
1

Design and Analysis of an Evolutionary Selection
Hyper-heuristic Framework

Mustafa Mısır, Katja Verbeeck, Patrick De Causmaecker, and Greet Vanden Berghe

Abstract—In the present study, an evolutionary single-point
search selection hyper-heuristic was developed. The develop-
ment was carried out by considering possible characteristics
based on a high-level library, i.e. HyFlex. The aim was to
develop multiple online adaptive procedures for a selection hyper-
heuristic and simultaneously coordinating them. The developed
approach was expected to evolve itself for different search
environments with no human intervention. The design process
was initiated by identifying the requirements for solving different
combinatorial optimisation problems using distinct heuristic sets.
The information gathered was used to develop a number of
evolvable components to handle these requirements for a general
solver. The developed components were combined using dynamic
decision mechanisms to provide proficient cooperation between
them. This approach has been applied to a set of instances
from six problem domains present in HyFlex. For each problem
domain, a heuristic set including four types of heuristics are
provided by the developers of HyFlex: ruin-recreate heuristics,
local search algorithms, mutation and crossover operators. The
experimental results indicated that the approach is effective
in solving the target instances from distinct problem domains.
The proposed hyper-heuristic won the first international Cross
Domain Heuristic Search Challenge 2011 against 19 high-level
algorithms developed by the other academic competitors.

Index Terms—Hyper-heuristic, general solver, HyFlex, CHeSC

I. INTRODUCTION

SELECTION hyper-heuristics are competent high-level
search strategies for solving different instances from dif-

ferent problem domains in a problem independent manner.
Therefore, they are understood as general problem solvers
delivering high quality solutions across distinct problem do-
mains. A traditional selection hyper-heuristic consists of two
main sub-mechanisms to manage a set of low-level heuris-
tics directly operating on the solution space. The first sub-
mechanism, i.e. heuristic selection, determines which heuristic
should be applied at each decision step. Thus, a selection
hyper-heuristic can also be considered as an evolutionary
approach for generating a low-level heuristic list in which each
heuristic is successively applied. A move acceptance strategy
is employed to evaluate the acceptability of the generated
solutions by these applied heuristics.

This study investigates particular components to build an
evolutionary hyper-heuristic for the purpose of generality. First
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of all, the most relevant features reflecting the performance
of a low-level heuristic were identified. Then, a number of
components was developed relying on these features and
possible changes that can be encountered during a run on the
search space. The main components are listed as heuristic
subset selection, heuristic selection, heuristic hybridisation,
move acceptance and re-initialisation. The subset selection
operation was handled by an adaptive dynamic heuristic set
(ADHS) strategy that explores the best heuristic subsets for
different parts of the search. The selection process among
these heuristics was guided by a probability vector that is
updated based on the improvement capabilities and the speed
of the heuristics. For using the heuristic set more effectively,
a pairwise heuristic hybridisation approach was introduced. In
addition, an adaptive threshold accepting strategy, i.e. adaptive
iteration limited list-based threshold accepting (AILLA), was
devised as the move acceptance mechanism. In the case of
discovering good quality solutions immediately, the solution
re-initialisation is triggered by the move acceptance mecha-
nism to reach higher quality solutions faster. Fig. 1 shows
the whole working process of the designed hyper-heuristic.
For empirically examining the generality level of the proposed
hyper-heuristic, ADHS-AILLA, a series of experiments over
the instances from six problem domains provided by a high-
level search library, HyFlex [1], have been conducted. Prior
to these experiments, the designed hyper-heuristic competed
against 19 other high-level, problem-independent algorithms
in the first International Cross Domain Heuristic Search Chal-
lenge (CHeSC 2011). ADHS-AILLA beats all these competing
algorithms with respect to their overall performance across
six problem domains by a large score difference. Furthermore,
the executed experiments indicated that ADHS-AILLA outper-
forms different hyper-heuristics from the literature for different
running time limits.

The remainder of the paper will treat hyper-heuristics in
Section 2. Then, the hyper-heuristic framework for the gener-
ality purpose with all the algorithmic details is demonstrated
in Section 3. After that, the HyFlex software environment
used for the experiments is explained in Section 4. Section
5 provides computational results as well as an analysis of
the performance and the behaviour of ADHS-AILLA. Section
6 concludes the paper and discusses possible future research
directions for further improvements.

II. HYPER-HEURISTICS

A. Literature Review
Hyper-heuristics have been extensively applied to different

instances from various problem domains such as schedul-
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Fig. 1. An evolutionary hyper-heuristic framework

ing [2]–[5], timetabling [6]–[8], routing [9]–[11] and cut-
ting/packing [12], [13]. The published results on these studies
indicated that hyper-heuristics are easy-to-use yet powerful
methods. Most of these hyper-heuristics utilise evolutionary
algorithms and various learning devices to deliver more in-
telligent and adaptive approaches through a population-based
or a single-point search (Table I). A genetic algorithm (GA)
has been used to explore effective heuristic sequences encoded
as chromosomes via applying one-point crossover and a sim-
ple mutation operator [14]. Heuristics in a chromosome are
consecutively applied to construct a solution. The GA-based
hyper-heuristic was improved by dynamically changing the
size of the chromosomes through adding effective heuristics
whilst removing the poor ones in [15]. [16] added a tabu func-
tion that prevents the heuristics delivering poor performance
to be called for a number of generations. An offline method
for determining the relations between problem states and low-
level heuristics, i.e. a messy-GA hyper-heuristic, was applied
to the 1D bin packing problem by [17] In this approach,
each chromosome contains blocks and each block indicates the
proportion of the items to be packed as well as the heuristic
responsible for the instances similar to this block. In [18], a
GA-based hyper-heuristic was proposed for solving 2D-regular
cutting stock problem. Chromosomes mainly contain groups
of parameters representing a selection heuristic, a placement
heuristic, a rotation procedure and the number of pieces that
will be used by these three methods in the population. A
similar representation strategy as [17] for finding effective
selection and placement heuristics concerning a set of problem
state features was employed to solve cutting stock [12], [19]

and bin packing [20], [21] problems. Ant colony optimisation
(ACO) is another population-based evolutionary algorithm
used within selection hyper-heuristics. An ACO-based hyper-
heuristic considering ants as hyper-heuristic agents and ver-
tices as low-level heuristics was designed for solving the
project presentation scheduling problem in [22]. The idea
was to determine useful heuristics (visibility) and effective
heuristic pairs (pheromone) based on their performance related
measures which are updated online. For each cycle, the best
solution found among all the ants at the previous cycle is
used as their current solution and all the ants start from the
vertex whose heuristic found this solution. A similar approach
was utilised to solve the travelling tournament problem [23].
Another ACO-based hyper-heuristic was applied to routing
and wavelength assignment problem [24]. [25] studied on an
ACO-based hyper-heuristic with space reduction for solving
the p-median problem through consecutively applying diver-
sifying and intensifying heuristics. Particle swarm optimisa-
tion (PSO) was used to design two distributed asynchronous
frameworks through running low-level heuristics as agents
while also running hyper-heuristics with simple random as
agents [26]. In [27], a PSO-based hyper-heuristic was applied
to the exam timetabling problem using particles representing
partial solutions and heuristic sequences. Another population-
based strategy, i.e. scatter search, was used within two hyper-
heuristics to determine good chains of priority rules for the
mixed-model assembly line problem by [28].

Genetic programming (GP) was employed to automatically
generate heuristics for the online 1D bin packing problem
in [29], [30]. Trees in the population represent the methods
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that decide about placing an item to a bin. Each tree is
composed of some arithmetic functions and a set of terminals
representing the characteristics and states of the bins. A similar
approach was applied to the 3D knapsack problem [31], 2D
strip packing problem [13] and single machine production
scheduling problem for building dispatching rules [32]. A
GP-based hyper-heuristic evolving heuristics as grammars
consisting of elements extracted from widely used local search
solvers for the SAT problem was proposed in [33]. [34]
devised an approach, named Inc∗, which repeatedly adds or
removes SAT clauses to or from a clause list and solves the
updated problem using a local search solver. The number of
clauses to be added or removed is determined by a GP method.
This method uses simple mathematical functions and terminals
from a target SAT instance for constructing effective trees.

Inc∗ was modified [35] by adding the grammar-based
heuristic generation method for solving the partial instances in
[33]. Another GP-based hyper-heuristic was proposed to create
heuristics for timetabling problems [36], [37]. A grammar
was designed using the elements of some exam selection and
slot selection heuristics from the literature. In [38], genetic
programming was employed to construct trees for adaptively
applying existing heuristics based on the current state of a
search. The function set includes certain conditional elements
as well as some acceptance mechanisms and the terminal set
is composed of the low-level heuristics.

Aside from these population-based evolutionary hyper-
heuristics, other types of learning strategies have been used
for choosing heuristics. The choice function was employed for
selecting heuristics with respect to their single and pairwise
performance [39]. A reinforcement learning based selection
mechanism using various scoring strategies was studied [40],
[41]. The idea is to update the score of each heuristic relying
on its performance and to conduct the selection process using
these scores. In [42], [43], the authors studied a learning
automaton maintaining a probability vector for heuristic se-
lection. Together with a simple scoring strategy, a simple
tabu mechanism that eliminates worse performing heuristics
for a period of time was developed in [4]. The heuristics
were selected from a dynamically determined elite heuristic
subsets for different regions of the search space in [43], [44].
A learning automaton was additionally utilised for choosing
heuristics from these subsets [43]. As an offline approach,
case-based reasoning was used as a heuristic selection strategy
under hyper-heuristics in [45]. The motivation is to determine
similarities between heuristics and a set of previously solved
instances (case base) with respect to the most relevant problem
related features to choose the best heuristics for the target
problem instances. Fuzzy systems were studied to determine
the scheduling order of each element using multiple ordering
heuristics and course timetabling problems respectively by
[46]. In [47], a 3-layer neural network and a logistic regression
model were developed to predict the quality of the solutions
generated by a graph based hyper-heuristic [48] on the exam
timetabling problem. The motivation here is to fasten the
search process by avoiding evaluating the generated or con-
structed solutions each time. In [49], another neural network
based hyper-heuristic was suggested to determine a correlation

between the constraint satisfaction problem instances with
certain features and the heuristics to solve these instances. A
solution for a CSP instance is incrementally constructed and a
backpropagation neural network with a sigmodial transference
function decides which ordering heuristic to apply at each
decision step with reference to the current characteristics of the
subproblem. Most of these studies cover instances from only
one problem domain and this limits to measure the quality
of these hyper-heuristics from a generality perspective. A
recently proposed hyper-heuristic software framework, HyFlex
[1], finally draws the attention of hyper-heuristic researchers
to generality. For a review, refer to [50].

TABLE I
EVOLUTIONARY ALGORITHMS AND LEARNING METHODS USED IN

HYPER-HEURISTICS

Approach References
Genetic Algorithms [12], [14]–[19]

Ant Colony Optimisation [22]–[25], [51]–[53]
Particle Swarm Optimisation [26], [27]

Scatter Search [28]
Genetic Programming [13], [29]–[38]

Reinforcement Learning [10], [40]–[43], [54]
Case-based Reasoning [45]

Learning Classifier Systems [55]–[58]
Fuzzy Systems [46]

Neural Networks [47], [49]

B. Generality Level

Generality is considered as the key concept and underlying
motivation behind hyper-heuristics. The idea is to design a
high-level approach that is intelligent enough to determine
the strengths and weaknesses of a set of low-level heuristics
[50] so that it can be successfully applied to several problems
with different heuristic sets. In other words, a selection hyper-
heuristic’s job is to identify the characteristics of the heuristics
and to match them with the problem states. A very naive
hyper-heuristic could say that a specific heuristic should be
utilised during the first half of the search and after that, another
heuristic should take the lead to discover better solutions for
a problem instance. Based on this example, the main question
for the hyper-heuristic research is how far a hyper-heuristic
can be made more specific in relation to heuristic-problem
state matchings. A perfect selection hyper-heuristic would
systematically select the best heuristic in each application.
The primary limitation to this perfect case is the problem-
independent nature of the hyper-heuristics. This means that, it
is not possible to provide certain problem specific information
to a hyper-heuristic. For this reason, a hyper-heuristic should
consist of a number of learning devices to explore the search
space of heuristics and gather the required knowledge to lift
its generality level.

