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Chapter 1

Introduction

"Any customer can have a car painted any color that he wants
so long as it is black”

Henry Ford

At the time of the famous remark by Henry Ford about his model T, the
emergence of assembly lines marked the beginning of mass production. Due to
standardized commodities, specialized machinery and the division of labour on
the line, economies of scale could be realized, leading to falling production costs
and, therefore, low product selling prices. However, the widely transition from
sellers’ to buyers’ markets in various economic branches (e.g., the automitive
industry) throughout the second half of the 20th century lead to an increasing
demand for products customized to individual needs at still low prices. The
concept of mass customization emerged (Pine, 1993). Mass customization im-
plies that manufacturers offer an increased variety of their products, but still
employ the efficiency of mass production, as all variants of a common base
product are jointly manufactured on the same assembly line, also referred to
as mixed-model assembly line!. Common examples of manufacturers using
mass customization can be found in the built-to-order electronic as well as
automotive industry. Especially in the latter, the product variety is large and
ever increasing. For instance, already in the 1980’s approximately 2.5 mio
unique configurations of the Ford Escort (Weiner, 1985) and 20 mio variants
of the Volkswagen Golf (Dichtl et al., 1983) could be ordered by customers. In
2004, BMW theoretically provided up to 10%? different variants (Meyr, 2004).
The high variety implies a heterogeneous model mix in production, for exam-
ple, out of 1.1 mio Mercedes A-Class built between the years 2003 and 2005 in
the plant in Raststatt/Germany only two cars were identical (Schlott, 2005).

As the variants are differentiated by a number of selected options, they
require different assembling tasks at the stations of the line. To deal with the
variety in production, the mixed-model assembly production involves various

! Assembly lines where variants of more than one base product are jointly produced are
called multi-model assembly lines
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planning problems. The long-term decision of assigning assembly tasks to
stations of the line is called the assembly line balancing problem (Baybars,
1986; Becker and Scholl, 2006). Based on forecasts for the demand of each
variant, the objective is to balance the work content among all stations while
maintaining precedence relations between tasks. When feasible line balances
are known, the medium-term problem of assigning incoming orders to lines
and production periods (usually days or shifts) is referred to as order selection
or master scheduling problem (Hindi and Ploszajski, 1994; Bolat, 2003). It
primarily aims at minimizing the deviation between the production date and
the due date of each order to avoid inventory costs or penalties due to late
delivery. The order selection problem results in production plans for each
line and planning period and is generally repeated in rolling horizons. After
production plans are defined, the short-term sequencing problem determines
an optimal production sequence of the orders assigned to the same planning
period and line (Boysen et al., 2009). Since the assembly line is balanced to
an average variant, the objective is to find a sequence of orders with no peaks
in the work load and material demand throughout the production period.
Unforeseen events, like rush orders or machine breakdowns, can stir the initially
planned sequence and necessitate a resequencing. The short-term resequencing
problem either follows the same objectives as the sequencing problem or tries to
restore the original planned sequence while considering additional constraints
such as buffer capacities (Bolat, 2003).

The literature on the sequencing problem of mixed-model assembly lines
deals with various approaches, which differ in their pursued objective as well as
their level of detail (Boysen et al., 2009). Two general objectives for sequencing
are distinguished, material supply-oriented and workload-oriented objectives.
The first one is related to the just-in-time principle. Since an assembly line
is in general coupled with preceding levels of the supply chain, which deliver
required materials for production just-in-time or just-in-sequence to the line
(Meyr, 2004), the model sequence directly influences the material supply. In
order to avoid peaks in the material demand and, therefore, large safety stocks
of parts and supplies, the material supply-oriented objective focuses on finding
a sequence with an even material demand over the whole production planning
period. This results in the level scheduling approach, which is mainly followed
by Asian car manufacturers (Monden, 1998).

The second objective considered for sequencing is the minimization of work
overload and is primarily employed by European car manufacturers. It deals
with the different work load induced by the variants. Since the available assem-
bly time in a station is based on an average variant, a sequence of consecutive
work-intensive variants can lead to work overload of the respective line opera-
tors. Thus, an operator can not finish his/her assigned tasks within the limits
of a station. Work overload has to be compensated by other strategies such
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as employing additional utility workers, stopping the line in order to allow the
operator to finish the tasks or remove the model from the sequence, finish the
tasks offline, and resequence it in a later position. Two approaches for the
minimization of work overload have been proposed in the literature and can
be distinguished by their level of detail. The mixed-model sequencing (MMS)
problem (Wester and Kilbridge, 1964) explicitly addresses the minimization of
work overload in its objective function. Therefore, it considers different opera-
tional characteristics of the line, such as station lengths, operator movements,
processing times etc., and results in a detailed time schedule for production.

The scope of this thesis is on the second approach, the car sequencing (CS)
problem (Parrello et al., 1986). CS is originally derived from practical applica-
tions in the automotive industry and is still employed by automobile original
equipment manufacturers such as Renault (Solnon et al., 2008). Compared to
MMS, it is a more aggregated approach for sequencing models on a mixed-
model assembly line, as it only implicitly considers the minimization of work
overload. Instead, CS controls the occurrence of selected options (e.g., aircon-
ditioning or sunroof in case of an automobile) accompanied with the models
in the sequence by applying so-called sequencing rules. A sequencing rule for
each option is defined by H : N (pronounced "H out of N’) and restricts the
occurrence of the respective option to at most H in any subsequence of N
successive models. If more than H out of N models contain the respective
option, a violation occurs. The aim is to find a sequence of models, which
respects all sequencing rules - or, if not existent - which minimizes the number
of sequencing rule violations.

The literature implicitly assumes the minimization of sequencing rule vi-
olations being related to the minimization of work overload. However, even
though CS is widely adopted, both in research and practical applications, it
has never been examined, if this assumption applies. Since CS uses a surrogate
objective, instead of explicitly addressing the minimization of work overload
like MMS, several simplifying modeling assumptions have to be made, when
using CS. For instance, by applying a sequencing rule of type H : N for each
option, a station on the line is allowed to assemble only one option at once, as
no interaction between options in a station can be represented. Furthermore,
an option in CS is distinguished in merely two states, variants can contain the
option or not. Yet, it is unknown how the simplifications made by CS affect its
solution quality. Thus, on the one hand side, researchers and practitioners can
not estimate the consequences of using CS, and on the other hand are faced
with the question why applying CS instead of MMS at all.
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1.1 Purpose of the thesis

The purpose of this thesis is to shed some light on the CS problem and its
suitability for workload-oriented sequencing as well as to adjust it to the rese-
quencing problem. Furthermore, this work aims at developing different exact
and metaheuristic solution methods in order to solve the CS problem.

The first step in analyzing the suitability of CS is to quantify its solu-
tion quality in comparison to the direct workload-oriented approach of MMS.
Therefore, this work considers CS as both, a constraint satisfaction problem
as well as a combinatorial optimization problem, and adresses the analysis and
the design of appropriate sequencing rules and objective functions with regard
to CS’” underlying goal of minimizing the amount of work overload. Thereby, a
new approach for generating effective sequencing rules is developed. In order
to increase the applicability of CS for practical problem settings, the incorpo-
ration of multistate options into the CS model and their effect on the solution
quality are shown.

At present, CS is only applicable for the sequencing problem although its ob-
jective is also pursued in resequencing scenarios as well. Since the resequencing
problem alters an already existing sequence during production by using spe-
cial buffers, it faces additional contraints compared to sequencing. Thus, this
work adjusts the CS model to a resequencing problem with so-called pull-off
tables, which are direct accessible buffers that are often found in the automo-
tive industry. The resulting car resequencing (CRS) problem is formalized and
applied in a real world example.

This thesis also develops state-of-the-art exact and metaheuristic solution
methods to solve both, CS and CRS, with the focus being on CS. Therefore,
a new graph representation of CS is presented and existing lower bounds are
improved. Both are applied by an exact iterative beam search (IBS) algorithm,
which is based on a truncated breadth-first search. Furthermore, the results
of a fitness landscape analysis of a set of frequently applied CS instances are
used to develop two efficient metaheuristics for CS, a variable neighborhood
search (VNS) as well as a memetic algorithm (MA), which is a conjunction of
an evolutionary algorithm with local search.

1.2 Structure of the thesis

This thesis by publication is composed of five articles, that are partly published
in or submitted to scientific journals. The structure of the thesis is as follows.

Chapter 2 studies CS as a constraint satisfaction problem and analytically
as well as empirically analyzes the solution quality of CS. Thus, it examines
to what extend CS feasible solutions are feasible in MMS and vice versa. A
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new sequencing rule generation approach for CS is developed in Section 2.4
increasing the solution quality by introducing multiple sequencing rules per
option. Furthermore, Section 2.5 shows how multistate options (options having
more than two processing times at a station) can be incorporated into the CS
model.

Chapter 3 examines the solution quality of CS compared to MMS when both
are considered as combinatorial optimization problems. Thereby, two sequenc-
ing rule generation approaches as well as three different objective functions
from the literature of CS are applied. Furthermore, a new weighting factor
to distinguish between option violations in the objective function of CS is in-
troduced and its benefit is assessed in experiments as well. The evaluation
covers the linear relationship of CS and MMS objective functions and a com-
parison of the resulting amount of work overload induced by solutions of both
approaches.

Chapter 4 outlines the adaption of CS for the resequencing problem using
pull-off tables. The resulting CRS problem is formalized as binary linear pro-
gram (Section 4.2) and transformed into a shortest path problem (Section 4.3),
for which different exact and metaheuristic solution approaches are proposed
in Section 4.4. An additional lower bound and dominance rule are introduced.
The performance of the solution approaches are compared to the commercial
standard solver CPlex and the effect of varying the number of pull-off-tables is
assessed in experiments. Finally, CRS is applied to a real-world resequencing
scenario of a major German truck manufacturer.

In Chapter 5, the graph representation of Chapter 4, is adapted to the CS
problem. Existing lower bounds in the literature of CS are improved and ap-
plied. The resulting shortest path problem is solved by an efficient iterative
beam search algorithm (IBS) which supplementary uses two different utiliza-
tion rates in order to guide the search. Experiments are conducted on widely
used CS instances from the CSPLib and the performance of IBS is compared to
the currently best known exact solution approach for CS, a scattered branch-
and-bound algorithm.

Chapter 6 studies the fitness landscapes of a set of CS problem instances
induced by four different neighborhood operators and three distance metrics.
Thereby, the autocorrelation as well as fitness-distance correlation is analyzed
and the results are used to design two metaheuristics for CS, a VNS and a MA.
The efficiency of the proposed algorithms is shown in experiments on instances
of the CSPLib.

Finally, Chapter 7 summarizes and concludes the thesis.



Chapter 2

Analysis and design of
sequencing rules for car
sequencing

Uli Golle, Nils Boysen, Franz Rothlauf

Abstract

This paper presents novel approaches for generating sequencing rules
for the car sequencing (CS) problem in cases of two and multiple pro-
cessing times per station. The CS problem decides on the succession
of different car models launched down a mixed-model assembly line. It
aims to avoid work overloads at the stations of the line by applying
so-called sequencing rules, which restrict the maximum occurrence of
labor-intensive options in a subsequence of a certain length. Thus to
successfully avoid work overloads, suitable sequencing rules are essential.
The paper shows that the only existing rule generation approach leads
to sequencing rules which misclassify feasible sequences. We present a
novel procedure which overcomes this drawback by generating multiple
sequencing rules. Then, it is shown how to apply both procedures in
case of multiple processing times per station. For both cases analytical
and empirical results are derived to compare classification quality.

2.1 Introduction

Mixed-model assembly lines allow car manufacturers to produce a large variety
of different models of a common base product on a single production line. The
sequence of models is important since it affects economic parameters. A major
cost driver are work overloads of assembly workers, which can occur if several
labor-intensive models are scheduled consecutively on the line. Work overloads
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need to be compensated by cost-intensive strategies, e.g., application of utility
workers or line stoppage. Therefore, car manufacturer are interested in finding
model sequences with minimum work overload. Common approaches are car
sequencing (CS) and mixed-model sequencing (MMS).

CS (Parrello et al., 1986; Solnon et al., 2008) introduces sequencing rules
H, : N, for each labor-intensive option o, which restrict the occurrence of
this option to at most H, in any subsequence of N, successive models. The
goal is to find a sequence, which does not violate any of the given sequencing
rules or — if such a sequence is not existent — minimizes rule violations. The
alternative MMS approach (Wester and Kilbridge, 1964) evaluates a sequence
by explicitly considering operation times, worker movements, station borders,
and other operational characteristics of a line. This way, work overloads can
exactly be quantified and, thus, be minimized. A sequence is called feasible if
no work overload occurs during the execution of the sequence and unfeasible
otherwise.

Both, MMS and CS, try to minimize work overload. MMS directly deter-
mines the work overload resulting into high effort for data collection, data pre-
ciseness, and computation time. In contrast, CS, which is based on a surrogate
objective for work overload by applying sequencing rules, is simple to apply
and data requirements are low. However, if the applied sequencing rules are
not suitable, CS can be less accurate than MMS and wrongly classify sequences
to be either feasible or unfeasible. Therefore, the generation of adequate rules
for CS is important. The CS research mainly focuses on the development of
efficient solution procedures (Solnon et al., 2008; Boysen et al., 2009) for find-
ing optimal sequences. Only little work deals with the definition of sequencing
rules. Drexl and Kimms (2001) provide a rather intuitive example:

Assume that 60% of the cars manufactured on the line need the
option “sun roof”. Moreover, assume that five cars (copies) pass
the station where the sun roofs are installed during the time for
the installation of a single copy. Then, three operators (installation
teams) are necessary for the installation of sun roofs. Hence, the
capacity constraint of the final assembly line for the option “sun
roof” is three out of five in a sequence, or 3:5 for short.

Bolat and Yano (1992) presented the only analytical approach on how to
derive sequencing rules. It is limited to cases where two different processing
times occur at each station. In this paper, we study how well sequencing rules
obtained by the Bolat and Yano (BY) approach correctly classify sequences
to be either feasible or unfeasible. Since our analysis shows that a large per-
centage of feasible sequences are classified as unfeasible, we develop a multiple
sequencing rule approach (MSR) that generates CS rules that correctly classify
sequences as feasible and unfeasible, respectively. Finally, we consider multiple
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processing times per station, discuss how the BY and MSR approach can be
used for such scenarios, and study how well sequences are correctly classified.

Section 2.2 introduces fundamental assumptions and defines measures for
the classification quality of sequencing rules. Then, we study the classification
quality of the BY approach (Sect. 2.3) as well as the novel MSR approach
(Sect. 2.4). Section 2.5 presents different possibilities of how to develop se-
quencing rules for stations with multiple processing times and studies how well
the BY and MSR approach correctly classifies sequences to be either feasible
or unfeasible. The paper ends with concluding remarks.

2.2 Assumptions and classification quality

We introduce fundamental assumptions of the mixed-model assembly line and
define measures on the classification quality of sequencing rules.

e The model-mix, i.e., the demand for models throughout the planning
horizon, is known with certainty. Thus, rush orders or breakdowns do
not occur, so that only static sequencing problems are considered.

e Workpieces are moved with constant velocity through the station which
are successively arranged along the line. W.l.o.g. lines flow from left to
right. We assume no buffers between stations.

e Fixed rate launching is applied, so that consecutive units are placed on
the line at the same intervals equal to cycle time c.

e We assume closed stations, so working across the stations’ boundaries is
not possible.

e Assembly workers return with infinite velocity to the next workpiece.
This is an adequate simplification whenever the conveyor speed is much
slower than the walking speed of workers. Otherwise, cycle time can
ex ante be reduced by a constant return time. Furthermore, processing
starts instantaneously once worker and workpiece meet inside a station.

e We assume a deterministic problem since processing times p,,, per model
m € M and station k € K are known with certainty. Moreover, all pos-
sible models can be processed inside a station when starting work at the
left-hand border: p,. <[l Vm € M; k € K, with [; being the length
of station k. Otherwise, sequence-independent work overload exists and
a station inevitably is overloaded with any occurrence of the respective
model. Cycle times range in between the minimum and maximum pro-
cessing times at each station: min,ep{pmr} < ¢ < maxper{pmr} VEk €
K.



Chapter 2 Analysis and design of sequencing rules for car sequencing

e Work overload occurs whenever an assembly operator is not able to fin-
ish his/her present workpiece (with normal processing velocity) before
reaching the right-hand station border. Then, in the real-world some
kind of compensation, e.g., line stoppage or applying cross-trained util-
ity workers, is required.

These assumptions define the status of an assembly system for a given model
sequence over the complete planning horizon. Therefore, for any given se-
quence, MMS can accurately quantify the resulting work overload and correctly
classify a sequence to be either feasible or unfeasible.

Throughout the paper, we restrict ourselves to feasibility problems and la-
bel feasible sequences as MMS-feasible. If a sequence does not violate any se-
quencing rule of a CS approach, it is denoted as CS-feasible. Both approaches,
CS and MMS, are equivalent if CS-feasibility induces MMS-feasibility (CS-
feasible—MMS-feasible) and vice versa (MMS-feasible—CS-feasible). For CS,
such a one-to-one mapping is desirable since it correctly classifies all sequences
to be either feasible or unfeasible. However, there are two possible types of
misclassifications:

e (S-feasible-»MMS-feasible. The sequencing rules of CS classify sequences
to be feasible although they are unfeasible. Sequencing rules are not
strict enough and do not identify all sequences that cause work overload.
This case causes major problems in the real-world since additional costs
for dealing with unforeseen work overloads occur.

o (CS-feasible«~MMS-feasible. CS classifies sequences to be unfeasible al-
though they are feasible. There are sequences that cause no work over-
load but violate at least one sequencing rule. In this case, no unforeseen
work overloads occur but CS excludes feasible sequences from considera-
tion. Obviously, this impedes the search for any solution procedure and
potentially excludes optimal solutions if the feasibility version of CS is
coupled with an additional objective function (Drex] and Kimms, 2001).
As worst case scenario, CS wrongly classifies all feasible solutions, so no
feasible solution can be found.

The lower the percentage of misclassifications the better the classification
quality of the applied sequencing rules and, thus, the better the rule generation
approach that lead to this rules.

2.3 Classification quality of the Bolat and
Yano approach

To our best knowledge, the only analytical approach on how to derive se-
quencing rules was proposed by Bolat and Yano (1992). They assumed one
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option per station with two processing times. All models containing the op-
tion (denoted as option models) require processing time p™ and all basic models
without the option require processing time p~, with p~ < ¢ < pt <[, where ¢
is the cycle time and [ the station length. Bolat and Yano proposed to generate
sequencing rules H : N that restrict the number of option models to at most
H within a subsequence of N consecutive models, where

H = U;_CCJ and (2.1)
vos [0 0] -

H are the maximum possible number of consecutive option models without
outreaching the right-hand station border. N adds to H the number of basic
models required to reset the workers starting point to the left-hand station
border after H successive option models.

For an example with [ = 15, ¢ = 10, p™ = 12 and p~ = 7, the BY approach
returns the sequencing rule 2 : 4. Therefore, at most H = 2 option models
can be produced consecutively, before N — H = 2 basic models are required
to reset the subsequence to the left border again. The following properties of
the BY approach hold:

Proposition 2.1. For the BY approach, CS-feasible— MMS-feasible.

Proof: A sequence is CS-feasible if the H : N-rule is not violated (i) inside
any subsequence of N cars and (ii) when concatenating subsequences to form
a longer sequence. In the worst case, all H option models succeed in a row. In
a sequence of N cars, the worker starts processing a subsequence of H consec-
utive option models at the left-hand border and ends at H(p*™ —¢). According
to (2.1), this end lies before station’s length [. (2.2) calculates the sequence
length N such that a sequence of N — H basic models resets position from the
right most point H(p™ — ¢) back to the left-hand border. Therefore, (i) holds.
If only feasible subsequences are concatenated, there is no interplay between
the subsequences and (ii) holds. [

Proposition 2.2. For the BY approach, CS-feasibles~MMS-feasible.

Proof: We prove by giving a counterexample to the contradiction of our propo-
sition: CS-feasible<—MMS-feasible. For the above example with [ = 15, ¢ = 10,
pt =12 and p~ = 7, the sequence m =< +, +, —, +] is MMS-feasible (compare
movement diagram of Figure 2.1). “+” and “-” represents an option model and
basic model, respectively. In the movement diagram, workers accompanying

10
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Figure 2.1: Counterexample for CS-feasible «<— MMS-feasible

cycle time ¢ € [10, 20]
station length [ € (c,40]
processing time of option models p™ € (c,]]
processing time of basic models p~ €[1,¢)

Table 2.1: Parameter settings

their workpiece are solid horizontal lines; return movements are dashed diag-
onal lines. The BY approach yields a 2 : 4-rule, which is violated by sequence
7. Thus, m is MMS-feasible but not CS-feasible and the proposition holds. [

A MMS-feasible sequence is only considered by the BY approach as CS-
feasible, if it allows the worker to reset to the left-hand border again after pro-
cessing at most /N consecutive models. Feasible sequences where this is not the
case (see example in Figure 2.1) violate at least one sequencing rule and won’t
be found by CS applying the BY rules. Although CS-feasible«~MMS-feasible
holds in general, there are two special cases for which CS-feasible<—MMS-
feasible holds:

1. H=1and [l —p" <r, with

[0t =0 mod (e—p) i —c) mod (e—p) >0,
c—p~ if (p* —¢) mod (c—p~) =0.

After each option model, at least N — H basic models must be pro-
cessed before the next option model can follow. Therefore, every feasible
sequence allows the worker to reset after at most /N successive models.

2. N—H=1.
The worker resets immediately to the left-hand border by processing
one basic model. Since only H option models can be processed consec-
utively without inducing work overload, every feasible sequence allows
the worker to reset after at most H + 1 = N successive models.

For the one and two station case, we study the number of sequences in
percent for which CS-feasible«~MMS-feasible holds. For each sequence length

11
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T, we create 1,000 random problem instances. The parameters settings c,
[, pT, and p~ of each instance are chosen randomly according to Table 2.1.
For one station (two stations) and 7" < 22 (< 12), we consider all possible
sequences by enumeration; for larger T', at least 1,000,000 random sequences
are generated for each instance. If necessary, the sampling size is increased
until it contains at least 10 MMS-feasible sequences.

50
45
¥ 40
@ 35
5 X
% 30 X —
i-og X/ "//
D 25 - -
w ’
S 20 (7 el
2 e
g 15 ¢ //
10 one station —+— -
5 4 _ two stations ————
T

Figure 2.2: Number of misclassified sequences where CS-feasible«~MMS-
feasible (in %)

For each sequence, we determine the CS-feasibility using the sequencing rules
obtained by the BY approach as well as the MMS-feasibility. Figure 2.2 shows
the number of sequences (in percent) that are MMS-feasible but CS-unfeasible.
For example, when considering only one station and a sequence length of
T = 30, then about 33% of MMS-feasible solutions are classified by the BY
approach as unfeasible. The percent of sequences where CS-feasible<~MMS-
feasible increases with 7" and with the number of stations.

In summary, all sequences that are CS-feasible are also MMS-feasible. How-
ever, a large portion of MMS-feasible solutions are incorrectly classified by the
sequencing rules obtained from the BY approach to be CS-unfeasible. There-
fore, using this sequencing rules in optimization approaches that search for fea-
sible solutions can be problematic since many feasible solutions are excluded
from the search space.

12
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2.4 MSR - A novel rule generation approach

We propose a new rule generation approach with multiple sequencing rules
(MSR) for stations with one option and two processing times. The new ap-
proach generates a number of sequencing rules which correctly classifies se-
quences to be either feasible or unfeasible.

The MSR approach calculates k,,;,, which is the maximum number of suc-

cessive option models, as
1 —
i = { ¢ J : (2.3)

pt—c

Emin equals H from the BY approach (2.1). Consider a sequence of length
T with k option models and T' — k basic models. After processing the whole
sequence a worker can be at most [ — ¢ time units away from the left-hand
station border without inducing work overload. Thus, [ —¢ > k(p™ —c¢) — (T —
k)(c — p~) holds. Rewriting this inequation leads to the maximum number of
option models k,,,, that may occur in a sequence of length 7"

| o

MSR generates kyae—kmin-+1 different sequencing rules H*=kmint1 . Nk=kmin+1
with
HY Fmintt = | and N¥Fmintl = 4 (2.5)

Vk S [kmina k‘maw} and

- Fc(z9+ —o— (- p*)w . (2.6)

cC—p

Eq. (2.6) is a modification of (2.2) of the BY approach and calculates the min-
imum number of basic models m that are required after k option models before
another option model can be processed. For an example with [ = 17, ¢ = 10,
pt = 13, and p~ = 5, the BY approach returns a 2 : 4 rule. For a sequence
of T = 4, MSR generates two rules H' : N! =2 : 3 and H? : N? = 3 : 4.
A sequence that satisfies all rules generated by MSR is CS-feasible. For the
situation that three option models (4) and one basic model (-) need to be
assembled, Figure 2.3 shows the four different sequences (71, ..., m4) which are
correctly classified by the MSR approach to be either feasible or unfeasible.
The BY approach would wrongly classify all four sequences as CS-unfeasible.

Proposition 2.3. For the MSR approach, CS-feasible — MMS-feasible.

Proof: We prove by contraposition and show CS-unfeasible<—MMS-unfeasible.
A MMS-unfeasible sequence contains at least one option model at position j

13
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Figure 2.3: Example for the MSR approach with sequences that assemble three
option models (+) and one basic model (-)

with starting time s; > | — p*. Processing the option model at position
J leads to work overload. W.l.o.g. j is the first position in the sequence,
where work overload occurs. Position ¢ = maz(z|z < j As, = 0) is the
last time where the worker resets before j. ¢ always exists, since the se-
quence starts with s; = 0. We neglect all models at positions less than ¢
since they have no influence on s;. Furthermore, we only consider the sub-
sequence 7; ;) excluding the option model at position j. Since no reset or
work overload occurs in 7; 5, the starting time s; is the sum of the displace-
ments of all models in 7j; ;. With k option models and 77 basic models,
s;j = k(pt —¢)+m(p~ —¢) = k(p* —¢c) —m(c—p7) > 1 —pt. Since
Eoin < k < Emaz, & sequencing rule exists for k with Nk—kmintl — & 4y Ac-
cording to (2.6), this sequencing rule demands [ —p*™ > k(p* —c) —m(c—p~).
Therefore, k(p™ —c)—m(c—p~) > k(p™ —c) —m(c—p~) which leads to m > .
The subsequence 7; j) has a length lower than N k=kmint1 Hhut already contains
k option models. Having an option model at position j does not only induce
work overload but also leads to a violation of the respective sequencing rule,
since the subsequence 7; jj = m; ;) + {j} has length < N*“*mint1 but contains
k + 1 option models. This completes the proof that CS-unfeasible«MMS-
unfeasible and therefore CS-feasible—MMS-feasible. [

14
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Proposition 2.4. For the MSR approach, CS-feasible < MMS-feasible.

Proof: We use a contraposition proof and show CS-unfeasible — MMS-
unfeasible. A CS-unfeasible sequence violates at least one sequencing rule.
Thus, a subsequence 7 of length t = k 4+ m with k € [knin, kmaz] contains at
least k+ 1 option models and m — 1 basic models. W.l.o.g. the violation occurs
at the last position in 7. Therefore, in the first ¢ — 1 positions of 7, there are k
option models and m—1 basic models. The first position ¢ in 7 has starting time
s;. Assuming that no work overload occurs in the first t—1 positions, the start-
ing time s; of the last position j in 7 must be > s; +k(p* —¢) —(m—1)(c—p7).
For s; > 0 and k(p™ —¢) — (m — 1)(c—p~) > 1 — p* (compare (2.6)), we get
si + k(pt —¢) —(m—1)(c—p~) > 1 —p" and hence s; > | — p*. Therefore,
the option model at position j induces work overload. This completes the
proof that CS-unfeasible—+MMS-unfeasible and therefore CS-feasible<—MMS-
feasible. [

MSR has the disadvantage that the number k,,,, — kpnin + 1 of sequencing rules
is relatively large and some of the rules are redundant in the sense that they
are covered by other rules. We introduce the concept of strictness.

Definition 2.1. A sequencing rule H : N is stricter than another sequencing
rule P : @, if all possible permutations of option and basic models for a given
model mix which are feasible under H : N are also feasible under P : () but
at least one permutation exists which is unfeasible under H : N, but feasible

under P : Q).

A test for strictness compares the maximum number of allowed option models
within a subsequence of length N and @, respectively. In a sequence of length
T, the maximal number of option models allowed by sequencing rule H : N
is H|Z| 4+ min(T mod N; H) (Fliedner and Boysen, 2008). Thus, H : N is
stricter than P : @Q, if

H L%J +min(¢) mod N;H) < P, and (2.7)

H#PVN#Q (2.8)

(2.7) ensures that the number of option occurrences under rule H : N never
exceeds P for any feasible subsequence of length ). Thus, any permutation
which does not violate the H : N rule is also feasible for P : (). Inequalities
(2.8) ensure that both rules are not identical. For an example with [ = 20,
c =10, p" =20, p~ =0, and T = 10, MSR generates five rules 1 : 2, 2 : 4,
3:6,4:8 and 5 : 10. According to strictness, the latter four rules are
redundant and the rule set can be reduced to a single 1 : 2 rule.

