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Abstract 
     Much of the research on operations scheduling problems has either 
ignored setup times or assumed that setup times on each machine are 
independent of the job sequence. This paper deals with the hybrid flow 
shop scheduling problems in which there are sequence dependent setup 
times, commonly known as the SDST hybrid flow shops. This type of 
production system is found in industries such as chemical, textile, 
metallurgical, printed circuit board, and automobile manufacture. With 
the increase in manufacturing complexity, conventional scheduling 
techniques for generating a reasonable manufacturing schedule have 
become ineffective. A particle swarm optimization algorithm can be used 
to tackle complex problems and produce a reasonable manufacturing 
schedule within an acceptable time. This paper describes a novel particle 
swarm optimization algorithm approach to the scheduling of a SDST 
hybrid flow shop. An overview of the hybrid flow shops and the basic 
notions of a PSO are first presented. Subsequently, the details of a 
NPSO approach are described and implemented. The results obtained 
are compared with those computed by Random Key Genetic Algorithm 
presented previously.  
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1. Introduction 
     Several flow patterns can be encountered, depending on the number 
of stages (v) required to process a job and on the number of available 
machines per stage (M(v)). The diagram in Fig. 1 illustrates schematically 
the relationships between the different machine environments (Zandieh 
and Fatemi, 2003). 
 

 

 
Fig. 1. A classification for scheduling problems based on resource environments. 

 
A hybrid flow shop model, commonly known as flexible flow line, 

allows us to represent most of the production systems. The process 
industry such as chemical, pharmaceutical, oil, food, tobacco, textile, 
paper, and metallurgical industry can be modeled as a hybrid flow shop. 
In the literature, the notion of hybrid flow shop has emerged in the 70s 
(Arthanary and Ramaswamy, 1971). A hybrid flow shop consists of a 
series of production stages, each of which has several facilities in parallel 
(Elmaghraby and Karnoub, 1995). Some stages may have only one 
facility, but for the plant to be qualified as a hybrid flow shop, at least 
one stage must have several facilities. The flow of products in the plant is 
unidirectional. Each product is processed at only one facility in each 
stage and at one or more stages before it exits the plant. Each stage may 
have multiple parallel identical machines. These machines can be 
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identical, uniform, or unrelated. Each job is processed by at most one 
machine at each stage. 

Pinedo (1995) cited machine setup time is a significant factor for 
production scheduling in all flow patterns, and it may easily consume 
more than 20% of available machine capacity if not well handled. Also 
the completion time of production and machine setups are influenced by 
production mix and production sequence. On the one hand, processing 
in large batches may increase machine utilization and reduce the total 
setup time. On the other hand, large batch processing increases the flow 
time. Scheduling problems with sequence-dependent setup times are 
among the most difficult classes of scheduling problems. A single-
machine sequence-dependent setup scheduling problem is equivalent to 
a traveling-salesman problem and is NP-hard (Pinedo 1995). Even for a 
small system, the complexity of this problem is beyond the reach of 
existing theories (Luh et al,1998).  

Sequence-dependent setup scheduling of a hybrid flow shop system is 
even more challenging. Although there has been some progress reported, 
but the understanding of sequence-dependent setups, however, is still 
believed to be far from being complete (Luh et al,1998). 

In recent years, with the emergence of computational intelligence, 
intelligence-oriented algorithms such as GA, SA, TS, and etc. have been 
employed to scheduling problems.  

   Particle swarm optimization (PSO) is an evolutionary computation 
technique developed by Eberhart and Kennedy in (1995), inspired by 
social behavior of bird flocking or fish schooling. Similar to genetic 
algorithm (GA), PSO is a population based optimization tool. Original 
PSO is distinctly different from other evolutionary-type methods in a 
way that it does not use the filtering operation (such as crossover and 
mutation) and the members of the entire population are maintained 
through the search procedure so that information is socially shared 
among individuals to direct the search towards the best position in the 
search space. Clerc and Kennedy (2002) researched on the explosion 
stability and convergence in a multi-dimensional complex space of the 
particle swarm and Trelea (2003) studied convergence analysis and 
parameter selection of the particle swarm optimization algorithm. 
Eberhart and Shi (1998) compared genetic algorithms with particle 
swarm optimization. In recent years there have been a lot of reported 
works focused on the modification PSO such as Fan (2002), Kennedy 
and Mendes (2002), and Shi et al. (2005) to solve continuous 
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optimization problems, but its being used to solve HFSSP does not have 
rich literatures.  

