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a b s t r a c t

Search and rescue operations following natural disasters have become the cornerstone for minimizing
the adverse social effects and the impact of these hazards. Despite their importance, the literature has not
adequately dealtwith post disaster operations – at least in part – because of the difficulty in rapidly solving
the mathematically complex problems involved. In this paper we consider two important issues within
the scope of post natural disaster actions; first, we develop deterministic and probabilistic districting
and routing problems for scheduling infrastructure inspection crews following a natural disaster in
urban areas; second, we assess and compare five metaheuristic optimization algorithms for solving these
districting and routing problems. Results suggest that the five approaches examined offer applicable as
well as fast solutions but with varying qualitative characteristics; selection of the preferred approach for
practical applications will largely depend upon the network’s characteristics.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Natural hazards such as earthquakes, floods, tsunamis and
hurricanes can cause invariably enormous damage to both
social and infrastructure networks. Following such disasters,
local communities and search and rescue crews are faced with
rapidly degrading infrastructure networks that may result in
much slower response times, delays in population evacuation,
and significant complications in infrastructure repair. Because
of the obvious importance of minimizing the adverse impacts
from natural disasters, the literature has systematically dealt
with what are considered the four main steps in disaster
response [1]: First, mitigation; this includes assessing seismic
hazards [2], probabilistic damage projection [3,4], and decision
support systems for integrating the emergency process [5,6].
Second, preparedness, which has mainly focused on preparing
infrastructure networks for dealingwith potential disasters and for
accommodating evacuation needs [7–12]. Third, response, which
has evolved around two main research paths; i. planning the
response–relief logistics operations [13–16], and, ii. assessing the
performance of the infrastructure system following the natural
hazard [17–20]. Fourth, recovery operations which have attracted
limited attention despite their importance in practice; for example,
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work has concentrated on infrastructure element protection [21],
general assessment of relief performance [22], and fund allocation
for infrastructure repairs following disasters [23].

Recovery operations are very important in all natural disasters
and particularly for the speedy revitalization of community activ-
ities. However, the mathematical complexity of organizing post
disaster operations has hampered research efforts. Frequently, fol-
lowing a disaster civil infrastructure elements must be inspected,
evaluated, and repairs prioritized. In order to efficiently deal with
these problems requires the formulation and solution of complex
districting and routing problems. For example, the affected area
must be partitioned into districts of responsibility for repair crews
and, then, inspection sequences – infrastructure elements to be in-
spected first, second, and so on –must be determined. In this paper
we consider two important issues within the scope of post natural
disaster actions; first, we develop deterministic and probabilistic
districting and routing problems for scheduling infrastructure in-
spection crews following a natural disaster in urban areas.We note
that the stochastic formulation of the districting problem exam-
ined,where the influence of the damages on the structural environ-
ment are randomly distributed, has not been previously addressed
in the literature.

Second, we assess and compare fivemetaheuristic optimization
algorithms for solving these districting and routing problems. We
note that we recently offered a deterministic formulation for the
districting problem solved via a particle swarm optimization (PSO)
method [24]. Here we extend that work by critically assessing
and comparing the efficiency and robustness of five metaheuristic
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optimization algorithms: differential evolution (DE), harmony
search (HS) and particle swarm optimization, covariance matrix
adaptation (CMA) evolution strategy and elitist covariance matrix
adaptation (ECMA), when dealing with large scale urban networks
of infrastructure facilities problems.

The benefits of this work are twofold: first, by assessing
the efficiency of different metaheuristic optimization approaches
we can offer evidence regarding the implementation of these
algorithms in practice; and, second, we can assist in improving
infrastructure network restoration times and in minimizing the
adverse impacts of natural hazards on civil infrastructure.

2. Background

Following a natural disaster, one of the issues of primary
importance is to assess the condition of infrastructure elements
so that their rehabilitation can be prioritized and the ability of
relief crews to reach the areas hit by the hazard can be assessed.
Infrastructure condition assessment is comprised of two very
important steps; first, the affected area has to be subdivided into
homogeneous subareas of responsibility for each of the available
inspection crews; and, second, the optimal routes for each of the
crews within the subareas has to be determined.

The first problem discussed is encountered in the literature
as a districting problem whose aim is to partition a territory into
smaller units called districts or zones, with an objective function
being optimized and some constraints satisfied. The districting
problem, because of its importance in practice (political districting,
school districting, police districting, and so on), is one of the
well researched problems; its formulation and solution, however,
remain a significant challenge and researchers strive to find
‘‘better’’ as well as straightforward approaches to solving it ([25]
offer an extensive review of the literature on districting problems).
The second problem is known as the traveling salesman problem
(TSP) whose goal is to find the fastest (or cheapest) way of visiting
all the nodes (cities for example) of a network and returning to
the starting point (Karlaftis et al. [26] discuss a large number of
TSP formulations). To this end, many researchers have striven to
obtain fast and ‘‘high quality’’ solutions to the TSP using many
heuristic approaches including simulated annealing and genetic
algorithms [26].

The complexity of the two problems examined, coupled with
their significant computational requirements since we seek to
solve the problems for an urban area, lead themselves to an inves-
tigation of the performance and solution quality of flexible com-
putational approaches. In the last two decades, new families of
computational approaches, denoted as soft computing (SC) meth-
ods, have been proposed. These methods are based on heuris-
tic approaches rather than on rigorous mathematics; despite the
initial skepticism, the methods have frequently turned out to be
surprisingly powerful, while their use in various areas of engi-
neering sciences is continuously growing. Neural networks, meta-
heuristics and fuzzy logic are the most popular methods. Many
SC methods have been inspired by natural phenomena [27–36],
frequently offering very good solutions to mathematically chal-
lenging problems, while they are adept to immediate and straight-
forward implementation in emergency response software.

As could be expected, many flexible computational approaches
have been implemented in a number of problems in the area
of transportation; Perrier et al. [37], Tan et al. [38] and Reche-
Lopez et al. [39] dealt with various routing problems, Salazar-
Aguilar et al. [40] with commercial districting implementing a
bi-objective programming model where dispersion and balancing
with respect to thenumber of customerswereused as performance
criteria, while Balaprakash et al. [41] with the TSP problem where
a flexible solution methodology was proposed transforming the
issue of solving a given vehicle routing problem with stochastic
demands instance into an issue of solving a small set of capacitated
vehicle routing problem instances. Furthermore, a local–global
approach for the generalized traveling salesman problem was
proposed, while based on this approachwe describe a novel hybrid
metaheuristic algorithm for solving the problem using genetic
algorithms [42,43]. Despite the application of these approaches
in problems such as districting and TSP, there has not been a
thorough comparison of their efficiency and solution quality on
the same problem, although a number of papers have compared
their performance for a number of other instances (see, for
example [44–50]). In [24] a deterministic formulation of the
districting problem was solved with PSO while a TSP dealt with
ACO was also presented. In this paper we assess the efficiency of
differentmetaheuristic optimization approaches for the districting
and TSP problems. In this manner, we can offer evidence regarding
the implementation of these algorithms in practice and improving
infrastructure network restoration times.

3. Problem formulation

The main objective of this work is to formulate the problem
of inspecting the infrastructure systems of a large urban area
as an optimization problem. As previously discussed, we achieve
this in two steps: in the first step, the structural blocks to be
inspected are optimally assigned into a number of inspection areas
(districting problem), while in the second step the scheduling
problem (inspection prioritization) is solved for each of the areas
obtained from the first step. In formulating the optimization
problems, the area examined is composed of NSB structural blocks
while NIG is the number of crews available for inspecting the
condition of the area’s infrastructure system.

