
 Perspective International Journal of Management
 No.1 Vol.1,

 pp. 69-95

A novel particle swarm optimization algorithm
approach to hybrid flow shops scheduling with
sequence-dependent setup times

M. Amiri1,*

N. Javadian2
H. Zare23

Abstract
 Much of the research on operations scheduling problems has either
ignored setup times or assumed that setup times on each machine are
independent of the job sequence. This paper deals with the hybrid flow
shop scheduling problems in which there are sequence dependent setup
times, commonly known as the SDST hybrid flow shops. This type of
production system is found in industries such as chemical, textile,
metallurgical, printed circuit board, and automobile manufacture. With
the increase in manufacturing complexity, conventional scheduling
techniques for generating a reasonable manufacturing schedule have
become ineffective. A particle swarm optimization algorithm can be used
to tackle complex problems and produce a reasonable manufacturing
schedule within an acceptable time. This paper describes a novel particle
swarm optimization algorithm approach to the scheduling of a SDST
hybrid flow shop. An overview of the hybrid flow shops and the basic
notions of a PSO are first presented. Subsequently, the details of a
NPSO approach are described and implemented. The results obtained
are compared with those computed by Random Key Genetic Algorithm
presented previously.

Key words: Short-term scheduling; Hybrid flow shops; Sequence
dependent setup times; Makespan; Particle Swarm Optimization

1. Department of Industrial Management, Management and Accounting Faculty, Allameh Tabatabaeii
University, Tehran, Iran.
2. Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran.

* Corresponding author.
E- mail address: mg_amiri@yahoo.com

 Amiri, et al.

70

1. Introduction
 Several flow patterns can be encountered, depending on the number
of stages (v) required to process a job and on the number of available
machines per stage (M(v)). The diagram in Fig. 1 illustrates schematically
the relationships between the different machine environments (Zandieh
and Fatemi, 2003).

Fig. 1. A classification for scheduling problems based on resource environments.

A hybrid flow shop model, commonly known as flexible flow line,

allows us to represent most of the production systems. The process
industry such as chemical, pharmaceutical, oil, food, tobacco, textile,
paper, and metallurgical industry can be modeled as a hybrid flow shop.
In the literature, the notion of hybrid flow shop has emerged in the 70s
(Arthanary and Ramaswamy, 1971). A hybrid flow shop consists of a
series of production stages, each of which has several facilities in parallel
(Elmaghraby and Karnoub, 1995). Some stages may have only one
facility, but for the plant to be qualified as a hybrid flow shop, at least
one stage must have several facilities. The flow of products in the plant is
unidirectional. Each product is processed at only one facility in each
stage and at one or more stages before it exits the plant. Each stage may
have multiple parallel identical machines. These machines can be

Job shop

v=1

Open
shop

Job shop with duplicate machine

Flow shop

Hybrid flow shop

Permutation flow
shop

Single machine

Parallel machine

specific
routings exist

same routing
for every job

M(v)=1

v=1

v=1
M(v)=1

M(v)=1

No passing

v=1,M(v)=1

v=1

same
routing

specific routings
exist and are identical

 A novel particle swarm…

71

identical, uniform, or unrelated. Each job is processed by at most one
machine at each stage.

Pinedo (1995) cited machine setup time is a significant factor for
production scheduling in all flow patterns, and it may easily consume
more than 20% of available machine capacity if not well handled. Also
the completion time of production and machine setups are influenced by
production mix and production sequence. On the one hand, processing
in large batches may increase machine utilization and reduce the total
setup time. On the other hand, large batch processing increases the flow
time. Scheduling problems with sequence-dependent setup times are
among the most difficult classes of scheduling problems. A single-
machine sequence-dependent setup scheduling problem is equivalent to
a traveling-salesman problem and is NP-hard (Pinedo 1995). Even for a
small system, the complexity of this problem is beyond the reach of
existing theories (Luh et al,1998).

Sequence-dependent setup scheduling of a hybrid flow shop system is
even more challenging. Although there has been some progress reported,
but the understanding of sequence-dependent setups, however, is still
believed to be far from being complete (Luh et al,1998).

In recent years, with the emergence of computational intelligence,
intelligence-oriented algorithms such as GA, SA, TS, and etc. have been
employed to scheduling problems.

 Particle swarm optimization (PSO) is an evolutionary computation
technique developed by Eberhart and Kennedy in (1995), inspired by
social behavior of bird flocking or fish schooling. Similar to genetic
algorithm (GA), PSO is a population based optimization tool. Original
PSO is distinctly different from other evolutionary-type methods in a
way that it does not use the filtering operation (such as crossover and
mutation) and the members of the entire population are maintained
through the search procedure so that information is socially shared
among individuals to direct the search towards the best position in the
search space. Clerc and Kennedy (2002) researched on the explosion
stability and convergence in a multi-dimensional complex space of the
particle swarm and Trelea (2003) studied convergence analysis and
parameter selection of the particle swarm optimization algorithm.
Eberhart and Shi (1998) compared genetic algorithms with particle
swarm optimization. In recent years there have been a lot of reported
works focused on the modification PSO such as Fan (2002), Kennedy
and Mendes (2002), and Shi et al. (2005) to solve continuous

 Amiri, et al.

72

optimization problems, but its being used to solve HFSSP does not have
rich literatures.

