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a b s t r a c t

In this paper, the problem of computing optimal transportation plans for natural gas by means of com-
pressor stations in pipeline networks is addressed. The non-linear (non-convex) mathematical model
considers two types of continuous decision variables: mass flow rate along each arc, and gas pressure
level at each node. The problem arises due to the presence of costs incurred when running compressors
in order to keep the gas flowing through the system. Hence, the assignment of optimal values to flow and
pressure variables such that the total fuel cost is minimized turns out to be essential to the gas industry.
The first contribution from the paper is a solution method based on dynamic programming applied to a
discretized version of the problem. By utilizing the concept of a tree decomposition, our approach can
handle transmission networks of arbitrary structure, which makes it distinguished from previously sug-
gested methods. The second contribution is a discretization scheme that keeps the computational effort
low, even in instances where the running time is sensitive to the size of the mesh. Several computational
experiments demonstrate that our methods are superior to a commercially available local optimizer.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Natural gas has become one of the most important energy re-
sources worldwide. Consequently, the volumes of gas flowing from
the fields through transmission networks to the market have been
increasing steeply during the past decades, and in parallel, a grow-
ing interest in reducing costs associated with pipeline gas trans-
portation has been observed.

A gas transmission network is a system consisting of sources,
pipelines, compressors and distribution centers. At the sources, a
supply of gas received from external fields is refined, and trans-
ported via pipelines and compressors to the distribution centers.
The distribution centers are the end points of the transmission net-
work, and the gas finally received here is input to local distribution
networks supporting households and other clients.

The flow capacity of any pipeline increases with the inlet pres-
sure and decreases with the outlet pressure of the pipeline. If no
compressors are installed along a flow path, the pressure will be
continuously decreasing. Since the pressure at the distribution cen-
ters typically is fixed, the flow capacity may therefore eventually
become prohibitively small. To increase the pressure, and thereby
the flow capacity, compressors are hence installed at the entry
points of selected pipelines. Operation of the compressors incurs
a cost depending on the flow and their inlet and outlet pressures.
ll rights reserved.
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In this paper, the fuel cost minimization problem (FCMP) to
transport natural gas in a general class of transmission networks
is addressed. The FCMP involves two types of continuous decision
variables: mass flow rate through each arc, and gas pressure level
at each node. The problem is to determine a transportation plan
minimizing the total fuel cost, while meeting a specified demand
at the distribution centers.

An extensive literature on the FCMP has been published over
the past 30 years. Most of the suggested solution methods are lim-
ited to pipelines networks with acyclic structures, and in such in-
stances, the suggested methods have shown a strong potential. In
some of the more recent works, methods for cyclic networks have
been developed. However, since these optimization approaches re-
quire a certain sparse network structure, their applicability is
somewhat restricted. The following sections give a more detailed
overview of the most relevant methods. A common assumption
is that the system is in steady-state, which means that rapid
changes in parameter values do not occur.
1.1. Methods based on dynamic programming

By discretizing the range of the pressure variables, FCMP has in
several works been formulated as a combinatorial problem that
can be approached by dynamic programming (DP). Wong and Lar-
son (1968) published the first work on optimization of pipeline
transportation of natural gas by DP. They applied it to a gun-barrel
(linear) network, that is a problem instance where the underlying
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network is a path, using a recursive formulation. A disadvantage
was that the length and diameter of the pipeline segment were as-
sumed to be constant because of limitations of DP. Martch and
McCall (1972) modified the problem by adding branches to the
pipeline segments and letting the length and diameter of the pipe-
line segments vary. However, since their problem formulation did
not allow unbranched network, more complicated network sys-
tems could not be handled.

The first attempt to solve instances with tree-shaped networks by
DP was done by Zimmer (1975). A similar approach was described by
Lall and Percell (1990). They allowed a divergent branch in their sys-
tems and included an integer decision variable into the model that
represented the number of operating compressors in the stations.

Carter (1998) developed an algorithm referred to as non-
sequential DP. The principal idea of the method is to reduce the
network by three basic reductions techniques until it consists of
a single node. The method can handle a wide range of instances
with cyclic networks, but fails if the networks are not sufficiently
sparse. Based on this approach, Borraz-Sánchez and Ríos-Mercado
(2004, 2009) developed a hybrid meta-heuristic combining tabu
search and non-sequential DP. The restriction that the networks
must be sparse is however a shortcoming that the hybrid method
inherits from the original paper.

1.2. Methods based on gradient techniques

Percell and Ryan (1987) applied a generalized reduced gradient
(GRG) method for solving FCMP. In comparison with DP, an advan-
tage of GRG is that the rapid growth in instance size caused by many
discretization points is avoided. Also, GRG is applicable to cyclic net-
works. Nonetheless, only a local optimum can be provided, of which
instances of FCMP can have many, and the solution to be output de-
pends on the choice of starting point. Flores-Villarreal and Ríos-Mer-
cado (2003) extended the previous study by means of an extensive
computational evaluation of the GRG method.

