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ABSTRACT

This study addresses the problem of designing a new natural gas transmission

network or expanding an existing network while minimizing the total investment

and operating costs. A substantial reduction in costs can be obtained by effectively

designing and operating the network. A well-designed network helps natural gas

companies minimize the costs while increasing the customer service level. The aim

of the study is to determine the optimum installation scheduling and locations of new

pipelines and compressor stations. On an existing network, the model also optimizes

the total flow through pipelines that satisfy demand to determine the best purchase

amount of gas.

A mixed integer nonlinear programming model for steady-state natural gas trans-

mission problem on tree-structured network is introduced. The problem is a multi-

period model, so changes in the network over a planning horizon can be observed and

decisions can be made accordingly in advance. The problem is modeled and solved

with easily accessible modeling and solving tools in order to help decision makers

to make appropriate decisions in a short time. Various test instances are generated,

including problems with different sizes, period lengths and cost parameters, to eval-

uate the performance and reliability of the model. Test results revealed that the

proposed model helps to determine the optimum number of periods in a planning

horizon and the crucial cost parameters that affect the network structure the most.
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and Dr. Neil Geismar. Their suggestions, comments and support were helpful and

precious.

I am deeply grateful to Yavuz Yılmaz and Gürcan Öz, system operation engineers
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1. INTRODUCTION

The continual increase in the oil prices and the environmental concerns about

high level of air pollution has led natural gas (NG) to become one of the important

energy sources in the world. With a growing population and economy, the demand

for NG has increased because of expanding industrial and commercial sectors, and

households with growing income. As shown in Figure 1.1, NG is used mostly for

industrial purposes and electric power production. The US Energy Information Ad-

ministration reports that global NG consumption doubled from 1980 to 2010 [30]

and it is expected to increase to approximately 4 trillion cubic meters in 2030 [29].

Figure 1.1: Natural Gas Consumption by Sector

NG is delivered to consumers through indirect channels that consist of explo-

ration, extraction, production, transmission, storage and distribution stages. De-

signing and operating an optimal NG network is important in order to meet cus-

tomers’ demand on time and to minimize costs, especially in transportation stages

of transmission and distribution.
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Transmission and distribution systems are the two main components of a NG

network. A transmission system can be defined as a high-pressure pipeline system

used to transport NG over long distances from suppliers to a distribution centers

with large diameter pipelines. Large amounts of NG are transported by compressor

stations installed at strategic points along the transmission pipeline.

A distribution system is a lower-pressure pipeline system that takes NG from the

transmission system and delivers it to end users including residential, commercial,

industrial consumers and power plants. Distribution is provided by local companies

that transport gas to customers by small diameter pipelines.

NG transmission pipeline network problems are different from other network flow

problems due to the existence of pressure variables and the nonlinear relationship

between the pressure drop and flow rate. Gas transmission systems operate at high

pressure levels. While gas travels through the pipeline, gas pressure decreases due to

friction with the pipe wall. Thus, it is necessary to increase the pressure at a number

of points along the pipeline to keep the gas flowing. Compressor stations provide

the necessary energy to maintain the required pressure throughout the pipeline.

Compressors use electricity or natural gas as an energy source to operate. Many

studies focused on minimizing the energy consumption of compressor stations.

With the increasing demand, the size and complexity of NG pipeline networks

have also increased. A transmission network may try to expand over time to meet

demands at new consumer nodes. The capacity of the system can be increased by

adding compressor units to existing stations or by building new stations. The power

of the compressor station varies depending on the flow rate.

In the problem, there are many constrains, such as flow conservation, pressure

limits and other obstacles. The network should be designed in order to satisfy vari-

able needs over the planning horizon. A well-designed network helps NG companies
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minimize the costs while increasing the customer service level. Thus, a good opti-

mization tool is important to make strategic and operational decisions.

The main thrust of this research is the development of a decision support tool to

aid system operators in optimizing NG pipeline operations and the investment costs

in order to satisfy customer demand with minimal costs.

1.1 Research Objectives and Scope

In NG pipeline networks, design and expansion decisions must be made with care-

ful consideration of the long term benefits. The investment and operating costs, such

as installing and operating pipelines and compressor stations, are very high. Com-

pressor station and pipeline installations are part of long-term strategic decisions.

Once they are built, they will operate for years. It may cost more than expected to

maintain them if these decisions are not made carefully. The aim of this study is

to minimize the total investment and operating costs while satisfying the specified

requirements corresponding to demands and pressure limits in the system.

The solution to the problem will help to make decisions regarding a new trans-

mission network design, as well as expansion of an existing network, with minimized

total cost. In this study, an optimization model is provided to address the following

issues:

1. Pressure requirements

2. The best location and capacity of compressor stations that minimizes the cost

3. The best location of pipelines that minimizes the cost

4. The scheduling of installing pipelines and compressor stations in the network

5. The best amount of NG procurement from available suppliers

3



While the previous studies in the literature handle different problems of a NG

network by using different models, this study proposes an integrated approach to

consider these problems in one model. Thus, the aim is to build a mathematical

formulation as an advancement to the available studies in the literature.

In all previous studies, the mathematical formulations of pipeline problems in-

clude several nonlinear and non-convex constraints and functions. These problems

are characterized by a non-convex feasible region, particularly, because of the non-

linear constraint that relates the pressure and the flow rate. The presence of this

non-convexity makes the problem hard to solve.

NG transmission network problems can be solved by either heuristic or exact

methods. Many studies focused on heuristic methods to solve the nonlinear non-

convex problem. This study proposes utilizing an exact optimization method to

solve the problem with a mathematical programming approach.

The organization of this thesis is as follows: In Section 2, a survey of previous

related works is introduced. Section 3 explains the NG transmission network problem

and the proposed mathematical model. Section 4 presents the solution method and

details about the computational study. This is followed by the conclusion and future

research direction in Section 5.
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2. LITERATURE REVIEW

In the literature, there are three main network problems which are used to handle

different challenges in NG transmission networks.

In NG network design problems, the objective function may be minimization

of the investment cost or maximization of the net present value. The output of the

model helps to locate the optimal type and the number of compressor stations, and to

select the optimal pipe dimensions. Several design variables need to be determined.

They include the location and type of compressor stations; possible locations, lengths

and diameter of pipelines to be installed; and the allowable operating pressure levels

of the system.

NG network flow problems aim to minimize costs and meet demand. Decision

variables of the problem are defined to determine gas flow through the pipeline

network. The operation cost of NG transmission systems is highly dependent on the

compressor station operations because the amount of NG in the system is set by

compressor stations. In these problems, selecting the optimal compressor location

and capacity is a critical decision.

In network expansion problems, the objective is generally scheduling the invest-

ments. To obtain the optimum capacity expansion, investment decisions including

time, size and location of pipeline and compressor station installations should be

made [14].

This research is based on a comprehensive study that combines three network

problems in one model. The main focus is to design a new NG transmission pipeline

network or to expand the existing network in order to minimize the investment and

operating costs of transporting gas through pipelines in multiple periods.
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Many studies have been done in pipeline network optimization including the

pipeline network design, the minimization of fuel consumption of compressor stations,

economically locating compressor stations in the network.

Rios-Mercado et al. [24] proposed a reduction technique to minimize the fuel

consumption of compressor stations in steady-state transmission networks. This

method minimizes the problem dimension at preprocessing without disrupting the

problem structure. De Wolf and Smeers [11] modeled the NG pipeline network with

nonlinear and linear constraints for a cost minimization problem. They developed a

successive linear programming method. The solution procedure is based on piecewise

linear approximations of the nonlinear constraint that defines the relationship of the

pressure and flow rate. Three test problems with 24, 34 and 60 arcs are solved

by an extension of the simplex algorithm. Wu et al. [33] also studied the fuel cost

minimization problem. They derived two model relaxations. One relaxation is to

develop linear supersets of the non-convex nonlinear compressor domain. The other

is to derive piecewise linear functions of the fuel cost objective function. They tested

the method by three examples. The first example is a six-node, three-pipe, two-

compressor network. The second example is a simple tree network with 10 nodes,

6 pipes, and 3 compressor stations and in the third example there are 48 nodes, 43

pipes, and 8 stations.

Most of the methods developed for this minimization of the fuel consumption

problem are based on dynamic programming and gradient search methods. The dy-

namic programming method was first proposed for a steady state gas transmission

system by Wong and Larson [32]. In the study, DP was used to optimize the single

source tree-structured network. The objective is to minimize the total compressor

energy required to satisfy the specified flow rate, pressure and compressor operation

constraints. Dynamic programming guarantees the global optimum. Also, nonlin-
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earity can be easily solved by dynamic programming. However, the implementation

of dynamic programming is limited to simple network structures, and computational

time increases with the problem size. Two problems were used to represent the per-

formance of the proposed method, one with a single pipeline that has 10 compressors

and the other with three single pipelines and a total of 23 compressors.

The study of Borraz-Sanchez and Rios-Mercado [6] aims to find the optimal so-

lution for the compressor station operations in the cyclic NG pipeline network while

minimizing the fuel consumption of the stations. The network is represented by

pipeline and compressor station arcs and corresponding nodes at the intersection

points of the arcs. In the model, there are two continuous decision variables; mass

flow rates in each arc and gas pressure at each node. Constraints are non-convex and

the objective function is nonlinear. That is, the problem is modeled as a nonlinear

program. The proposed solution method is the combination of the non-sequential

dynamic programming and the tabu search algorithm. They used various test in-

stances to evaluate the proposed method. The larger problem size has 19 nodes and

7 compressor station arcs.

In other studies, heuristic approaches were proposed in order to minimize com-

pressor station costs. The ant colony optimization algorithm is used for the first

time for studying gas flow operations in the study of Chebouba et al. [8]. The main

focus of this paper is on using ant colony optimization as a decision tool to obtain

fast and accurate results. The objective function of the problem is nonlinear and

non-convex. Test instance is composed of one source, one demand and 6 pipelines

connected in series by 5 compressor stations. The main interest of the study of Rios-

Mercado et al. [23] is the gas transmission problems with a cyclic tree structure. In

this paper a heuristic solution algorithm is proposed. The methodology is composed

of two stages. At the first stage, dynamic programming is used to find optimal val-

7



ues for pressure variables while the flow variables are fixed. At the second stage,

using the optimal value of a pressure variable found at the first stage, a set of flow

values, which improve the objective value, are found by a heuristic approach. The

proposed method was tested on a tree structured system with 64 nodes, 56 pipes,

and 16 compressor stations.

Chung et al. [9] proposed a multi-objective mathematical programming method.