In this paper, a particle swarm optimization evolutionary algorithm
(PSOEA) is proposed to SDST hybrid flow shop problems. The paper
has the following structure. Section 2 gives literature review of SDST
hybrid flow shop scheduling. Section 3 is problem description. Section 4
introduces the proposed novel particle swarm optimization (NPSO)
algorithm. Section 5 presents experimental design which compared the
results achieved by proposed NPSO algorithm with those achieved by
past genetic algorithms. Finally, section 6 consist conclusions and future
work.

2. Literature review

Gupta and Tunc (1994) presented four heuristic algorithms to
minimize makespan for a two stage hybrid flow shop problem with
separable setup and removal times. In which, sequencing of jobs can be
done using one of Sule's (1982) rule or Szwarc and Gupta's
algorithm(1987) while assigning jobs to multiple machines at the second
stage is done by attempting to minimize the job-waiting time at the
second stage.

Robust local search improvement techniques for flexible flow-line
scheduling were considered by Leon and Ramamoorthy (1997). They
considered neighborhoods of problem data, using ideas from Storer et al
(1992). Lee et al (1997) have applied genetic algorithms to the joint
problem of determining lot sizes and sequence to minimize make span in
flexible flow lines. Though this research included sequence-dependent
setup times, buffers between stages were limited and a permutation
schedule was required. Combining genetic algorithms with simulated
annealing was also considered.

Kochhar and Morris (1987) model flexible flow lines in a more
complete manner in that they allow for setups between jobs, finite
buffers which may cause blocking and starvation, machine down-time,
and current and subsequent state of the system. They extend a Wittrock
(1985, 1988) algorithm and evaluate several policies with a deterministic
simulation. Sawik (1992) has developed numerous results for the flexible
flow-line scheduling problem. His basic model includes factors such as
transportation time between stages and nonzero release times. However,
sequence-dependent setup times are not included. Later, Sawik (1994

 A novel particle swarm…

73

and 1995) extended his heuristic to the case of no buffers between
stages.

Srikar and Ghosh (1986) considered a permutation flow shop with
sequence-dependent setup times in their MILP model, which used many
fewer variables than the previous models. Srikar and Ghosh (1986) used
decision variables that focused on whether a job is scheduled any time
before another job. However, Stafford and Tseng (1990) discovered
several problems with Srikar and Ghosh (1986), corrected these and
extended this modeling concept to non-sequence dependent setup time
flow shops, no-intermediate-queue flow shops and sequence-dependent
setup time, no intermediate-queue flow shops. Rios-Mercado and Bard
(1998) also considered the sequence-dependent setup time flow shop
and developed several valid inequalities for models based on the
traveling salesman problem and the Srikar-Ghosh model.

Hung and Ching (2003) addressed a scheduling problem taken from a
label sticker manufacturing company which is a two-stage hybrid flow
shop with the characteristics of sequence-dependent setup time at stage
1, dedicated machines at stage 2, and two due dates. The objective was to
schedule one day’s mix of label stickers through the shop such that the
weighted maximal tardiness is minimized. They proposed a heuristic to
find the near-optimal schedule for the problem. The performance of the
heuristic was evaluated comparing its solution with both the optimal
solution for small-sized problems and the solution obtained by the
scheduling method used in the shop.

While many papers have been written in the area of scheduling hybrid
and flexible flow lines, many of them are restricted to special cases of
two stages, specific configurations of machines at stages, and to simplify
the problem, setups are seldom considered in the scheduling. For those
ones addressing setups, the setup times are fixed and included in
processing times. However, in most real world cases, the length of the
setup time depends on both jobs, which is separable from processing.
There seems to be published only three works addressing heuristics for
flexible flow lines with sequence dependent setup times. Kurz and Askin
(2003) examined scheduling rules for SDST flexible flow lines. They
explored three classes of heuristics. The first class of heuristics (cyclic
heuristics) is based on simplistic assignment of jobs to machines with
little or no regard for the setup times. The second class of heuristics is
based on the insertion heuristic for the traveling salesman problem
(TSP). The third class of heuristics is based on Johnson’s Rule. Note that

 Amiri, et al.

74

the second class caters to setup aspects of the problem while the third
derives from standard flow shops. They proposed eight heuristics (CH,
RCH, SPTCH, FTMIH, CTMIH, MMIH, 1,g Johnson's Rule, g/2,g/2
Johnson's Rule) and compared the performance of those on a set of test
problems. Moreover, Kurz and Askin (2004) formulated the SDST
flexible flow lines as an integer programming model. Because of the
difficulty in solving the IP model directly, they developed a Random
Keys Genetic Algorithm (RKGA). Problem data was generated to
evaluate the RKGA with other scheduling heuristics rules, which they
proposed aforetime. They created a lower bound to evaluate the
heuristics. Zandieh et al. (2006) proposed an immune algorithm, and
showed that this algorithm outperforms the random keys genetic
algorithm of Kurz and Askin (2004).

 3. Problem description

Let g be the number of workshops in series. Let n be the number of
jobs to be processed and tm be the number of machines in parallel at
each stage t. We assume that machines are initially setup for a nominal
job 0 at every stage. Job n+1 exists at every stage only to indicate the end
of the process, if needed. We have the following definitions.

t
ip = processing times for job i at stage t
t
ijs = sequence dependent setup time from job i to job j at stage t
t
ip~ = modified processing times for job i at stage t (t

ijj
t
i

t
i sminpp~)

tS = set of jobs that visit workshop stage t

The processing time of job 0 is set at 0. The setup time from job 0

indicates the time to move from the nominal set point state. We assume
that all jobs currently in the system must be completed at each stage
before the jobs under consideration may begin setup. The completion
times of job 0 at each stage are set to the earliest setup time may begin at
that stage. The setup time for job n+1 is set at 0; this job only exists to
indicate the end of the schedule. We also include the restriction that
every stage must be visited by at least as many jobs as there are machines
in that stage.

