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Abstract— The problem of distributing gas through a network
of pipelines is formulated as an linearized nonstationary differ-
ential repetitive model subject to some flow-pressure constraints
of material balances and pressure bounds. The linear model is
constructed in the neighborhood of the known basic operating
regime of gas delivery. The considered problem is to minimize
the total supply cost of a gas transmission company with the
minimal guaranteed pressure at the nodes. Some aspects of
a comprehensive optimization theory based on a ’constructive
approach’ are discussed.

I. INTRODUCTION

Gas transportation networks are well known to constitute

complex and large scale distributed parameter system of great

practical interest. Modeling approaches, numerical methods

and optimization of operating modes of gas transport networks

have, therefore, been of permanent interest for researchers in

the last decades, and a large number of papers were published

both in civil engineering and the mathematical community,

see e.g. [1], [2], [3], [4]. However, optimization and con-

trol of complicated gas networks still remains a challenging

problem. The general model of a gas transportation network

typically includes a large number of nonlinear elements such

as pipelines, gasholders, compressor stations and others. In this

paper the mathematical model and corresponding optimization

problem of gas network units are introduced on the basis

of a so-called constructive approach and the 2-D (space and

time) system theory setting, which is a starting point for

the further investigation of the complex networks and which

provide a fairly well-established mathematical framework. For

a representative survey of these see, for example, [5]. The

main elements of the theory of constructive optimization for

the repetitive processes were developed in [6], [7]. Some

aspects of control theory for multidimensional systems are

investigated in [8], [9] and application of it to gas networks

have been considered in [10]. A major part of the method

consists in finding the switching points of the optimal controls.

There are other approaches dealing with this problem, where

on employs search techniques or local descent methods [11],

[12]. The methods are, however, not suitable for large scale

computations. This is the driving motivation to investigate

corresponding problems for linearizations around predefined

trajectories along with real-time capable well-scaled algo-

rithms. In this work the proposed linearization for the models

of a gas distribution networks leads to some classes of linear

differential processes. The models introduced are shown to be

suitable for handling problems of optimal control of pressure

and flow in gas transport units. The considered problem is to

minimize the total supply cost of a gas transmission company

with the minimal guaranteed pressure at the nodes. Some

aspects of a comprehensive optimization theory based on a

’constructive approach’ are discussed.

II. GAS FLOW MODEL IN PIPELINE NETWORKS

The general model of a gas transportation network typi-

cally includes a large number of nonlinear elements such as

pipelines, gasholders, compressor stations and others. In this

paragraph the mathematical model and corresponding opti-

mization problem for single pipeline units of the gas network

are introduced on the basis of the 2-D (space and time) system

theory setting based on the results given in [5]. The purpose

of the modeling presented here is to guarantee a predefined

regime for each pipeline unit. This models are used then for

the further investigation of the complex networks and which

provide a fairly well-established mathematical framework.

A. Gas flow model in pipeline unit

The aim of this section is to use the 2-D control theory

(in repetitive model setting) for studying control problems

in gas pipeline units. The state space parameters are gas

pressure p and mass flow Q at the points of the pipe (we

write Q for mass flow which is often used in the literature).

For calculating the state space parameters for isothermal gas

flow in a long pipeline the following system of non-linear

differential equations from the theory of gas dynamics can be

used (see [2])

∂Q(t, x)
∂t

= −S
∂p(t, x)

∂x
− λc2

2DS

Q2(t, x)
p(x, t)

, (1)

∂p(t, x)
∂t

= −c2

S

∂Q(t, x)
∂x

,

where x denotes the space variable, t the time variable, S the

cross sectional area, D the pipeline diameter, c the isothermal

speed of sound and λ the friction factor.
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It is known that some important dynamic characteristics of

the processes can be evaluated from the linearized model of the

processes. The most accurate linear model can be realized in

some neighborhood of the known basic regime Q(x, t), p(x, t)
of the considered process. In the section below we give such

kind of a linearized model.