3.1. Step 1: Optimal districting problem

3.1.1. Deterministic formulation
The districting problem is defined as a nonlinear programming

optimization problem as follows:

min
NIG−
i=1

n(i)
SB−

k=1

[d(SBk, Ci) · D(k)]

xCi =
1

n(i)
SB

n(i)
SB−

k=1

xk, yCi =
1

n(i)
SB

n(i)
SB−

k=1

yk

D(k) = A(k) · BP(k)

(1)

where n(i)
SB is the number of structural blocks assigned to the

ith district (frequently referred to in the infrastructure literature
as ‘inspection group’), d(SBk, Ci) is the distance between the SBk
building block from the center of the ith group of structural blocks
(with coordinates xCi and yCi), while D(k) is the ‘demand’ for
inspection for the kth building block defined as the product of
the building block total area A(k) times the built-up percentage
BP(k) (i.e. percentage of the area with structures). This is a discrete
optimization problem since the design variables s are integers and
denote the inspection groups to which each built-up block has
been assigned. Therefore the total number of the design variables is
equal to the number of structural blocks and the range of the design
variables is [1,NIG]. To allow for differential damages to the city’s
infrastructure, the formulation of the optimal assignment problem
given in Eq. (1) is modified as follows:

min
NIG−
i=1

n(i)
SB−

k=1

[d(SBk, Ci) · D(k) · DF(k)] (2)

where DF(k) is the damage factor corresponding to each damage
level. This formulation allows for the effects of the natural
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Table 1
Damage factor (DF) corresponding to each damage level.

Damage level Damage factor (DF)

0 1.0
1 1.2
2 1.5
3 2.0

hazard to be different across the city (i.e. the damage level is
inhomogeneous).

3.1.2. Probabilistic formulation
To account for the unknown – specific – influence of the hazard

across the city, the formulation of the optimal assignment problem
given in Eq. (2) is modified as follows:

F = min
NIG−
i=1

n(i)
SB−

k=1

[d(SBk, Ci) · D(k) · rDF(k)]

rDF(k) ∼ N(mDF(k), σ 2
DF(k))

(3)

where rDF(k) is a random variable describing the damage factor
of the kth structural block, following the normal distribution with
mean value equal to mDF(k) and standard deviation σDF(k). The
mean damage value is given in Table 1, while for calculating the
standard deviation a coefficient of variation is set equal to 20%. In
the probabilistic formulation, for each realization that corresponds
to specific values of the random variables, a different value for the
function F is obtained and the objective function to be minimized
is the mean value of the function F .

3.2. Step 2: inspection prioritization problem

This is – as previously discussed – a typical TSP, also defined
as an integer optimization problem. In TSP the task is to find a
Hamiltonian tour of minimal length, i.e. to find a closed tour of
minimal length that visits each node of a network, once. For an
N cities TSP there are (N − 1)! different tours; the TSP can be
represented by a complete weighted graph G = (N, A), with N the
set of nodes and A the set of arcs (edges or connections) that fully
connects the components of N . A cost function is assigned to every
connection between two nodes i and j, represented by the distance
between the two nodes di,j (i ≠ j). A solution to the TSP is a
permutation p = {p(1), . . . , p(N)} of the node indices {1, . . . ,N},
as every node must appear only once in a solution. The optimal
solution is the one that minimizes the total length L(p) given by:

L(p) =

N−1−
i=1


dp(i),p(i+1)


+ dp(N),p(1). (4)

Thus, the corresponding scheduling problem is defined as follows:

min

n(i)
SB−1−
k=1

d(SBk, SBk+1) + d(SBn(i)
SB

, SB1)

 , i = 1, . . . ,NIG (5)

where d(SBk, SBk+1) is the distance between the kth and k +

1th building blocks. The main objective is to define the shortest
possible route between the structural blocks that have been
assigned to each inspection group in Step 1.

4. Monte Carlo simulation

The Monte Carlo simulation (MCS) method is particularly
applicable for probabilistic analyses when analytical solutions
are not attainable. This occurs in complex problems with a
large number of uncertain variables, where all other stochastic
analyses approaches are not applicable. Despite the simplicity in
Fig. 1. Latin hypercube sampling in the two-dimensional space.

formulating theMCS, themethod is capable of handling practically
every possible case regardless of its complexity and the variation
of the uncertain variables. Since MCS is based on the theory of
large numbers (N∞), an unbiased estimator of the probability of
violation, the mean value and the variance is given by:

F̄i =
1

N∞

N∞−
j=1

Fi(rj) (6)

σFi =
1

N∞

N∞−
j=1

[Fi(rj − F̄i)]
2. (7)

In order to estimate F̄i and σ 2
Fi

in Eqs. (6) and (7), an adequate
number of N independent random samples is produced.

The Latin hypercube sampling (LHS) method was introduced
to reduce the required computational cost of purely random
sampling methodologies (A schematic representation of the LHS
method is given in Fig. 1). Latin hypercube sampling is a strategy
for generating random sample points ensuring that all portions
of the random space in question are properly represented.
LHS is generally recognized as one of the most efficient size
reduction techniques. The basis of LHS is a full stratification of
the sampled distribution with a random selection inside each
stratum. In consequence, sample values are randomly shuffled
amongdifferent variables. A Latin hypercube sample is constructed
by dividing the range of each of the nr uncertain variables into N
non-overlapping segments of equalmarginal probability. Thus, the
entire parameter space consisting of N parameters is partitioned
into Nnr cells; a single value is selected randomly from each
interval producing N sample values for each input variable. The
values are randomly matched to create N sets from the Nnr space
with respect to the density of each interval for the N simulation
runs. The advantage of the LHS approach is that the random
samples are generated from all the ranges of possible values.

5. Metaheuristic algorithms

The six metaheuristic optimization algorithms tested in this
paper appear to be very promising as they have been implemented
in various challenging problems with success. We present here a
short description of the six algorithms.

5.1. Particle swarm optimization

In particle swarm optimization, multiple candidate solutions
coexist and collaborate simultaneously. Each solution is called ‘‘a
particle’’ having a position and a velocity in the multidimensional
design space while a population of particles is called a swarm. A
particle ‘‘flies’’ in the problem search space looking for the optimal
position. As ‘‘time’’ passes through its quest, a particle adjusts its
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Fig. 2. Flowchart of the particle swarm optimization algorithm.
velocity and position according to its own ‘‘experience’’ as well
as the experience of other (neighboring) particles. A particle’s
experience is built by tracking and memorizing the best position
encountered. A PSO system combines local search (through self
experience) with global search (through neighboring experience),
attempting to balance exploration and exploitation. Each particle
maintains its two basic characteristics, velocity and position, in the
multi-dimensional search space that are updated as follows:

v j(t + 1) = wv j(t) + c1r1 ◦


sPb,j−sj(t)


+ c2r2 ◦


sGb − sj(t)


(8)

sj(t + 1) = sj(t) + v j(t + 1) (9)

where v j(t) denotes the velocity vector of particle j at time
t, sj(t) represents the position vector of particle j at time t , vector
sPb,j is the personal best ever position of the jth particle, and
vector sGb is the global best location found by the entire swarm.
The acceleration coefficients c1 and c2 indicate the degree of
confidence in the best solution found by the individual particle
(c1—cognitive parameter) and by the whole swarm (c2—social
parameter), respectively, while r1 and r2 are two random vectors
uniformly distributed in the interval [0, 1]. The symbol ‘‘◦’’ of
Eq. (8) denotes the Hadamard product, i.e. the element-wise vector
or matrix multiplication. Fig. 2 shows the flowchart of the PSO
algorithm, while Fig. 3 depicts a particle’s movement in a two-
dimensional design space. The particle’s current position sj(t) at
time t is represented by the dotted circle at the lower left quadrant
of the drawing, while the new position sj(t + 1) at time t + 1 is
represented by the dotted bold circle at the upper right hand of
the drawing. Fig. 3 depicts how the particle’s movement is affected
by: (i) it’s velocity v j(t); (ii) the personal best ever position of the
particle, sPb,j, and (iii) the global best location found by the entire
swarm, sGb.

5.2. Differential evolution

In 1995, Storn and Price [33] proposed a new floating point
evolutionary algorithm for global optimization and named it
differential evolution, by implementing a special kind operator
which sought to create new offspring from parent chromosomes.
Fig. 3. Visualization of the particle’smovement in a two-dimensional design space.

DE is a relatively novel parallel direct searchmethodwhich utilizes
a population of NP parameter vectors si,g(i = 1, . . . ,NP) for
each generation g , in a recent study by Das and Suganthan [51]
a state of the art review on DE is presented. DE generates new
vectors by adding the weighted difference vector between two
population members to a third member. If the resulting vector
corresponds to a better objective function value than a population
member, the newly generated vector replaces this member. The
comparison is performed between the newly generated vector and
all the members of the population excluding the three ones used
for its generation. Furthermore, the best parameter vector sbest,g is
evaluated in every generation in order to keep track of the progress
achieved during the optimization process (the DE algorithm is
presented in Fig. 4). Several variants of DE have been proposed so
far, but the two most widely used are the following.