 A novel particle swarm…

75

4. The novel particle swarm optimization (NPSO) algorithm
 PSO is an evolutionary algorithm which is initialized with a
population (named swarm in PSO) of random solutions and searches for
optima by updating generations. Each individual or potential solution,
named particle, flies in the dimensional problem space with a velocity
which is dynamically adjusted according to the flying experiences of its
own and its colleagues. The PSO algorithm mimics the behavior of
flying birds and their means of information exchange to solve
optimization problems. It has been introduced as an optimization
technique in real-number spaces, but many optimization problems are
set in a discrete space. Typical examples include problems that require
ordering, such as HFSSP. In this section we introduce a novel PSO
algorithm for HFSSP to minimize makespan.

4.1. Original particle swarm optimization algorithm
 Suppose that the searching space is D dimensional and m particles
form the colony. The ith particle represents a dimensional vector Xi (i =
1, 2, . . . , m). It means that the ith particle locates at Xi = (xi1, xi2, . . . ,
xiD) (i = 1, 2, . . . , m) in the searching space. The position of each particle
is a potential result. We could calculate the particle’s fitness by putting its
position into a designated objective function. The ith particle’s ‘‘flying’’
velocity is also a D dimensional vector, denoted as Vi = (vi1, vi2, . . . , viD).
Denote the best position of the ith particle as Pi = (pi1, pi2, . . . , piD), and
the best position of the colony as Pg = (pg1, pg2, . . . , pgD) respectively. The
original PSO algorithm could be performed by the following equations:

vid (k+1)= vid (k) + c1 r1 (pid (k) - xid (k))+ c2 r2 (pgd (k) - xid (k))
xid (k+1) = xid (k) + vid (k+1)

 where k represents the iterative number, c1, c2 are learning factors,
usually c1 = c2 = 2. r1, r2 are random numbers between (0, 1). The
termination criterion for the iterations is determined according to
whether the max generation or a designated value of the fitness of Pg is
reached (Kennedy and Eberhart 1995).
4.2. The NPSO algorithm for HFSSP to minimize makespan
 HFSSP is set in a discrete space, so the most important issue in
applying PSO successfully to HFSSP is to develop an effective ‘problem
mapping’ and ‘solution generation’ mechanism. If these two mechanisms
are devised successfully, its possible to find good solutions for a given

(4.1)
(4.2)

 Amiri, et al.

76

optimization problem in acceptable time. According to the character of
HFSSP, we will design the particle, particles’ velocities and iterative
formula of NPSO algorithm. The crossover and mutation operators will
be used in the GAs and NPSO algorithm for HFSSP to minimize
makespan.

4.2.1. Iterative model of the NPSO algorithm for HFSSP to minimize makespan
 If the HFSSP is n-jobs and m-machines, suppose that the searching
space is n-dimensional and s particles form the colony. The ith particle
represents an n-dimensional vector Xi(i = 1, 2, . . . , s). It means that the
ith particle locates at Xi which is one sequence in the searching space.
The position of each particle is a potential result. We could calculate the
particle’s fitness by putting its position into a designated objective
function. When the fitness is lower, the corresponding Xi is ‘‘better’’.
The ith particle’s ‘‘flying’’ velocity is also an n-dimensional vector,
denoted as Vi. Denote the best position of the ith particle as Pi, and the
best position of the colony as Pg respectively. The NPSO algorithm
could be performed by the following equations:

Vi (k+1) = Pi (k) Pg (k) (4.3)

 (vr1, vr2, .., vrN) (k+1) =M (vr1, vr2, .., vrN) (4.4)

Xi (k+1) = Xi (k) Vi (k+1) (4.5)

(xr1 , xr2 , … , xrN) (k+1) = M (xr1 , xr2 , … , xrN) (4.6)

 where k represents the iterative generation number, and r (1 r
psize) is random integer which denotes mutating particle, and is
crossover denotation which denotes two particles making crossover
operator and its detailed operator was shown in Fig. 3,4. M(vr), M(xr)
mean mutating particle vr and xr whose detailed operator was expressed
in Fig. 5,6, N [psize/4, psize/2] denotes mutating particle numbers
in every generation. The termination criterion for the iterations is
determined according to whether the max generation or a designated
value of the fitness of Pg is reached.

4.2.2. Step of the NPSO algorithm for HFSSP to minimize makespan
Step 1. Let initialization iterative generation be k = 0, initialization

population size psize, The termination iterative generation
Maxgen. Give birth to psize initializing particles as following:

 A novel particle swarm…

77

Randomly generate an initial population of (psize - 3) particles,
generate a particle with SPTCH, generate a particle with FTMIH,
generate a particle with g/2, g/2 -Johnson’s rule. Calculate each
particle’s fitness value of initialization population, and let first
generation Pi be initialization particles, and choose the particle
with the best fitness value of all the particles as the Pg (gBest).

Step 2. Every Pi (k) and Pg (k) crossover can get two child particles,
compare them and let smaller fitness value particle be final child
of predecessors. Using (4.3) obtains ‘‘flying’’ velocity Vi particles,
then utilizing (4.4) randomly mutating N particles of them. And
using (4.5) and (4.6) with the same method gives birth to the next
generation particles Xi. If the fitness value is better than the best
fitness value Pi (pBest) in history, let current value as the new Pi
(pBest). Choose the particle with the best fitness value of all the
particles as the Pg (gBest). If k= Maxgen, go to Step 3, or else let k
= k + 1; go to Step 2.