1.3. Other techniques and related problems

Wu, Ríos-Mercado, Boyd, and Scott (2000) address the non-con-
vex nature of FCMP, and suggest mathematical models that pro-
vide strong relaxations, and hence tight lower bounds on the
minimum cost. Based on this model and the PhD thesis of Wu
(1998), they demonstrated the existence of a unique solution to a
non-linear algebraic equations system over a set of flow variables.
This theoretical result lead to a technique for reducing the size of
the original network without altering its mathematical structure.

Villalobos-Morales, Cobos-Zaleta, Flores-Villarreal, Borraz-Sán-
chez, and Ríos-Mercado (2003) formulated a non-linear optimiza-
tion model that also contains integer variables representing the
number of compressor units inside a compressor station. Cobos-
Zaleta and Ríos-Mercado (2002) extended this model, and sug-
gested a solution technique based on outer approximation.

1.4. Contributions from the current work

Several works have demonstrated that, at least in acyclic and
sparse cyclic instances of FCMP, it is a promising approach to dis-
cretize the pressure variables, and apply DP to the resulting com-
binatorial problem. The purpose of this research is twofold: First,
we demonstrate how such approaches can be applied to networks
of arbitrary structure. Second, in order to keep the running time
down in dense and cyclic instances, we propose a new scheme
for discretizing the pressure variables. This scheme is adaptive in
the sense that it avoids fine discretization of variables in area un-
likely to contain good solutions, and intensifies discretization in
more promising regions.
The remainder of the paper is organized as follows: In the next
section, we define the problem in mathematical terms. In Section 3,
we present a contemporary solution method, and point out a sim-
ple instance where it fails. In Section 4, we show how the weakness
of the method discussed in Section 3 can be overcome by our alter-
native method. Our adaptive discretization method is given in Sec-
tion 5. Results from computational experiments are reported in
Section 6, and concluding remarks are given in Section 7.

2. Problem definition

Let G = (V,A) be a directed graph representing a gas transmission
network, where V and A are the node and arc sets, respectively. Let Vþv
and V�v denote the sets of out- and in-neighbors, respectively, of node
v 2 V. Let Vs # V be the set of supply nodes representing the sources,
Vd # V the set of demand nodes representing the distribution cen-
ters, and let A = Ac [ Ap be partitioned into a set of compressor arcs
Ac and a set of pipeline arcs Ap. That is, if (u,v) 2 Ac then u, v 2 V are
the network nodes representing the input and the output units,
respectively, of some compressor (u,v). An analogous interpretation
is made for pipeline arcs (u,v) 2 Ap.

Two types of decision variables are defined: Let xuv denote the
mass flow rate at arc (u,v) 2 A, and let pv denote the gas pressure
at node v 2 V. For each v 2 V, we define the parameters net mass
flow rate Bv and pressure bounds PL

v and PU
v (lower and upper,

respectively). By convention, Bv > 0 if v 2 Vs, Bv < 0 if v 2 Vd, and
Bv = 0 otherwise. By the assumption that flow is conserved at the
nodes, the decision variables are subject to the constraintsP

u2Vþv
xvu �

P
u2V�v

xuv ¼ Bv for all v 2 V. Constraints linking the
pressure and flow variables are given for the arc sets Ac and Ap,
and these are discussed next.

2.1. Compressor arc constraints

The variables that are manipulated in a compressor (u,v) 2 Ac in
order to have the desired values of xuv, pu, and pv are according to
Wu et al. (2000) compressor speed Suv, volumetric inlet flow rate
Quv, adiabatic head Huv and adiabatic efficiency guv of the compres-
sor. These can briefly be explained as follows (more details can be
found in the cited work):

� The variable Suv is the speed at which each molecule flows
through compressor (u,v), and should not be confused with
the flow xuv itself.
� While xuv is the mass flow per time unit, the volumetric flow Quv

is simply xuv divided by the gas density at the inlet point of the
compressor. Due to pressure variations, the density is not con-
stant throughout the network.
� The adiabatic head Huv says how much energy is required to

compress one mass unit of gas from one pressure level to
another without altering the gas temperature.
� The adiabatic efficiency guv is the ratio between the energy

effective in compressing the gas and the total energy spent.

As explained more detailed by, e.g. Wu et al. (2000), the above
magnitudes relate to (xuv,pu,pv) according to