Scheme DE1. In the first variant, a donor vector vi,g+1 is
generated first according to:

vi,g+1 = sr1,g + F · (sr2,g − sr3,g) (10)

before the computation of the ith parameter vector si,g+1. This step
is equivalent to themutation operator step of genetic algorithms or
evolution strategies. The integers r1, r2 and r3 are chosen randomly
from the interval [1,NP]while i ≠ r1, r2 and r3. F is a real constant
value, called mutation factor, which controls the amplification of
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Fig. 4. Flowchart of the differential evolution algorithm.
the differential variation (sr2,g − sr3,g) and is defined in the range
[0, 2]. In the next step the crossover operator is applied by generat-
ing the trial vector ui,g+1 = [u1,i,g+1, u2,i,g+1, . . . , uD,i,g+1]

T which
is defined from the elements of the vector si,g and the elements of
the donor vector vi,g+1 whose elements enter the trial vector with
probability CR as follows:

uj,i,g+1 =


vj,i,g+1 if randj,i ≤ CR or j = Irand
sj,i,g if randj,i > CR or j ≠ Irand

i = 1, 2, . . . ,NP and j = 1, 2, . . . , n (11)

where randj,i ∼ U[0, 1], Irand is a random integer from [1, 2,
. . . , n] that ensures that vi,g+1 ≠ si,g . The last step of the
generation procedure is the implementation of the selection
operator where the vector si,g , is compared to the trial vector
ui,g+1:

si,g+1 =


ui,g+1 if f (ui,g+1) ≤ f (si,g)
si,g otherwise i = 1, 2, . . . ,NP. (12)

Scheme DE2. In the second variant the donor vector vi,g+1 is
generated first according to:

vi,g+1 = si,g + λ · (sbest,g − si,g) + F · (sr2,g − sr3,g) (13)

before the computation of the ith parameter vector si,g+1, by
introducing an additional control variable λ. The idea behind λ
is to provide a means to enhance the greediness of the scheme
by incorporating the current best vector sbest,g . The generation
of the trial vector ui,g+1 as well as the decision process are
identical to those of DE1. In this study the second version has been
implemented.

5.3. Harmony search

The harmony search algorithm was originally inspired by the
improvisation process of Jazz musicians [34]. According to the
analogy between improvisation and optimization, each musician
(saxophonist, bassist, guitarist etc.) corresponds to each decision
variable; each musical instrument’s pitch range corresponds to
a decision variable’s value range. Musical harmony at certain
times corresponds to a solution vector at certain iterations, and
the audience’s aesthetics corresponds to the objective function.
According to the above algorithmic concept, the HS algorithm
consists of the following five steps: parameter initialization;
harmony memory initialization; new harmony improvisation;
harmonymemory update; and termination criterion check (Fig. 5).
Parameter initialization: In the first step, the optimization problem
is specifiedwhere n is the number of decision variables (equivalent
to the number of music instruments), while sLi ≤ si ≤ sUi , i =

1, 2, . . . , n determines the range of the ith decision variable’s
value. The HS algorithm parameters are also specified in this step:
HMS is the harmony memory size that corresponds to the number
of simultaneous solution vectors stored in harmony memory,
HMCR defines the harmony memory considering rate, while PAR
is the pitch adjusting rate.
Harmony memory initialization: In the second step, the harmony
memory (HM) is initializedwithHMS randomly generated solution
vectors defining the musician’s harmony memory matrix:

HM =


s11 s12 s13 · · · s1n
s21 s22 s23 · · · s2n
· · · · · · · · · · · ·

sHMS
1 sHMS

2 sHMS
3 · · · sHMS

n

 . (14)

New harmony improvisation: In the third step, a new harmony
vector is improvised following three rules: random selection,
memory consideration and pitch adjustment. According to the
random selection, the value of the decision variable si is chosen
randomly from the pitches stored in HM = [s1i , s

2
i , . . . , s

HMS
i ]

with probability of HMCR (0 ≤ HMCR ≤ 1) or according to the
memory consideration it is randomly chosen with a probability of
(1 − HMCR) within its value range, as a musician plays any pitch
within the instrument’s pitch range:

si =


si ∈ [s1i , s

2
i , . . . , s

HMS
i ] with probability HMCR

sLi ≤ si ≤ sUi with probability (1 − HMCR).
(15)

After the value si is randomly picked according to the above
memory consideration process, it can be further adjusted into
neighboring values by adding certain amount to the value, with
probability of HMCR × PAR (0 ≤ PAR ≤ 1) while the original
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Fig. 5. Flowchart of the harmony search algorithm.
pitch obtained in HM consideration is just kept with a probability
of HMCR × (1 − PAR):

si =


si(k + m) with probability HMCR × PAR
si with probability HMCR × (1 − PAR).

(16)

Harmony memory update: If the new generated harmony vector, is
better than the worst harmony vector of the HM, with reference to
the objective function value, the worst harmony is replaced by the
new harmony vector.

5.4. Covariance matrix adaptation

The covariance matrix adaptation, proposed by Hansen and
Ostermeier [31] is a completely derandomized self-adaptation
scheme. First, the covariance matrix of the mutation distribution
is changed in order to increase the probability of producing
the selected mutation step again. Second, the rate of change
is adjusted according to the number of strategy parameters
to be adapted. Third, under random selection the expectation
of the covariance matrix is stationary. Further, the adaptation
mechanism is inherently independent of the given coordinate
system. The transition from generation g to g + 1, given in the
following steps, completely defines the algorithm (Fig. 6).
Generation of offspring: Creation of λ new offspring as follows:

s(g+1)
k ∼ N


m(g), σ (g)2C(g)


∼ m(g)

+ σ (g)N

0, C(g) (17)

where s(g+1)
k ∈ ℜ

n is the design vector of the kth offspring
in generation g + 1(k = 1, . . . , λ),N


m(g), C(g)


are normally

distributed random numbers where m(g) ∈ ℜ
n is the mean value

vector and C(g) is the covariance matrix while σ (g) ∈ ℜ+ is the
global step size. To define a generation step, the new mean value
vectorm(g+1), global step size σ (g+1), and covariancematrix C(g+1)

have to be defined.
Newmean value vector: After selection scheme (µ, λ) operates over
the λ offspring, the new mean value vector m(g+1) is calculated
according to the following expression:

m(g+1)
=

µ−
i=1

wis
(g+1)
i:λ (18)
where s(g+1)
i:λ is the ith best offspring and wi are weight coefficients

defined as follows:

wi =
ln(µ + 1) − ln i

µ∑
j=1

(ln(µ + 1) − ln j)
,

µ−
i=1

wi = 1, wi > 0, i = 1, . . . , µ.

(19)

Global step size: The new global step size is calculated according to
the following expression:

σ (g+1)
= σ (g) exp


cσ
dσ

 p(g+1)
σ


E ‖N (0, I)‖

− 1


(20)

where dσ and cσ constants are defined as follows:

cσ =
µeff + 2

n + µeff + 3

dσ = 1 + 2max

0,


µeff−1

n + 1
− 1


+ cσ ,

µeff =


µ−
i=1

w2
i

−1

.