Step 3. Put out the Pg.
 We can learn that there are two key steps when applying NPSO
algorithm to HFSSP: the representation of the solution and the fitness
function. The searching is a repeat process, and the stop criterion is that
the maximum iteration number is reached. In NPSO algorithm, each
particle of the swarm shares mutual information globally and benefits
from the discoveries and previous experiences of all other colleagues
during the search process. NPSO algorithm requires only primitive and
simple mathematical operators, and is computationally inexpensive in
terms of both memory requirements and time.

4.2.3. Recognition of particle
 Particle recognition here refers to the creation of a representation
scheme to denote solutions as a number sequence for NPSO operators
to operate on. In this case, a candidate solution is represented by a
random key representation. The advantage of this representation is its
ease of implementation. This representation was proposed by Norman
and Bean (1999) to avoid infeasible solution. They used the following
solution representation for an identical multiple machine problem. Each
job is assigned a real number whose integer part is the machine number
to which the job is assigned and whose fractional part is used to sort the
jobs assigned to each machine. For an example consider a problem with
five jobs (n = 5), two processes (g = 2), two machines at stage one (m1 =

 Amiri, et al.

78

2), and three machines at stage two (m2 = 3). For this problem we must
generate five random numbers from uniform distribution [1,1 + tm] in
each stage of process (Fig. 2).
 As shown in Fig. 2, each of the blocks denotes a process. For
example, the first set of numbers of block 1 implies that in process 1, job
1, job 3, and job 4 are assigned to machine 1; also job 2 and job 5 are
assigned to machine 2. The order of jobs to be scheduled on machine 1
is job 1 followed by job 3 and then job 4, and the order of jobs to be
scheduled on machine 2 is job 5 followed by
job 2.

Fig. 2. Representation of candidate solution in NPSO

4.2.4. Generation of initial particle
 Usually, initial particles are randomly generated in the feasible space,
but initial particles can influence the convergence time. Because of this,
we incorporated some known heuristics into initialization to generate
three well-adapted initial particles. Remained initial particles are
randomly generated.
 Kurz and Askin (2003, 2004) proposed three heuristics based on
greedy methods, flow line methods and the Insertion Heuristic for the
TSP. These heuristics were named SPTCH, FTMIH, and g/2, g/2
Johnson’s rule.
 In the SPT Cyclic Heuristic (SPTCH), the jobs are ordered at stage 1
in increasing order of the modified processing times 1

ip~ . At subsequent
stages, jobs are assigned in earliest ready time order. Jobs are assigned to
the machine in every stage that allows it to complete at the earliest time.
The SPTCH has the following steps for each stage t:
1. Create the modified processing times 1

ip~ .
2. Order the jobs in non-decreasing order (SPT) of 1

ip~ .
3. At each stage t = 1, 2, . . . , g, assign job 0 to each machine in that
stage.
4. For stage 1:
 (a) Let bestmc = 1.
 (b) For [i] = 1 to n, i S 1:
For mc = 1 to m1:

 A novel particle swarm…

79

Place job [i] last on machine mc.
Find the completion time of job [i]. If this time is less on mc than on
bestmc,
let bestmc = mc.
Assign job [i] to the last position on machine bestmc.
5. for each stage t = 2,. . . ,g:
 (a) Update the ready times in stage t to be the completion times in stage
t - 1.
 (b) Arrange jobs in increasing order of ready times.
 (c) Let bestmc = 1.
 (d) For [i] = 1 to n, i S t:
For mc = 1 to tm :
Place job [i] last on machine mc.
Find the completion time of job [i]. If this time is less on mc than on
bestmc,
let bestmc = mc.
Assign job [i] to the last position on machine bestmc.

 The FTMIH is a multiple insertion heuristic to minimize the sum of
flow times (completion-ready times) at each stage. It is a multiple
machine, multiple stage adaptation of the Insertion Heuristic for the
TSP. Setup times are accounted for by integrating their values into the
processing times using t

ip~ . The FTMIH can then be performed using
these modified processing times at each stage. Once jobs have been
assigned to machines, the true processing and setup times can be used.
The FTMIH has the following steps for each stage t:
1. Create the modified processing times.
2. Order the jobs in non-increasing order (LPT) of t

ip~ .
3. For [i] = 1 to n, i S t:
(a) Insert job [i] into every position on each machine.
(b) Calculate the true sum of flow times using the actual setup times.
(c) Place job i in the position on the machine with the lowest resultant
sum of flow times.
4. Update the ready times in stage t + 1 to be the completion times in
stage t.
 Johnson’s rule (1954) finds the optimal makespan solution for
F/2//Cmax. The g/2, g/2 Johnson’s rule is an extension of Johnson’s
rule to take into account the setup times for the flow shop with more

 Amiri, et al.

80

than two stages. The aggregated first half of the stages and the
aggregated last half of the stages are considered to create the order for
assignment in stage 1. The value 1

ip~ is the sum of modified processing

times for stages 1 to

2
g and g

ip~ is the sum over stages 1
2
g

 to g.

1. Create the modified processing times 1
ip~ and g

ip~ .

2. Let g
j

1
j p~p~jU and g

j
1
j p~p~jV .