In this paper, a particle swarm optimization evolutionary algorithm 
(PSOEA) is proposed to SDST hybrid flow shop problems. The paper 
has the following structure. Section 2 gives literature review of SDST 
hybrid flow shop scheduling. Section 3 is problem description. Section 4 
introduces the proposed novel particle swarm optimization (NPSO) 
algorithm. Section 5 presents experimental design which compared the 
results achieved by proposed NPSO algorithm with those achieved by 
past genetic algorithms. Finally, section 6 consist conclusions and future 
work. 
 
2. Literature review 

Gupta and Tunc (1994) presented four heuristic algorithms to 
minimize makespan for a two stage hybrid flow shop problem with 
separable setup and removal times. In which, sequencing of jobs can be 
done using one of Sule's (1982) rule or Szwarc and Gupta's 
algorithm(1987)  while assigning jobs to multiple machines at the second 
stage is done by attempting to minimize the job-waiting time at the 
second stage. 

Robust local search improvement techniques for flexible flow-line 
scheduling were considered by Leon and Ramamoorthy (1997). They 
considered neighborhoods of problem data, using ideas from Storer et al 
(1992). Lee et al (1997) have applied genetic algorithms to the joint 
problem of determining lot sizes and sequence to minimize make span in 
flexible flow lines. Though this research included sequence-dependent 
setup times, buffers between stages were limited and a permutation 
schedule was required. Combining genetic algorithms with simulated 
annealing was also considered. 

Kochhar and Morris (1987) model flexible flow lines in a more 
complete manner in that they allow for setups between jobs, finite 
buffers which may cause blocking and starvation, machine down-time, 
and current and subsequent state of the system. They extend a Wittrock 
(1985, 1988) algorithm and evaluate several policies with a deterministic 
simulation. Sawik (1992) has developed numerous results for the flexible 
flow-line scheduling problem. His basic model includes factors such as 
transportation time between stages and nonzero release times. However, 
sequence-dependent setup times are not included. Later, Sawik (1994 
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and 1995) extended his heuristic to the case of no buffers between 
stages. 

Srikar and Ghosh (1986) considered a permutation flow shop with 
sequence-dependent setup times in their MILP model, which used many 
fewer variables than the previous models. Srikar and Ghosh (1986) used 
decision variables that focused on whether a job is scheduled any time 
before another job. However, Stafford and Tseng (1990) discovered 
several problems with Srikar and Ghosh (1986), corrected these and 
extended this modeling concept to non-sequence dependent setup time 
flow shops, no-intermediate-queue flow shops and sequence-dependent 
setup time, no intermediate-queue flow shops. Rios-Mercado and Bard 
(1998) also considered the sequence-dependent setup time flow shop 
and developed several valid inequalities for models based on the 
traveling salesman problem and the Srikar-Ghosh model. 

Hung and Ching (2003) addressed a scheduling problem taken from a 
label sticker manufacturing company which is a two-stage hybrid flow 
shop with the characteristics of sequence-dependent setup time at stage 
1, dedicated machines at stage 2, and two due dates. The objective was to 
schedule one day’s mix of label stickers through the shop such that the 
weighted maximal tardiness is minimized. They proposed a heuristic to 
find the near-optimal schedule for the problem. The performance of the 
heuristic was evaluated comparing its solution with both the optimal 
solution for small-sized problems and the solution obtained by the 
scheduling method used in the shop.  

While many papers have been written in the area of scheduling hybrid 
and flexible flow lines, many of them are restricted to special cases of 
two stages, specific configurations of machines at stages, and to simplify 
the problem, setups are seldom considered in the scheduling. For those 
ones addressing setups, the setup times are fixed and included in 
processing times. However, in most real world cases, the length of the 
setup time depends on both jobs, which is separable from processing. 
There seems to be published only three works addressing heuristics for 
flexible flow lines with sequence dependent setup times. Kurz and Askin 
(2003) examined scheduling rules for SDST flexible flow lines. They 
explored three classes of heuristics. The first class of heuristics (cyclic 
heuristics) is based on simplistic assignment of jobs to machines with 
little or no regard for the setup times. The second class of heuristics is 
based on the insertion heuristic for the traveling salesman problem 
(TSP). The third class of heuristics is based on Johnson’s Rule. Note that 
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the second class caters to setup aspects of the problem while the third 
derives from standard flow shops. They proposed eight heuristics (CH, 
RCH, SPTCH, FTMIH, CTMIH, MMIH, 1,g Johnson's Rule, g/2,g/2 
Johnson's Rule) and compared the performance of those on a set of test 
problems. Moreover, Kurz and Askin (2004) formulated the SDST 
flexible flow lines as an integer programming model. Because of the 
difficulty in solving the IP model directly, they developed a Random 
Keys Genetic Algorithm (RKGA). Problem data was generated to 
evaluate the RKGA with other scheduling heuristics rules, which they 
proposed aforetime. They created a lower bound to evaluate the 
heuristics. Zandieh et al. (2006) proposed an immune algorithm, and 
showed that this algorithm outperforms the random keys genetic 
algorithm of Kurz and Askin (2004). 