(21)

E ‖N (0, I)‖ is the expected value of the Euclidean norm of a
normally distributed vector, and p(g+1)

σ is the conjugate evolution
path (p(0)

σ = 0), that is given by:

p(g+1)
σ = (1 − cσ ) p(g)

σ +

cσ (2 − cσ ) µeffC(g)−

1
2

×
m(g+1) − m(g)

σ (g)
(22)

where the matrix C(g)−
1
2 is given by:

C(g)−
1
2

= B(g)D(g)−1
B(g)T (23)

where the columns of B(g) are an orthogonal basis of the eigenvec-
tors of C(g) and the diagonal elements of D(g) are the square roots
of the corresponding positive eigenvalues.
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Fig. 6. Flowchart of the covariance matrix adaptation algorithm.
Covariance matrix update: The new covariance matrix C(g+1) is
calculated from the following equation:

C(g+1)
= (1 − ccov) C(g)

+
ccov
µcov

p(g+1)
c p(g+1)T

c

+ ccov


1 −

1
µcov

 µ−
i=1

wiOP


s(g+1)
i:λ − m(g)

σ (g)


. (24)

OP denotes the outer product of a vector with itself and p(g)
c ∈ ℜ

n

is the evolution path (p(0)
c = 0) which is given by equation:

p(g+1)
c = (1 − cc) p(g)

c + H(g+1)
σ


cc (2 − cc) µeff

×
m(g+1) − m(g)

σ (g)
(25)

where:

cc =
4

4 + n
, µcov = µeff

ccov =
1

µcov

2
n +

√
2
2

+


1 −

1
µcov


min


1,

2µeff − 1

(n + 2)2 + µeff


.

(26)

5.5. Elitist covariance matrix adaptation

The elitist CMA evolution strategy is a combination of the well
known (1 + λ)-selection scheme of evolution strategies [29],
with covariance matrix adaptation [32]. The original update rule
for the covariance matrix can be reasonably applied in the (1 +

λ)-selection. The cumulative step size adaptation (path length
control) of the (µ/µ, λ)-CMA is replaced by a success rule based
step size control. Every individual a of the ECMA algorithm is
comprised of five components:
a = {s, p̄succ, σ , pc, C} (27)
where s is the design vector, p̄succ is a parameter that states the
success rate during the evolution process, σ is the step size, pc
is the evolution path, C is the covariance matrix of the mutation
strengths. Contrary to the CMA algorithm, each individual has
its own step size σ , evolution path pc and covariance matrix C.
A pseudocode of the ECMA algorithm is shown in Fig. 7(a). In
line #1 a new parent a(g)

parent is generated. In lines #4–6, λ new
offspring are generated from the parent vector a(g)

parent. The new
offspring are sampled according to Eq. (17), with variable m(g)

being replaced by the design vector s(g)parent of the parent individual.
After the λ new offspring are sampled, the parent’s step size is
updated bymeans of UpdateStepSize subroutine (see Fig. 7(b)). The
arguments of the subroutine are the parent a(g)

parent and the success
rateλ

(g+1)
succ /λ, whereλ

(g+1)
succ is the number of offspring having better

fitness function than the parent. The step size update is based upon
the 1/5 success rule.When the ratioλ

(g+1)
succ /λ is larger than 1/5, the

step size increases, and when it is smaller the step size decreases.
If the best offspring has a better fitness value than the parent, it
becomes the parent of the next generation (see lines #8–9). If the
inequality of line #8 is satisfied, then the covariance matrix of the
new parent is updated by means of UpdateCovariance subroutine
(see Fig. 7(c)). The arguments of the subroutine are the current
parent and the step change:

s(g+1)
parent − s(g)parent

σ
(g)
parent

. (28)

The update of the evolution path and the covariance matrix
depends on the success rate:

psucc =
λsucc

λ
. (29)
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Fig. 7. Elitist covariance matrix adaptation: (a) pseudocode, (b) update step size subroutine and (c) update covariance subroutine.
If the success rate is below a given threshold value pthresh then
the step size is taken into account and the evolution path and the
covariance matrix is updated (see lines #2–3 of Fig. 7(c)). If the
success rate is above the given threshold pthresh the step change
is not taken into account and the update of the evolution path and
the covariancematrix happens (see lines #5–6). The pre-calculated
values of the other strategic parameters are given by the following
equations:

d = 1 +
n
2λ

(30)

ptargetsucc =
1

5 +

√
λ
2

(31)

cp =
ptargetsucc λ

2 + ptargetsucc λ
(32)

where d is a damping parameter in subroutine UpdateStepSize, n
is the number of design variables, cp is a normalization constant
of the p̄succparameter in subroutine UpdateStepSize, ptargetsucc is a
constant that depends on the number of offspring λ.

5.6. Ant colony optimization

The ant colony optimization (ACO) algorithm [52,53] is a
population-based probabilistic optimization method, inspired by
the behavior of real ants in nature, implementedmainly for finding
optimal paths through graphs. In ACO, a set of software agents
called artificial ants search for good solutions to the optimization
problem of finding the best path on a weighted graph. The ants
incrementally build solutions by moving on the graph. Consider
a population of m ants where at each iteration every ant defines
a ‘‘route’’ by visiting every node sequentially. Initially, ants are
set on randomly chosen nodes. At each construction step during
an iteration, ant k applies a random action choice rule, called
randomproportional rule, to decidewhichnode to visit next.While
defining the route, an ant k currently at node i, maintains amemory
Mk which contains the nodes already visited, in the order they
were visited. This memory is used in order to define the feasible
neighborhood Nk

i that is the set of nodes that have not yet been
visited by ant k. In particular, the probability with which ant k,
currently at node i, chooses to go to node j is:

pki,j =
(τi,j)

α
· (ηi,j)

β∑
ℓ∈Nk

i


(τi,ℓ)α · (ηi,ℓ)β

 , if j ∈ Nk
i (33)

where τi,j is the amount of pheromone on connection between i
and j nodes, α is a parameter to control the influence of τi,j, β is
a parameter to control the influence of ηi,j and ηi,j is a heuristic
information that is available a priori, denoting the desirability of
connection i, j, given by:

ηi,j =
1
di,j

. (34)

According to Eq. (34), the heuristic desirability of going from node
i to node j is inversely proportional to the distance between cities
i and j. By definition, the probability of choosing a city outside
Nk

i is zero. By this probabilistic rule, the probability of choosing a
particular connection i, j increases with the value of the associated
pheromone trail τi,j and of the heuristic information value ηi,j.
The selection of parameters α and β is very important. After all
ants have defined their routes, the amount of pheromone for each
connection between i and j nodes, is updated for the next iteration
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Fig. 8. Flowchart of the ant colony optimization algorithm.
t + 1 as follows:

τi,j(t + 1) = (1 − ρ) · τi,j(t) +

m−
k=1

1τ k
i,j(t), ∀(i, j) ∈ A (35)

where ρ is the rate of pheromone evaporation, a constant
parameter of themethod,A is the set of arcs (edges or connections)
that fully connects the set of nodes and 1τ k

i,j(t) is the amount of
pheromone ant k deposits on the connections it has visited through
its tour Tk, typically given by:

1τ k
i,j =

 Q

L(Tk)
if connection (i, j) belongs to Tk

0 otherwise.
(36)

The coefficient ρ must be set to a value <1 to avoid unlimited
accumulation of trail [54], while Q is a constant. In general,
connections that are used by many ants and which are parts of
short tours, receivemore pheromone and are thereforemore likely
to be chosen by ants in future iterations of the algorithm. A pseudo
code of the ACO procedure is given in Fig. 8.

6. Case study

In order to assess the performance of the metaheuristic
formulations discussed in the districting and TSP framework, we
consider the city of Patras, in Greece. The city of Patras is composed
of NSB = 112 structural blocks with different areas and built-
up percentages, while three different sets of inspection groups
(crews of inspectors) are considered (2, 4 and 6 inspection groups).
The subdivision of the city of Patras into 112 structural blocks
can be seen in Fig. 9(a). These statistics have been obtained by
official census bureau-statistics of Greece [55]. A scenario was
considered with respect to the damage level encountered on the
structures due to a strong earthquake, where four areas with
differential structural damage levels are considered: (i) Level 0—
no damage, (ii) Level 1—slight damage, (iii) Level 2—moderate
damage and (iv) Level 3—extensive damage (Fig. 9(b)). This study
is performed in two steps. In the first one a parametric study is
performed with reference to the combination of the parameters of
the metaheuristics, while in the second one the best combinations
are used for solving the deterministic and stochastic problem
formulations defined in Eqs. (2) and (3).