3. Arrange jobs in U in non-decreasing order of 1
ip~ and arrange jobs in

V in non-increasing order of g
ip~ .

 Append the ordered list V to the end of U.
4. At each stage t = 1, 2 ,. . . , g, assign job 0 to each machine in that
stage.
5. For [i] = 1 to n, i S 1:
(a) For mc = 1 to m1:
Place job [i] last on machine mc.
If this placement results in the lowest completion time for job [i], let m =
mc.
(b) Place job [i] last on machine m.
6. for each stage t = 2,. . . ,g:
(a) Update the ready times in stage t to be the completion times in stage t
- 1.
(b) Arrange jobs in increasing order of ready times.
(c) For [i] = 1 to n, i S t:
(1) For mc = 1 to tm :
Place job [i] last on machine mc.
If this placement results in the lowest completion time for job [i], let m =
mc.
(2) Place job [i] last on machine m.

4.2.5. Crossover and mutation operators [75]
Crossover operators:
 One-segment crossover (C1): A pair of crossing points is randomly selected
along the length of the first predecessor chromosome. The jobs inside
crossing points are copied into the offspring. The remaining places of
the offspring are filled up by taking in order each legitimate gene from
the second predecessor. This operator is illustrated in Fig. 3 with
crossing points at 4 and 10 of the string.

 A novel particle swarm…

81

Fig. 3. Illustration of the one-segment crossover operator (C1).

 Order Crossover (C2): The well-known Traveling Salesman Problems
(TSPs) are frequently used to model and solve manufacturing scheduling
(Khoo, Lee, and Yin 2000). Basically, a TSP is a class of problem where a
salesman visits each of his destinations once and only once. Michalewicz
(1994) showed that crossover operators such as the Partially Mapped
Crossover (PMX), the Order Crossover (OX) and the Cycle Crossover
(CX), can be used to handle TSPs. Among them, the OX method
appears to be the most promising and has been adopted in this work.
Essentially, the OX method generates a clone (or offspring) by retaining
a part of a sequence from the other parent. In this work, the OX method
is needed to be modified to accommodate the aforementioned
representation scheme that is used.
 The modified OX method is best explained using two processes, five
jobs, two machines in process 1, and three machines in process 2
example. Consider two parents, P1 and P2, with a randomly generated cut
point for each process. By exchanging the whole number of the
sequences before the cut point, and the integer part of the remained
sequences, two clones (or offspring) can be generated as Fig. 4, where
.xx represents the fractional part that is currently unknown. Starting
from the cut point of one parent, the corresponding fractional parts
from the other parent are copied one at a time.
 The crossover operator has now generated two clones (or offsprings)
from the two parents. It can be seen that the clones (or offsprings) share
a lot of properties with the parents. Using the modified OX method as
the crossover operator, only the job order is allowed to vary. Machine
assignment, on the other hand, can not be changed during a crossover
operation

Crossing point

 Amiri, et al.

82

Exchanging the whole number of the sequences before the cut point, and the
integer part of the remained sequences

Copying the corresponding fractional parts from one parent to another

Fig.4.OX crossover operator example.

Mutation operators:
 One-segment move insert mutation (M1): A moving segment and one
inserting point are randomly selected along the length of the predecessor
chromosome. The jobs inside segment are moved and inserted in the
inserting point. This operator is illustrated in Fig. 5 with moving segment
at 2–5 and inserting point at 11 of the string.

 Fig. 5. Illustration of the shift mutation operator

 Double point mutation operator (M2): This mutation operator is used to
alter the machine assignment for a job in a particular process. Basically,
mutation begins when two random mutation points in the sequences are
selected. Then, the integer part of real number of the genes between two
mutation points is/are changed (Fig. 6).

 A novel particle swarm…

83

P2 2.12 1.3 2.91 1.04 2.76

Mutation Point
ProC1 1.41 x.13 x.23 x.65 2.01
ProC2 2.12 x.3 x.91 x.04 2.76
FC1 1.41 1.13 2.23 1.65 2.01

 FC2 2.12 2.3 1.91 1.04 2.76
Fig. 6. Illustration of the Double Point Mutation Operator

5. Experimental design
5.1. Data generation and settings
 An experiment was conducted to test the performance of the NPSO
algorithm. Following Kurz and Askin (2003,2004), data required for a
problem consists of the number of jobs, number of stages, number of
machines in each stage, range of processing times, and the range of
sequence dependent setup times. The ready times for stage 1 are set to 0
for all jobs. The ready times at stage t+1 are the completion times at
stage t, so there is no need this data to be generated. Processing times are
distributed uniformly over two ranges with a mean of 60: [50–70] and
[20–100]. Flexible flow lines are considered by allowing some jobs to
skip some stages. Following Leon and Ramamoorthy (1997), the
probability of skipping a stage is set at 0, 0.05, or 0.40. The setup times
are uniformly distributed from 12 to 24 which are 20–40% of the mean
of the processing time. The setup time matrices are asymmetric and
satisfy the triangle inequality. The setup time characteristics follow Rios-
Mercado and Bard (1998).

P1 1.41 2.13 1.23 1.65 2.01

 Amiri, et al.

