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1. Introduction

Natural gas is increasingly used as a source of energy all over
the world and the estimations show that its worldwide consump-
tion in 2030 will be as twice as its present rate [1].

As natural gas travels through the transmission pipelines, the
gas pressure drops due to both the friction with the pipe walls and
heat transfer to the surroundings. Therefore there is need to
compensate the pressure by a number of compressor stations
located along the pipeline.

As an accepted rule of thumb, about 3–5% of the transmitted
natural gas is consumed for gas turbine drivers to generate power
for the compressor stations [2–4] which amounts to a huge cost
because of the large quantities of natural gas transmitted through
extensive networks. For example, based on the information
presented by reference [4], the natural gas consumption in the
United States was more than 60 billion cubic feet per day, and its
worldwide consumption was three times of this amount. Based on
the prices in 1998, the cost of the fuel burned to run the natural gas

compressor stations in the United States came to about two billion
dollars per year. Therefore, even a slight improvement in the
performance of the gas transportation system can result in great
savings.

The dynamic programing (DP) method was invented by an
American mathematician named Richard Ernest Bellman [5]. DP is
a powerful method for the minimization of fuel consumption of
natural gas networks, and its advantage is that, in contrast to the
gradient-based methods, it is insensitive to the non-linearity, non-
convexity and existing discontinuities of the problem under study.
DP is also guaranteed to find the optimal solution [3].

DP was first applied to the linear (also called gun-barrel) gas
network in 1968 by Wong and Larson [6]. Then, researches in [7–9]
applied DP to branched (also called tree) networks.

Ref. [10] applied the ant colony meta-heuristic optimization
(ACO) method to a gun-barrel natural gas network. To verify the
results of the ACO method, they were compared to those obtained
by the DP method. This comparison showed a minimum/
maximum relative difference of about 0.1%/0.66% between the
two approaches.

The most significant work on cyclic networks, known so far, has
been undertaken by Carter (1998) [4] who developed the non-
sequential DP (NDP) algorithm. This method can be applied to gas
networks with cyclic or non-cyclic structure, but is limited to a
fixed set of flows.
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A B S T R A C T

For minimization of fuel consumption of natural gas transmission networks, non-sequential dynamic

programing (NDP) method guarantees to find the global optimal solution, however NDP method cannot

be used for analysis of cyclic networks in which the flow rate values are not known in priori. Therefore

modified NDP method is proposed in this paper which is capable of being applied to the cyclic network

problems. Still a drawback remains with the proposed modified NDP which is impractical computing

time except for simple cyclic networks. To solve this basic problem, the genetic algorithm (GA) method

was selected as an alternative method. Then the modified NDP and GA methods were applied to three

types of natural gas transmission network problems including linear, branched and cyclic structures and

their results were analyzed and compared. The results showed that for three mentioned network

structures, the difference values in objective function (rate of fuel consumption) which were obtained

from NDP and GA methods were within acceptable range of 0–0.55%. Furthermore, it was observed that

while the computing time required by the NDP method exponentially depended on pressure and flow

rate step sizes, the GA computing time did not show such a dependency on these parameters.
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In non-cyclic networks (gun-barrel or branched networks), the
rate of flow passing through each existing pipeline or compressor
station (CS) is uniquely specified, and the NDP method can be
applied [11]. By contrast, in cyclic networks, the rate of flow
passing through each part of the existing cycles is not pre-
specified, and therefore, a set of flow variables is added to the
decision variables of the optimization problem. This makes the
NDP method multi-dimensional; and consequently it will require
unreasonable and impractical computation time, except for the
cases with very few cycles.

The research work performed by Luongo et al. [12] is among the
early works in optimization of fuel consumption in cyclic
networks. By assuming some fixed values for flow variables first
they obtained optimal corresponding unknown pressure values via

DP method. Then, they updated the flow variables which improved
the objective function through direct search method.

There are also a few other two-stage iterative optimization
methods which have been proposed in the literature for
optimizing the operational conditions of cyclic networks. These
algorithms assume some fixed values for flow variables at first,
and find the corresponding optimal pressure values via NDP. Then
they search for a new set of flow variables to improve the

objective function via methods such as the heuristic [13] or Tabu
search methods [2].

GA, as one of the evolutionary algorithms, is an efficient
optimization tool that begins the search for the optimal
solution from different points in the solution domain, thereby
reducing the probability of being trapped in the local optima.
GA only uses the objective function value for the optimization,
it does not need information like derivatives and other
auxiliary knowledge, and the aforementioned complexities
do not complicate this algorithm [14]. The evolutionary
algorithms are simple to write, and powerful, from the
standpoint of setting the control parameters.

Refs. [14,15] have given a review of the research works that
have used GA method. These references have also employed GA to
optimize the CS problem.

Also Ref. [16] used GA method to determine the optimal pipe
size for a gas network with predefined structure.

In this paper, the results and capability of finding lower values
for fuel consumption rates using NDP and genetic algorithm (GA)
methods for linear, branched and cyclic structures are analyzed
and compared. Through this comparison, the GA method was
verified as an appropriate alternative method for optimization of
all three above mentioned gas network structures.

Our literature survey showed that the results of the proposed
methods for optimization of operational conditions in cyclic
networks were mainly verified by comparison with the results of
gradient-based methods or personal experiences (which none of
them necessarily lead to the optimal solution). However, in this
paper, the optimization results obtained by GA for both the cyclic
and non-cyclic (linear and branched) network structures are
compared to the results of modified NDP method. This method of
verification is very reliable, due to the fact that the modified NDP
method certainly reaches the optimal solution.

Other contributions of this paper which are not usually referred
to in literature are taking into account the effects of the ambient
temperature and the driver (gas turbine) part load operation and
shaft speed on the driver efficiency.