6.1. Definition of the parameters

The performance of the metaheuristics is influenced by the
selection of their parameters, in two recent studies parameter
tuning of evolutionary algorithms and nonparametric statistical
tests as a methodology for the comparing metaheuristics are
presented [56,57]. In the first part of this investigation, in order
to identify the best combination of the parameters for each
metaheuristic algorithm, 30 combinations of the parameters are
generated by means of LHS, while for each combination 100
optimization runs are performed in order to calculate the mean
and the coefficient of variation with reference to the objective
function value. The resulting optimization runs for dealing with
the districting problem considered for defining the parameters
of the five metaheuristics are equal to 5 metaheuristics × 30
combinations × 100 runs = 15,000 optimization runs. All runs
were performed for the case of the deterministic formulation as
defined in Eq. (1) while 6 inspection groups are considered. The
parameters that are identified for each algorithm are: (i) For PSO,
the number of particles NP is defined in the range of [50, 200],
the inertia weight w is defined in the range of [−1, 1], while the
cognitive parameter c1 and social parameter c2 are defined in the
range of [−5, 5]. (ii) For DE, the population size NP is defined in
the range of [50, 200], the probability CR, the constant F and the
control variable λ are defined in the range of [0, 1]. (iii) For HS,
the harmonymemory sizeHMS is defined in the range of [50, 200],
while the harmonymemory consideration rateHMCR and the pitch
adjusting rate PAR are defined in the range of [0, 1]. (iv) For CMA,
the number of parentsµ and the number of offspring λ are defined
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Fig. 9. City of Patras—(a) subdivision into structural blocks and (b) mean damage level distributed over the structural blocks.
in the range of [50, 200]. (v) For ECMA, the number of offspring λ
is defined in the range of [50, 200].

The results of this parametric study are presented in
Tables 2–6 corresponding to PSO, DE, HS, CMA and ECMA respec-
tively. In these five tables the mean, the coefficient of variation,
the best and the worst normalized objective function values are
depicted for each combination of the algorithms’ parameters. The
normalized values are defined by dividing the objective function
values with the best one achieved by each optimization algorithm;
therefore normalized values equal to unity are encountered for
each algorithm. In these five Tables the lower the normalizedmean
value the better is the coefficient of variation (COV). This is because
the normalized mean gives the percentage of increase of the mean
optimumvalue obtained in a pool of 100 independent optimization
runs compared to the best optimum value obtained implementing
all the combinations of the algorithms; while low COV means that
the algorithm is not influenced by the independent runs. As it can
be seen in Table 2 corresponding to PSO, for a certain combination
of the parameters the mean value is increased up to 130.0% while
the COV reaches 12.0%. In the case of DE, as shown in Table 3, for a
certain combination of the parameters themean value is increased
up to 45.0% while COV reaches 15%, worth noticing also that every
combination reaches the best objective function value in a pool of
100 independent optimization runs. In the case of HS, as shown
in Table 4, for a certain combination of the parameters the mean
value is increased up to 30% while COV reaches 4.0%, worth notic-
ing also that every combination reaches the best objective function
value in a pool of 100 independent optimization runs. In the case
of CMA, as shown in Table 5, for a certain combination of the pa-
rameters the mean value is increased up to 30% while COV reaches
10.0%, worth noticing also that every combination reaches the best
objective function value in a pool of 100 independent optimization
runs. Finally, in the case of ECMA, as shown in Table 6, for a certain
combination of the parameters the mean value is increased up to
70% while COV reaches 13.0%, worth noticing also that every com-
bination reaches the best objective function value in a pool of 100
independent optimization runs.

The parameters used for implementation of the five meta-
heuristic algorithms for solving the districting problem are as
Table 2
Sensitivity analysis of PSO algorithmwith reference to the objective function value.

Parameters
combination

Mean Coefficient of
variation (%)

Best Worst

1 1.61 6.14 1.51 1.81
2 1.33 9.27 1.17 1.81
3 2.12 4.09 1.17 2.24
4 2.30 2.15 1.17 2.38
5 1.91 4.13 1.17 2.38
6 1.71 7.70 1.17 2.38
7 1.84 5.44 1.17 2.38
8 1.98 2.98 1.17 2.38
9 1.69 7.00 1.17 2.38

10 2.03 2.64 1.17 2.38
11 1.60 4.53 1.17 2.38
12 1.90 6.67 1.17 2.38
13 1.68 11.55 1.17 2.38
14 2.14 2.14 1.17 2.38
15 2.18 2.31 1.17 2.38
16 1.30 9.15 1.17 2.38
17 2.00 3.79 1.17 2.38
18 1.63 7.66 1.17 2.38
19 1.85 4.20 1.17 2.38
20 2.21 1.72 1.17 2.38
21 2.18 3.77 1.17 2.38
22 1.80 11.84 1.17 2.38
23 1.61 4.72 1.17 2.38
24 1.90 5.10 1.17 2.38
25 1.60 8.96 1.17 2.38
26 1.66 7.43 1.17 2.38
27 1.09 5.75 1.00 2.38
28 1.47 7.99 1.00 2.38
29 1.52 6.30 1.00 2.38
30 1.17 8.01 1.00 2.38

follows:

(i) PSO method: the number of particles NP = 85, the inertia
weight w = 0.22, while the cognitive parameter c1 = 0.58
and social parameter c2 = 0.99 based on the parameter study
presented in Table 2.

(ii) DE method: the population size NP = 160, the probability
CR = 0.71, the constant F = 0.93, while the control variable
λ = 0.2 based on the parameter study presented in Table 3.
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Table 3
Sensitivity analysis of DE algorithm with reference to the objective function value.

Parameter
combination

Mean Coefficient of
variation (%)

Best Worst

1 1.02 1.88 1.00 1.06
2 1.08 6.80 1.00 1.21
3 1.44 14.42 1.00 1.75
4 1.10 8.50 1.00 1.75
5 1.07 5.27 1.00 1.75
6 1.01 0.87 1.00 1.75
7 1.07 3.29 1.00 1.75
8 1.01 0.83 1.00 1.75
9 1.00 0.27 1.00 1.75

10 1.02 3.34 1.00 1.75
11 1.00 0.70 1.00 1.75
12 1.00 0.17 1.00 1.75
13 1.08 3.93 1.00 1.75
14 1.03 2.46 1.00 1.75
15 1.19 10.10 1.00 1.75
16 1.00 1.44 1.00 1.75
17 1.00 0.18 1.00 1.75
18 1.13 7.09 1.00 1.75
19 1.12 12.65 1.00 1.75
20 1.01 2.96 1.00 1.75
21 1.00 0.34 1.00 1.75
22 1.00 0.45 1.00 1.75
23 1.37 7.96 1.00 1.75
24 1.46 13.42 1.00 1.75
25 1.34 8.29 1.00 1.75
26 1.15 14.04 1.00 1.75
27 1.24 10.69 1.00 1.75
28 1.24 8.36 1.00 1.75
29 1.46 6.28 1.00 1.75
30 1.44 7.45 1.00 1.75

Table 4
Sensitivity analysis of HS algorithm with reference to the objective function value.

Parameter
combination

Mean Coefficient of
variation (%)

Best Worst

1 1.22 3.16 1.15 1.26
2 1.25 1.93 1.15 1.28
3 1.20 2.11 1.15 1.28
4 1.25 3.34 1.15 1.29
5 1.24 1.41 1.15 1.29
6 1.25 1.22 1.15 1.29
7 1.23 2.88 1.15 1.29
8 1.26 2.11 1.15 1.30
9 1.21 2.73 1.15 1.30

10 1.27 0.94 1.15 1.30
11 1.24 3.24 1.14 1.30
12 1.08 2.78 1.00 1.30
13 1.20 1.89 1.00 1.30
14 1.22 2.63 1.00 1.30
15 1.30 3.52 1.00 1.36
16 1.20 2.18 1.00 1.36
17 1.23 4.10 1.00 1.36
18 1.24 3.95 1.00 1.36
19 1.27 2.33 1.00 1.36
20 1.17 1.49 1.00 1.36
21 1.21 1.83 1.00 1.36
22 1.20 2.33 1.00 1.36
23 1.25 2.82 1.00 1.36
24 1.21 2.30 1.00 1.36
25 1.20 2.48 1.00 1.36
26 1.21 3.07 1.00 1.36
27 1.24 3.01 1.00 1.36
28 1.23 2.35 1.00 1.36
29 1.22 3.76 1.00 1.36
30 1.23 2.41 1.00 1.36

(iii) HS method: the harmony memory size HMS = 80, the
harmonymemory consideration rate HMCR = 0.88, while the
pitch adjusting rate PAR was taken equal to 0.25 based on the
parameter study presented in Table 4.
Table 5
Sensitivity analysis of CMAalgorithmwith reference to the objective function value.