C. Search Space

Intelligent search and optimisation algorithms use the fea-
tures and dynamic characteristics of the search space corre-
sponding with the target problem. They concentrate on certain
rules and structures to direct the search process as efficiently as
possible. Furthermore, for finding high quality solutions, some
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Fig. 2. The feature set consisting of individual features regarding the heuristic
search space

problem specific information is encoded in the algorithms.
Even if such an approach is expected to be successful on
the target problem instances, it is not sure that it will be
successful for solving other instances of the same problem.
Supposing that the representation is not an issue, applying
the same method to the instances from another domain may
perform even worse. In brief, there is a trade-off between the
performance of an algorithm and its dependency level to the
problem instances. Hyper-heuristics function at a higher level
without direct knowledge about the solution space. Differently
from an algorithm aiming at solving a problem instance, hyper-
heuristics focus on managing a set of existing algorithms
called the low-level heuristics. Therefore, the performance of
a hyper-heuristic depends on the quality of these algorithms.

The size of the heuristic search space is limited by the
number of available heuristics. However, it is possible to ex-
tend the set size by increasing the number of heuristic options
based on the same set of available heuristics. For instance, new
heuristics can be constructed combining multiple heuristics in
consecutive calls. Furthermore, the parametric heuristics can
be differentiated with different parameter values. Such options
can facilitate flexibility for performance improvement, but at
the same time, require additional learning components.

1) Feature Set: The number of features regarding low-
level heuristics can be extracted from two main classes,
namely value based features and counter based features. Fig.
2 illustrates the individual features for a heuristic set together
with their relations. These features are the major elements
to assess a heuristic’s performance in a problem-independent
way. Especially useful information for the performance of
a heuristic is obtained from value based features. However,
using each of them separately might be misleading. Thus,
combining different features is required to deliver high quality
performance measures for the reliability level of the utilised
components with learning [59].

III. A SELECTION HYPER-HEURISTIC FRAMEWORK

An evolutionary selection hyper-heuristic was designed for
solving the given problem instances within HyFlex. In this
approach, the selection process contains two main compo-
nents, namely management and mentoring. The management
operation deals with the selection of heuristics. The mentoring

is available to manipulate or instruct the parametric heuristics.
A simple hybridisation method that applies two heuristics
consecutively is additionally considered under mentoring. For
judgement purposes concerning the explored solutions by the
selected heuristics, an adaptive move acceptance mechanism
is utilised. The proposed framework is displayed in Fig. 1.
The details of all the developed mechanisms are presented in
the following sections.

A. Design Principles

In most of the hyper-heuristic studies, the approach de-
veloped has been applied to a set of instances from one
problem domain using one heuristic set via running it with
a specific execution time limit. Moreover, these methods have
been designed or tuned to solve the target instances of only
one problem to deliver high quality solutions compared to the
state of the art methods. However, the main motivation of
hyper-heuristics as mentioned before is to provide generality.
Therefore, a hyper-heuristic should be capable of working
under different circumstances, namely distinct heuristic sets
with varying size, different instances from different problem
domains and different execution time.

The following list shows the main questions to consider
while designing a selection hyper-heuristic.
• which heuristic should be applied at each decision step?
• what are the elements to manage relatively large heuristic

sets?
• what are the effects of different heuristic sets?
• how can a heuristic set be used to get the best perfor-

mance?
• what should be the quality of a solution for accepting it?
• how should the search be diversified?
These questions can be answered before starting to solve a

problem instance (offline) or while solving it (online). Offline
learning methods need to be trained on a group of instances.
Thus, the performance of a hyper-heuristic with offline learn-
ing is limited by these instances. It should be noted that giving
certain decisions while solving a problem instance based on
the changing characteristics of a search space is always useful
for better hyper-heuristics. Thus, utilising online learning
components is an advantage for hyper-heuristics. However, for
some cases, even a very naive approach can deliver similar or
even better quality results compared to a hyper-heuristic with
learning. The execution time limit is a major factor responsible
for such empirical outcomes. For instance, if the number of
improving or new best solutions is small with respect to the
total number of iterations spent and the given execution time
is relatively high, then choosing poor heuristics many times
will not cost much to the hyper-heuristic. On the other hand,
in the case of a limited execution time, each decision is very
valuable. Therefore a learning mechanism may be extremely
useful. For the purpose of generality, a hyper-heuristic should
have some learning components to deal with these cases.

In hyper-heuristic studies, the number of heuristics used is
generally small. However, utilising as many heuristics as possi-
ble might help to provide better performance. At the same, this
requires additional components for the management of such
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large sets. Therefore, a hyper-heuristic should accommodate
certain features to deal with different heuristic sets with
different sizes. For using heuristics in a more efficient way,
heuristic hybridisation opportunities and parameter adaptation
methods for parametric heuristics should be investigated.

The decision about whether to accept or reject a solution
generated by the selected heuristics has a major effect on
the overall performance of a hyper-heuristic. If the heuristic
set consists of only a few heuristics, then its effect is more
significant. The general approach for the move acceptance is
to utilise a method with diversification capabilities. The search
process is diversified by accepting worsening solutions using
threshold values under certain conditions. The evolvability
characteristic of the search space is the most important crite-
rion to decide on this threshold level. In addition, the number
of neighbouring solutions around a current solution should be
taken into account for the diversification strategy. Moreover,
restarting and re-initilisation methods should be devised to
support the diversification.

IV. MANAGEMENT

The present tendency toward solving combinatorial search
and optimisation problems involves combining multiple mech-
anisms to reach more competent solution techniques. Aggre-
gating the strength of multiple search mechanisms is the pri-
mary motivation underlying selection hyper-heuristics. Various
components exist for achieving this management process in a
favourable way. A considerable number of these approaches
involve certain learning devices to facilitate the selection of
these mechanisms. For this purpose, the characteristics and
performance of these search mechanisms are monitored in
an offline or online manner. In this study, an online learning
strategy, i.e. adaptive dynamic heuristic set, is employed to
identify effective heuristic subsets for specific regions of the
search space while addressing a target problem instance.

A. Adaptive Dynamic Heuristic Set Strategy

The availability of a large set of low-level search mech-
anisms can be considered as an advantage because of its
potential to explore large parts of the search space. However,
such a situation can turn into a disadvantage due to the
hardness of managing the high number of low-level heuristics.
This could happen especially when these heuristics have dif-
ferent characteristics and a diverse speed range. Therefore we
introduce the adaptive dynamic heuristic set (ADHS) strategy
[11], [43]. It is a method assessing the performance of each
heuristic at the end of a number of iterations to keep the
best performing heuristics in the set whilst excluding the
other ones. The contribution of this method to the whole
framework is shown in Fig. 1. The number of iterations
passed to determine such an elite heuristic subset refers to
a phase. For the exclusion process, a performance metric
representing the most obvious performance elements is used.
These elements are related to the improvement capabilities
of the heuristics as well as their speed. The details of this
metric are shown in the following equation. Cp,best(i) denotes
the number of new best solutions found. fimp(i) and fwrs(i)

correspond to the total improvement and worsening. fp,imp(i)
and fp,wrs(i) refer to the same measurement but only during
a single phase. tremain refers to the remaining time to finish
the whole search process. tspent(i) and tp,spent(i) are the time
spent by heuristic i until that moment, the same measurement
during a phase respectively. Each wi denotes the weight of
its corresponding performance element. The weights are set
as {w1 >> w2 >> w3 >> w4 >> w5} to provide a strict
priority between the given performance elements.

pi = w1

[(
Cp,best(i)+1

)2(
tremain/tp,spent(i)

)]
×b+

w2

(
fp,imp(i)/tp,spent(i)

)
−w3

(
fp,wrs(i)/tp,spent(i)

)
+

w4

(
fimp(i)/tspent(i)

)
−w5

(
fwrs(i)/tspent(i)

)
(1)

(2)

b =

{
1,

∑n
i=0 Cp,best(i) > 0

0, otw.

In the proposed approach, the number of phases during
which a heuristic stays out of an elite heuristic set is denoted
by its tabu duration. For decreasing user dependency, the
tabu duration and the number of iterations for one phase are
calculated based on the number of heuristics available in the
elite heuristic subset. The tabu duration is set to d =

√
2n

and the phase length (pl) is defined as the product of the
tabu duration and a constant value (phfactor = 500). These
values are updated at the end of each phase. The calculated pi
values are combined with different quantities and they appear
to be noisy. Therefore, we decided to convert the performance
values into a quality index (QI ∈ [1, n]) value. The heuristic
with the lowest pi gets 1, the other ones get one unit more
based on their order. The average (avg) of these QI values is
calculated to specify the heuristics that will be excluded. Tabu
heuristics also have QI = 1.

avg =

⌊( n∑
i

QIi

)
/n

⌋
(3)

1) Phase length adaptation: The phase length (pl) is the
number of iterations required to check the performance of the
heuristics within the ADHS strategy. Using the same pl for
different heuristic sets may be unfair in the case of speed
differences between heuristic subsets. Thus, pl is updated with
respect to the average speed required per move of the heuristic
subset. As a reference point, the number of phases requested
(phrequested = 100) during the whole run is used to determine
a possible phase duration. pl ∈ [d × phbase, d × phfactor] is
calculated depending on this information as shown in Equation
4. pl is kept within certain limits if the calculated pl is too
low or too high.

pl = phduration/tsubset (4)
phduration = ttotal/phrequested
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2) Tabu duration adaptation: Whenever a heuristic is ex-
cluded, its status becomes tabu and it waits to get back to the
heuristic set for a number of phases, which is described as
tabu duration. The tabu duration of each heuristic is the same
at the beginning of the search and they are updated during the
run. If an excluded heuristic enters the active set for the next
phase and is excluded immediately after this phase, its tabu
duration is incremented by 1. If this heuristic stays in the elite
heuristic subset at the end of the phase, its tabu duration is
set to its initial value. This incrementation continues until the
tabu duration reaches its upper limit, resulting in a permanent
exclusion of this heuristic.

3) Extreme heuristic exclusion: An additional heuristic
exclusion procedure is called at the end of each phase to
fasten the search process by immediately eliminating slow and
ineffective heuristics. The metric employed for this purpose is
shown in Equation 4. tperMove(i) denotes the average time
spent per move by heuristic i and tperMove(fastest) refers
to the same measure for the fastest heuristic. The standard
deviation (σ) and the average ($) of the exc(i) values are
used to determine the heuristics that should be excluded. If
such a slow heuristic would find a new best solution in the
current phase, it is not considered for extreme exclusion. The
cases leading to the extreme exclusion process are presented
in Equation 5. In particular, if the heuristic residing in the
current heuristic subset did not generate any new best solution
(nb = 0), this heuristic exclusion process is discarded for the
current phase. The idea here is to keep at least one heuristic
that explored new best solutions before in the heuristic set.

exc(i) = tperMove(i)/tperMove(fastest) (4)
σ > 2.0 ; exc(i) > 2$ ; nb > 1 (5)

4) Heuristic selection: Most of the available heuristic selec-
tion mechanisms consider the improvement capability of the
heuristics. The general trend is choosing effective heuristics
subject to their performance changes. In the proposed hyper-
heuristic, the selection operation is carried out based on a
probability vector determined and updated by the number of
new best solutions and speed for each heuristic. Equation 6
shows the rule to specify the probability of being selected for
heuristic i. tf is a linearly decreasing time factor from 1 to 0.

pri =
(
(Cbest(i) + 1)/tspent

)(1+3tf3)
(6)

V. MENTORING

In a traditional selection hyper-heuristic, one heuristic is
selected at each decision step and applied as is. It might
be useful to additionally command heuristics instead while
selecting them. In the mentoring part, possible performance
enhancement opportunities are investigated based on this idea.
The first approach consists in exploring effective heuristic
hybridisations or heuristic pairs, which can result in a better
performance, rather than applying heuristics alone. In addition
to that, manipulating heuristics through playing with their

parameters is another approach under mentoring. The follow-
ing sub-sections present how these two mentoring approaches
work.