This paper is organized as follows: the modeling of various
natural gas network structures with their governing equations are
described in Section 2, the description of the optimization problem
as well as a brief introduction to the NDP and GA methods are
presented in Section 3. The case studies investigated in this paper
are introduced in Section 4, and the fuel optimization results are
presented and discussed in Section 5.

2. Modeling and the governing equations

Gas networks are composed of pipelines and CSs as the main
components. A schematic diagram of a CS located between two
pipelines, with a number of turbo-compressor (TC) units in
parallel, is shown in Fig. 1. This figure shows that each TC consists
of a natural gas compressor (responsible for compensating the
pressure drop) and a gas turbine (also called turbine engine, as the
driver of the natural gas compressor). The studied double-shaft gas
turbine is composed of air compressor, combustion chamber, and
low and high pressure (LP, HP) turbines, which are discussed in
detail in Section 2.3. The ‘‘natural gas compressor’’ is henceforth
shortened to ‘‘compressor’’. The modeling and the governing
equations of typical natural gas network components are described
as follows.

2.1. Pipeline

By assuming isothermal and steady-state conditions, the
pressure drop in natural gas pipeline was obtained from a

Nomenclature

ACO ant colony optimization

CS compressor station

D pipe diameter (mm)

DP dynamic programing

G specific gravity

H isentropic head (J/kg)

LHV lower natural gas heating value (J/kg)

ṁ mass flow rate (kg/s)

MAOP maximum allowable operating pressure (Pa)

MMSCMD million standard cubic meters per day

NDP non-sequential dynamic programing

P pressure (Pa)

Qac actual volumetric flow rate passing through a

compressor (m3/s)

R gas constant (J/kg K)

S compressor rotational speed (rpm)

t resistance of pipeline (Pa s/kg)2

T temperature (K)

TC turbo-compressor

X mass flow rate (kg/s)

Z compressibility factor

Greek symbols

h efficiency

s isentropic exponent

Subscripts

ac actual

b base value

c natural gas compressor

d discharge

f fuel

is isentropic

mech mechanical

s suction

th thermal
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conservative flow equation named Weymouth equation [17–22]
as follows:

Q ¼ 3:7435 � 10�3 Tb

Pb

� �
P1

2 � P2
2

GTavLZ

  !0:5

D2:667 (1)

In the above equation, Q is the standard volumetric flow rate (in
standard m3/day), Tb, Pb are the base temperature and pressure,
respectively (288.15 K, 100 kPa), Tav is the average gas flow
temperature (K), P1, P2 are the upstream and downstream
pressures (kPa), L is the length of pipeline segment (km), Z is
the compressibility factor, and G is the natural gas specific gravity
(the ratio of the density of natural gas to the density of air at
standard conditions (101.325 kPa and 15 8C)).

Eq. (2) was used to determine the compressibility factor (Z) in
Eq. (1), as a function of the reduced pressure (the ratio of the actual
pressure to the gas critical pressure, P/Pc) and reduced temperature
(the ratio of the actual temperature to the gas critical temperature,
T/Tc) [23–25]:

Z ¼ 1 þ 0:257
Pav

Pc

� �
� 0:533

Pav

Pc

� �
Tc

Tav

� �
(2)

The average gas flow pressure (Pav) was computed as Pav ¼
2=3ðP1 þ P2 � ðP1 � P2=ðP1 þ P2ÞÞÞ [20].

2.2. Natural gas compressor

Eqs. (3)–(9) show the governing equations of gas flow passing
through a typical compressor:

The ratio of compressor isentropic head to the square of
rotational speed:

H

S2
¼ b1 þ b2

Qac

S

� �
þ b3

Qac

S

� �2

(3)

Compressor isentropic efficiency:

hc;is ¼ b4 þ b5
Qac

S

� �
þ b6

Qac

S

� �2

(4)

Eqs. (3) and (4) are empirical equations proposed by [26,27] for
compressor operating points, in which b1 to b6 are constants that
could be obtained from a specific compressor map in a pipeline.

Compressor isentropic head in terms of compressor pressure
ratio:

H ¼ ZsRTs

s
pd

ps

� �s

� 1

� �
(5)

The compressor power consumption in terms of compressor
mechanical efficiency (hc,mech, which was considered equal to 0.98
in this paper):

Powersha ft ¼
H � ṁd

hc;is � hc;mech

(6)

The required fuel mass flow rate in gas turbines for running the
compressors:

ṁ f ¼
Powersha ft

LHV � hth;gas turbine

(7)

Eq. (8) indicates the mass balance among the mass flow rate of
natural gas entering the turbo-compressor unit ðṁsÞ, the gas
turbine fuel consumption rate ðṁ f Þ, and the mass flow rate of
natural gas passing through the compressor ðṁdÞ as indicated in
Fig. 1.

ṁ f þ ṁd ¼ ṁs (8)

In the above equations, subscriptions s and d indicate compressor
suction and discharge points.

The actual volumetric flow rate passing through a compressor
as a function of mass flow rate, pressure and temperature, was also
obtained from:

Qac ¼
ṁdZsRTs

ps

(9)

2.3. Gas turbine (driver)

Generally, two-shaft gas turbines are used in gas pipeline
applications because of their operational flexibility [28]. Part of
Fig. 1 confined in a dashed box shows a schematic diagram of a
two-shaft gas turbine. A gas turbine (including air compressor,
combustion chamber, and low and high pressure turbines)
provides power to run the air compressor by the high pressure
turbine and to run the pipeline compressor by the low pressure
turbine (also called power turbine).

For any shaft speed and power required by the pipeline
compressor, the driver operational condition should be adjusted.
Generally the technical information regarding the gas turbine
includes the base load maximum power output ðPowerAÞ and
efficiency (hth,A) at ISO conditions for point with A in Fig. 2, as well

Fig. 2. Schematic diagram of a typical gas turbine performance map.