Investment costs, reliability and environmental impact compose the three different

objectives of the model. They solved the problem by genetic algorithm and adopted

a fuzzy decision method to select the best network planning scenario. The model was

applied to a network with 13 compressor stations, and 19 pipelines. A hierarchical

algorithm is proposed by Hamedi et al. [13] to solve a distribution network problem by

using a single-objective, multi-period mixed integer nonlinear programming (MINLP)

model. They converted the model into a MIP by adding a set of constraints. The

objective is to minimize direct and indirect costs. The model was tested for se seven

samples. The smallest test instance include 190 nodes and the largest one has 319

nodes. A MIP model is proposed by Uraikul et al. [28] to optimize the operations of

selecting and controlling the compressors. The objective of the study is to minimize

the operating costs of the network and meet customer demands in the system. The

three factors that affect the costs are the capacities of compressors, the energy used

to turn on the compressors, and the energy used to turn them off. The model was

tested on a network that has two compressor stations, two customer locations and

six periods.

Kabirian and Hemmati [15] developed an integrated nonlinear optimization model

for formulating a strategic plan to find the best long-run development plans for an

existing network. A heuristic random search optimization method is proposed to

solve the problem. The objective is to minimize the net present value of operating

8



and investment costs. They used a network with 2 compressor stations, 4 demand,

3 supply and 1 transshipment nodes, and 10 pipelines to assess the performance of

the model.Pratt and Wilson [22] propose a mixed integer linear programming (MIP)

method to solve the nonlinear optimization problem iteratively. They linearized the

pressure drop-flow equation and used the branch-and-bound (BB) algorithm to solve

the problem. Osiadacz and Bell [21] suggest a simplified algorithm for the transient-

state gas transmission network to find the maximum feasible outlet pressure level of

a station. They studied a large-scale network with several compressor stations and

they solved the problem by local optimization.

Woldeyohannes and Majid [31] developed a simulation model by incorporating

compressor station parameters including speed, suction and discharge pressure. The

model is used to simulate the transmission pipeline network system under various

conditions to determine pressure and flow parameters. The proposed simulation

model in this study could be used to assist in operational and design decisions.

The review of papers in the scope of optimization in NG transmission network

based on the decisions made are classified in Table 2.1. Table 2.2 is a summary of

the NG network optimization problems.
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Table 2.1: Classification of Natural Gas Network Planning Literature
Network Design Network Flow and Operation Network Expansion

Min. Max. Min. Compr. Min. Min. Opt. Min.

Author Invest. NPV Transprt. Select. to Fuel Supply Investment Invest.

Cost Cost Min.Costs Cost Cost Scheduling Cost

Wu et al. [33] – – – – X – – –

Uraikul et al. [28] X – – X – – – –

Chung et al. [9] – – – – – – X –

Rios-Mercado et al. [23] – – – – X – – –

Kabirian et al.[15] X – – – – – X –

Borraz-Sanchez et al.[6] – – – – X – – –

Hamedi et al. [13] – – X – – – – –

De Wolf and Smeers [11] – – – – – X – –

Chebouba et al. [8] – – – X X – – –

Wong and Larson [32] – – – X X – – –

This Study X – X – – X X X

Table 2.2: Characteristics of Natural Gas Optimization Problems
Solution Number of

System Topology Method Periods

Type of

Author Model State Transient Cyclic Tree Exact Heuristic Single Multi

Wu et al. [33] NLP X – – – – X X –

Uraikul et al. [28] MILP X – – – X – – X

Chung et al. [9] NLP – – – – – X X –

Rios-Mercado et al. [23] NLP – – X – – X X –

Kabirian et al.[15] NLP X – – – – X – X

Borraz-Sanchez et al.[6] NLP X – X – – X X –

Hamedi et al. [13] NLP X – – – X X – X

De Wolf and Smeers [11] NLP X – – X – X X –

Chebouba et al. [8] NLP X – – X – X X –

Wong and Larson [32] NLP X – – X X – X –

This Study MINLP X – – X X – – X
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3. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

A typical NG pipeline network problem consists of demand and supply nodes,

pipelines, and compressor stations. In such complex and large networks, proper

planning is important because even a small reduction in investment and operation

expenses provides considerable amounts of saving. NG networks continue to grow

with the increasing demand and this growth makes the network more complex. Thus,

developing effective solution methods becomes more important.

An optimization approach is proposed to solve the problem of how to optimally

design the network and operate the gas flow in the pipeline system with deterministic

parameters. In this study, it is assumed that the transmission system, consisting of

multiple suppliers and multiple consumers, is operated only by the NG Company.

3.1 Characteristics of the System

There are two different states in the gas network depending on the gas flow-time

relationship. If a system is in a steady state, then gas flow through the system is

independent of time. These systems can be modeled by algebraic nonlinear equa-

tions. In a transient state system, gas flow changes in time, thus, partial differential

equations are required to describe this relation. In this research, a steady-state gas

transmission network system will be studied.

Another characteristic of transmission systems is the topology of the network.

There are two main structure types of gas networks. A cyclic topology is a network

with at least one cycle. A tree structured (non-cyclic) topology is a network that does

not contain any cycles. These networks may contain a number of different trees. The

main focus of the study will be on the transmission of gas through a tree-structured

pipeline network system.
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A NG transmission network studied in this research consists of demand, sup-

ply, transshipment, and compressor station inlet and outlet nodes. In the network,

pipelines and compressor stations are represented by directed arcs. Demand nodes

are the locations of NG consumer cities. Supply nodes are the sources of gas. Trans-

shipment nodes are the connection points of two or more arcs. In transshipment

nodes, incoming flow is equal to outgoing flow. Compressor station inlet nodes are

the points where gas enters a station. Compressor station outlet nodes are the end

points of compressor station arcs where compressed gas exits a station. The impacts

of other elements including valves and regulators are negligible for this study.

Figure 3.1 show the graphical notation of the network.

Supply Node

Demand Node

Transshipment Node

Active Pipe Arcs

Inactive Pipe Arcs

Closed Compressor Station

Bypassed Compressor Station

Active Compressor Station

Figure 3.1: Graphical Notation for the Networks
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Figure 3.2: A Natural Gas Transmission Pipeline Network

A typical network of the problem with 11 nodes, 9 pipe arcs, and 1 compressor

arc is shown in Figure 3.2. Node S is a supply node, where gas is purchased from.

Node D1, D2, D3, D4, D5, and D6 are demand nodes, where gas is consumed. Node

A is a transmission node. Nodes CS-Ent and CS-Ext are compressor station inlet

and outlet nodes, respectively.

In the proposed model, there are several decision variables related to the compo-

nents of the system. The positive continuous variables are pressures at nodes, gas

flow rates in pipelines and the supply amount. The sets of binary variables are used

to define the flow directions, compressor station locations and types, and pipeline

locations.

The objective is to minimize the total investment and operating cost of the net-

work. Investment costs are the installation costs of pipelines and compressor stations.

Operating costs consist of transporting cost, operation cost of compressor stations

and pipelines, such as maintenance, energy, etc., and purchase cost of supply. The

costs are varied for each period so the total cost is the sum of periodic costs.

13



The mathematical model of the problem is a MINLP, where the objective func-

tion is linear and the set of constraints including linear and nonlinear inequalities

with binary and continuous variables. The model includes various linear constraints

for mass flow conservation for supply, demand and transshipment nodes. Pressure-

flow rate relation will be defined by nonlinear inequalities. Moreover, there will be

constraints related to whether compressor station existence and to its capacity.

The problem is described as a multi-period network problem model in order to

allow making changes in the network over the planning horizon. These changes can

be exogenous, i.e. the existence of new demand nodes, in response to increasing

demand. As a result of these, new endogenous changes may be needed such as

adding new pipelines, and compressor stations. It is assumed that these changes are

long-lasting, which means once a new pipeline/compressor station is installed, or a

new demand node is added to the network, then it is available during all planning

horizons in the network.

3.2 System Components

3.2.1 Pipelines

The relationship between the flow rate and the pressure, and the definition of

pressure values as state variables at nodes, are the major characteristics of the trans-

mission network in steady-state. Flow rate is a function of the pressure difference

across the pipe, the diameter and length of the pipe, and properties of gas. Using

the same function, the pressure values can be determined by flow rate and pipeline

resistance.

The properties of pipelines and gas are important to determine the pipeline re-

sistance so the pipeline resistance determines the pressure drop. While gas flows,

pressure decreases due to pipeline resistance and flow losses. At every demand node,
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the amount of flow in the pipeline decreases as well as the pressure. The pressure

difference between the end nodes of a pipeline depends on the resistance.

Several variations of the general flow equation have been proposed to calculate

the gas flow rate in a pipeline, such as the Weymouth equation, the Panhandle A and

Panhandle B equations [20]. These equations differ from each other by the system

size range they can be applied to and the treatment of pipe friction. The General

Flow Equation for the steady-state flow in a gas pipeline is the basic equation for

relating the pressure drop to flow rate. In the system, gas flows at a constant tem-

perature (isothermal flow) through a horizontal pipe segment. The pipe segments

are assumed to be long enough so that kinetic energy changes can be negligible [16].

Figure 3.3 shows a steady flow in the gas pipeline.

Figure 3.3: Steady Flow in Gas Pipeline

In The International System of Units (SI) units, the General Flow equation is

stated as follows:

Qij = 1.1494 10−3
(
Tb
Pb

)2 [ P 2
i − P 2

j

GTfLijZf

]0.5
D2.5

ij (3.1)

where friction factor (f), base pressure (Pb) and temperature (Tb), gas gravity (G),

average gas flowing temperature (Tf ), gas compressibility factor (Z) are assumed to
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be constants. This equation can be applied where fully turbulent gas flow under high

pressure is in question [20].

Equation relates the flow rate in a pipe with a length L (km) and a diameter D

(mm), based on an upstream pressure Pi (bar) and a downstream pressure Pj (bar).

The flow rate Q (m3/day) depends on gas properties such as the gravity G (0.66 for

NG) and the compressibility factor Z (0.805 for NG). The pressure drop, from the

upstream point i to downstream point j, occurs due to friction between the gas and

pipe walls with a typical friction factor f (generally 0.01). The pressure difference of

the two nodes, the upstream end and the downstream end, determines the direction

of the gas flow. When there is no flow rate between nodes i and j, Pi is equal to Pj.

Since the volume of gas changes according to the ambient temperature and pressure,

base temperature Tb (◦K) and pressure Pb (bar) are necessary to provide standard

conditions for gas measurement. In this study, base temperature Tb is 288◦K and

base pressure is Pb is 1 bar while the average gas flowing temperature Tf is 283◦K.

It is assumed that the unit of flow rate Q is million cubic meters (mmscm), so all

calculations in this study are made accordingly. The studied transmission network

is composed of horizontal pipelines. In transmission networks, pipe sizes generally

vary between 12 and 48 inches in diameter, 5 and 100 km in length. In this study,

the diameter of pipelines are assumed to be fixed to 30 inches, but the lengths are

variable. In The pipe flow equation that relates the pressure drop to the flow rate of

high pressure flows in a steady state is represented as

P 2
it − P 2

jt = δij Q
2
ijt ∀ (i, j) ∈ AP (3.2)

where the value of δij (pipeline resistance) depends on the properties of gas and also

the dimensions of the pipe (i, j).
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In this study, the general flow equation is used to calculate the pressure drop.