A. Relay Hybridisation

Relay hybridisation is a method to consecutively apply
(meta-)heuristics where each (meta-)heuristic uses the solution
generated by the preceding (meta-)heuristic. In this study, we
introduce a relay hybridisation technique that consecutively
applies two low-level heuristics for finding new best solutions.
A heuristic list involving the heuristics that found new best so-
lutions when applying them as follow-up heuristics is utilised
for each heuristic as illustrated in Fig. 1. A simple decision
mechanism is used for this hybridisation approach as presented
in Algorithm 1. In this equation, Cphase is a counter showing
the number of iterations passed during the current phase.
Cbest,s and Cbest,r refer to the number of new best solutions
found by the regular, single heuristic selection mechanism and
by relay hybridisation respectively. γ ∈ [0, 1] is a variable
denoting the usage frequency of relay hybridisation. δ is a
dynamic variable to determine the selection share between reg-
ular single heuristic selection and relay hybridisation. Thus, if
the heuristics are more effective for locating new best solutions
alone compared to their pairwise performance, then single
heuristics are preferred at each iteration. If the calculated value
is out of its predetermined limits {(1/R,R) for R = 50} then
it is set to one of its bounds. The predetermined values in the
pseudocode were set based on some preliminary experiments
and no automated offline tuning device was used.

Algorithm 1: Relay hybridisation
Input: listsize = 10; γ ∈ (0.02, 50); p, p′ ∈ [0 : 1]

1 γ = (Cbest,s + 1)/(Cbest,r + 1)
2 if p ≤ (Cphase/pl)

γ then
3 select LLH using a LA and apply to S → S′

4 if size(listi) > 0 and p′ <= 0.25 then
5 select a LLH from listi and apply to S′ → S′′

6 else
7 select a LLH and apply to S′ → S′′

end
end

In addition, the tabu approach used for ADHS is employed
to disable relay hybridisation if no best solution was found
during a phase. If this is repeated during consecutive phases,
the tabu duration is incremented by 1 like in ADHS.

1) Learning Automata: A learning automaton maintaining
the selection probabilities of the heuristics (pi) was employed
for the relay hybridisation. The learning automata had been
previously used to choose single heuristics in [42]. For the
update operations, a linear reward-inaction update scheme was
used. This scheme rewards heuristics discovering new best
solutions. No other type of outcome was used to update the
probabilities. The corresponding learning rate was set as λ1 =
0.5. The details of this operation are shown in Equation 6
and 7. The first equation shows the update function for the
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heuristic applied. The second equation was utilised to decrease
the updated amount from the rest of the heuristics to keep the
total probability 1.

pi(t+ 1) = pi(t) +λ1 β(t)(1− pi(t))
−λ2(1− β(t))pi(t) (6)
if ai is the action taken at time step t

pj(t+ 1) = pj(t) −λ1 β(t)pj(t)
+λ2(1− β(t))[(r − 1)−1 − pj(t)] (7)
if aj 6= ai

B. Parameter Adaptation of the Parametric Heuristics

In HyFlex, each heuristic set associated with each problem
consists of four type of low-level heuristics, i.e. mutational
heuristics, ruin-recreate heuristics, local search heuristics (hill
climbers) and crossover operators. All the heuristics are ap-
plied to a single solution except crossover operators that
require two solutions. For them, a population of five solutions
including previously explored new best solutions is accom-
modated. They are applied using the current solution and a
randomly selected solution from these five solutions. Each
time a new best solution is found, a randomly chosen solution
from these solutions is replaced by the new solution.

Some of the heuristics require a parameter called “intensity
of mutation” denoting the impact of the perturbation. Heuris-
tics only aiming at improving solutions have a parameter
called “depth of search” that refers to the number of steps to
check for improvement. Setting right values for these heuristics
require a learning component that adapts their parameters
relying on their performance changes. For this purpose, a
heuristic type based reward-penalty strategy is employed.
Besides the provided information about heuristic types, heuris-
tics are categorised as ImprovingOrEqual, ImprovingMore,
WorseningMore, WorseningOrEqual, OnlyEqual. These types
are always checked to reflect any change. For instance, one
heuristic can be ImprovingMore during early iterations, then it
can turn into a WorseningMore type. In such cases, changing
reward and penalty functions may be very effective. The
details of the parameter (vali) update operations are shown
in Algorithm 2. The θ values are the update rates for the
given environmental feedbacks, i.e. a new best solution is
found, the current solution is improved, the current solution
is worsened, the quality of the current solution is the same.
They were set as θ1 = 0.01, θ2 = 0.001, θ3 = 0.0005,
θ4 = 0.0001. This adaptation process was handled by setting
some predetermined values. These values were set based on
a simple logic of finding the best parameter not just based
on their improvement capabilities, but also according to their
speed changes. Thus, the parameter of a heuristic with high
improvement performance should not be consistently increased
and at the same time, the parameter of a heuristic with high
worsening performance should not be immediately decreased.
All these parameters should be set in such a way that their
strengths could be used in balance.

Algorithm 2: Parameter adaptation for the heuristics

u = +1; p ∈ rand(0, 1); vali ∈ [0.2, 1]
1 if f(S′) < f(Sb) then
2 if heuristic type = ImprovingOrEqual then
3 if p < 0.5 then u = 0
4 else if heuristic type = ImprovingMore then
5 if p ≤ 0.25 then u = −1
6 else if p ≤ 0.5 then u = 0
7 else if heuristic type =WorseningMore then
8 if p < 0.5 then u = 0

end
9 vali = vali + θ1 × u

10 else if f(S′) < f(S) then
11 if heuristic type = ImprovingOrEqual then
12 if p < 0.5 then u = 0
13 else if heuristic type = ImprovingMore then
14 if p < 0.25 then u = −1
15 else if p < 0.5 then u = 0
16 else if heuristic type =WorseningMore then
17 if p < 0.5 then u = −1

end
18 vali = vali + θ2 × u
19 else if f(S′) > f(S) then
20 if heuristic type = ImprovingMore then
21 if p < 0.5 then u = 0

end
22 vali = vali − θ3 × u
23 else
24 if heuristic type = ImprovingOrEqual then
25 if p < 0.25 then u = −1
26 else if p < 0.5 then u = 0
27 else if heuristic type = ImprovingMore then
28 if p < 0.5 then u = 0
29 else
30 u = −1

end
31 vali = vali − θ4 × u

end

1) Oscillating parameters: Fig. 1 shows a feedback trans-
mission from the move acceptance mechanism through the
heuristic selection. This feedback warns the selection mecha-
nism if the system fails to generate improvements. This warn-
ing is sent if re-initialisation is disabled due to the fact that
re-initialisation is employed for the same purpose. It means
that this issue could not be handled by the move acceptance
mechanism, i.e. threshold level reaches l. Whenever these
conditions occur, the parameters of the parametric heuristics
oscillate. For the OnlyImproving heuristics, vali is linearly
updated between 0.5 and 1.0. For the other heuristics, vali is
changed between 0.2 and 0.5. At each 5000th iteration, the
corresponding parameters are updated between their limits.



8

VI. MOVE ACCEPTANCE

A. Adaptive Iteration Limited List-based Threshold Accepting

Adaptive iteration limited list-based threshold accepting
(AILLA) is an acceptance mechanism determining the thresh-
old level in an adaptive manner using the fitness values of
the previously found new best solutions [43]. Its simplest
version, i.e. iteration limited threshold accepting (ILTA) [42],
requires two parameters. The first parameter determines the
number of consecutively found worsening solutions. If this
number reaches a predetermined iteration limit, then a wors-
ening solution is accepted if it meets a threshold value.
This threshold value is determined based on the current best
solution and a constant range factor. That is, the threshold
value changes whenever a new best solution is found. Adaptive
ILTA (AILTA) [44] adds another iteration limit for increas-
ing the threshold value if required. Each time the number
of consecutively encountered worsening solutions reach this
value, the range value is updated by another constant factor.
This operation provides a larger search region to get out of
the point the search process converged to. The value of the
range parameter is allowed to be incremented to an upper
bound. On the other hand, AILLA determines threshold values
for accepting worsening solutions from previously found new
best solutions constituting a fitness list as displayed in Fig.
1. It accepts improving and equal quality solutions. A worse
solution is accepted if no new best solutions were found after k
consecutive worsening solutions and if the fitness value of the
new solution is lower than a threshold value from the fitness
list. In addition, it involves certain adaptive components to
bring high performance with less user dependency. The details
of AILLA is presented in Algorithm 3.

1) Adaptive iteration limit: The iteration limit (k ∈ [5,∞))
is an important parameter for AILLA. Different k can be
effective for different problem instances. Thus, this value is
updated by a simple parameter control strategy as explained
in Equation 8.

k =

{
((l − 1).k + iterelapsed)/l, if cw = 0

((l − 1).k +
∑cw
i=0 k.0.5

i.tf)/l, otherwise
(8)

tf = (texec − telapsed)/texec
cw = iterelapsed/k

2) Decreasing list length: The list length of AILLA is de-
creased over time in order to reduce the level of diversification
towards the end of the search process. The implemented update
method is shown in Equation 7. In this study, the parameters
were set as follows: lbase = 5 and linitial = 10.

l = lbase + (linitial − lbase + 1)tf3 (7)

3) Re-initialisation: For solving computationally in-
tractable problems, fast and efficient methods without opti-
mality guarantee are common. Due to the stochastic nature of
such methods, it is impossible to determine the exact execution
time required to find a solution at a specific quality level. Thus,
the performance of the same algorithm running multiple times

Algorithm 3: AILLA move acceptance
Input: i = 1,K ≥ k ≥ 0, l > 0
for i=0 to l-1 do bestlist(i) = f(Sinitial)

1 if adapt iterations ≥ K then
2 if i < l − 1 then
3 i++

end
end

4 if f(S′) < f(S) then
5 S ← S′

6 w iterations = 0
7 if f(S′) < f(Sb) then
8 i = 1
9 Sb ← S′

10 w iterations = adapt iterations = 0
11 bestlist.remove(last)
12 bestlist.add(0, f(Sb))

end
13 else if f(S′) = f(S) then
14 S ← S′

15 else
16 w iterations++
17 adapt iterations++
18 if w iterations ≥ k and f(S′) ≤ bestlist(i) then
19 S ← S′ and w iterations = 0

end
end

may differ. Re-initialisation methods and restarting mecha-
nisms may be useful to take advantage of such circumstances.
These approaches should be considered together with the
other mechanisms capable of diversifying the search. The
acceptance mechanism suggested is already responsible for
diversification. The level of diversification provided by the
acceptance depends on its list length. Finding a good value
for the list length can be problematic. An adaptive parameter
based on the correlation between the solutions belonging to a
specific sub-region may be effective. However, the requirement
of exploitation in a limited time should be handled using
a more effective method. For that purpose, whenever the
threshold level reaches l, with additional limitations a new
initial solution is generated as depicted in Fig. 1. Based on
remaining execution time, the cost of re-initialisation and the
possibility of finding a new best solution after re-initialisation,
it is decided whether the re-initialisation should be disabled
or not. Each time it is disabled, the best solution found after
re-initialisations is used as the current solution for further
improvement. For consistency with the acceptance mechanism,
the list constituted for this specific solution is also employed.