B. Linearization scheme

Let (Q, p) and (Q̄, p̄) are the known state variables for a

gas pipeline unit. Therefore, they satisfy the system (1):

∂Q(t, x)
∂t

= −S
∂p(t, x)

∂x
− γ

Q2(t, x)
p(x, t)

, (2)

∂p(t, x)
∂t

= α
∂Q(t, x)

∂x
, γ =

λc2

2DS
,

and

∂Q̄(t, x)
∂t

= −S
∂p̄(t, x)

∂x
− γ

Q̄2(t, x)
p̄(x, t)

, (3)

∂p̄(t, x)
∂t

= α
∂Q̄(t, x)

∂x
, α = −c2

S
.

Let us the current flow and pressure be presented as distur-

bances of the given regime

Q = Q̄ + ΔQ, p = p̄ + Δp. (4)

Then subtracting from (2) the (3)and using the representation

[
(Q̄ + ΔQ)2

p̄ + Δp

]
=

(Q̄(1 + ΔQ
Q̄

))2

p̄(1 + Δp
p̄ )

=
Q̄2

p̄

(1 + ΔQ
Q̄

)2

(1 + Δp
p̄ )

=

=
Q̄2

p̄

(
1 + 2

ΔQ

Q̄
+ (

ΔQ

Q̄
)2

)[
1 − Δp

p̄
+ (

Δp

p̄
)2 + ...

]

=
Q̄2

p̄

(
1 + 2

ΔQ

Q̄
− Δp

p̄
+ (more higher order )

)

we have the following linearized equations for disturbances

(ΔQ,Δp):

∂ΔQ

∂t
= −S

∂Δp

∂x
− 2γ

Q̄2

p̄Q̄
ΔQ − γ

Q̄2

p̄2
Δp,

∂Δp

∂t
= α

∂ΔQ

∂x
.

Introducing the new variables (we can say about new local

coordinates ΔQ → Q, Δp → p) we can present the linearized

model in the neighbourhood of the known (pre-assigned/basic)

regime (Q̄, p̄) has the following form

∂Q

∂t
= −S

∂p

∂x
− δQ + βp,

∂p

∂t
= −α

∂Q

∂x
, (5)

where

δ = 2γ
Q̄

p̄
, β = γ

Q̄2

p̄2
, γ =

λc2

2DS
, α =

c2

S
.

Notice that (5) can be reformulated as a damped wave equation

in the pressure:

∂2

∂t2
p + δ

∂

∂t
p = α

∂2

∂x2
p − αβ

∂

∂x
p (6)

Note that a basic/pre-assigned regime (Q̄, p̄) can be obtained

by various different approaches, see e.g. [3]. Wave equations

on networks also in the context of optimal control have been

considered e.g. in [13].

C. Linearized Pipeline networks model

In this paragraph the obtained linearized pipeline unit model

is used for the further investigation of the complex networks

and which provide a fairly well-established mathematical

framework. A simple part of the complex pipeline network

is illustrated in Figure 1. The components of this network are

pipes and nodes. Each node can be presented by the following

elements: the space discretization point, the multijunction

point, the offtake, compressor inlet/outlet or a source outlet.

As usually the main parameters of the gas network model are

gas pressure pi and mass flow Qi at the pipe i. Analogously

to the single pipe unit, the hydrodynamics along each pipe of

the network is described by the continuity equations and the

momentum equations of the form [2]

∂Qi(t, x)
∂t

= −S
∂pi(t, x)

∂x
− λci2

2DiSi

Qi2(t, x)
pi(x, t)

, (7)

∂pi(t, x)
∂t

= − c2

Si

∂Qi(t, x)
∂x

,

where x denotes the space variable, t the time variable, Si the

cross sectional area, Di the pipeline diameter, ci the isothermal

speed of sound and λi the friction factor.

The linear model can be realized in some neighborhood

of the known basic regime of gas delivery through network

Qi(x, t), pi(x, t). For each pipe we can apply the linearization

approach described in the previous section. Denote by Iv the

set of nodes for the considered networks. Analogously (5) the

dynamics along each pipe i ∈ Iv associated with the node v are

described by couple of linearized partial differential equations

in both the time and spatial dependent variables pi and Qi:

∂Qi(x, t)
∂t

= −Si ∂pi(x, t)
∂x

− δQi(x, t) − βipi(x, t) + μiri(x, t),

∂pi(x, t)
∂t

= −αi ∂Qi(x, t)
∂x

+ νiqi(x, t), i ∈ Iv (8)

where μi, νi are some normalizing coefficients. On the other

side, the physical meaning of the control functions ri(t, x)
can be treated, for example, as a correcting pressure generated

by compressor station and gasholders to increase the velocity
∂Qi(t,x)

∂t of the running gas volume for the considered gas unit.