Fig. 1. Schematic diagram of a natural gas compressor station.

S. Sanaye, J. Mahmoudimehr / Journal of the Taiwan Institute of Chemical Engineers 43 (2012) 904–917906



Author's personal copy

as its corresponding shaft speed (SA). Ambient temperature and
pressure values of 15 8C and 101.325 kPa were considered for ISO
conditions.

In most cases though, the gas turbine does not operate at ISO
conditions due to the elevation or temperature of the site in which
the engine is installed as well as running at the partial load and/or
out of design speed. Therefore, some corrections are required for
computing the gas turbine overall performance as follows.

2.3.1. Correction for the ambient temperature

The ambient temperature variation changes the values of
output shaft speed, power and efficiency [29,30] at the design
point. For example, movement of point A to B in Fig. 2 shows the
effect of a typical change in atmospheric temperature from TISO to
Tambient6¼ISO.

Therefore, some equations are required to estimate these
effects. These equations can be extracted using the map or data
available for a specific turbine which have the following forms:

PowerA

PowerB
¼ f 1

TambientðKÞ
TISOðKÞ

� �
(10)

hth;A

hth;B

¼ f 2
TambientðKÞ

TISOðKÞ

� �
(11)

SB

SA
¼ f 3

Tambient ðKÞ
TISO ðKÞ

� �
(12)

2.3.2. Correction for the part load operation

The turbine part load operation decreases the optimal values of
output shaft speed, power and efficiency [29,31]. For example,
movement of point B to C in Fig. 2 shows the effect of a typical part
load operation. Equations which consider these effects are:

hth;C

hth;B

¼ f 4
PowerC

PowerB

� �
(13)

SC

SB
¼ f 5

PowerC

PowerB

� �
(14)

2.3.3. Correction for the operation out of design rotational speed

For any operating condition of a gas generator (part of the gas
turbine which includes air compressor, combustion chamber and
HP turbine as was shown in Fig. 1), there is a rotational speed at
which the output shaft power and efficiency values are the highest.
If the power turbine deviates from this speed, the power and
efficiency decrease with the same proportions (Eq. (16)) [29]. For
example, movement of point C to D in Fig. 2 shows the effect of a
typical change in power turbine (LP turbine) shaft rotational speed
from its optimal value at which it operates at its highest power and
efficiency.

Eqs. (15) and (16) are proposed by [29,32] to take this effect into
consideration:

Powersha ft

PowerC
¼ 2

S

SC

� �
� S

SC

� �2

(15)

hth;D

hth;C

¼
Powersha ft

PowerC
(16)

Powersha ft and S in the above equations are the required power and
speed (point D) by the pipeline compressor.

The set of nonlinear equations, including Eqs. (3)–(16) for each
turbo-compressor unit, was solved using Newton–Raphson
method in this paper.

3. Optimization

In this section, a description of the optimization problem as well
as a brief introduction to the applied NDP and GA methods (whose
codes were developed by the authors at the Energy Systems
Improvement Laboratory, ESIL) are presented.

3.1. Optimization problem

The optimization problem, constituting the minimization of
fuel consumption of a typical gas network composed of a set of
pipeline arcs (AP), a set of CS arcs (AC), and a set of nodes (V)
(starting and end points of pipeline and CS arcs), is mathematically
expressed by Eqs. (17)–(21) [2,3,10,11].

Minimize
X
ði; jÞ 2 AC

Ji j � gi jðXi j; ni j; Pi; P jÞ; Ji j 2 f0; 1g (17)

X
j:ði; jÞ 2 A

Xi j �
X

j:ð j;iÞ 2 A

Xi j ¼ Si; i 2 V (18)

Pi
2 � P j

2 ¼ ti jXi j
2; ði; jÞ 2 AP (19)

Pi 2 ½Pi
L; Pi

U �; i 2 V (20)

if Ji j ¼ 1 ) ðXi j=ni j; Pi; P jÞ 2 Di j; ni j 2 f1; 2; . . . ; Ni jg; ði; jÞ 2 AC

(21)

The decision variables are the rate of flow passing through each
arc (Xij, (i, j) 2 A, A = AP [ AC), pressure value at each node (Pi, i 2 V),
on/off status of each CS (Jij, (i, j) 2 AC, where the value of 0/1 for Jij

shows the on/off status of the corresponding CS), and the number
of active TCs in each CS (nij, (i, j) 2 AC).

Eq. (17) shows the objective function (sum of the rates of
natural gas consumed as fuel by the drivers at the CSs), where the
fuel consumption of each CS (gij, (i, j) 2 AC) is a function of the rate
of flow passing through it (Xij), number of active TCs (nij), and its
suction and discharge pressures (Pi, Pj).

Eqs. (18)–(21) indicate the constraints of the problem.
Constraint (18) represents the balance of mass for each node. At

each node (i 2 V), there is a known parameter (Si), which is called
the net flow through that node. Si > 0 (Si < 0) implies that node i is
a source (delivery) node, whereas Si = 0 means that node i is just a
transshipment node.

Constraint (19) represents the pipeline flow equation. In this
equation, tij denotes the resistance of the pipeline segment
(i, j) 2 AP obtained from Eq. (1).

Constraint (20) expresses the pressure limits in each node.
Finally, constraint (21) implies that the operating point of each

TC in an active CS should be in a feasible domain. In this equation,
nij/Nij is the number of active/available TCs at the CS, and the ratio
of Xij/nij indicates the mass flow rate passing through each active
TC at that CS.

The feasible operating domain of a typical compressor bounded
by maximum and minimum speed, surge and stonewall lines is
shown in Fig. 3.