VII. HYFLEX

HyFlex is a software environment providing a number of
instances from different problem domains [1]. The idea is
to design and apply a selection hyper-heuristic to show its
level of generality across the given instances. As one of the
main traits of hyper-heuristics, the problem-independency is
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Fig. 3. Heuristic-type distributions and heuristic set sizes for each problem
domain

guaranteed by this environment. Therefore, a specific heuristic
set for each problem domain is also provided. For the sake of
heuristic diversity, four types of heuristics were implemented
in each heuristic set. These types are mutational heuristics,
ruin-recreate heuristics, local search and crossovers as men-
tioned in the previous section. Here, local search heuristics
(hill climbers) guarantee to find improved or equal quality
solutions with respect to the solutions they start from. The
rest of the heuristics may also generate worsening solutions.
As mentioned in Section V, some of these heuristics can be
manipulated by changing their parameters.

A. Problem Domains

The current version of HyFlex involves six problems,
namely 1D bin packing, max SAT, permutation flowshop
scheduling, personnel scheduling, travelling salesman and ve-
hicle routing problems. For each problem domain, a heuristic
set involving distinct numbers of heuristics from aforemen-
tioned types is available. The heuristic type distributions of
each heuristic set are shown in Fig. 3. The problem instances
provided in HyFlex are displayed in the following subsections.
More details about the instances are available in [1], [60].

1) Bin Packing: The 1D bin packing problem aims at
minimising the number of homogeneous bins required for
placing a set of given items. Equation 8 shows the fitness
function proposed by HyFlex, n refers to the number of bins
used, C is the capacity of a bin and fullnessi means the total
size of the elements in bin i. The fitness function considers
the fullness of a bin while the objective is to minimise n to
make the improvement easier.

f = 1−
(∑n

i=1 (fullnessi/C)
2

n

)
(8)

Table II shows the instances for this domain.
2) Max SAT: The max SAT problem deals with minimising

the number of broken clauses of a boolean formula in a
conjunctive normal form. The problem instances in the testbed
are given in Table III. All the instances were taken from the
SAT competitions.

TABLE II
BIN PACKING INSTANCES [60] (THE COLUMN ’BEST’ SHOWS THE
NUMBER OF BINS USED. THE SOLUTIONS WITH * ARE OPTIMAL)

Inst. Name Best
0 falkenauer/u1000-00 399*
1 falkenauer/u1000-01 406*
2 schoenfieldhard/BPP14 62
3 schoenfieldhard/BPP832 60
4 10-30/instance1 N/A
5 10-30/instance2 N/A
6 triples1002/instance1 N/A
7 triples2004/instance1 N/A
8 test/testdual4/binpack0 N/A
9 test/testdual7/binpack0 N/A

10 50-90/instance1 N/A
11 test/testdual10/binpack0 N/A

TABLE III
MAX SAT INSTANCES [60] (THE SOLUTIONS WITH ∗ ARE OPTIMAL AND
> 0 SHOWS THAT THE CORRESPONDING SOLUTIONS SHOULD HAVE A

FITNESS VALUE BIGGER THAN ZERO)

Inst. Name Best
0 contest02-Mat26.sat05-457.reshuffled-07 > 0
1 hidden-k3-s0-r5-n700-01-S2069048075.sat05-488.reshuffled-07 N/A
2 hidden-k3-s0-r5-n700-02-S350203913.sat05-486.reshuffled-07 N/A
3 parity-games/instance-n3-i3-pp 0*
4 parity-games/instance-n3-i3-pp-ci-ce 0*
5 parity-games/instance-n3-i4-pp-ci-ce N/A
6 HG-3SAT-V250-C1000-1 6
7 HG-3SAT-V250-C1000-2 6
8 HG-3SAT-V300-C1200-2 8
9 MAXCUT/SPINGLASS/t7pm3-9999 N/A

10 jarvisalo/eq.atree.braun.8.unsat > 0
11 HG-3SAT-V300-C1200-4 7

3) Permutation Flowshop: The permutation flowshop
scheduling problem requires minimising the completion time
of the last processed job (makespan) while assigning a set of
jobs to a group of machines. Table III presents the related
problem instances provided by HyFlex.

TABLE IV
PERMUTATION FLOWSHOP SCHEDULING INSTANCES [60]

Inst. Name Best
0 100x20/1 6202
1 100x20/2 6183
2 100x20/3 6271
3 100x20/4 6269
4 100x20/5 6314
5 200x10/2 10480
6 200x10/3 10922
7 500x20/1 26059
8 500x20/2 26520
9 500x20/4 26456

10 200x20/1 11181
11 500x20/3 26371

4) Personnel Scheduling: The personnel scheduling prob-
lem requires the assignment of employees to certain timeslots
for a given planning period. The instances tested here belong
to the nurse rostering domain and they are listed with the
values of the best known solutions in Table V.

5) Travelling Salesman: The objective of the travelling
salesman problem is to find the shortest route for visiting a
set of cities and returning to the starting city. The travelling
salesman problem instances are illustrated in Table VI.

6) Vehicle Routing: The vehicle routing problem deals with
visiting a number of locations within their given time windows
using a small number of vehicles. That is, the objective is to
minimise the total number of vehicles used (n) and the total
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TABLE V
PERSONNEL SCHEDULING INSTANCES [60]

Inst. Name Best
0 BCV-3.46.1 3280
1 BCV-A.12.2 1953
2 ORTEC02 270
3 Ikegami-3Shift-DATA1 2
4 Ikegami-3Shift-DATA1.1 3
5 Ikegami-3Shift-DATA1.2 3
6 CHILD-A2 1095
7 ERRVH-A 2142
8 ERRVH-B 3121
9 MER-A 9017
10 BCV-A.12.1 1294
11 ORTEC01 270

TABLE VI
TRAVELLING SALESMAN INSTANCES [60]

Inst. Name Best (Optimal)
0 pr299 48191
1 pr439 107217
2 rat575 6773
3 u724 41910
4 rat783 8806
5 pcb1173 56892
6 d1291 50801
7 u2152 64253
8 usa13509 19982859
9 d18512 645238

distance travelled (
∑
di). Equation 9 represents the fitness

function to be minimised.

f = n ∗ 1000 +
n∑
i=1

di (9)

Table VII provides the vehicle routing instances.

TABLE VII
THE VEHICLE ROUTING PROBLEM INSTANCES [60]

Inst. Name Best # Vehicles Distance
0 rc207 4061.14 3 1061.14
1 r101 20645.79 19 1645.79
2 rc103 12261.67 11 1261.67
3 r201 5252.37 4 1252.37
4 r106 13251.98 12 1251.98
5 c1-10-1 142478.95 100 42478.95
6 rc2-10-1 83373.15 20 63373.15
7 r1-10-1 153904.23 100 53904.23
8 c1-10-8 135499.59 93 42499.59
9 rc1-10-5 136631.89 90 46631.89

VIII. COMPUTATIONAL RESULTS

The hyper-heuristic developed, ADHS-AILLA, was applied
10 times on each problem instance using Pentium Core 2 Duo
3GHz PCs with 3.23 GB memory on Windows XP. There
are 12 instances for the max SAT, bin packing, permutation
flowshop scheduling and personnel scheduling problems. For
the travelling salesman and vehicle routing problems, 10
instances are available per domain. The proposed approach
was tested for 10 minutes and 1 hour execution time on these
instances.

Table XI shows the scores of the different hyper-heuristics
after 10 minutes of execution time based on the CHeSC
scoring system. The overall scores show that ADHS-AILLA
is clearly the best approach for the given problem instances.

The rest of the hyper-heuristics are ranked as ADHS-GD,
ADHS-LATE, AHDS-SA, AHDS-IE, SR-AILLA, SR-LATE,
SR-SA, SR-GD from better to worse. ADHS-AILLA is the
best approach for the max SAT, permutation flowshop, per-
sonnel scheduling and travelling salesman domains. It comes
second for the bin packing problem and third for the vehicle
routing problem. AILLA performs best among the hyper-
heuristics with SR. This indicates that the proposed acceptance
strategy is capable of effectively working on different problem
domains. ADHS compared to SR for all the acceptance mecha-
nisms provides a high performance improvement. In particular,
the score of GD goes from 35 to 418 by using ADHS. Table
XII presents the scores after running the hyper-heuristics for 1
hour. ADHS-AILLA is still the best performing method. There
are slight differences in the ranking of the hyper-heuristics
based on their overall performance. SR-AILLA has a higher
score than ADHS-IE and ADHS-SA is slightly better than
ADHS-LATE.

A Wilcoxon test with a confidence interval of 95% was
utilised to determine the significance of the performance
difference between the best hyper-heuristic and the rest after
1 hour of execution for each problem instance. The hyper-
heuristics delivering similar performance for a specific in-
stance compared to the best approach for the corresponding
problem are coloured in Table IX and X. In the case of
the max SAT problem, ADHS-AILLA outperforms the other
tested hyper-heuristics. When dealing with the bin packing
problem, ADHS-IE is the best approach, but its performance
is not significantly better than ADHS-AILLA. It also performs
similarly with ADHS-LATE for all the instances except two.
ADHS-AILLA provides the highest average fitness for almost
all the permutation flowshop problem instances. For five or
six instances, there is no significant performance difference
between ADHS-AILLA and the other hyper-heuristics using
ADHS. Moreover, the ADHS hyper-heuristics are significantly
better than the hyper-heuristics with SR for this problem
domain. In consideration of the personnel scheduling problem,
the hyper-heuristics with ADHS perform statistically similar.
In addition, ADHS-AILLA could not achieve significantly
better solutions compared to SR-AILLA and SR-LATE for
most of the instances. Regarding the travelling salesman prob-
lem, ADHS-AILLA performs similarly with the other hyper-
heuristics with ADHS. The ADHS hyper-heuristics perform
significantly better than the SR hyper-heuristics. In view of
the vehicle routing problem, ADHS-GD provides significantly
better results for most of the instances compared to the
other hyper-heuristics. However, for five instances, there is
no significant performance difference with the AILLA hyper-
heuristics.