84

Table 1. Factor levels

 The problem data can be characterized by six factors, and each
of these factors can have at least two levels. These levels are shown in
Table 1.
 In general, all combinations of these levels will be tested. However,
some further restrictions are introduced. The variable machine
distribution factor requires that at least one stage have a different
number of machines than the others. Also, the largest number of
machines in a stage must be less than the number of jobs. Thus, the
combination with 10 machines at each stage and six jobs will be skipped
and the combination of 1–10 machines per stage with six jobs will be
changed to 1–6 machines per stage with six jobs. There are 252 test
scenarios and five data sets are generated for each one.
5.2. NPSO algorithm parameters tuning
 It is known that the different levels of the parameters clearly affect
the quality of the solutions obtained by a NPSO algorithm. A number of
different NPSO algorithms can be obtained with the different
combinations of the parameters. We have applied parameters tuning only
for the crossover (C1, C2), mutation (M1, M2), Maxgen value, psize value
and N (mutating particle number in every generation), considering in
Table 2.

 A novel particle swarm…

85

Table2. NPSO parameter levels

24 different NPSOs are obtained by these levels. In this paper, we have
run the NPSO algorithm five times for five medium problems and five
large ones. The metaheuristics were implemented in MATLAB 7 and run
on a PC with a Pentium IV 3.00 GHz processor with 1 GB of RAM.

0

1

2

3

4

5

R
PD

 M
ak

es
pa

n

Mutation Crossover (Maxgen,psize,N)

Fig. 7. Average of makespan

The results are analyzed by the means of multi-factor Analysis of

Variance (ANOVA) technique. It is necessary to notice that for using
ANOVA, three main hypotheses, normality, homogeneity of variance
and independence of residuals, must be check. We did that and found no
bias for questioning the validity of the experiment.

 Fig. 7 is the Average of makespan in parameter tuning process. It is
obtained from Fig. 7 that using mutation operator M1, crossover type C1,
value 200 as Maxgen, value 50 as psize and value 12 as N, is the best set of
parameters.

 Amiri, et al.

86

5.3. Experimental results
 In this section we are going to compare the proposed NPSO
algorithm with the RKGA which proposed by Kurz and Askin (2003,
2004) for the SDST flexible flow lines. The heuristics were implemented
in MATLAB 7 and run on a PC with a Pentium IV 3.00 GHz processor
with 1 GB of RAM.

5.3.1. Analysis of makespan and computational time
 The convergence of NPSO algorithm for one middle size problem
and one big problem is shown. Fig. 8 shows the convergence of NPSO
algorithm of 30/4/1,1,1,1/HF/Cmax and Fig. 9 shows the convergence of
NPSO algorithm of 100/8/10,9,7,6,5,1,1,1/ HF/Cmax .

2250

2300

2350

2400

2450

2500

2550

1 50 99 148 197

Iteration

M
ak

es
pa

n

Best Makespan Av erage Makespan

Fig. 8. Convergence of NPSO for instance (30/4/1,1,1,1/HF/Cmax)

7200

7250

7300

7350

7400

7450

7500

1 50 99 148 197

Iteration

M
ak

es
pa

n

Best Makespan Av erage Makespan

Fig. 9. Convergence of NPSO for instance (100/8/10,9,7,6,5,1,1,1/ HF/Cmax)

 A novel particle swarm…

87

 To evaluate the performance of each heuristic, we applied the lower
bounds proposed by Kurz and Askin (2001, 2004). They proposed two
lower bounds LB(1) and LB(2). For any feasible solution of SDST hybrid
flow shop, they presented LB(1) and LB(2) in the following form:

iSt n0,..,

t
i1

1 p t
jijni

sLB minmax
,....,

)(

t
tt Si 1 n0,..,iSin0,..,it

1

1 n0,..,iSi1

2 pp
m
1p

g

t
jij

t
jij

t
t

jijgt
sssLB

 minminminminminmax
,....,

)(

1

1

1

1 n0,..,iSi

1

1 n0,..,i
Si

][t minpminminpmin
m
1

t
t

tm

k

t

jij

t

jijk ss

 The notation ‘‘]k[min ’’ is used to indicate the (k+1)st from the lowest
value and minmin]0[. For example, given a list of values {2, 5, 7, 8,
9}, 5min]1[.
 The first above mentioned equation is job-based bound and the
second is machine-based bound. We defined ‘‘RPD’’ as: (makespan-
lower bound)/lower bound. To calculate the RPD value, the best lower
bound was used for each problem. The running times were found using
the tic-toc function.
 Every heuristic considered here was run on the same 1260 data sets.
NPSO and RKGA were run 5 times and the minimum and average RPD
over the 5 runs was found for each of the 1260 data sets.
 NPSO achieves the lowest values for the RPD statistics and finds the
minimum RPD schedules more frequently than the RKGA heuristic.
The results within the 5 runs of NPSO and RKGA are described in
Table 3.

 Amiri, et al.

88

Table 3. Average RPD Results grouped by n and g for NPSO versus RKGA

 The results indicate that there is a clearly significant difference
between two algorithms. As it can be seen, NPSO provides better results
in medium and large problems.
 Fig. 10 shows the average RPD of both NPSO and RKGA
algorithms.

0

5

10

15

20

25

6×2 6×4 6×8 30×2 30×4 30×8 100×2 100×4 100×8
Problem Instance

R
PD

 a
ve

ra
ge

 o
f C

m
ax

PSO
RKGA

Fig. 10. Average RPD Results grouped by n and g for NPSO versus RKGA

 Another aspect of comparison is to subtract the computational time
of RKGA from NPSO for all of 252 problem instances, then calculate
the number of decrease, similar and increase in each of the problem
sizes, and divide it to total number of problems in the related size. The
results are shown in Table 4, Fig. 11 and Fig. 12. This process can be
applied for makespan value as shown in Table 5, Fig. 13 and Fig. 14.