3.2. Non-sequential dynamic programing (NDP)

The NDP method was elaborately described in [4,33]. A brief
description of the essence of this method is presented in this section.
For the fixed values of flow variables in the gas network, the NDP
method searches for the optimal set of nodal pressure values.

The NDP procedure takes two connected CSs and replaces them
with a virtual composite element that represents the optimal
operation of both CSs. These two connected elements can be

S. Sanaye, J. Mahmoudimehr / Journal of the Taiwan Institute of Chemical Engineers 43 (2012) 904–917 907
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chosen from anywhere in the system. Following this step, the
system has been replaced with an equivalent system (which has
one CS lower). The procedure continues until only one virtual
element, which fully characterizes the optimal behavior of the
entire pipeline system, is left. Afterwards, the optimal set of
pressure variables can be obtained by a straight-forward back-
tracking process.

For the fixed values of flow variables, the NDP procedure can
be applied to a network with any structure (cyclic or non-cyclic)
by using three kinds of combinations of two connected CSs, as
shown in Fig. 4. In this figure, g(PI, PJ) is the minimum value of
fuel consumption of the CS with the suction and discharge
pressures of PI and PJ. This minimum value is obtained by finding
the best number of active TCs through a search of all possible
numbers. MI is the number of elements in a discretized pressure
range at point I.

The NDP technique reduces the computational complexity of
the problem from O(MP

Number of CSs) to less than O(Number of

CSs � MP
3), where MP is the maximum number of elements in a

discretized pressure range.

3.3. Genetic algorithm (GA) [16,34–36]

Evolutionary algorithms are random search methods that
mimic the natural evolution. These algorithms start with a
population of possible solutions and repeatedly generate a new
population from the last one based on the survival of fitter
solutions, with the hope of finding solutions with better objective
functions. The steps of GA (as one of the evolutionary algorithms)
are briefly described below:

3.3.1. Chromosome formation and the first population

As described in Section 3.1 of the manuscript, on/off status of
each CS, the number of active TCs in each CS, and pressure value at
each node form the decision variables of non cyclic problems. For
the problems with cyclic structure, flow variables are also added to
the decision variables.

It should be noted that the optimal number of active TCs in each
CS, corresponding to the specified values of suction and discharge
pressures as well as the rate of flow passing through that CS, was
obtained exhaustively (i.e. by finding the best number of active TCs
through a search of all possible numbers) in both NDP and GA
methods, and therefore was excluded from the chromosome
formation of GA.

Fig. 5 represents the chromosome formation. As shown in Fig. 5,
the first part of the chromosome relates to the on/off states of the
existing CSs in a typical gas network in which one binary bit is
assigned to each CS so that the value of 1/0 in each bit represents
the on/off status of its corresponding CS.

Also the second and third parts of the chromosome relate to the
pressure and flow variables respectively.

Fig. 4. Three different combinations of two connected CSs in the NDP method.

Fig. 3. Feasible operating domain for a typical compressor.

Fig. 5. Schematic diagram of the chromosome formation in GA.

S. Sanaye, J. Mahmoudimehr / Journal of the Taiwan Institute of Chemical Engineers 43 (2012) 904–917908
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As shown in Fig. 5, a number of bits are considered for each
pressure variable depending on its lower and upper limits (Pi

L, Pi
U)

as well as the pressure step size (DP).
Eqs. (22)–(26) are related to the coding and decoding processes

of each pressure variable.

Mi ¼ b Pi
L � Pi

U

DP
c þ 1; i 2 V (22)

e ¼ Mi � 1

2Nbit;i � 1
(23)

ui ¼
XNbit;i

m¼1

Jm � 2Nbit;i�m; Jm 2 f0; 1g (24)

Yi ¼ 1 þ e � ui (25)

Pi ¼ Pi
L þ ðjjYijj � 1ÞDP (26)

In Eq. (22), Mi denotes the number of elements in the discretized
pressure range.

As the numbers 1, 2, . . ., and Mi represent the 1st, 2nd, . . ., and
last elements in the discretized pressure range respectively, the
range of 1 to Mi was coded with a number of binary bits (Nbit,i).
Eqs. (23)–(25) show the decoding process of each set of the binary
bits to the decimal value within the range of 1 to Mi. As shown in
Eq. (25), e is the minimum possible distance between the two
decoded decimal values which was constrained to be less than 0.01
to give an almost uniform chance to each integer value between 1
and Mi to be selected when the decoded decimal value (Yi) is
returned to the nearest integer value (jjYijj).

Finally, the pressure value corresponding to the obtained
integer value is calculated using Eq. (26).

The flow variables are also coded with the same approach
explained above which is not repeated here.

The formation of the first population (generation) is the first
step in GA procedure. A population consists of a number of
chromosomes (individuals), each a string of coded bits (genes),
which represents a single solution of the problem under study. The
first population is created by randomly choosing the binary value
of 0 or 1 for each bit.

3.3.2. Selection process and the mating pool

The next step is to select some individuals to produce the
offspring (children) for creating the new generation. This
selection process is based on the fitness function that
represents the objective function, and the individuals with
greater fitness functions have a better chance of being selected.
A collection of the selected individuals makes up the mating
pool.

3.3.3. Crossover and mutation

After parents are randomly chosen from the selected individu-
als in the mating pool, they undergo the crossover procedure in
order to produce offspring. Crossover produces offspring that
inherit their genes from both parents. Then, mutation is applied on
the children, which alters the initial values of some of their genes.
Mutation makes it possible for the children to have some different
gene values than their parents. It also prevents the optimization
process from being trapped in the local optima.

3.3.4. Elitism

Elitism is a method which copies the best chromosome (or a few
best chromosomes) to a new population without any change.

GA operators selected and used in this paper were the Roulette-
Wheel selection, single point crossover, uniform mutation rate,
and the Elitism. Also no improvement in the objective function for
a sequence of 50 consecutive generations was considered as the
stop criteria.