Table XIII shows the % difference between the best known
solution and the best solution found by ADHS-AILLA after
1 hour. For the bin packing problem instances, only the
solutions for the first four instances are available. ADHS-
AILLA finds solutions with the same number of bins for
these instances. The proposed approach finds a solution with
only one unsatisfiable clause for the max SAT instance 3.
The hyper-heuristic found the same quality solutions with the
best known solutions for the instances 4 and 11. Moreover,
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TABLE VIII
THE EXPERIMENTAL RESULTS WITH 10 MINUTES OF EXECUTION TIME (REINITIALISATION IS AVAILABLE ONLY FOR ADHS-AILLA)

Inst. ADHS-AILLA ADHS-GD ADHS-LATE ADHS-SA ADHS-IE SR-AILLA
min avg min avg min avg min avg min avg min avg

M
ax

SA
T

0 2 2,7 4 11,6 4 8,4 2 3 7 12 5 8,7
1 20 23,8 23 29,6 23 25,6 20 26,8 22 28,2 21 24,5
2 15 18,1 21 25,7 18 22,3 19 21,5 19 24,4 14 19,2
3 1 3,5 5 12 7 14,4 4 9,1 15 19,6 5 9,3
4 1 2,7 2 17,6 2 22 2 15,6 13 28,4 6 10
5 3 13,2 18 38,9 19 39,3 7 26,9 24 42 16 28,6
6 5 5,3 7 8,1 5 9,3 5 7,9 5 10,2 5 6,8
7 5 5,4 7 8,3 7 9,6 5 7,5 8 10,4 5 6,1
8 5 7,1 9 11,9 9 11,4 9 10,1 9 13,6 8 8,8
9 209 212 213 216,2 213 217,2 209 214,3 215 218,4 211 212,9

10 1 2,2 11 17,7 9 14,5 1 7,3 15 18,8 11 14,4
11 7 8 10 11,5 9 12,1 7 9,7 12 13,6 7 9,1

B
in

Pa
ck

in
g

0 0,00276 0,00565 0,00637 0,00686 0,00264 0,00544 0,00595 0,00673 0,00244 0,00449 0,00659 0,01024
1 0,00288 0,00442 0,00671 0,00716 0,00281 0,00433 0,00670 0,00706 0,00335 0,00483 0,00751 0,00940
2 0,02030 0,02115 0,01871 0,01942 0,02030 0,02128 0,01840 0,01928 0,01971 0,02160 0,02106 0,02260
3 0,01970 0,02089 0,01872 0,01911 0,01970 0,02185 0,01872 0,01902 0,01970 0,02143 0,02039 0,02236
4 0,00034 0,00250 0,00501 0,00542 0,00034 0,00440 0,00541 0,00566 0,00034 0,00422 0,00034 0,00375
5 0,00306 0,00348 0,00374 0,00403 0,00306 0,00358 0,00360 0,00545 0,00306 0,00343 0,00306 0,00335
6 0,01082 0,01522 0,00572 0,01310 0,00561 0,01549 0,00563 0,01013 0,01069 0,01477 0,01107 0,01569
7 0,01340 0,01524 0,02149 0,02623 0,01300 0,01533 0,01964 0,03199 0,01358 0,01530 0,05635 0,05989
8 0,04081 0,04263 0,03701 0,03820 0,03733 0,04080 0,04243 0,04419 0,03997 0,04215 0,11697 0,12356
9 0,00141 0,00363 0,00153 0,00354 0,00049 0,00273 0,00152 0,00301 0,00146 0,00303 0,03402 0,03641

10 0,10828 0,10828 0,10828 0,10828 0,10828 0,10828 0,10834 0,10840 0,10828 0,10828 0,11051 0,11089
11 0,00234 0,00378 0,00428 0,01164 0,00352 0,00601 0,00556 0,01101 0,00222 0,00335 0,05932 0,06371

Pe
rm

ut
at

io
n

Fl
ow

sh
op

0 6251 6271,9 6266 6300 6258 6300,7 6266 6297,8 6265 6304,7 6326 6345,2
1 6225 6238 6232 6257 6244 6262,9 6231 6259,8 6243 6262,5 6261 6297,2
2 6309 6316,1 6313 6341,5 6324 6343 6307 6339,9 6313 6336,1 6342 6364,5
3 6318 6340,6 6306 6339,9 6310 6355,1 6305 6342,8 6323 6342,7 6331 6363,6
4 6364 6386,8 6361 6384,8 6368 6391,3 6357 6387 6362 6386,8 6394 6418,8
5 10493 10497,3 10497 10502,2 10497 10501,5 10494 10505,1 10494 10503,4 10497 10514
6 10922 10925 10922 10923,3 10922 10922,9 10923 10923 10922 10925,3 10922 10927,2
7 26245 26296 26247 26299,3 26366 26399,3 26275 26303,3 26220 26297,5 26328 26391
8 26778 26812,7 26771 26809,6 26804 26883,3 26704 26786 26779 26815,7 26787 26829,6
9 26614 26678,3 26578 26654,2 26646 26710,1 26558 26662,9 26593 26649,4 26599 26690,3

10 11319 11364,6 11333 11360,6 11336 11398,5 11344 11379,5 11319 11375,7 11397 11436,8
11 26585 26630,1 26514 26611,1 26640 26680,9 26574 26644,8 26577 26626,9 26595 26659,9

Pe
rs

on
ne

l
Sc

he
du

lin
g

0 3300 3332,3 3321 3335,4 3310 3336,3 3296 3325,5 3311 3338,1 3323 3347,6
1 2203 2346,1 1975 2280,4 2230 2357 2025 2443,9 2050 2348,5 2228 2475,7
2 335 373 355 389,5 345 386 330 379,5 315 390,5 385 1178,1
3 16 22,1 20 25 18 23,9 20 29,3 20 27,8 13 24,1
4 20 25,6 17 24 22 26,6 25 32,1 21 27,2 21 25,3
5 18 25,9 23 25,7 19 28,8 25 31 29 34 11 27,3
6 1108 1169,2 1128 1152,1 1110 1147,2 1121 1229,6 1106 1251,2 1108 1234,9
7 2189 2282,7 2221 2304,8 2210 2265 2182 2279,9 2174 2267 2184 2273
8 3173 3258,9 3170 3257 3267 3324,4 3177 3349,6 3154 3355,9 3172 3311,7
9 9406 9614,8 9619 10016,9 10181 11463,7 9440 9663,4 9390 9614,2 9522 9718,6

10 1535 1670,8 1620 1723 1489 1652,9 1655 1839,2 1560 1750,1 1689 1995,9
11 315 335,5 330 353,1 310 345,5 290 318 305 466,5 355 943,5

Tr
av

el
lin

g
Sa

le
sm

an

0 48194,92 48195,44 48194,92 48213,29 48194,92 48213,29 48194,92 48222,47 48194,92 48250,02 48689,30 49109,89
1 107509,62 109023,22 108207,20 109058,58 108121,24 109295,50 109212,79 109485,25 108300,28 109113,91 110437,02 111682,08
2 6797,74 6809,59 6799,68 6810,81 6799,67 6816,14 6795,97 6809,00 6799,30 6808,64 6944,03 6979,64
3 41965,50 42025,67 41951,46 42022,91 41972,26 42048,51 41945,83 42038,86 41970,75 42027,68 42702,84 43038,84
4 8857,43 8875,78 8861,95 8881,52 8863,07 8886,16 8842,99 8887,62 8867,05 8885,60 9010,54 9112,40
5 57305,54 57473,51 57201,15 57506,05 57246,11 57451,09 57261,60 57453,98 57177,79 57442,20 59593,48 60063,03
6 52513,79 53097,43 52870,50 53993,95 52587,69 53519,85 52028,89 53437,29 52965,01 53661,89 53873,99 54773,29
7 66219,91 66700,34 66531,26 66925,67 66316,43 66674,21 66154,66 66674,01 66360,95 66761,00 68816,69 69137,90
8 20688884,44 20791227,71 20713409,15 20804743,56 20766756,65 20857643,74 20703118,69 20798709,26 20688847,10 20815142,59 21203912,18 21335269,51
9 667481,20 669868,77 667899,50 671185,01 669271,95 670847,38 668223,98 670190,82 668466,98 669942,61 675137,61 676934,66

V
eh

ic
le

R
ou

tin
g

0 5093,77 5123,63 4158,04 4775,20 5057,15 5122,85 5102,44 5149,55 5135,82 5201,24 5100,96 5140,79
1 20654,06 20758,71 20652,47 20755,40 20660,03 21265,34 21650,18 21774,53 20695,61 21989,32 20651,26 20656,30
2 13286,60 13340,39 12330,09 13152,21 13361,03 13787,77 13312,37 13873,27 14384,55 14521,91 13319,40 13335,66
3 5301,64 5330,35 5317,38 5355,76 5313,71 5338,24 5331,32 5552,44 5349,24 5664,67 5310,36 5345,73
4 14264,83 14289,90 13277,95 14074,31 14277,80 14424,07 14282,24 15022,00 14310,28 14930,38 14257,83 14283,32
5 145390,19 148755,39 142479,18 144776,16 142490,60 146715,69 145424,21 149171,17 145436,10 149344,45 147491,90 152626,07
6 58170,85 61050,39 56757,46 59768,08 57152,31 60290,38 58782,04 60672,66 58788,27 60177,41 59234,69 59932,63
7 159715,50 162125,26 159266,06 160807,34 159383,38 160535,57 159587,27 161230,18 160448,29 161754,46 161810,90 162411,09
8 148316,30 152533,05 145129,59 148821,77 148903,27 151465,09 151092,14 154398,56 153854,25 157180,94 155569,62 158679,76
9 145998,40 148724,85 145598,32 147328,19 145118,16 146872,12 145824,15 147828,00 146885,89 148502,40 146922,79 148065,62

it explored new best solutions for instances 6, 7 and 8.
The best solutions for the other instances are not known,
therefore it is not possible to make a comparison for them. The
hyper-heuristic found the best known solution for permutation
flowshop problem instance 6. The % performance difference
is usually lower than 1% except for instance 10 (1.14%). The
best results on the personnel scheduling problem instances 6
and 9 are new best solutions. For the instances 2 and 10,
the difference increases above 10%. The % difference on the
instances 3, 4 and 5 is very high since the fitness values of
the best known solutions are less than 10. For the travelling
salesman problem, the difference between the best solutions
found by ADHS-AILLA and the optimal solutions is smaller
than 1% for the first six instances. This difference increases
up to 3.51% for larger instances.

The best solutions found by ADHS-AILLA for the first five
VRP instances utilise the same number of vehicles and the
travelled distance is very near to best known solutions. For

the last five instances, the proposed approach finds the same
number of vehicles only for instance 7 and the difference is
relatively high. For the other problem domains, the number
of vehicles is different, therefore it is hard to make a direct
comparison between them.

TABLE XIII
THE % DIFFERENCE BETWEEN THE BEST KNOWN SOLUTIONS AND THE

BEST SOLUTIONS FOUND BY ADHS-AILLA AFTER 1 HOUR

Inst. MSAT BP FS PS TSP VRP
0 N/A 0 0.69 0.43 0.01 9.72
1 N/A 0 0.47 2.30 0.07 0.41
2 N/A 0 0.21 11.11 0.34 7.94
3 100 1.67 0.29 450 0.04 1.09
4 0 N/A 0.46 480 0.46 2.80
5 N/A N/A 0.05 433.33 0.08 N/A
6 -16.67 N/A 0 -0,18 3.51 N/A
7 -16.67 N/A 0.53 0.33 2.18 11.08
8 -37.50 N/A 0.58 0.38 3.03 N/A
9 N/A N/A 0.37 -0.43 2.98 N/A

10 N/A N/A 1.14 13.60 - -
11 0 N/A 0.35 3.70 - -
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TABLE IX
THE EXPERIMENTAL RESULTS WITH 1 HOUR OF EXECUTION TIME (REINITIALISATION IS AVAILABLE ONLY FOR ADHS-AILLA)

Inst. ADHS-AILLA ADHS-GD ADHS-IE ADHS-LATE ADHS-SA
min avg min avg min avg min avg min avg

M
ax

SA
T

0 2 2,5 4 8,1 5 12,6 2 7,4 2 2,5
1 20 21,8 24 27,4 21 25,5 23 25,9 21 24,1
2 15 16,7 16 23,5 19 22,6 18 21,6 17 20,3
3 1 2,2 4 9,2 7 15,9 4 10,6 2 4,8
4 0 1,7 1 10,7 11 24,9 5 22,2 2 7,7
5 1 3,6 9 31,8 20 40,7 9 28,7 1 22
6 5 5,1 5 7,9 8 10,1 6 8,9 5 6,9
7 5 5 7 8,3 8 10,5 6 8,9 5 6,6
8 5 6,6 8 11 11 12,7 10 11,8 7 9,1
9 209 210,4 211 214,8 213 218,5 213 216,9 211 215,4
10 1 1,3 11 14 16 18,2 2 10,3 1 5,5
11 7 7,9 9 12 11 14,2 8 11,3 9 9,8