Huv ¼ a
pv
pu

� �j

� 1
� �

8ðu; vÞ 2 Ac ð1Þ

Quv ¼ aj
xuv

pu
8ðu;vÞ 2 Ac ð2Þ

Huv

S2
uv

¼ /1 Q uv

Suv

� �
8ðu;vÞ 2 Ac ð3Þ

guv ¼ /2 Q uv

Suv

� �
8ðu;vÞ 2 Ac ð4Þ
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where j 2 (0,1) and a > 0 are gas specific constants, and /1 and /2

are polynomial functions (typically of degree 3). The coefficients of
/1 and /2 are assessed by applying least squares analysis to a set of
selected data points. For each (u,v) 2 Ac, Quv is subject to lower and
upper bounds QL

uv and QU
uv , and we adopt a similar notation for

bounds on the variables Suv,Huv and guv.
The fuel consumption cost is given by Wu et al. (2000):

guvðxuv ;pu;pvÞ ¼
cxuv

pv
pu

� �j
� 1

h i
guv

8ðu;vÞ 2 Ac

where c > 0 is a monetary constant.
The feasible operating domain of compressor station (u,v) 2 Ac

is the set Duv � R3 of value assignments to (xuv,pu,pv) for which
there exist values of (Quv,Suv,Huv,guv) satisfying (1)–(4) and the
bounds Q L

uv 6 Quv 6 QU
uv , SL

uv 6 Suv 6 SU
uv , HL

uv 6 Huv 6 HU
uv , and

gL
uv 6 guv 6 gU

uv .
We assume that for all (xuv,pu,pv) 2 Duv, "(u,v) 2 Ac, there is a

unique feasible (Quv,Suv,Huv,guv). This correspondence defines the
desired transformation from feasible flow and pressure variable
values (xuv,pu,pv) to an estimate guv(xuv,pu,pv) of the fuel cost.

2.2. Pipeline arc constraints

Following Wu et al. (2000), the relation between pipeline flow
and (sufficiently high) pressure in steady state networks can be
written as x2

uv ¼Wuv ðp2
u � p2

v Þ, where Wuv > 0 is some constant
depending on characteristics of the gas and the pipeline (u,v) 2 Ap.

2.3. Mathematical model

For each node v 2 V, we impose lower and upper pressure
bounds PL

v , and PU
v , respectively. We confine our study to irrevers-

ible flow, and impose xuv P 0 for all (u,v) 2 A. Summarizing the two
last sections, the FCMP can then be formulated as follows:

min
X
ðu;vÞ2Ac

guvðxuv ; pu; pvÞ ð5Þ

s:t: :
X
u2Vþv

xvu �
X
u2V�v

xuv ¼ Bv 8v 2 V ð6Þ

ðxuv ;pu;pvÞ 2 Duv 8ðu;vÞ 2 Ac ð7Þ
x2

uv ¼Wuv p2
u � p2

v
� 	

8ðu;vÞ 2 Ap ð8Þ
PL

v 6 pv 6 PU
v 8v 2 V ð9Þ

xuv P 0 8ðu;vÞ 2 A ð10Þ

Wu et al. (2000) give simple illustrations of the domains Duv, point-
ing out the fact that these typically are non-convex sets. It is there-
fore unlikely that simple local optimization methods are sufficient
to solve the above model, and the remainder of this article is de-
voted to methods aimed for non-convex problem instances.

3. Solution methods

Several solution methods have been suggested for FCMP,
including those by Ríos-Mercado, Kim, and Boyd (2006) and
Borraz-Sánchez and Ríos-Mercado (2009), which all follow the idea
of Algorithm 1.
Fig. 1. Transition to compressor network.
Algorithm 1. SolveFCMP

Step 1: Choose initial (feasible) flow
repeat

Step 2: Optimize pressure while keeping the flow fixed
Step 3: Optimize flow while keeping the pressure fixed

until flow does not change
With the risk of missing the global optimum, flow and pressure
are determined separately in Steps 2 and 3, respectively. As we
show next, this can be accomplished by focusing on only a subset

of the variables.

3.1. Compressor network

The focus in this paper is to accomplish Step 2 of the above algo-
rithm, and we now demonstrate how this can be done by optimiz-
ing over only a subset of the pressure variables.

Let V0 # V consist of exactly one node from each of the con-
nected components in the directed graph (V,Ap), and let Gv = (Vv,Av)
denote the component (subgraph) to which v 2 V

0
belongs. Define

the compressor network (by Ríos-Mercado, Wu, Scott, & Boyd
(2002) referred to as the reduced network) as the directed graph
G0 ¼ V 0;A0c

� 	
, where ðu; vÞ 2 A0c if and only if u,v 2 V0 and there exists

some arc in Ac from Vu to Vv. As in (Ríos-Mercado et al., 2002), we
assume that G0 does not contain loops, which means that no com-
pressor arc has both its start node and its end node in the same
connected component of (V,Ap). Equivalently, the node set of G0

can be associated with the subgraphs Gv (v 2 V0), as shown in the
illustration of the transition from G to G0 (Fig. 1).

Theorem 1. If Ac = ; then for any B 2 RV satisfying
P

v2V Bv ¼ 0, any
real number pref P 0, and any v 2 V, there exist unique x 2 RA and
p 2 RV

þ satisfying pv = pref, (6) and (8).
Proof. See Ríos-Mercado et al. (2002). h

The essence of Theorem 1 is that in any network consisting
exclusively of pipeline arcs, the flow and pressure values are all gi-



C. Borraz-Sánchez, D. Haugland / Computers & Industrial Engineering 61 (2011) 364–372 367
ven uniquely once the pressure at any reference node v 2 V is set to
any value pref. If (x,p) also satisfies (9) and (10), the assignment
pv = pref is feasible.