15



Chapter 2 Analysis and design of sequencing rules for car sequencing

(7)) 200 T T T T T

@ MSR —— v
2 MSRstrict ---------- e

w 150

) /

o) pd

9 100 [ i
g iy

[ Y0 T S R

© o ket

50 100 150 200 250 300 350 400
T

Figure 2.4: Average number of sequencing rules against sequence length T for
MSR and MSRstrict, which removes redundant rules.

Note that redundant rules can not be identified by interpreting rules as
fractions and arguing that rule H : N is stricter than rule P : Qif H/N < P/Q.
Such an argumentation may lead to wrong results. For example, in a feasible
sequence of length 7' = 4, we assume two option models and two basic models
leading to six possible permutations. A 1 : 2 classifies three of them as feasible.
The conjecture that a 2 : 5 rule is more strict (2/5 < 1/2) is wrong since 2 : 5
classifies all six permutations as feasible.

For different T', we study the number of redundant sequencing rules for
problems with one station. We create 1,000 random problem instances with
parameters from Table 2.1. Figure 2.4 shows the average number of sequencing
rules generated by MSR against the sequence length T with and without elim-
inating redundant sequencing rules. The MSR approach using strictness for
the elimination of redundant sequencing rules is denoted as MSRstrict. When
eliminating redundant rules, the number of sequencing rules can approximately
be cut in half. For 7" = 50, MSR generates on average 22.5 sequencing rules
per station; MSRstrict, which eliminates redundant rules, only produces on
average 12.6 rules.

In summary, the new MSR approach for one option per station with two
processing times generates multiple sequencing rules. It correctly classifies all
sequences either as feasible or unfeasible. The definition of strictness is able to
halve the number of necessary rules for MSR by eliminating redundant rules.

2.5 Multiple processing times

Although the literature focused on rule generation approaches for stations with
only two possible options (Bolat and Yano, 1992), in real life, options with
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multiple processing times per station are common. For example, in automobile
assembly, sunroofs can come in three options with no sunroof, manual, or
electric; transmission may be manual or automatic in 4 to 6 speeds; onboard
electronic devices, such as stereo systems can come in various configurations.
Furthermore, multiple options (parts or modules) might need to be installed
per station.

We assume more than two models m € M with diverging processing times
Pm. M is split into two subsets M* = {m € M|p,, > ¢} and M~ = {m €
M|p,, < ¢} containing all models with processing time larger and smaller
than cycle time ¢, respectively. All models with p,, = ¢ are excluded from
consideration, as their production does not modify the ending position within
the station. Thus, they can never produce additional work overload and can
be scheduled at facultative sequence positions.

We reduce the multiple options case to the two option case by introducing
one virtual option per station. All models m € M™ require the virtual option
with processing time p¥*; all m € M~ with processing time p’~ do not require
the virtual option. For the virtual processing times p’" and p¥~, there are
different possibilities: using the maximal (MAX), average (AVG), or minimal
(MIN) processing times of each set:

MAX: p't = . V- — - 2.9
p errel%{p 1, p rg%}_{p } (2.9)
Z M+{pm} _ Z M*{pm}

AVG: pt = ZmeMiiml pUm = ZmeM— LTm (2.10)
| M| | M|
MIN: p** = min {p,, v~ — min {p,, 2.11

p"" = min {pn}, p’" = min {pn} (2.11)

Having two options (either the virtual option or not) and corresponding pro-
cessing times, sequencing rules can be derived using either the BY or MSR
approach. We give an example with four models to be processed at a station
with length [ = 10 and cycle time ¢ = 5. M* = {1,2} contains two models
with processing times p; = 8 and py = 6. Models 3 and 4 with processing
times of p3 = 4 and py = 2 belong to set M~. Models 1 and 2 require the vir-
tual option; models 3 and 4 are declared as basic models. Using the maximal
processing times (MAX), we get p*" = 8 and p*~ = 4. For a sequence length
T = 4, the BY approach results into a 1 : 4 rule and the MSR approach to
rules 1:2 and 2 : 6.

Proposition 2.5. For the virtual option approach with MAX aggregation, CS-
feasible— MMS-feasible.

Proof: CS-feasible—+MMS-feasible holds for both the BY and MSR approach
with one option and processing times p™ = p’" = max,,cp+{pm} and p~ =
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7’

CS-unfeasible MMS-feasible

T[:<++I_I_] " 0 1" 1--r 1.8
Figure 2.5: Counterexample for CS-feasible«~MMS-feasible

p’" = maxX,,ep-{pm}. Having additional options m € M™ with processing

pm < p't and m € M~ with processing p,, < p'~ can only move ending times
to the left and never lead to additional work overload. [

In contrast, for the AVG and MIN aggregation, CS-feasible—MMS-feasible
does not hold, which could simply be proven by a counterexample.

Proposition 2.6. For the virtual option approach with MAX aggregation, CS-
feasibles~ MMS-feasible holds.

Proof: We prove by a counterexample to the contradiction of our proposition:
CS-feasible<—MMS-feasible. Consider the example with [ = 10, ¢ = 5, p; = 8,
po="06,p3=4,ps =2, M+ ={1,2}, and M~ = {3,4}. Any possible sequence
of four different models is MMS-feasible. The BY approach returns a 1 : 4 rule.
Since model 1 and 2 require the virtual option, no CS-feasible sequence exists.
The MSR approach leads to rules 1 : 2 and 2 : 6. Therefore, all sequences
where model 1 directly follows model 2 and vice versa, are CS-unfeasible. Fig-
ure 2.5 shows a sequence that is MMS-feasible but CS-unfeasible for both, the
BY and MSR approach. [J

For the BY approach, both AVG and MIN aggregation lead to CS-feasible«~MMS-
feasible. For MSR and AVG aggregation, CS-feasible«~MMS-feasible. Com-
bining MSR with MIN aggregation results into CS-feasible<—MMS-feasible.
Since CS-feasible«—MMS-feasible holds for the case with only two processing
times, it also holds for the virtual option case since all options m € M* and
m € M~ have processing times larger than p’* and p“~, respectively.

For the three aggregation possibilities, we study the classification quality as
the number of sequences in percent for which CS-feasible«~MMS-feasible and
CS-feasible-» MMS-feasible holds, respectively. Experimental design follows
Section 2.3. For either three, four, or five different processing times (and thus
models) and various sequence lengths 7' € {10,15,20}, we generate 1,000
random problem instances according to the parameters given in Table 2.1. For
T = 10, we consider all possible sequences; for larger T', at least 1,000,000
random sequences for each instance are sampled. Sampling size is iteratively
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Figure 2.6: Number of misclassified sequences (in percent) for 7' = 10

increased by a factor of 1,000,000 until it contains at least 10 MMS-feasible
sequences.

For each sequence, we determine MMS-feasibility. Furthermore, for the
virtual option approach with MAX, AVG, and MIN aggregation, we determine
CS-feasibility using either the BY or MSR approach. For T' = 10, Figure 2.6(a)
shows the number of sequences (in percent) that are MMS-feasible but not CS-
feasible (CS-feasibles~MMS-feasible) in relation to the number of processing
times p. Table 2.2 lists complete results for different 7" and p.

Using MAX aggregation, the number of feasible solutions that are wrongly
classified as CS-unfeasible is highest. For MAX and AVG aggregation, the
percentage of wrongly classified sequences increases the more processing times
p are considered; for MIN it decreases. In comparison to BY, MSR misclassifies
a lower percentage of sequences. As mentioned before, combining MSR and
MIN leads to CS-feasible«—MMS-feasible.

Analogously, Figure 2.6(b) presents the number of sequences (in percent)
that are CS-feasible but not MMS-feasible (CS-feasible-~»MMS-feasible) against
p for T'=10. In comparison to AVG aggregation, MIN aggregation leads to a
higher percentage of wrongly classified sequences. The BY approach correctly
classifies a higher number of sequences than the MSR approach.

A tradeoff can be observed between CS-feasible«~MMS-feasible and CS-
feasible-»MMS-feasible. Aggregations that misclassify a large number of MMS-
feasible sequences as CS-unfeasible, misclassify a lower number of MMS-unfeasible
sequences as CS-feasible and vice versa. This tradeoff applies to both the BY
and MSR approach.

Wrongly classifying an MMS-unfeasible sequence as CS-feasible is problem-
atic when searching for feasible sequences. Executing such an MMS-unfeasible
sequence would lead to unforeseen overhead and causes large additional cost.
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BY approach MSR approach
p agg. classification error T=10 T=15 T=20 T=10 T=15 T=20

MAX CS-feasible <+~ MMS-feasible 40,23 48,57 53,98 30,24 36,86 41,43

CS-feasible <~ MMS-feasible 29,10 36,35 41,22 16,26 21,21 24,96
CS-feasible - MMS-feasible ~ 4,42 6,17 7,50 8,64 12,11 14,82

CS-feasible «- MMS-feasible 8,71 12,28 1529 0,00 0,00 0,00
CS-feasible - MMS-feasible 23,11 27,91 31,13 29,14 35,29 39,30

MAX CS-feasible «~ MMS-feasible 52,83 62,21 67,41 45,76 54,57 59,87

CS-feasible <~ MMS-feasible 34,38 43,11 48,96 2244 2921 33,95
CS-feasible - MMS-feasible 6,61 9,59 11,09 12,60 17,73 21,73

CS-feasible <+~ MMS-feasible 4,65 6,95 8,64 0,00 0,00 0,00
CS-feasible - MMS-feasible 36,52 44,13 49,13 41,97 50,36 55,57

MAX CS-feasible <+~ MMS-feasible 59,12 68,70 73,99 52,93 62,48 68,04

CS-feasible +~ MMS-feasible 36,27 4547 51,60 24,41 31,89 37,16
CS-feasible - MMS-feasible ~ 7,93 11,14 13,55 1441 20,11 24,67

CS-feasible <+~ MMS-feasible 2,73 3,83 4,89 0,00 0,00 0,00
CS-feasible - MMS-feasible 42,67 51,61 57,47 46,89 56,24 62,04

3 AVG

MIN

4 AVG

MIN

5 AVG

MIN

Table 2.2: Percentage of sequences where CS-feasible<~MMS-feasible and CS-
feasible-~MMS-feasible, respectively

Therefore, for multiple processing times, we only find MAX aggregation useful
since it guaranties that every CS-feasible sequence is also MMS-feasible. Com-
bining MAX aggregation with MSR finds a larger number of MMS-feasible
solutions in comparison to the BY approach. Again, this comes for the price
of an enlarged rule set.

2.6 Conclusion

This paper investigates the classification quality resulting from existing and
novel procedures for generating car sequencing rules, where quality is measured
by the fraction of sequences for which a generated rule set properly predicts
whether or not work overload occurs. Analytical and empirical results show a
superior classification quality of our novel MSR approach for both the two and
multiple processing times case. However, this comes for the price of additional
sequencing rules to be introduced per instance. Thus, to benefit from more
accurate rules, solution procedures are required which are able to handle large
rule sets. Furthermore, future research should investigate the optimization
version of minimizing work overload. Here, special rule generation procedures
are required which additionally derive option-specific penalty values weighting
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rule violations according to the resulting amount of work overload.

Bibliography

Bolat, A. and Yano, C. (1992). Scheduling algorithms to minimize utility work
at a single station on a paced assembly line. Production Planning & Control,
3(4):393-405.

Boysen, N., Fliedner, M., and Scholl, A. (2009). Sequencing mixed-model
assembly lines: Survey, classification and model critique. European Journal
of Operational Research, 192(2):349-373.

Drexl, A. and Kimms, A. (2001). Sequencing JIT mixed-model assembly
lines under station-load and part-usage constraints. Management Science,

47(3):480-491.

Fliedner, M. and Boysen, N. (2008). Solving the car sequencing problem via
branch & bound. FEuropean Journal of Operational Research, 191(3):1023—
1042.

Parrello, B. D., Kabat, W. C., and Wos, L. (1986). Job-shop scheduling using
automated reasoning: A case study of the car-sequencing problem. Journal
of Automated Reasoning, 2(1):1-42.

Solnon, C., Cung, V., Nguyen, A., and Artigues, C. (2008). The car sequencing
problem: Overview of state-of-the-art methods and industrial case-study of
the ROADEF’2005 challenge problem. Furopean Journal of Operational
Research, 191(3):912-927.

Wester, L. and Kilbridge, M. D. (1964). The assembly line model-mix se-
quencing problem. In Proceedings of the Third International Conference on
Operations Research.

21



Chapter 3

Car sequencing versus
mixed-model sequencing:
A computational study

Uli Golle, Franz Rothlauf, Nils Boysen

Abstract

The paper deals with the two most important mathematical models for
sequencing products on a mixed-model assembly line in order to min-
imize work overload, the mixed-model sequencing (MMS) model and
the car sequencing (CS) model. Although both models follow the same
underlying objective, only MMS directly addresses the work overload
in its objective function. CS instead applies a surrogate objective using
so-called sequencing rules which restrict labor-intensive options accom-
panied with the products in the sequence. The CS model minimizes the
number of violations of the respective sequencing rules, which is widely
assumed to lead to the minimization of work overload. In this paper,
we present a first experimental investigation of CS compared to MMS
in order to quantify the gap in the solution quality between both mod-
els. Therefore, several variants of CS are applied, combining different
sequencing rule generation approaches and objective functions found in
the literature as well as a newly introduced weighting factor. The linear
relation between the objectives of both models is analyzed using Pear-
son’s correlation coefficient and the performance of the different models
is evaluated on several random test instances. Although both objectives
are positive linearly related, our results show that a sequence found by
CS contains on average at least 15% more work overload than a solution
found by MMS.
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3.1 Introduction

On a mixed-model assembly line, various car models are produced in facultative
sequence with a lot size of one. These models vary in a number of options and,
therefore, require different processing times at the stations of the line. Since a
station is balanced to an average production time, a sequence with consecutive
work intensive models could lead to work overload of the line operators as the
assembly task can not be finished within the station limits. Work overload has
to be compensated, e.g., by employing additional utility workers or stopping
the line. In order to minimize the amount of work overload, two approaches are
present in the literature, mixed-model sequencing (MMS) and car sequencing
(CS). Although both pursue the same underlying objective, their approaches
are very different.

MMS (Wester and Kilbridge, 1964) directly minimizes the amount of work
overload. Therefore, it explicitly considers processing times, worker move-
ments, stations borders, and other operational characteristics of a line. This
level of detail results in a high effort for data collection and computation time.
On the other hand, CS (Parrello et al., 1986) uses a more simplified surrogate
objective for work overload. It applies so-called sequencing rules, which restrict
the maximum occurrence of options in any subsequence of defined length. The
aim is to find a production sequence with a minimum number of rule viola-
tions. Since CS is more aggregated than MMS, its data requirements are lower
and the evaluation of sequences is faster. Furthermore, sequencing rules seem
more intuitive to human decision makers.

In the past decade, CS experiences more attention in the literature mainly
due to its practical relevance. For instance, the automobile manufacturer Re-
nault launched a contest in 2005 resulting in 51 inscriptions, where the aim
was to optimize different real-world CS instances from Renault’s plants (Sol-
non et al., 2008). Puchta and Gottlieb (2002) apply other real-world examples
from a German car manufacturer as well. However, the literature on CS al-
most exclusively deals with different solution approaches, leaving the question
open to what extend the surrogate objective of CS actually leads to the un-
derlying goal of minimizing the amount of work overload. The accuracy of CS
in identifying sequences with minimum work overload clearly depends on the
suitability of the applied sequencing rules and how rule violations are evaluated
in the objective function. Two rule generation approaches, one by Bolat and
Yano (1992b) and the Multiple Sequencing Rule approach (MSR) of Chapter
2, exist. Furthermore, three frequently used objective functions for CS have
been proposed in the literature.

In this paper, we examine the solution quality of CS compared to MMS.
CS is applied with different combinations of sequencing rules and objective
functions as well as a newly introduced weighting factor. First, we perform
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a correlation analysis in order to investigate the linear relationship between
both objectives, the number of sequencing rule violations and the amount of
work overload. Second, by analyzing optimal solutions and evaluating the
performances of both models on various test instances, we determine the gap
in the solution quality that comes along with CS compared to MMS. Our
results reveal the following insights:

e The objectives of CS and MMS are positive linearly related using Pear-
son’s product moment correlation coefficient.

e A sequence found by CS contains on average at least 23% more work
overload than a solution found by MMS. If inadequate sequencing rules
and/or objective functions for CS are used, this gap can increase up to

75%.

e The gap in the solution quality can be decreased to 15% by considering
our new weighting factor.

Overall, our results show that CS with its surrogate objective aggregates too
much from the underlying objective of minimizing the work overload. There-
fore, the CS model is not able to produce competitive results in terms of
solution quality compared to MMS. Our contribution in this regard is to pro-
vide estimates of the resulting gap of work overload when using CS and not
MMS. Based on our findings, we encourage both, researchers and practitioners,
to concentrate more on MMS instead of CS in future research and practical
applications, respectively.

The remainder of the paper is structured as follows. Section 3.2 states the
MMS approach and assumptions made for the paper on hand. The CS model
is introduced in Section 3.3 together with the rule generation approaches, the
objective functions as well as the weighting factor considered in this paper.
The computational study along with its results is presented in Section 3.4,
followed by a critical discussion about the advantages of CS in Section 3.5.
Finally, Section 3.6 concludes the paper.

3.2 Mixed-model sequencing

MMS was introduced by (Wester and Kilbridge, 1964) and aims to find a se-
quence of different models m € M with minimum total work overload based on
a detailed schedule. Work overload occurs, whenever an operator is not able to
finish assembly operations on a current workpiece within the station’s bound-
aries. MMS explicitly takes several operational characteristics of the line into
account, such as processing times, station borders, operator movements, and
others (for an overview see Boysen et al., 2009). The range of characteristics
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and, thus, MMS models makes it impossible to examine the appropriateness of
CS for any possible MMS setting. Therefore, we apply the basic MMS problem
as our benchmark model, which is based upon the following assumptions (see
Scholl, 1999, p. 96; Boysen et al., 2009)

T number of production cycles (index t)

M number of models (index m)

K number of stations (index k)

c cycle time

d,, demand for model m

i length of station &

Pmk  Processing time of model m in station k

Sk starting time of the tth model in station k

wgt  work overload induced by the tth model in station &

Tm¢ binary variables: 1, if model m is produced in slot ¢, 0 oth-
erwise

Table 3.1: Notation

e Without loss of generality assembly lines flow from left to right.

e All stations are closed, i.e. operators are not allowed to work beyond the
station borders.

e All stations are consecutively arranged along the line and models move
with constant speed through the stations.

e The processing of a model starts early, i.e. as soon as operator and model
meet within the station boundaries.

e An operator has zero return times, i.e. when having finished one model
moves with infinite speed to the next model. This assumption is ade-
quate, since the speed of the conveyor is usually much slower than the
operators walking speed. Otherwise the cycle time ¢ can be reduced to
include the average return time.

e Fixed rate launching is applied, i.e. consecutive models are placed on
the conveyor at the same interval equal to the cycle time c.

e The demands d,, of the models are given for the whole planning period
and remain unchanged, i.e. no rush orders are allowed.

e The number of stations K and their respective lengths [, with k € K,
are given, e.g., from the solution of the preceding balancing problem.
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e All processing times p,,. of models m € M in stations k € K are static
and deterministic.

® Dok <l Vm e M;k € K holds, otherwise sequence-independent work
overload would occur whenever the respective model is processed.

e Work overload wj,; induced by the tth model of the sequence in station
k is immediately compensated by additional utility workers within the
station borders, such that the starting time sy, of the respective model
in the subsequent station k + 1 is not affected.

Considering the aforementioned assumptions and the notation summarized
in Table 3.1, we get the following MMS model (Scholl, 1999, p. 105; Boysen
et al., 2009):

K T
(MMS) Minimize obj,, = » Y w (3.1)
k=1 t=1
subject to
T
Y g =dn VmeM (3.2)
t=1
Y a=1 Vt=1,....T (3.3)
meM
Skt = Skt—1+ mek-a:mi_l—c—wk,t_l Vek=1,....K;t=2,...,T
meM
(3.4)
Sket Y Pk T — Wi <l Vh=1,.. Kit=1,..T
meM
(3.5)
S>>0 Vhk=1,... Kit=1,...,T
(3.6)
we >0 VYk=1,..., Kit=1,....,T
(3.7)
sm=0 Vk=1,... K (3.8)
T €{0,1} Vme M;t=1,...,T (3.9)

The total work overload over all stations £ € K and production slots t is
minimized (3.1). Equations (3.2) and (3.3) ensure that the demand d,, for
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each model is met and each slot in the sequence contains exactly one model.
Furthermore, the processing of a model at position ¢ in station k cannot start
until the respective operator has processed the preceding model at position
t —1 (3.4). Potential work overload is immediately compensated and, thus,
is not affecting subsequent starting times (3.5). (3.5) together with (3.6) also
model closed stations. Work overload is required to be nonnegative (3.7). The
line is assumed to be in an initial condition before processing the entire se-
quence (3.8), thus, an operator awaits the first model at the left-hand station
border. Note, that for comparative reasons we do not require to reach this ini-
tial condition again after processing the entire sequence, since this constraint
can not be modeled with CS. Finally, z,, take only binary values (3.9).

Example: Consider an example with a sequence length of 7' = 11, one
station K = 1 and two models M = 2. Furthermore, we have the cycle time
¢ = b, the length of the single station /; = 12 and model 0 (model 1) with a
demand of dy = 7 (d; = 4) and processing time py; = 3 (p1; = 10). Figure
3.1 shows the movement diagram for the example sequence < 01110001000 >.
In a movement diagram, the operator movements within a station necessary
to process the sequence are visualized. Processing times are represented by
horizontal lines, return times by diagonal dashed lines. The operator starts
processing at the left-hand station border at position 0. The example sequence
contains a copy of model 0 at the first slot. After assembling this model, the
operator returns back to position 0 and processes model 1 at slot 2. Since model
1 requires a processing time of p;; = 10, the operator fails to reach the left-
hand station border again after finishing it. Instead he meets the subsequent
model, which already crossed the left-hand station border, at position 5. Again
a copy of model 1 needs to be processed which leads to a work overload of 3. It
is assumed that the work overload is immediately compensated, therefore, the
operator meets the 4th model at position 7 in the station and so on. Note, that
the example sequence leads to a total work overload of 8, since the operator
is not able to finish the respective models at slots 3 (work overload wy3 = 3)
and 4 (w4 = 5) in time.

3.3 Car sequencing

Compared to MMS, CS is a more aggregate approach for finding a produc-
tion sequence with minimum work overload. Presupposed is a pool of various
models m € M as well as their required demands d,,,. The models can be dis-
tinguished by several binary options (such as a car having an air conditioning
or not). CS employs H, : N, sequencing rules in order to restrict the occur-
rences of each option o € O in any subsequence of N, succeeding models to
at most H,. For example, a sequencing rule of 2 : 3 for the option “air con-
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Figure 3.1: Movement diagram for example sequence

T number of production slots (index t)

@) number of options (index o)

H,: N, sequencing rule for option o: at most H, out of N, succes-
sively sequenced models require option o

pr processing time of models with option o

D, processing time of models without option o

Qom binary variables: 1, if model m contains option o, 0 otherwise

Tt binary variables: 1, if model m is produced in slot ¢, 0 oth-
erwise

Q. number of sequencing rules for option o (index ¢)

HI: NI gth sequencing rule for option o

Table 3.2: Additional notation for CS

ditioning” requires that in any subsequence of 3 consecutive models at most 2
models contain this option, otherwise a violation occurs. The objective of CS
is to minimize the number of sequencing rule violations over all options.

The existing CS literature implicitly assumes that the surrogate objective of
minimizing the number of rule violations is associated with the minimization
of work overload. However, to our best knowledge it has never been examined
if this assumption applies. By all means, suitable sequencing rules and an
appropriate objective function are required in order to accomplish the under-
lying objective of minimizing work overload. We identify two sequencing rule
generation approaches and three frequently applied objective functions in the
literature that are considered in this paper.
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3.3.1 Sequencing rule generation approaches

Bolat and Yano sequencing rule approach (BYSR)

Bolat and Yano (1992b) derive sequencing rules for CS based on operational
characteristics of the assembly line. For this purpose, they assume that ex-
actly one option o € O is processed at each station k € K, therefore we use
the notations o and O synonymously for k£ and K, respectively. Since CS ap-
plies binary options, each option has merely two processing times. A model
requiring option o has processing time p larger than the cycle time ¢, while
a model without this option needs processing time p_, which is lower than c.
Thus, we have p; < ¢ < pf < l,. Given these assumptions, the Bolat and

Yano Sequencing Rule (BYSR) approach computes a sequencing rule H, : N,
for option o by:

l,—c
H, = L ¥ _CJ and (3.10)
H . (pt —
N,=H,+ ’V()C(_p#p_d—‘ Yo € O. (311)

H, is the maximum possible number of consecutive models having option
o that can be processed without inducing work overload. N, is computed
by adding to H, the number of succeeding models without option o that are
required to shift the operator back to the left-hand station border after pro-
cessing H, models with option o.

Example: Consider the aforementioned example with [; = 12,¢ = 5,p~ =
po1 = 3,p" = p11 = 10. Then, H, amounts to 1 and N, to 4, and therefore the
BYSR approach returns a sequencing rule of 1 : 4.

Multiple sequencing rules approach (MSR)

In Chapter 2, it was shown that the BYSR approach has some defects re-
garding the identification of feasible sequences, considering MMS and CS as
constraint satisfaction problems. The rules generated by BYSR are too restric-
tive. Therefore, a certain amount of actually feasible sequences, that contain
no work overload, is missclassified by CS, as they violate at least one sequenc-
ing rule. This impedes the search process of CS, since the search space of
overall feasible solutions is reduced. Therefore, Section 2.4 introduced the
multiple sequencing rules (MSR) approach to diminish the defects.

MSR builds up on the same assumptions as the BYSR approach. Hence,
exactly one option o € O is processed at each station k € K with two pro-
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cessing times p for models with option o and p, for models without o, with
p, < c<pl <l, Instead of a single rule per option o € O, MSR introduces
multiple sequencing rules HJ : N, with ¢ = 1,...,@Q, and (), being the total

number of sequencing rules for option o. @, amounts to ¢ — ¢™" + 1 with:

min lo —c

q) :{ SL—CJ Yoe O (3.12)
T(c—p- _

q;mw:{ G ;’j >_+pfl0 C)J Yo € 0. (3.13)

min

""" equals H, from the BYSR approach and returns the maximum number

of successive models containing option o without inducing work overload. ¢***

computes the maximum number of models with option o that can occur in a
sequence of length T without work overload.

Then, Vg, € [¢g™", ¢™*], MSR generates a sequencing rule HE % T

_ min+1 .
N1 with:

__min
HP~%" = ¢

» YoeO (3.14)

min min o - - l —py
Ngo—qo +1 _ Hgo—qo +1 + ’Vq (pa C) _( Po )—‘ Yo € 0. (3.15)

The last term of (3.15) computes the minimum number of models without
option o that are required after processing ¢, models with o in order to process
another model containing o without inducing work overload.

Ezample: Consider again our example with [y = 12, ¢ = 5, p~ = pg1 = 3,
pT = p11 = 10 and assume a sequence length 7' = 11. Then, ¢ is 1 and
¢ amounts to 4, thus, four sequencing rules are needed overall. With (3.14)
and (3.15), we get H! : N} =1:3, H2 : N2 =2:6, H> : N> =3 : 10 and
HY:N}=4:13.

3.3.2 Objective functions and model formulation

Several objective functions for CS have been proposed in the literature (Boysen
et al., 2009). In this paper, we consider the three most widely used, the sliding
window (SW) objective function (Gottlieb et al., 2003; Gagne et al., 2006;
Fliedner and Boysen, 2008), an objective function introduced by Fliedner and
Boysen (2008) and one by Bolat and Yano (1992a). Furthermore, we adjust
these objective functions to incorporate more than one sequencing rule per
option and introduce additional weights that allow to differentiate between
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1 2 3 4 5 6 7 8 9 10 11]obj,
1:4{0 1 1 1 0 0 0 1 0 0 0] 3

I 1 violations |

| 1 violations |

| 0 violations |

Figure 3.2: Evaluation of example sequence with SW objective function

the impact of violations of different options on the resulting work overload.

CS evaluates a sequence by sliding through the sequence and summing up
the violations of each relevant subsequence, also called windows. A violation
occurs, if a window for option o contains more than H, occurrences of the re-
spective option. The three objective functions differ in the windows considered
as well as in the amount of violations a single window can provoke. The SW
objective function counts all windows of size N, that are violated. Every vio-
lated window leads to exactly one violation in the objective function, regardless
how many excessive option occurrences it contains. With notations from Table
3.2, the SW objective function results in the following model (Gottlieb et al.,
2003; Gagne et al., 2006; Fliedner and Boysen, 2008):

Minimize objg, = Y v, (3.16)
0€0
with
T—No+1 t+No—1
Uy = Z min {1;max{ Z Z Com * Tt — HO;O}} Yoe O (3.17)
t=1 t'=t meM

subject to (3.2),(3.3) and (3.9).

(3.16) minimizes the total number of violations over all options. (3.17)
assesses all violated subsequences of size N,. Figure 3.2 considers our afore-
mentioned example sequence from Figure 3.1 together with the 1:4 sequencing
rule obtained by the BYSR approach. The first window from slot 1 to 4 is
violated due to three occurrences of option 0. So is the second window from
slot 2 to 5. Overall, the SW objective function amounts to three violations.