B
in

Pa
ck

in
g

0 0,00214 0,00324 0,00593 0,00607 0,00220 0,00294 0,00229 0,00402 0,00594 0,00612
1 0,00277 0,00329 0,00358 0,00547 0,00254 0,00294 0,00273 0,00374 0,00365 0,00595
2 0,01923 0,02024 0,01837 0,01894 0,02009 0,02124 0,01986 0,02113 0,01818 0,01881
3 0,01873 0,02010 0,01872 0,01875 0,01937 0,02042 0,01900 0,02159 0,01871 0,01886
4 0,00034 0,00161 0,00456 0,00484 0,00034 0,00249 0,00034 0,00395 0,00501 0,00529
5 0,00306 0,00328 0,00347 0,00376 0,00306 0,00314 0,00306 0,00337 0,00387 0,00402
6 0,01001 0,01428 0,00496 0,00543 0,00994 0,01384 0,01055 0,01397 0,00485 0,00528
7 0,01062 0,01220 0,00809 0,01234 0,01017 0,01224 0,01014 0,01281 0,00829 0,01326
8 0,03975 0,04116 0,03266 0,03318 0,03733 0,04138 0,03188 0,03421 0,03696 0,04025
9 0,00042 0,00207 0,00051 0,00136 0,00042 0,00174 0,00042 0,00137 0,00054 0,00202
10 0,10828 0,10828 0,10828 0,10828 0,10828 0,10828 0,10828 0,10828 0,10830 0,10834
11 0,00126 0,00213 0,00427 0,00542 0,00036 0,00177 0,00033 0,00218 0,00461 0,00858

Pe
rm

ut
at

io
n

Fl
ow

sh
op

0 6245 6257,4 6257 6281,9 6245 6285,2 6263 6290,1 6272 6286,7
1 6212 6223,5 6232 6247,2 6227 6247,8 6235 6251,4 6217 6244,3
2 6284 6307 6315 6332,2 6300 6325,2 6302 6320,5 6299 6327,1
3 6287 6307,4 6303 6322,3 6303 6336,3 6303 6340,6 6303 6337,6
4 6343 6361,2 6352 6369,5 6342 6365,2 6350 6367,8 6344 6364,4
5 10485 10492,9 10487 10495,4 10494 10496,4 10494 10496,6 10485 10495,2
6 10922 10922,2 10922 10922,7 10922 10922,8 10922 10922,6 10922 10922,6
7 26197 26231,5 26199 26250,7 26193 26227,6 26191 26241 26215 26241,3
8 26674 26732,1 26721 26749,5 26687 26758,2 26694 26738,3 26689 26732,3
9 26553 26584 26549 26596,1 26546 26595,5 26549 26596,6 26549 26594,9
10 11308 11317,6 11319 11345,7 11308 11336,5 11319 11344,3 11313 11343,6
11 26464 26507,8 26537 26586 26529 26578,3 26527 26582,2 26486 26564

Pe
rs

on
ne

l
Sc

he
du

lin
g

0 3294 3308,4 3290 3301,9 3291 3311,1 3292 3315,2 3292 3311,2
1 1998 2177,7 1978 2101,7 2120 2267,3 1995 2117,8 2078 2308,6
2 300 342 335 356 280 313 300 328 290 315
3 11 16,8 14 18 18 25,3 12 18,4 12 19,3
4 15 18,6 15 19,5 23 27,1 14 18,5 21 25,5
5 16 18,6 16 20 19 26,3 17 21 19 23,9
6 1093 1115,6 1101 1114,1 1102 1169,9 1100 1105,9 1098 1139,1
7 2149 2221,5 2191 2219,7 2155 2264,9 2186 2227,2 2157 2249,5
8 3133 3181,3 3139 3204,1 3121 3196 3138 3169,8 3135 3215,7
9 8978 9337,9 9503 9658,1 9194 9385,5 9524 9721,9 9253 9343,1
10 1470 1559,7 1400 1476,4 1530 1840,2 1515 1590,3 1523 1716,4
11 280 303 300 323,5 280 298,5 300 312 280 298,5

Tr
av

el
lin

g
Sa

le
sm

an

0 48194,92 48194,92 48194,92 48222,47 48194,92 48222,47 48194,92 48213,29 48194,92 48204,10
1 107294,71 108541,14 107215,30 108997,10 108121,24 109024,87 107215,30 109119,62 107215,30 108842,12
2 6795,97 6801,87 6795,97 6807,32 6795,97 6802,83 6795,97 6803,26 6795,97 6805,95
3 41925,50 41970,03 41935,03 41987,48 41934,72 41995,07 41918,65 41989,03 41912,61 41985,74
4 8846,81 8863,45 8852,68 8875,22 8855,73 8869,37 8848,67 8870,53 8848,67 8865,17
5 56938,34 57136,71 57161,45 57322,03 56971,70 57353,65 56991,95 57315,07 57142,49 57322,33
6 52582,83 52862,89 51928,01 53005,08 52684,92 53293,96 52497,38 53236,37 52389,69 53154,93
7 65651,15 66234,31 66039,03 66315,11 65562,45 66153,53 65800,85 66153,77 65730,81 66078,90
8 20587684,00 20628368,50 20642078,05 20708254,72 20602094,23 20692600,71 20579110,06 20667170,61 20556131,96 20654062,46
9 664479,75 667026,02 666798,86 668122,40 666567,89 667311,87 667666,43 668826,31 665877,60 667219,99

V
eh

ic
le

R
ou

tin
g

0 4164,31 4918,88 4152,99 4754,00 5092,29 5148,17 5075,22 5147,68 5082,57 5129,20
1 20652,47 20654,19 20650,80 20750,46 20676,70 21372,07 20656,49 21267,62 20672,64 21778,58
2 12361,88 13040,32 12289,92 12730,22 13316,18 14094,39 13300,80 13778,65 13342,02 13867,59
3 5265,99 5300,69 5288,31 5324,26 5341,89 5561,12 5315,48 5355,97 5297,97 5435,10
4 13287,09 14079,33 13267,47 13787,66 14299,57 14928,77 14266,88 14612,32 14263,55 14489,12
5 145321,58 146507,32 142479,08 144035,49 146775,65 148934,00 144153,69 146942,49 144062,78 149416,32
6 59555,53 65282,61 56950,10 58007,13 58457,22 60492,64 57327,48 60245,43 58045,27 60131,58
7 159878,05 160253,58 158404,97 159828,78 160645,44 162229,53 159321,12 160608,18 160735,40 161714,55
8 146523,89 152184,37 142726,85 144540,10 151237,31 155370,15 146106,56 151197,18 152788,51 155142,48
9 146331,27 148737,45 144534,23 145606,71 146805,26 147785,55 145243,45 146852,47 146614,73 147457,57

A. Improvement provided based on execution time

Table XIV shows the performance difference between run-
ning ADHS-AILLA for 10 minutes and for 1 hour. The
performance difference between the 10 minutes and 1 hour
experiments is limited considering the permutation flowshop
scheduling and travelling salesman problems. For these prob-
lems, finding a good quality solution appears to be very easy
after short amount of time and it becomes hard to improve.
The relative improvement provided after 1 hour is quite large
for the max SAT problem compared to 10 minutes, however
the objective values are small in values. This also shows that
for the corresponding SAT instances, the proposed approach
finds high quality solutions at the very beginning of the
search. A similar case is valid for some personnel scheduling
problem instances. The gap is relatively large due to the
particular fitness function used to evaluate the bin packing
problem solutions. This indicates that there is large room for

improvement after 10 minutes running time. The improvement
provided after 10 minutes is small for most of the vehicle
routing problem instances. For instance 6, the average fitness
after 1 hour of execution appears to be worse than the 10
minutes case. The underlying reason is that the hyper-heuristic
prematurely converged during certain runs.

B. ADHS
Fig. 4 shows for each problem domain how many times

each heuristic was applied during a 10 minutes run. For the
bin packing problem, there is a trend regarding the number of
calls. A hill climber (LLH6) is called more frequently than the
others. It is followed by the ruin-recreate heuristics (LLH2,
LLH1) and a mutational heuristic (LLH0). The distribution of
calling different heuristics change over time in consideration
of the max SAT problem. The frequently selected heuristics
are listed from most to the least frequent as follows: LLH4,
LLH3 and LLH5 that are hill climbers. A crossover operator
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TABLE X
THE EXPERIMENTAL RESULTS BY SR HYPER-HEURISTICS WITH 1 HOUR OF EXECUTION TIME

Inst. SR-AILLA SR-GD SR-IE SR-LATE SR-SA
min avg min avg min avg min avg min avg

M
ax

SA
T

0 4 6,6 118 182,8 8 14 6 9,3 2 4,3
1 20 21,9 183 227,9 19 26,5 22 24,2 18 20,5
2 14 17,4 166 229 15 20 15 17,9 15 16,5
3 5 8,9 61 78,4 20 29 7 10,2 2 5,9
4 5 7,1 60 79,8 36 41,1 5 8,5 1 3,9
5 10 14,8 152 186,3 34 53,9 8 12,7 5 10,8
6 5 5,6 13 17,1 7 9,9 8 9,7 5 5,6
7 5 6,1 14 16,1 7 9,5 6 7,8 5 6
8 5 7,5 15 21,8 8 11,4 9 10,3 5 7,7
9 209 211,2 231 243 216 218,6 211 215,4 209 212
10 3 11,1 105 134,7 24 28,8 6 11,9 1 2
11 7 7,7 20 23,8 11 12,9 8 10,9 7 8,4

B
in

Pa
ck

in
g

0 0,00282 0,00558 0,03183 0,03512 0,00281 0,00574 0,00280 0,00551 0,00778 0,01055
1 0,00329 0,00412 0,03213 0,03518 0,00346 0,00485 0,00335 0,00483 0,00766 0,00823
2 0,01926 0,02074 0,02577 0,02665 0,02253 0,02372 0,02188 0,02320 0,01849 0,01889
3 0,01937 0,02034 0,02844 0,02934 0,02349 0,02534 0,02155 0,02525 0,01871 0,01872
4 0,00034 0,00034 0,01923 0,01991 0,00034 0,00119 0,00456 0,00463 0,01193 0,01263
5 0,00306 0,00306 0,01821 0,01852 0,00314 0,00332 0,00358 0,00376 0,00966 0,01081
6 0,01005 0,01185 0,09091 0,09738 0,00958 0,01232 0,00548 0,00937 0,00999 0,01250
7 0,01329 0,01464 0,09546 0,10201 0,01334 0,01525 0,01412 0,01595 0,01437 0,02011
8 0,05466 0,05719 0,07386 0,07619 0,05009 0,05288 0,05833 0,06008 0,03956 0,04078
9 0,01159 0,01408 0,02458 0,02550 0,01247 0,01427 0,01461 0,01523 0,01127 0,01250
10 0,10836 0,10839 0,11845 0,11980 0,10841 0,10844 0,10869 0,10875 0,11022 0,11062
11 0,02093 0,02427 0,04205 0,04363 0,02077 0,02572 0,02991 0,03206 0,01979 0,02153

Pe
rm

ut
at

io
n

Fl
ow

sh
op

0 6301 6331,5 6364 6376,3 6319 6338,6 6298 6324,5 6290 6326,8
1 6266 6286,5 6293 6322,3 6271 6308,1 6248 6294,5 6289 6303,6
2 6328 6351,4 6384 6398,7 6318 6357,7 6338 6354,1 6336 6354,8
3 6323 6347,8 6361 6378,3 6323 6354,5 6326 6350 6327 6354,9
4 6377 6399,5 6447 6460 6377 6400,5 6377 6400,1 6367 6396,3
5 10499 10515,6 10515 10529,4 10501 10528,3 10528 10539,9 10507 10534,8
6 10922 10922,7 10947 10963,2 10922 10927,5 10922 10927,5 10923 10935
7 26272 26328,8 26380 26430,6 26360 26451,4 26327 26384,9 26389 26474,4
8 26764 26814,8 26869 26914,2 26873 26932,8 26787 26834,8 26841 26919,2
9 26612 26647 26713 26732,2 26697 26754,9 26665 26697,7 26674 26748,3
10 11377 11412,5 11454 11491,9 11389 11464,2 11432 11461,3 11426 11481,1
11 26574 26629,4 26662 26703,8 26718 26753,9 26608 26663,4 26649 26721,8