Parameter
combination

Mean Coefficient of
variation (%)

Best Worst

1 1.25 5.71 1.08 1.36
2 1.26 7.31 1.03 1.37
3 1.28 2.09 1.03 1.37
4 1.29 1.42 1.03 1.37
5 1.26 2.04 1.03 1.37
6 1.28 2.77 1.03 1.37
7 1.27 1.83 1.03 1.37
8 1.28 1.42 1.03 1.37
9 1.26 4.87 1.03 1.37

10 1.27 2.15 1.03 1.37
11 1.27 1.32 1.03 1.37
12 1.26 3.78 1.03 1.37
13 1.28 2.92 1.03 1.37
14 1.27 2.30 1.03 1.37
15 1.26 2.18 1.03 1.37
16 1.26 1.27 1.03 1.37
17 1.25 4.39 1.03 1.37
18 1.26 2.04 1.03 1.37
19 1.24 5.70 1.03 1.37
20 1.23 3.18 1.03 1.37
21 1.24 4.96 1.03 1.37
22 1.24 4.01 1.03 1.37
23 1.20 6.26 1.03 1.37
24 1.27 1.35 1.03 1.37
25 1.19 8.75 1.03 1.37
26 1.14 9.79 1.00 1.37
27 1.19 7.54 1.00 1.37
28 1.14 8.78 1.00 1.37
29 1.16 8.70 1.00 1.37
30 1.19 7.46 1.00 1.37

Table 6
Sensitivity analysis of ECMA algorithm with reference to the objective function
value.

Parameter
combination

Mean Coefficient of
variation (%)

Best Worst

1 1.35 13.74 1.01 1.69
2 1.24 11.30 1.01 1.69
3 1.37 9.49 1.01 1.69
4 1.36 9.90 1.01 1.69
5 1.38 7.86 1.01 1.69
6 1.24 12.59 1.00 1.69
7 1.35 9.40 1.00 1.69
8 1.36 8.41 1.00 1.69
9 1.33 12.97 1.00 1.69

10 1.53 11.27 1.00 1.78
11 1.32 10.48 1.00 1.78
12 1.54 6.78 1.00 1.78
13 1.29 11.64 1.00 1.78
14 1.34 8.89 1.00 1.78
15 1.32 13.00 1.00 1.78
16 1.60 8.56 1.00 1.78
17 1.57 13.17 1.00 1.78
18 1.35 11.89 1.00 1.78
19 1.59 11.65 1.00 1.78
20 1.65 11.20 1.00 1.78
21 1.63 11.05 1.00 1.78
22 1.43 9.19 1.00 1.69
23 1.66 7.86 1.00 1.69
24 1.26 7.52 1.00 1.69
25 1.63 9.65 1.00 1.69
26 1.56 9.70 1.00 1.69
27 1.26 13.26 1.00 1.69
28 1.59 6.45 1.00 1.69
29 1.28 12.38 1.00 1.69
30 1.27 7.00 1.00 1.69

(iv) CMAmethod: the number of parents µ = 32 and the number
of offspringλ = 61 based on the parameter study presented in
Table 5 while the rest of the parameters are defined according
to the recommendations of [31].
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Fig. 10. City of Patras—PSO method subdivision into structural blocks.
(v) ECMAmethod: the number of parents µ = 1 and the number
of offspringλ = 85 based on the parameter study presented in
Table 6 while the rest of the parameters are defined according
to the recommendations of [32].

For comparison purposes, the termination criterion is the same for
all five metaheuristic optimization algorithms; each procedure is
terminated after 106 function evaluations have been performed.
Comparing the mean time, among the 100 independent optimiza-
tion runs for a certain combination of parameters, required for per-
forming an independent optimization run PSO requires 1.56 min,
DE 15.4 min, HS 0.34 min, CMA 3.12 min while ECMA 12.3 min.

6.2. Deterministic and probabilistic distribution of the damages

In the second part of this study the best combinations of
the parameters, found in the previous part of the investigation,
are used for solving the problems defined in Eqs. (2) and (3).
The resulting optimization runs for dealing with the districting
problem were equal to 5 metaheuristics × 3 inspection groups
× 2 formulations = 30 optimization runs while for the case of
the scheduling problem 5 metaheuristics × i inspection groups
× 2 formulations = 120 optimization runs (where i = 2, 4 or
6). In the case of 2 inspection groups 20 runs were performed, for
the 4 inspection groups 40 runs were performed, while for the
6 inspection groups 60 runs were performed, thus totaling 120
optimization runs with the ACO algorithm. In a similar procedure
to the one described in the previous section we have defined the
parameters used for the ACO algorithm. In particular the size of
the population of antsmwas defined in the range of [10, 100], the
parameters α and β were defined in the range of [0, 2] and [−1, 1],
respectively; the constantQ was defined in the range of [0, 1]while
the rate of evaporation ρ was defined in the range of [0, 1). The best
combination of the ACO algorithm is: the size of the population of
ants m = 25, the parameter α = 1.2, the parameter β = 0.8,
Table 7
Scheduling applied to the deterministic formulation—mean distance (km).

Method Crews
2 4 6

PSO 43.78 30.89 26.38
DE 40.12 18.11 10.48
HS 48.31 28.54 26.08
CMA 48.10 32.70 25.31
ECMA 50.79 29.54 22.80

the constant Q = 0.4 while the rate of evaporation ρ = 0.15. All
independent runs were performed for the case of the scheduling
problem of the first crew as defined by the DE for the deterministic
formulation, while 200 optimization iterations were considered.

Initially, a deterministic distribution of damages is examined as
described in Eq. (2). Figs. 10(a)–(c), 11(a)–(c), 12(a)–(c), 13(a)–(c),
14(a)–(c) depict the solutions obtained for the optimal allocation
problem for the three different number of inspection groups
considered (2, 4 and 6 crews), when the five metaheuristics are
implemented. As can be seen from these figures, different solutions
are obtained. In order to compare the resulted optimum designs,
the scheduling problem has to be solved for each metaheuristic
and for each inspection group by means of the ACO method.
Therefore, the inspection prioritization problem defined in Eq. (5)
is solved by means of the ant colony optimization algorithm.
Fig. 15(a)–(d) depict indicative optimal routes achieved, that
correspond to the case of DEmethodwhen 4 inspection groups are
employed, along with the convergence histories of ACO algorithm.
The vertical axis is the minimum distance path among the ants
in every iteration. These solutions correspond to the least time
consuming route required for each inspection crew departing from
their base (Table 7 provides the mean distances required by the
inspection groups). As can be seen, DE method outperforms all
other methods resulting in the least mean traveling distance for
all three inspection groups.
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Fig. 11. City of Patras—DE method subdivision into structural blocks.
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Fig. 12. City of Patras—HS method subdivision into structural blocks.
In the second part, a non-uniform distribution of damages is
examined as described in the problem formulation of Eq. (3).
The mean damage level for each region is shown in Fig. 9(b).
The damages follow the Gaussian distribution with mean value
of 0, 1, 2 and 3 for the four zones (Fig. 9(b)). In this formulation
and in order to calculate the objective function given in Eq. (6),
the LHS method is implemented considering 100 simulations.
Figs. 10(d)–(f), 11(d)–(f), 12(d)–(f), 13(d)–(f), 14(d)–(f) depict
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Fig. 13. City of Patras—CMA method subdivision into structural blocks.
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Fig. 14. City of Patras—ECMA method subdivision into structural blocks.
the solutions obtained for the optimal allocation problem for
the three different number of inspection groups when the five
metaheuristics are implemented. As can be seen from these figures,
similar to the deterministic formulation, different solutions are
obtained. In order to compare the resulting optimal designs, the
scheduling problem has also been solved for each metaheuristic
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Fig. 15. City of Patras—best route for DE method for four inspection groups (a) group A, (b) group B, (c) group C and (d) group D for the deterministic formulation.
Table 8
Scheduling applied to the stochastic formulation—mean distance (km).