4. Case studies

To consider all types of gas network structures, the following
three natural gas networks with linear, branched and cyclic
structures were investigated in this paper.

4.1. First case study: linear network

The first case study, which is schematically shown in Fig. 6, is a
linear network with five CSs, each including six parallel TCs. Table 1
shows the information regarding the first case study. Also the
compressor constant values (required by Eqs. (3) and (4)), and the
data pertaining to its feasible operating domain are listed in Table 2.

Fig. 6. Schematic diagram of the first case study (linear network).

Table 1
Information regarding the first case study (linear network).

Diameter of each pipeline segment Length of each pipeline segment Rate of flow passing through the network Gas pressure at point A

1.4224 mm 120 km 70 MMSCMD (601 kg/s) 55 bar

Average gas flow temperature Minimum required gas pressure at point F Pipeline maximum allowable operating pressure (MAOP) Specific gravity

20 8C 50 bar 72 bar 0.6137

Table 2
The constant values for compressors.

b1 b2 b3 b4 b5 b6 Surge (Q/S)min Stonewall (Q/S)max Smax Smin

8.294 � 10�4 1.898 �2.532 � 103 13.929 2.54 � 105 �2.289 � 108 3.76 � 10�4 8.53 � 10�4 7700 4500

S. Sanaye, J. Mahmoudimehr / Journal of the Taiwan Institute of Chemical Engineers 43 (2012) 904–917 909
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The values of 7350 rpm, 25.4 MW, and 35.1% were considered
for the parameters SA, PowerA and hth,A, respectively, and applied in
Eqs. (10)–(12).

The constant coefficients of four second-order polynomial
equations (a1x2 + a2x + a3), which were obtained (by curve fitting)
for functions f1 to f3 and f5 in Eqs. (10)–(12) and (14), are shown in
Table 3. Also, a logarithmic function was obtained for f4

(f4 = 0.2457 ln(x) + 1).
It is worth mentioning that the above equations have been

verified by the authors in Ref. [37].

4.2. Second case study: branched network

The second case study, which is schematically shown in Fig. 7, is
a branched network with eight CSs, each including six parallel TCs.
The length, diameter and maximum allowable pressure (MAOP)
are 150 km, 1.4224 mm and 72 bar for each pipeline segment of
the incoming branch (branch with the flow rate of 70 MMSCMD),
and also 100 km, 0.994 mm and 68 bar for each pipeline segment
of the two outgoing branches (branches with the flow rates of 30
and 40 MMSCMD). Other information regarding the second case
study is shown in Table 4. The same type of TCs as in the first case
study was considered in the second case study.

4.3. Third case study: cyclic network

The third case study, which is schematically shown in Fig. 8, is a
cyclic network with six CSs, each including six parallel TCs. The
information regarding the pipeline segments of the third case
study is given in Table 5 and the other relevant information is

shown in Table 6. The type of TCs considered in the third case study
was identical to that of the first and second case studies.

5. Results and discussion

5.1. Results of the first case study (linear network)

The flow variables are fixed throughout the network due to the
non-cyclic structure of the first case study. Therefore, the decision
variables include the values of pressure at nodes B to F (in Fig. 6),
on/off status of each CS, and the number of active TCs at each CS.

The results obtained by NDP including the optimal decision
variables and the objective function (fuel consumption) are shown
in Table 7 for various pressure step sizes (0.25–2 bar). As Table 7
shows, for finer pressure step sizes (difference in two sequentially
discrete pressure values), better solutions (solutions yielding
lower fuel consumption) were obtained.

Table 7 also shows that in the optimal solution, the 3rd and 5th
CSs were predicted to be bypassed (at off status), while the
remaining CSs were active.

Fig. 9 shows the variation of natural gas pressure along the
network of the first case study, based on the optimal values of the
decision variables presented in Table 7 for the pressure step size of
0.25 bar (the smallest pressure step size which led to the lowest
value of the objective function). This figure also compares the
optimal pressure values obtained at nodes B to F with their upper
and lower permissible bounds. As shown in Fig. 9, except for the
end node (node F), the optimal values of nodal pressure (each
encircled with an ellipse) were close to their upper bounds. This
was due to the fact that for a specified mass flow rate of natural gas
through the pipeline segment, the higher pressure values resulted
in lower volumetric flow rates or gas velocities and therefore,
lower values of pressure loss were obtained. The optimal pressure
value for the end node (node F) was close to its lower bound, so that
the gas flow leaves the pipeline with lower pressure which has
lower amount of availability (physical exergy).

To compare the results obtained by NDP and GA methods, the
GA program was developed.

Table 3
Constant coefficients of functions f1 to f3 and f5 in Eqs. (10)–(12) and (14).

Function a1 a2 a3

f1 �4.3115 6.6618 �1.3618

f2 �2.4918 4.4951 �1.0074

f3 �0.4275 0.6710 0.7566

f5 �0.397 1.0165 0.3777

Fig. 7. Schematic diagram of the second case study (branched network).

Fig. 8. Schematic diagram of the third case study (cyclic network).
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The value of 0.8 was considered for the crossover rate.
To obtain the appropriate values of the mutation probability

and population size (as the two key factors in the optimization
process) the sensitivity analysis was carried out for each pressure
step size in each case study.

In the first step of the sensitivity analysis, the population size
was assumed to be 100, and GA program was executed ten times
for each mutation probability of 1%, 3%, 5%, 7% and 9%. The
mutation probability with the minimum average rate of fuel
consumption (or minimum average difference with NDP solution)
was chosen as the best selection.