     
 3. Problem description 

Let g be the number of workshops in series. Let n be the number of 
jobs to be processed and tm  be the number of machines in parallel at 
each stage t. We assume that machines are initially setup for a nominal 
job 0 at every stage. Job n+1 exists at every stage only to indicate the end 
of the process, if needed. We have the following definitions. 

t
ip  = processing times for job i at stage t  
t
ijs = sequence dependent setup time from job i to job j at stage t 
t
ip~ = modified processing times for job i at stage t ( t

ijj
t
i

t
i sminpp~  ) 

tS = set of jobs that visit workshop stage t 
 
The processing time of job 0 is set at 0. The setup time from job 0 

indicates the time to move from the nominal set point state. We assume 
that all jobs currently in the system must be completed at each stage 
before the jobs under consideration may begin setup. The completion 
times of job 0 at each stage are set to the earliest setup time may begin at 
that stage. The setup time for job n+1 is set at 0; this job only exists to 
indicate the end of the schedule. We also include the restriction that 
every stage must be visited by at least as many jobs as there are machines 
in that stage. 
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4. The novel particle swarm optimization (NPSO) algorithm 
     PSO is an evolutionary algorithm which is initialized with a 
population (named swarm in PSO) of random solutions and searches for 
optima by updating generations. Each individual or potential solution, 
named particle, flies in the dimensional problem space with a velocity 
which is dynamically adjusted according to the flying experiences of its 
own and its colleagues. The PSO algorithm mimics the behavior of 
flying birds and their means of information exchange to solve 
optimization problems. It has been introduced as an optimization 
technique in real-number spaces, but many optimization problems are 
set in a discrete space. Typical examples include problems that require 
ordering, such as HFSSP. In this section we introduce a novel PSO 
algorithm for HFSSP to minimize makespan.  
 
4.1. Original particle swarm optimization algorithm 
     Suppose that the searching space is D dimensional and m particles 
form the colony. The ith particle represents a dimensional vector Xi (i = 
1, 2, . . . , m). It means that the ith particle locates at Xi = (xi1, xi2, . . . , 
xiD) (i = 1, 2, . . . , m) in the searching space. The position of each particle 
is a potential result. We could calculate the particle’s fitness by putting its 
position into a designated objective function. The ith particle’s ‘‘flying’’ 
velocity is also a D dimensional vector, denoted as Vi = (vi1, vi2, . . . , viD). 
Denote the best position of the ith particle as Pi = (pi1, pi2, . . . , piD), and 
the best position of the colony as Pg = (pg1, pg2, . . . , pgD) respectively. The 
original PSO algorithm could be performed by the following equations: 

 
vid (k+1)= vid (k) + c1 r1 (pid (k) - xid (k))+ c2 r2 (pgd (k) - xid (k))                     
xid (k+1) = xid (k) + vid (k+1)                                                        
      
     where k represents the iterative number, c1, c2 are learning factors, 
usually c1 = c2 = 2. r1, r2 are random numbers between (0, 1). The 
termination criterion for the iterations is determined according to 
whether the max generation or a designated value of the fitness of Pg is 
reached (Kennedy and Eberhart 1995).  
4.2. The NPSO algorithm for HFSSP to minimize makespan 
     HFSSP is set in a discrete space, so the most important issue in 
applying PSO successfully to HFSSP is to develop an effective ‘problem 
mapping’ and ‘solution generation’ mechanism. If these two mechanisms 
are devised successfully, its possible to find good solutions for a given 

(4.1) 
(4.2) 
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optimization problem in acceptable time. According to the character of 
HFSSP, we will design the particle, particles’ velocities and iterative 
formula of NPSO algorithm. The crossover and mutation operators will 
be used in the GAs and NPSO algorithm for HFSSP to minimize 
makespan. 