Analogously, the control variable qi(t, x) can be interpreted

as a an additional flow (supply/offtake) to change the velocity
∂pi(t,x)

∂t of the pressure pi(t, x). To simulate gas flow in a
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Fig. 1. Network nodes

complex pipeline network, we compute values of pressure

(flow) at each discretization point along each pipe, and also the

values of pressure (flow) at each node v (offtake or junction),

assuming that values of pressure/flow at some selected nodes

of the system are known. Modeling the junction (or offtake)

points will use two physical principles (see Fig. 1): i) the pipes

at the junction point should have a common pressure; ii) the

mass flow should be balanced at the junction according to the

first Kirchhoff’s law.

Next in order to connect these pipes i, we need to add into

the model the additional constraints at the nodes where the

pipes i ∈ Iv are linked. The flow dynamic at each node v
keep two requirements. Firstly, the Kirchhoff’s law must hold

for any node. This physical law ensures flow balance in the

node. This means that the sum of ingoing gas flows must be

equal the sum of outgoing gas flows. Secondly, the pressure at

the common node should be equal for all ingoing and outgoing

pipes.

The formalization of these requirements at the arbitrary

node v can be done as follows. Let ∂+
v be the set of outgoing

pipes of node v and ∂−
v be the set of ingoing pipes. For

example, at the balance node v on Figure 1 we have

i ∈ ∂−
v ; j,m ∈ ∂+

v .

Hence, the mentioned pressure requirements give

pi(bi, t) = pj(ai+1, t) = pm(ai+1, t), (9)

that can be rewritten in the form

pj(bi, t)(∀j ∈ ∂−
v ) = pj(ai+1, t), ∀j ∈ ∂+

v , (10)

Fig. 2. Gas flow and pressure in discretized network

where bi the end of the interval [ai, bi] which actually equal to

the length Li of the pipe i, and ai+1 is a beginning of the next

pipe (i + 1). In fact, bi concises with ai+1. The Kirchhoff’s

law leads to another constraint of the form∑
j∈∂−

v

Qj(bj , t) =
∑

m∈∂+
v

Qm(am, t) (11)

III. REPETITIVE MODEL IN GAS PIPELINE NETWORKS

To simplify the net model description we will image the net

node pipes collection as the collection of the lines, divided

onto segments [ai, bi] equal to length of the corresponding

pipes (see Fig 2). The total number of the lines associated to

the given node v is defined as :

Mv = max{number of i ∈ ∂−
v , number of i ∈ ∂+

v } (12)

Note that the number of the lines involved depends on the node

under consideration. This fact produces the nonstationarity of

the introduced model. The total lines used in the net model is

determined as follows

M = max
v

{Mv| v ∈ I} (13)

where I means the set of nodes for the given network. For

each pipeline we introduce the discrete grid formed by the

points xik ∈ [ai, bi], where

xik = ai + khi, hi =
bi − ai

Ni
, k = 0, ..., Ni.

In accordance with the representation of the nodes and as-

sociated pipes as a collection of the lines, we divide these

lines by segments [a1, b1], [a2, b2], ...., [aKv , bKv ]. We can then

renumbering the discretization points and calculate the values

Qi(xik , t) and pi(xik , t) of the unknown functions Qi(x, t)
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and pi(x, t) in the nodes of integer lattice {(khi)}, where k =
1, 2, . . . , N1, N1 + 1, . . . N2, N2 + 1, . . . , NKv

, i = 1, ..., Kv ,

Kv denotes the number of segments of the divided lines.