In the next step, the mutation probability was assumed equal to
the best value obtained from the first step, and GA program was
executed ten times for each population size of 50, 100, and 150. The
population size with the minimum average rate of fuel consump-
tion (or minimum average difference with NDP solution) was
chosen as the best selection.

As an example, the first and second steps of the sensitivity
analysis for the first case study (at the pressure step size of 2 bar)
are shown in Fig. 10(a) and (b) respectively.

As Fig. 10(a) shows, the value of 9% was the best mutation
probability by which each of ten GA executions resulted in the

Table 4
Information regarding the second case study (branched network).

Net flow through

the supply node A

Net flow through the

delivery node F

Net flow through

the delivery node I

Gas pressure at

point A

Minimum required

pressure at point F

Minimum required

pressure at point I

Table 5
Information regarding the pipeline segments of the third case study (cyclic network).

Pipe number

1 2 3 4 5 6 7 8 9

Length (km) 150 100 100 100 100 100 150 100 100

Diameter (mm) 1422 994 994 994 994 794 1167 794 794

MAOP (bar) 72 68 68 68 68 68 80 68 68

Table 6
Information regarding the third case study (cyclic network).

Net flow through

the supply node A

Net flow through the

delivery node E

Net flow through the

delivery node F

Gas pressure

at point A

Minimum required

pressure at point E

Minimum required

pressure at point F

70 MMSCMD 50 MMSCMD 20 MMSCMD 55 bar 50 bar 42 bar

Table 7
Optimal values of decision variables and the objective function obtained by the NDP method in the first case study.

DP (bar) 2 1 0.5 0.25

CS1 state/number of operating units On/4 On/4 On/4 On/4

CS2 state/number of operating units On/3 On/3 On/3 On/3

CS3 state/number of operating units Off/0 Off/0 Off/0 Off/0

CS4 state/number of operating units On/3 On/3 On/3 On/3

CS5 state/number of operating units Off/0 Off/0 Off/0 Off/0

PB (bar) 66 67 67.5 67.75

PC (bar) 72 72 72 72

PD (bar) 63.12 63.12 63.12 63.12

PE (bar) 72 71 70.5 70.5

PF (bar) 52.52 51.08 50.35 50.35

Rate of fuel consumption (kg/s) 7.8087 7.7156 7.6699 7.6627

Fig. 9. Variation of natural gas pressure along the network of the first case study obtained by NDP method.
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optimal solution (NDP solution). Furthermore, 4, 4, 7 and 9 of ten
GA executions resulted in the optimal solution (NDP solution) for
mutation probabilities of 1%, 3%, 5% and 7%, respectively.

As Fig. 10(b) shows, at population sizes of 100 and 150, all ten
GA runs resulted in the optimal solution (furthermore, eight of ten
GA runs resulted in the optimal solution at the population size of
50). However, the selected population size of 100 required the
lower computing time in comparison with the population size of
150.

Besides finding the appropriate GA parameters, the above
discussed sensitivity analysis shows that the optimal solution
could be correctly found in the wide ranges of mutation probability
and population size with different frequency of obtaining the
optimal solution.

The selected values of mutation rate and population size, the
length of the chromosome, the relative standard deviation of ten
GA executions, as well as the differences of the best, worst and the
average fuel consumption rates obtained through ten GA execu-
tions with the optimal fuel consumption rate obtained by NDP
method are shown in Table 8 for various pressure step sizes.

Table 8 shows that for each pressure step size, all ten GA
executions resulted in the rate of fuel consumption exactly equal to
that obtained by the NDP method. It should be noted that the same
values of objective function implies the same values predicted for
the decision variables.

The average computation time of ten GA executions as well as
the computation time required for the NDP method on an Intel (R)
Core (TM) i5 2.53 GHz processor are shown and compared in
Fig. 11 for each pressure step size. As Fig. 11 shows, while the
computation time required for the NDP method increased
exponentially with decreasing the pressure step size, the
computation time required for the GA method did not show such
a dependency on this parameter.

Fig. 12 shows the progress of convergence for the objective
function values in ten executions of GA versus the number of
generations for the pressures step size of 2 bar, and compares them to
the optimal objective function value obtained by the NDP method. It
should be noted that there are similar diagrams for other pressure
step sizes and also for the other case studies discussed in the following
sections, which are not presented here only for conciseness.

Fig. 10. Sensitivity analysis of the results of GA to the variation of (a) mutation probability and (b) population size.

Table 8
Comparison between objective function values obtained by the NDP and GA methods in the first case study.

DP (bar) Number

of bits

Mutation

rate (%)

Population

size

Difference of best/average/worst rate

of fuel consumption obtained by ten

GA executions with NDP solution (%)

Relative standard

deviation (%)

2 59 9 100 0–0–0 0

1 64 7 100 0–0–0 0

0.5 69 7 100 0–0–0 0

0.25 74 7 150 0–0–0 0
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To verify the efficiency of applying GA optimization method for
larger size networks, both NDP and GA methods were applied to a
linear network with 15 compressor stations for the pressure step
size value of 0.25 bar. NDP solution showed the optimal value of
19.55 kg/s for the rate of fuel consumption. With the selected
values of 5%, and 100 for mutation probability and population size
based on the sensitivity analysis, the best-average-worst values of
fuel consumption rate obtained by ten GA executions showed the
difference percentage point of about 0–1.8–2.4% with NDP
solution. Also the computation time required by NDP method

and the average computation time required by GA were about
3603 and 2846 s respectively.

Fig. 13 shows the optimal variation of gas pressure along the
network. Furthermore, the optimal values of decision variables are
shown in Table 9.

5.2. Results of the second case study (branched network)

Similar to the first case study, the second case study has a non-
cyclic structure (Fig. 7), and therefore the flow variables are

Fig. 11. Comparison of computing times required for the NDP and GA methods in the first case study.