 
4.2.1. Iterative model of the NPSO algorithm for HFSSP to minimize makespan 
     If the HFSSP is n-jobs and m-machines, suppose that the searching 
space is n-dimensional and s particles form the colony. The ith particle 
represents an n-dimensional vector Xi(i = 1, 2, . . . , s). It means that the 
ith particle locates at Xi which is one sequence in the searching space. 
The position of each particle is a potential result. We could calculate the 
particle’s fitness by putting its position into a designated objective 
function. When the fitness is lower, the corresponding Xi is ‘‘better’’. 
The ith particle’s ‘‘flying’’ velocity is also an n-dimensional vector, 
denoted as Vi. Denote the best position of the ith particle as Pi, and the 
best position of the colony as Pg respectively. The NPSO algorithm 
could be performed by the following equations: 
   
Vi (k+1) = Pi (k)  Pg (k)                                                                  (4.3) 

 (vr1, vr2, .., vrN ) (k+1) =M (vr1, vr2, .., vrN )                                             (4.4)   

Xi (k+1) = Xi (k) Vi (k+1)                                                         (4.5) 

(xr1 , xr2 , … , xrN) (k+1) = M (xr1 , xr2 , … , xrN)                                (4.6)        

     where k represents the iterative generation number, and r (1   r   
psize) is random integer which denotes mutating particle, and  is 
crossover denotation which denotes two particles making crossover 
operator and its detailed operator was shown in Fig. 3,4. M(vr), M(xr) 
mean mutating particle vr and xr whose detailed operator was expressed 
in Fig. 5,6,         N  [psize/4, psize/2] denotes mutating particle numbers 
in every generation. The termination criterion for the iterations is 
determined according to whether the max generation or a designated 
value of the fitness of Pg is reached. 
 
4.2.2. Step of the NPSO algorithm for HFSSP to minimize makespan 
Step 1. Let initialization iterative generation be k = 0, initialization 

population size psize, The termination iterative generation 
Maxgen. Give birth to psize initializing particles as following: 
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Randomly generate an initial population of (psize - 3) particles, 
generate a particle with SPTCH, generate a particle with FTMIH, 
generate a particle with g/2, g/2 -Johnson’s rule. Calculate each 
particle’s fitness value of initialization population, and let first 
generation Pi be initialization particles, and choose the particle 
with the best fitness value of all the particles as the Pg (gBest). 

Step 2. Every Pi (k) and Pg (k) crossover can get two child particles, 
compare them and let smaller fitness value particle be final child 
of predecessors. Using (4.3) obtains ‘‘flying’’ velocity Vi particles, 
then utilizing (4.4) randomly mutating N particles of them. And 
using (4.5) and (4.6) with the same method gives birth to the next 
generation particles Xi. If the fitness value is better than the best 
fitness value Pi (pBest) in history, let current value as the new Pi 
(pBest). Choose the particle with the best fitness value of all the 
particles as the Pg (gBest). If k= Maxgen, go to Step 3, or else let k 
= k + 1; go to Step 2. 

Step 3. Put out the Pg.  
     We can learn that there are two key steps when applying NPSO 
algorithm to HFSSP: the representation of the solution and the fitness 
function. The searching is a repeat process, and the stop criterion is that 
the maximum iteration number is reached. In NPSO algorithm, each 
particle of the swarm shares mutual information globally and benefits 
from the discoveries and previous experiences of all other colleagues 
during the search process. NPSO algorithm requires only primitive and 
simple mathematical operators, and is computationally inexpensive in 
terms of both memory requirements and time. 

 
4.2.3. Recognition of particle 
     Particle recognition here refers to the creation of a representation 
scheme to denote solutions as a number sequence for NPSO operators 
to operate on. In this case, a candidate solution is represented by a 
random key representation. The advantage of this representation is its 
ease of implementation. This representation was proposed by Norman 
and Bean (1999) to avoid infeasible solution. They used the following 
solution representation for an identical multiple machine problem. Each 
job is assigned a real number whose integer part is the machine number 
to which the job is assigned and whose fractional part is used to sort the 
jobs assigned to each machine. For an example consider a problem with 
five jobs (n = 5), two processes (g = 2), two machines at stage one (m1 = 
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2), and three machines at stage two (m2 = 3). For this problem we must 
generate five random numbers from uniform distribution [1,1 + tm ] in 
each stage of process (Fig. 2). 
     As shown in Fig. 2, each of the blocks denotes a process. For 
example, the first set of numbers of block 1 implies that in process 1, job 
1, job 3, and job 4 are assigned to machine 1; also job 2 and job 5 are 
assigned to machine 2. The order of jobs to be scheduled on machine 1 
is job 1 followed by job 3 and then job 4, and the order of jobs to be 
scheduled on machine 2 is job 5 followed by  
job 2. 
 