Fliedner and Boysen (2008) introduce a different objective function (FB),
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2 3 4 5 6 7 8 9 10 11| obj,
:4/0 1 1 1 0 0 0 1 0 0 0 2

I 0 violations |

| 1 wviolations |

0 violations

Figure 3.3: Evaluation of example sequence with FB objective function

an improvement of a quite similar function by Gagne et al. (2006). In order to
eliminate some defects of the SW approach, where violations at the beginning
and at the end of the sequence are favored, as fewer windows are violated,
the FB objective function considers windows of size < N, at the end of the
sequence. It only considers a violated window, if the first model in the window
contains the respective option. Thereby, the FB objective function counts the
option occurrences that actually lead to a violation of a subsequence. The
associated model is as follows (Fliedner and Boysen, 2008):

Minimize objg, = Y _ v, (3.18)
0€0
with
T—H, min{t+N,—1;T}
VU, = Z min Z Com * Ty, MAX Z Z Aom * Tz — Hp; 0
t=1 meM =t meM
(3.19)

subject to (3.2),(3.3) and (3.9).

Again, (3.18) minimizes the total number of violations over all options.
(3.19) evaluates all violated subsequences with 1, if the first model in the
subsequence has option o, and 0 otherwise. Note, that we slightly modified
the formula in Fliedner and Boysen (2008), since the first sum of (3.19) only
needs to run until 7" — H,, instead of 7', i.e. no violation can occur in subse-
quences of size H, and less. Figure 3.3 shows the example sequence with the
FB objective function. Although the first window contains excessive option
occurrences, it induces no violation in the objective function, as the first model
in the window doesn’t require the option. In contrast, the second window from
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-1 011 2 3 4 5 6 7 8 9 10 11|12 13| obj,
140 0(0 1 1 1 0 0 O 1 O O OO0 O] 6

I 0lm'olc.ztz'ons |

| 1 violations |

| 2 wiolations |

I 0 violations |

Figure 3.4: Evaluation of example sequence with BY objective function

slot 2 to 5 is counted with one violation by the FB objective function, since
the first model has the respective option. Note, that the evaluation runs until
slot T"— H, = 11 — 1 = 10, thus considers subsequences of size less than 4
at the end of the sequence, as the windows beginning at slot 9 and 10 have
size 3 and 2, respectively. Overall, the FB objective function results in two
violations.

In order to capture the extent to which each window is violated, Bolat and
Yano (1992a) propose an objective function (BY), where each excessive option
occurrence in a window leads to one additional violation. Therefore, a window
can induce at most N, — H, violations. The BY objective function results
in the following model (Bolat and Yano, 1992a; Benoist, 2008) (we follow the
compact notation of Benoist (2008)):

Minimize obj,, = Y v, (3.20)
0eO
with
T—H, t+Np—1
V, = Z max{ Z Z Qom * Tt — Hy; 0} Yoe O (3.21)
t=Ho—No+2 t'=t meM

subject to (3.2),(3.3) and (3.9).

(3.20) minimizes the total number of violations over all options. (3.21)
counts the number of excessive occurrences of option o in each subsequence.
Note, that all subsequences have a size equal to N, and the evaluation can go
beyond the actual sequence, as also models prior to the sequence beginning at
slot H, — N, + 2 and models after the sequence up to slot T'— H,+ N, — 1 are
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tl1 2 3 4 5 6 7 8 9 10 11|objy | objg |obj, | 0bjy,
Sequencel {0 1 0 1 0O O 0 1 0 1 O 4 2 4 3
Sequence2( 0 1 1 1 0 0 0 1 0 0 O 3 2 6 8

Figure 3.5: Example sequences subject to 1:4

included. All models beyond the sequence are assumed to not having option o.
Figure 3.4 shows the evaluation of the example sequence with the BY objec-
tive function. The evaluation starts at slot —1 with the first window not being
violated. In contrast, the second window is violated, since it has one excessive
occurrence of option o, thus, leads to one violation. The third window has
even two excessive option occurrences and is evaluated with two violations.
Furthermore, in our example, two models after the actual sequence at slots 12
and 13, both not requiring the respective option, are considered for the last
two windows starting at slot 9 and 10, respectively. The BY objective function
leads to six violations overall.

Ezample: We reconsider our example from Section 3.2 with the sequenc-
ing rule 1 : 4 according to the BYSR approach (see Section 3.3.1). Figure
3.5 shows two example sequences and their respective violations according to
the three aforementioned objective functions together with the actual work
overload. The sequences are assessed very differently by the three objective
functions. While the SW objective function favors sequence 2 and the BY
objective function finds sequence 1 superior to sequence 2, the FB objective
function is indifferent between both sequences. In this example, the BY objec-
tive function leads to the right result as the actual work overload for sequence
1 is lower than for sequence 2.

In order to apply the MSR approach with the aforementioned objective
functions, we have to adjust (3.16), (3.18) and (3.20) such that @, sequencing
rules for each option o are incorporated:

1
Minimize ~obj,, = objy, = obj,, = Y — Y vy (3.22)

ocO ° qEQo

Since the number of sequencing rules ), for each option can vary, (3.22)
considers the average violations over all sequencing rules. Furthermore, we
introduce in (3.17), (3.19) and (3.21) additional indices for H, and N,, respec-
tively, leading to:
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t|1 2 3 4 5 6 7 8 9 10 11 |objg, | objy |obj,, | objy,
Sequence1{ 0 1 0 1 0 O 0O 1 0 1 0 1 0.75 1 3
Sequence2( 0 1 1 1 0 0 0 1 0 0 O 2 1.25 | 3.25 8

Figure 3.6: Example sequences subject to 1:3, 2:6, 3:10 and 4:13

T—NI+1 t+Ng—1
Vog = Z min{l;max{ Z Zaom T — HY, O}} YoeO;qeqQ,

t=1 t'=t meM
(3.23)
for the SW objective function,
T—-H{ min{t+NJ—-1;T}
Z min Z Aom * Topt; NAX Z Z Qom = T — HI; 0
meM t'=t meM
Yoe O;qeQ,
(3.24)

for the FB objective function and

T—H{ t+NJ—1
:Z Z max{ Z Zaom Tont! — Hq O} YoeO; qeQ,

0€0 t=HI-NJ+2 t'=t meM
(3.25)

for the BY objective function.

Example: Again we consider our example from Section 3.2, this time with
the four sequencing rules (1:3, 2:6, 3:10 and 4:13) generated by the MSR ap-
proach (see Section 3.3.1). In Figure 3.6 the same two example sequences as
in Figure 3.5 and their respective violations according to three objective func-
tions are shown. Using the MSR approach, all three objective functions assess
the sequences right as they favor sequence 1.
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3.3.3 Weighting of violations

On the one hand, the amount of imminent work overload caused by excessive
occurrences of option o depends on the position of the excessive options in the
window. Thus, succeeding option occurrences, that lead to a violation result in
a higher work overload than non-succeeding options. This can be observed in
our aforementioned example in Figures 3.5 and 3.6, where sequence 2 induces
a higher work overload than sequence 1. On the other hand, the resulting work
overload by a sequencing rule violation can considerably vary between options
o € O, as the stations, that assemble the options, have different operational
characteristics, such as station length, etc. The forecited objective functions
partly consider these factors. The SW and BY objective function favor non-
succeeding violations, as less windows are violated (except for the SW function,
when violations occur at the beginning or end of the sequence, as in Figure
3.5). Both also implicitly weight between options. An option occurrence, for
instance, affects at most N, windows, thus can lead to at most NN, violations.
Therefore, violations of an option o with lower N, are favored, and implicitly
assumed to cause less work overload. However, there is no justification for this
assumption. The FB objective function doesn’t differentiate between violations
at all. Each option occurrence that causes a violation is always assessed with
one violation in the objective function.

We propose to use explicit weights A, for each option o € O, in order to
distinguish between option violations:

1
Minimize obj" = )\OQ— > vog (3.26)

0e0 quo

A, should be associated with the induced work overload, if a violation occurs.
Therefore, we use the maximum work overload, that can be caused by one
violation of option o. The maximum work overload occurs, if the operator
reaches the right-hand station border while assembling a model and the next
model in the line contains option o. Thus, the operator reaches this following
model at time [y — ¢ in the station and since p; > ¢ the resulting work overload
amounts to:

Moo=l —c+pl —ly=pf —c VoeO. (3.27)

Ezample: Consider two stations (options) with I; = I = 10 and ¢ = 5.
On these stations, whether or not realizing option 1 (2) takes pj = 10 and
p; = 0 (p3 = 8 and p, = 2), respectively. Applying the BYSR approach,
for both options a 1:2 rule is generated and weights amount to A\; = 5 and
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t| 1 2 3| obj | obj¥ |obj,,
Optionl1| 1 1 0 1 4 3
Sequence 1 -
Option2| 1 0 0 0 0
total 1 4 3
Optionl1| 1 0 1 0 0 0
Sequence 2
Option2| 1 1 0| 1 3 1
total 1 3 1

Figure 3.7: Example option weights A,

Ao = 3. Three different models (each with a single copy) are to be produced,
where model 1 requires both options, model 2 only option 1, and model 3 only
option 2. Consider the two different sequences depicted in Figure 3.7. While in
the unweighted case (column obj) all three objective functions evaluate both
sequences with the same value, in the weighted case (column obj*) sequence
1 is properly identified as causing more work overload.

3.4 Experiments

In this section, we examine to what extent the different CS variants are able
to achieve the underlying goal of minimizing work overload. First, we describe
the problem instances applied throughout this section. We generate random
MMS instances according to Scholl (1999) since the literature on MMS deals
with random instances as well. The CS instances are then derived from the
MMS instances using the sequencing rule generation approaches mentioned in
Section 3.3.1. Second, we conduct a correlation analysis in order to examine
the linear relationship between both objectives, the amount of work overload
and the number of sequencing rule violations. Finally, we examine the solution
quality and performance of the different CS variants in comparison to MMS
on our problem instances.

3.4.1 Instance generation

In order to evaluate the different CS approaches and their performances com-
pared to MMS, we define three sets of random MMS instances from which
the respective CS instances are derived. Set 1 includes small instances, while
set 2 contains larger instances and set 3 instances of real-world size. We vary
the sequence length T, the number of stations K and number of models M
with the parameters in Table 3.3. A full-factorial design of these parameters
is performed leading to 8 combinations for set 1, and 18 combinations for set 2
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Set 1 ‘ Set 2 ‘ Set 3
Sequence length T 10, 15 50, 100 500, 1000
Number of Stations K 5, 10 20, 30, 40 20, 30, 40
Number of Models M 5, 10 20, 30, 40 200, 300, 400
Cycle time c 90
Station length i (100, 150]

Table 3.3: Parameter for random instances

as well as set 3. For each combination, we generate 10 random test instances
leading to 440 instances overall. The test instances are created following the
suggestions by Scholl (1999), who solely provide a general instance genera-
tor for MMS, which is also used in other recent publications (Cano-Belmén
et al., 2010; Boysen et al., 2010, etc.). On all instances, the cycle time is set
to ¢ = 90 and the station lengths [ are uniformly distributed in the interval
[100;150]. The demand d,,, of each model m is randomly chosen from the in-
terval [3T/M; 3T /M] such that the total demand Y, _, dy, equals T and at
least one copy of m is included. We restrict the number of processing times
per station to two since CS is only applicable for binary options. The two
processing times p, and p; per station k are randomly defined from [%c; c—1]
and [c + 1;min{3c, [, }], respectively. Hence, p, < c and p} > ¢. We choose
the processing times p,,; of each model m in station k randomly from p, and
pi such that each model is unique, its average processing time per station
% SOF | Pk is in the interval [3¢,c] and the average processing time of each

station % Z%zl d,n - Pk 18 beneath the cycle time c.

Since Chapter 2 already compared feasible instances of CS and MMS, we
consider in these experiments only MMS instances, where the optimal solu-
tion contains work overload. Therefore, the instances in set 1 are optimally
solved using CPLEX 12.2 and chosen such that they are MMS infeasible. How-
ever, the size of the instances in sets 2 and 3 impedes a computation of the
optimal solution and, thus, their MMS infeasibility cannot be ensured. The
corresponding CS instances of each MMS instance are derived using both rule
generation approaches, the BYSR approach and MSR approach (see Section
3.3.1). Furthermore, we differentiate MSR by varying the number of sequenc-
ing rules @), used per option o. Thus, for MSR; we set (), = 1 and apply only
the first generated rule, for MSRy we use the first two rules and for MSR,, we
apply all generated rules per option. We combine each derived CS instance
with the three aforementioned objective functions (see Section 3.3.2) once with
and once without the weighting function (see Section 3.3.3). Hence, this leads
to 4 -3 -2 = 24 different CS variants overall.
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3.4.2 Linear relationship between CS and MMS
objectives

We evaluate the linear relationship between the objective values produced by
MMS and each of the CS variants using Pearson’s product-moment correlation
coefficient rxy, which is defined for samples x; € X and y; € Y as follows:

ey = 2 i (i —T)(yi — 7)
\/% Do (i =2)2 -3 (v — 9)?

If rxy = 1, a perfect positive linear relationship between samples X and Y
exists, for rxy = 0, X and Y are uncorrelated.

We use the first two sets of problem instances and generate 10,000 random
sequences per instance. For each sequence, we compute the amount of work
overload as sample X and evaluate the number of sequencing rule violations
according to CS variant v as sample Y,,v = 1,...,24. Figure 3.8 shows the
resulting correlation coefficient rxy, for each CS variant v.

For all CS combinations, the number of rule violations is positively correlated
to the amount of work overload. However, there are differences in the degree
of correlation. The BYSR approach has the lowest correlation coefficient since
its generated rules are too restrictive. MSR; is stronger correlated than the
other rule generation approaches on all objective functions. When options are
restricted by more rules, violations of these options are overvalued and, thus,
the correlation decreases. Therefore, MSRy is slightly inferior to MSR;, while
there is an even larger gap between MSR,, and MSR;.

The BY objective function is slightly superior considering approaches that
generate only one rule per option, namely BYSR and MSR;. Depending on the
size of the sequence window and to what extend the window is violated, the BY
objective function is able to differentiate more between violation occurrences
and, thus, implicitly also between work overload scenarios. However, the more
rules are applied, the more the BY objective function amplifies the effect of
overvaluation of violations. Regarding more rules per option, the FB function
is actually superior to the other objective functions, as the aforementioned
effect of overrating option violations applies less to it.

The weighting factor A\, = p/ — ¢ increases the correlation for nearly all CS
variants, especially for those combined with BYSR or MSR; (see also Figure
3.8). Only for objective functions SW and BY each combined with MSR, and
MSR,,, it has a minor negative effect. It seems that for these CS variants the
weighting factor slightly increases the effect of overrating option violations.
The resulting differences in the correlation coefficients have all been found to
be statistically significant on a 0.05 level of significance.

(3.28)
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Figure 3.8: Resulting Pearson’s correlation coefficients averaged over set 1 and
set 2

3.4.3 Solution quality of CS compared to MMS

In this section, the solution quality of the different CS variants each compared
to MMS is analyzed. We first apply problem set 1, and compare optimal
solutions of MMS and CS. For each instance in this set, we determine all
optimal sequences of MMS and each CS variant using an iterative beam search
approach, which will be described in detail in Chapter 5. For MMS, the average
amount of work overload w = m Y icsets Wi and the average number of
optimal solutions 7 over all instances in set 1 is displayed in Table 3.4. For
each CS variant v, we determine the average number of optimal solutions 7,
as well as the deviation in the number of optimal solutions A7, = /5 - 100%
compared to MMS. Furthermore, we compute for every optimal sequence of CS
the induced amount of work overload. This leads to w;,, the average amount of
work overload resulting from all optimal solutions for instance ¢ and CS variant
v. We average w;, over all instances in set 1 by defining w, = @ ZieSetl Wiy
Then, Aw, = @ /w-100% is the deviation between the average amount of work
overload induced by optimal solutions of CS and MMS. For each CS variant
v, Table 3.5 presents the resulting values of w,, Aw,,7n, and An,.

In general, the solution quality of CS is worse compared to MMS. Since CS
assigns the same objective value to solutions that actually induce a different
amount of work overload, it has at least twice as many optimal solutions as
MMS. Among these solutions are sequences which not even come close to the
optimum as can be observed in the resulting average amount of work overload
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w, which is higher than that of MMS. Thus, an optimal solution found by one
of the CS variants (with A = 1) results at least into 33% (MSR, and BY') more
work overload than the actual optimal solution. There are differences regarding
the CS variants. As already stated above, the sequencing rules generated by
the BYSR approach are very restrictive. Therefore, it finds less solutions than
the MSR approaches, but also excludes good sequences resulting in a higher
w. In contrast, MSR; assigns the same objective value to more solutions, thus,
comprises more optimal solutions than BYSR, but these solutions contain less
work overload leading to a better average solution quality. MSR, and MSR,,
are able to further exclude non-optimal solutions and, thus, reduce the number
of solutions as well as increase the solution quality. For the instances in set 1,
MSR,, works well, since the number of generated rules depends on the sequence
length 7', which is relatively low. Thus, MSR,, generates not significantly more
rules than MSR, and the aforementioned effects of overrating violations don’t
apply.

Again, the BY objective function performs best, as an optimal solution
found by this function contains on average less work overload than solutions of
other objective functions. By considering the weighting factor A, = p/ — ¢, the
performance of CS in general can be increased as it leads to a further exclusion
of solutions with a higher amount of work overload and, therefore, reduces the
overall number of CS optimal solutions as well as the average work overload
induced by one of these solutions.

We further examine the performance of the different CS variants compared
to MMS on problem set 2. Due to their size in terms of sequence length T,
number of stations S and number of models M, the instances in set 2 cannot
be solved optimally, yet. Therefore, we use a metaheuristic by Puchta and
Gottlieb (2002), which was originally introduced for CS and comprises six
different move operators. We adjusted this approach in order to apply it with
MMS and the different CS variants as well.

For each instance in set 2, we randomly create 20 initial sequences. The
metaheuristic is applied on each of these initial sequences using the MMS
model and the 24 different CS variants. Since set 2 contains 180 instances, we
conduct 180 - 20 - (1 4 24) = 90,000 runs overall. Beginning with the initial
sequence, a move is randomly chosen from one of the six operators with equal
probability. The move is applied to the current sequences and the resulting
sequence is maintained as new current sequence if its objective value is less or
equal than the objective value of the current sequence. This process is repeated
until a given maximum number of moves is reached and the current sequence
is returned as best solution.

In order to decrease disruptions of solutions and, thus, intensify the search
process, Puchta and Gottlieb (2002) restrict the size of the affected subse-
quence by one move operator to at most 7//2. We abort every single search
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w n
14.8 361,609

Table 3.4: Performance of MMS on problem set 1

Ao obj Rule Generation Approach
BY MSR, MSRs MSR,,

w n W W W

U U U
Aw (7] An (%] Aw %] An %] Aw %] An[%]  Aw [%] A7 %]
25.7 535013 20.3 1,188,680 202 1,063,088 20.3 1,061,891

SW' 738 1480 378 328.7  37.0 294.0 37.3 293.7
1 pp 266 602,323 206 1242443 205 1,102,667 20.6 1,101,467
79.9  166.6  39.8 343.6 39.0 304.9 39.3 304.6
gy 235 532457 200 1176556 19.6 1055540 197 1,054,517
58.9 1473 353 3254 33.0 291.9 33.7 2916
g 248 452,108 189 1101374 182 983320 190 982,301

67.8 125.0 27.9 304.6 23.5 271.9 28.8 271.7

pr—c B 25,5 503,823 19.2 1,131,356 18.6 1,013,252 19.2 1,012,266
73.1 139.3 29.8 312.9 25.8 280.2 30.1 279.9

22.0 474,657 183 1,090,946 17.6 972,736 18.4 971,681
48.8 131.3 23.8 301.7 19.5 269.0 24.7 268.7

BY

Table 3.5: Performance of CS variants on problem set 1

after 100,000 moves and assess the best sequence found using the MMS ob-
jective function. Thus, the resulting amount of work overload for MMS as
well as the different CS variants can be compared. Again, we determine w,
the average amount of work overload of the best solutions found by MMS and
CS and for each CS variant v the resulting average deviation of work overload
Aw, compared to MMS. Furthermore, we measure for each model the average
time T required to proceed the 100,000 moves. Tables 3.6 and 3.7 show the
results of MMS and CS, respectively. Furthermore, the performance of the
metaheuristic was tested in preceding experiments on problem set 1, where it
found the optimal solution for MMS as well as for each of the 24 CS variants
in all of the 80 -20 - (1 + 24) = 40, 000 runs.

The results in Tables 3.6 and 3.7 confirm our previous findings. The gap
in the solution quality between CS and MMS is at least 21.5% (MSR; and
BY and A\, = p} — ¢). Again, the MSR approach shows a superior solution
quality for all objective functions compared to BYSR. For the instances in set
2, MSR; leads to the best solutions among the CS approaches and requires the
least time. MSRy and MSR,, also result in a better solution quality compared
to BYSR. MSR; as well as BYSR solve the instances in little less time than
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w 7 [s]
1,078.4 3.3

Table 3.6: Performance of MMS on problem set 2

Ao obj Rule Generation Approach
BY MSR, MSR» MSR,,
w T [s] w 7 [s] w T [s] w T [s]
Aw [%] Aw [%] Aw [%] Aw [%]
W 1,879.6 2.2 1,445.6 2.0 1,467.0 3.7 1,609.9 55.7
74.3 34.0 36.0 49.3
1 FB 1,807.0 2.0 1,444.2 1.9 1,466.1 3.2 1,626.9 52.2
67.6 33.9 35.9 50.9
BY 1,617.9 2.5 1,375.8 2.1 1,384.3 4.2 1,507.2 134.7
50.0 27.6 28.4 39.8
qw L8126 22 13840 20 14072 36 15328  55.3
68.1 28.3 30.5 42.1
pr—c FB 1,704.4 2.0 1,352.8 1.9 1,375.6 3.2 1,527.3 52.0
58.0 25.4 27.6 41.6
BY 1,506.3 2.4 1,309.8 2.1 1,323.3 4.1 1,427.1 134.5
39.7 21.5 22.7 32.3

Table 3.7: Performance of CS variants on problem set 2

MMS, which requires 3.3 seconds on average (Table 3.6). This stems from the
faster evaluation of an altered sequence by CS, since only parts of the sequence
need to be re-assessed. However, by applying more than one sequencing rule
this advantage disappears, as can be observed for MSR, and MSR,,. While
the solution time of MSR; is slightly inferior to that of MMS, MSR,, needs
considerably more time and its objective values are even worse compared to
MSR; and MSRy. The BY objective function performs better than the other
objective functions, although it requires a little more time due to the higher
effort for computing its objective values. The introduced weighting factor
adds to an increased solution quality for all CS variants without changing the
solution time considerably. Due to the results obtained on problem set 2, we
exclude MSR,, in further experiments, since its solution quality and solution
time is far worse compared to the other MSR approaches.

Finally, we examine the performance of MMS and CS on problem set 3,
which consists of instances of real-world size. Again, 20 initial sequences for
each instance are created and optimized with the aforementioned metaheuris-
tic, leading to 180 - 20 - (1 4+ 24) = 90,000 runs overall. We apply the meta-
heuristic with the same setting as for problem set 2. Thus, moves are chosen
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w 7 [s]
16,383.2  39.1

Table 3.8: Performance of MMS on problem set 3

Ao obj Rule Generation Approach
BY MSR, MSR,
w T [s] w T [s] w T [s]
Aw (%) Aw (%) Aw (%)
QW 28,030.8 13.3 21,445.7 12.6 22,204.3 21.8
71.1 30.9 35.5
1 FB 26,107.2 19.3 21,136.5 18.5 21,729.2 30.7
59.4 29.0 32.6
BY 23,045.3 22.9 20,104.0 20.7 20,473.7 38.5
40.7 22.7 25.0
QW 26,642.8 13.2 20,265.7 12.5 21,177.9 21.7
62.6 23.7 29.3
pr—c FB 24,095.4 19.2 19,570.9 18.4 20,284.2 30.7
47.1 19.5 23.8
BY 20,791.0 24.1 18,778.0 21.9 19,386.6 40.2
26.9 14.6 18.3

Table 3.9: Performance of CS variants on problem set 3

with equal probability, the size of the affected subsequence is restricted to 7'/2
and each run is aborted after 100,000 moves. Tables 3.8 and 3.9 show the
respective results for MMS and CS.

The results are similar to that for problem set 2. The MSR,; rule generation
approach as well as the BY objective function show a superior solution quality
among the CS approaches. The weighting factor A\, = p} — ¢ further improves
the solution quality. Compared to the results on problem set 2, the absolute
gap in the amount of work overload between MMS and CS increases, but
the deviation in percent between both values decreases as the least deviation
between CS and MMS amounts to 14.6% compared to 21.5% on set 2 (MSR;
and BY and A\, = p/ — ¢). Furthermore, the advantage of the CS variants
regarding the solution time increases as the variants which apply only one
sequencing rule per option (BYSR and MSR;) require approximately half the
time of MMS. This is founded in the increased sequence length T'. After each
move, the CS variants only have to reassess windows where a change occurred,
which are at most N, for each option and change. In contrast, MMS has to
reassess the entire sequence beginning at the position of the first change. Thus,
the longer the sequence the bigger the difference in the solution time between
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both approaches.

On 10 representative instances of set 2 with 7" = 100, S = 30 and M = 30,
we show how the number of performed moves with the metaheuristic as well
as the solution time influences the solution quality of MMS and CS. Again, for
each instance, 20 initial solutions are created and optimized using the afore-
mentioned metaheuristic, thus, leading to 200 runs overall for MMS and each
CS variant. We examine different stopping criteria of the metaheuristic. The
number of moves and the amount of time after which the solution procedure
is stopped are varied between 1 and 100,000 moves and 0.1 and 60 seconds,
respectively. Figures 3.9 and 3.10 show the respective results. To exemplify
the results, we partitioned the CS variants into three different plots, each con-
taining CS variants with identical objective functions. We concentrate our
evaluation on CS variants with A\, = p/ — ¢, since the introduced weighting
factor showed superior results in previous experiments.

Regarding Figures 3.9(a), 3.9(b) and 3.9(c), we can observe that the dif-
ferences in the solution quality between MMS and each of the CS variants
increases with the number of applied moves. The order of the considered
approaches regarding the solution quality remains unchanged. Regardless at
which number of moves the search process is stopped, MMS always produces
sequences that contain on average less work overload than sequences found
by one of the CS variants.Furthermore, the results of MSR; are always better
than that of the other rule generation approaches regardless which objective
function is applied. Figures 3.10(a), 3.10(b) and 3.10(c) show the solution
quality against the elapsed time. At the beginning of the search, MSR; results
in better solutions than MMS, since it can evaluate more sequences in the
same amount of time. However, this advantage fades away at 0.05 seconds,
where the MMS approach becomes superior. The solution gap between MMS
and MSR; even increases the longer the metaheuristic runs. MSR,, shows a
poor solution quality at the beginning of the search due to the large amount
of sequencing rules considered. However, for the SW (Figure 3.10(a)) and FB
(Figure 3.10(b)) objective function it is able to compensate this disadvantage
later in the search as it produces better results than BYSR.

In summary, when applying CS, the MSR; rule generation approach in com-
bination with the BY objective function and the newly introduced weighting
factor A\, = p} — ¢ shows the overall best performance in terms of solution
quality and runtime. However, it still results in sequences that contain on
average at least 15% more work overload than sequences found by MMS.

3.5 Discussion

It is not surprising that CS leads to a lower solution quality compared to MMS
since it is a much more aggregated model. For the instances considered in this
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variants with weighting factor A\, = pJ — ¢ based on instances with
T =100,5 = 30, M = 30.
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paper, the resulting gap in the amount of work overload between CS and MMS
is at least about 15% (for CS with the MSR; rule generation approach and
BY objective function and weighting factor A\, = p/ — ¢). This gap increases
considerably if CS is applied with other sequencing rules and/or objective
functions. For instance, using sequencing rules created by the BYSR approach
in combination with the SW objective function and no weighting factor even
leads to a solution gap of about 75%. The question arises which advantages of
CS compared to MMS justify this gap in the solution quality?

The literature puts forward that CS is supposed to avoid the significant effort
of data collection accompanied with MMS (Boysen et al., 2009). However, this
is only the case when sequencing rules for CS are created by rules of thumb or
intuitively as in the following example by Drexl and Kimms (2001):

Assume that 60% of the cars manufactured on the line need the
option 'sun roof’. Moreover, assume that five cars (copies) pass the
station where the sun roofs are installed during the time for the
installation of a single copy. Then, three operators (installation
teams) are necessary for the installation of sun roofs. Hence, the
capacity constraint of the final assembly line for the option ’sun
roof’ is three out of five in a sequence, or 3:5 for short.