 A novel particle swarm…

89

Table 4. Computational time values of NPSO versus RKGA

 According to Table 4, in 50% of large problems, 60% of medium
problems and 50% of small problems, the computational time of NPSO
is less than the computational time of RKGAGA

-1200

-1000

-800

-600

-400

-200

0

200

400

600

1 12 23 34 45 56 67 78 89 100 111 122 133 144 155 166 177 188 199 210 221 232 243

Scenario

C
op

m
ut
at
io
na

l T
im

e
(
N
PS

O
 -

R
KG

A)

52%

48%

Fig. 11. Computational time differences (NPSO- RKGA) for all problems

46%

59%

47%

60%

84%

37%

50%
57%

43%

54%

37%

53%

40%

16%

63%

50%
43%

57%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

6*2 6*4 6*8 30*2 30*4 30*8 100*2 100*4 100*8

Problem Size

Pe
rc

en
ta

ge

Decrease
Increase

 Fig. 12. Increase/Decrease of NPSO computational time versus RKGA

 Amiri, et al.

90

Table 5. Makespan values of NPSO versus RKGA

 According to Table 6, in 46% of large problems, 61.3% of medium
problems and 56.7% of small problems, the makespan of NPSO is less
than the makespan of RKGA.

-200

-150

-100

-50

0

50

100

150

200

1 19 37 55 73 91 109 127 145 163 181 199 217 235

Scenario

M
ak

es
pa

n
(N

PS
O
 -

R
KG

A
)

54%

46%

Fig. 13. Makespan differences (NPSO-RKGA) for all Problems

75%

29%

66% 67%

50%

67%

33%

57%

47%

17% 17% 17%

33%

50%

33%

67%

43%

53%

0%

10%

20%

30%

40%

50%

60%

70%

80%

6*2 6*4 6*8 30*2 30*4 30*8 100*2 100*4 100*8

Problem Size

P
er

ce
nt

ag
e

Decrease
Increase

Fig. 14. Increase/Decrease of RKGA Cmax versus NPSO Cmax

 A novel particle swarm…

91

5.3.2. Analysis of controlled factors in computational time
In order to see the effects of number of stages and number of jobs on

computational time of algorithms, another ANOVA is applied. Means
plot for the interaction between the factors type of algorithm and each
combination of stage and job are shown in Fig. 15.

0

50

100

150

6×2 6×4 6×8 30×2 30×4 30×8 100×4 100×8 100×2

Problem Size

C
om

pu
ta

tio
na

l T
im

e

PSO

RKGA

Fig. 15. Means plot for the interaction between the factors type of algorithm and each

combination of stage and job

 Also an ANOVA test is applied to see the effect of number of jobs
on computational time of algorithms. The results are shown in Fig.16.
The problem instances are classified into three categories: small
problems (with 6 jobs), medium problems (with 30 jobs) and large
problems (with 100 jobs). In each category, the average value of
computational time is calculated.
 According to Fig. 16, it is clear that by increase in number of jobs,
computational time of RKGA increases by greater gradient in contrast
with NPSO algorithm, i.e. in large problems, NPSO has a better
performance than RKGA for purposes of computational time.

 Amiri, et al.

92

0

20

40

60

80

100

6 30 100

Number of Jobs

 C
om

pu
ta

tio
na

l T
im

e

PSO

RKGA

Fig. 16.Computational time of NPSO versus RKGA

6. Conclusions and future work
 NPSO approach for the scheduling of a hybrid flow shop has been
successfully adjusted. An experiment was carried out to illustrate the
effectiveness of NPSO algorithm in scheduling. The makespan values of
NPSO in many test problems, especially in medium and large problems,
are less than the makespan values of GA.
 There are potentially unlimited opportunities for research in
scheduling to minimize makespan in hybrid flow shops with sequence-
dependent setup times. In this paper, we have addressed only a few
areas.
 In many researches, the lower bounds are typically used to evaluate
the performance of heuristics for solving combinatorial optimization
problems. In the absence of tight analytical lower bounds, optimal
objective function values may be estimated statistically. Extreme value
theory can be used to construct confidence-interval estimates of the
minimum makespan.
 Also by creating a general permutation schedule definition, we may
be able to find a class of schedules that contains the optimal makespan
schedule for some special cases, such as two stages with one machine at
the first stage and two machines at the second, with sequence-dependent
setup times at both.

 A novel particle swarm…

93

References
Arthanary T.S., Ramaswamy K.G. (1971). An extension of two machine

sequencing problems, Operations Research, 8, 10–22.
Clerc M, Kennedy J. (2002). The particle swarm: explosion stability and

convergence in a multi-dimensional complex space. IEEE Trans Evolutionary
Compute, 6,1,58–73

Eberhart RC, Shi Y. (1998). Comparison between genetic algorithms and
particle swarm optimization. Evolutionary programming VII: proceedings of the
seventh annual conference on evolutionary programming. Berlin San Diego, CA:
Springer-verlag, 611–6.

Elmaghraby S.E., Karnoub R.E., (1995). Production control in flexible
flowshops: an example from textile manufacturing, OR Report No. 305 OR
and IE Department, North Carolina State University, USA.

Fan HY. A. (2002). modification to particle swarm optimization algorithm. Eng
Comput, 19(8):970–89.

Gupta J.N.D., Tunc E.A. (1994). Scheduling a two-stage hybrid flowshop with
separable setup and removal times, European Journal of Operational. Research,
77, 415–428.