Thus, the pipeline resistance can be expressed as

δij = 0.7569 106 GTfLijZf

D5
ij

(
Pb

Tb

)2

∀ (i, j) ∈ AP (3.3)

As mentioned earlier, pressure drop and flow rate depend on pipeline properties.

Thus, it is often necessary to decide pipe sizes before calculating pressure drop and

flow rate. The pressure levels at nodes can be calculated, by knowing the flow rate

and available pipe sizes in advance. Then, the compressor stations can be located at

necessary points.

As the pipe length increases for a given flow rate, the pipeline resistance increases

as well as the pressure drop. For pipes of the same diameter, the pressure difference

is greater between two ends of a long one than a shorter one. On the other hand, a

pipe with a large diameter has less resistance than a pipe with a smaller diameter.

Thus, the pressure drop is smaller across a pipe with a large diameter [20].

3.2.2 Compressor Stations

Compressor stations are one of the most important assets in transmission pipeline

network systems worldwide. They are installed to provide the pressure needed to

transport gas through pipelines. They can be defined simply as a device to com-

press gas molecules in order to provide enough energy to keep it moving along the

transmission line. Due to the limitations of pipeline pressures, multiple compressor

stations may be needed to transport a given volume through a long-distance pipeline.

The pressures at which these compressor stations operate are determined by the pipe

pressure levels and the power available [20]. In this study, the set of nodes repre-

senting compressor stations consists of inlet (CS-Ent) and outlet (CS-Ext) nodes.
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If there is not any flow between the two nodes then these nodes are treated as one

node. Figure 3.4 shows the representation of nodes and arcs in the system.

Figure 3.4: Representation of Nodes and Arcs

In general, gas leaves the station at the discharge pressure of 75 bar. As the gas

flows, pressure in the pipeline decreases due to friction and flow losses. If the pressure

in the pipeline is below the allowable pressure level at some point, then a compressor

station is required, otherwise gas flow will cease. Compressor stations increase the

pressure to a certain level. Therefore, while gas flows from the upstream node to the

downstream node in pipeline arcs, it flows in the opposite direction in compressor

station arcs. Gas pressure cannot be greater than the allowable operating pressure

of the pipeline. There is no flow loss due to friction in the compressor arcs. Figure

3.5 shows the changes in the flow rate and the pressure through pipe and compressor

arcs.

Figure 3.5: Representation of Compressor Station
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A compressor station may be active, bypassed or closed. These states will be

decided according to the solution of the problem. If the outlet pressure value is

greater than the inlet pressure value at the compressor nodes, then the station is

active. When the outlet and inlet pressure values are equal, the station is bypassed.

If there is no flow through the compressor arc, then the compressor station is closed.

While designing a pipeline system, the possible locations and sizes of the compres-

sor stations must be determined. The size of a compressor station, or, more precisely

the number of units that must be installed, depends on the mass flow rate. In this

study, it is assumed that compressor units installed in a station are identical, and the

maximum flow rate between two compressor station nodes is 20 mmscm/day. The

number of stations in the system depends on the length of the transmission pipeline.

More stations are required if the length of the line increases. Environmental and

geotechnical factors are important in selecting the station location.

3.2.3 Cost Structure

In pipeline network problems, generally, the cost function consists of investment

and operating costs. The major components of the gas transmission system that ac-

count for the investment costs are the pipeline and compressor stations. These costs

constitute the important part of the total pipeline project cost. Operating costs, such

as maintenance, energy, transmission, utility, as well as general and administrative,

are the recurring periodic costs.

The total cost for gas transmission pipeline network can be calculated as follows;

Total Cost = [investment cost + operating cost ]pipeline

+ [investment cost + operating cost ]compressor station

+ natural gas purchase cost + transportation cost

(3.4)
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The cost parameters and their units are shown in Table 3.1 [20].

Table 3.1: Data for Cost Computation
Parameter Definition Value Unit

Q daily flow rate in a compressor station arc 20 mmscm/day

T average gas flowing temperature 283 K

Z gas compressibility factor at the flowing temperature 0.805 dimensionless

f friction factor 0.01 dimensionless

G gas gravity 0.66 dimensionless

P2 outlet pressure of a compressor station 75 bar

P1 inlet pressure of a compressor station 45 bar

Tb base temperature 288 K

Pb base pressure 1 bar

Ep polytropic efficiency 0.9 decimal value

bl bearing losses 0.02237 bar

sl seal losses 0.0149 bar

i interest rate 0.12 dimensionless

k ratio of specific heats of gas 1.24 dimensionless

Rp fraction between pipe installation cost
and the pipe price itself 1.4 dimensionless

l nonlinear constant between pipe’s price
and pipe length 1 dimensionless

m nonlinear constant between pipe’s price
and pipe diameter 1 dimensionless

b nonlinear constant between compressor price
and its power 0.8 dimensionless

Cop fraction of compressor operating cost
(excluding energy cost) 0.75 dimensionless

Cfp fraction of pipe operating cost to
the annual investment cost of pipeline 0.2 dimensionless

Cec electricity price 75 US$/MWh

Cp pipe unit price 1,870 US$/km/inch

Cmw compressor price 2,000,000 US$/MW

All investment costs are converted to annualized costs for the useful life of the

assets. In this study, the straight line depreciation method is used to calculate the

annual investment costs. Straight line depreciation is calculated as follows;

Depreciation =
(Purchase Price of Asset - Approximate Salvage Value)

Estimated Useful Life of Asset
(3.5)
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It is assumed that the entire life of the system is 45 years and the salvage values

of the assets are zero at the end of the life of the assets. The net present values of

the annual investments in the first 12 years are computed based on a 12% interest

rate. Net present value is expressed as

NPV = C0 −
T∑
t=1

Ct

(1 + i)t
(3.6)

3.2.3.1 INVESTMENT COST FOR PIPELINE

The investment cost of the pipeline including the material, labor, installation,

and right of way costs, depends on pipe length and diameter [1] . It can be expressed

as

αp
t = (1 +Rp)Cp length

l diam (3.7)

The value of Cp, l,m can be found easily by regression if the price of pipe is

known. In this study, they are assumed to be 1.

3.2.3.2 INVESTMENT COST FOR COMPRESSOR STATIONS

To build the objective function, it is assumed that electricity is used to operate

the compressor stations. Tax, insurance, and other costs are not included in the

cost function. The fixed compressor station cost changes depending on the installed

power (MW). The following is the expression for compressor power [1] .

gmw = 3.0325
QPbTZ

[
(P2

P1
)
( k−1
kEp

) − 1
]
k

Tb(k − 1)
+ bl + sl (3.8)
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where Q is the daily flow rate in a compressor station arc. The investment cost of

compressor stations is computed as follows

αc
t = Cmw(gmw)b (3.9)

where Cmw is a overall cost of material, equipment, labor, right of way per 1 MW.

Cmw and b values can be found by regression as well.

By using the given parameters, the power of each compressor station unit is 10

MW.

3.2.3.3 PIPELINE OPERATING COST

The pipeline operating cost is the cost of maintaining pipes. It is assumed the

operating cost is proportional to the annual investment cost [1]. For each pipeline

segment the operating cost is computed as follows;

βp
t = Cfp α

p
t (3.10)

3.2.3.4 COMPRESSOR STATION OPERATING COST

The operating cost of a compressor station is electricity and maintenance cost.

The operating cost can be formulated as a proportional to the electricity cost [1] .

Thus, it is expressed as follows;

βc
t = (1 + Cop)Cec (3.11)

To calculate the electricity cost, the unit of compressor power is converted into

megawatt-hour, then
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gMWh = 19.809
QPbTZ

[
(P2

P1
)
( k−1
kEp

) − 1
]
k

Tb(k − 1)
+ 6.532(bl + sl) (3.12)

and the electricity cost is

Cec = gMWhCe (3.13)

At the beginning of the planning horizon the electricity price is 75$/MWh. It is

assumed that the electricity price increases 5% each year.

Table 3.2 shows periodic investment and operating costs of pipelines and com-

pressor stations.

Table 3.2: Investment and Operating Costs (103 $)
Cost Period Actual Cost Cost Period Actual Cost Cost Period Actual Cost Cost Period Actual Cost

αc
t

1 10243.865

βc
t

1 24.71

αp
t

1 109.30

βp
t

1 21.86

2 9878.22 2 25.94 2 105.4 2 21.08

3 9459.01 3 27.24 3 100.92 3 20.19

4 8978.67 4 28.6 4 95.8 4 19.16

5 8428.56 5 30.03 5 89.93 5 17.99

6 7798.84 6 31.54 6 83.21 6 16.64

7 7078.33 7 33.12 7 75.52 7 15.1

8 6254.31 8 34.77 8 66.73 8 13.35

9 5312.31 9 36.51 9 56.68 9 11.34

10 4235.89 10 38.33 10 45.2 10 9.04

11 3006.35 11 40.25 11 32.08 11 6.42

12 1602.43 12 42.26 12 17.1 12 3.42

3.2.3.5 NG PURCHASE COST

In real world systems, the supply contracts include requirements for pressure lev-

els at inlet nodes, periodic amount, and prices. There might be multiple suppliers in

the system, and each of them might have different regulations about exporting gas.

In the study, purchase cost is the charge per mmscm of gas purchased and it may
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vary for each supplier [1]. Gas purchase cost is assumed to increase 2% each year.

Table 3.3 shows purchase cost of each supplier in each period.

Table 3.3: Purchase Costs (103 $)
Period Supplier 1 Supplier 2 Supplier 3 Supplier 4

1 250.00 300.00 350.00 275

2 255.00 306.00 357.00 280.50

3 260.10 312.12 364.14 286.11

4 265.30 318.36 371.42 291.83

5 270.61 324.73 378.85 297.67

6 276.02 331.22 386.43 303.62

7 281.54 337.85 394.16 309.70

8 287.17 344.61 402.04 315.89

9 292.92 351.50 410.08 322.20

10 298.77 358.53 418.28 328.65

11 304.75 365.70 426.65 335.22

12 310.84 373.01 435.18 341.93

3.2.3.6 TRANSPORTATION COST

Since transportation is a major component of the total cost of the system, many

studies on transmission pipeline properties are promoted in order to find an optimum

system design for economical transmission. For every unit of gas transported, the

pipeline owner pays the transportation cost to maintain the transportation. The

transportation cost can be defined as the cost of service to transport a unit of gas

through a segment of pipeline. The transportation cost is charged per mmscm of

gas. It is expressed as

βs
t =

(
∑

i,j lengthij(β
p
t + αp

t )) + βc
t + αc

t

F̄ijt

(3.14)
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where F̄ijt is the average annual flow rate [1]. It is assumed that the average annual

flow rate is 7000 mmscm. For The total pipeline length in 31-node is network 1040

km, in 66-node it is 2440 km, and in 97-node it is 3500. Table 3.4 shows transporta-

tion cost of each period.