The usage of such intuitive sequencing rules is very likely to put more inac-
curacy into CS and, thus, increases the gap in the solution quality between
CS and MMS. If sequencing rules are derived analytically and consider oper-
ational characteristics of the line, as in the BYSR and MSR rule generation
approaches, the same amount of data as for MMS has to be collected in ad-
vance. As another advantage Drexl et al. (2006) mention that CS doesn’t
require an explicit definition of open and closed stations. In fact, the defini-
tion of H : N sequencing rules implicitly assumes that all stations on the line
are closed since no interaction between stations can be represented with this
kind of sequencing rules. The literature also emphasizes that sequencing rules
simultaneously balance the allocation of the required material as well (Drexl
and Jordan, 1995; Drexl et al., 2006), which is actually the goal of the just-
in-time related level scheduling model (Miltenburg, 1989). However, Boysen
(2005, p. 233) experimentally revealed that the objective of level scheduling is
not implicitly optimized by CS.

To our best knowledge, only two advantages of CS compared to MMS re-
main. First, sequencing rules are more intuitive to human decision makers.
Indeed, a H : N is easier to verify for humans than computing the entire sched-
ule. However, practical instances with often more than 1000 mixed-models to
be sequenced are far too complex to be solved by human decision makers.
Second, CS evaluates sequences faster compared to MMS, since it considers
only combinatorial aspects of the problem and not the detailed time schedule
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and operator movements (Bolat and Yano, 1992a; Drexl et al., 2006). We also
verified this point in our experiments, as CS variants that use one sequencing
rule per option can evaluate sequences faster than MMS by a factor of about
1.5-2. However, Figure 3.10 reveals that the faster evaluation doesn’t result in
a superior solution quality of CS compared to MMS, if both approaches are
considered to have the same amount of time (> 0.05 seconds) for solving an
instance. Since the solution time in practical applications and in the literature
on CS and MMS is often fixed to 600 seconds, the solution quality of MMS is
supposed to be superior in these scenarios as well.

We have to recall, that CS actually benefits from the assumptions made
for the test instances in this paper, namely to use only closed stations and to
allow two processing times per station. In practical applications, stations are
often open, hence, the operator is allowed to work beyond the station borders
to a certain extend. Furthermore, most real-world options have more than
two characteristics and a station often assembles more than one option at a
time, which leads to more than merely two processing times per station. Both
scenarios are not addressed by CS. Thus, the solution gap between CS and
MMS most likely increases when both are applied to practical settings.

3.6 Conclusions

Our work is the first that compares the solution quality of CS and MMS. There-
fore, we perform a comprehensive computational study using random MMS
instances of various sizes. Based on these instances, we derive the related CS
instances using different sequencing rule generation approaches and also apply
various objective functions for CS discussed in the literature. Furthermore, we
introduce an additional weighting factor for CS in order to distinguish between
option violations. A full factorial design of the rule generation approaches, ob-
jective functions and weighting factor is performed leading to 24 different CS
variants considered in our study. First, we show that the number of rule
violations is positive linearly related to the amount of work overload using
Pearson’s product moment coefficient. Second, the solution quality of MMS
and the different CS variants is assessed by computing the resulting amount
of work overload when each model is applied on the various test instances.
For the problem instances in this paper, CS results in solutions that contain
at least 23% more work overload than solutions of the related MMS problem.
This gap can be decreased to 15% by considering our weighting factor for CS.
The difference in the solution quality between CS and MMS increases, if CS
is applied with inadequate sequencing rules and/or objective functions. For
instance, using sequencing rules created by the BYSR approach in combina-
tion with the sliding-window objective function even leads to a solution gap of
more than 75%.
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Overall, the surrogate objective followed by CS aggregates too much from the
underlying goal of minimizing work overload. Therefore, the solution quality of
CS is not competitive compared to MMS. Based on our experimental findings
and the discussion of the advantages of CS against MMS, we encourage decision
makers to use MMS instead of CS for future applications, at least until new
developments increase the solution quality of CS. Thus, future research should
address the following issues:

1. The solution quality of CS and MMS should be compared in a real-
world setting. Unfortunately, at the time of this research, only practical
instances for CS, which stem from Renault, are available in the literature
(Solnon et al., 2008). However, these instances can not be used to derive
related MMS instances in order to compare both approaches.

2. New sequencing rule generation approaches and objective functions for
CS need to be developed, that better reflect the underlying goal of mini-
mizing the work overload. However, we have doubts that both would add
to a considerable improvement of the solution quality of the CS model.

3. The simple CS model need to be extended in order to incorporate more
practical characteristics of the line, e.g., to consider open stations and
more than merely two processing times per stations. A first approach
regarding multiple processing times can be found in Section 2.5. Another
idea to consider multiple processing times could be to set up a non-binary
CS model, which uses the displacements (processing time minus cycle
time) a model induces to the operator instead of merely binary options.
A sequencing rule for this kind of problem could check, if the sum of
the displacements in any window of a certain length amounts to zero.
Solnon et al. (2008) present a not further elaborated idea of using cross
ratio constraints instead of simple H : N rules to allow for an interaction
between option/station constraints and, thus, to model open stations.
A different idea would be to use multidimensional sequencing rules of
the kind (Hy, Hs) : N, where not more than H; occurrences of option 1
and H, occurrences of option 2 are allowed in any 2-dimensional window
of length N incorporating both options. Maybe some insights on these
issues can be drawn from the literature on system reliability (Chao et al.,
1995) as well, where sequencing rules of type H : N are also applied in
consecutive ”k-out-of-m-from-n” systems.
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Chapter 4

The car resequencing problem
with pull-off tables

Nils Boysen, Uli Golle, Franz Rothlauf

Abstract

The car sequencing problem determines sequences of different car mod-
els launched down a mixed-model assembly line. To avoid work over-
loads of workforce, car sequencing restricts the maximum occurrence
of labor-intensive options, e.g., a sunroof, by applying sequencing rules.
We consider this problem in a resequencing context, where a given num-
ber of buffers (denoted as pull-off tables) is available for rearranging a
stirred sequence. The problem is formalized and suited solution pro-
cedures are developed. A lower bound and a dominance rule are in-
troduced which both reduce the running time of our graph approach.
Finally, a real-world resequencing setting is investigated.

4.1 Introduction

Most car manufacturers offer their customers the possibility to tailor cars ac-
cording to their individual preferences. Usually, customers are able to select
from a given set of options like different types of sunroofs, engines, or colors.
However, offering a variety of options makes car production more demanding.
For example, when assembling cars on a mixed-model assembly line, car bodies
should be scheduled in such a way that the work load of the workforce has no
peaks by avoiding the cumulated succession of cars requiring work-intensive
options. The car sequencing problem (CSP), which was developed by Parrello
et al. (1986) and received wide attention both in research and practical appli-
cation (Solnon et al., 2008; Boysen et al., 2009), returns a production schedule
where work overload is avoided or minimized. It uses H, : N,-sequencing rules,
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which restrict the maximum occurrence of a work-intensive option o to at most
H, out of N, successive car models launched down the line.

Standard CSP approaches (for an overview see Boysen et al., 2009) assume
that a department’s production schedule can be fully determined by the plan-
ner and no unforeseen events occur. However, those assumptions are not real-
istic. During production, cars visit multiple departments, i.e., body and paint
shop, before reaching final assembly. The sequence of cars in each department
cannot be arbitrarily changed but depends on the sequence in the previous
department. This results in problems since a sequence that might be optimal
for the first department is usually suboptimal for the following departments.
Furthermore, disturbances like machine breakdowns, rush orders, or material
shortages affect the production sequence. For example, in the paint shop,
small color defects make a retouch or complete repainting necessary resulting
in disordered model sequences.

Therefore, automobile producers install large automated storage and re-
trieval systems (AS/RS) with hundreds of random access buffers to decouple
their major departments: body shop, paint shop, and final assembly (Inman,
2003). With the help of AS/RS, manufacturers are able to change the or-
der of models between these departments, allowing them to plan and reshuffle
optimal sequences according to each department’s individual objectives and re-
construct desired model sequences after disturbances during production. Com-
mon and widespread forms of resequencing buffers in the automobile industry
are selectivity banks (Spieckermann et al., 2004) and pull-off tables (Lahmar
et al., 2003). Selectivity banks consist of a set of parallel first-in-first-out lanes.
Models are assigned to one of the lanes, enter the lane on, e.g., the left-hand
side and move forward to the right-hand side. Only models on the right-hand
side of each lane are accessible to proceed downstream. Thus, the number of
models to choose from is bounded by the number of lanes. In contrast, pull-off
tables are direct accessible buffers. A model in the sequence can be pulled
into a free pull-off table, so that successive models can be brought forward
and processed before the model is reinserted from the pull-off table back into
a later sequence position.

Figure 4.1 gives an example how pull-off tables can be used for reordering
a sequence in such a way that no sequencing rules are violated any more. We
assume an initial sequence of four models at positions ¢ = 1,...,4. There
are two options for each model: “x” and “-” denote whether or not a model
requires the respective option. For the two options, we assume a 1:2- and a
2:3-sequencing rule, respectively. Figure 4.1(a) depicts the initial sequence,
which would result in one violation of the 1:2-sequencing rule and one of the
2:3-sequencing rule. The initial sequence can be reshuffled by pulling the model
at position 1 into the single pull-off table (Figure 4.1(b)). Then, the models
at positions 2 and 3 can be processed. After reinserting the model from the
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(a) (b)
[alf3][2]1] [a|[3][2]
HHHE aaHHE

- X

initial sequence move model 1 into pull-off table

v

(<) (d)
[ 3 || 2 | lall1]{3] 2]
H iH IHEH

process models 2 and 3 and reinsert model 1 reshuffeled sequence

Figure 4.1: Example on the use of a pull-off table of size one

pull-off table (Figure 4.1(c)), the rearranged sequence < 2,3,1,4] of Figure
4.1(d) emerges, which violates no sequencing rule.

Although pull-off tables as well as car sequencing rules are widely used in in-
dustry, no approaches are available in the literature that address both aspects
at the same time and return strategies for reordering car sequences in such
a way that violations of sequencing rules are minimized. The use of pull-off
tables is only considered in specific mixed-model assembly line settings neglect-
ing the existence of sequencing rules. For example, a variety of papers address
sequence alterations in front of the paint shop to build larger lots of identical
color (e.g., by Lahmar et al., 2003; Epping et al., 2004; Spieckermann et al.,
2004; Lahmar and Benjaafar, 2007; Lim and Xu, 2009) or in front of final as-
sembly to level the material demand (Boysen et al., 2010). Other resequencing
papers either deal with buffer dimensioning (Inman, 2003; Ding and Sun, 2004),
alternative forms of buffer organization, e.g., mix banks (Choi and Shin, 1997,
Spieckermann et al., 2004), or virtual resequencing (Inman and Schmeling,
2003; Gusikhin et al., 2008), where the physical production sequence remains
unaltered and merely customer orders are reassigned to models.

This paper introduces the car resequencing problem (CRSP) which assumes
a given model sequence and returns a strategy how to use pull-off tables to
minimize violations of sequencing rules in the resulting sequence. First, we de-
velop a graph transformation for the offline version of the problem and present
various solution approaches. Note that in real-world applications resequencing
is often an online problem since, for instance, models leave preceding produc-
tion stages in unpredictable succession. Then, the offline problem version,
where a given static initial sequence is to be reshuffled, needs to be applied
in a rolling horizon. To clarify the application of CRSP in an online environ-
ment, a real-world resequencing setting is presented, which demonstrates the
advantage of the proposed solution approaches.

The paper is organized as follows: Section 4.2 models the CRSP as a math-
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ematical program. In Section 4.3, we develop a graph transformation, which
strongly reduces the size of the solution space. With this graph transformation
on hand, Section 4.4 presents different exact and heuristic solution approaches,
which are tested in a comprehensive computational study (Section 4.5). To
demonstrate the applicability of the approach, Section 4.6 presents a real-world
resequencing setting requiring only a few simple modifications of our solution
approach. The paper ends with concluding remarks.

4.2 Problem formulation

We assume an initial production sequence of length 7. Since it takes one
production cycle to process a car, the overall number of production cycles
equals the sequence length T'. Two models are different, if at least one option
is different. Consequently, there are M different models with M < T. The
binary demand coefficients a,,, indicate whether model m = 1, ..., M requires
option o = 1,...,0. Furthermore, we assume a given set of sequencing rules
of type H, : N, which restrict the maximum occurrence of option o in N,
successive cars to at most H,. The initial sequence, which results from the
ordering in the previous department or from disturbances, typically violates
some of the sequencing rules.

To reorder the initial sequence, P pull-off tables can be used. Each pull-off
table can store one car. When pulling a car into a pull-off table, subsequent
models of the initial sequence advance by one position. Thus, by using P pull-
off tables, we can shift a model at most P positions forward and an arbitrarily
number of positions backward in the sequence. The CRSP returns a reshuf-
fled production sequence that minimizes the number of violations of given car
sequencing rules. With the notation from Table 4.1, we can formulate it as a
binary linear program:

o T
CRSP: Minimize » >y (4.1)

o=1 t=1
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For an option o, the binary variable y,; indicates whether the sequencing rule
H, : N, is violated in the window starting at cycle t. The objective function
(4.1) minimizes the sum of rule violations over all options o and cycles t. my(7)
and (i) return the number of the model that is processed at cycle i before
and after resequencing, respectively. Constraints (4.2) and (4.3) enforce that
at each cycle t, resp. i, exactly one model is processed, while (4.4) ensures that
each car of the initial sequence 7 is assigned to a cycle. (4.5) checks whether
or not a rule violation occurs. Here, we follow Fliedner and Boysen (2008) and
count the number of option occurrences that actually lead to a violation of a
sequencing rule. (4.6) ensures that there is a maximum of P pull-off tables
and, therefore, a model at position ¢ in the initial sequence cannot be shifted
to an earlier sequence position than ¢ — P.

This basic model and the graph approach presented in the next section aim
to minimize sequencing rule violations counted with the approach by Fliedner
and Boysen (2008). However, our model and the graph approach can easily
be adapted to other resequencing scenarios as well, e.g., to incorporate other
functions for counting rule violations like the sliding-window technique (Gravel
et al., 2005), to distinguish between hard- and soft-sequencing rules (Solnon
et al., 2008), to pursue alternative resequencing objectives like leveling the
required material (Drexl and Kimms, 2001) while avoiding rule violations or
to minimize the number of material deviations between the resulting sequence
and an original planned sequence. An example for such a model extension is
presented in Section 4.6.

In general, CRSP is NP-hard in the strong sense, since for P > T — 1 (full
resequencing flexibility) the problem is equivalent to CSP, which was shown
to be NP-hard in the strong sense (Kis, 2004).

4.3 Transforming CRSP into a graph search
problem

Given an initial sequence 7y and P pull-off tables, a model at position ¢ can be
shifted arbitrarily to the back or up to P positions to the front. Thus, for each
position 7 in the reordered sequence 7, there are P+1 choices (the model 7((7)
or one of the following models 7y (i+1) ... m(i+P)). Since there are T positions
to decide on, the solution space is bounded by O(PT). Therefore, CRSP grows
exponentially with the number T' of cycles. In the following paragraphs, we
transform the CRSP into a graph search problem, where the objective is to find
a shortest path. The size of the resulting search space is lower than the original
CRSP which reduces the effort of solution approaches. The transformation is
inspired by Lim and Xu (2009), who used a related approach for solving a
resequencing problem with pull-off tables for paint-shop batching. Since Lim
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and Xu used another objective function, which resulted in a different solution
representation, fundamental modifications of the original approach of Lim and
Xu have been necessary.

The CRSP is modeled as a graph search problem, where the graph is an
acyclic digraph G(V, E, f) with node set V| arc set E and an arc weighting
function f: F — N.

4.3.1 Nodes

Each node represents a state in the sequencing process. It defines the models
that are in the pull-off tables and the sequence of models that have not yet
been processed. Starting with the given initial sequence, in each step we have
three choices (Lim and Xu, 2009):

e [f an empty pull-off table exists, we can move the current model into it.
e We can process the current model and remove it from the sequence.

e [f not all pull-off tables are empty, we can select an off-line model, remove
it from its pull-off table, and process it.

Consequently, each step (sequencing decision) only depends on the current
model at position ¢ and K, which is defined as the set of models currently
stored in the pull-off tables. At each step, the decision maker has to check
whether the planned sequencing decision violates one of the sequencing rules.
To perform this check, he must know how often an option o has been processed
in the last N, — 1 production decisions. Fliedner and Boysen (2008) defined
the last N, — 1 option occurrences of all o = 1,...,0 options as the “active
sequence”. act{ denotes the active sequence of length N, — 1 for option o at
production cycle i. Consequently, actf’t € {0, 1} is the tth position of an active
sequence act?. actf’t = 1 indicates that at production cycle : — ¢t + 1 option o
has been processed.

Thus, a node [i, K;, ACT;] is defined by the number ¢ € {1,...,T} of the
production decision, the set K; of models (with |K| < P) stored in the pull-
off tables at production cycle 4, and the set ACT; = {act},act?, ... act9} of
active sequences for the O different options at production cycle i.

Example: Consider the current decision point ¢ = 2 depicted in Figure
4.1(c). Note that a decision point denotes a specific stage in the decision pro-
cess where an accessible model is finally assigned to the next production cycle
or intermediately stored in an empty pull-off table. The final release of the
model at position 1 in initial sequence g is the third production decision of
the decision maker. Given two sequencing rules (1:2 and 2:3) of length two
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and three, the active sequences have length one and two, respectively. There-
fore, at decision point ¢ = 2, we have the two active sequences acts = {0} and
act3 = {1,1}. The state before finally assigning the current model is defined
as [2,{1}, {{0},{1,1}}]. After production of the model from the pull-off table,
we have state [3, {0}, {{1}, {0, 1}}].

Furthermore, we define a unique start and target node. With ACT® denot-
ing a set of O active sequences all filled with zeros, the start node is defined
as [0,0, ACT] (for an example, Figure 4.1(a)); the (artificial) target node is
defined as [T+ 1,0, ACT"].

Proposition 4.1. The number of states in node set V is at most O(TOM?T).
Proof: Overall there are T decision points (production cycles) and the number
of possible sets K of models in the pull-off tables is (M +r _1). The number of
possible active sequences ACT; is bounded by O - 2m&x{No}=1  Thuys, including
the unique start and end node there are at most 7' (MJr]f*l) Q- max{No}=1 4 9
nodes. Recall that T', O and M denote the number of production cycles,
options and models, respectively.

M+P-1
T.( !
M+P—-1)-(M+P—-2)...(M+1)-M

P!

.0 - 2max{No}71 +2

) .0 - 2max{No}fl +2

=T. .0 - 2maX{No}71 +2

MP . Pl
sT-—5

which is bounded by O(TOM?”).00

Hence, the size of the state space V' increases exponentially with the number
of pull-off tables P but only linearly with the number of production cycles T'.
Since the length of the graph is bounded by O(TOM?Y), a polynomial in the
input length, the optimal solution can be found in polynomial time, provided
P is a constant.

4.3.2 Arcs

Arcs connect adjacent nodes and, thus, represent a transition between two
states [i, K;, ACT;] and [j, K;, ACT};]. An arc represents either a scheduling
decision or a combined scheduling and production decision. Starting with state
[i, K;, ACT;], we can distinguish three actions that can be performed:

1. If not all pull-off tables are filled (|K| < P), the current model m at
cycle 7 can be stored in a free pull-off table. Note that current model
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m = mo(i + | K| + 1) can directly be determined with the help of the
information stored with any node. This scheduling decision adds model
m to K and leaves the active sequences untouched resulting in node
[i, K; U{m}, ACT;]. This (pure) sequencing decision does not produce a
model.

For an example, we study the first sequencing decision in Figure 4.1. We
start with the start node [0,0,{{0},{0,0}}] (Figure 4.1 (a)). By pulling
model 1 into the pull-off table, we branch into node [0, {1}, {{0}, {0,0}}]
(Figure 4.1 (b)).

2. We leave the pull-off tables untouched and produce model m at cycle
t. This operation modifies the active sequences as it inserts all option
occurrences of model m at the first position in the active sequences.
The option occurrences at position N, — 1 are removed from the active
sequences and all other option occurrences are shifted by one position.
The resulting node is [i + 1, K;, ACT;4].

For an example, we study the second sequencing decision in Figure
4.1 which processes model 2. The scheduling decision branches node

[0, {1}, {{0}, {0,0}}] (Figure 4.1 (b)) into node [1, {1}, {{1}, {1,0}}].

3. If at least one model is stored in a pull-off table (K # (), we can pull
a model from a pull-off table and produce it. This combined scheduling
and production decision removes model m from the set of models in the
pull-off tables and modifies the active sequences. The resulting node is

i+ 1,5\ {m}, ACT, 1.

For an example, we study the third production cycle in Figure 4.1(c). We
reinsert model 1 from the pull-off table and process it. This operation
branches node [2, {1}, {{0},{1,1}}] (Figure 4.1 (c)) into the successor

node [3,0, {{1},{0,1}}].

In addition to these three transitions, we connect all nodes [T, (), ACTy| with
the unique target node [T+ 1,0, ACT"]. Furthermore, we assign arc weights
f + E — N to each transition. The arc weights measure the influence of the
transition on the overall objective value (number of violations of sequencing
rules). Since transition 1 (pulling a model into a pull-off table) does not pro-
duce a model (it is a pure sequencing decision), it cannot violate a sequencing
rule. Therefore, we assign an arc weight of zero to all transitions of type 1.
For the transition of types two and three, which produce a model, we use the
number of violations of sequencing rules as arc weights. With the Heaviside

step function
1,ifx >0
@(@{ 0,ifz <0
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we can calculate the weight of an production arc from node [i, K;, ACT;] to
node [i + 1, K1, ACT;14] as

16) No—1
f= Z@ (@om . (Z actf’t + Qo — HO)) .
o=1 t=1

With this graph problem formulation at hand, we can solve the CRSP by find-
ing the shortest path from start to target node. However, instead of construct-
ing the complete graph before computing the shortest path in two successive
steps, both steps can be unified in a dynamic programming procedure. For
this purpose node set V' is subdivided into 7" - (P + 1) + 2 stages, where a
stage (4, k) contains all nodes V{;) C V, where j models are definitely fixed
and k = |K| models are stored in a pull-off table (see Figure 4.2). This way, a
forwardly directed graph arises, which means that an arc can only point from a
node of stage (j, k) to a node of stage (j', k'), if j < 5’V (j = j' Ak < k') holds.
In particular, a node of stage (j,k) can only be connected with nodes of the
following stages: (j,k + 1) (put current model in pull-off table), (j + 1,k —1)
(reinsert model from pull-off) or (j+1, k) (produce current model). This way, a
stage-wise generation of the graph and a simultaneous evaluation of the short-
est path to any node is enabled, where 7 and k are brought into lexicographic
order. Thus, only two stages of the graph have to be stored simultaneously,
because the shortest path to a node of stage t + 1 is composed of a shortest
path to a node of stage t (already determined and stored) and the connecting
arc. Among all paths to a node, one with a minimal sum of arc weights is
to be selected. The length-minimizing node is stored as the predecessor in
the shortest path together with the length of this path. After reaching the
final state in stage (7'+ 1,0), the optimal path can be retrieved in a backward
direction stage-by-stage using the stored predecessor nodes.

4.4 Search algorithms for the CRSP

In Section 4.3, we transformed CRSP into a graph search problem, where the
aim is to find a shortest path from the start node to the target node. A shortest
path corresponds to an optimal solution to CRSP. For finding a shortest path
in a graph, different exact and heuristic search strategies are available. We
propose three exact approaches, namely breadth-first search, iterative beam
search, and A* search, and one heuristic beam search approach.

4.4.1 Breadth-first search

For the breadth-first search (BFS), we subdivide the node set V into T"- (P +
1) + 2 different stages. For all nodes in one stage, the number j of models that
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are already processed and the number k = | K| of models stored in the pull-off
tables are equal. Therefore, a stage (j, k) contains all nodes V(;z C V. By
subdividing V' into different stages, we construct a forwardly directed graph.
An arc can only point from a node of stage (j, k) to a node of stage (j', k'), if
j <73 V({=j Nk <E)holds. As outlined in Section 4.3.2, a node of stage
(7, k) can only be connected with nodes of the following stages:

1. (j,k+1) (put current model in pull-off table),
2. (j+ 1, k) (produce current model), or
3. (j+1,k—1) (reinsert model from pull-off table and produce it).

If we bring j and k into lexicographic order, a stage-wise generation of the
graph and a simultaneous evaluation of the shortest path to any node is en-
abled. Starting with the start node [0,0, ACT"] in stage (0,0), we step-wise
construct all nodes per stage until we reach the target node [T'+ 1,0, ACT"]
in stage (7" + 1,0). We obtain the reshuffled sequence of models by a simple
backward recursion along the shortest path.

In comparison to a full enumeration of all possible sequences, this BFS
approach considerably reduces the computational effort. We can obtain a
further speed-up by using upper and lower bounds. For each node, we can
determine a lower bound LB on the length of the remaining path to the target
node. Furthermore, a global upper bound UB can be determined upfront by,
for example, a heuristic. A node can be fathomed, if LB plus the length of
the shortest path to the node is equal to or exceeds the U B.

We determine a simple lower bound based on the relaxation of the limited
resequencing flexibility. Fliedner and Boysen (2008) showed for the CSP that in
a sequence of t remaining cycles the maximum number of cycles D,;, which may
contain an option o without violating a given H, : N,-rule, can be calculated as
Do = | 57| - Ho + min{max{H, — occi(act?),0}; t mod N,}, where occ;(act?)
is the number of occurrences of option o in the first ¢ mod N, positions of
act?. Consequently, D, is a lower bound on the remaining options not yet
scheduled. With mo(7), where j = 4,...,T, denoting the model at position j
in the initial sequence, we obtain for each node [i, K, act] a lower bound on
the number of violations of sequencing rules caused by the not-yet-produced
models:

o) T
LB = Z max {O; Z Aor(j) + Z om — Do,Ti} . (4.9)
o=1 7=t

meK

The first term (Z]Tm or(j)) counts the options necessary for the remaining
models not yet scheduled; the second one (>, @om) counts the options nec-
essary for the models stored in the pull-off tables. The sum of both terms
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Figure 4.2: Example graph for BFS with UB =1

should be smaller than the maximum number D,; of option occurrences that
are allowed for the remaining ¢t = T — ¢ production cycles. To avoid that
negative violations of one option, i.e., excessive production of a particular op-
tion, compensates violations of sequencing rules for a different option, we use
an additional max function. The bound sums up the rule violations over all
available options. The bound can be calculated very fast in O(O).

Example: Figure 4.2 shows the resulting graph for our aforementioned ex-
ample, when BFS is applied with UB = 1. We start with the initial state
[0,0,{{0},{0,0}}]. If model 1 is produced (instead of pulling it into the pull-
off table), we would reach node [1,0,{{1},{0,0}}]. Then, with regard to
option 2, three option occurrences need to be scheduled in the remaining three
production cycles. However, since only Dy = [2] - 2+ min{2; 3 mod 3} = 2
options can be scheduled, one rule violation is inevitable and the lower bound
on the number of rule violations caused by the remaining models becomes
LB =1 for node [1,0,{{1},{0,0}}]. Therefore, it is optimal to put model 1
into the pull-off table and end up in node [0,{1},{{0},{0,0}}]. Then, model
2 is finally released and stage (1, 1) is reached. Here, pulling model 1 online
from pull-off table would cause a rule violation, so that the given upper bound
cannot be improved and instead model 3 is produced. Then, producing model
4 would lead to a rule violation, so that model 1 is pulled online and the short-
est path from the start to the target node is obtained by producing models 2
and 3 first, then model 1 out of the pull-off table and finally model 4.

We want to further speed up the search by defining dominance rules. Dom-
inance rules allow fathoming of nodes if other nodes, which have already been
inspected, lead to equal or better solutions. For specifying a dominance rule,
we introduce two definitions, which are an adoption of the concepts developed
by Fliedner and Boysen (2008) for the CSP.
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Definition 4.1. An active sequence ACT; is less or equally restrictive than
an active sequence ACTj, denoted by ACT; < ACTj, if it holds that actf’t <
act?’tVOZ 1,...,0;t=1,...,N, — 1.

Definition 4.2. The content K; of a node’s pull-off tables is less or equally
demanding than content K; of another node, denoted by K; < Kj, if there
exists a mapping between K; and K; (with |K;| = |Kj|) such that for each
pair of models m € K; and m’ € K; of this mapping a,y, < apVo=1,...,0
holds.

Dominance rule: A node s = [i, K;, ACT;] with rule violations f(s) (length
of shortest path to s) dominates another node s' = [i, K!, ACT!] with f(s)
and |K;| = |K]], if it holds that f(s) < f(¢), K; < K[, and ACT; < AC'T].

Proof: The proof consists of two parts: First, we show that a node s =
[i, K;, ACT;] dominates another node s’ = [i, K!, ACT/], if f(s) < f(s),
K, = K|, and ACT;, < ACT/. Then, we prove that s dominates s, if
f(s) < f(s'), ACT, = ACT!, and K; < K!. If both parts hold, the com-
bination of them, as defined in the dominance rule, also holds.

(First part) Since the models stored in the pull-off tables are the same for
both nodes s and s’ (K; = K]), the same remaining models have to be pro-
cessed. If we assume that ACT, < ACT/, for any possible sequence of the
remaining models, AC'T; leads to a lower or at most the same number of rule
violations than ACT!. Since f(s) < f(s'), s leads to a solution better than or
equal to s'.