  
Fig. 2. Representation of candidate solution in NPSO 

 
4.2.4. Generation of initial particle 
     Usually, initial particles are randomly generated in the feasible space, 
but initial particles can influence the convergence time. Because of this, 
we incorporated some known heuristics into initialization to generate 
three well-adapted initial particles. Remained initial particles are 
randomly generated. 
     Kurz and Askin (2003, 2004) proposed three heuristics based on 
greedy methods, flow line methods and the Insertion Heuristic for the 
TSP. These heuristics were named SPTCH, FTMIH, and g/2, g/2 
Johnson’s rule. 
     In the SPT Cyclic Heuristic (SPTCH), the jobs are ordered at stage 1 
in increasing order of the modified processing times 1

ip~ . At subsequent 
stages, jobs are assigned in earliest ready time order. Jobs are assigned to 
the machine in every stage that allows it to complete at the earliest time. 
The SPTCH has the following steps for each stage t: 
1. Create the modified processing times 1

ip~ .        
2. Order the jobs in non-decreasing order (SPT) of 1

ip~ . 
3. At each stage t = 1, 2, . . . , g, assign job 0 to each machine in that 
stage. 
4. For stage 1: 
 (a) Let bestmc = 1. 
 (b) For [i] = 1 to n, i   S 1: 
For mc = 1 to m1: 
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Place job [i] last on machine mc. 
Find the completion time of job [i]. If this time is less on mc than on 
bestmc, 
let bestmc = mc. 
Assign job [i] to the last position on machine bestmc. 
5. for each stage t = 2,. . . ,g: 
 (a) Update the ready times in stage t to be the completion times in stage 
t - 1. 
 (b) Arrange jobs in increasing order of ready times. 
 (c) Let bestmc = 1. 
 (d) For [i] = 1 to n, i   S t: 
For mc = 1 to tm : 
Place job [i] last on machine mc. 
Find the completion time of job [i]. If this time is less on mc than on 
bestmc, 
let bestmc = mc. 
Assign job [i] to the last position on machine bestmc. 
 
     The FTMIH is a multiple insertion heuristic to minimize the sum of 
flow times (completion-ready times) at each stage. It is a multiple 
machine, multiple stage adaptation of the Insertion Heuristic for the 
TSP. Setup times are accounted for by integrating their values into the 
processing times using t

ip~ . The FTMIH can then be performed using 
these modified processing times at each stage. Once jobs have been 
assigned to machines, the true processing and setup times can be used. 
The FTMIH has the following steps for each stage t:  
1. Create the modified processing times. 
2. Order the jobs in non-increasing order (LPT) of t

ip~ . 
3. For [i] = 1 to n, i   S t: 
(a) Insert job [i] into every position on each machine. 
(b) Calculate the true sum of flow times using the actual setup times. 
(c) Place job i in the position on the machine with the lowest resultant 
sum of flow times. 
4. Update the ready times in stage t + 1 to be the completion times in 
stage t.  
     Johnson’s rule (1954) finds the optimal makespan solution for 
F/2//Cmax. The g/2, g/2 Johnson’s rule is an extension of Johnson’s 
rule to take into account the setup times for the flow shop with more 
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than two stages. The aggregated first half of the stages and the 
aggregated last half of the stages are considered to create the order for 
assignment in stage 1. The value 1

ip~  is the sum of modified processing 

times for stages 1 to 





2
g and g

ip~  is the sum over stages 1
2
g





  to g. 

1. Create the modified processing times 1
ip~  and g

ip~ . 

2. Let  g
j

1
j p~p~jU   and  g

j
1
j p~p~jV  . 

3. Arrange jobs in U in non-decreasing order of 1
ip~  and arrange jobs in 

V in non-increasing order of g
ip~ . 