Hung T.S.L. , Ching J.L. (2003). A case study in a two-stage hybrid flow shop
with setup time and dedicated machines, International Journal of Production
Economics, 86, 133–143.

Johnson S.M. (1954). Optimal two and three-stage production schedules with
setup times included, Naval Research Logistics Quarterly 1, 61–67.

Kennedy J, Eberhart R. (1995). Particle swarm optimization. In: IEEE Int’l conf
on neural networks, Perth, Australia, p. 1942–8.

Kennedy J, Mendes R. (2002). Population structure and particle swarm
performance. Proceedings of the 2002 congress on evolutionary computation
CEC2002. IEEE Press, 1671–6.

Khoo L.P. , Lee S.G. , Yin X.F. , (2000). A prototype genetic algorithm-
enhanced multi-objective scheduler for manufacturing systems, International
Journal of Advanced Manufacturing Technology, 16, 131–138.

Kochhar S., Morris R.J.T. (1987. Heuristic methods for flexible flow line
scheduling, Journal of Manufacturing Systems 6 ,4, 299– 314.

Kurz M.E. , Askin R.G. (2001). Note on ‘‘an adaptable problem-space-based
search method for flexible flow line scheduling’’, IIE Transactions, 33, 8, 691–
693.

Kurz M.E. , Askin R.G. (2003). Comparing scheduling rules for flexible flow
lines, International Journal of Production Economics, 85, 371–388.

Kurz M.E. , Askin R.G. , (2004). Scheduling flexible flow lines with sequence-
dependent setup times, European Journal of Operational Research, 159, 1,66–82.

 Amiri, et al.

94

Lee I. , Sikora R. , Shaw M.J. (1997). A genetic algorithm-based approach to
flexible flow-line scheduling with variable lot sizes, IEEE Transactions on
Systems, Manufacturing, and Cybernetics, Part B, 27, 1, 36–54.

Leon V.J. & Ramamoorthy B. (1997). An adaptable problem-space-based
search method for flexible flow line scheduling, IIE Transactions, 29, 115–
125.

Luh P.B. , Gou L., Zhang Y. , Nagahora T. , Tsuji M. , Yoneda K., Hasegawa
T. , Kyoya Y. , Kano T. (1998). Job shop scheduling with group dependent
setups, finite buffers, and long time horizon, Annual of Operation Research, 76,
233–259.

Michalewicz Z. (1994). Genetic Algorithms + Data Structure = Evolution
Programs, New York: Springer.

Norman B.A., Bean J.C. (1999). A genetic algorithm methodology for complex
scheduling problems, Naval Research Logistics, 46, 199–211.

Pinedo M., (1995). Scheduling Theory, Algorithms, and Systems, Englewood Cliffs,
NJ: Prentice-Hall.

Rios-Mercado R.Z., Bard J.F. (1998). Computational experience with a branch-
and-cut algorithm for flowshop scheduling with setups, Computers and
Operations Research, 25,5, 351–366.

Sawik T.J., A (1992). Scheduling algorithm for flexible flow lines with limited
intermediate buffers, in: Proceedings of the Eighth International Conference on
CAD/CAM, Robotics and Factories of the Future, Metz, France, 2, 1711–1722.

Sawik T.J., (1994). New algorithms for scheduling flexible flow lines, in:
Proceedings of the 1994 Japan–USA Symposium on Flexible Automation,
Kobe, Japan, vol. 3, pp. 1091–1094.

Sawik T.J. (1995). Scheduling flexible flow lines with no in-process buffers,
International Journal of Production Research, 33,5, 1357– 1367.

Shi XH,Liang YC,Lee HP,Lu C, Wang LM. (2005). An improved GA and a
novel PSO-GA-based hybrid algorithm. Inform Process Lett; 93,255–61.

Srikar B.N. , Ghosh S. (1986). A MILP model for the N-job, M-stage flowshop
with sequence dependent set-up times, International Journal of Production
Research, 24,6, 1459–1474.

Stafford E.F., Tseng F.T. (1990). On the Srikar–Ghosh MILP model for the N
*M SDST flowshop problem, International Journal of Production Research, 28,10,
1817–1830.

Storer R.H. , Wu S.D., Vaccari R. (1992). New search spaces for sequencing
problems with application to job shop scheduling, Management Science, 38, 10,
1495–1509.

Sule D.R., (1982). Sequencing n jobs on two machines with setup, processing
and removal times separated, Naval Research Logistics Quarterly, 29, 517–519.

Szwarc W., Gupta J.N.D. (1987). A flow-shop with sequence dependent
additive setup times, Naval Research Logistics, 34, 619–627.

 A novel particle swarm…

95

Trelea IC. (2003). The particle swarm optimization algorithm: convergence
analysis and parameter selection. Inform Process Lett.85,6,317–25.

Wittrock R. , (1985). Scheduling algorithms for flexible flow lines, IBM Journal of
Research and Development, 29, 24, 401–412.

Wittrock R., (1988). An adaptable scheduling algorithm for flexible flow lines,
Operations Research, 36, 3, 445–453.

Zandieh M., Fatemi S.M.T., (2003). A framework and a classification scheme
for modelling production systems, in: Proceedings of the Second National
Industrial Engineering Conference, Yazd University, Yazd, Iran, 308–315.

Zandieh M, Fatemi S.M.T. (2006). An immune algorithm approach to hybrid
flow shops scheduling with sequence-dependent setup timesApplied.
Mathematics and Computation, 180, 111–127.