Method Crews
2 4 6

PSO 47.69 19.57 17.01
DE 39.25 16.86 10.98
HS 39.79 26.55 22.84
CMA 46.12 23.13 17.40
ECMA 42.62 31.26 19.93

and for each inspection group by means of the ACO method.
Therefore, the inspection prioritization problem defined in Eq. (5)
is solved by means of the ant colony optimization algorithm.
Fig. 16(a)–(d) depict indicative optimal routes achieved that
corresponds to the case of DE method when 4 inspection groups
are employed, along with the convergence histories of the ACO
algorithm. The vertical axis is the minimum distance path among
the ants for every iteration. These solutions correspond to the least
time consuming route required for each inspection crew departing
from their base (Table 8 provides the mean distances required by
the inspection groups). As can be seen, similar to the deterministic
formulationDEmethod outperforms all othermethods resulting to
the least required mean traveling distance for all three inspection
groups.

7. Conclusions

In this work we offered an approach for scheduling critical
infrastructure inspection crews following an earthquake in densely
populated metropolitan regions, and considered two important
issues within the scope of post natural disaster actions. First, we
developed deterministic and probabilistic districting and routing
problems for scheduling infrastructure inspection crews following
a natural disaster in urban areas. Furthermore, two formulations
were implemented: in the first, the structural blocks were
assigned to different inspection groups in order to homogeneously
distribute the workload between the groups; in the second, the
optimal routewithin each groupwas determined so as tominimize
the distance that each inspection group has to cover. Second,
we assessed and compared five metaheuristic optimization
algorithms for solving these districting and routing problems.
In particular the differential evolution, harmony search, particle
swarm optimization, covariance matrix adaptation evolution
strategy and elitist covariance matrix adaptation. The ant colony
approach was implemented for dealing with the routing problem;
both steps resulted in tractable and rapid response models.

The paper was composed of two parts. In the first, various
combinations of the parameters that affect the performance of
the metaheuristics are tested with reference to their performance
for the solution of the districting (deterministic formulation)
and scheduling problems. In particular, the particle swarm
optimization method depicts a significant influence on the
parameters since the mean best value is increased by up to 130%,
while only few combinations of the parameters converge to the
best optimum. In the case of the harmony search method, the
mean best value is increased by up to 30%, while only half of the
parameters’ combinations lead to the best optimum. In the case of
the covariance matrix adaptation evolution strategy method, the
mean best value is increased by up to 30%,while all the parameters’
combinations lead to an almost best optimum. In the case of the
elitist covariancematrix adaptation evolution strategymethod, the
mean best value is increased by up to 70%,while all the parameters’
combinations lead to an almost best optimum.On the other hand in
the case of the differential evolution method, the mean best value
is increased by up to 45%, while all combinations of the parameters
lead to the best optimum.
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Fig. 16. City of Patras—best route for DE method for four inspection groups (a) group A, (b) group B, (c) group C and (d) group D for the stochastic formulation.
In the second, the best combination of parameters is used
for solving both deterministic and probabilistic formulations
of the districting problem. Results suggest that for both the
deterministic and the probabilistic formulations the differential
evolution method outperformed all other approaches, resulting to
the lowest requiredmean travel distance regardless of the number
of inspection groups available.

It should be stated that the authors have implemented the
variants of the metaheuristics presented in the previous sections
of this study and therefore the results and the superiority of one
algorithm compared to the others refers to these variants. Recently
various variants of the metaheuristics have been proposed;
like those of differential evolution implementing trigonometric
mutation, using arithmetic recombination, with neighborhood-
based mutation, with adaptive selection of mutation strategies, or
the adaptive with current-to-pbest mutation presented in [51];
the variants of harmony search like the explorative one, the
self-adaptive global best algorithm proposed in [58,59] or the
variants of particle swarm optimization like the improved particle
swarm optimization with differentially perturbed velocity, the
hybrid cooperative algorithm, the adaptive algorithm and the
dynamic multi-swarm particle swarm optimizer with harmony
search presented in [51,60,61]. The conclusions can be different if
these or other variants are implemented.

References

[1] N. Altay, W.G. Greene, OR/MS research in disaster operations management,
European Journal of Operational Research 175 (2006) 475–493.

[2] W.M. Dong, W.L. Chiang, H.C. Shah, Fuzzy information processing in
seismic hazard analysis and decision making, Soil Dynamics and Earthquake
Engineering 6 (4) (1987) 2202–2226.

[3] W. Peizhuangm, L. Xihui, E. Sanchez, Set-valued statistics and its application
to earthquake engineering, Fuzzy Sets and Systems 18 (3) (1986) 347–356.
[4] H. Tamura, K. Yamamoto, S. Tomiyama, I. Hatono, Modelling and analysis
of decision making problem for mitigating natural disaster risks, European
Journal of Operational Research 122 (2) (2000) 461–468.

[5] D.Mendonca, G.E.G. Beroggi,W.A.Wallace, Decision support for improvisation
during emergency response operations, International Journal of Emergency
Management 1 (1) (2001) 30–38.

[6] D. Mendonca, G.E.G. Beroggi, D. van Gent, W.A. Wallace, Designing gaming
simulations for the assessment of group decision support systems in
emergency response, Safety Science 44 (2006) 523–535.

[7] K. Viswanath, S. Peeta, Multicommodity maximal covering network design
problem for planning critical routes for earthquake response, Transportation
Research Record 1857 (2003) 1–10.

[8] A. Nicholson, Z.-P. Du, Degradable transportation networks systems: an
integrated equilibrium model, Transportation Research Part B 31 (3) (1997)
209–223.

[9] H. Sakakibara, Y. Kajitani, N. Okada, Road network robustness for avoiding
functional isolation in disasters, Journal of Transportation Engineering 130 (5)
(2004) 560–567.

[10] J. Sohn, Evaluating the significance of highway network links under the flood
damage: an accessibility approach, Transportation Research Part A 40 (6)
(2006) 491–506.

[11] J. Song, T.J. Kim, G.J.D. Hewings, J.S. Lee, S.-G. Jang, Retrofit priority of
transport network links under an earthquake, Journal of Urban Planning and
Development 129 (4) (2003) 195–210.

[12] V. Verter, S. Lapierre, Location of preventive healthcare facilities, Annals of
Operations Research 110 (2002) 123–132.

[13] G. Barbarosoglou, Y. Arda, A two-stage stochastic programming framework
for transportation planning in disaster response, Journal of the Operational
Research Society 55 (1) (2004) 43–53.

[14] G. Barbarosoglou, L. Ozdamar, A. Cevik, An interactive approach for
hierarchical analysis of helicopter logistics in disaster relief operations,
European Journal of Operational Research Society 140 (1) (2002) 118–133.

[15] F. Fiedrich, F. Gehbauer, U. Rickers, Optimized resource allocation for
emergency response after earthquake disasters, Safety Science 35 (1–3) (2000)
41–57.

[16] L. Ozdamar, E. Ekinci, B. Kucukyazici, Emergency logistics planning in natural
disasters, Annals of Operations Research 129 (1–4) (2004) 217–245.

[17] M.G.H. Bell, A game theory approach to measuring the performance reliability
of transportation networks, Transportation Research Part B 34 (6) (2000)
533–545.



N.D. Lagaros, M.G. Karlaftis / Swarm and Evolutionary Computation 1 (2011) 147–163 163
[18] S.E. Chang, N. Nojima, Measuring post-disaster transportation system perfor-
mance: the 1995 Kobe earthquake in comparative perspective, Transportation
Research Part A 35 (6) (2001) 475–494.

[19] F. Karaouchi, Y. Lida, H. Shimada, Evaluation of road network reliability
considering traffic regulation after a disaster, in: M.G.H. Bell, Y. Lida (Eds.),
The Network Reliability of Transport: Proceedings of the 1st International
Symposium on Transportation Network Reliability, INSTR, Elsevier, Oxford,
UK, 2001.

[20] Y. Li, H. Tsukaguchi, Improving the reliability of street networks in highly
densely populated urban areas, in: M.G.H. Bell, Y. Lida (Eds.), The Network
Reliability of Transport: Proceedings of the 1st International Symposium on
Transportation Network Reliability, INSTR, Elsevier, Oxford, UK, 2001.