The observation that Theorem 1 applies to Gv for all v 2 V0 sug-
gests the following approach to Step 2 in Algorithm 1: Identify the
connected components in (V,Ap), and nominate one reference node
in each. Since x is fixed in this step, all other pressure values are
found by utilizing (8), and feasibility is checked by verifying
whether (9) holds. As pointed out by Ríos-Mercado et al. (2006),
and exploited in the algorithm given in the same reference, it fol-
lows that Step 2 is reduced to the problem of solving instances of
(5)–(10) where Ap = ; and x is fixed.

Theorem 1 shows that if xuv and pv are fixed for all compressor
arcs (u,v) 2 Ac and all reference nodes v 2 V0, the remaining vari-
able values are computed by solving the system of equations con-
sisting of (6) and (8). In Step 3, we thus keep pv fixed for all v 2 V0,
and optimize over {xuv:(u,v) 2 Ac}. To respect the flow balance con-
straints (6), flow updates must be made by sending flow along cy-
cles in G0, and by identifying cycles with negative net cost a
reduction in the objective function value is achieved. To check
the cost of sending flow along a cycle, we have to take into account
the change in xuv for all compressor arcs (u,v) along the cycle, but
also the change in pv for all v 2 VnV0 in connected components of
(V,Ap) intersected by the cycle. For more details, we refer the read-
er to Ríos-Mercado et al. (2002).

Step 3 will not be discussed further here. We define the problem
FCMP’ to be equivalent to (5)–(10), with the additional conditions
that Ap = ; and x is fixed. With the purpose of developing efficient
computational methods for Step 2, the rest of the paper is devoted
to problem FCMP’.
Fig. 2. Network reduction types.

Fig. 3. An instance of G where NDP fails.
3.2. Discretized pressure and dynamic programming formulation

Carter (1998) suggested to solve FCMP’ by discretizing [PL,PU]
and then apply a network reduction technique referred to as
non-sequential dynamic programming (NDP). Assume that there
are s discretization points p1

v ; . . . ; ps
v for each v 2 V such that

PL
v 6 p1

v < � � � < ps
v 6 PU

v , and for all i,j = 1, . . . ,s, let gij
uv ¼

guv xuv ; pi
u; p

j
v

� �
if xuv ; pi

u; p
j
v

� �
2 Duv and gij

uv ¼ 1, otherwise. Then

NDP consists of a sequence of reductions of G until the resulting
graph is a single node. Three reduction types (see Fig. 2) are
considered:

(a) Serial: If v 2 V has exactly two incident arcs (u,v) and (v, t) in
G, then v, (u,v) and (v, t) are replaced by a new arc (u, t), and

gij
ut ¼mink gik

uv þ gkj
vt : k ¼ 1; . . . ; s

n o
. The same principle

applies if both arcs incident to v enter (leave) v.
(b) Dangling: If v 2 V has only one incident arc (v, t), then t and

(v, t) are removed, and, for all in-neighbors u of v in G, gij
uv

is updated to gij
uv þmink gjk

vt : k ¼ 1; . . . ; s
n o

. Similar updates

apply to the out-neighbors of v, and the principle applies
also if the sole neighbor of t is an out-neighbor.

(c) Parallel: If k > 1 arcs a1,. . .,ak in G connect nodes u and v, then
these are replaced by a single arc (u,v). The associated cost

parameters are defined as gij
uv ¼

Pk
‘¼1gij

a‘ "i,j = 1, . . . ,s.

The serial and parallel reductions constitute the pre-processing
procedure suggested by Koster, van Hoesel, and Kolen (1999).

When neither of the reductions (a)–(c) can be carried out, NDP
fails. Fig. 3 shows a simple example where this occurs. To over-
come this weakness, we now go on to demonstrate how such in-
stances of FCMP’ can be solved.
4. A tree decomposition approach to optimizing the pressure
values

FCMP’ has the mathematical structure of the frequency assign-
ment problem (Koster et al., 1999), and can also be solved by the
procedure suggested in the cited reference. This is based on the fol-
lowing concept introduced by Robertson and Seymour (1986):

Definition 1. A tree decomposition of G is a pair
J ¼ ðfXi : i 2 Ig; TÞ, where each Xi is a subset of V, called a bag,
and T is a tree with node set I. The following properties must be
satisfied:

�
S

i2IXi = V;
� for all (u,v) 2 A, there is an i 2 I such that {u,v} # Xi;
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� "i,j,k 2 I, if j lies on the path between i and k in T, then
Xi \ Xk # Xj.

The width of a tree decomposition J is maxi2IjXij � 1.

For any X # V, define pX as the vector with components pv

(v 2 X) in any consistent order. Define Dv ¼ p1
v ; . . . ; ps

v

 �

for all
v 2 V, and let DX ¼ fpX : pv 2 Dv ;8v 2 Xg. For any i 2 I, let Ki denote
the set of child nodes of i in T.