    Append the ordered list V to the end of U. 
4. At each stage t = 1, 2 ,. . . , g, assign job 0 to each machine in that 
stage. 
5. For [i] = 1 to n, i   S 1: 
(a) For mc = 1 to m1: 
Place job [i] last on machine mc. 
If this placement results in the lowest completion time for job [i], let m = 
mc. 
(b) Place job [i] last on machine m. 
6. for each stage t = 2,. . . ,g: 
(a) Update the ready times in stage t to be the completion times in stage t 
- 1. 
(b) Arrange jobs in increasing order of ready times. 
(c) For [i] = 1 to n, i   S t: 
(1) For mc = 1 to tm : 
Place job [i] last on machine mc. 
If this placement results in the lowest completion time for job [i], let m = 
mc. 
(2) Place job [i] last on machine m. 
 
4.2.5. Crossover and mutation operators [75] 
Crossover operators: 
     One-segment crossover (C1): A pair of crossing points is randomly selected 
along the length of the first predecessor chromosome. The jobs inside 
crossing points are copied into the offspring. The remaining places of 
the offspring are filled up by taking in order each legitimate gene from 
the second predecessor. This operator is illustrated in Fig. 3 with 
crossing points at 4 and 10 of the string.  
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Fig. 3. Illustration of the one-segment crossover operator (C1). 
 

     Order Crossover (C2): The well-known Traveling Salesman Problems 
(TSPs) are frequently used to model and solve manufacturing scheduling 
(Khoo, Lee, and Yin 2000). Basically, a TSP is a class of problem where a 
salesman visits each of his destinations once and only once. Michalewicz 
(1994) showed that crossover operators such as the Partially Mapped 
Crossover (PMX), the Order Crossover (OX) and the Cycle Crossover 
(CX), can be used to handle TSPs. Among them, the OX method 
appears to be the most promising and has been adopted in this work. 
Essentially, the OX method generates a clone (or offspring) by retaining 
a part of a sequence from the other parent. In this work, the OX method 
is needed to be modified to accommodate the aforementioned 
representation scheme that is used. 
     The modified OX method is best explained using two processes, five 
jobs, two machines in process 1, and three machines in process 2 
example. Consider two parents, P1 and P2, with a randomly generated cut 
point for each process. By exchanging the whole number of the 
sequences before the cut point, and the integer part of the remained 
sequences, two clones (or offspring) can be generated as Fig. 4, where 
.xx represents the fractional part that is currently unknown. Starting 
from the cut point of one parent, the corresponding fractional parts 
from the other parent are copied one at a time. 
     The crossover operator has now generated two clones (or offsprings) 
from the two parents. It can be seen that the clones (or offsprings) share 
a lot of properties with the parents. Using the modified OX method as 
the crossover operator, only the job order is allowed to vary. Machine 
assignment, on the other hand, can not be changed during a crossover 
operation 

Crossing point     
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Exchanging the whole number of the sequences before the cut point, and the 
integer part of the remained sequences 

 
 
Copying the corresponding fractional parts from one parent to another 

 
Fig.4.OX crossover operator example. 

 
Mutation operators: 
     One-segment move insert mutation (M1): A moving segment and one 
inserting point are randomly selected along the length of the predecessor 
chromosome. The jobs inside segment are moved and inserted in the 
inserting point. This operator is illustrated in Fig. 5 with moving segment 
at 2–5 and inserting point at 11 of the string. 

 
           Fig. 5. Illustration of the shift mutation operator 

 
     Double point mutation operator (M2): This mutation operator is used to 
alter the machine assignment for a job in a particular process. Basically, 
mutation begins when two random mutation points in the sequences are 
selected. Then, the integer part of real number of the genes between two 
mutation points is/are changed (Fig. 6). 
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P2 2.12 1.3 2.91 1.04 2.76 
   

 
  

 
 

Mutation Point   
ProC1 1.41 x.13 x.23 x.65 2.01  
ProC2 2.12 x.3 x.91 x.04 2.76  
FC1 1.41 1.13 2.23 1.65 2.01  

      FC2 2.12 2.3 1.91 1.04 2.76 
Fig. 6. Illustration of the Double Point Mutation Operator 

 
 

5. Experimental design 
5.1. Data generation and settings 
     An experiment was conducted to test the performance of the NPSO 
algorithm. Following Kurz and Askin (2003,2004), data required for a 
problem consists of the number of jobs, number of stages, number of 
machines in each stage, range of processing times, and the range of 
sequence dependent setup times. The ready times for stage 1 are set to 0 
for all jobs. The ready times at stage t+1 are the completion times at 
stage t, so there is no need this data to be generated. Processing times are 
distributed uniformly over two ranges with a mean of 60: [50–70] and 
[20–100]. Flexible flow lines are considered by allowing some jobs to 
skip some stages. Following Leon and Ramamoorthy (1997), the 
probability of skipping a stage is set at 0, 0.05, or 0.40. The setup times 
are uniformly distributed from 12 to 24 which are 20–40% of the mean 
of the processing time. The setup time matrices are asymmetric and 
satisfy the triangle inequality. The setup time characteristics follow Rios-
Mercado and Bard (1998). 
 