Table 3.4: Transportation Costs (103 $)
Network Period βs

t Network Period βs
t Network Period βs

t

31-node

1 20.95

66-node

1 47.18

97-node

1 67.05

2 20.21 2 45.50 2 64.65

3 19.35 3 43.57 3 61.91

4 18.37 4 41.36 4 58.77

5 17.24 5 38.82 5 55.17

6 15.95 6 35.92 6 51.04

7 14.48 7 32.61 7 46.33

8 12.80 8 28.81 8 40.94

9 10.87 9 24.47 9 34.77

10 8.67 10 19.51 10 27.73

11 6.15 11 13.85 11 19.68

12 3.28 12 7.39 12 10.49

3.3 Modeling Assumptions

The NG transmission network is characterized as a complex system so several as-

sumptions are required to simplify the expression of the problem by the mathematical

programming model and to limit the scope of the study.

This study focused on a gas transmission pipeline network with large diameter

pipelines that transport a large amount of gas at high pressures over long distances.

It is assumed that the problem is in steady state, thus algebraic equations can be used

to describe the flow of NG through the network. The mathematical model provides

solutions for each period that has variable demand. The model is deterministic so
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each parameter is assumed to be known in advance. The model is built on a cyclic

network, but the output of the model is a tree network. Therefore, there are no loops

in the output.

Since a gas transmission network problem is also a network flow problem, mass

flow conservation must be satisfied in the system. The key characteristic of the prob-

lem is the presence of pressure variables. The allowed maximum pressure depends

on a Gas Company’s needs. In the network, pressure requirements will be met and

NG will be forced to flow in one direction per period.

3.4 Network Structure

The transmission pipeline network is modeled in a directed graph G = (N,A).

N is a finite set of nodes; i ∈ {1, 2, . . . , |N |} and it consists of supply (Ns), demand

(Nd), transshipment (Nt), compressor station inlet and outlet nodes (Nc). The set

of nodes can be defined as N = Ns ∪Nd ∪Nt ∪Nc. A is a set of arcs, which are the

ordered pairs (i, j) of distinct nodes in N . A is a union set of pipe and compressor

station arcs in the network, i.e., A = Ap ∪ Ac, with Ap ∩ Ac = ∅. If (i, j) ∈ Ac

then i, j ∈ Nc are the nodes representing the inlet and outlet nodes of a compressor

station. A similar interpretation can be made for pipeline arcs (i, j) ∈ Ap where

i, j ∈ N .

Pipeline arcs function with different gas flows between two nodes to satisfy chang-

ing customer demands over multi-period. The network must contain at least one pipe

arc connected to a demand node. Since the network is described as a directed graph,

back-flow in the pipes is not allowed. Pressure decreases along the pipe arcs, while

it increases along the compressor station arcs. In the following, the problem is for-

mulated as a MINLP model.
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3.5 The Mathematical Model

The mathematical formulation of the gas transmission network problem is given

as follows;

NOTATIONS:

Sets:

T set of periods

U set of the number of compressor stations units

Ns set of supply nodes

Nd set of demand nodes

Nt set of transshipment nodes

Nc compressor station nodes

N the union of sets Ns, Nd, Nt, andNc

Ac set of compressor station arcs

Ap set of pipeline arcs

E the union of sets Ac and Ap

Parameters:

θi demand of ith node in period t ∈ T
δij pipeline resistance between nodes (i, j) ∈ Ap

αc
t investment cost of installing one unit of a compressor station in period t ∈ T
αp
t investment cost of installing a pipeline in period t ∈ T
βc
t operating cost of one unit of a compressor station in period t ∈ T
βp
t operating cost of one km of a pipeline arc in period t ∈ T
βs
t transportation cost t ∈ T
βf
it NG purchase cost of supplier i ∈ Ns t ∈ T
σ capacity of one unit of a compressor station

φij length of available pipelines (i, j) ∈ Ap
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Decision Variables:

Pit pressure at node i in period t ∈ T
Qijt mass flow rate between nodes i and j in period t ∈ T
Bijt 1 if gas flows from i to j in period t ∈ T , 0 otherwise

CSijut 1 if a compressor station is installed at nodes (i, j) ∈ Nc

with u units in period t ∈ T , 0 otherwise

Vijt 1 if a new pipeline is installed between nodes i and j in period t ∈ T ,

0 otherwise

Git 1 if the pressure is below 45 bar at node i ∈ Nc in period t ∈ T ,

0 otherwise

MODEL:

Min
∑

(i,j)∈Ap

∑
t∈T

Qijtβ
s
t +

∑
i∈Ns

∑
j∈N

∑
t∈T

Qijtβ
f
it +

∑
(i,j)∈Ac

∑
u∈U

∑
t∈T

uCSijutβ
c
t

+
∑

(i,j)∈Ap

i<j

∑
t∈T

φijVijtβ
p
t +

∑
(i,j)∈Ap

i<j

|T |−1∑
t=0

φij(Vijt+1 − Vijt)αp
t+1

+
∑

(i,j)∈Ac

∑
u∈U

|T |−1∑
t=0

u(CSijut+1 − CSijut)α
c
t+1

(3.15)

subject to

Pit = 75 ∀ i ∈ Ns, t ∈ T (3.16)

Bijt ≤M Qijt ∀ (i, j) ∈ E, t ∈ T (3.17)

Qijt ≤M Bijt ∀ (i, j) ∈ E, t ∈ T (3.18)

Bijt +Bjit ≤ 1 ∀ (i, j) ∈ E, i < j, t ∈ T (3.19)

Pjt − Pit ≤M (1−Bijt) ∀ (i, j) ∈ Ap, t ∈ T (3.20)
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∑
(i,j)∈E

Qjit −
∑

(i,j)∈E

Qijt = qit ∀ i ∈ Nd, t ∈ T (3.21)

∑
(i,j)∈E

Qjit −
∑

(i,j)∈E

Qijt = 0 ∀ i ∈ Nt ∪Nc, t ∈ T (3.22)

∑
(i,j)∈E

Qijt ≥ 0 ∀ i ∈ Ns, t ∈ T (3.23)

(P 2
it − P 2

jt)− δij Q2
ijt ≥M (Bijt − 1) ∀ (i, j) ∈ Ap, t ∈ T (3.24)

(P 2
it − P 2

jt)− δij Q2
ijt ≤M (1−Bijt) ∀ (i, j) ∈ Ap, t ∈ T (3.25)

Bijt +Bjit ≤ Vijt ∀ (i, j) ∈ Ap, t ∈ T, i ≤ j (3.26)

Vijt ≤ Vijy ∀ (i, j) ∈ Ap, i ≤ j, t ∈ T,

y ∈ T, t ≤ y (3.27)

45− Pit ≤M Git ∀ i ∈ N, t ∈ T (3.28)

Bijt +Git − 1 ≤
∑
u∈U

CSijut ∀ (i, j) ∈ Ac, t ∈ T (3.29)

∑
u∈U

CSijut ≤ 1 ∀ (i, j) ∈ Ac, t ∈ T (3.30)

Bijt −
∑
u∈U

CSijut ≥ 0 ∀ (i, j) ∈ Ac, t ∈ T (3.31)

∑
u∈U

CSijut +
∑
u∈U

CSjiut ≤ 1 ∀ (i, j) ∈ Ac, i < j, t ∈ T (3.32)

CSijut ≤ CSijuy ∀ (i, j) ∈ Ac, i < j, t ∈ T,

y ∈ T, t ≤ y, u ∈ U (3.33)

Pjt − (75
∑
u∈U

CSijut)− Pjt(1−
∑
u∈U

CSijut) ≥M (Bijt − 1) ∀ (i, j) ∈ Ac, t ∈ T

(3.34)
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Pjt − (75
∑
u∈U

CSijut)− Pjt(1−
∑
u∈U

CSijut) ≤M (1−Bijt) ∀ (i, j) ∈ Ac, t ∈ T

(3.35)

σ
∑
u∈U

uCSijut −
∑

(k,i)∈Ap∪Ar

Qkit ≥M ((
∑
u∈U

CSijut)− 1) ∀ (i, j) ∈ Ac, t ∈ T

(3.36)

CSiju0 = 0 ∀ (i, j) ∈ Ac, u ∈ U (3.37)

Vij0 = 0 ∀ (i, j) ∈ Ap (3.38)

Pit, Qijt ≥ 0 ∀ (i, j) ∈ E, t ∈ T (3.39)

Bijt, CSijt, Vijt, Git ∈ {0, 1} ∀ (i, j) ∈ E, t ∈ T (3.40)

The first term in the objective function represents the total transportation cost.

The second term is associated with the total purchase cost. The third and the fourth

terms represent the operating costs of compressor stations and pipelines, respectively.

The fifth and the sixth terms represent the investment costs of compressor stations

and a pipelines, respectively. The objective function minimizes the total cost over

all periods.

Constraint (3.16) sets up the pressure level at each supply node. If there is

a flow from i to j, then constraints (3.17) and (3.18) assures that Bijt is equal

to 1. Constraint (3.19) assures gas flows only in one direction. Constraint (3.20)

determines the direction of gas flow. Constraints (3.21) and (3.22) set up the balance

between incoming and outgoing flow, to and from demand and transshipment nodes,

respectively. Constraint (3.23) defines that the total flow outgoing from a supply

node must be greater than or equal to zero.
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Constraints (3.24) and (3.25) computes pressure drop between two nodes of pipe

arcs. If there is a flow between two nodes, then constraint (3.26) assures that there

is a pipe connected from one to another. Constraint (3.27) guarantees that once a

pipeline is installed, it is used during planning horizon. Constraint (3.28) forces the

binary variable G to be equal to 1 if pressure at node i is less than 45; otherwise it is

set to 0. Constraint (3.29) represents the condition for installing a compressor station.

If there is a flow on a compressor station arc and the pressure at inlet node is less

than 45, then a compressor station should be installed on that arc. Constraint (3.30)

shows that only one type of compressor stations can be built on an arc. Constraint

(3.31) assures that if there is not any flow between two nodes of a compressor station

arc, then the arc should not be used. Constraint (3.32) shows that a compressor

station can be installed only in one direction. Constraint (3.33) assures that once

a compressor station is installed, it is used during planning horizon. Constraints

(3.34) and (3.35) set up the pressure to 75 bar at outlet nodes of compressor stations

arcs, if they are installed; otherwise, pressure at inlet and outlet nodes should be

equal. Constraint (3.36) represents that the flow rate through a compressor station

arc should be less than the total capacity of a compressor station. Constraint (3.37)

sets the existence of a compressor station in period 0 to 0. Constraint (3.38) sets the

existence of a pipeline in period 0 to 0. Constraints (3.39) and (3.40) represent the

ranges of the variables.
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4. THE SOLUTION METHOD AND COMPUTATIONAL STUDY

4.1 The Solution Method

This study proposes a mathematical optimization model that handles many

pipeline gas transmission network problems. The problem was modeled as a MINLP

model with AMPL (A Modeling Language for Mathematical Programming) [12].

The computability of the model was assessed by using Bonmin [4] which implements

BB algorithm to solve MINLP models with non-convex functions.