(Second part) Deleting option occurrences from a sequence of remaining
models (for example, by storing models in pull-off tables) leads to fewer or at
most the same number of rule violations caused by the remaining models that
have to be processed. With K; < K, we can construct for any sequence of re-
maining models, which is possible for s’, a counterpart sequence for s with this
condition. Therefore, starting with the same active sequence (ACT; = ACT}),
s leads to a lower or equal number of rule violations than s’. With f(s) < f(s),
s results in a solution better than or equal to §'. [

FExample: Consider two pull-off tables and an initial sequence of four models.
We have two options for which a 1:2- and a 2:3-rule holds, respectively. Figure
4.3 depicts two decision points and their respective nodes s and s’. s dominates
s', because f(s) = f(s') = 0, the contents of the pull-off tables are equally
demanding, and the active sequence of s is less restrictive than that of s'.
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(a) (b)
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Figure 4.3: Example for dominance rule

4.4.2 Beam search

Beam search (BS) is a truncated BFS heuristic and was first applied to speech
recognition systems by Lowerre (1976). Ow and Morton (1988) were the first
to systematically compare the performance of BS and other heuristics for two
scheduling problems. Since then, BS was applied within multiple fields of appli-
cation and many extensions have been developed, e.g., stochastic node choice
(Wang and Lim, 2007) or hybridization with other meta-heuristics (Blum,
2005), so that BS turns out to be a powerful meta-heuristic applicable to
many real-world optimization problems. A review of these developments is
provided by Sabuncuoglu et al. (2008).

Like other BFS heuristics, BS uses a graph formulation of a problem and
searches for the shortest path from a start to a target node. However, unlike
BFS or a breadth-first version of branch&bound, BS is not optimal since the
number of nodes that are branched in each stage is bounded by the beam
width BW. If BW is equal to the maximum number of nodes in a stage, BS
becomes BFS. The BW nodes to be branched are identified by a heuristic in
a filtering process. Starting with the root node in stage 0, all nodes of stage
1 are constructed. Then, the filtering process of BS selects all nodes in stage
1 that should be branched. Typical approaches are the use of priority values,
cost functions, or multi-stage filtering, where several filtering procedures are
consecutively applied (Sabuncuoglu et al., 2008). The BW best nodes found
by filtering form the promising subset of stage 1. These nodes are further
branched. The filtering and branching steps are iteratively applied until the
target node is reached. Analogously to other tree search methods like BFS,
we can use the bounding argument and dominance rule formulated in Section
4.4.1 for BS to reduce the number of nodes to be branched. To apply BS, we
must define a proper graph structure and a filtering mechanism:

Graph structure: For BS, we can use the acyclic digraph G(V, E,r) intro-
duced in Section 4.3. BS examines the T'(P 4 1) + 2 stages in lexicographic
order.

Filtering: For each node, we calculate the objective value (number of rule
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violations) of the current partial solution, which is the sum of arc weights along
the shortest path from the root node to the current node, and add the lower
bound argument of equation (4.9), which is the estimated path weight from
the current node to a target node. Then, we order the nodes according to the
estimated overall cost and select the BW nodes with lowest cost.

4.4.3 Iterative beam search

Iterative beam search (IBS) is conducted by applying a series of n BS iterations
with gradually increasing beam width BW. With larger beam width, more
nodes are explored, which increases the probability of finding the optimal path.
If the beam width of the nth iteration is equal to the maximum number of
nodes in a stage, a BFS is conducted and IBS is optimal. To speed up the
search, the solution found by the ith Beam Search BS;, witht=1,...,n—1,
is used as an upper bound for the subsequent Beam Search BS;, ;.

4.4.4 A* search

Unlike the aforementioned algorithms, A* search (Hart et al., 1968) does not
perform a stage-wise exploration of the decision tree but traverses the tree
along the nodes that appear to be most likely on the shortest path from the
start to the target node. For each explored node during the search process,
we calculate the costs g of the path from the start node to the current node
and add a heuristic function h, which estimates the remaining path costs from
the current to the target node. The search examines the nodes in ascending
order, according to their overall cost value g+ h, and returns the first solution
found. When using the lower bound argument (4.9) for the heuristic function
h, h is admissible, hence never overestimates the remaining costs to the target
node. Therefore, A* becomes an exact algorithm and returns the global best
solution.

A* requires a large number of nodes to be stored during the search process
since all explored nodes have to be stored in a list ordered with respect to the
estimated overall cost. We can reduce this number by removing all nodes from
the list whose overall cost is equal to or exceeds a global upper bound UB. In
addition, the dominance rule introduced in Section 4.4.1 can also be used to
reduce the number of stored nodes.
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4.5 Computational study

4.5.1 Experimental setup

We study the performance of the search approaches and the influence of the
number of pull-off tables with two sets of car sequencing instances. To apply
CRSP on a car sequencing instance, an initial sequence 7 is constructed ran-
domly which is then resequenced using P pull-off tables. As a first set, we use
the test instances provided by Fliedner and Boysen (2008). These 18 instances
have 10-50 production cycles, 3-7 options, and 5-28 models. The second set
stems from the CSPLib and contains 9 larger instances with 100 production
cycles, 5 options each, and 19-26 models. All algorithms were implemented
with VB.Net. Throughout the experiments, violations of instances in the first
set are measured using the approach by Fliedner and Boysen (2008) and viola-
tions of the second set are counted with the sliding-window approach (Gravel
et al., 2005). The experiments run on a Pentium 2.5 Ghz processor with 2 GB
RAM.

4.5.2 Algorithmic performance

First we compare the performances of the proposed search algorithms on both
problem sets. We also apply the commercial standard solver CPLEX 12.2 with
our binary linear model from Section 4.2 as a benchmark, to better assess the
solution qualities of the algorithms. For each instance of the problem sets,
ten different initial sequences are constructed randomly. The number of rule
violations of each initial sequence serves as an initial global upper bound U B.
We use a fixed number of pull-off tables P = 4. We set the time limit to solve
each of the ten sequences to 600 seconds and stop an algorithm if it exceeds this
limit. BFS, IBS and A*, are applied with the dominance rule from Section 4.4.
IBS is conducted with four iterations and beam widths BW; = 10, BW, = 100,
BW3 = 1000, BW, = oco. Since BW, = oo, IBS returns the optimal solution.
For BS, we set BW = 300.

Table 4.2 compares the average performance of the search algorithms for
solving one problem instance. An instance is characterized by the number of
production cycles T', the number of options O and the number of models M.
For the different search algorithms, we list the average objective value obj,
average CPU time consumed in seconds, and the average number of explored
nodes. BFS, A* IBS and CPLEX return the optimal solution, if the search
does not exceed the time limit, otherwise BFS and A* return no solution
at all. Comparing the optimal algorithms, A* is slightly favored for small
problem instances; for large problem instances, IBS shows the best results and
outperforms BFS, A* and CPLEX in terms of solution quality and runtime.
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Although BS is a heuristic and we have no guarantee of finding the optimal
solution, the solutions found are close to the optimum, whereas it explores
only a fraction of nodes and, thus, requires less CPU time compared to the
optimal algorithms. Since the performances of BFS, A* and CPLEX are worse
compared to IBS and BS, we do not consider these algorithms for further
experiments.

On problem set two we study how the performance of BS and IBS depends
on the number of pull-off tables P and the number of production cycles T'.
Figure 4.4(a) shows the average time consumed with varying P. BS performs
best since the time required is low and increases approximately linearly with
increasing P. In contrast to BS, the solution time grows approximately expo-
nentially for IBS.
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Problem T O M UB BFS A* IBS BS CPLEX

obj time(s) nodes obj time(s) mnodes obj time(s) mnodes obj time(s) nodes obj time(s) nodes
CAR3.10 10 3 5 5.7 1.0 0.06 1081 1.0 <0.01 83 1.0 0.04 437 1.0 0.13 4707 1.0 0.04 20
CARb5.10 10 5 5 83 1.2 0.42 3565 1.2 <0.01 75 1.2 0.05 379 1.2 0.25 5923 1.2 0.06 17
CAR_710 10 7 9 119 24 4.04 9726 2.4 0.02 216 2.4 0.06 665 2.4 0.42 6872 2.4 0.11 23
CAR3.15 15 3 5 10.2 24 0.27 3490 24 <0.01 246 2.4 0.10 885 2.4 0.34 11308 2.4 0.25 238
CAR5.15 15 5 7 15.0 34 6.7 18843 3.4 0.04 421 34 0.10 1202 3.4 0.68 13592 3.4 0.90 419
CAR.7.15 15 713 21.7 6.6 209.73 86719 6.6 2.2 4032 6.6 1.20 8391 6.6 1.05 14260 6.6 2.06 737
CAR320 20 3 6 14.9 3.8 0.77 6912 3.8 0.08 1084 3.8 0.16 2882 3.8 0.63 18943 3.8 1.22 818
CARb520 20 5 7 20.8 6.1 19.27 39556 6.1 0.82 3668 6.1 0.98 10212 6.1 1.08 20819 6.1 3.74 1267
CAR.720 20 715 25.8 - >600 - 71 14.66 14812 7.1 831 27802 7.1 1.78 21653 7.1 16.95 4261
CAR330 30 3 6 21.6 6.1 11.64 290462 6.1 0.23 2517 6.1 0.45 7410 6.1 1.08 31724 6.1 15.32 4879
CAR530 30 511 30.4 8.8 588.01 6509516 8.8 51.46 43992 8.8 34.47 73278 8.8 2.13 35704 8.8 276.69 47648
CAR_730 30 723 456 - >600 - - >600 - 144 323.94 195874 14.5 3.47 36424 14.8 432.75 54011
CAR.340 40 3 7 31.711.9 31.82 725502 11.9 2.47 2910 11.9 3.30 31081 12.2 1.64 45145 11.9 38.52 9697
CAR.540 40 513 41.9 - >600 - 13.8 307.63 143799 13.8 215.42 213772 14.4 3.17 50277 14.4 599.38 59748
CAR_740 40 726 575 - >600 - - >600 - 19.6  >600 - 204 5.15 51244 21.7 >600 38162
CAR350 50 3 7 40.817.2 48.7 1079206 17.2 8.02 28446 17.2 11.13 64211 17.2 2.17 58818 17.2 136.48 20228
CAR550 50 514 54.0 - >600 - - >600 - 21.0 577.27 397594 21.7 4.22 64638 22.7 >600 40186
CAR_750 50 728 79.4 - >600 - - >600 - 309 >600 - 325 6.87 65891 34.0 >600 30504
4-72 100 5 22 131.1 - >600 - - >600 - 37.8 >600 - 40.9 12.22 137977 41.7 >600 8107
6-76 100 522 118.8 -  >600 - - >600 - 275 >600 - 30.0 12.10 136812 31.2 >600 7585
10-93 100 525 156.0 -  >600 - - >600 - 53.7  >600 - 577 12,90 138447 58.2  >600 7552
16-81 100 526 139.6 -  >600 - - >600 - 432  >600 - 474 13.22 138608 49.4  >600 7091
19-71 100 5 23 151.4 - >600 - - >600 - 47.2 >600 - 51.7 11.93 136509 53.3 >600 8979
21-90 100 5 23 139.6 - >600 - - >600 - 428 >600 - 46.0 12.33 137376 46.2 >600 8869
36-92 100 522 1456 - >600 - - >600 - 46.7  >600 - 499 11.85 137209 50.3 >600 8805
41-66 100 519 119.8 - >600 - - >600 - 35.5 >600 - 377 11.03 136916 38.0 >600 7085
26-82 100 524 1343 - >600 - - >600 - 37.0 >600 - 39.6  12.28 137779 41.0 >600 7599

Table 4.2: Average performances over 10 runs (P = 4)
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Figure 4.5: Performance of BS against beam width BW

To study how algorithm performance depends on 7', we simply duplicate for
every instance the demand of each model by a factor A € {1,...,4}. Thus,
for, e.g., A = 2 each instance in set two has 200 production cycles. All other
parameters of the problem instances remain unaffected and the number of pull-
off tables is set to P = 3. Figure 4.4(b) shows the average time against the
number of production cycles 7" derived from A. Certainly, T" increases linearly
with A. When modeling the CRSP as a graph problem (see Section 4.3), the
time necessary for the algorithms increases roughly linearly with 7.

Finally, we study the influence of the beam width BW on the performance
of BS. We set P = 4 and varied BW between 10 and 400. Figure 4.5(a)
shows the time consumed against BW, which increases approximately lin-
early with increasing BW. Figure 4.5(b) shows the average absolute deviation
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Figure 4.6: Resequencing flexibility

Aobj = 0bjP® — obj* between the objective values obj?® produced by BS and
the best known objective values obj* as stated in the CSPLib. Therefore,
Aobj measures the number of additional rule violations in comparison to the
sequence obtained when solving the original CSP. The solution quality of BS
slightly increases with larger BW. Since a larger beam width (BW > 300)
has only a minor effect on the solution quality, we see a beam width of 300
sufficient for the studied problem instances.

In summary, BS performs well in comparison to the exact search approaches.
BS finds solutions close to optimal solutions, but explores considerably fewer
nodes and, therefore, requires less CPU time.

4.5.3 Resequencing flexibility

We focus on BS and study on both problem sets how solution quality depends
on the number of pull-off tables P. With increasing P, planning flexibility
increases, we are less dependent on the initial sequence 7y, and we are able
to build better sequences more similar to solutions of the CSP. For our study,
we construct ten random initial sequences 7y per instance and set BW = 300.
The number P of pull-off tables varies between 5 and 50 in steps of 5.

Figure 4.6(a) shows the average absolute deviations Aobj = obj?% — obj*
between the solution found by BS and the best known objective value of the
CSP for both problem sets. For low P, a randomly created initial sequence 7
has a large impact on the resulting sequence and the deviation is high. With
increasing P, m has a lower impact and we can construct a better new sequence
with fewer rules violations by using the pull-off tables. For larger P, the
resulting sequences become more similar to the optimal sequence of the CSP.
The plot shows that increasing P up to approximately 20 for set one increases
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problem T O M obj* BS

obj P time nodes
CAR_3_10 10 3 ) 1 1 D 0.16 5422
CAR.5.10 10 5 5 1 1 5 0.30 6714
CAR_7_10 10 7 9 2 2 10 0.72 9055
CAR_3_15 15 3 ) 2 2 10 0.80 22315
CAR5_15 15 ) 7 2 2 10 1.73 23384
CAR_7_15 15 7 13 4 4 10 3.06 24754
CAR_320 20 3 6 3 3 10 1.86 37349
CAR_5.20 20 ) 7 3 3 10 3.17 39602
CAR_7220 20 7 15 3 3 20 9.08 51027
CAR_3.30 30 3 6 4 4 10 3.57 67906
CAR_5.30 30 5 11 3 3 15 11.77 96315
CAR_7_30 30 7 23 4 4.7 25 36.57 123211
CAR_3.40 40 3 7 5 5 15 9.39 138435
CAR_5.40 40 ) 13 ) D 25 33.36 198632
CAR_7_40 40 7 26 9 7.7* 20 52.72 176986
CAR_3.50 50 3 7 6 6 20 17.38 229299
CAR_5.50 50 ) 14 8 9 25 51.29 276400
CAR_7.50 50 7 28 12 11.4%* 40 149.07 350858
4-72 100 ) 22 0 3 50 416.05 1124836
6-76 100 5 22 6 6.1 45 355.56 1046226
10-93 100 ) 25 3 6.7 50 452.48 1125511
16-81 100 5 26 0 3.1 45 426.51 1048913
19-71 100 ) 23 2 6.5 30 218.97 772178
21-90 100 5 23 2 3.8 45 384.86 1049156
36-92 100 ) 22 2 3.6 35 288.51 871502
41-66 100 ) 19 0 0.5 25 156.78 665434
26-82 100 ) 24 0 3.6 30 246.20 774043

Table 4.3: Average best results of BS

solution quality. Adding pull-off tables give us more flexibility and allow us
finding better sequences. For example, for P = 20, BS finds for problem set
one sequences that violate on average Aobj = 0.09 more sequencing rules than
the best known sequence of the CSP. Using larger number of pull-off tables
(P > 20) does not improve solution quality on set one. For problem set two,
an increase of the solution quality can be observed up to P = 30 where on avg.
an additional 2.83 sequencing rules are violated compared to the optimum.
For larger P(> 30), the solution quality can only be slightly further improved.
The remaining deviation from the optimal solution comes from the heuristic
character of BS. Regarding Figure 4.6(b), all instances can be solved within
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the 600-seconds time limit. For example, on set 2 with P = 50, BS requires
424.3 seconds on avg. Again, it can be observed that the solution time of BS
increases about linearly with increasing P.

Table 4.3 lists the best average results found for each instance and the mini-
mum number P’ of pull-off tables leading to this result. Note that for instances
CAR_7-40 and CAR_7.50 (marked with * in Table 4.3), we were able to find
a new best solution with only 7, resp. 11, rule violations. Clearly, the prac-
titioner when deciding on an appropriate buffer dimension has to balance the
elementary trade-off between investment cost for pull-off table installation and
the gains of additional resequencing flexibility. Especially, the latter effect is
hard to quantify, since determining an appropriate option-specific cost factor
for a sequencing rule violation is hardly possible (Boysen et al., 2009). How-
ever, our results reveal that the number of pull-off tables to be installed heavily
depends on the number M of models to be considered and number 7" of pro-
duction cycles. Especially, it can be concluded that adding more than P’ = %
pull-off tables does not seem advisable, since on average over all instances
P’ = 0.459T leads to (nearly) full resequencing flexibility.

4.6 Comparison with a real-world scheduling
rule

For the production of large commercial vehicles like trucks, buses, or construc-
tion vehicles, investment costs for conventional AS/RS having multiple buffer
places (see Section 4.1) are prohibitively high; therefore only a few random
access buffers are installed, e.g., to decouple paint shop and final assembly. In
this context, the following resequencing setting is taken from a major German
truck manufacturer.

To regain a desirable model sequence after paint shop and before final as-
sembly, the manufacturer installed a resequencing system consisting of 118
buffer places. Since quality defects in the paint shop cause a rework rate of
about 85%, sequences are heavily stirred up and a resequencing is inevitable.
As many buffer places are occupied over a longer period by driving cabs wait-
ing for critical parts not yet delivered, only 10 to 20 of these buffer places are
actually available for resequencing. Typically, there are about 50 cabs in the
overlap area between paint shop and final assembly.

As the model variation is large (for example, trucks have a different num-
ber of aisles which makes some trucks more than twice as long as others),
production times of different models are very heterogeneous. To deal with
the variation, the manufacturer considers 20 sequencing rules as hard con-
straints which have to be considered for resequencing. However, resequencing
also affects material supply. The originally planned sequence 7_;, which was
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disordered to initial sequence 7y within paint shop, was propagated to the sup-
pliers and material supply was organized on the basis of the planned sequence.
Therefore, parts are stored next to the line according to the planned sequence
of trucks (just-in-sequence). Creating a reordered sequence 7 that strongly
differs from the originally planned sequence m_;, makes a reordering of these
parts to be executed by additional logistics workers necessary. To minimize the
effort for material re-shuffling resequencing aims at approximating the original
material demand induced by the planned sequence as close as possible. For
this purpose, a deviation measure r,,; can be computed, which measures the
number of deviations between the material demand a,,, of a model m and the
original material demand a,,_, 4 planned for the production cyclet = 1,...,T
within the original sequence 7_; as follows:

o
Tt = Z Gon_ (1) — Gom| Ym=1,... M;t=1,...,T. (4.10)

o=1
Note that other deviation measures can be employed and facultative parts
can be considered, i.e., not necessarily those for which sequencing rules are
defined. Up to now, the resequencing decision is made by a dispatcher who
makes an online decision for the next model to be fed into final assembly. The

decision process is based on the following simple rules:

e Fill strategy: The dispatcher subsequently draws cabs from the waiting
queue into a buffer until all buffer places are fully occupied.

e Release strategy: The dispatcher selects a model for production from
the currently available models, which violates no sequencing rule and
minimizes material deviations for current production cycle.

The current selection policy suffers from the myopic choice of only a single
model. Alternatively, our car resequencing approach can be adapted for deter-
mining a complete (reshuffled) model sequence, which minimizes re-shuffling
effort and avoids sequencing rule violations. The objective function (4.1) and
constraint (4.5) of our model (see Section 4.2) have to be modified with (4.11)
and (4.12), resp.:

M T
Minimize Z Z Z Titm * Tt (4.11)

i=1 m=1 t=1
T min{t+N,—1,T} M

Z Z me-amgHo Vo=1,...,0;t=1,....,T (4.12)
=1 T=t

m=1
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(4.11) minimizes the number of material deviations and (4.12) ensures that
no sequencing rule is violated. Additionally, some modifications of our graph
approach are required as well:

e Only those nodes s are feasible that cause no sequencing rule violation
(f(s) =0). The lower bound (4.9) can still be used. Therefore, any node
with LB > 1 can be fathomed.

e The weight of an arc is defined as the contribution r,,; of current model
m chosen for production at decision point . The shortest path from
the start to the target node returns a sequence with minimum overall
material deviations.

e A lower bound on the overall deviations can be determined by relaxing
car-sequencing rules. In the unconstrained case, the optimal assignment
of models to cycles can be determined by solving an assignment problem
(see, e.g., Kuhn, 1955) minimizing realized deviation measures r,,;. The
lower bound fathoms nodes which cannot result in a better solution value
than the incumbent (upper bound) solution.

e The dominance rule (Section 4.4.1) cannot be used since it can exclude
optimal solutions.

To compare our resequencing approach with the real-world (human) decision
rule, we construct ten test problems each with 50 production cycles, 20 options,
and 15 buffers (pull-off tables). Sequencing rules are constructed randomly
with N, ={2...10} and H, = {1... N,}. An optimal sequence is obtained by
randomly assigning options to cycles, such that no sequencing rule is violated.
The average usage rate for the options is 25%. This optimal sequence of
models serves as initially planned sequence 7w_;. To simulate rework in the
paint shop, the optimal sequence is modified by randomly pulling models out
of the sequence (on average 85% of the models) and re-inserting them into
the sequence in a random position between their original position and the
25 following positions. This leads to the initial sequence 7y, which has to
be reshuffled. For every problem, we create ten different initial sequences 7
leading to 100 problem instances overall. For resequencing, we apply BS with
BW = 300 on the graph modified according to the aforementioned suggestions.

For each instance, Table 4.4 compares the average material deviation obj of
the solution found by BS with the solution using the real-world decision rule.
We also show the improvement (in %) and the avg. time and avg. nodes needed
for solving the instance. Clearly, BS finds better sequences and considerably
reduces the number of material deviations. On average, BS overcomes about
29% of the currently necessary effort for material reshuffling. Note, that all
instances can be solved within the time limit of 600 seconds.
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instance decision rule BS

obj obj time (s) nodes improv.
1 41.2 26.4 553.37 164308 35.9 %
2 45 29.6 599.60 176294 34.2 %
3 25.4 14.8 557.45 170522 41.7 %
4 39.8 31 558.41 172775 22.1 %
5 11 8.4 504.19 167743 23.6 %
6 47.8 29.4 538.41 167793 385 %
7 46.8 35.4 548.39 164162 24.4 %
8 23.2 16.8 571.80 168192 27.6 %
9 61.4 43.4 576.91 163506 29.3 %
10 49.6 42.8 473.98 159186 13.7 %
avg. 39.12 27.8 548.25 167448 28.9 %

Table 4.4: average overall material deviations r

In the real world, our resequencing approach should be applied in a rolling
horizon, where only a subset of models, e.g., the first 10, are definitely fixed and
the remaining (about 40) models are reinserted into the successive planning
run. In this case, our graph approach must not be started with the initial node
(empty pull-off tables) but with the one representing current buffer content,
when starting the planning run. Note that our basic graph structure can also be
applied for solving related resequencing problems. As the adoptions are truly
straightforward, e.g., to incorporate other functions for counting rule violations
like the sliding-window technique (Gravel et al., 2005), to distinguish between
hard- and soft-sequencing rules (Solnon et al., 2008) or to pursue alternative
resequencing objectives like leveling the required material (Drexl and Kimms,
2001) while avoiding rule violations, we abstain from a detailed description.

4.7 Conclusion

This paper deals with the car resequencing problem, where a number of pull-off
tables can be used to reshuffle an initial sequence of car models in such a way
that violations of car sequencing rules are minimized. We transform the car
resequencing problem into a graph search problem, which considerably reduces
solution effort, and develop efficient exact and heuristic solution approaches.
To further speed up search, we develop a lower bound as well as a dominance
rule which both can be used for fathoming nodes in the search graph.

For a set of test instances, we compare the performance of problem-specific
variants of BFS, IBS, A* search, and a BS heuristic. The computational
effort for BFS is higher than for IBS or A* search. A* needs less effort for
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small problem instances than IBS, whereas IBS is faster than A* for larger
problem instances. The heuristic BS approach finds solutions very close to the
optimal ones but needs much less computational effort in comparison to the
exact search approaches. Studying how the number of pull-off tables influences
the quality of the reshuffled sequence reveals that about % pull-off tables are
sufficient to reach nearly full resequencing flexibility for the considered problem
instances.

Finally, we present a real-world resequencing setting from a major German
truck producer and illustrate how the approach can be adapted for solving the
respective problem. In comparison to the currently used real-world scheduling
approach, our new resequencing approach can improve solution quality by on
average about 29%.

There are several ways to build on our research. On the one hand, future
research could approach the car resequencing problem applying different forms
of buffer organization, e.g., mixed banks (Spieckermann et al., 2004). On the
other hand, alternative sequencing objectives, like mixed-model sequencing
(Boysen et al., 2009) could be modified to cope with limited resequencing
flexibility due to a given number of pull-off tables.
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Chapter 5

Iterative beam search for car
sequencing

Uli Golle, Franz Rothlauf, Nils Boysen

Abstract

The car sequencing problem seeks a production sequence of different car
models launched down a mixed-model assembly line. The models can
be distinguished by selected options, e.g., sun roof yes/no. For every
option, car sequencing applies a so-called sequencing rule to avoid that
consecutive models requiring this option lead to a work overload of the
respective assembly operators. The aim is to find a sequence with mini-
mum number of sequencing rule violations. This paper presents a graph
representation of the problem and develops an exact solution approach
based on iterative beam search. Furthermore, existing lower bounds are
improved and applied. The experimental results reveal, that our solu-
tion approach is superior compared to the currently best known exact
solution procedure. Our algorithm can even be applied as an efficient
heuristic on problems of real-world size with up to 400 cars, where it
shows competitive results compared to the current best known solutions.

5.1 Introduction

The car sequencing (CS) problem (Parrello et al., 1986) is a NP-hard combina-
torial optimization problem seeking a production sequence of various car mod-
els which are jointly produced on a mixed-model assembly line. The car models
are distinguished by different binary options, e.g., having an air-conditioning or
not. An accumulation of models with the same option in a sequence could lead
to work overload of the operators on the line as they cannot accomplish their
work within the available station limits. Such work overload would have to
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be compensated by costly strategies like employing additional utility workers
or stopping the line. To avoid such scenarios, CS applies so-called sequencing
rules, which restrict the number of car models having an option in any subse-
quence of defined length. The aim is to find a sequence of car models, which
satisfies all sequencing rules (constraint satisfaction problem) or a sequence
with minimum number of rule violations (optimization problem).

Iterative beam search (IBS) is a truncated breadth-first search heuristic,
which is iteratively conducted with ever increasing search width. If the search
width is chosen large enough to cover the entire search space, IBS becomes
an exact solution approach and returns the global best solution. Otherwise, a
heuristic search is performed. Like other breadth-first search procedures, IBS
works on graph representations of a problem, where it seeks a shortest path
(with minimum costs) from the root node to a leaf node.

In this paper, we propose an IBS approach for solving CS considered as an
optimization problem. Our procedure is based on a new graph representation
of CS, which was inspired by Section 4.3, where a related approach for solving
the resequencing version of CS has been developed. Here, so-called pull-off
tables are applied to pull models offline and reinsert them in later production
cycles in order to reshuffle the sequence before entering a successive produc-
tion department. We modify this graph representation to the traditional CS
problem. Additionally, we define and apply improved lower bounds for CS.
Experimental results reveal, that our algorithm clearly outperforms the cur-
rently best known exact solution approach for CS; a scattered branch & bound
algorithm (SB&B) (Fliedner and Boysen, 2008). We also show the superiority
of our new lower bound arguments, as they significantly reduce the amount of
evaluated nodes for IBS.

The outline of the paper is as follows. The next section reviews relevant
literature and formulates CS as a mathematical model. In Section 5.3, we show
how to develop an IBS approach for CS, based on a new graph representation
and improved lower bounds. Several experiments are conducted in Section 5.4,
that show the superiority of our algorithm to a recent solution approach in the
literature. Section 5.5 gives concluding remarks and a brief outlook on future
research.