P1 1.41 2.13 1.23 1.65 2.01 
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Table 1. Factor levels 

 
 
     The problem data can be characterized by six factors, and each  
of these factors can have at least two levels. These levels are shown in 
Table 1. 
     In general, all combinations of these levels will be tested. However, 
some further restrictions are introduced. The variable machine 
distribution factor requires that at least one stage have a different 
number of machines than the others. Also, the largest number of 
machines in a stage must be less than the number of jobs. Thus, the 
combination with 10 machines at each stage and six jobs will be skipped 
and the combination of 1–10 machines per stage with six jobs will be 
changed to 1–6 machines per stage with six jobs. There are 252 test 
scenarios and five data sets are generated for each one.  
5.2. NPSO algorithm parameters tuning 
     It is known that the different levels of the parameters clearly affect 
the quality of the solutions obtained by a NPSO algorithm. A number of 
different NPSO algorithms can be obtained with the different 
combinations of the parameters. We have applied parameters tuning only 
for the crossover (C1, C2), mutation (M1, M2), Maxgen value, psize value 
and N (mutating particle number in every generation), considering in 
Table 2.  
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Table2. NPSO parameter levels 

 
      
24 different NPSOs are obtained by these levels. In this paper, we have 
run the NPSO algorithm five times for five medium problems and five 
large ones. The metaheuristics were implemented in MATLAB 7 and run 
on a PC with a Pentium IV 3.00 GHz processor with 1 GB of RAM. 
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Fig. 7. Average of makespan 

 
The results are analyzed by the means of multi-factor Analysis of 

Variance (ANOVA) technique. It is necessary to notice that for using 
ANOVA, three main hypotheses, normality, homogeneity of variance 
and independence of residuals, must be check. We did that and found no 
bias for questioning the validity of the experiment.  

    Fig. 7 is the Average of makespan in parameter tuning process. It is 
obtained from Fig. 7 that using mutation operator M1, crossover type C1, 
value 200 as Maxgen, value 50 as psize and value 12 as N, is the best set of 
parameters. 
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5.3. Experimental results 
     In this section we are going to compare the proposed NPSO 
algorithm with the RKGA which proposed by Kurz and Askin (2003, 
2004) for the SDST flexible flow lines. The heuristics were implemented 
in MATLAB 7 and run on a PC with a Pentium IV 3.00 GHz processor 
with 1 GB of RAM.  

 
5.3.1. Analysis of makespan and computational time  
     The convergence of NPSO algorithm for one middle size problem 
and one big problem is shown. Fig. 8 shows the convergence of NPSO 
algorithm of 30/4/1,1,1,1/HF/Cmax and Fig. 9 shows the convergence of 
NPSO algorithm of  100/8/10,9,7,6,5,1,1,1/ HF/Cmax .  
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Fig. 8. Convergence of  NPSO for instance (30/4/1,1,1,1/HF/Cmax)        
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Fig. 9. Convergence of NPSO for instance (100/8/10,9,7,6,5,1,1,1/ HF/Cmax) 
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     To evaluate the performance of each heuristic, we applied the lower 
bounds proposed by Kurz and Askin (2001, 2004). They proposed two 
lower bounds LB(1) and LB(2). For any feasible solution of SDST hybrid 
flow shop, they presented LB(1) and LB(2) in the following form:  
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     The notation ‘‘ ]k[min ’’ is used to indicate the (k+1)st from the lowest 
value and minmin ]0[  . For example, given a list of values {2, 5, 7, 8, 
9}, 5min ]1[  . 
     The first above mentioned equation is job-based bound and the 
second is machine-based bound. We defined ‘‘RPD’’ as: (makespan-
lower bound)/lower bound. To calculate the RPD value, the best lower 
bound was used for each problem. The running times were found using 
the tic-toc function.  
     Every heuristic considered here was run on the same 1260 data sets. 
NPSO and RKGA were run 5 times and the minimum and average RPD 
over the 5 runs was found for each of the 1260 data sets.  
     NPSO achieves the lowest values for the RPD statistics and finds the 
minimum RPD schedules more frequently than the RKGA heuristic. 
The results within the 5 runs of NPSO and RKGA are described in 
Table 3. 
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Table 3. Average RPD Results grouped by n and g for NPSO versus RKGA 