The mathematical optimization method can be used to find feasible solutions as

long as the mathematical model is a good representative of the problem. An opti-

mization method usually uses simplified models, but, it may find optimum solutions

for certain objectives, subject to the number of constraints that have been defined

before.

Mathematical methods can be classified as local or global search methods. The

global solution method is used to find a global optimum by reducing the gap between

the lower and upper bounds of the problem. The local solution method aims to

achieve a local optimum by generating new solutions using a neighborhood search.

A number of solution techniques, including combinatorial and nonlinear optimiza-

tion, have been used in many fields of the mathematical programming. These meth-

ods can be classified as exact (analytical) and approximate (numerical solutions).

The exact solution method is bounded for specific problems. For large real-world

problems, this method may be time consuming. Approximate solutions express the

system in numerical functions. Numerical methods look for solutions within reason-

able computational times by solving equations for known parameters and variables.
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A mathematical model represents a real-world problem by the objective function

and constraints (if any). The search space is the set of all feasible solutions that

are bounded by constraints. Combinatorial optimization proposes efficient solution

methods in order to handle problems with large feasible regions [5].

In NG pipeline transportation optimization problems, a feasible region is defined

as non-convex. The size and complexity of the problem increase and the feasible re-

gion expands when, for example, new demand nodes are considered, so new pipelines

and compressor stations are required in the system. Thus, finding the optimal design

of the network that minimizes the total cost requires the theory and the application

of nonlinearly constrained optimization.

4.1.1 Mixed Integer Nonlinear Programming

MINLP is a mathematical programming approach with nonlinear functions in

the objective function and constraints. MINLP has been used in many applications

from various areas, including chemical sciences, logistics, engineering design, manu-

facturing, energy generation and distribution. A general MINLP can be formulated

as

Min f(x)

subject to

gj(x) ≤ 0 ∀ j = 1, 2, . . . ,m

li ≤ xi ≤ ui ∀ i = 1, 2, . . . , n

x ∈ ZrxRn−r

where f : Rn → R and gj: Rn → R, ∀ j = 1, 2, . . . , m, are generally non-convex

functions; n is the number of variables, r is the number of integer variables and x is
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the n-vector of variables where li and ui determine lower and upper bounds on the

variables [3].

MINLP problems are very difficult to solve, because they include the difficulties

of both MIP and nonlinear programming (NLP), which are MINLP’s subclasses. As

MIP has a combinatorial nature, non-convex and convex NLP problems are hard to

solve. Since both MIP and NLP are NP-complete problems, solving MINLP can be

challenging.

Non-convex MINLPs are typically harder to solve optimally than convex prob-

lems. For convex MINLPs, an initial lower bound can be computed by solving the

continuous relaxation of the problem. This relaxation will be a convex NLP so that it

is relatively easy to solve. On the other hand, a continuous relaxation of a non-convex

MINLP is a non-convex NLP, which is classified as a NP-hard problem. [3]

Defining a NG transmission network requires using nonlinear equalities and bi-

nary variables. Therefore, MINLP is used to describe the problem. Because of the

characteristics of the pressure and flow rate relation, the feasible region of the prob-

lem is non-convex. Typically, the BB algorithm is used to solve nonlinear non-convex

problems.

4.1.2 The Branch-and-Bound Algorithm

Bonmin solves non-convex MINLP problems using BB algorithm. This algorithm

is the method for global optimization in non-convex problems [17]. The method is to

branch on all variables before closing the gap between the lower and upper bound on

the globally optimal objective value. These algorithms can be slow. In some cases

computational times increase exponentially with problem size [7].

The space of all feasible solutions (the search space) is repeatedly partitioned

into submodels. After tightening the bounds on the discrete variables to integer
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values, non-integer solutions are eliminated. A tightened submodel is solved by using

the optimal solution to the previous looser submodel. In the case of minimization,

the objective function values of submodels are assumed to be lower bounds in the

restricted search space. The search continues to examine further nodes in the tree

until a feasible solution with an objective function value that is no greater than the

bound for any submodel [27].

For constrained optimization problems with discrete variables and/or non-convex

objective function or constraints, exact solution methods are inefficient. BB methods

are one of the best ways to obtain globally optimal solutions to nonlinear program-

ming problems with non-convex functions [17].

4.1.3 Overview of AMPL and Bonmin

Modeling language systems are widely used tools in the development of math-

ematical models. One of the most widely used modeling languages is AMPL [12].

AMPL is an algebraic modeling language for formulating and solving high-complexity

problems for a large-scale mathematical computation. Linear and nonlinear opti-

mization problems with discrete or continuous variables can be modeled by AMPL.

AMPL’s syntax is similar to mathematical notations of optimization problems. This

allows for a comprehensible definition of models. In this study, AMPL is used to

describe the problem model.

AMPL solver options comprise a considerable number of optimization tools in-

cluding, CPLEX[16], Gurobi[14], MINOS[21], and KNITRO[7] . The solvers differ

from each other in such a way that each apply different methods to solve problems

with a given proven optimality and the characteristics of the models they handle.

After modeling with AMPL, the problem will be solved by Bonmin (Basic Open-

source Nonlinear Mixed Integer Programming) [4]. The aim is to assess the com-
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putability of the model. Bonmin is an online solver of the Computational Infras-

tructure for Operations Research (COIN-OR) [18], which is an initiative project to

encourage the development of open-source software for the operations research com-

munity. Bonmin and many other COIN-OR solvers can be accessed on-line through

the NEOS Server [10]. Optimization problems are solved by solvers automatically

with minimal input from the user. Users upload the problem’s formulation to the

server as an input. AMPL, GAMS[25] or MATLAB[19] can be used to define prob-

lems. All other information required by the optimization solver is determined au-

tomatically. For each problem type, there are different optimization solvers. For

instance, BARON[26], Bonmin or Couenne[2] can be used to solve MINLP.

Bonmin is an open source code for solving general MINLP problems in AMPL ,

GAMS and C/C++ format. The methods that Bonmin uses exact algorithms when

nonlinear functions are convex. Bonmin implements four different algorithms for

solving MINLPs: (1) a NLP-based BB algorithm, (2) an outer-approximation based

BB algorithm, (3) an outer-approximation based decomposition algorithm, and (4)

a hybrid outer-approximation/NLP based branch-and-cut algorithm. A NLP-based

BB algorithm solves a continuous nonlinear program at each node of the search tree

and branches on variables [4].

4.2 Computational Study and Analysis

In this section, an evaluation of the computability of the proposed model is pro-

vided. The network problems are generated by using the assumptions and the pa-

rameters that were discussed previously. Different variations of the model are tested.

Outputs of the problems are compared, and the robustness of solutions is discussed.

Input data are realistic data, i.e., demand quantities are randomly generated

according to the current usage in Turkey by using uniform distribution. Then, using
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these data, monthly, seasonal and yearly data were computed. Monthly demands

vary in each period according to the season. For instance, peak demand occurs in

the winter session between October and March. Summer session is between April

and September. This season holds the lowest demand in a year. Seasonal demands

are the summation of demands in a season while yearly demand is the total of the

two seasons’ demand values. Typically, demand increases over 5 years between 5%

and 15%. In this study, it is assumed that demand increases by 1% in each year.

The structure of the studied networks is inspired by the transmission network of

Turkey. The position of nodes is consistent with their geographical location in the

real network.

Flow directions are designated by the constraints and no flow direction is assigned

a priori. The length and diameter of pipeline arcs are established before running the

test instances. The pressure of gas at supply nodes is fixed to 75 bar. The pressure at

other nodes is limited by the maximum allowable operating pressure of the pipeline.

The operating pressures of the pipelines are not given as problem data, but they are

computed during the optimization run by satisfying constraints.

As a result of numerical experiments, the model is expected to have a tree-

structured network that there is at least one path to any demand node and at least

one path from any supply node. It is also anticipated that all demand and capacity

requirements are satisfied in all periods, and pressures at nodes are in the allowed

range. Once a pipeline or a compressor station is installed, the model will adjust gas

flow accordingly in latter periods.

The following data has been decided to be used due to the evidence suggested by

many test instances. Length and resistance of each pipe type are given in Table 4.1

and demand data are shown in Table 4.2.
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Table 4.1: Monthly Demand Data (mmscm)
Demand Periods

Nodes JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC

2 158.98 144.53 98.71 81.58 74.16 67.42 61.29 55.72 89.74 108.58 119.44 131.39

3 163.28 148.43 101.38 83.79 76.17 69.25 62.95 57.23 92.17 111.52 122.67 134.94

5 139.83 127.12 86.82 71.75 65.23 59.30 53.91 49.01 78.93 95.50 105.05 115.56

6 141.37 128.52 87.78 72.55 65.95 59.96 54.50 49.55 79.80 96.56 106.21 116.84

8 114.59 104.17 71.15 58.80 53.46 48.60 44.18 40.16 64.68 78.27 86.09 94.70

9 116.03 105.48 72.04 59.54 54.13 49.21 44.73 40.67 65.50 79.25 87.17 95.89

10 176.96 160.87 109.88 90.81 82.55 75.05 68.23 62.02 99.89 120.87 132.95 146.25

12 87.58 79.62 54.38 44.94 40.86 37.14 33.77 30.70 49.44 59.82 65.80 72.38

17 115.34 104.86 71.62 59.19 53.81 48.92 44.47 40.43 65.11 78.78 86.66 95.32

18 176.88 160.80 109.83 90.77 82.51 75.01 68.19 61.99 99.84 120.81 132.89 146.18

19 132.47 120.43 82.25 67.98 61.80 56.18 51.07 46.43 74.78 90.48 99.53 109.48

20 147.66 134.23 91.68 75.77 68.88 62.62 56.93 51.75 83.35 100.85 110.94 122.03

22 158.24 143.86 98.26 81.20 73.82 67.11 61.01 55.46 89.32 108.08 118.89 130.78

25 84.91 77.19 52.72 43.57 39.61 36.01 32.74 29.76 47.93 57.99 63.79 70.17

26 176.89 160.81 109.83 90.77 82.52 75.02 68.20 62.00 99.85 120.82 132.90 146.19

30 113.34 103.03 70.37 58.16 52.87 48.07 43.70 39.72 63.98 77.41 85.15 93.67

31 131.88 119.89 81.89 67.67 61.52 55.93 50.84 46.22 74.44 90.07 99.08 108.99

33 160.04 145.49 99.37 82.13 74.66 67.87 61.70 56.09 90.34 109.31 120.24 132.26

35 71.84 65.31 44.61 36.86 33.51 30.47 27.70 25.18 40.55 49.07 53.97 59.37

37 71.39 64.90 44.33 36.64 33.31 30.28 27.53 25.02 40.30 48.76 53.64 59.00

39 63.28 57.52 39.29 32.47 29.52 26.83 24.40 22.18 35.72 43.22 47.54 52.29

40 71.25 64.77 44.24 36.56 33.24 30.22 27.47 24.97 40.22 48.67 53.53 58.89

42 109.69 99.72 68.11 56.29 51.17 46.52 42.29 38.44 61.92 74.92 82.41 90.65

44 180.11 163.74 111.84 92.43 84.02 76.39 69.44 63.13 101.67 123.02 135.32 148.85