5.2 Model formulation and literature

The CS problem was first introduced by Parrello et al. (1986). Given a pool of
various car models, which can be distinguished by their required options (such
as air conditioning or sun roof yes/no), CS aims to find a production sequence
with minimum work overload. Therefore, it uses H, : N, sequencing rules,
which restrict the occurrences of option o in any subsequence of N, succeeding
cars to at most H,. The objective of CS is to minimize the number of rule
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=820z

om
H,: N,
Tt

Yot

BI

number of production slots (index )

number of models (index m)

number of options (index o)

demand for model m

binary demand coefficient: 1, if model m requires option o,
0 otherwise

sequencing rule: at most H, out of N, successively se-
quenced models require option o

binary variable: 1, if model m is produced in slot ¢, 0 oth-
erwise

binary variable: 1, if sequencing rule defined for option o is
violated in window starting in cycle ¢

Big Integer

Table 5.1: Notation

violations. Thus, in contrast to the related mixed-model sequencing approach
(Wester and Kilbridge, 1964), CS does only implicitly minimize the resulting
work overload. With the notations from Table 5.1, we can formulate the CS
problem as a mathematical model:

t+No—1

T—No+1
CS: Minimize Z Z Yot
ocO t=1
T
Y ww=d, VmeM
t=1
> ap=1 Vt=1....T
meM

S S - ame € Hytyor- BI Yo Ojt=1,...,T = N, +1

t'=t meM

T € {0,1} Vme M;t=1,....T
Yot €{0,1} Yoe O;t=1,....,T

(5.4)

(5.5)
(5.6)

Variable y,; indicates whether a rule violation with regard to option o occurs
in a subsequence starting at position t. Objective function (5.1) minimizes the
number of rule violations. Constraints (5.2) assure that the produced models
meet the required demand, whereas (5.3) enforces that exactly one model is
produced in each slot t. Constraints (5.4) check whether a rule violation occurs.
Finally, (5.5) and (5.6) ensure that variables z,; and y, take only binary
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values. The literature deals with various approaches on assessing the number
of rule violations. Here, we state the widely-used sliding-window technique
(SW) (Gravel et al., 2005). SW counts all complete subsequences of length
N,, in which a rule violation occurs. As SW tends to double count some
rule violations and weights them differently depending on their position in
the sequence, an alternative approach was introduced by Fliedner and Boysen
(2008) (FB). FB counts all option occurrences leading to a rule violation, so
that (5.4) is replaced with:

min{t+N,—1,T} M
E E mt’ * Umo — 1_§ om * 4dm B[§H0+ o'BI
t'=t meM m=1

Yoe O;t=1,...,T.

A detailed discussion of both objective functions is provided by Fliedner and
Boysen (2008).

CS is known to be NP-hard in the strong sense (Kis, 2004). Different exact
and heuristic solution approaches have been proposed in the literature. Among
the exact approaches are integer linear program (ILP) formulations (Gravel
et al., 2005; Prandtstetter and Raidl, 2008) and a branch & bound algorithm
(Fliedner and Boysen, 2008). Gravel et al. (2005) proposed an ILP avoiding
symmetries by grouping cars with the same options. Prandtstetter and Raidl
(2008) take additional paint shop constraints into account in their ILP and
focus on the assignment of option/colors instead of models. This formulation
shows superior results compared to the ILP of Gravel et al. (2005). The branch
& bound algorithm developed by Fliedner and Boysen (2008) is currently the
state-of-the-art exact solution algorithm. It is based on a scattered branch &
bound scheme (Klein and Scholl, 1999). The authors introduce and apply new
lower bounds and dominance rules for CS in order to speed up the search.

Beside exact solution approaches, various heuristics are available in the lit-
erature. According to experimental results, mainly variable local search pro-
cedures which use more than one neighborhood seem to be suitable for CS
(Puchta and Gottlieb, 2002; Gottlieb et al., 2003; Perron and Shaw, 2004; Es-
tellon et al., 2008; Prandtstetter and Raidl, 2008). Various neighborhoods can
be identified in the literature, the most promising are swap (exchanging the
positions of two car models) and 1in20pt (inverting a subsequence of car mod-
els). Estellon et al. (2008) and Prandtstetter and Raidl (2008) showed that
local search based methods with variable neighborhoods can efficiently solve
large-scale industrial problem instances with more than 1000 cars. A first
beam search (BS) approach for CS was introduced by Bautista et al. (2008).
However, their approach is different from ours as they use a different objective
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function based on the over- and under-assignment of options and also a dif-
ferent graph representation of CS. Other heuristic algorithms were applied on
CS as well, e.g., ant colony optimization (Gottlieb et al., 2003; Gravel et al.,
2005), genetic algorithms (Warwick and Tsang, 1995; Zinflou et al., 2007) and
hybrid approaches (Prandtstetter and Raidl, 2008; Jaszkiewicz et al., 2004).
For a complete overview of the various solution approaches to CS, see Boysen
et al. (2009) and Solnon et al. (2008).

5.3 An iterative beam search approach

5.3.1 Search procedure

IBS is a repeatedly conducted BS heuristic (Lowerre, 1976). BS is a truncated
breadth-first search and is based on a graph representation of the problem to be
solved. The graph (typically a tree) consists of a single root node, the starting
point for the search, inner nodes, which can be considered as partial solutions
to the problem, leaf nodes, which represent overall solutions and arcs by which
the nodes are connected. BS seeks to find a shortest path from the root node to
a leaf node. It branches through the graph stagewise, where a stage consists of
related nodes, e.g., inner nodes representing partial solutions of the same size.
Thereby, BS gradually expands the BW (beam width) best partial solutions
of the same stage. This results in a pool of partial solutions of the next stage
from which again the BW best nodes are considered to be further extended.
This is repeated until reaching the leafs of the tree and the best leaf node
is returned as the result of BS. Since the number of nodes at each stage to
be further branched is restricted by BW, BS unlikely finds the global best
solution. For selecting the BW best nodes at each stage, a problem-specific
heuristic is applied, which allows to order the nodes according to a relevant
value, e.g., estimated objective value. Additional upper bounds (lower bounds
for maximization problems) can be used, which allow to delete nodes during
the search that cannot lead to better solutions.

An IBS procedure consists of n subsequent BS iterations, which are applied
with gradually increasing beam widths BW. The result of the ¢th BS will
be used as upper bound UB (lower bound for maximization problems) for
the next (i + 1)th BS. Therefore UB,; 11 = BS;(UB;, BW,), with UB; = oo
and BW;,; > BW,; for i = 1...n — 1. If the beam width of the nth BS is
chosen large enough to cover all nodes at each stage and, therefore, the entire
search space, a breadth-first search is applied and IBS returns the global best
solution.
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5.3.2 Graph representation of CS

CS is modeled as a directed acyclic digraph G(V, E, f) with node set V', arc
set F and an arc weighting function f : E — N. Each node v € V' represents
a partial solution to CS with a decision point i. At each decision point, ¢ — 1
models have already been assigned to the first i — 1 slots and for current slot i a
model has to be chosen out of the set of remaining demands D;. Furthermore,
it has to be known whether or not the processing of this model induces any
rule violations. Therefore, the subsequence act{, called active sequence, at
decision point ¢ contains the last N, — 1 occurrences of option o from positions
t—N,+1tot—1. Thus, actf’t = 1 indicates that at production cycle i —t option
o has been processed, with actf’t € {0,1} being the tth position of act? for all
t=1,...,N, — 1. Consequently with ACT; = {act},... act?}, each node v
is defined by [i, D;, ACT;]. Due to this representation, the number of nodes to
be generated is considerably reduced compared to an explicit enumeration of
any possible subsequence.

Arcs connect adjacent nodes and represent a sequencing decision of a current
model. At each decision point ¢, | D}| distinct decisions can be made with D} :=
{d,, € D;|d,, > 0} since every model m, where the remaining demand d,,, € D;
is larger than 0, can be produced in the current slot . If a model m/ is assigned
to a production slot, the number of produced models amounts to ¢ and the
new remaining demand D, is obtained by decreasing d,,; € D; by one copy
of m/. Furthermore, the active sequences are adapted by removing the option
occurrences at positions N, — 1, shifting all other option occurrences by one
position to the end and inserting all option occurrences of the current model
m’ at the first position of the active sequences. Therefore, an arc connects a
node [i, D;, ACT;] with its subsequent node [i + 1, D; 1, ACT; 4.

Additionally, we assign weights f : E — N to each arc, which represent the
contribution of producing model m’ in slot 7 to the overall objective value.
Here, the weights measure the number of sequencing rule violations caused by
producing model m’. Depending on the test set in the experimental Section
5.4, we apply two different weighting functions f; and f:

S co min{ 1l max{3" " act?’ + ap — H,; 03}, if i > N,
fi= (58
0, otherwise
represents the sliding window objective function (SW). And
No—1
fo= Z min{a,,, ; max{ Z act?' + agm — Hy; 0}} (5.9)
0e0 t=1
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Figure 5.1: Example graph

for the objective function applied by Fliedner and Boysen (2008) (FB).

FExample: Consider an example with 7" = 4 production slots, O = 1 option
and M = 2 models. The single option is subject to a sequencing rule of 1:2.
Both models have a demand of 2 copies, while model 2 requires the option
and model 1 doesn’t. Figure 5.1 presents the resulting graph for this exam-
ple. Each arc is labeled with the currently produced model and the number of
additional violations this causes. Note that in this example, the SW and FB
objective function results in the same number of violations. We can observe
for our graph that not any possible subsequence is represented by an unique
node, but some subsequences point to the same node (e.g., [4,{0,1},{{0}}]
represents the subsequences 121 and 211). Thus, the overall number of nodes
is reduced compared to a complete enumeration of subsequences. Our example
contains three shortest paths from the root node to one of the leaf nodes, as
the sequences 1212, 2112 and 2121 each lead to zero violations.

5.3.3 Lower bounds

On the one hand, within our IBS procedure lower bounds are applied to prune
the graph. Specifically, nodes whose cumulated rule violations along the short-
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est path plus a lower bound on the remaining rule violations exceed an upper
bound, e.g., generated by a previous BS run with smaller BW, are fathomed.
On the other hand, lower bounds are utilized to guide the search into promising
regions of the solution space (see Section 5.3.4). There are some lower bounds
available in the literature on CS, which consider the option occurrences de-
coupled from their actual assignment to models (Fliedner and Boysen, 2008;
Benoist, 2008). Thus, for every option o, a lower bound can be computed re-
gardless of other options. The sum of the lower bounds on every option lead to
an overall lower bound. Benoist (2008) considers a different objective function
for CS than we do and, therefore, his lower bound argument can not be applied
in this paper. The lower bound by Fliedner and Boysen (2008) neglects the
used objective function at all. Their bound is stated by > _, d% — aZ**T the

difference between the actual demand df of models containing option o and the
max, T __

maximum number of available slots a! = LN%J - H, + min{H,; T mod N,}
to produce models with option o in a sequence of length T" without any vio-
lation, summed up over all options. Therefore, every option occurrence which
exceeds the number of available slots leads to a sequencing rule violation of
one. This lower bound can be tightened by incorporating the used objective
function as exceeding option occurrences could actually lead to more than one
violation. In the following, we will present lower bounds for CS incorporating
the SW and FB objective function, respectively.

For the case of a single option o, Benoist (2008) states an optimal sequence
construction algorithm. A sequence with minimum number of violations can
be constructed from left to right by assigning a model containing the option
(referred to as optional model) to a slot if no violation would occur and a basic
model without the option otherwise. This rule is repeated for every slot until
reaching the end of the sequence or only optional or basic models are left. In
this case, the remaining slots are filled with the leftovers. The resulting de-
lay of violations to the latest possible sequence positions leads to a minimum
number of rule violations.

Fzample: Consider a single option o subject to a sequencing rule of 2 : 4.
The sequence length 7" is 13. The demand for optional models df is 8 and the
demand for basic models d? is 5. Applying the aforementioned construction
algorithm leads to the optimal sequence depicted in Figure 5.2. The first two
slots are filled with optional models, the next two slots contain basic mod-
els, and this pattern is repeated until at slot 12 only optional models are left.
Considering either the SW or FB objective function, this sequence leads to an
identical result of two violations induced by the subsequences starting at slots
9 and 10, respectively. Note, that the lower bound by Fliedner and Boysen
(2008) would return only one violation as d% — a™**T =8 — 7.
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Figure 5.2: Example result of construction algorithm

The construction algorithm generates optimal sequences consisting of a re-
peated pattern n° of size N, with H, optional models at the beginning of the
pattern followed by N, — H, basic models, until either the required optional
or basic models are exhausted. In the resulting sequence in Figure 5.2, 7°
contains four slots with two optional models and two basic models and is pro-
cessed twice up to slot 8.

Proposition 5.1. Given the demand of basic models d° for an option o with
sequencing rule H, : N,, the mazimum number of slots t)'** that can be pro-
cessed without violation amounts to:

dP
mat = (| —2— | +1)-H,+d. 1
¢ QNO— OJ+ ) o+ d (5.10)

We apply the optimal construction algorithm with d? basic models. At the
beginning of the sequence, H, optional models are sequenced. After every
N, — H, basic models, another H, optional models can be processed. Thus,

( Nod_gHOJ +1)- H, returns the maximum number of optional models and, there-
fore, t7"** the overall number of models/slots that can be processed without

violation.

Proposition 5.2. Given an option o with sequencing rule H, : N, and t7'**. A
lower bound LB on the number of violations for the SW objective function
amounts to:

LB*Y = max{min{T — N, +1,T — t™*},0}. (5.11)

If t7'** > T, more than T slots can be processed without violation. There-
fore, no violation occurs and LB*W returns 0, which is ensured by the max-
function. If ¢,,,, < T, violations are inevitable as in slot ¢7"** +1 a basic model
is required, but only optional models are left. Thus, processing an optional
model will lead to a violation of the window ending at slot ¢J"** + 1. Since
at that time only optional models are left, all remaining sliding windows from
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t79* 41 to T' will also be violated. Thus, we have an overall number of 7'—¢]'**
violated windows. The SW approach considers only complete windows of size
N,, such that there are exactly T'— N, 4+ 1 complete windows in a sequence of
length T'. The first window which can be violated ends at slot N,. If {7'** < N,,
T — tI"** would lead to more than 7' — N, + 1 violated windows. Thus, the
min-function bounds the number of violations by the maximum number of
windows T'— N, + 1.

Proposition 5.3. Given an option o with sequencing rule H, : N, and
A lower bound LBYB on the number of violations for the FB objective function
amounts to:

max
gmaz

LB*P = max{T — t™* 0}. (5.12)

The reasoning is almost identical to that for the SW objective function
above, except that FB also considers windows of size less than N,. Thus, in
contrast to SW, the min-function is omitted.

Ezxample (cont.): Consider the example of Figure 5.2. By applying (5.10),
we receive t7% = 11 and, therefore, both lower bounds LBY and LBY? re-
sult in the correct number of two violations.

Clearly, equation (5.10) computes ¢7'** correctly, unless a part of the se-
quence is already fixed. If some slots are already processed, the models in the
active sequence have an influence on the repeating pattern 7w° generated by
the construction algorithm. Thus, in the following ¢'** is determined under
consideration of the option occurrences in the active sequence.

Let 7¢ be the repeating pattern for option o at decision point i and 7¢(j)
the jth position in the pattern. Given an active sequence act! at i, 7y is
constructed by

No*.j .j_l
. 1, if act? + 3" wo(k) < H,
72(j) = & &) (5.13)

0, else
j=1...N,

Example: Consider the example in Figure 5.3. It is the same example as
before, except for the first three slots that are already being filled with models.
The active sequence at decision point 4 is act] = {1,0,0}, thus in slots 1 and
2 basic models were processed and an optional model in slot 3. The result-
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decision point 4
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Figure 5.3: Example result of construction algorithm with already fixed slots

ing repeating pattern obtained from (5.13) is 7 = {1, 0,0, 1}. Note, that the
repeating pattern still consists of H, optional models and N,— H, basic models.

Let fro(j) be a function that returns the position of the jth basic model in
pattern 7 with j =1... N, — H,. In our example fro(2) = 3.

Proposition 5.4. Given decision point i and the remaining demand of basic
models df}i Jor an option o. The mazimum number of slots {7\ starting at i
that can be processed without violations amounts to:

d;,
tg};lx = (\‘ﬁJ) : No + fﬂf(dlgi mod (No - HO) + 1) — 1. (514)

A complete pattern 7 of size N, can be processed with each N, — H, basic
models (first term). By doing so, dii mod (N, — H,) basic models remain.
With these basic models, we can still process a fraction of the pattern 7{ up
to position fr (dfl mod (N, — H,) + 1) — 1 (second term). Therefore, we can
construct a sequence of length 7' starting at decision point ¢ without any
violation. Adapting formulas (5.11) and (5.12) we get:

LB = vg + max{min{T — N, + 1,T — (i + ¢ — 1)},0} (5.15)

and

LB"" = vgy + max{T — (i + " — 1),0}, (5.16)
where vg, are the violations in the fixed part of the sequence.

Ezample (cont.): Again, we take a look at the example sequence of Figure
5.3, subject to sequencing rule 2 : 4. At decision point ¢ = 4, we have three
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basic models left (de = 3). With fre(2) = 3 and (5.14), we get t;'{* = 6. And
finally, with (5.15) and (5.16), both lower bounds result in the correct number
of 4 violations.

5.3.4 Node selection

In order to select the BW best nodes at each stage of the graph to be fur-
ther branched, we apply a three-stage filtering process. First, the nodes are
ordered in ascending order according to their lower bound values. Second,
for nodes with identical lower bounds, we apply a utilization rate U; :=
ZOEO zme D, Umo * d,,, which counts the number of remaining options still
to be processed, where nodes with less remaining options are favored. If there
are still nodes with the same lower bound and identical value for U;, in a
third step, we apply a second utilization rate Us = max{r,|r, = >, . D, Gmo *
dp/am™® T 0 € O}. Uy is defined by the maximum ratio 7, among all options,
where r, reflects the actual demand for o divided by the maximum number of
occurrences a1 of o, that can be processed without violation. The smaller
this ratio, the higher is the degree of freedom to process the option. Again,
nodes are ordered in ascending order, such that nodes with a small maximum
ratio are favored.

5.4 Computational study

5.4.1 Experimental setup

Three sets of problem instances are applied to evaluate our IBS approach. Set 1
was introduced by Fliedner and Boysen (2008) and consists of 18 test instances
with 10-50 production slots, 3-7 options and 5-28 models. Throughout the
experiments, the FB objective function is used to evaluate the instances within
this set. Set 2 stems from the CSPLib, an online library, which provides
instances for various constraint satisfaction problems. It contains 9 instances
all with 100 production slots, 5 options and 19-26 models. Set 3 is provided
by Gravel et al. (2005), which is also available in the CSPLib. It consists of 30
problem instances with 200-400 production slots, 5 options and 19-26 models.
The two latter sets are evaluated using the SW objective function.

IBS was implemented in Java. All experiments run on a Pentium Dual Core
2.5 GHz with 2 GB RAM.

92



Chapter 5 Iterative beam search for car sequencing

5.4.2 Results

We apply IBS in two different modes. IBS; utilizes the lower bound intro-
duced by Fliedner and Boysen (2008), while IBS, uses our new lower bound
(see Section 5.3.3). Both, IBS; and IBS,, are performed with nine iterations
and beam widths BW = {5, 10, 25, 50, 100, 500, 1000, 1500, co}. Since the last
beam width BWy = oo, IBS; and IBS,; become exact solution approaches and
return the global best solution. We compare both algorithms with the cur-
rently best known exact solution approach, a SB&B algorithm (Fliedner and
Boysen, 2008). The SB&B is applied with n = 100, A = 10000, = 0.75,
dominance rules 2,3 and 6 and the lower bound by Fliedner and Boysen (for
details see Fliedner and Boysen, 2008). For each instance, the time limit for
solving the instance is set to 600 seconds, which seems an appropriate choice
for a short-term planning problem like CS. An algorithm is aborted, if the
given time limit is exceeded.

Table 5.2 shows the results for problem set 1, according to the FB objective
function. Label 'obj*" denotes the currently best known solution for each
instance as stated in Section 4.5.3. The columns ’obj’, 'time’ and 'nodes’ state
the best objective value obtained by each algorithm and the time and number
of evaluated nodes required to find this value. Note, that ’obj’ contains the
global best solution, if an instance could be solved within the time limit of 600
seconds.

SB&B 1BS; I1BS2
Instance T O M obj* obj time (s) nodes obj time (s) nodes obj time (s) nodes
CAR3.10 10 3 5 1 1 0.20 16 1 0.03 226 1 0.02 226
CAR5.10 10 5 5 1 1 0.16 2 1 0.01 82 1 0.01 82
CAR_7.10 10 7 9 2 2 0.25 75 2 0.08 810 2 0.06 663
CAR3.1515 3 5 2 2 0.30 39 2 0.03 614 2 0.03 644
CARLb5.15 15 5 7 2 2 0.34 73 2 0.03 738 2 0.05 776
CAR-7_15 15 7 13 4 4 0.56 2,486 4 1.11 14,280 4 0.53 6,341
CAR.3.20 20 3 6 3 3 0.47 1005 3 0.23 9,950 3 0.17 7,173
CAR520 20 5 7 3 3 0.42 326 3 0.11 2,954 3 0.08 2,014
: CAR_720 20 7 15 3 3 1.47 13,194 3 5.05 47,819 3 4.00 36,674
% CAR.33030 3 6 4 4 1.31 10,006 4 1.81 67,022 4 1.52 55,285
CAR._5.30 30 5 11 3 3 2.94 37,302 3 7.02 107,084 3 6.50 97,087
CAR_7.30 30 7 23 4 4 468.75 3,049,761 4 495.81 2,246,516 4 275.59 1,252,970
CAR-3.40 40 3 7 5 5 10.77 92,332 5 11.44 321,562 5 8.45 237,023
CAR_5.40 40 5 13 5 5 423.17 3,295,946 5 349.53 3,587,007 5 196.78 2,040,611
CAR_7_40 40 7 26 T 7 >600 - 8 >600 - 7 >600 -
CAR.3.50 50 3 7 6 6 45.95 388,351 6 38.67 991,297 6 24.14 613,061
CAR.5.50 50 5 14 8 8 >600 - 8 >600 - 8 >600 -
CAR_7.50 50 7 28 11 12 >600 12 >600 - 11 >600 -

Table 5.2: Results for problem set 1 (FB objective function)

The results returned by IBS; and SB&B are comparable (excepting instance
CAR_7_40, where SB&B finds a better solution than IBS;). Regarding the

solution time, IBS; is slightly in favor on 9 instances, while SB&B requires
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less time than IBS; on 6 instances. Overall, IBS; and IBS, can evaluate nodes
much faster than SB&B, mainly because no dominance rules are applied. Due
to the new lower bound, IBS, is able to reduce the amount of evaluated nodes
considerably compared to IBS;. Therefore, it is able to outperform IBS; on
all instances and SB&B on 15 out of 18 instances. Only IBS, finds the best
known solutions for all instances of set 1.

In order to compare the performances of the algorithms on larger problem
instances, we use problem sets 2 and 3 consisting of instances with up to 400
car models. The results are listed in Table 5.3 and correspond to the SW
objective function. Clearly, IBS; and IBS; outperform SB&B on all instances.
Regarding set 2, IBS; and IBS, are able to solve all satisfiable instances in less
time than SB&B and return the best known solution for all other instances. In
contrast, SB&B is not able to reproduce the best known solutions for instances
10-93, 19-71 and 36-92. On set 3, the objective values returned by IBS; and
IBS, are significantly better than the results of SB&B. They are even close to
the best known solutions, obtained by a genetic algorithm with a subsequent
local search (Zinflou et al., 2007). Furthermore, IBS; and IBS, solve all of
the satisfiable instances in a few seconds, except instance 200_01. Regarding
the solution times on these instances, IBS; is slightly in favor compared to
IBS,, since the computation of the new bound requires little more time. The
objective values returned by IBS; and IBS, are similar, except for instances
200_03, 300_05, 400_.02 and 400_07, where IBS, finds a better solution than
IBS;. However, both, IBS; and IBS,, are not able to find an optimal solution
for any of the unsatisfiable instances in sets 2 and 3 within the time limit of
600 seconds, since the number of production slots 7" and models M are too
large to be solved to optimality.

5.4.3 Optimality proof

For instances 6-76, 10-93, 19-71, 21-90 and 36-92 of problem set 2, where the
current best solutions found contain sequencing rule violations, the optimality
of these solutions was only proven for instance 19-71 by Gent (1998), who rea-
soned a lower bound with the same number of two violations as the currently
best solution. For the remaining instances, the optimality of the current best
solution still needs to be verified. For this reason, we relaxed these instances
by merely considering two out of five options concurrently. Considering each
combination of two options, we receive (g) = 10 subinstances for every in-
stance. Note, that any optimal solution of one of the subinstances serves as
a lower bound for the original problem instance. We solved each combination
with our IBSy approach from Section 5.4.2. Table 5.4 shows the respective
results. Thereby, we were able to proof the optimality of the current best solu-

tion for instances 6-76, 10-93 and 36-92. For instance 6-76 the subinstance just
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SB&B IBS; IBS,
Instance T O M obj* obj time (s) nodes obj time (s) nodes obj time (s) nodes
4-72 100 5 22 0 0 3.53 201 O 0.27 1,470 O 0.28 1,470
6-76 100 5 22 6 6 >600 - 6 >600 - 6 >600 -
10-93 100 5 25 3 5  >600 -3 >600 -3 >600 -
«~ 16-81 100 5 26 0 O 5.08 6,502 0 1.64 8431 O 1.70 8,431
g 19-71 100 5 23 2 3 >600 -2 >600 -2 >600 -
21-90 100 5 23 2 2 >600 -2 >600 -2 >600 -
36-92 100 5 22 2 4  >600 -2 >600 -2 >600 -
41-66 100 5 19 0 O 3.13 90 0 094 8,799 0 1.86 17,073
26-82 100 5 24 0 O 3.78 22 0 0.58 3,857 O 0.61 3,857
200-01 200 5 25 0 5 >600 -1 >600 -1 >600 -
200-02 200 5 25 2 7 >600 -3 >600 -3 >600 -
20003 200 5 25 4 14  >600 -9 >600 - 8 >600 -
20004 200 5 24 7 16 >600 - 8 >600 - 8 >600 -
20005 200 5 23 6 14 >600 - 8 >600 - 8 >600 -
200-06 200 5 23 6 8 >600 -7 >600 -7 >600 -
20007 200 5 23 0 1 >600 -0 0.562 2943 0 0.578 2,943
20008 200 5 20 § 11  >600 -9 >600 -9 >600 -
200,09 200 524 10 15 >600 - 10 >600 - 10 >600 -
200.10 200 519 19 27 >600 - 20 >600 - 20 >600 -
30001 300 5 25 0 7 >600 -0 5.891 26,767 0 6.047 26,768
300.02 300 525 12 24 >600 - 12 >600 - 12 >600 -
300.03 300 525 13 25 >600 - 14 >600 - 14 >600 -
300.04 300 5 24 7 21  >600 - 10 >600 - 10 >600 -
CE 30005 300 520 29 52 >600 - 33 >600 - 32 >600 -
@ 300.06 300 5 25 2 9 >600 - 6 >600 - 6 >600 -
30007 300 5 24 0 14 >600 -0 5.156 25,636 O 5.344 25,636
300-08 300 5 23 8 17 >600 -9 >600 -9 >600 -
30009 300 5 21 7 16 >600 -7 >600 -7 >600 -
30010 300 519 21 56 >600 - 25 >600 - 25 >600 -
400-01 400 5 25 19 >600 -3 >600 -3 >600 -
400.02 400 522 16 35 >600 - 20 >600 - 19 >600 -
40003 400 5 23 9 19 >600 - 12 >600 - 12 >600 -
40004 400 526 19 29 >600 - 20 >600 - 20 >600 -
40005 400 5 20 0 23 >600 -0 0.359 2,008 0 0.375 2,008
40006 400 5 23 0 2 >600 -0 7.047 35,745 0 7.281 35,747
40007 400 5 23 4 15 >600 -5 >600 - 4 >600 -
40008 400 5 21 4 28 >600 - 10 >600 - 10 >600 -
400.09 400 5 24 5 29  >600 - 11 >600 - 11 >600 -
400.10 400 5 25 0 23 >600 -0 3.031 15,573 0 3.125 15,573

Table 5.3: Results for problem sets

2 and 3 (SW objective function)

containing options 1 and 3 leads to 6 violations, for 10-93 the subinstance with
options 1 and 2 leads to 3 violations and for instance 36-92 the subinstance
composed of options 2 and 4 amounts to 2 violations. Only for instance 21-90,
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the optimality proof remains open, as all subinstances return 0 violations.

Options Instance

6-76 10-93 21-90 36-92

1&2 0 3 0 0
1&3 6 0 0 0
1&4 0 0 0 0
1&5 0 0 0 0
2& 3 0 0 0 0
2& 4 0 0 0 2
2&5 0 0 0 0
3&4 0 0 0 0
3&5 0 0 0 0
4 &5 0 0 0 0
max 6 3 0 2

Table 5.4: Resulting sequencing rule violations for subinstances with two op-
tions (SW objective function)

5.5 Conclusion

This paper presents an exact IBS algorithm for the CS problem. Therefore,
we model CS as a directed acyclic digraph. We improve existing lower bounds
by incorporating the applied objective function. As objective function, we use
either the sliding-window technique or the objective function by Fliedner and
Boysen (2008). Experimental evaluation of our approach is conducted on three
sets of widely-used small to medium-sized instances with up to 400 car models.

The results on smaller, and therefore exact solvable, instances reveal that
our new lower bound argument significantly reduces the number of evaluated
nodes and, therefore, speeds up the search process of IBS. Our IBS algorithm,
applied with the new lower bound, is superior to the currently best known exact
solution approach, a SB&B algorithm (Fliedner and Boysen, 2008). It finds
better solutions containing fewer sequencing rule violations in less time. The
performance gap between IBS and SB&B even increases for larger instances
with 100-400 cars, where IBS leads to competitive results, in terms of solution
quality, compared to an existing genetic algorithm in conjunction with a local
search. Additionally, we proof for three instances of the CSPLib the optimality
of the current best known solution by computing lower bounds with the same
objective value.