Algorithm 2. DP ðJ; i;X;pÞ

if i is a leaf in T then
return

min
p2DXi[X

P
ðu;vÞ2A

u;v2Xi[X
guv ðxuv ; pu; pvÞ : pv ¼ pv8v 2 X

( )

else
return

min
p2DXi[X

P
ðu;vÞ2A

u;v2Xi[X
guv ðxuv ; pu; pvÞ

(

þ
P

j2Ki
DPðJ; j;Xi [ X; pÞ : pv ¼ pv8v 2 Xg

Algorithm 2 applies dynamic programming to a tree decompo-
sition J of G. When bag Xi is processed, the union X of all ancestor
bags of Xi are input along with a pressure vector p 2 DX . The algo-
rithm optimizes the value of pv for all v 2 Xi by complete enumer-
ation of Dv , and by taking into account optimal pressure
assignments to all nodes in all child bags of Xi. This is expressed
in terms of a recursive call in Algorithm 2. Since Xi \ X may be non-
empty, we must ensure that nodes contained in this set are not as-
signed new pressure values when processing Xi, and we impose the
constraint that pv = pv for all v 2 X.

The running time of Algorithm 2 is OðjIjsdÞ, where d is the width
of J. This means that finding a tree decomposition of small width
can be crucial for the running time of the algorithm. It is however
well known (Robertson & Seymour, 1986) that finding one with
minimum width is an NP-hard problem, and it is therefore unlikely
that a tree decomposition minimizing the running time of Algo-
rithm 2 can be found in polynomial time. We will rely on a heuris-
tic approach to constructing J with small width.
4.1. Pre-processing variable bounds

In this section, we propose a bounding technique to be applied
as a pre-processing technique in order to speed-up the conver-
gence of our proposed methods. The aim of applying this pre-pro-
cessing technique is to avoid as much as possible huge
computational efforts when applying a finer discretization. We
basically shrink all pressure bounds in G based on the maximum
and minimum potential pressure values given by the physical
properties in each compressor arc (u,v) 2 A. We can define this
bounding technique as elementary operations that may lead to
better algorithmic properties before attempting to apply any of
our proposed methods to G.

Given PL
u; P

U
u

h i
;8u 2 V , the new refined pressure bounds can

then be expressed as:

lbuðPL; PUÞ ¼max PL
u;P

L
u

n o
6 pu 6 ubuðPL; PUÞ

¼min PU
u ;P

U
u

n o
ð11Þ

where (1) is used to obtain the pressure bounds
PL
u ¼ max

v :ðu;vÞ2A
PL

v
jHU

uv
ZRTs

þ 1

 !�ð1=jÞ
ð12Þ

and
PU
u ¼ min

v:ðu;vÞ2A
PU

v
jHL

uv
ZRTs

þ 1

 !�ð1=jÞ
ð13Þ
with j as the isotropic factor defined as
j ¼ ð1:287� 1Þ
1:287

� 0:223:
5. An adaptive discretization method

An important parameter of the approach suggested in the pre-
vious section, is the number of discretization points, s, by which
we represent each pressure variable. Assessing this parameter
may be difficult. On the one hand, a large value of s increases the
possibility of finding a feasible solution of good quality. On the
other hand, the previous section showed that the asymptotic in-
crease in the running time is proportional to sd. With a large width
d of the tree decomposition, choosing a large value of s may lead to
a slow method.

In this section, we therefore develop a method where the num-
ber of discretization points is initially small, and upgraded by a
fixed factor until at least one feasible point is found by dynamic
programming. Next, for each solution in a selection of the feasible
ones hence found, we define an enclosing rectangular subset of the
solution set, henceforth referred to as a focus area. The same proce-
dure is then applied to each focus area.

By this approach, we focus the search in the neighborhood of
some of the feasible solutions found, and repeat the idea recur-
sively until the discretization distance within the focus area drops
below a given threshold. The idea can be depicted by a search tree S
(see Fig. 4), where each node corresponds to a unique focus area
and the branches correspond to the set of feasible solutions found
by DP and selected for further exploration. To limit the size of the
search tree, only a fixed proportion of the feasible solutions are se-
lected to be explored. If X is the set of feasible solutions found, we
select the drjXje solutions in X with the smallest cost, where
r 2 (0,1] is an input parameter.

The dynamic programming algorithm (Algorithm 2) can easily
be generalized such that it produces a set of solutions rather than
only the best solution found. For all possible value assignments to
the variables corresponding to the root bag of J, we make optimal
value assignments to all the remaining variables. Hence, jXj 6 sjX0 j,
where X0 is the root bag of J. Only a trivial modification of Algo-
rithm 2, where the root of J is treated differently from the other
bags, is needed, and for reasons of brevity we omit the details.
The resulting algorithm, denoted by DP0, returns X and takes as in-
put the same arguments as does Algorithm 2.