Fig. 12. Progress of the convergence for the objective function values in ten executions of GA versus the number of generations, and their comparison with the optimal

objective function obtained by the NDP method for the pressures step size of 2 bar, in the first case study.

Fig. 13. Variation of natural gas pressure along the linear gas network with 15 compressor stations obtained by NDP method.
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pre-specified throughout the network. The decision variables
include the values of pressure at nodes B to I in Fig. 7, the on/off
status of each CS, and the number of active TCs at each CS.

The results obtained by NDP including the optimal values of
decision variables and the objective function (fuel consumption)
are shown in Table 10 for various pressure step sizes (0.25–2 bar).

Table 10 shows that in the optimal solution, the 3rd and 5th CSs
were predicted to be bypassed (at off status), while the other CSs
were active.

Fig. 14 illustrates the variation of natural gas pressure along the
network of the second case study, based on the optimal values of

the decision variables presented in Table 10 for the pressure step
size of 0.25 bar. This figure also compares the optimal pressure
values obtained at nodes B to I with their upper and lower
permissible bounds. As shown in Fig. 14, based on the same
explanations for the first case study, the optimal pressure values
are close to their upper bounds at the transshipment nodes (nodes
except for A, I and F in Fig. 14 which neither supply nor demand
flow) and close to their lower bounds at the end nodes (nodes F
and I).

It is worth mentioning that with the same hardware introduced
in Section 4.2, different values of pressure at the upper and lower

Table 9
Optimal values of decision variables obtained by NDP method for the linear network with 15 CSs for the pressure step size of 0.25 bar.

CS number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Status/number of active units On/4 On/3 Off/0 On/3 Off/0 On/3 Off/0 On/3 Off/0 On/3 Off/0 On/3 Off/0 On/3 Off/0

Point labeled with B C D E F G H I J K L M N O P

Pressure (bar) 67.75 72 63.1 72 63.1 72 63.1 72 63.1 72 63.1 72 63.1 70.5 50.35

Table 10
Optimal values of decision variables and the objective function obtained by the NDP method in the second case study.

DP (bar) 2 1 0.5 0.25

CS1 state/number of operating units On/5 On/5 On/5 On/5

CS2 state/number of operating units On/3 On/3 On/3 On/3

CS3 state/number of operating units Off/0 Off/0 Off/0 Off/0

CS4 state/number of operating units On/2 On/2 On/2 On/2

CS5 state/number of operating units Off/0 Off/0 Off/0 Off/0

CS6 state/number of operating units On/2 On/2 On/2 On/2

CS7 state/number of operating units On/2 On/2 On/2 On/2

CS8 state/number of operating units On/2 On/2 On/2 On/2

PB (bar) 62 62 62.5 62.75

PC (bar) 68 68 68 68

PD (bar) 58.047 58.047 58.047 58.047

PE (bar) 66 66 66 65.75

PF (bar) 42.425 42.425 42.425 42.041

PG (bar) 68 68 68 68

PH (bar) 68 68 68 68

PI (bar) 42 42 42 42

Rate of fuel consumption (kg/s) 12.2054 12.2054 12.1805 12.1587

Fig. 14. Variation of natural gas pressure along the network of the second case study obtained by NDP method.
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outgoing branches (shown in Fig. 14) are caused due to different
rates of gas flow passing through those branches.

The selected values of mutation rate and population size, the
length of the chromosome, the relative standard deviation of ten
GA executions, as well as the differences of the best, worst and the
average fuel consumption values obtained through ten executions
of GA with the optimal fuel consumption value obtained by NDP
method are shown in Table 11 for various pressure step sizes.

Table 11 shows that for each pressure step size, the best fuel
consumption value obtained by ten GA executions is exactly equal
to those obtained by the NDP method. Also, the difference between
the average/worst value of the objective function for ten
executions of GA and the optimal objective function value
(obtained by the NDP method) was within the range of
0–0.05%/0–0.46% for various pressure step sizes.

The average computation time of ten GA executions as well as
the computation time required for the NDP method are shown and
compared in Fig. 15 for each pressure step size. As Fig. 15 shows,
while the computation time required for the NDP method
increased exponentially with the degree of precision (i.e. with
the decrease in pressure step size), the computation time required
by the GA method did not show such a dependency on the pressure
step size.

5.3. Results of the third case study (cyclic network)

For the cycle existing in the third case study (pipeline segments
2–6 in Fig. 8 form a cycle), it is not known in advance how the rate
of flow through pipeline segment 1 should be divided between
pipeline segments 2 and 5. Therefore, one flow variable (the
volume flow rate through pipeline segment 2) was added to the
decision variables.

As was noted, the application of NDP is limited to networks with
fixed values of flow variables. Therefore the procedure of
optimizing the present cyclic network using the NDP was modified
in this paper such that, the possible range of flow through pipeline

2 (within 0–70 MMSCMD) was discretized and then the NDP
method was separately applied for each of the discrete values of
flow in pipeline 2. It should be noted that while the computational
complexity of the NDP method for non-cyclic structures is about
O(the number of CSs � MP

3), the above mentioned modified
procedure imposes a computational complexity of about O((the
number of CSs � MP

3) � (Km
Number of cycles)) for the cyclic structures;

where Km is the maximum number of elements in the discretized
flow range. Therefore, this procedure imposes impractical compu-
tation time, except for cases with very few cycles.

To assess the GA capability in optimization of such a pipeline
with cyclic network configuration, this method was applied to the
third case study as well.

The results obtained by NDP are shown in Table 12 for various
step size values of pressure (0.25–2 bar) and volume flow rate
(0.25–2 MMSCMD). As Table 12 shows, the better solutions
(solutions yielding lower fuel consumption values) were obtained
with finer pressure and volume flow rate step sizes. Also Table 12
shows that all CSs should be active to reach the optimal solution.