Future research on CS should deal with the development of superior lower
bounds. For instance, more than merely a single option at a time could
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be taken into account, so that dependencies between options can be incor-
porated into improved lower bounds. Furthermore, alternative CS objective
functions (sliding-window, objective function by Fliedner and Boysen (2008),
etc.) should be addressed in order to evaluate which objective function actually
leads to the underlying goal of minimizing the work overload.
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Chapter 6

Fitness landscape analysis and
design of metaheuristics for car
sequencing

Uli Golle

Abstract

We study the car sequencing (CS) problem, an NP-hard combinatorial
optimization problem which aims at finding a production sequence of
different models launched down a mixed-model assembly line. The mod-
els are differentiated by a number of selected options. For each option,
a so-called sequencing rule is applied which restricts the option occur-
rences in the sequence in order to minimize the work overload of the
respective line operators. In this paper, we perform a fitness landscape
analysis of several instances of the CS problem, where we examine the
autocorrelation as well as fitness-distance correlation (FDC) induced by
four neighborhood operators and three distance metrics. These results
are subsequently employed for the design of two metaheuristics for CS,
a variable neighborhood search (VNS) and a memetic algorithm (MA)
evaluated with three different crossover operators. The VNS shows su-
perior performance and even improves currently best known solutions of
instances in the CSPLib. Although the results of the MA algorithms are
inferior compared to VNS, applying crossover operators that respect the
adjacency distance metric lead to a better solution quality than using
other crossovers.

6.1 Introduction
The car sequencing (CS) problem (Parrello et al., 1986) is a combinatorial op-

timization problem seeking a production sequence of various models launched
down a mixed-model assembly line. The models are derived from a common
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base product and differ in a number of selected options. Nevertheless, all mod-
els are jointly manufactured on the same mixed-model assembly line with a
lot size of one. Since the processing times of the models can vary and the
line is balanced to an average model, a sequence of consecutive work-intensive
models may lead to work overload of the respective line operators. Work over-
load occurs, whenever an operator can not finish his assigned tasks within the
available station limits. These work overload scenarios have to be compensated
by other strategies, such as employing additional utility workers or stopping
the line. To minimize the total amount of work overload, CS uses a so-called
sequencing rule of type H : N for each selected option, which restricts the
occurrence of models having this option to at most H, in any subsequence of
N consecutive models. The aim is to find a sequence, which meets the de-
mand for each model and satisfies all sequencing rules (constraint satisfaction
problem) or minimizes the number of sequencing rule violations (optimization
problem). CS belongs to the class of NP-hard problems (Kis, 2004).

The concept of landscapes is an intuitive notion of the search space, the set
of all solutions to a combinatorial optimization problem. A search algorithm
navigates through the landscape in order to find the best solution, usually
the highest peak or the lowest valley. Therefore, all solutions have to be
connected by a certain distance measure and the quality of each solution is
assessed using a so-called fitness function. Thus, landscapes are often referred
to as fitness landscapes. The analysis of fitness landscapes can give valuable
insights into the characteristics of the search space. These informations can be
employed to design better search algorithms that incorporate more problem-
specific knowledge, which is crucial for effective optimization algorithms.

In this paper, we study the resulting landscapes of four neighborhood oper-
ators and three distance metrics for a set of CS instances. We analyze local
and global properties of the landscapes by performing an autocorrelation and
fitness distance correlation analysis. The results of the landscape analysis are
employed to design two metaheuristics for CS, a simple variable neighborhood
search (VNS) as well as a memetic algorithm (MA). Thereby, we propose a
new heuristic crossover operator for CS. The performance of the VNS and the
MA with the new crossover operator as well as two existing ones is evaluated
in experiments using widely applied CS problem instances from the CSPLib.
The main findings are:

1. Three out of the four neighborhood operators lead to a smooth landscape
for CS in terms of the normalized correlation length.

2. All neighborhood operators and the adjacency distance metric show a
high fitness-distance correlation on all instances and, thus according to
Jones and Forrest (1995), result in an ’easy’ problem for evolutionary
algorithms.
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T number of production slots (index t)

M number of models (index m)

O number of options (index o)

dpm, demand for model m

Gom binary demand coefficient: 1, if model m requires option

o, 0 otherwise
H,: N, sequencing rule: at most H, out of N, successively se-
quenced models require option o

Tt binary variable: 1, if model m is produced in slot ¢, 0
otherwise

Yot binary variable: 1, if sequencing rule defined for option
o is violated in window starting in cycle ¢

BI Big Integer

Table 6.1: Notations

3. In case of the adjacency distance metric, a "big valley’ (Boese et al., 1994)
structure for CS is identified.

4. Incorporating the findings of the landscape analysis into operators for the
VNS and the MA leads to high quality metaheuristics that find the best-
known sequences for all test instances and even improve the currently
best solution of two instances.

The remainder of the paper is organized as follows. In Section 6.2, we review
relevant literature on CS and state its optimization model. Section 6.3 presents
four neighborhood operators proposed for CS and studies characteristics of the
fitness landscapes resulting from these operators. The insights gained from
Section 6.3 are used in Section 6.4 to design a VNS as well as a MA for CS.
The performance of the metaheuristics is evaluated in experiments in Section
6.5. Section 6.6 concludes the paper.

6.2 The car sequencing problem

The CS problem stems from applications in the automobile industry and was
first introduced by Parrello et al. (1986). As its related approach of mixed-
model sequencing (MMS) (Wester and Kilbridge, 1964), it aims at finding a
sequence of different models to be produced at a mixed-model assembly line
with minimum work overload. Work overload occurs, whenever a line operator
can not finish his assigned assembly tasks due to a consecutive order of work-
load intensive models in the sequence. In contrast to MMS, CS applies a
surrogate objective for the minimization of work overload. Given a pool of
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different models, which can be distinguished by selected binary options (such
as having an air conditioning or not in case of car models), CS restricts the
occurrences of each option o € O in the sequence by using so-called sequencing
rules H, : N,. A sequencing rule allows only H, models having option o in
any subsequence of N, consecutive models. For instance, a sequencing rule
of 3:5 for the option 'sunroof’ requires that at most 3 out of 5 consecutive
models contain a sunroof. If more models have a sunroof, a violation of the
respective sequencing rule occurs. The aim of CS is to find a production
sequence containing all models in the pool and inducing the minimum overall
number of rule violations. It is assumed that the minimization of sequencing
rule violations simultaneously leads to the underlying goal of minimizing the
total amount of work overload. With notations from Table 6.1, the CS problem
is formulated as an integer linear program as follows Gravel et al. (2005):

T—No+1
CS: Minimize Z Z Yot (6.1)
ocO t=1

T
Y g =dn VmeM (6.2)

t=1
=1 Vt=1,....T (6.3)

meM

t+No—1
Z met"amo§H0+yot'B[

t'=t meM (64)

YVoe O;t=1,..., T —N,+ 1
T € {0,1} Vme M;t=1,....,T
yor € {0,1} Yoe O;t=1,...,T

Yo indicates whether a rule violation of option o occurs in a subsequence
starting at position ¢. The objective function (6.1) minimizes the overall num-
ber of rule violations. The resulting sequence has to meet the required demand
d,, for each model m € M (6.2) and is allowed to contain exactly one model
at each production slot ¢ (6.3). Constraints (6.4) check for rule violations. We
apply the sliding-window approach, where a violation of a subsequence is al-
ways assessed with one violation in the objective function Gravel et al. (2005).
Finally, (6.5) and (6.6) ensure variables x,,; and y,; to be binary.

Since CS is NP-hard in the strong sense (Kis, 2004), various exact, heuristic
and hybrid search procedures have been developed in order to solve the problem
(Boysen et al., 2009; Solnon et al., 2008). Among the exact approaches are
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integer linear programming (ILP) formulations. While Gravel et al. (2005)
present the aforementioned basic ILP, the ILP by Prandtstetter and Raidl
(2008) focuses on option assignments to the sequence instead of models and
also includes constraints of the preceding paint shop. Fliedner and Boysen
(2008) propose a scattered branch & bound algorithm introducing new lower
bounds and dominance rules for CS. Their bounds are further improved in
Chapter 5, where a graph representation of CS is solved with an exact iterative
beam search (IBS) algorithm.

As for heuristics and metaheuristics, different approaches including con-
struction heuristics, local searches, evolutionary algorithms and ant colony
optimizations have been developed. In Gottlieb et al. (2003), different greedy
heuristics for the optimization version of CS are studied and applied in local
search as well as ant colony algorithms. In Butaru and Habbas (2005), the
constraint satisfaction version of CS is addressed and different value ordering
heuristics to construct an optimal sequence are proposed. Different local search
procedures are introduced in Puchta and Gottlieb (2002) including greedy as
well as threshold accepting algorithms that employ a set of various neighbor-
hood operators. A large neighborhood search is also introduced in Perron and
Shaw (2004) using different move operators and search strategies. In Estel-
lon et al. (2008) and Cordeau et al. (2008) an industrial version of CS with
instances having more than 1000 models and including paint shop constraints
and the distinction between hard and soft constraints, is solved by local search
applying variable neighborhoods. Among evolutionary approaches, a genetic
algorithm (GA) is developed in Warwick and Tsang (1995) using a version
of adaptive template type crossover and performing hill climbing as mutation
operator. For the industrial version of CS, a genetic local search procedure is
designed in Jaszkiewicz et al. (2004). The authors introduce a crossover op-
erator that preserves common subsequences in both parents and apply a local
search using a shift neighborhood after each recombination. In Terada et al.
(2006), a standard GA is combined with squeaky-wheel optimization, where
sequences are iteratively constructed and improved by adaptive priority rules.
A series of new crossover operators for GAs is presented in Zinflou et al. (2007),
showing good results on instances of the CSPLib. These results are further
improved by applying a subsequent local search. Furthermore, ant colony op-
timizations are presented in Gottlieb et al. (2003); Gravel et al. (2005); Gagne
et al. (2006); Solnon (2008) applying different pheromone trails and transition
rules. In summary, local search procedures applying a set of neighborhood
operators show the overall best results on CS instances.

Few authors provide hybrid algorithms for CS, combining exact and heuristic
approaches. In Prandtstetter and Raidl (2008), an ILP is incorporated into a
variable local search procedure producing competitive results for the industrial
version of CS. In Zinflou et al. (2008), the authors previous GA approach is
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extended by incorporating ILP formulations into the crossover operator. The
solution quality of the resulting GA on the CSPLib instances is increased, but
at the cost of a very high runtime.

6.3 Fitness landscape analysis of car
sequencing

In general, a fitness landscape (X, f,d) of an instance of a combinatorial opti-
mization problem consists of a set of solutions X', a fitness function (objective
function) f : X — R, which assigns an objective value to each of the solutions
in X', and a distance measure d, which defines the spatial structure of the
landscape. For the notion of distances, a so-called neighborhood operator N
is applied. N converts a solution z € X into a new solution 2’ € N'(x) C X by
changing the composition of . With the neighborhood operator N, the search
space can be interpreted as an undirected graph Gy = (X, E) with X being
the vertices of the graph and edge set £ = {(z,2') € X x X | 2’ € N(2)}
introducing an edge between x and 2/, if 2’ can be reached from x by one
application of A or vice versa. The distance d(x,y) between two solution x
and y is then defined as the length of the shortest path from x to y in Gy,
which equals the minimum number of applications of A/ to transform x into y
or vice versa.

For CS, we analyze the fitness landscapes for a set of nine widely applied
problem instances in the literature. The instances are available in the CSPLib,
an online library for constraint satisfaction problems. Each instance has T =
100 production slots, M = 19-26 models with O = 5 options to be sequenced.
For every instance, we generate different fitness landscapes using equation (6.1)
as fitness function and four neighborhood operators found in the literature
(Puchta and Gottlieb, 2002). We study the autocorrelation of the resulting
landscapes in terms of a random walk analysis and perform a fitness-distance
correlation analysis.

6.3.1 Representation and neighborhood operators

A solution for CS is represented by a permutation with repetitions. Thus,
a sequence is encoded as a vector of length 7', where a value m € M at
position t = 1,...,T indicates that a copy of model m is produced at the
tth production slot. We only consider feasible solutions, where the sum of
occurrences of each model m € M in the sequence corresponds to the models
demand d,,. This is ensured by an appropriate initialization of solutions and
neighborhood operators that maintain feasibility.
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For the fitness landscape analysis of CS, we consider four different neighbor-
hood operators N (Puchta and Gottlieb, 2002), that are currently applied in
the literature. The operators are along the line of operators for the traveling
salesman problem:

e Swap neighborhood N,: Two models in the sequences exchange their
positions.

e Adjacent swap neighborhood N,4: Two adjacent models in the sequences
exchange their positions.

e Shift neighborhood N,: A model is forward or backward shifted a certain
number of positions in the sequence.

e Reverse neighborhood N,.: The order of a subsequence of models is
reversed.

6.3.2 Autocorrelation

The autocorrelation analysis studies the ruggedness of a landscape, which is
important for local search procedures. A fitness landscape is said to be rugged,
if no correlation between the distance of solutions and their fitness values exists.
Thus, a small distance between two solutions can imply a large difference in
their objective values. Rugged landscapes are difficult to search for guided local
search methods, which traverse the search space by iteratively sampling new
solutions in the neighborhood of a current solution. Thereby, the fitness value
of the current solution is employed to decide whether the search proceeds with
one neighboring solution or not. The search is guided from low quality solutions
to higher quality solutions in order to find the global optimum. However, on a
rugged landscape, the fitness values of neighboring solutions are not correlated
and can, therefore, not be used to guide the search process, which results in
a merely random search. In contrast, if a correlation between the distance
and the fitness value of solutions exists, the respective landscape is said to be
smooth and is adequate for guided local search methods.

In Merz and Freisleben (2000), the autocorrelation function is introduced to
compute the ruggedness of a landscape. The approach requires to evaluate the
entire search space of a problem instance, thus, all solutions in X. Since for
many optimization problems, including CS, the number of solutions increases
exponentially depending on some input factor, Weinberger (1990) proposes
to use a random walk to estimate the autocorrelation. Beginning with an
arbitrary solution, a random walk picks a random solution in the neighborhood
of the current solution and proceeds the walk with the new solution. This move
is repeated until a maximum number m of walking steps is reached. The fitness
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Afsw T—1
Nd T(T-1)
a 2
Nan T—1
-/\/’m T—1

Table 6.2: Diameters of neighborhood operators

values f(x) of all solutions = visited during the walk are used to compute the
random walk correlation function r(s) as follows

m—s

1 —~ — _
m - (f(2e) = F)(f(4s) = f) (6.7)

r(s) =

With o?(f) being the variance of the fitness values, 7(s) computes the corre-

lation of all solutions that are s steps away along the random walk of length m.

Based on the nearest-neighbor correlation of the landscape (1), which is the

correlation of neighboring solutions, the correlation length [ of the landscape
is defined as (Stadler, 1996):

| (6.8)
—mmay: Hr) #0

. {0, if (1) =0

[ reflects the ruggedness of the landscape. The lower the correlation length
the more rugged the landscape. Since the correlation length depends on the
applied neighborhood operator as well as on the size of the instance, different
instances and/or neighborhood operators should be compared by the normal-
ized correlation length I (Hoos and Stiitzle, 2005, p. 229):

l

= diam(Gy)

(6.9)

with diam(Gyr) being the diameter of the search space, which is the max-
imum distance of any two solutions in Gy. The diameters of the considered
neighborhood operators are listed in Table 6.2.

For each CS instance, we get four different fitness landscapes by applying
the neighborhood operators of Section 6.3.1 together with equation (6.1) as
fitness function. To measure the autocorrelation of the resulting landscapes,
we perform a random walk with 100,000 steps on each landscape and determine
the random walk correlation coefficient of neighboring solutions (1) and the
normalized correlation length I’. Table 6.3 shows the respective results.
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instance r(1) I

-/\/‘sw Nad Afsh Me A/SW Nad Afsh Me
4-72 0.9512 0.9880 0.9648 0.9621 0.2019 0.0167 0.2817 0.2614
6-76 0.9543 0.9878 0.9671 0.9646 0.2162 0.0165 0.3015 0.2805

10-93 0.9526 0.9877 0.9654 0.9631 0.2082 0.0163 0.2867 0.2683
16-81 0.9516 0.9876 0.9642 0.9621 0.2038 0.0162 0.2775 0.2613
19-71 0.9533 0.9880 0.9654 0.9637 0.2111 0.0168 0.2867 0.2732
21-90 0.9550 0.9879 0.9673 0.9648 0.2195 0.0166 0.3040 0.2821
26-92 0.9540 0.9886 0.9668 0.9641 0.2147 0.0176 0.2994 0.2765
41-66 0.9540 0.9887 0.9677 0.9648 0.2143 0.0178 0.3076 0.2820
26-82 0.9537 0.9885 0.9658 0.9642 0.2130 0.0175 0.2902 0.2767

Table 6.3: Random walk correlation coefficients and normalized correlation
lengths

The results of the correlation coefficients (1) suggest a smooth landscape for
all instances and neighborhood operators, especially for N,q. However, since
N.q has a larger diameter as compared to the other operators, the normalized
correlation lengths I/, suggests Ny, N;e and Ny, to be favorable for local search
procedures.

6.3.3 Fitness-distance-correlation

The fitness-distance-correlation (FDC) (Jones and Forrest, 1995) is a measure
for problem difficulty for evolutionary algorithms. The FDC measures the
correlation between the fitness differences of a solution and the global best so-
lution and their distances in the search space. Thus, with a sample of solutions,
the FDC coefficient p is defined as

cov(f, dopt)
o(f)o(dopt)

with dopy being a solutions distance to the nearest optimal solution and
cov(f,dopt) the covariance of f and dop. A value of p = 1 indicates a perfect
correlation between fitness and distance to the optimum. The more both
values are correlated, the easier the resulting problem is for selection-based
algorithms as a path of solutions with increasing fitness values leads to the
optimum (Merz and Freisleben, 2000). The problem difficulty can be classified
(Jones and Forrest, 1995) according to o. A value of o > 0.15 suggests a
straightforward minimization problem for evolutionary algorithms, while lower
values of p indicate an uncorrelated or even misleading landscape. The FDC

o(f, dopt) = (6.10)
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coefficient can be computed for random solutions as well as locally optimal
solutions. The usage of locally optimal solutions can give further insights
into the global structure of the search space (Merz and Freisleben, 2000).
Additionally, fitness-distance plots are suitable for the interpretation of the
results.

To compute the FDC coefficient, the distances between solutions have to be
known. The actual distance between two solutions is the minimum number
of a specific neighborhood operation in order to transform one solution into
another. However, the computation of the distances is not straightforward for
every neighborhood operator in Section 6.3.1. For instance, no polynomial al-
gorithm is available to compute the distances of the A, operator (Schiavinotto
and Stiitzle, 2007). Thus, in order to allow a comparison of the resulting FDC
coefficients for different neighborhood operators, we apply the following surro-
gate distance metrics (Reeves, 1999):

e Adjacency distance metric d,q;: The bidirectional adjacency distance
computes how often a pair of models is adjacent in both sequences

e Precedence distance metric dp,..: The precedence distance computes how
often a model m is preceded by a model m’ in both sequences.

e Absolute position distance metric d,;: The absolute position distance
computes the number of times the position of models is identical in both
sequences.

The combination of the four neighborhood operators with the three distance
approximations leads to twelve fitness landscapes overall for each instance.
For each neighborhood operator, we determine 1000 local optima by applying
a steepest ascent hill climbing algorithm using the respective operator which
starts from a random solution and stops if a local optimum is reached. The
global optimum for each instance is known, except for instance 19-71, where
we use the best known solution instead. The global optima are obtained by
the IBS algorithm of Chapter 5. The FDC coefficients are calculated for the
distance to the global optimum (9g0pa) as well as for the average distances to
all other local optima (gjocq;). Table 6.4 presents the respective results.

The results suggest that the adjacency distance d,q; is the best metric to
describe structural properties of local optimal solutions, as the resulting cor-
relation coefficients are higher compared to the other metrics. Thus, a certain
amount of adjacent model pairs are shared by high quality solutions. Accord-
ing to Jones and Forrest (1995), 04i0ba1 > 0.15 and gjoeqr > 0.15 indicate that
the resulting landscapes for all instances and neighborhood operators are suit-
able for EAs using the adjacency distance metric. A value of ggopa > 0.15
means, that the fitness and the distance to the global best solution are posi-
tively correlated since the smaller the distance to the global best solution the
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instance Now Naa Nzh Nie
dadj dprec dabs dadj dprec dabs dadj dprec dabs dadj dprec dabs
Oglobal 0.385 0.041 0.110 0.419 0.302 0.023 0.404 0.001 0.015 0.504 0.106 0.117

T2 et 0.343 0.025 0.194 0.319 -0.085 -0.416 0.451 0.074 -0.069 0.510 0.127 0.245
676 Cotovar 0256 -0.024 0.015 0.388 0.054 -0.109 0.283 0.006 -0.062 0.319 0.048 0.102
Olocar 0.365 0.032 0.076 0.284 -0.077 -0.387 0.429 0.073 -0.019 0.466 0.031 0.126
Lo.3  Qatobar 0:260 -0.062 -0.005 0.575 0.276 -0.012 0.350 -0.039 -0.015 0.504 -0.001 0.063
Olocar 0.340 -0.027 0.009 0.237 -0.146 -0.441 0.436 -0.065 -0.112 0.579 0.019 0.094
L6.g1  CQotobar 0:300 0.056 0.044 0.451 0.256 0.077 0.357 0.061 0.060 0.470 0.102 0.103
Olocar 0.425 -0.038 0.136 0.288 -0.054 -0.264 0.419 0.020 -0.026 0.557 0.070 0.158
Lo.7]  Cotobar 0:202 0.030 0.045 0.565 0.282 -0.061 0.317 0.036 0.039 0.336 0.082 0.042
Olocar 0.354 0.026 0.076 0.165 -0.156 -0.507 0.451 -0.035 -0.140 0.541 0.112 0.148
o1.00  Cotovar 0306 -0.010 0.043 0.541 0.286 0.003 0.309 0.006 0.021 0.364 0.045 0.063
Olocar 0.375 0.038 0.062 0.268 -0.067 -0.372 0.469 -0.001 -0.034 0.573 -0.004 0.158
s6.09  Cotovar 0191 0.068 0.041 0.610 0.138 -0.168 0.317 0.006 -0.039 0.384 0.022 0.071
Olocar 0.359 0.034 0.111 0.135 -0.139 -0.476 0.465 0.011 -0.121 0.559 0.114 0.208
g Cotobar 0-112 0024 0.002 0.427 0.048 -0.062 0.187 -0.189 -0.077 0.199 0.030 0.081
Olocar 0.256 0.044 0.105 0.222 -0.175 -0.368 0.406 -0.086 -0.187 0.384 0.004 0.102
og.gy  Cotovar 0289 0.010 0.090 0.525 0.316 -0.015 0.322-0.068 0.025 0.403 0.088 0.024

Olocar 0.367 0.052 0.194 0.242 -0.108 -0.512 0.413 -0.022 0.041 0.503 0.085 0.164

Table 6.4: Fitness-distance correlation coefficients o

lower the fitness value of a solution. Note, that in our case solutions with a low
fitness are favored, since CS is a minimization problem. g; .o = 0.15 indicates
that the lower the fitness value of a solution the smaller the average distance
to all other local optima. Thus, high quality local optima lie in the center of
other local optima.

In Figure 6.1, we show some scatter plots for a representative example using
instance 10-93 and M. Figures 6.1(a) and 6.1(b) plot for each local opti-
mum its adjacency distance to the global optimum and its average adjacency
distance to all other local optima, respectively, against its absolute fitness de-
viation to the global optimum. We can observe the aforementioned positive
correlation between the adjacency distance and the fitness of a solution. Fur-
thermore, all local optima are clustered in a small region of the search space
as the maximum distance between any two local optima is 12,15 (see Figure
6.1(b)). Figures 6.1(c) and 6.1(d) present the scatter plots for the precedence
distance and absolute distance, respectively, of each solution to the global
optimum against its absolute fitness deviation to the global optimum. Both
distance metrics seem to have a low correlation which confirms the results of
Table 6.4. Again, for d,., the local optima appear to be grouped in a small
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Figure 6.1: Scatter plots for instance 10-93 and N,, based on 1000 local optima.

region around the global optimum, whereas, for d, the distances to the global
optimum are close to the diameter of the search space which suggests that the
local optima are evenly distributed in the landscape. Interpreting the plots,
we assume the existence of a 'big valley’ structure (Boese et al., 1994) for d,q,
since local optima are accumulated in a small region of the search space with
high quality solutions being in the center of the local optima.

6.4 Metaheuristics for car sequencing
In this section, we describe two metaheuristics for CS, a variable neighborhood

search (VNS) and a memetic algorithm (MA), whose designs are based on the
results of the preceding landscape analysis.
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Input: initial solution x
Output: best solution found
Initialize probabilities p
Evaluate(z)
fori:= 1 to Nyns do
N + SelectNeighborhoodOperator(p)
'+ N(x)
Evaluate(a2)
if 2. fitness < x.fitness then
x <+
end if
1 1+1
end for

Figure 6.2: Outline of VNS algorithm

6.4.1 Variable neighborhood search

Local search (LS) algorithms explore the fitness landscape of a problem
instance by iteratively moving from one solution to a new neighboring so-
lution with a better fitness, until a local optimum is reached. In order to
avoid being trapped in the first local optimum found, several metaheuristics
based on LS have been developed, like simulated annealing (Kirkpatrick et al.,
1983), which accepts worse solutions with a certain probability, or tabu search
(Glover, 1989), where the last visited solutions are stored in a tabu list so that
they are not revisited repeatedly. A different metaheuristic, called variable
neighborhood search (VNS) was proposed by Mladenovic and Hansen (1997),
where instead of merely one neighborhood operator, a set of neighborhoods is
applied. Thus, VNS can escape a local optimum in one landscape, by using a
different neighborhood operator and, thus, changing the landscape. The orig-
inal scheme of VNS arranges all neighborhood operators in a certain sequence
with increasing neighborhood size. If VNS experiences a local optimum using
one neighborhood operator, the search proceeds with the next operator in the
list until a certain stopping criterion is reached.

In order to decide if the current solution is a local optimum, a systematic ex-
ploration of its entire neighborhood is required. Since for large neighborhoods
this can be computational demanding, we use a different approach of VNS for
the CS problem, inspired by Puchta and Gottlieb (2002). Instead of applying
the neighborhood operators in a predefined sequence, we choose a neighbor-
hood operator with a certain probability p at each step of the search. The
operator is then applied to the current solution and the search proceeds with
the new found neighboring solution if its fitness value is not worse compared
to the current solution. Allowing the search to continue with solutions having
the same fitness value as the current solution is useful to traverse plateaus of
equal fitness in the landscape. The search is stopped after a maximum number
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Table 6.5: Distances between redundant CS solutions

of steps Nyng is reached. The algorithm is outlined in Figure 6.2.

The probabilities p of the different neighborhood operators are obtained us-
ing the results of Section 6.3.2, where the autocorrelation of the landscape
induced by each operator is analyzed. It is assumed that the smoother the
landscape, the better the performance of LS (Hoos and Stiitzle, 2005). Re-
garding the normalized correlation lengths I’ in Table 6.3, the shift operator
N, leads to the smoothest landscape, followed by N,. and N,,,. However, we
also have to consider the locality induced by our representation and neighbor-
hood operators (Rothlauf, 2006; Choi and Moon, 2008). Locality describes
how well the genotypic neighborhood corresponds to the phenotypic neigh-
borhood of a solution (Rothlauf, 2003). Our representation of solutions leads
to redundant solutions in the genotypic search space, as for each sequence a
symmetric solution with equal fitness can be found by inverting the sequence.
A neighborhood operator which induces a large distance between both, the
sequence and its inverted counterpart, results in a low locality, as two actually
identical areas in the genotypic landscape are far away from each other. Thus,
high quality solutions are also clustered in two regions of the search space,
from which merely one is explored by a LS algorithm. In contrast, LS benefits
from a small distance between both redundant solutions as the search can be
intensified in one small area of the search space where high quality solutions
are concentrated. For each neighborhood operator, the distance between a
sequence and its inverted counterpart is shown in Table 6.5.

For the N,q and Ny, operator, the distance between two redundant solu-
tions equals the diameter of the respective landscapes (compare with Table
6.2), thus, both solutions are maximally away from each other in the search
space. For the N, operator, the distance between two redundant sequences
is half the diameter of its landscape. Using N,., the inverted solution can be
reached in one operation as both solutions are neighbors. In summary, the
Ne neighborhood operator seems most promising for LS, since it results in a
smooth landscape and induces a high locality of redundant solutions. Followed
by New and Ny, where Ny, leads to a smoother landscape compared to Ny,
but N results in a higher locality of redundant solutions. Thus, we base our
VNS on these three operators and assign N,. a probability of 60% to be chosen
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at each step and N, and Ny, each a probability of 20%. We ignore the N,q
operator since its normalized correlation length I’ is low and it induces a low
locality of redundant solutions.