In order to obtain the desired repetitive network model,

we approximate the derivatives the linear partial differential

equations (8) we by the backward differences

∂Qi(t, x)
∂x

� Qi(t, x) − Qi(t, x − h)
h

,

∂pi(t, x)
∂x

� pi(t, x) − pi(t, x − h)
h

. (14)

Replace now the spatial derivatives in (8) by the obtained

sampled values

Qi
k(t) = Q(xik , t), pi

k(t) = p(xik , t), (15)

ri
k(t) = r(xik , t), qi

k(t) = q(xik , t)

Then the system (8) can be rewritten as follows

Q̇i
k(t) = −δQi

k(t) − (
Si

hi
+ βi)pi

k(t)

+
Si

hi
pi

k−1(t) + μiri
k(t), (16)

ṗi
k(t) =

−αi

hi
Qi

k(t) +
αi

hi
Qi

k−1(t) + νiqi
k(t) (17)

Ni ≤ k ≤ Ni+1, t ∈ [0, T ], i = 1, 2, . . . , Mv,

and the conditions (10)—(11) now are:

ps
Ni

(t) = pj
Ni+1(t), j ∈ ∂+

v , s ∈ ∂−
v (18)

∑
s∈∂−

v

Qs
Ni

(t) +
∑

j∈∂+
v

Qj
Ni+1(t) = 0, (19)

i = 1, . . . , Mv

Next in order to get the desired repetitive model denote

yi
k(t) =

[
Qi

k(t)
pi

k(t)

]
, ui

k(t) =
[

ri
k(t)

qi
k(t)

]
(20)

Then (16) can be rewritten as

dyi
k(t)
dt

=

Ai︷ ︸︸ ︷( −δi −(βi + Si

hi
)

−αi

hi
0

)
yi

k(t) (21)

+

Di︷ ︸︸ ︷(
0 Si

hi
αi

hi
0

)
yi

k−1(t) +

Bi︷ ︸︸ ︷(
μi 0
0 νi

)
ui

k(t),

where Ni ≤ k ≤ Ni+1, t ∈ [0, T ], i = 1, . . . , Mv.
Also the nodal conditions we will rewrite in the suitable

form using the following vectors of the suitable dimensions:

e =
[

1 0
]
, l =

[
0 1

]
.

Then eyi
k(t) = Qi

k(t), lyi
k(t) = pi

k(t) and hence

ly
s∈∂−

v

Ni
(t) = ly

j∈∂+
v

Ni+1(t) ; (22)

∑
s∈∂−

v

eys
Ni

(t) +
∑

j∈∂+
v

eyj
Ni+1(t) = 0,

i = 1, . . . , Mv

Then the dynamical model of a pipeline network (16) is

defined over 0 ≤ t ≤ T , k ≥ 1 by the repetitive state space

model of the form

ẏi
k(t) = Aiyi

k(t) + Diyk−1(t) + Biui
k(t), (23)

Ni ≤ k ≤ Ni+1, t ∈ [0, T ], i = 1, . . . , Mv.

with the state constraints:

ly
s∈∂−

v

Ni
(t) = ly

j∈∂+
v

Ni+1(t);

∑
s∈∂−

v

eys
Ni

(t) +
∑

j∈∂+
v

eyj
Ni+1(t) = 0, (24)

i = 1, . . . , Mv

In order to complete the description of the process for the

network pipeline model, it is necessary to specify the boundary

and initial conditions. The boundary condition can be treated

as a standard pumping regime. The initial conditions describe

the values of this standard regime calculated in the starting

moment t = 0 at the discrete grid points of the pipe.

In order to formulate the optimization problem we need

to specify a cost function. In particular, the total gas volume

needed to guarantee some technically approved pressure values

at the pre-assigned points of the network appears to be an

appropriate choice. Another forms of the cost functions are

determined by concrete requests.

The (23)—(24) fully describes the dynamics along every

pipes of the complex gas network system. Note, that the

obtained repetitive model has the following particularities:

firstly, it is nonstationary and secondary, there is a phase state

constraints of the form (24). These facts are a motivation to

investigate the nonstationary repetitive differential with state

constraints given in the section below.