If DP0 returns the empty set when s is set equal to an initial
number s0 of discretization points, we update s by a fixed factor
c and call DP0 again. The process is repeated until X – ; or
Dv ¼ PU

v�PL
v

s�1 < � for all v 2 V, where the threshold value � is an input
parameter.

The focus area around any selected solution p 2X is defined as
the Cartesian product of the intervals [lbv(p � D),ubv(p + D)],
where D 2 RV is the vector with components Dv(v 2 V). Hence,
the range of a variable in the child node covers at most two consec-
utive intervals between discretization points in the parent node.
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However, the improved bounds defined by (11) are likely to nar-
row down the range.

A summary of the approach is given in Algorithms 3 and 4.

Algorithm 3. adaptiveDiscretization ðJ;G; pL; pU ; �;r; s0; cÞ

(X,s) findFeasibleSolutionsðJ;G; pL; pU ; �;r; s0; cÞ
z 1
if X – ; then

z min
P
ðu;vÞ2Aguvðxuv ; pu; pv Þ : p 2 X

n o
Let X

0
# X consist of the drjXje solutions

in X with smallest cost
D 1

s�1 ðP
U � PLÞ

for all p 2X0 do
z ¼ minfz; adaptiveDiscretization
ðJ;G; lbðpL � DÞ;ubðpU þ DÞ; �;r; s0; cÞg
Algorithm 4. findFeasibleSolutionsðJ;G; pL; pU ; �;r; s0; cÞ

s s0

repeat
X DP0(pL,pU,s)
s dcse

until X – ; or pU
v�pL

v
s�1 < � 8v 2 V

return (X,s)
6. Numerical experiments

6.1. Overview of the experiments

In the first experiment, we examine the performance of the dy-
namic programming approach when the number of discretization
points is kept fixed. We let s 2 {50,100,1000}, and let the pressure
values be uniformly distributed between their lower and upper
bounds. The purpose of the experiment is to study the impact of
s on the quality of the solution and the running time.

In the second experiment, we analyze the performance of the
adaptive discretization approach, and compare it to fixed discreti-
zation. The idea behind the experiment is to investigate whether
adaptive discretization produces solutions comparable to those of
fixed discretization in less computer time.

The third experiment is a similar comparison between the dy-
namic programming approaches and the commercially available
local optimizer, MINOS (Murtaugh & Saunders, 1983). Since the lo-
cal optimum output by MINOS, if any, turns out to be sensitive to
the starting point, we run MINOS for 500 and 1000 randomly gen-
erated starting points. The points are drawn from the uniform dis-
tribution on [pL,pU].
The fourth experiment is a comparison between the solutions
produced by our methods to (a lower bound on) the true minimum
cost. We submit FCMP’ to the generic global optimization tool,
BARON (Tawarmalani & Sahinidis, 2004), which is an implementa-
tion of a variant of branch-and-bound where a convex program is
solved in each node of the search tree. To solve the convex sub-
problems, BARON is set to call MINOS. We impose a time limit of
3600 CPU-seconds on each application of BARON, and the relative
optimality tolerance be 0.01. That is, any feasible solution is con-
sidered to be optimal if the gap between the objective function va-
lue and its lower bound is below one percent of the objective
function value. In instances where BARON fails to compute the glo-
bal optimum, it may still provide a lower bound on the minimum
cost, and this bound may also give some indications on the quality
of the output from our methods.

Our solution procedures were coded in C++ under Linux Red
Hat, and all experiments were run on a 2.4 GHz Intel(R) processor
with 2 GByte RAM. To compute the tree decomposition J to be in-
put to the dynamic programming algorithms, we apply the tech-
nique given by Subbarayan (2007) based on Maximum Cardinality
Search (Tarjan & Yannakakis, 1984). Experiments with BARON
and MINOS were conducted by formulating the model in GAMS
(GAMS Development Corporation, 2008), and we have used version
8.1.5 of BARON and version 5.51 of MINOS.
6.2. Test instances

All experiments reported in this work were carried out on the
set of test instances shown in Table 1. Each row gives an identifier
of an instance, the size in terms of nodes and arcs in G after reduc-
tion, and the type of compressor used. We consider nine different
compressor types, and all compressors are identical within any gi-
ven instance. Furthermore, the width and the number of bags in
the tree decomposition are given in the two last columns of Table
1.

All test instances can be downloaded in GAMS-format at http://
www.ii.uib.no/�conrado/caie/instances/index.html.
6.3. Results

Table 2 shows the results achieved by fixed discretization for
three different values of s. Instance references are given in the first
column, and computation times (CPU-seconds) and objective func-
tion values for the respective values of s are given in columns 2–7.
The only case where the method failed to find a feasible solution
was for s = 50 in instance K. We observe that as s increases, better
solutions are found (minimum cost decreases) in all instances, ex-
cept from a cost increase from s = 50 to s = 100 in instances O and
P. Nevertheless, a finer discretization also implies, as expected, that

http://www.ii.uib.no/~conrado/caie/instances/index.html
http://www.ii.uib.no/~conrado/caie/instances/index.html
http://www.ii.uib.no/~conrado/caie/instances/index.html


Table 2
Performance of dynamic programming with fixed discretization.