Pe
rs

on
ne

l
Sc

he
du

lin
g

0 3296 3326,6 3313 3343,3 3295 3336,9 3294 3317,3 3295 3328,9
1 2120 2377,4 2310 2410,4 2260 2399,2 2040 2159,9 2130 2409,3
2 350 404 360 387 350 1004,5 340 364 485 1210
3 14 18,9 18 28,5 17 24,8 11 16,8 18 23,4
4 14 20,7 31 33,6 17 26,5 17 19 22 27,5
5 15 20,1 24 32,1 22 27 18 19,9 20 27
6 1095 1123,8 1155 1241,3 1099 1106,3 1097 1115,7 1092 1125,3
7 2142 2203,4 2321 2437 2140 2234 2166 2217,9 2156 2235,1
8 3121 3224,7 3354 3645,6 3135 3248,4 3157 3188,2 3132 3202,3
9 9225 9418,5 11879 15854,7 9325 9371,8 9600 9710,6 9204 9370,6
10 1545 1690,1 1635 1832 1680 2003,7 1480 1606,7 1430 1830
11 350 364,5 340 352 355 1348 320 341,5 370 798,5

Tr
av

el
lin

g
Sa

le
sm

an

0 48783,64 49156,77 48599,79 48915,61 49668,09 50946,67 49107,00 49833,44 49259,48 50297,25
1 110564,87 111419,31 110713,99 111896,49 112419,39 113973,87 112963,60 114513,31 112212,38 114839,34
2 6926,94 6959,94 6952,33 6970,01 7011,57 7083,83 6979,99 7016,49 7011,57 7048,73
3 42715,80 43049,30 42835,63 43068,60 43408,08 43744,32 43223,11 43403,01 43385,76 43738,36
4 9067,84 9110,53 9055,54 9087,11 9186,73 9248,54 9091,63 9156,40 9171,94 9207,92
5 59412,81 59735,21 59295,64 59634,71 60087,77 60807,46 59571,67 60087,70 59996,40 60635,19
6 53557,30 54039,64 54840,37 55783,46 53722,65 54905,25 54695,22 55473,46 54434,51 54979,89
7 68471,97 68999,59 69383,13 69711,01 68790,31 69962,01 69629,79 70178,41 68881,81 69314,48
8 21119457,88 21316901,87 21153503,04 21262559,87 21255472,60 21401367,92 21145364,26 21322066,84 21268106,35 21448099,47
9 674371,48 675933,05 675305,29 676503,62 676435,22 678735,34 674723,33 676058,97 675565,00 678768,49

V
eh

ic
le

R
ou

tin
g

0 4183,81 4846,15 5216,65 5274,65 5178,67 5236,05 5147,14 5180,91 5126,35 5186,24
1 20651,10 20652,89 20667,04 21476,93 20663,28 21176,92 20661,69 21170,60 20656,64 21364,02
2 12289,05 12925,35 13342,67 14528,52 13358,84 14107,57 12402,50 13267,71 13331,80 13584,72
3 5309,32 5333,93 5360,17 5507,90 5383,55 5596,26 5373,71 5408,55 5316,05 5388,25
4 13308,27 14076,91 15325,53 15658,31 14311,70 15147,16 13320,87 14211,03 14280,54 14411,75
5 143908,77 146723,57 261278,71 267206,18 142509,88 147480,42 143871,49 145783,48 143904,85 145716,25
6 58849,50 59651,23 107161,68 113411,06 58342,60 59458,97 60844,93 61663,48 57397,60 59271,45
7 159753,92 161198,40 197189,41 204495,39 159959,74 161332,56 159476,14 160247,01 160781,49 161358,38
8 150175,78 153348,54 237084,51 241517,40 148801,51 153461,12 145646,27 148316,12 150398,65 152841,70
9 145941,03 147019,25 183843,11 189242,81 145716,09 146924,70 144650,00 145780,46 144781,65 146554,35

TABLE XI
THE SCORES OF THE TESTED HYPER-HEURISTICS AFTER 10 MINUTES OF EXECUTION BASED ON THE CHESC SCORING SYSTEM (THE HIGHEST POSSIBLE

SCORE IS 680). THE RESULTS OF SR HYPER-HEURISTICS EXCEPT SR-AILLA WERE TAKEN FROM [61]

Hyper-heuristic Max SAT Bin Packing Perm. Flowshop Pers. Scheduling TSP VRP OverAll
ADHS-AILLA 116 77 95 89 85 56 518
ADHS-GD 29 72 93 75 60 89 418
ADHS-IE 8 81 76 44 65 28 302
ADHS-LATE 29,5 74 53 75 56 69 356,5
ADHS-SA 59 68 73 54,5 64 36 354,5
SR-AILLA 73 33 38 41 25 59 269
SR-GD 0 2 7 6 20 0 35
SR-IE 12,5 40 4 30 2 1 103,5
SR-LATE 58 17 24 26 13 20 158
SR-SA 83 4 5 27,5 0 18 137,5
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TABLE XII
THE SCORES OF THE TESTED HYPER-HEURISTICS AFTER 1 HOUR OF EXECUTION BASED ON THE CHESC SCORING SYSTEM (THE HIGHEST POSSIBLE

SCORE IS 680)

Hyper-heuristic Max SAT Bin Packing Perm. Flowshop Pers. Scheduling TSP VRP OverAll
ADHS-AILLA 113 70 118 87 95 52 535
ADHS-GD 31 67 62,5 72 51,5 94 378
ADHS-IE 10 76 71 41 54,5 10 262,5
ADHS-LATE 31 62 62 72 55 39 321
ADHS-SA 63,5 53 81 49 74 20 340,5
SR-AILLA 76 53 34,5 40 26 59 288,5
SR-GD 0 0 5 5 20 1 31
SR-IE 10 31 5,5 20,5 3 21 91
SR-LATE 44,5 24 21,5 62 8 51 211
SR-SA 89 32 7 19,5 3 43 193,5

TABLE XIV
THE % PERFORMANCE DIFFERENCE BETWEEN 10 MINUTES AND 1 HOUR

CASES BASED ON THEIR AVERAGE RESULTS BY ADHS-AILLA

Inst. MSAT BP FS PS TSP VRP
0 35,56 7,41 0,23 0,72 0,00 7,05
1 26,04 8,40 0,23 7,18 0,44 0,51
2 4,37 7,73 0,14 8,31 0,11 0,12
3 5,73 37,14 0,52 23,98 0,13 0,61
4 35,60 37,04 0,40 27,34 0,14 0,75
5 7,43 72,73 0,04 28,19 0,59 2,02
6 15,78 3,77 0,03 4,58 0,44 -9,12
7 22,53 7,41 0,25 2,68 0,70 0,63
8 1,87 7,04 0,30 2,38 0,78 1,03
9 52,90 0,75 0,35 2,88 0,42 0,63

10 0,00 40,91 0,41 6,65 - -
11 30,06 1,25 0,46 9,69 - -

is selected most after these hill climbers. For the permutation
flowshop scheduling problem, heuristics can be considered
as divided into groups. After 400 seconds, one crossover
operator (LLH13) was applied most often. Other crossover
operators are also called very frequently after LLH13. Only
a ruin-recreate heuristic (LLH5) is called more than 1000
iterations for the personnel scheduling problem. In the case
of the travelling salesman problem, two crossover operators
(LLH9, LLH12) are chosen more often than others. Also for
the vehicle routing problem, two heuristics take the lead, i.e.
two mutational heuristics (LLH0, LLH1).

1) Heuristic set size: Fig. 5 depicts the changes of the
heuristic set size for each problem domain. The fluctuations
of the heuristic set size are very frequent concerning the bin
packing, max SAT and vehicle routing problems. Changes
mostly take place due to the presence of fast heuristics in
the heuristic subset. The set size changes are relatively slower
with the remainder of the problem domains. A set of four
heuristics is most of the time sufficient when dealing with
the bin packing problem. This value is generally around 5 for
the max SAT problem. The heuristic set size decreases till 5
during the search by excluding 10 heuristics at the same time
in the case of the permutation flowshop scheduling problem.
The size of the heuristic set associated with the personnel
scheduling problem oscillates around 5. A set with 5 or 6
heuristics is often enough for the travelling salesman problem.
For the vehicle routing problem, the size of the heuristic set
is generally 4 and for some cases, the set size even reduced
to 2.

These results indicate that there is no need to use the
whole heuristic set during the entire search process. The subset
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Fig. 4. The number of calls for each heuristic on each problem domain
by ADHS-AILLA with 10 minutes of execution time (a run on one sample
instance represents each domain)

selection or heuristic exclusion strategy effectively determines
good heuristic subsets and this reduces the complexity of the
heuristic selection operation. However, it should be noted that
there is no one heuristic subset which always works well.
Therefore, it is important to appoint different heuristic subsets
for different parts of the search.
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Fig. 5. The heuristic set size changes on each problem domain by ADHS-
AILLA with 1 hour of execution time (a run on one sample instance
representing each domain was used)

2) QI changes: Fig. 6 presents the QI values for each
bin packing heuristic during a 10 minutes run. Among them,
one ruin-recreate heuristic (LLH2), one mutational heuristic
(LLH3) and only crossover operator (LLH7) have high QI
values during almost the whole run. One ruin-recreate heuristic
(LLH1) and two hill-climbers (LLH4, LLH6) have relatively
worse QI values. Two mutational heuristics (LLH0, LLH5)
generally get the lowest QI values. It is apparent that all the
QI values tend to change, so high QI values may turn into
low ones for some heuristics during the course of the search,
and vice versa. This means that the hyper-heuristics’ strength
brings a performance change while solving a problem instance.

C. Relay Hybridisation

Fig. 7 presents heuristic pairs that explored new best solu-
tions during 1 hour. In the light of the bin packing problem,
such heuristic pairs were rarely identified during the first 10
minutes. After that time, almost no pair contributed to the
optimisation. During the first half of the search, hybridisa-
tion frequently found new best solutions while solving the
max SAT problem instances. From the given heuristic set, a
mutational heuristic (LLH6) was used as the first heuristic to
apply. Two mutational heuristics (LLH0, LLH4), and one hill
climber (LLH8) were utilised as the second heuristics. All the
hill climbers (LLH7,LLH8,LLH9,LLH10) given to solve the
permutation flowshop scheduling problem discovered new best
solutions as the second heuristics. Except for three mutational
heuristics (LLH2,LLH3,LLH4), all other heuristics were
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Fig. 6. QI changes of the bin packing heuristics by ADHS-AILLA with 10
minutes of execution time (the red dotted lines show avg)

used as the first ones of the pairs. For the personnel scheduling
problem, two hill climbers (LLH3,LLH4) were used as the
second heuristics. The rest of the heuristics, except a crossover
operator (LLH9), was used to change the solution before the
second heuristics were applied. These heuristics found new
best solutions only during the first half of the execution time.
The only ruin-recreate heuristic (LLH5) was mostly used
as the first heuristic with regard to the travelling salesman
problem. All the available hill climbers (LLH6,LLH7,LLH8)
were used as the second heuristics. Among them, especially
LLH8 successfully found many new best solutions via relay
hybridisation. A crossover operator (LLH6) was utilised as
the first heuristic for most of the cases on the subject of the
vehicle routing problem. A mutational heuristic (LLH0) and
two hill climbers (LLH4, LLH8) were generally applied as
the second heuristics.