IV. CONSTRAINED OPTIMIZATION FOR NONSTATIONARY

REPETITIVE PROCESSES

Here we develop the method to establish optimality condi-

tions in the classic form for a particular case of differential

repetitive processes with nonlinear inputs and nonlocal state-

phase terminal constraints of general form. The problem

statement in the proposed form follows from the mathematical

modeling of the distributed gas network given above. The

obtained results are traditional for classic optimal control

theory. In order to study the model obtained above and give

their extension to other cases we will consider the general

convex case of objective cost function and state constrains of

general form in the given time moments. Also, we consider the

case when the model matrixes are functions of the temporary
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variables that presents the most hard case for nonstationary dy-

namics. It seems that such kind of mathematical formalization

is closely to practical implementation of the model.

In practice, a repetitive process will only ever complete a

finite number of passes. Hence we consider repetitive pro-

cesses modeled by a system of linear differential equations

with variable coefficients. Let T = [0, t∗] be a given interval

of values of the continuous independent variable t ∈ T and

K = {1, 2, ..., N}, N < +∞ be a set of values of the discrete

variable k ∈ K. Also introduce the control and state vectors as

uk(t) ∈ Rr and yk(t) ∈ Rn respectively. Then the repetitive

processes considered in this paper are described by

dyk(t)
dt

= A(t)yk(t) + D(t)yk−1(t) + bk(uk(t), t),

k ∈ K, t ∈ T (25)

where the last nonlinear term represents the input signal

actually applied to the process. To complete the description,

it is necessary to specify the boundary conditions which are

here taken to be of the form

yk(0) = α(k), k ∈ K, y0(t) = β(t), t ∈ T (26)

Note also that it is possible to augment the above model to

include the fact that the pass profile can be a vector valued

function of the state dynamics.

Now we define the class of available and admissible input

signals for the above model. We say that the function u : K×
T → Rr is available for (25) if it is measurable with respect

to t for fixed k ∈ K, and satisfies the constraint uk(t) ∈ U ,

k ∈ K, for almost all t ∈ T , where U is a given compact set

from Rr. Also the function y : K × T → Rn is a solution

of (25) corresponding to the given available control uk(t) if it

is absolutely continuous with respect to t ∈ T for each fixed

k ∈ K and satisfies (25) for almost all t ∈ T and each k ∈ K.

We denote the set of available controls by U(·) and use

Mi, Mi ⊂ Rn, i = 1, 2, ..., l to denote given compact convex

sets. The available control uk(t) is said to be admissible

for the process (25) if the corresponding solution yk(t) =
yk(t, α, β, u) of (25) and (26) satisfies

yN (τi) ∈ Mi, i = 1, 2, ..., l (27)

where 0 < τ1 < τ2 < ... < τl = t∗ are specified elements of

T .

The optimal control problem considered in this paper can

now be stated as: Minimize a cost function of the form

J(u) = ϕ(yN (τ1), yN (τ2), ..., yN (τl)) (28)

for processes described by (25) and (26) in the class of

admissible controls uk(t) ∈ U(·).
We also assume that: the n × n matrix functions A(t) and

D(t) and the n×1 function β(t) are measurable and integrable

on T , the function b : K × U × T → Rn is continuous

with respect to (u, t) ∈ U × T for each fixed k ∈ K and

the function ϕ : Rnl → R is convex. It is easy to see that

these conditions guarantee the existence and uniqueness of

an absolutely continuous solution of (25) and(26) for any

available control uk(t). To guarantee the existence of optimal

control, throughout this paper we assume that the set of

admissible controls is non-empty.

At this stage, it is possible to give some motivation for

considering a cost function of this form by reference to the

general area of iterative learning control. This is a technique

for controlling systems operating in a repetitive (or pass-to-

pass) mode with the requirement that a reference trajectory

r(t) defined over a finite interval 0 ≤ t ≤ T is followed to

a high precision. Examples of such systems include robotic

manipulators that are required to repeat a given task to high

precision, chemical batch processes or, more generally, the

class of tracking systems. Motivated by human learning, the

basic idea is to use information from previous executions of

the task in order to improve performance from pass-to-pass in

the sense that the tracking error is sequentially reduced. The

objective of such schemes is to use their repetitive process

structure (i.e. information propagation from pass-to-pass and

along a pass) to progressively improve the accuracy with

which the core operation under consideration is performed,

by updating the control input progressively from pass-to-pass.