46 135.71 123.37 84.27 69.64 63.31 57.56 52.32 47.57 76.61 92.69 101.96 112.16

48 114.45 104.05 71.06 58.73 53.39 48.54 44.13 40.11 64.60 78.17 85.99 94.59

49 132.29 120.26 82.14 67.88 61.71 56.10 51.00 46.37 74.67 90.35 99.39 109.33

50 186.19 169.27 115.61 95.55 86.86 78.96 71.79 65.26 105.10 127.17 139.89 153.88

52 129.62 117.83 80.48 66.51 60.47 54.97 49.97 45.43 73.17 88.53 97.38 107.12

55 53.42 48.56 33.17 27.41 24.92 22.65 20.59 18.72 30.15 36.48 40.13 44.15

58 186.71 169.74 115.93 95.81 87.10 79.18 71.98 65.44 105.39 127.53 140.28 154.31

59 121.83 110.75 75.65 62.52 56.83 51.67 46.97 42.70 68.77 83.21 91.53 100.69

60 70.11 63.73 43.53 35.98 32.71 29.73 27.03 24.57 39.57 47.88 52.67 57.94

62 172.63 156.93 107.19 88.58 80.53 73.21 66.55 60.50 97.44 117.91 129.70 142.67

63 175.19 159.26 108.78 89.90 81.73 74.30 67.54 61.40 98.89 119.66 131.62 144.78

66 135.11 122.83 83.89 69.33 63.03 57.30 52.09 47.36 76.27 92.28 101.51 111.66

68 77.57 70.52 48.16 39.80 36.19 32.90 29.91 27.19 43.78 52.98 58.28 64.10

69 177.22 161.11 110.04 90.94 82.67 75.16 68.32 62.11 100.03 121.04 133.14 146.46

71 76.51 69.55 47.50 39.26 35.69 32.45 29.50 26.82 43.19 52.26 57.48 63.23

73 93.12 84.66 57.82 47.79 43.44 39.49 35.90 32.64 52.56 63.60 69.96 76.96

79 62.65 56.96 38.90 32.15 29.23 26.57 24.16 21.96 35.37 42.79 47.07 51.78

81 76.31 69.37 47.38 39.16 35.60 32.36 29.42 26.74 43.07 52.12 57.33 63.06

82 71.96 65.42 44.68 36.93 33.57 30.52 27.74 25.22 40.62 49.15 54.07 59.47

83 160.80 146.19 99.85 82.52 75.02 68.20 62.00 56.36 90.77 109.83 120.81 132.90

85 43.71 39.74 27.14 22.43 20.39 18.54 16.85 15.32 24.68 29.86 32.84 36.13

87 53.32 48.47 33.11 27.36 24.87 22.61 20.56 18.69 30.10 36.42 40.06 44.07

88 155.78 141.62 96.73 79.94 72.67 66.07 60.06 54.60 87.93 106.40 117.04 128.74

90 112.56 102.33 69.89 57.76 52.51 47.74 43.40 39.45 63.54 76.88 84.57 93.03
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Table 4.2: Pipeline Arc Lengths and Resistances
Arc φij (km) δij Arc φij (km) δij Arc φij (km) δij

1,2 25 1.344 38,40 5 0.269 72,73 10 0.537

2,3 25 1.344 38,39 20 1.075 72,74 100 5.374

3,4 25 1.344 34,41 50 2.687 74,75 50 2.687

4,5 30 1.612 41,42 45 2.418 75,76 10 0.537

5,6 30 1.612 43,44 5 0.269 75,85 50 2.687

6,7 30 1.612 43,45 50 2.687 85,86 5 0.269

7,9 60 3.225 45,46 45 2.418 86,87 10 0.537

7,8 30 1.612 45,47 50 2.687 86,88 5 0.269

9,10 60 3.225 47,48 75 4.031 77,78 10 0.537

4,11 50 2.687 48,49 75 4.031 78,79 5 0.269

11,12 5 0.269 47,50 50 2.687 78,80 25 1.344

11,13 50 2.687 29,51 100 5.374 80,81 20 1.075

14,15 50 2.687 51,52 5 0.269 80,82 20 1.075

15,16 40 2.150 51,53 50 2.687 80,83 25 1.344

16,19 20 1.075 53,54 25 1.344 83,84 50 2.687

16,17 20 1.075 54,55 5 0.269 89,90 10 0.537

16,18 20 1.075 54,56 25 1.344 74,89 10 0.537

19,20 20 1.075 56,57 20 1.075 41,91 25 1.344

15,21 50 2.687 57,58 20 1.075 43,92 25 1.344

21,22 5 0.269 57,59 20 1.075 31,93 25 1.344

21,23 50 2.687 56,60 50 2.687 32,94 25 1.344

23,24 50 2.687 50,61 50 2.687 18,20 20 1.075

24,25 10 0.537 60,62 60 3.225 25,26 20 1.075

24,26 10 0.537 60,63 60 3.225 33,39 20 1.075

23,27 50 2.687 60,96 50 2.687 37,42 20 1.075

28,29 50 2.687 64,97 50 2.687 42,46 20 1.075

29,30 5 0.269 64,65 100 5.374 55,58 20 1.075

29,31 50 2.687 65,66 5 0.269 17,26 50 2.687

32,34 50 2.687 65,67 75 4.031 17,18 30 1.612

32,33 5 0.269 67,68 50 2.687 79,88 50 2.687

34,35 10 0.537 68,69 100 5.374 79,81 30 1.612

35,36 10 0.537 67,70 75 4.031 59,63 20 1.075

36,38 100 5.374 70,71 5 0.269 70,95 50 2.687

36,37 5 0.269 53,72 5 0.269
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The investment costs of pipeline and compressor station installations will be de-

creasing in each year due to straight line depreciation method. For example, the

investment cost of a compressor station in the first year is not the same as the in-

vestment cost in the second year. Moreover, the operating costs of pipelines decrease

while compressor station operating costs increase in each year. Transportation cost

also varies depending on the total costs of compressor station and pipelines. Since

gas prices increase 2% each year, purchase cost changes in each period.

The numerical examples were solved in less than 8 hours with an allowable gap

of 5%. However, all solutions are obtained with an integer gap less than 0%.

4.2.1 Experiment 1: Various Problem Sizes

In this experiment, the computational performance of the proposed model is ex-

amined by different problem sizes. The subjects of the experiment are three realistic

different transmission networks, one with 31, the other with 66 and another with 97

nodes. Output of each test instance provides information about the design of the

network, the location of pipeline and compressor station installations, the amount of

gas that should be purchased at the beginning of the period.

The pipeline lengths in both networks vary from 5 km to 100 km and the diameter

of each pipeline is 30 inches. The total pipeline length of the 31-node network is 1040

km, of the 66-node network is 2440 km, and of the 97-node network is 3500 km.

31-node problem network has 32 pipe arcs, and 2 compressor arcs. The system

was constituted with 2 supply, 16 demand, 9 transshipment nodes, and 2 compressor

stations. Figure 4.1 shows the underlying network of the problem. The mathematical

formulation of this network for one period has 181 binary, 149 continuous variables,

as well as 140 nonlinear, 403 linear, 105 equality, and 438 inequality constraints.
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Figure 4.1: A Network with 31 Nodes
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Figure 4.2: Solution to the 31-Node Network for 1-period

As shown in Figure 4.2, the output of the problem with one period consists of

two tree networks, and there is at least one path to each demand node. Compressor

stations at nodes 13-14 and 27-28 are installed and they will be available during 12
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years. Pressures at nodes are given in Table 4.3 and Figure 4.3 shows the daily flow

rate in the period.

Table 4.3: Pressure Levels at Nodes in the 31-Node Network for 1-period
Node Pressure (bar) Node Pressure (bar)

1 75.00 17 71.19

2 62.81 18 70.79

3 50.86 19 71.12

4 39.03 20 70.70

5 33.74 21 72.36

6 29.91 22 72.33

7 29.73 23 72.59

8 29.55 24 71.41

9 27.49 25 71.39

10 26.55 26 71.27

11 33.01 27 75.00

12 32.99 28 68.84

13 27.93 29 71.38

14 75.00 30 71.36

15 72.91 31 75.00

16 71.19

As shown in the Table 4.3, while gas flows, pressure drops because of the resistance

and flow losses. Even though the pressure at the node 28 is above 45 bar, compressor

station is installed at that node in order to balance the pressure drop and flow rate.

Furthermore, at some nodes pressure is below 45 bar, so system analysts can decide to

locate compressor stations at other nodes considering cost and geotechnical factors.

As shown in Figure 4.3, at least 49.41 mmscm gas must be delivered from suppliers

in a year; 35.36 mmscm from supplier 1, and 14.05 mmscm from supplier 2.
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Figure 4.3: Flow Rates in the 31-Node Network for 1-period

66-node problem network has 71 pipe arcs, and 4 compressor arcs. This system

was designed with 3 supply, 33 demand, 22 transshipment nodes and 4 compres-

sor stations. Figure 4.4 shows the underlying network of one period problem. The

mathematical formulation of this network for one period has 392 binary, 234 contin-

uous variables, as well as 304 nonlinear, 869 linear, 226 equality, and 947 inequality

constraints.
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Figure 4.5: Solution to the 66-Node Network for 1-period

As shown in Figure 4.5, the problem solution consists of two tree networks, and

there is at least one path to each demand node. Compressor stations are needed at

each compressor station node during the period.

97-node problem network has 102 pipe arcs, and 6 compressor arcs. This system

was designed with 4 supply, 48 demand, and 33 transshipment nodes. Figure 4.6

shows the underlying network of one period problem. The mathematical formulation

of this network for one period has 563 binary, 340 continuous variables, as well as

436 nonlinear, 1252 linear, 328 equality, and 1360 inequality constraints.
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Figure 4.6: A Network with 97 Nodes
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Figure 4.7: Solution to the 97-Node Network for 1-period

Figure 4.7, the problem solution consists of two tree networks, and there is at

least one path to each demand node. 4 compressor stations at nodes 13-14, 76-77,

93-94, and 96-97, are installed in the system. Gas is supplied from all suppliers.

Previous test instances showed that for larger size problems the computational

time exceeds 8 hours. Since they have more arcs and nodes, the model tries every arc

to minimize the total flow and cost. Therefore, the 66-node and 97-node problems

are solved for 1-period.

The optimal total cost and the solution time (CPU time) of each problem instance

are given in Table 4.4.
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Table 4.4: Optimal Costs and Solution Times for Different Sized Networks

Problem Best objective value ($) CPU time (sec) Gap %

31-node 82,140,847,000 47.37 0.0013

66-node 163,811,060,000 258.41 0.00276

97-node 339,252,770,000 709.80 0.016

As presented in the Table 4.4, the optimal solution to the single period with

various network sizes can be obtained in less than one hour. However, the computa-

tional time increases with the number of nodes and arcs. Therefore, for the large size

problems, the whole network can be divided into small networks and each network

can be solved individually.