Ref s = 50 s = 100 s = 1000

CPU
(secs)

Obj
(�106)

CPU
(secs)

Obj
(�106)

CPU
(secs)

Obj
(�106)

A 0 1.12 0 0.77 1 0.75
B 0 2.63 0 2.62 2 2.62
B1 0 2.83 0 2.63 138 2.61
B2 0 3.30 0 2.98 138 2.84
B3 0 2.17 0 2.08 132 1.83
C 1 10.29 16 9.34 1935 8.93
D 0 7.45 11 7.34 1047 7.34
E 1 9.66 22 6.36 1082 5.29
F 2 6.87 30 5.69 1845 4.12
G 1 9.43 10 6.30 817 6.30
H 1 6.34 13 5.93 692 5.09
I 1 2.83 10 2.82 529 2.77
J 1 6.07 13 5.59 842 5.27
K 1 – 9 35.67 772 35.67
L 3 68.89 50 61.83 2987 61.73
M 3 89.68 40 74.80 2715 60.74
N 2 60.71 34 52.46 2554 46.00
O 6 63.03 180 63.38 3422 38.80
P 1 35.25 23 37.67 2417 26.54
Q 3 23.31 80 21.32 3015 15.15
R 5 24.02 149 22.78 3310 20.10
S 15 72.01 482 69.59 3662 65.51

Table 4
Performance of MINOS.

Ref 500 Starting points 1000 Starting points RI
(%)

CPU
(secs)

Feas
(%)

Obj
(�106)

CPU
(secs)

Feas
(%)

Obj
(�106)

A 30 59.2 0.75 64 59.4 0.75 0.0
B 59 100.0 2.63 115 99.8 2.62 0.4
B1 21 37.4 2.62 55 37.7 2.62 0.0
B2 26 22.2 2.83 57 24.3 2.83 0.0
B3 18 20.4 1.82 52 22.3 1.82 0.0
C 29 7.4 9.09 66 7.8 9.03 0.7
D 31 19.6 7.36 88 20.4 7.36 0.0
E 36 31.2 6.02 68 29.0 6.01 0.2
F 53 23.8 4.21 117 23.2 4.15 1.4
G 20 0.0 – 61 0.0 – –
H 54 39.2 5.45 129 40.7 5.45 0.0
I 52 0.0 – 124 0.0 – –
J 49 50.0 6.14 110 49.3 5.98 2.6
K 65 0.0 – 120 0.0 – –
L 125 2.8 68.09 241 2.5 68.09 0.0
M 19 0.0 – 36 0.0 – –
N 58 0.0 – 124 0.0 – –
O 52 1.0 39.22 139 0.7 39.22 0.0
P 37 0.0 – 75 0.0 – –
Q 147 0.0 – 365 0.0 – –
R 102 0.0 – 238 0.0 – –
S 57 0.0 – 116 0.0 – –

Table 1
Test instances.

Ref Size Type J

jV0 j A0c
�� �� Width jIj

A 3 3 3 3 1
B 3 3 4 3 1
B1 3 3 5 3 1
B2 3 3 6 3 1
B3 3 3 8 3 1
C 4 6 1 3 3
D 4 6 2 3 4
E 4 6 3 3 5
F 4 6 4 3 4
G 4 6 5 3 4
H 4 6 6 3 3
I 4 6 7 3 4
J 5 8 4 3 6
K 5 8 8 3 4
L 9 20 4 4 9
M 9 20 5 4 9
N 18 25 2 4 15
O 18 25 4 4 15
P 18 25 9 3 18
Q 8 10 4 3 6
R 8 10 6 3 6
S 17 23 6 4 8

Table 3
Performance of dynamic programming with adaptive discretization.

Ref CPU (secs) Calls to DP0 Obj (�106)

A 1 395 0.75
B 1 117 2.62
B1 0 267 2.60
B2 0 12 2.83
B3 0 11 1.82
C 1 429 7.79
D 2 16 7.35
E 1 263 5.29
F 11 852 3.94
G 1 239 5.87
H 4 319 5.17
I 4 558 2.76
J 2 122 5.18
K 2 204 31.32
L 35 210 63.14
M 16 212 54.64
N 26 631 38.09
O 31 596 29.55
P 44 547 24.34
Q 13 438 14.58
R 17 1631 15.96
S 60 815 62.46
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the computational requirements increase, and the running time
slightly exceeds one CPU-hour in one instance (S).

Table 3 shows the results achieved by dynamic programming
and adaptive discretization. In these runs, we have used the
parameter values (see Section 5) s0 = 3, c = 1.5, r = 0.05 and
� = 0.001. Instance references are given in the first column, and
computation time (CPU-seconds), number of calls to DP

0
in Algo-

rithm 4, and objective function values for the corresponding test
instance are given in columns 2–4. We observe that the running
time slightly exceeds 30 CPU-seconds in the most time-consuming
instance (S).