In application, such an iterative learning controller will only

ever complete a finite number of passes, say N, and one way

to approach control law design is on the basis of minimizing

a suitably constructed cost function. The cost function of (28)

is an abstraction of this approach. Next we present optimality

conditions for the processes described by (25) —(28). The

solvability conditions and some properties of the optimization

problem were studied in [6], also.

A. Optimality conditions

The optimality conditions for (25)—(28) are given by the

following theorem.

Theorem. If u0
k(t), k ∈ K, t ∈ T is optimal control for

the problem (25)–(28) then for almost all t ∈ T the following

conditions

ψT
k (t)bN−k+1

(
u0

N−k+1(t), t
)

= min
v∈U

ψT
k (t)bN−k+1(v, t)

hold for all k ∈ K. Here the function ψ : K × T → Rn is

given by

ψk(t) =

t∫
0

ψT
k−1(τ)D(τ)Φ(τ, t)dτ, (29)

ψ1(t) = λ(t), k ∈ K

where the function λ(t) is the solution of the ordinary linear

differential equation

dλ(t)
dt

= −λT (t)A(t), (30)

with jump conditions

λ(τj−) − λ(τj+) = g0
j , j = 1, . . . , l − 1
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and where g0 = (g0
1 , ..., g0

l )T ∈ Rnl is the maximizing vector

for the smallest root δ0 of the equation Λ(δ) = 0, where

Λ(δ) = max
‖g‖

Rnl=1

{
gT c − max

z∈K(δ)
gT z + max

u∈U(·)
gT Su

}
. (31)

Here the set K(δ) is defined as

K(δ) =
{
z ∈ Rnl, z ∈ M, ϕ(z) ≤ δ

}
where M = M1 × M2 × . . . × Ml ⊂ Rnl, and δ is a fixed

number from R. The mapping S : U(·) → Rnl is the vector

valued function Su = (S1u, S2u, . . . , Slu)T with

Sju =
N−1∑
i=1

(PiQbN−i(uN−i(τj)) (32)

+

τj∫
0

Φ(τj , t)bN (uN (t), t)dt, j = 1, 2, . . . , l (33)

and where the mappings involved are as follows

(Qf)(τ) =

τ∫
0

Φ(τ, t)f(t)dt, τ ∈ (0, α) (34)

and

(Pf)(τ) =

τ∫
0

Φ(τ, t)D(t)f(t)dt, τ ∈ (0, α) (35)

with its power composition

(Pkf)(τ) = P(Pk−1f)(τ), τ ∈ (0, α)

The introduced mappings use the n×n matrix function Φ(τ, t)
which solves the following differential equation

dΦ(τ, t)
dτ

= A(τ)Φ(τ, t), Φ(t, t) = In (36)

where In denotes the n × n identity matrix.

Proof. In accordance with [6] for the optimal control u0 =
{u0

k(t), k ∈ K, t ∈ T} of the problem (25) — (28) the number

δ0 = J(u0) is the smallest root of the equation Λ(δ) = 0 and

u0 = arg min
u∈U(·)

L(g0, u), where (37)

L(g0, u) =
l∑

j=1

g0T
j

( N−1∑
i=1

PiQbN−i(uN−i, t)(τj)

+

τj∫
0

Φ(τj , t)bN (uN (t), t)dt

)

Introduce the function

λ(t) =
l∑

i=j+1

(g0
i )T Φ(τi, t), τj ≤ t < τj+1. (38)

From (36) it follows that λ(t) satisfies (30). Then using

notations (29) the condition (37) can be represented as

min
u∈U(·)

L(g0, u) = min
uk(·)∈U(·)

{
ψT

1 (t)bN (uN (t), t) + · · ·

+ψT
N (t)b1(u1(t), t)

}
=

N∑
k=1

min
v∈U

ψT
k (t)bN−k+1(v, t)

which completes the proof.

V. CONCLUSION

This paper presents some results of mathematical descrip-

tion of the distributed gas networks in framework of multistage

modeling. The subject of ongoing work is the development

of control algorithms for considered models to apply for gas

transportation networks with real data. These results constitute

a very promising base for further research towards applications

to the real models. It is necessary to add that this note covers

only first attempts to investigate the pipeline networks from

the point of differential repetitive processes, and hence a rich

material to be the subject for further work still remains.
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