The selected values of mutation rate and population size, the
length of the chromosome, the relative standard deviation of ten
GA executions, as well as the differences of the best, worst and the
average fuel consumption values obtained through ten executions
of GA with the optimal fuel consumption value obtained by NDP
method are shown in Table 13 for various volume flow rate and
pressure step sizes.

According to Table 13, the comparison between the best,
average, and worst values of the objective function for ten GA
executions and the optimal objective function value (obtained by
the NDP method) shows the corresponding differences to be within
the ranges of 0–0.55%, 0–1.43% and 0–4.2%, respectively, for
various pressure and flow step sizes.

The computation time required for the NDP method and the
average computation time of ten GA executions are shown in
Fig. 16(a) and (b) respectively. These figures show that while the
required computation time for the NDP method changed

Table 11
Comparison between objective function values obtained by the NDP and GA methods in the second case study.

DP (bar) Number of bits

in each chromosome

Mutation

rate (%)

Population

size

Difference of best/average/worst rate

of fuel consumption obtained by ten

GA executions with NDP solution (%)

Relative standard

deviation (%)

2 90 7 50 0–0–0 0

1 98 7 50 0–0.05–0.46 0.14

0.5 106 7 50 0–0.03–0.16 0.07

0.25 114 7 50 0–0.05–0.16 0.08

Fig. 15. Comparison of computing times required for the NDP and GA methods in the second case study.
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exponentially with the pressure step size, and linearly with the
volume flow step size (due to the existence of only one cycle), such
a dependency was not observed between the required computa-
tion time for the GA method and the pressure or the flow step sizes.
As Fig. 16 shows, due to the multi-dimensionality of the third case
study (existence of a flow decision variable in addition to the

pressure decision variables), except for the cases with coarse step
sizes (in which the required computation times for the GA and NDP
methods are of the same order), the NDP computation time is much
longer than that of the GA method (e.g. about 20 times longer for
the pressure and flow step size values of 0.25 bar and 0.25
MMSCMD).

Table 12
Optimal values of decision variables and the objective function obtained by the NDP method in the third case study.

Dṁ (MMSCMD) 2 1 0.5 0.25

DP (bar) 2 1 0.5 0.25 2 1 0.5 0.25 2 1 0.5 0.25 2 1 0.5 0.25

CS1 state/number of operating units On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5 On/5

CS2 state/number of operating units On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2

CS3 state/number of operating units On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2

CS4 state/number of operating units On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2

CS5 state/number of operating units On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2 On/2

CS6 state/number of operating units On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1 On/1

PB (bar) 61 62 62.5 62.75 61 62 62.5 62.75 61 62 62.5 62.75 61 62 62.5 62.75

PC (bar) 67 67 68 68 67 68 68 68 67 68 68 68 67 68 68 68

PD (bar) 54 54 55.5 55.75 54 55 55.5 55.75 54 56 56 55.75 54 56 56 56.25

PE (bar) 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50

PF (bar) 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42

ṁ2 (MMSCMD) 34 32 32 32 33 33 32 32 33 32.5 32.5 32 32.75 32.5 32.25 32.25

Rate of fuel consumption (kg/s) 10.04 9.838 9.711 9.68 9.971 9.813 9.711 9.68 9.971 9.75 9.707 9.68 9.959 9.75 9.698 9.668

Table 13
Comparison between objective function values obtained by the NDP and GA methods in the third case study.

Dṁ (MMSCMD) DP (bar) Number of bits

in each chromosome

Mutation

rate (%)

Population

size

Difference of best/average/worst

fuel consumption obtained by ten

GA executions with NDP solution (%)

Relative standard deviation (%)

2 2 74 7 100 0–0–0 0

1 79 7 100 0–0.94–4.2 1.74

0.5 84 7 100 0–0.51–1.2 0.43

0.25 89 7 150 0–0.37–0.52 0.24

1 2 75 7 100 0–0–0 0

1 80 7 100 0–0.46–1.94 0.79

0.5 85 7 100 0.42–1.43–3.74 1.29

0.25 90 7 150 0–0.39–0.52 0.23

0.5 2 76 7 100 0–0.61–2.75 0.97

1 81 7 100 0.41–0.82–3.32 0.83

0.5 86 7 100 0.46–1.1–2.83 0.94

0.25 91 7 150 0–0.69–2.89 0.86

0.25 2 77 7 100 0–0.72–2.88 1.24

1 82 7 100 0–0.27–0.52 0.16

0.5 87 7 100 0.55–0.9–2.92 0.82

0.25 92 7 150 0–0.94–2.63 0.93

Fig. 16. Comparison of computing times required for NDP and GA methods in the third case study. (a) Computing time required for NDP method and (b) Computing time

required for GA method.
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6. Conclusions

The NDP method guarantees to find the optimal solution in the
minimization of fuel consumption of natural gas networks,
however, its application is limited to those cases at which the
flow rate values in the network are known in priori. Therefore, in
cyclic networks where the flow variables in the cycles are not
uniquely specified in priori, NDP cannot be applied without
appropriate modification.

Therefore the procedure of applying NDP for cyclic structures
was modified in this paper. However, the modified procedure,
except for a very few number of cycles or for coarse step sizes,
requires an impractical computation time. Furthermore, GA was
applied in this paper as an alternative optimization method for all
network configurations including the cyclic one. The results
obtained by GA and NDP methods for linear, branched and cyclic
network structures were compared. The results showed that the
GA method can be applied as an appropriate alternative method for
both cyclic and non-cyclic natural gas network structures
successfully. Furthermore, it was observed that while the
computing time required by the NDP method exponentially
depended on pressure and flow rate step sizes, the GA computing
time did not show such a dependency on these parameters
(however its results depended on the GA tuning parameters)
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