[21] L. Cret, F. Yamakazi, S. Nagata, T. Katayama, Earthquake damage estimation
and decision-analysis for emergency shutoff of city gas networks using fuzzy
set theory, Structural Safety 12 (1) (1993) 1–19.

[22] B. Song, S. Hao, S. Murakami, S. Sadohara, Comprehensive evaluation method
on earthquake damage using fuzzy theory, Journal of Urban Planning and
Development 122 (1) (1996) 1–17.

[23] M.G. Karlaftis, K.L. Kepaptsoglou, S. Lampropoulos, Fund allocation for
transportation network recovery following natural disasters, Journal of Urban
Planning and Development 133 (1) (2007) 82–89.

[24] V. Plevris, M.G. Karlaftis, N.D. Lagaros, A swarm intelligence approach
for emergency infrastructure inspection scheduling, in: K. Gopalakrishnan,
S. Peeta (Eds.), Sustainable Infrastructure Systems: Simulation, Imaging, and
Intelligent Engineering, Springer, 2010, pp. 201–230.

[25] N. Geroliminis, M.G. Karlaftis, A. Skabardonis, A spatial queuing model for the
emergency vehicle districting and location problem, Transportation Research
Part B 43 (2009) 798–811.

[26] M.G. Karlaftis, K. Kepaptsoglou, E. Sambracos, Containership routingwith time
deadlines and simultaneous deliveries and pickups, Transportation Research
Part E: Logistics and Transportation Review 45 (2009) 210–221.

[27] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated
Evolution, John Wiley, 1966.

[28] D.E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning, Addison Wesley, 1989.

[29] I. Rechenberg, Evolutionsstrategie—Optimierung Technischer Systeme Nach
Prinzipien der Biologischen Evolution, Fromman-Holzboog, 1973.

[30] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of IEEE
International Conference on Neural Networks, vol. IV, 1995.

[31] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in
evolution strategies, Evolutionary Computations 9 (2) (2001) 159–195.

[32] C. Igel, N. Hansen, S. Roth, Covariance matrix adaptation for multi-objective
optimization, Evolutionary Computations 15 (1) (2007) 1–28.

[33] R.M. Storn, K.V. Price, Differential evolution—a simple and efficient heuristic
for global optimization over continuous spaces, Journal of Global Optimization
11 (1997) 341–359.

[34] Z.W. Geem, J.H. Kim, G.V. Loganathan, A newheuristic optimization algorithm:
harmony search, Simulation 76 (2001) 60–68.

[35] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm
for optimization inspired by imperialistic competition, in: IEEE Congress on
Evolutionary Computation, Singapore, 2007, pp. 4661–4667.

[36] O. Bozorg Haddad, A. Afshar, M.A. Mariño, Honey bees mating optimization
algorithm (HBMO): a newheuristic approach for engineering optimization, in:
Proceeding of the First International Conference onModelling, Simulation and
Applied Optimization, ICMSA0/05, Sharjah, UAE, 2005, pp. 1–3.

[37] N. Perrier, A. Langevin, J.F. Campbell, A survey of models and algorithms
for winter road maintenance. Part III: vehicle routing and depot location for
spreading, Computers & Operations Research 34 (2007) 211–257.

[38] K.C. Tan, Y.H. Chew, L.H. Lee, A hybrid multi-objective evolutionary algorithm
for solving truck and trailer vehicle routing problems, European Journal of
Operational Research 172 (2006) 855–885.

[39] P. Reche-Lopez, N. Ruiz-Reyes, S. Garcia Galan, F. Jurado, Comparison of
metaheuristic techniques to determine optimal placement of biomass power
plants, Energy Conversion and Management 50 (2009) 2020–2028.
[40] M.A. Salazar-Aguilar, R.Z. Rvos-Mercado, J.L. Gonzalez-Velarde, A bi-objective
programming model for designing compact and balanced territories in com-
mercial districting, Transportation Research Part C: Emerging Technologies 19
(5) (2011) 885–895.

[41] P. Balaprakash, M. Birattari, T. Stutzle, M. Dorigo, Estimation-based meta-
heuristics for the probabilistic travelling salesman problem, Computers & Op-
erations Research 37 (2010) 1939–1951.

[42] P.C. Pop, New integer programming formulations of the generalized travelling
salesman problem, American Journal of Applied Sciences 4 (11) (2007)
932–937.

[43] P.C. Pop, O. Matei, C. Sabo, A new approach for solving the generalized
travelling salesman problem, in: Lecture Notes in Computer Science, Including
Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics, in: LNCS, vol. 6373, 2010, pp. 62–72.

[44] I. Lari, F. Ricca, A. Scozzari, Comparing different metaheuristic approaches
for the median path problem with bounded length, European Journal of
Operational Research 190 (2008) 587–597.

[45] W. Bo-Zejko, M. Wodecki, Solving permutational routing problems by
population-based metaheuristics, Computers & Industrial Engineering 57
(2009) 269–276.

[46] M. Mastrolilli, C. Blum, On the use of different types of knowledge in
metaheuristics based on constructing solutions, Engineering Applications of
Artificial Intelligence 23 (2010) 650–659.

[47] A.L. Jourdan, E.G. Talbi, Metaheuristics and cooperative approaches for the
bi-objective ring star problem, Computers & Operations Research 37 (2010)
1033–1044.

[48] E. Vallada, Rubén Ruiz, Cooperative metaheuristics for the permutation
flowshop scheduling problem, European Journal of Operational Research 193
(2009) 365–376.

[49] M. Lozanoa, C. García-Martínez, Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: overview and
progress report, Computers & Operations Research 37 (2010) 481–497.

[50] P.R. Bergamaschi, S.F.P. Saramago, L.S. Coelho, Comparative study of SQP
and metaheuristics for robotic manipulator design, Applied Numerical
Mathematics 58 (2008) 1396–1412.

[51] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Transactions on Evolutionary Computation 15 (1) (2011) 4–31.

[52] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, D.B. Shmoys, The Traveling
Salesman Problem: A Guided Tour of Combinatorial Optimization,Wiley, New
York, USA, 1985.

[53] M. Dorigo, Optimization, learning and natural algorithms, Politecnico di
Milano, Milano, 1992.

[54] M. Dorigo, T. Stützle, Ant Colony Optimization, The MIT Press, 2004.
[55] http://www.statistics.gr/.
[56] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of

nonparametric statistical tests as a methodology for comparing evolutionary
and swarm intelligence algorithms, Swarm and Evolutionary Computation 1
(1) (2011) 3–18.

[57] A.E. Eiben, S.K. Smit, Parameter tuning for configuring and analyzing
evolutionary algorithms, Swarm and Evolutionary Computation 1 (1) (2011)
19–31.

[58] S. Das, A. Mukhopadhyay, A. Roy, A. Abraham, B.K. Panigrahi, Exploratory
power of the harmony search algorithm: analysis and improvements for global
numerical optimization, IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics 41 (1) (2011) 89–106.

[59] Q.-K. Pan, P.N. Suganthan, M.F. Tasgetiren, J.J. Liang, A self-adaptive global best
harmony search algorithm for continuous optimization problems, Applied
Mathematics and Computation 216 (3) (2010) 830–848.

[60] B.K. Panigrahi, V. Ravikumar Pandi, S. Das, Adaptive particle swarm
optimization approach for static and dynamic economic load dispatch, Energy
Conversion and Management 49 (6) (2008) 1407–1415.

[61] S.-Z. Zhao, P.N. Suganthan, Q.-K. Pan, M. Fatih Tasgetiren, Dynamic multi-
swarm particle swarm optimizer with harmony search, Expert Systems with
Applications 38 (4) (2011) 3735–3742.

http://www.statistics.gr/

	A critical assessment of metaheuristics for scheduling emergency  infrastructure inspections
	Introduction
	Background
	Problem formulation
	Step 1: Optimal districting problem
	Deterministic formulation
	Probabilistic formulation

	Step 2: inspection prioritization problem

	Monte Carlo simulation
	Metaheuristic algorithms
	Particle swarm optimization
	Differential evolution
	Harmony search
	Covariance matrix adaptation
	Elitist covariance matrix adaptation
	Ant colony optimization

	Case study
	Definition of the parameters
	Deterministic and probabilistic distribution of the damages

	Conclusions
	References