6.4.2 Memetic algorithm

Memetic algorithms (MA) (Moscato, 1989) are a conjunction of evolutionary
algorithms (EA) and local search (LS). Thus, they combine the concept of
population-based evolution with individual learning. In the literature, MAs
are also referred to as hybrid genetic algorithms or genetic local search. They
are similar to EAs in that a population of individual solutions to a problem
is iteratively modified by evolutionary recombination and mutation operators,
in order to explore the search space and guide the search to promising areas.
In contrast to EAs, an additional local search is performed at each generation,
which locally improves individuals of the population to intensify the search
in promising areas. MAs have been successfully applied to other scheduling
problems like parallel-machine scheduling, job-shop scheduling or flow-shop
scheduling (Cotta and Fernandez, 2007; Burke and Landa Silva, 2005). Com-
prehensive introductions to MAs can be found in Moscato and Cotta (2003)
and Krasnogor and Smith (2005). Algorithm 6.3 outlines the general structure
of our MA for the CS problem, which is described in detail in the following.

A population P in EAs consists of a set of individual solutions. The size
of the population |P| in MAs is usually much smaller than in traditional EAs
due to the complexity of the local search, which inhibits the evolution of large
populations (Merz and Freisleben, 2000). The initial population can be set
up randomly or obtained by a heuristic procedure. Using heuristics for the
initialization phase usually improves the performance of an EA as fewer gen-
erations are needed to guide the population to promising areas in the search
space. Thus, we initialize our population using the heuristic IBS algorithm of
Chapter 5 with beam width w.

The population-based evolution in MAs is achieved by selection, recombi-
nation and mutation. At each generation of our MA approach, two solutions,
named parents, are selected for crossover by a binary tournament selection.
The crossover operator combines parts of both solutions in order to derive
two offspring solutions. This corresponds to the reproduction in biological
evolution. In EAs, the crossover operator is used to intensify the search in
promising areas of the landscape, thus, existing similarities of parent solutions
should be preserved in the offspring. This characteristic is called respectfulness
(Radcliffe, 1991) and is necessary for successful evolutionary search (Sywerda,
1989). Especially in the presence of a big valley, respectful crossover is likely
to perform well, as high quality solutions can be found in the vicinity of other
good solutions. The preceding FDC analysis of Section 6.3.3 suggests that
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Output: best solution found
InitialPopulation P < IBS(w)
Evaluate(P)

Sort(P)
fori:= 1 to Nya do
Parents p1, p2 « TournamentSelection(size = 2)
Offspring 01, 02 < Crossover(p1, p2)
Evaluate(oy, 03)
if 0;.fitness < oo.fitness then
j+1
else
72
end if
0j VNS(OJ)
Z < o; with = being the last element in P
for all x € P do
if RandomNumber(0,1) < p,,, then
x + Mutate(z)
end if
end for
for all x € P do
if RandomNumber(0,1) < p;s then
x < VNS(x)
end if
end for
Sort(P)
1 1+1
end for

Figure 6.3: Outline of MA

the adjacency distance metric is suited to describe similarities between high
quality solutions for CS and even leads to a big valley. Therefore, the crossover
operator should preserve adjacent relationships of models existing in both par-
ents.

We consider three recombination operators for CS, order crossover (OX)
(Davis, 1985) and propose a heuristic variant of OX (hOX), as well as non
conflict position crossover (NCPX), which showed good results in previous
experiments (Zinflou et al., 2007). OX, outlined in Figure 6.4, randomly selects
a subsequence of one parent and transfers it to the corresponding slots of
one offspring. Beginning at the second crossover site of the offspring, the
remaining models are allocated according to their occurrence in the second
parent. OX preserves the absolute positions of a subsequence in the first parent
and the relative order of models in the alternative parent. It is called a blind
recombination operator as it uses no problem-specific knowledge. Additionally,
we propose a heuristic variant of OX (hOX), where we choose the subsequence
of parent 1 such that it is delimited by violated slots. A slot is violated, if the
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Parent1 | 1[5 [3]1|3]2]2]4]3]6]

-
Offspring1 | 1[5 |1 |3 |3[2]2[3]6]4|

Parent 2 312|614 |1]|2[5|1]|3]3

Figure 6.4: Order crossover (OX)

respective model at this slot induces at least one sequencing rule violation. If
a sequence contains only one violated slot, the second crossover site is chosen
randomly. The remaining models are assigned from the second parent the same
way as in OX, but starting at the first slot of the offspring. To apply hOX, a
vector of length T indicating the violated slots has to be stored and updated
during the search. The third recombination operator NCPX is also a heuristic
operator and was proposed for CS in Zinflou et al. (2007). It is outlined for an
example sequence in Figure 6.5. First a random number nb, between 0 and
the number of non-violated slots is chosen. Our example has 7 non-violated
slots and nb, amounts to 5. Then, a random starting point Posq is selected
from which nb, models at non-violated slots are copied from parent one to the
corresponding slots at the offspring. If the end of the sequence is meanwhile
reached, the copy process proceeds at the beginning of the sequence. After nb,
models are copied, the remaining models form a list of interest L. Another
random position Pos is chosen, from which the models in L are assigned to
the empty slots according to a heuristic function which considers the induced
number of violations by a model as well as a so-called utilization rate (Gottlieb
et al., 2003). If models are tied in the resulting number of violations as well
as in the utilization rate and one of these model occupies the same slot in the
second parent, this model is selected. Alternatively, ties are broken randomly.
Note, that only in case of ties a second parent is considered by NCPX and
an offspring is created by merely a single parent, otherwise. NCPX preserves
absolute positions of nb, models of the parent solution.

We examine the resulting similarity of parents and offspring according to the
adjacency distance metric d,q; for the different crossover operators. Therefore,
1000 recombinations are performed with randomly selected parents for each
crossover operator and the adjacency distance between both parents is com-
pared with the resulting average adjacency distance between both offspring
and parents. Figure 6.6 plots the results for the representative instance 4-72.
We can observe, that OX and hOX produce offspring with a lower average
distance to both parents compared to NCPX. For both operators, the distance
between offspring and parents becomes smaller with decreasing distance be-
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ConﬂictPos|0|1|0|0|0|0|1|0|1|0|

Parent 1 |1|5|3|1|3|2|2|4|3|6|

Offspring 1 [ 1|2 |5 |1]|3][2]3]4a[3]6]

Posy Pos

L [5,3,1,2,3]

Figure 6.5: Non conflict position crossover (NCPX)

tween both parents. Thus, offspring are likely to be produced in the vicinity
of both parent solutions. In contrast, NCPX doesn’t seem to preserve existing
adjacency relations as the average distances of the offspring are independent
of the distance between both parents.

After recombination, the offspring with the least number of violations is
locally improved using the VNS algorithm of Section 6.4.1. VNS introduces
individual learning to the MA. The resulting solution replaces the current
worst solution in the population P. Thus, we perform a so-called steady-
state selection scheme (Whitley and Kauth, 1988), where one individual in the
population is replaced at each generation.

The mutation operator is used for diversification in population-based EAs.
It randomly changes individuals in the population in order to explore new
regions in the search space and prevent an early convergence to a single local
optimum. In our MA, individuals are mutated by a single application of N,
thus, a random subsequence of a solution is reversed. We perform mutation
with probability p,, after recombination and the local improvement of the best
offspring. After mutation, each generation concludes with another application
of VNS. The VNS is applied to each individual in the population depending
on a certain probability ps.

The MA is stopped after reaching the maximum number of generations Ny;4.

6.5 Experiments

6.5.1 Experimental setup

We evaluate the proposed algorithms on the problem instances for CS avail-
able in the CSPLib, an online library of constraint satisfaction problems. The
instances are divided in two sets. The first set consists of the aforementioned
nine instances, all with a sequence length T"= 100, 5 options and 19-26 mod-
els. The second set is composed of 30 larger problem instances with 200-400
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Figure 6.6: Adjacency distance d,q; between random parents against the av-
erage adjacency distance d,q; between the resulting offspring and

their parents for different crossover operators (based on instance
4-72).

production slots, 5 options and 19-26 models.
The algorithms are implemented in JAVA. All experiments run on an Intel
Xeon X5570 with 2.93 GHz using 4 GB RAM.

6.5.2 Results

The algorithms are applied with parameters from Table 6.6. We perform two
versions of VNS with different neighborhood operators and probabilities for se-
lecting neighborhoods. VNS; corresponds to Section 6.4.1 using a set of three
neighborhood operators with probabilities {Ne, Now, Nan} = {0.6,0.2,0.2}.
VNS, applies all neighborhood operators of Section 6.3.1 with equal probabil-
ities, thus, {Nuw, Nad; Nen, Nie} = {0.25,0.25,0.25,0.25}. The initial solution
for both VNS’ is obtained by the aforementioned IBS algorithm with beam
width w = 5. Starting from the initial solution, VNS; and VNS, are applied
with a maximum of 50,000*T" moves, where T is the number of production
slots in the sequence and the best sequence found is returned.

Furthermore, we consider three MA algorithms each with a different crossover
operator. Thus, MAgx uses the order crossover, MA,ox the heuristic order
crossover and MAycpx the non conflict position crossover. All MAs have a
population size |P| of 20 individuals and the initial population is set up with
the best 20 individuals found by the IBS algorithm with w = 100. Within the
MAs, VNS; is applied with at most 500*7" moves. The mutation and local
search probabilities are set to 0.05 and 0.1, respectively. Table 6.7 shows the
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Table 6.6: Parameters of algorithms in the experiments

Parameter VNS MA
IBS beam width w 5) 100
Number of MA generations Nya - 100
Number of VNS moves Nyns  50,000%T 500*T
Population size | P| - 20
Mutation probability DPm - 0.05
Local Search probability DS - 0.1

performance results of the five considered algorithms on both sets of problem
instances. The results are obtained by 10 independent runs of each algorithm
on each instance. obj* states the currently best known solutions as obtained
by a genetic algorithm with a subsequent local search (Zinflou et al., 2007).
For each algorithm and instance, we present the number of sequencing rules of
the best solution found (column ’best obj.”), the resulting average number of
sequencing rules (column ’avg. obj.), as well as the average time (column avg.
time) in seconds required for the 10 runs. To exemplify the results, the best
average objective values are highlighted in gray and new best solutions found
are marked with an asterisk.

Among the MAs, MA,0x results in the best average objective values on all
but two instances. Furthermore, it finds the currently best known solution for
each instance, except instance 400-09. However, due to the heuristic crossover
operator which requires to maintain the information about violated slots dur-
ing the search, the solution time of MAyox as well as MAncpx is considerably
larger than MAgpx. Compared to MAncpx, MApx leads to better average
objective values on 5 instances and inferior values on 3 instances. Thus, main-
taining adjacency relationships between parent solutions during crossover, as
in MApx and MA,ox, seems promising. Given that the differences in the
solution quality of all MAs are not very large, the main contribution to the
results is assumed to stem from the VNS operator and not the recombination
operator. This is also confirmed by the results of the VNS, algorithm, which
shows the overall best performance. It requires considerably less time than
the MA algorithms and finds the best known solutions for all instances and
even improved solutions with 3 and 27 violations for instances 200-03 and 300-
05, respectively. Considering the average objective values, VNS; leads to the
best results on 38 out of 40 instances. When changing the applied neighbor-
hood operators and their probabilities, as in VNS,, the solution quality on the
instances of set two decreases.
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instance obj* VNS, VNS, MAox MALox MANCcPX

best avg. avg. best avg. avg. best avg. avg. best avg. avg best avg. avg.

obj obj. timel[s] obj. obj. timel[s] obj. obj. time[s] obj. obj. timel[s] obj. obj. time[s]
4-72 0 0 0.0 0.61 0 0.0 1.28 0 0.0 1.21 0 0.0 1.07 0 0.0 1.10
6-76 6 6 6.0 13.01 6 6.0 12.49 6 6.0 41.11 6 6.0 67.16 6 6.0 67.87
10-93 3 3 3.0 12.98 3 3.0 12.76 3 3.0 41.51 3 3.0 69.13 3 3.0 69.33
16-81 0 0 0.0 2.69 0 0.0 4.17 0 0.0 1.43 0 0.0 1.44 0 0.0 1.46
19-71 2 2 2.0 12.91 2 2.0 12.78 2 2.0 41.03 2 2.0 62.09 2 2.0 62.59
21-90 2 2 2.0 12.85 2 2.0 12.77 2 2.0 41.30 2 2.0 61.58 2 2.0 62.05
36-92 2 2 2.0 12.87 2 2.0 12.76 2 2.0 41.18 2 2.0 66.38 2 2.0 66.30
41-66 0 0 0.0 0.10 0 0.0 0.09 0 0.0 0.73 0 0.0 0.76 0 0.0 0.80
26-82 0 0 0.0 0.66 0 0.0 1.74 0 0.0 1.10 0 0.0 1.11 0 0.0 1.14
200-01 0 0 0.0 10.17 0 0.1 11.17 0 0.1 47.25 0 0.1 39.17 0 0.1 65.43
200-02 2 2 2.0 31.88 2 2.0 30.53 2 2.0 96.22 2 2.0 167.65 2 2.0 168.97
200-03 4 3* 4.4 32.03 4 4.7 30.72 4 5.1 96.41 4 4.7 188.92 4 5.0 193.63
200-04 7 7 7.0 32.06 7 7.0 30.42 7 7.0 95.96 7 7.0 191.35 7 7.0 193.58
200-05 6 6 6.0 31.74 6 6.0 30.59 6 6.0 95.82 6 6.0 178.32 6 6.0 182.28
200-06 6 6 6.0 31.37 6 6.0 30.66 6 6.0 95.78 6 6.0 179.57 6 6.0 180.31
200-07 0 0 0.0 0.29 0 0.0 0.45 0 0.0 2.54 0 0.0 2.64 0 0.0 2.57
200-08 8 8 8.0 31.11 8 8.0 30.77 8 8.0 94.66 8 8.0 190.78 8 8.0 191.45
200-09 10 10 10.0 31.27 10 10.0 30.70 10 10.0 95.89 10 10.0 199.32 10 10.0 198.95
200-10 19 19 19.0 31.12 19 19.1 30.57 19 19.0 94.62 19 19.0 223.98 19 19.0 224.70
300-01 0 0 0.0 18.82 0 0.4 39.84 0 0.6 121.15 0 0.4 207.64 0 0.4 212.76
300-02 12 12 12.0 54.75 12 12.0 52.25 12 12.0 168.08 12 12.0 351.28 12 12.0 350.90
300-03 13 13 13.0 53.61 13 13.0 52.30 13 13.0 163.45 13 13.0 351.87 13 13.0 356.48
300-04 7 7 7.2 53.83 7 7.4 52.17 7 7.1 163.74 7 7.1 329.10 7 7.1 340.02
300-05 29 27* 29.2 54.72 29 29.9 52.02 29 29.7 162.74 29 29.7 398.45 29 29.8 404.93
300-06 2 2 2.0 55.63 2 2.2 51.92 2 3.1 164.27 2 3.2 308.74 3 3.3 312.04
300-07 0 0 0.0 3.63 0 0.0 6.80 0 0.0 15.16 0 0.0 19.55 0 0.0 20.63
300-08 8 8 8.0 53.87 8 8.0 52.02 8 8.0 163.97 8 8.0 333.13 8 8.0 336.66
300-09 7 7 7.0 54.96 7 7.3 52.09 7 7.0 162.38 7 7.0 345.58 7 7.0 345.86
300-10 21 21 21.0 55.27 21 21.1 52.11 21 21.0 159.86 21 21.0 390.76 21 21.0 400.17
400-01 1 1 1.1 83.29 1 1.3 77.44 1 1.8 242.35 1 1.7 432.35 1 1.9 435.24
400-02 15 15 15.4 83.19 15 15.6 78.04 16 16.2 238.09 15 15.8 530.02 16 16.4 535.58
400-03 9 9 9.1 83.38 9 9.2 77.23 9 9.0 243.58 9 9.0 507.20 9 9.0 517.08
400-04 19 19 19.0 82.80 19 19.0 77.64 19 19.0 243.77 19 19.0 564.87 19 19.0 566.98
400-05 0 0 0.0 0.25 0 0.0 0.20 0 0.0 5.33 0 0.0 11.73 0 0.0 4.44
400-06 0 0 0.0 6.01 0 0.0 7.76 0 0.0 18.31 0 0.0 38.60 0 0.0 38.60
400-07 4 4 4.0 82.43 4 4.0 77.80 4 4.3 244.32 4 4.0 470.11 4 4.1 474.97
400-08 4 4 4.0 81.69 4 4.0 77.84 4 4.0 243.84 4 4.0 466.17 4 4.0 468.50
400-09 5 5 6.6 81.64 6 6.9 78.09 6 6.8 242.96 6 6.9 519.20 6 6.9 524.94
400-10 0 0 0.0 6.55 0 0.0 11.98 0 0.0 7.04 0 0.0 11.68 0 0.0 10.79

Table 6.7: Results on problem sets 1 and 2
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6.6 Conclusions

We analyze the fitness landscapes of a set of CS instances by measuring the
autocorrelation as well as fitness-distance correlation when four different neigh-
borhood operators and three distances are applied. The results show a smooth
landscape in terms of the normalized correlation length for the reverse, swap
and shift neighborhood. The adjacency distance is suitable to describe struc-
tural relations between solutions as it leads to a high fitness-distance corre-
lation. Furthermore, a big valley structure can be identified when using the
adjacency distance metric. The findings are included in two metaheuristics
for CS, a variable neighborhood search (VNS) and a memetic algorithm (MA)
evaluated with three different crossover operators. In experiments, we show the
superiority of the VNS algorithm as it finds and even improves currently best
known solutions for instances of the CSPLib. Despite that the performances
of the MA algorithms are inferior compared to VNS, MAs with a crossover
operator that respects the adjacency distance metric have a better solution
quality than MAs without.

The findings of the fitness-distance correlation analysis would be more mean-
ingful if the true distances according to the applied neighborhood operators
could be used. Therefore, future research should address efficient algorithms
or at least good approximations to determine these distances. Further insights
should also be gained as to why local search in general leads to better results
than EAs for the CS problem. We assume redundant solutions to have a nega-
tive effect on the solution quality of EAs. Other representations for CS or the
normalization of CS solutions prior to recombination should be analyzed and
incorporated in EAs for CS.
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Chapter 7

Summary and conclusions

The purpose of this thesis is to analyze the solution quality of the CS problem,
apply it to the resequencing problem as well as present different exact and
metaheuristic solution methods in order to solve it. This chapter summarizes
the work and lists its major contributions.

7.1 Summary

In Chapter 2, we studied the solution quality of CS compared to MMS, when
both are considered as constraint satisfaction problems. We showed that CS
misclassifies a large fraction of actual optimal solutions, that contain no work
overload, as unfeasible (hence, these solutions violate at least one sequencing
rule) when it is applied with sequencing rules generated by the only existing
rule generation approach from Bolat and Yano (1992a). The created rules
were found to be too restrictive and reduce the solution space of CS compared
to MMS, hence, impede the search process of CS. The fraction of misclassi-
fied sequences increases with increasing sequence length and number of line
stations considered. In order to overcome this problem, a new rule genera-
tion approach, called multiple sequencing rules (MSR) approach, is proposed,
which creates multiple sequencing rules per option. We proved that MSR en-
ables CS to correctly classify all sequences as feasible and unfeasible, hence,
MMS-feasibility <+ CS-feasibility. A notion of strictness is presented to remove
redundant sequencing rules and reduce the overall number of generated rules
by MSR. Furthermore, a new approach is developed to include options with
more than two processing times at a station into CS. However, this negatively
affects the solution quality of CS compared to MMS in terms of the percentage
of misclassified optimal solutions.

The third chapter examines CS as a combinatorial optimization problem and
investigates its solution quality compared to MMS. Therefore, different vari-
ants of CS are considered combining two sequencing rule generation approaches
and three existing objective functions from the literature. Furthermore, an ad-
ditional weighting factor in order to distinguish between option violations is
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developed and applied with CS. The linear relationship of the objective val-
ues produced by CS and MMS is examined using Pearson’s product-moment
coefficient. We compare the solution quality of CS and MMS on random test
instances, according to Scholl (1999). The resulting MMS and CS instances
are solved by the same local search algorithm and the solution quality of both
approaches is measured as the total amount of work overload induced by the
best sequences found during the search. The results revealed that solutions of
CS (using the MSR generation approach, an objective function by Bolat and
Yano (1992a) and the additional weighting factor) contain on average 15%
more work overload than corresponding solutions of MMS. The solution qual-
ity of CS decreases, if it is applied with other sequencing rules and/or objective
functions. In Section 3.5, we critically discussed the usage of CS instead of
MMS for sequencing mixed-model assembly lines.

Chapter 4 adapted the CS problem to the resequencing problem using pull-
off tables, which are directly accessible buffers used in the automobile industry.
The resulting model was called car resequencing (CRS) problem and formalized
in Section 4.2. CRS was transformed into a graph problem and different exact
and heuristic solution approaches were developed. Experiments on data from
the CSPLib were conducted and the performance of the solution methods as
well as the influence of the number of pull-off tables on the solution quality was
analyzed. Furthermore, the best known solution method (Beam Search) has
been applied to a real-world resequencing scenario at a major German truck
manufacturer, where it was found to improve the resulting solution quality by
29% compared to the currently applied myopic scheduling policy.

Inpired by the graph approach for CRS in Chapter 4, Chapter 5 modeled
the CS problem as a shortest path problem in an acyclic digraph and proposed
an exact iterative beam search (IBS) algorithm in order to solve it. Existing
lower bounds for CS were improved and applied by IBS as well as different
utilization rates. Experiments on instances from the CSPLib revealed a supe-
rior performance of IBS compared to the currently best-known exact solution
approach, a scattered branch&bound algorithm. Additionally, the optimal-
ity of three currently best-known solutions of instances from the CSPLib was
proven.

Finally, Chapter 6 presented a fitness landscape analysis of different CS in-
stances from the CSPLib, determining the resulting autocorrelation as well as
fitness-distance correlation, when different neighborhood operators are applied.
The analysis showed a smooth landscape for three out of four neighborhood
operators in terms of the normalized correlation length. The fitness-distance
correlation revealed a high correlation for the adjacency distance metric and
suggests the presence of a big valley structure. The findings are used to de-
sign two metaheuristics for CS, a variable neighborhood search (VNS) and a
memetic algorithm (MA). The probabilities of selecting a neighborhood in VNS
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were chosen in accordance to the results of the autocorrelation analysis and
an analysis of redundant solutions. The MA algorithm is applied with two al-
ready existing crossover operators and one newly introduced heuristic crossover
which respects the adjacency distance metric and incorporates problem-specific
knowledge. Again, the performance of the proposed algorithms was evaluated
on instances from the CSPLib, where VNS showed a superior performance in
terms of solution quality and runtime. It improved currently best known so-
lutions of two instances. Among the MAs, it was found that respecting the
adjacency distance during crossover leads to a superior solution quality.

7.2 Conclusions

This section summarizes the main contributions of this thesis.

Analysis of CS’ solution quality. CS originally stems from applications
in the automobile industry, where it is used up to now since sequencing rules
are considered more intuitive to human decision makers than a detailed time
schedule as it is used by MMS. Although research widely adopted the CS ap-
proach, it is mainly concerned with the development of new solution methods.
For the first time, this thesis quantified in comprehensive computational stud-
ies the resulting gap in the solution quality accompanied with using CS and
its surrogate objective function instead of MMS. The evaluation covered CS
as constraint satisfaction problem as well as combinatorial optimization prob-
lem. For the constraint satisfaction problem, it was found, that CS is unable
to identify a large fraction of actual feasible solutions (that contain no work
overload) if applied with sequencing rules created by Bolat and Yano (1992a).
Hence, the applied rules were found to be too restrictive and lead to a reduced
solution space for CS compared to MMS. The fraction of unidentified feasible
solutions even increased with increasing sequence length and number of sta-
tions of the line. CS using the rules of MSR operates on the same space of
feasible solutions as MMS, thus, the solution quality of both approaches can
be considered as equal. If CS is regarded as optimization problem and applied
with sequencing rules by MSR, it leads to solutions that contain on average at
least 15% more work overload than solutions of the corresponding MMS prob-
lem on test instances created according to Scholl (1999). Hereby, the objective
function by Bolat and Yano (1992a) was found to be most appropriate for CS
compared to alternative functions proposed in the literature. Furthermore, a
linear correlation analysis using Pearson’s product-moment coefficient of both,
MMS’ and CS’ objective values, revealed that both objectives are positive lin-
early related. However, when CS is applied with different sequencing rules
and/or objective functions, like the rules by Bolat and Yano (1992a) and the
sliding-window objective function, the gap in the solution quality compared to
MMS can even increase up to 75%. The solution time of CS depends on the
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number of rules per option applied and on the objective function. CS with one
sequencing rule for each option can solve instances by a factor of 1.5-2 faster
than MMS. However, experiments also revealed that MMS always leads to a
better solution than CS if the available time for the search is fixed. Taking
the results of the computational studies in Chapters 2 and 3 as well as the
advantages and disadvantages of CS into account, this work concludes that
MMS is more preferable than CS for sequencing mixed-model assembly lines.
If CS is nonetheless applied, we encourage to use sequencing rules created by
MSR and the objective function by Bolat and Yano.

A new sequencing rule generation approach. Although CS’ ability to
reach the underlying goal of finding a sequence with minimum work overload
largely depends on the design of adequate sequencing rules (Bolat and Yano,
1992a), the literature on CS almost always takes sequencing rules as given and
gives no advice on how to generate them. With the exception of Bolat and Yano
(1992a), one can merely find intuitive examples or rules of thumb for creating
sequencing rules which lack mathematical foundation. Bolat and Yano present
the only available analytical approach, where sequencing rules are derived by
considering operational characteristics of the line affecting the occurence of
work overload. However, in Chapter 2 it was shown that the hereby generated
rules are very restrictive and impede CS’ search process as they reduce the
space of actual feasible solutions in CS. Therefore, MSR as a new sequencing
rule generation approach was proposed, which also takes characteristics of the
assembly line into account and creates more than one sequencing rule per
option. Comprehensive experiments revealed the superiority of sequencing
rules created by MSR. Considering both sequencing approaches as constraint
satisfaction problems, CS now operates on the same space of feasible solutions
as MMS. Likewise for the optimization version of both problems, the solution
quality of CS is considerably increased when MSR sequencing rules are applied
instead of rules by Bolat and Yano. Since the solution time of CS increases
with a higher number of rules per option, the overall number of sequencing
rules was reduced by developing a notion on strictness in order to identify
and remove redundant rules created by MSR. Furthermore, it was shown that
applying only the first rule created by MSR for each option still leads to a far
better solution quality of CS as using sequencing rules by Bolat and Yano.

Incorporating options with more than two processing times into
CS. CS aggregates from the underlying sequencing problem by considering
only binary options. Thus, it implicitly assumes that each option can have
merely two processing times at the respective station of the line. Variants con-
taining the option require a different processing in the station than variants
without the option. This work proposed a first approach to include multiple
processing times into CS. In practice, multiple processing times per station
occur when options have more than two configurations, e.g., navigation sys-
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tems in cars, or more than one option is assembled at the same station. The
approach allocates all processing times at a station into two groups according
to the cycle time and determines (either with the Bolat and Yano or MSR ap-
proach) a sequencing rule based on minimum, average or maximum processing
values of each group.

A weighting factor for CS’ objective functions. The currently avail-
able objective functions for CS in the literature either neglect that violations
of different options may lead to a different amount of work overload or state
penalties in order to distinguish between option violations without giving ad-
vice on how to derive them (Parrello et al., 1986; Warwick and Tsang, 1995;
Smith et al., 1996). Therefore, this thesis presented a weighting factor which
considers the amount of work overload induced by a violation of the respective
option and which can be incorporated into any available objective function for
CS. The weighting factor reflects the maximum induced work overload by one
violation of an option. The conducted experimental study revealed that the
weighting factor increases CS’ solution quality without affecting its runtime.
Thus, the weighting factor should be considered in future applications of CS.

Application of CS to the resequencing problem. In practice, the mini-
mization of sequencing rule violations is not only considered for the sequencing
problem in mixed-model assembly lines but also in resequencing scenarios. Re-
sequencing faces additional contraints as a given sequence is to be optimized
using available buffers. Therefore, this work provided the adaption of the CS
problem to a resequencing problem using pull-off tables. Pull-off tables are
direct accessible buffers and can be found in the automotive industry. The
resulting resequencing approach was called car resequencing (CRS) problem.
CRS is formalized and applied in a real-world example of a major German
truck manufacturer.

Design of efficient exact and metaheuristic solution methods for
CS. Finally, this work presented an exact IBS algorithm based on an improved
lower bound and a new graph representation of CS, which outperforms the cur-
rently best known exact SB&B algorithm for CS on widely applied problem
instances of the CSPLib. IBS optimally solved instances of the benchmark set
with up to 40 sequencing slots and 5 options and even found feasible sequences
(if existent) for instances with 100-400 production slots and 5 options in rea-
sonable time. Alongside providing an evolutionary MA approach, this thesis
proposed a VNS metaheuristic using appropriate neighborhoods identified in
a fitness landscape analysis. VNS found best known solutions on all instances
of the frequently used CSPLib benchmark set and even improved solutions
for some of them. According to experimental results, both IBS and VNS are
currently the state-of-the-art exact and heuristic solution approaches for CS,
respectively.
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