Table 4 shows corresponding results from MINOS. Columns 2–4
give respectively the CPU-time, percentage of the 500 starting
points by which MINOS found a feasible solution, and the cost of
the best feasible solution found. Columns 5–8 give corresponding
results for 1000 starting points. We observe that MINOS fails to
find a feasible solution in 9 instances, and in the other instances
(except A and B), it does so for at least 50% of the starting points.
On the other hand, the solver is fast, and a relatively large number
of starting points is affordable.

Tables 5 and 6 give a comparison between MINOS (with 1000
starting points) and dynamic programming with the two discreti-
zation techniques. In Table 5, we summarize and compare running
times, while costs are compared in Table 6.

First, we observe from Table 5 that adaptive discretization is
much faster than fixed discretization, although the latter requires
only one call to the DP-algorithm. The larger number of calls to
DP

0
reported in Table 3, seems to be more than compensated for



Table 6
Dynamic programming vs. MINOS: cost.

Ref Cost (�106) Adaptive vs. (RI%)

MINOSa Fixedb Adaptive MINOSa Fixedb

A 0.75 0.75 0.75 0.0 0.0
B 2.62 2.62 2.62 0.0 0.0
B1 2.62 2.61 2.60 0.8 0.4
B2 2.83 2.84 2.83 0.0 0.4
B3 1.82 1.83 1.82 0.0 0.5
C 9.03 8.93 7.79 13.7 12.8
D 7.36 7.34 7.35 0.1 -0.1
E 6.01 5.29 5.29 12.0 0.0
F 4.15 4.12 3.94 5.1 4.4
G – 6.30 5.87 – 6.8
H 5.45 5.09 5.17 5.1 -1.6
I – 2.77 2.76 – 0.4
J 5.98 5.27 5.18 13.4 1.7
K – 35.67 31.32 – 12.2
L 68.09 61.73 63.14 7.3 -2.3
M – 60.74 54.64 – 10.0
N – 46.00 38.09 – 17.2
O 39.22 38.80 29.55 24.7 23.8
P – 26.54 24.34 – 8.3
Q – 15.15 14.48 – 4.4
R – 20.10 15.96 – 20.6
S – 65.51 62.46 – 4.7

a With 1000 starting points.
b With s = 1000.

Table 7
Adaptive discretization vs. a global optimizer.

Ref Performance of BARON Adaptive discretization

#Its #Nodes Obj LB Obj RI(%) GAP(%)

A 551 131 0.75 0.75 0.75 0.0 0.0
B 1148 342 2.62 2.62 2.62 0.0 0.0
B1 47 5 2.62 2.59 2.60 0.4 0.8
B2 125 11 2.83 2.81 2.83 0.0 0.0
B3 37 5 1.82 1.80 1.82 0.0 0.0
C 21521 7462 9.02 4.45 7.79 13.6 42.9
D 445 38 7.35 7.28 7.35 0.0 1.0
E 17059 7023 5.30 4.02 5.29 0.2 24.0
F 26765 7480 3.94 2.71 3.94 0.0 31.2
G 5231 1283 – 2.27 5.87 – 61.3
H 2109 204 5.19 5.04 5.17 0.4 2.5
I 3267 324 – 2.73 2.76 – 1.1
J 27832 2299 5.15 5.10 5.18 �0.6 1.5
K 14968 3344 – 20.86 31.32 – 33.4
L 740 451 65.94 43.81 63.14 4.2 30.6
M 2438 765 – 31.12 54.64 – 43.0
N 1830 839 – 34.28 38.09 – 10.0
O 234 59 – 22.13 29.55 – 25.1
P 978 655 – 17.43 24.34 – 28.4
Q 330 212 17.43 12.82 14.58 16.9 11.5
R 1182 468 15.94 13.09 15.96 �0.1 18.0
S 3123 632 59.39 44.17 62.46 �5.2 29.3

Table 5
Dynamic programming vs. MINOS: CPU-time.

Ref MINOS Discretization

500 Iters 1000 Iters Fixeda Adaptive

A 30 64 1 1
B 59 115 2 1
B1 21 55 138 0
B2 26 57 138 0
B3 18 52 132 0
C 29 66 1935 1
D 31 88 1047 2
E 36 68 1082 1
F 53 117 1845 11
G 20 61 817 1
H 54 129 692 4
I 52 124 529 4
J 49 110 842 2
K 65 120 772 2
L 125 241 2987 35
M 19 36 2715 16
N 58 124 2554 26
O 52 139 3422 31
P 37 75 2417 44
Q 147 365 3015 13
R 102 238 3310 17
S 57 116 3662 60

a With s = 1000.
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by the smaller number of discretization points. Second, Table 6
shows that in all instances but D, H and L, where fixed discretiza-
tion gives up to 2.3% lower cost, the faster approach gives solutions
of equal or better quality.

Also when compared to MINOS, the adaptive discretization ap-
proach turns out to be superior. