W " t, j( )( )( ), #Q
! 
q t, j( )( ){ }  (45) 

At level 0 of the graph, there is only one J(0) vertex. Initially, 
we may consider that at level t, J(t) contains the vertices 
associated to all of the sub-sequences that can be built with t 
products that satisfy properties (43) and (44). However, it is 
easy to reduce the cardinal that J(t) may present a priori, 
establishing the following definition of pseudo-dominance: 
given the sequences 

! 

" (t, j1 )  and 

! 

" (t, j2 )  associated to the 
vertices 

! 

J (t, j1 )  and 

! 

J (t, j2 ) , then 

! 

" (t, j1 )  pseudo-dominates 

! 

" (t, j2 )  if: 

  

! 

" (t, j1 ) ! " (t, j2 ) #

" 
q (t, j1 ) =

" 
q (t, j2 )[ ] and

LB(W (" (t, j1 ))) $ LB(W (" (t, j2 )))[ ] and
%Q (
" 
q (t, j1 )) $ %Q (

" 
q (t, j2 ))[ ]

& 

' 
( 

) 
( 

* 

+ 
( 

, 
( 

 (46) 

The reduction of J(t) through the pseudo-dominances defined 
in (46) cannot guarantee the optimality of the solutions. 
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4.3 The use of BDP 

For this study, we used a procedure based on BDP. This 
procedure combines features of dynamic programming 
(determination of extreme paths in graphs) with features of 
branch and bound algorithms. The principles of BDP have 
been described by Bautista et al. (1996). Previous work on 
similar approaches has been done by Bautista and Cano 
(2011). The procedure is described below (see details on 
Bautista and Cano, 2011): 

BDP-2 – MMSPW 
Input: 

! 

T, I , K , di "i( ), lk , bk ("k), pi ,k "i, "k( ), c, Z0,H  
Output: list of sequences obtained by BDP 
0 Initialization: 

! 

t = 0 ; LBZmin = "  
1 Generate_model(); 
2 While (t < T) do 
3 t = t+1 
4 Add_constraints(t) 
5 While (list of consolidated vertices in stage t-1 not empty) do 
6 Select_vertex (t) 
7 Develop_vertex (t) 
8 Filter_vertices (

! 

Z0, H , LBZmin ) 
9 end while 
10 End_stage () 
11 end while 
end BDP - MMSPW 
 
In the procedure appear the following functions:  
• Generate_model (): Generates the initial model to obtain 

! 

W (" (t)), for t=0. 
• Add_constraints (t): adds, to the existing model, the new 

constraints associated to the new stage t. 
• Select_vertex (t): selects, following a non-decreasing 

ordering of the 

! 

LB(W (" (t # 1, j)))  values, one of the 
vertices consolidated in stage t-1. 

• Develop_vertex (t): develops the selected vertex in 
previous function adding a new product unit with 
pending demand. The vertices that do not satisfy the 
properties (43) and (44) are not generated. 

• Filter_vertices (

! 

Z0,H , LBZmin ): chooses, from all the 
vertices developed in the previous function, a maximum 
number H of the most promising vertices (according to 
the lowest values of the lower bound 

! 

LB(W (" (t, j))) ), 
and removing those vertices in which their lower bound 
is greater than 

! 

Z 0  (known initial solution) and those 
pseudo-dominated as defined in (46). 

• End_stage (): consolidates the most promising vertices in 
stage t (H vertices as maximum). 

5. COMPUTATIONAL EXPERIMENT 

For the test operations of the BDP-2 procedure, 225 instances 
from the literature were used. These instances were built 
from 45 production programs and 5 processing times 
structures, composed by four product types (

! 

I = 4 ) and four 
workstations (

! 

K = 4 ). These instances can be found in Cano 
et al. (2010).  

The solutions offered by the BDP-2 procedure proposed were 
obtained under the following conditions and features: (1) 
BDP-2 procedure programmed in C++, using gcc v4.2.1, 
running on an Apple Macintosh iMac computer with an Intel 
Core i7 2.93 GHz processor and 8 GB RAM using MAC OS 

X 10.6.7 (not using any type of parallel code; therefore, the 
computer can be considered as a single 2.93 GHz processor); 
(2) four windows width (H) were used, with values 1, 6, 16 
and 32; (3) the initial solution 

! 

Z 0  for each window width was 
the solution obtained by BDP-2 with the previous window 
width, except in the case 

! 

H = 1, where 

! 

Z 0  was established as 

! 

"; and (4) to calculate the lower bounds, 

! 

LB(W (" (t, j))) , of 
the overload associated to each vertex in the BDP-2 
procedure, the solver Gurobi v4.6.1 was used, solving the 
linear program associated to 

! 

W (" (t)) . 

The results for the 225 instances were obtained using the 
following procedures solving the model M_4U3_pmr: (1) 
Gurobi: Solving the model using Solver Gurobi (Bautista et 
al., 2012a); (2) BDP-1: A procedure based on BDP (Bautista 
et al., 2012b); and (3) BDP-2: The BDP procedure described 
in this document. 

To study the behavior of the three procedures to solve 
M_4U3_pmr, taking into account the set of instances 

! 

"  and 
designating as 

! 

ˆ S G (" ) (optimal for W), 

! 

ˆ S 1 (" ) and 

! 

ˆ S 2 (" )  the 
best solutions found for the instance 

! 

" #$ , through the 
procedures Gurobi, BDP-1 and BDP-2, respectively, we 
define the following relative percentage deviation: 

! 

RPD1 f ,"( ) =
f ˆ S G "( )( ) # f ˆ S 2 "( )( )

f ˆ S G "( )( )
 

! 

f " W ,#Q X( ){ } ;

! 

" #$  (47) 

! 

RPD2 f ,"( ) =
f ˆ S 1 "( )( ) # f ˆ S 2 "( )( )

f ˆ S 1 "( )( )
 

! 

f " W ,#Q X( ){ } ;

! 

" #$  (48) 

The results obtained by the experiment are collected in tables 
2 and 3. 

Table 2. Minimum, maximum and average CPU times 
needed to obtain the solutions for the 225 instances using 

Gurobi, BDP-1 and BDP-2. 
 Gurobi BDP-1 BDP-2 

CPU min 0.03 0.06 0.04 
CPU max 110.53 2.72 0.61 

! 

CPU  11.79 0.78 0.20 

Table 3. 

! 

RPD1 and 

! 

RPD2 values by structures, blocks and 
average (225 instances), of the solutions, given by Gurobi, 

BDP-1 and BDP-2. 

 
W 

! 

"Q (X ) 
RPD1 RPD2 RPD1 RPD2 

E1 -3.15 -3.05 2.14 7.01 
E2 -1.86 -1.84 10.84 9.60 
E3 -0.49 -0.49 13.07 12.23 
E4 -0.08 -0.08 4.23 3.85 
E5 -1.65 -1.64 2.89 2.99 
B1 -0.86 -0.86 -1.23 0.84 
B2 -0.58 -0.58 1.80 3.77 
B3 -1.62 -1.62 6.09 6.50 
B4 -1.93 -1.81 1.71 3.14 
B5 -1.63 -1.60 10.13 9.87 

Average -1.45 -1.42 6.63 7.13 

As show in Table 2, we obtained a substantial improvement 
in the average CPU time of the new procedure BDP-2 when 
is compared to the other two procedures. Specifically, BDP-1 
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requires 4 times longer than BDP-2 to achieve the best 
solutions of the 225 instances. Also, Gurobi requires 59 times 
more average CPU time than BDP-2. For maximum CPU 
time, BDP-2 improves 298 and 7 times compared to Gurobi 
and BDP-1, respectively. Regarding the minimum CPU times 
there is no difference between the three procedures. 
In Table 3 we can see an improvement of the regularity of the 
production obtained by the BDP-2 procedure. Specifically, 
BDP-2 reduces, on average, the non-regularity function, 

! 

"Q (X ) , in a 6.63% versus Gurobi results, and a 7.13% versus 
BDP-1. However, on average the overload, W, worsens using 
BDP-2 in 1.45% and in 1.42% versus Gurobi and BDP-1, 
respectively. These improvements in production regularity 
and worsens in overload also occur monotonically for the 
instances grouped by structures and blocks. The more 
significant improvements in regularity occur in structure E3 
and block B5, while the worsening in work overloads, while 
being much more balanced between the blocks and structures, 
are more relevant in E1 and B4. 

6. CONCLUSIONS 

We have proposed a new procedure based on the BDP, the 
BDP-2, for the MMSP-W problem that minimizes the total 
overload or maximizes the total work completed, taking into 
account serial workstations, parallel processors, free 
interruption of the operations and restrictions to preserve the 
production mix in the manufacturing sequence. 

The proposed procedure uses global bounds based on linear 
programming. A mathematical program that minimizes the 
work overload given a subsequence of operations for any 
instant t has been formulated. In addition, the proposed 
procedure incorporates pseudo-dominances between partial 
solutions to limit the search space. These pseudo-dominances 
take into account the preservation of the production mix in 
the partial solutions. 

The results obtained for the 225 instances using the proposed 
procedure, BDP-2, are compared with those offered (for 
model M_4U3_pmr) by the Gurobi solver (Bautista et al., 
2012a) and another procedure BDP-1 (Bautista et al., 2012b). 
BDP-2 improves, on average, the CPU time and regularity of 
production given by Gurobi (98% reduction in CPU time and 
6.63% in non-regularity) and BDP-1 (80% in CPU time and 
7.13% in non-regularity). However, BDP-2 worsens on 
average overload in less than 1.5% compared to the other two 
procedures. 

As future work we will: (1) set properties to be satisfied by 
sequences related to the preservation of the production mix in 
order to reduce the search space of solutions with the BDP 
procedure; and (2) design and apply new procedures using 
the properties described in point (1) to a set of instances 
associated to a industrial case study in the automotive sector.  
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