 
     The results indicate that there is a clearly significant difference 
between two algorithms. As it can be seen, NPSO provides better results 
in medium and large problems.  
     Fig. 10 shows the average RPD of both NPSO and RKGA 
algorithms.  
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Fig. 10. Average RPD Results grouped by n and g for NPSO versus RKGA 

 
     Another aspect of comparison is to subtract the computational time 
of RKGA from NPSO for all of 252 problem instances, then calculate 
the number of decrease, similar and increase in each of the problem 
sizes, and divide it to total number of problems in the related size. The 
results are shown in Table 4, Fig. 11 and Fig. 12. This process can be 
applied for makespan value as shown in Table 5, Fig. 13 and Fig. 14.  
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Table 4. Computational time values of  NPSO versus RKGA 

 
 
     According to Table 4, in 50% of large problems, 60% of medium 
problems and 50% of small problems, the computational time of NPSO 
is less than the computational time of RKGAGA 
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Fig. 11. Computational time differences (NPSO- RKGA) for all problems         

  

             

46%

59%

47%

60%

84%

37%

50%
57%

43%

54%

37%

53%

40%

16%

63%

50%
43%

57%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

6*2 6*4 6*8 30*2 30*4 30*8 100*2 100*4 100*8

Problem Size

Pe
rc

en
ta

ge
 

Decrease
Increase

 
 Fig. 12. Increase/Decrease of NPSO computational time versus RKGA  
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Table 5. Makespan values of  NPSO versus RKGA 

      
 
     According to Table 6, in 46% of large problems, 61.3% of medium 
problems and 56.7% of small problems, the makespan of NPSO is less 
than the makespan of RKGA.  
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Fig. 13.  Makespan  differences (NPSO-RKGA) for all Problems  
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Fig. 14. Increase/Decrease of RKGA Cmax versus NPSO Cmax 
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5.3.2. Analysis of controlled factors in computational time 
In order to see the effects of number of stages and number of jobs on 

computational time of algorithms, another ANOVA is applied. Means 
plot for the interaction between the factors type of algorithm and each 
combination of stage and job are shown in Fig. 15.  
 

0

50

100

150

6×2 6×4 6×8 30×2 30×4 30×8 100×4 100×8 100×2

Problem Size

C
om

pu
ta

tio
na

l T
im

e

PSO

RKGA

 
Fig. 15. Means plot for the interaction between the factors type of algorithm and each 

combination of stage and job 
   

     Also an ANOVA test is applied to see the effect of number of jobs 
on computational time of algorithms. The results are shown in Fig.16. 
The problem instances are classified into three categories: small 
problems (with 6 jobs), medium problems (with 30 jobs) and large 
problems (with 100 jobs). In each category, the average value of 
computational time is calculated.  
     According to Fig. 16, it is clear that by increase in number of jobs, 
computational time of RKGA increases by greater gradient in contrast 
with NPSO algorithm, i.e. in large problems, NPSO has a better 
performance than RKGA for purposes of computational time.  
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Fig. 16.Computational time of  NPSO versus RKGA 

 
6. Conclusions and future work 
     NPSO approach for the scheduling of a hybrid flow shop has been 
successfully adjusted. An experiment was carried out to illustrate the 
effectiveness of NPSO algorithm in scheduling. The makespan values of 
NPSO in many test problems, especially in medium and large problems, 
are less than the makespan values of GA. 
     There are potentially unlimited opportunities for research in 
scheduling to minimize makespan in hybrid flow shops with sequence-
dependent setup times. In this paper, we have addressed only a few 
areas.  
     In many researches, the lower bounds are typically used to evaluate 
the performance of heuristics for solving combinatorial optimization 
problems. In the absence of tight analytical lower bounds, optimal 
objective function values may be estimated statistically. Extreme value 
theory can be used to construct confidence-interval estimates of the 
minimum makespan. 
     Also by creating a general permutation schedule definition, we may 
be able to find a class of schedules that contains the optimal makespan 
schedule for some special cases, such as two stages with one machine at 
the first stage and two machines at the second, with sequence-dependent 
setup times at both. 
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