4.2.2 Experiment 2: The Effect of the Period Lengths

In this experiment, the model performance with different number of periods is

examined. The aim of this test study is to find the optimum planning horizon

length for the NG transmission network with varying levels of demand. The optimal

planning horizon not the only gives the minimum cost but also requires fewer changes

over 12 year span. System analysts try to operate the existing network structure

with minimal changes over long periods, because installing new pipelines/compressor

stations, and not using the existing ones, may cause considerable expenses.

Typically, demand projections, and compressor station and pipeline installation

decisions are made for 10 years. In this study, a 12 year span is chosen as a long term

planning horizon considering solution times of problems. It is also an appropriate

time period to observe changes on the network structure. Thus, various instances

based on the 31-node network are generated for different number of periods, but with

the same planning horizon length of 12 years.
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Figure 4.8: Problems with Different Period Lengths

Figure 4.8 shows how these problems are generated. Regardless of the period

lengths, the mathematical formulation remains the same, but data changes according

to the number of years in a period. As mentioned before, demand and cost data are

generated for each year in the planning horizon. Based on these data, yearly demands

are aggregated to obtain periodical demand in each problem. For example, for 1-

period problem, demand values of 12 years are combined while in 2-period problem,

demand data of the first period is the summation of the first 6 years’ demand values.
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As in demand data, operating costs of compressor stations and pipelines are

aggregated according to the period length. However, investment, transportation, and

purchase costs in each period represents the cost of corresponding beginning year of

the period. For example, in 1-period problem, operating costs are the summation

of operating costs in all 12-year span, and the investment costs are the first year’s

costs. In the same manner, for 2-period problem, the summation of operating costs

of each 6-year span gives the operating cost of one period. The investment cost of

each period in a 2-period problem is the cost in the corresponding beginning year.

More precisely, in the first 6-year span, the costs are the same as the costs in the

beginning year while in the second 6 year span, they are equal to the costs in the

seventh year.

Supply contracts will be made at the beginning of each time span so purchase

cost will be charged in each period. For example, for a 12 period problem gas will

be purchased yearly. Purchase cost vary for each period because it is assumed that

gas prices increase 2% each year. For 1-period problem, gas for the whole 12 years

will be purchased in the first period at the rate in the first year. The total costs of

different period lengths vary due to these cost variations.

1-period problem implies that the planning decisions made in that period will

cover 12 years. Pipe and compressor arcs used in the first period will be available for

12 years. 2-period problem gives solutions for each 6-year span in the whole planning

horizon. The first period contains solutions for the first 6 years, while the second

period represents the next 6 years. Any changes occur in a period will be available

in the corresponding 6 years. In a 12-period problem, the solution contains planning

decisions for each year independently, so in each year a change may occur.
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Figure 4.9: Solution to the 1-Period Planning

The network structure that is shown in Figure 4.9 is the solution to the 1-period

problem. The network consists of two trees with 26 pipe arcs. The compressor

stations at the 13-14 nodes and 27-28 nodes are active. Pressure at the node 28 is

above 45 bar, but the model installs compressor station at that node in order to

balance the pressure drop and flow rate. The net present value of the network is

$82,140,847,000. This problem provides the maximum minimized cost because the

model does not allow any changes in 12 years. The current network will be available

for the whole planning horizon.
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Figure 4.10: Solution to the 2-Period Planning

The solution to the 2-period problem is shown in Figure 4.2.2 and Figure 4.10.

The network remains the same in two 6 year spans. In the first period, a compres-

sor station at nodes 13-14 will be installed, and it will be available for the whole

planning horizon. The network structure is the same as the solution to the 1-period

planning problem in the second period. Compressor station at nodes 27-28 will be

active starting from the second 6 year span. The cost is less for this 2-period problem
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because of transportation cost, and the investment and operating costs of pipelines

and compressor stations, in two periods. Furthermore, the total flow rate in a pe-

riod varies depending on the period length so the total cost varies between planning

horizon lengths.
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Figure 4.11: Solution to the 3-Period Planning
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As shown in Figure 4.2.2 and Figure 4.11, for the first 4 year span of the 3-period

planning problem, the network structure is the same as the first periods of problems

with greater period length. For the last two periods, more precisely, in the last 8

years of the planning horizon, new pipeline and a compressor station at nodes 27-28

will be installed.
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Figure 4.12: Solution to the 4-Period Planning (1)
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Figure 4.13: Solution to the 4-Period Planning (2)

As shown in Figures 4.2.2, 4.12, and 4.13 in the 4-period planning, there are

three structures throughout 12 years. Compressor station at node 27-28 are available

starting from the third 3 year span. In the 2-period problem, these nodes are also

active starting from seventh year, while in 3-period problem they are active starting

from the fifth year. Even though changes in the network are compatible for different

period lengths, costs are different. The effects of the depreciation, investment and

operating costs on the flow rate increase with the decrease in period lengths so the

model tries to minimize the total flow rate by using different pipe arcs over 4 period

problem. Therefore, variations on the network structure over the planning horizon

can be seen more clearly in short period lengths.
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Figure 4.14: Solution to the 6-Period Planning

Figure 4.2.2 and Figure 4.14 represent the solution to the 6-period planning. The

network consists of only one tree and the compressor station at nodes 13-14 is active

while the one at nodes 27-28 is bypassed in the first 3 periods. As in the previous

problems, both compressor stations are active in the latter periods because of the

increasing demand. The model tries to keep the balance between the flow rate and

the pressure drop. Therefore, in the last 3 periods, the model requires installation of
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a compressor station at nodes 27-28 starting from the seventh year to increase the

pressure. As in the previous problems, there are two pipe arcs that deliver gas to

node 17. To minimize the total flow, the model installs new pipeline from node 26

to node 17. Thus, both the flow rate and the cost is minimized.
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Figure 4.15: Solution to the 12-Period Planning
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Figure 4.2.2 and Figure 4.15 show the output of the 12-period planning. The

model gives the optimal solution by minimizing the total cost of each period. Since,

the 12-period problem output includes solutions for each year, it provides the least

cost among the other problems. The total cost of the network in 12 years is $79,182,330,000.

Only one compressor station is used in the first six periods while both of them are

active in the latter periods.

The optimal total cost and the solution time of each problem instance are given

in Table 4.5.

Table 4.5: Optimal Costs and Solution Times for Different Period Lengths

Number of Period Best Objective CPU Time Gap %

Problem Periods Length Value ($) (second)

P1 1 12 years 82,140,847,000 47.37 0.0013

P2 2 6 years 81,297,629,000 174.91 0.0031

P3 3 4 years 80,540,463,000 3436.85 0.00

P4 4 3 years 79,781,491,000 4956.32 0.00066

P6 6 2 years 79,418,565,000 16352.65 0.00022

P12 12 1 year 79,182,330,000 21351.74 0.00024

As a result of this experiment, it can be concluded that;

• In the Table 4.5, it can be observed that, while the number of periods increase,

the total cost decreases, because changes in the network that are made in a

period will be available for years the period covers. For a 1-period problem,

if a compressor station is installed, the operating cost will be charged for 12

years. However, for a 12-period problem, a compressor station may not be

needed in the first 6 years so the operating cost will be paid starting from the

58



seventh period. The operating cost for pipeline is also charged in the same

way. Therefore, solving each period individually helps with making the right

decisions in the right time.

• The key factor of the differences between the various planning horizons is the

strategy that is used to compute demand and cost for each one. For example,

for 6-period planning, it is assumed that demand values are the summation

of two consecutive years, while for 1-period planning demand values are the

summation of all yearly demands in 12 years. Demand values define the daily

flow rate in a pipeline. Since, demand values change in each year, daily flow

rates are also subject to change. Compressor stations are located at nodes

according to the pressure. Therefore, pressure values at nodes as well as the

location of compressor stations, are different in each year due to the changes

in daily flows. Moreover, since transportation and purchase costs depend on

the flow rate, the total cost also varies.

• Another factor is that the model allows changes in the network during long

time periods. For example, in 12-period planning, the network is allowed to

change during each of the 12 years to operate with the minimum cost. Thus,

the network changes after the sixth period. In the same manner, 4-period

planning gives 3 different network structure. The model makes changes on

the network to minimize the total cost. However, in 1-period planning, it is

assumed that the network will remain the same for 12 years as if it is in the

first period. On the other hand, the network structure may not be convenient

for the latter periods, so there can be sunk costs. Therefore, the cost increases

while the period length decreases.
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• Demand values and cost data are crucial parameters for the NG network.

Therefore, the aggregate planning may not give reliable solutions to NG trans-

mission networks over long planning horizons.

• This study shows that planning each year independently from other years gives

more realistic solution with minimal costs. By using a multi-period planning

problem, compressor station and pipeline installation decisions can be made

more accurately.

In this experiment, it is shown that very similar network structure can be obtained

by using different period lengths for a planning horizon. The annual flow costs

implied by the problems, P1, P2, . . . , P12, of each scenario are compared to show

the robustness of the solution. To obtain associated flow cost for each problem,

transportation, and purchase costs are calculated for each year separately. The

network structures are fixed as obtained in each case and individual flow problems

are solved by using corresponding networks. Thus, it is assumed that these networks

are existing networks and they will be available as long as the period length of

a scenario. For example, for 1-period problem, network decisions for the whole

planning horizon are made only once at the beginning, so the network structure

remains the same during the whole planning horizon. The values of cost parameters,

which are transportation and purchase costs, of the first year are used for each year.

Since the cost data is the same in each year, the annual total cost varies over 12 years

according to the total flow. However, in 2-period problem, the network structure is

modified after sixth year, so the total flow changes. The cost parameter values also

vary in every two years due to gas prices or electricity costs. Therefore, yearly costs

vary over 12 years depending on both the cost and flow. Other problems Figure 4.16

shows the annual transportation and purchase costs of each problem.
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Figure 4.16: Annual Costs of Different Period Lengths

As shown in Figure 4.16, for the first 7-year-span, the annual total costs of all

problems are very close to each other. Therefore, for a decision making process,

computational times of the problems must be considered. Consequently, 1-period

problem can be chosen, since it gives optimum results in a short time. However, the

total cost of the problem is not a minimum cost that can be obtained in 12 years.

The problem also assumes that there is not any change in the network structure

during planning horizon. Therefore, to obtain a realistic network structure and

modifications with a minimum cost, 12-period problem can be used.

For the rest of the planning horizon, the total costs vary depending on the period

lengths. As mentioned before, 1-period problem network structure does not change

during planning horizon, but demand increases over time. Therefore, even though

the cost parameter values are the same for all years, the total cost increases because

of the increase in flow. However, the output of the 12-period problem allows changes
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in the network structure due to increasing demand. For example, if a pipeline is

needed in sixth year, 1-period problem may install it in the first year or it may not

consider it at all. The other problems that include more periods react the change in

time and adjust the network accordingly. Another advantage of 12-period planning

is the cost variation over planning horizon. The transporting cost of one mmscm of

gas decreases during 12 years while the total flow increases. Therefore, the total cost

is less than the total cost of 1-period problem. Thus, the difference between costs

increases over the last 5 years because of the cost variation in the problems.

The model can be run in different periods of time by using updated data. For

example, if new demand forecasts are available after sixth year, the model can be used

to optimize flow to find the minimum amount of gas purchase in the next periods.

Moreover, for existing networks, by fixing variables corresponding to pipeline and

compressor station arcs, expansion decisions, such as installing new pipelines or

compressor stations, can be made.

In summary, the operational and strategic plan for 12 years can be made at the

beginning of the planning horizon using a 1-period model structure, which has the

least computational time. However, since demand increases, the network may require

new pipelines and compressor stations over time; 1-period problem may not give

efficient solution for the next periods. 12-period problem gives reliable solutions, but

the computational time is more than the other problems. Consequently, considering

both the computational time and the output efficiency, the problems with 2, 3, 4 or

6 periods can be used. Thus, the model can be run in each period to make decisions

for the latter periods.
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4.2.3 Experiment 3: The Effect of Changes in the Cost Parameters

In this experiment, the model performance with different cost parameters is ex-

amined. Another purpose of the study is to find the cost that affects the network

structure most. For this purpose, various test instances are generated for the 31-node

12-period network. The cost of investment and of operating compressor stations are

treated as one parameter. In the same manner, the total cost for pipelines consists

of the investment and operating costs. Also, the transportation cost is taken into

consideration to observe the changes in the network due to variable cost parameters.

Thus, the three costs used in the test runs are the total cost of compressor stations,

the total cost of pipelines, and the transportation cost. The upper and lower bounds

of the costs are computed by using 20% of each value. Smaller percentages of the cost

parameters did not affect the network remains the same in test runs of the model,

but for 20% and up the network structure changes.

The cost data that are used in these instances are shown in Table 4.6 and 4.7.

Test instances include different combinations of the lower and upper values of

costs. These combinations are shown as (I-II-III), where the first entry refers to

the transportation cost, the next one represents the total cost of pipelines and the

last one stands for the total cost of compressor stations. For example, (L-U-L)

implies that the problem has the lower values of transportation cost and the total

compressor station costs, and the upper value of the total pipeline cost. The best

objective function values and the solution times of instances are shown in Table 4.8.
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Table 4.6: Cost Data (103 $) (1)
Cost Period Actual Cost Lower Upper Cost Period Actual Cost Lower Upper

αc
t

1 10243.865 8195.092 12292.638

βc
t

1 24.709 19.7672 29.6508

2 9878.216 7902.5728 11853.8592 2 25.944 20.7552 31.1328

3 9459.014 7567.2112 11350.8168 3 27.242 21.7936 32.6904

4 8978.674 7182.9392 10774.4088 4 28.604 22.8832 34.3248

5 8428.558 6742.8464 10114.2696 5 30.034 24.0272 36.0408

6 7798.837 6239.0696 9358.6044 6 31.536 25.2288 37.8432

7 7078.328 5662.6624 8493.9936 7 33.112 26.4896 39.7344

8 6254.309 5003.4472 7505.1708 8 34.768 27.8144 41.7216

9 5312.313 4249.8504 6374.7756 9 36.506 29.2048 43.8072

10 4235.891 3388.7128 5083.0692 10 38.332 30.6656 45.9984

11 3006.347 2405.0776 3607.6164 11 40.248 32.1984 48.2976

12 1602.431 1281.9448 1922.9172 12 42.261 33.8088 50.7132

αp
t

1 109.297 87.4376 131.1564

βp
t

1 21.859 17.4872 26.2308

2 105.396 84.3168 126.4752 2 21.079 16.8632 25.2948

3 100.923 80.7384 121.1076 3 20.185 16.148 24.222

4 95.798 76.6384 114.9576 4 19.16 15.328 22.992

5 89.929 71.9432 107.9148 5 17.986 14.3888 21.5832

6 83.21 66.568 99.852 6 16.642 13.3136 19.9704

7 75.522 60.4176 90.6264 7 15.104 12.0832 18.1248

8 66.73 53.384 80.076 8 13.346 10.6768 16.0152

9 56.68 45.344 68.016 9 11.336 9.0688 13.6032

10 45.195 36.156 54.234 10 9.039 7.2312 10.8468

11 32.076 25.6608 38.4912 11 6.415 5.132 7.698

12 17.097 13.6776 20.5164 12 3.419 2.7352 4.1028
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Table 4.7: Cost Data (103 $) (2)

Cost Period Actual Cost Lower Upper

βs
t

1 20.95 16.76 25.14

2 20.21 16.16 24.25

3 19.35 15.48 23.22

4 18.37 14.69 22.04

5 17.24 13.79 20.69

6 15.95 12.76 19.14

7 14.48 11.58 17.38

8 12.80 10.24 15.36

9 10.87 8.70 13.04

10 8.67 6.94 10.40

11 6.15 4.92 7.39

12 3.28 2.63 3.94

Table 4.8: Optimal Costs and Solution Times for Different Combinations of Cost

Parameters
Test Best objective CPU time

Problem Instance value ($) (second) Gap %

T0 A-A-A 79,182,330,000 21351.74 0.00024

T1 L-L-L 77,488,495,000 21764.74 0.00189

T2 L-L-U 77,502,091,000 17187.34 0.00204

T3 L-U-L 77,576,231,000 22684.36 0.00258

T4 L-U-U 77,622,053,000 19981.68 0.00277

T5 U-L-L 80,253,805,000 19728.26 0.00354

T6 U-U-L 80,317,453,000 19628.51 0.00358

T7 U-L-U 80,336,401,000 19378.53 0.00439

T8 U-U-U 80,449,709,000 19609.75 0.00492

A: Actual cost / L: Lower value / U: Upper Value
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Flow rate variables determine the design of the network. A pipeline is installed

between nodes i and j, if gas flows between these nodes. Therefore, the transporta-

tion cost that is related to the flow rate determines the network design. For the lower

values of the transportation cost, the network structure is the same as the original

12-period network. Different values of the total costs of compressor stations and

pipelines do not affect the network. As mentioned before, the model tries to find the

minimized total flow rate to reduce the costs. If transportation cost values are high,

the model searches for new paths to transport gas to keep the total flow rate at a

minimum so there are various structure throughout 12 years for each problem.

Figure 4.17 shows the solution to the problem with the upper values of transporta-

tion cost and the lower values of compressor station costs. The network remains the

same for the lower and upper values of pipeline costs. Figure 4.18 represent the prob-

lem output for the upper values of the transportation cost and compressor station

costs. This network is also the same for the different values of pipeline costs.
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Figure 4.17: Network Structure for Problems T5 and T6
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Figure 4.18: Network Structure for Problems T7 and T8
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As shown in the Figure 4.17 and Figure 4.18, for the upper values of the trans-

portation cost, the network structure changes according to the total costs of com-

pressor stations. If the total cost of compressor stations is at the lower value then the

model installs a compressor station at nodes 13-14 starting from the fourth period.

If it is at the upper value then the station becomes active in the sixth period. The

costs of the pipeline do not change the structure.

In summary, it can be concluded that transportation cost is the most important

cost that affects the network structure. Decisions for choosing the best transportation

cost parameter must be made carefully. Too low or too high values can change the

network completely. Thus, the solution may not be applicable to the real-world

system. This study also showed that the model built with the upper values of

transportation cost and compressor stations tries to delay the installation decisions

for compressor stations. If installing compressor stations in the latter periods is

compatible with the other long-term plans, and the costs of the network are also

convenient for the company budget, then system analysts can use make decisions

accordingly. Since the model is cost sensitive, the scale between the cost parameters

is important. Costs must be calculated carefully to avoid getting any inapplicable

and costly results.
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5. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This research addresses the problem of the optimization of a steady-state NG

transmission network. A MINLP model was proposed for minimizing the total in-

vestment and operating costs. The main contribution of this study is to provide

an integrated optimization model consisting of decision variables and constraints

that other researches studied before separately. The systematic design of various

test instances produced in this study assessed the proposed optimization approach,

when applied to different sized problems, in terms of efficiency and reliability. The

economic aspects of NG pipeline transportation were reviewed. Concepts of the in-

vestment cost of pipeline and compressor stations and the periodic operating costs

were introduced. The problem was modeled with AMPL. The numerical experiments

were conducted by application of a MINLP, Bonmin. This model will assist decision

makers to make appropriate decisions within a short time.

Flow networks have a complex structure in regard to gas characteristics and any

change or modification of their structure while in use is costly and difficult. Therefore,

designing a new network and utilizing of its capabilities optimally is important. In the

network model, arcs correspond to pipelines and compressor stations. The pipeline

flow and gas pressure at each node are the main decision variables in the problem. In

addition to flow conservation constraints, the model also includes a constraint that

defines the relationship of flow rate and pressure.

In the first type of test problems, the model was tested on three different networks

with 31, 66 and 97 nodes by using data for 1 period. In these problems, the actual

investment and operating costs were used. Demand parameters were representative of

the real-world system. Then, by generating different parameter settings, the changes
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on the network structure were evaluated. For the second type of test problems,

the lengths of the periods were varied in order to detect the different modifications

that may occur in the system due to changes in the variables related to long-lasting

decisions. The robustness of the model output under varying scenarios was tested. In

the third type of test problems, discrete intervals for the cost parameter values were

used. The model was updated for each cost parameter value with different intervals

and the results were compared. The aim of this analysis is to assess the effect of cost

changes on the network structure as well as the run time of the problems. These

tests and analyses were applied on a small-size network with 31 nodes.

These test runs indicated that the proposed model gives effective results for multi-

period planning problems. The changes in the network structure can be observed,

and strategic and operational decisions can be made accordingly. The model pro-

vides solutions with minimized costs by reducing the total flow rate during a period.

This strategy requires fewer changes in the network over planning horizon. Since

compressor stations and pipelines are long-term investment decisions, system ana-

lysts try to maintain the same network for long years to avoid sunk costs. They also

try to minimize the number of idle pipelines and compressor stations in a period to

maximize the system efficiency. The solutions to the test instances showed that the

proposed model minimizes the total cost by making fewer changes on the network

for multi-period problems to satisfy increasing demand over planning horizon.

There are a couple of assumptions and limitations of this study. First, penalty

costs were not included in the study. In real-world problems, if the amount of

consumption is below the supply contract amount in a period, then the cost of

penalty must be paid for the excess amount of supply. Second, it is assumed that

there is no NG storages in the system. Gas is delivered only from different suppliers.

The first limitation may be overcome by introducing a new variable representing
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the excess mount of supply. A new constraint may be defined to add the storage

to the system. The proposed model allows defining new variables and constraints

easily to enhance the interest area. In the operating perspective, there could be other

objective functions of interest such as minimizing the fuel consumption at compressor

stations.

In this study, optimization of design and operation of the steady-state natural gas

transmission systems were studied. Findings about the multi-purpose mathematical

model can be transferable to a wide range of research areas.
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