Fig. 8 demonstrates the ratio between the number of it-
erations spent by relay hybridisation compared to the single
heuristic selection. This ratio changes over time for al; the
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Fig. 7. Heuristic pairs yielding new best solutions by relay hybridisation
using ADHS-AILLA for 1 hour of execution time (squares show the first
applied heuristics, circles indicate the heuristics applied afterwards)

problem domains. For the permutation flowshop scheduling
problem, the ratio increases during the first 10 minutes and
it is higher than 1. This shows that for this problem domain,
relay hybridsation is preferred over single heuristic selection.
Afterwards, it decreases and around 1000 seconds later, its
value goes under 1 since it is more profitable to apply single
heuristics. With the travelling salesman problem, a similar
trend occurs. This ratio decreases to very low value due to
the fast heuristics with very high improvement capabilities for
the bin packing problem. For the max SAT problem, the ratio
slightly increases, but decreases towards the end of the search.
The amount of incrementation is relatively larger while solving
the vehicle routing problem, but it also starts to decrease
after almost 10 minutes. The ratio constantly increases for
the personnel scheduling problem to about 0.2.

For all the tested problem domains, various heuristic pairs
that can explore new best solutions were detected. Hence,
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Fig. 8. Number of iterations ratio between relay hybridisation and single
heuristic selection (relay/single)

this approach can be considered as a method to increase
the quality of a heuristic for the mentoring task. However,
adding new heuristics makes the heuristic selection operation
more complex. The decision rule provided in the relay hy-
bridisation solves this problem by deciding whether applying
only one heuristic or heuristic pairs. For instance, ADHS-
AILLA prefers heuristic pairs over single heuristic since using
them is more profitable in comparison single heuristic for
the permutation flowshop scheduling problem. Conversely,
ADHS-AILLA applies single heuristics more since they are
already better than heuristic pairs, even though it found very
effective heuristic hybridisations for the bin packing problem.
This means that heuristics should be chosen depending on both
their improvement and speed traits.

D. AILLA

Fig. 9 shows the iteration limit (k) changes. k increases over
time with some fluctuations in certain time limits while solving
the bin packing problem instances. The hyper-heuristics wait
about 500 iterations before diversifying the search during
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Fig. 9. Iteration limit (k) changes on each problem domain (a run on one
sample instance representing each domain was used)

later iterations. For the max SAT problem, k constantly
changes during the first 100 seconds, after that it is almost
stable due to the fast improvement provided by the hyper-
heuristic. In the case of the permutation flowshop problem,
changes on k are limited to the first half of the running
time. Due to the limited number of improvements and slow
heuristics, the value of k changes over the whole period for
the personnel scheduling problem. Considering the travelling
salesman problem, k reaches 100 after several fluctuations
and stabilizes after 400 seconds. Even though the variation
of k is limited for the vehicle routing problem, changes are
nevertheless frequent. This shows that improving solutions for
300 seconds is relatively easy and that this is mostly due to
the re-initialisation procedure. After that time, the number of
improvements decreases.

From the competition point of view, success of the compet-
ing methods combining mutational and ruin-recreate heuristics
with hill climbers can be deduced from our relay hybridisation
results. As expected, for most of the cases, the detected
heuristic pairs that find new best solutions are in the form
of perturbing a solution first then improving the new solution
using a hill climber. However, there are certain cases such
as the bin packing problem, hybridisation slows down the
hyper-heuristic and causes missing fast and effective single
heuristics. As discussed in Section 2, it is important to
determine effective heuristics according to their improvement
characteristics. However, it is even more important to consider
these abilities along with their speed for better judgement.

E. Re-initialisation

When good quality solutions are detected in a fast manner
and while there is still time to make improvements, ADHS-
AILLA randomly re-inisialises the solution is randomly re-
initialised. Fig. 10 presents the changes to the best fitness with
re-initialisations by ADHS-AILLA. For the max SAT problem,
the frequency of re-initialisation is very high. After almost 100
seconds, re-initialisation stops and the hyper-heuristic starts
working to improve the overall best solution found after all
performed re-initialisations. The vehicle routing problem was
subject to several re-initialisations but fewer than the max SAT
domain. Re-initialisation is much less frequent for the rest of
the problems.

These results disclose that even a such a naive approach
should be adaptive for different heuristics sets associated with
distinct problems. There a few major points derived from
these results. The first point is that how easy to find a good
quality solutions for a particular problem instance. The other
point is related to the continuity of improvement. For instance,
the re-initialisation activities for the max SAT problem are
very often. On the other hand, the number of generating new
initial solutions are very limited in the case of the bin pack-
ing problem. ADHS-AILLA immediately finds good quality
solutions due to the capabilities of the given heuristics and
the structure of the solution space, so the fitness landscapes
owned by each heuristic. Then, improving these quickly found
good solutions is very hard. The fitness landscapes belonging
to the bin packing problem domain is also appropriate for
finding solutions in a fast manner. However, the improvement
process is continuous. Therefore, there is no need to call the re-
initialisation method as frequently as the max SAT case. This
re-initialisation mechanism can deal with such differences in
an efficient way.

F. CHeSC 2011

The cross-domain heuristic search challenge (CHeSC) 2011
is the first competition to show the level of generality of a
high-level approach across multiple problem domains. CHeSC
2011 organisers provided four problem domains along with
heuristic sets as a testbed for selection hyper-heuristics. The
problem domains given prior to the competition were max
SAT, bin packing, permutation flowshop scheduling and per-
sonnel scheduling problems. The competitors performed a set
of experiments on these domains to examine the performance
of their hyper-heuristics. For the competition, the testbed was
extended with two hidden problem domains, namely travelling
salesman and vehicle routing problems. For the problem
domains announced before the competition, three available
instances were randomly selected. In addition, two hidden
instances were introduced. As a consequence, 5 instances from
6 problem domains were used as the test-bed. In this setting,
the highest possible score for an algorithm is 300 based on
the formula 1 scoring system.

In Table XV, the ranking and scores of the 20 competing
algorithms are presented. Each algorithm runs 31 times for
10 minutes. These results reveal a clear performance differ-
ence between our approach, ADAPHH (ADHS-AILLA), and
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Fig. 10. Changes on the best fitness found by ADHS-AILLA on each problem
domain

the other competing algorithms. This is a vital indicator in
connection with the generality of the corresponding method.
More detailed results are available at the competition website1.
Problem-wise, the proposed approach outperforms the other
algorithms for max SAT, 1D bin packing and travelling sales-
man. It comes second for permutation flowshop scheduling,
5th for vehicle routing and 10th for the personnel scheduling
problem. Among the unseen problem domains, the travelling
salesman problem is a good example to show the adaptive
capabilities of this hyper-heuristic. On the other hand, the
results on vehicle routing problems indicate that there is still
room for improvement on its generality level. Its relatively
worse performance for the personnel scheduling is caused by
the limited time available to the learning process given the
speed of the heuristics.

IX. CONCLUSION

A selection hyper-heuristic, ADHS-AILLA, accommodating
various evolvable mechanisms has been developed in the
present study. Each sub-mechanism focuses on a specific
part of the hyper-heuristic. One mechanism, i.e. the adaptive
dynamic heuristic set (ADHS) strategy, is dedicated to discover
the best heuristic subsets during different search regions.
In addition, a heuristic selection rule was determined for
choosing heuristics from these subsets. Another algorithmic
contribution is responsible for finding effective heuristic pairs
yielding new best solutions. These methods were supported by

1http://www.asap.cs.nott.ac.uk/chesc2011/

TABLE XV
CHESC 2011 COMPETITION SCORES (ALGORITHMS ARE SORTED FROM

THE BEST TO THE WORST BASED ON THEIR OVERALL SCORES)

Algorithm Score MSAT BP FS PS TSP VRP
ADAPHH 181 34.75 45.0 37.0 9.0 40.25 15.0
VNS-TW 134 34.25 3.0 34.0 39.5 17.25 6.0
ML 131.5 14.5 12.0 39.0 31.0 13.0 22.0
PHUNTER 93.25 10.5 3.0 9.0 11.5 26.25 33.0
EPH 89.75 0.0 10.0 21.0 10.5 36.25 12.0
HAHA 75.75 32.75 0.0 3.5 25.5 0.0 14.0
NAHH 75 14.0 19.0 22.0 2.0 12.0 6.0
ISEA 71 6.0 30.0 3.5 14.5 12.0 5.0
KSATS-HH 66.5 24.0 11.0 0.0 9.5 0.0 22.0
HAEA 53.5 0.5 3.0 10.0 2.0 11.0 27.0
ACO-HH 39 0.0 20.0 9.0 0.0 8.0 2.0
GenHive 36.5 0.0 14.0 7.0 6.5 3.0 6.0
DynILS 27 0.0 13.0 0.0 0.0 13.0 1.0
SA-ILS 24.25 0.75 0.0 0.0 19.5 0.0 4.0
XCJ 22.5 5.5 12.0 0.0 0.0 0.0 5.0
AVEG-Nep 21 12.0 0.0 0.0 0.0 0.0 9.0
GISS 16.75 0.75 0.0 0.0 10.0 0.0 6.0
SelfSearch 7 0.0 0.0 0.0 4.0 3.0 0.0
MCHH-S 4.75 4.75 0.0 0.0 0.0 0.0 0.0
Ant-Q 0 0.0 0.0 0.0 0.0 0.0 0.0

a move acceptance strategy (AILLA) for accepting or rejecting
the visited solutions by the chosen heuristics and heuristic
pairs. Furthermore, a re-initialisation mechanism performing
depending on feedback from the move acceptance strategy
was utilised. For improving the performance of the hyper-
heuristic even more, a number of decision mechanisms were
instantiated to activate or deactivate these sub-mechanisms
if required. The resulting mechanisms were used in coordi-
nation within a hyper-heuristic framework. The performance
of the hyper-heuristic across multiple domains, namely max
SAT, bin packing, permutation flowshop scheduling, personnel
scheduling, travelling salesman and vehicle routing, revealed
that ADHS-AILLA is able to deliver high quality results for
different instances of the problem domains, the corresponding
heuristic sets and different execution time. In particular, the
algorithm here presented won the first international Cross
Domain Heuristic Search Challenge 2011.

A. Level of generality

For the generality of a search algorithm, it is required to
eliminate problem-dependent elements as much as possible.
The cross-domain search challenge 2011 competition provides
the opportunity of solving a set of instances from different
problems with no domain knowledge. In this competition,
particular information on the subject of the heuristic types was
released. Even if this information is withheld as is the case in
many hyper-heuristic studies, it can nevertheless be used for
the competition domains to deliver better quality solutions.
Most of the competing algorithms used the information about
heuristic types to devise memetic algorithm or iterated local
search kind of approaches. The hyper-heuristic proposed here
ignores this information and defines a set of heuristic types to
generalise the hyper-heuristic by definition. These types were
specified in regard to heuristics’ improvement skills and they
are valid for all possible heuristics. Hence, this approach helps
to generalise the applicability of the hyper-heuristic across
various heuristic sets involving different heuristic types.

Adaptiveness and coordination are the primary concepts
that need to be considered for the purpose of generality
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in the hyper-heuristic research. These concepts have been
materialised within the hyper-heuristic sub-mechanisms. In
that sense, certain components to decide about the sub-
mechanisms’ lifetime, frequency of usage, status regarding
whether they are active or passive are required. Furthermore,
since there is no real parameter-free or rule-free algorithm,
it is highly required to manage or adapt the corresponding
parameters during the run. As a consequence, the hyper-
heuristic developed should be able to properly change its
behaviour for different problem sets and heuristic sets via
various adaptation and decision mechanisms.

B. Future research

In the future, the user-dependency of the hyper-heuristic
will be decreased by increasing its adaptive behaviour with
respect to the changing requirements during the run. Then, the
additional sub-components as well as more effective decision
mechanisms will be implemented. Furthermore, the perfor-
mance of the hyper-heuristic will be investigated over other
problem domains, especially real world problems.
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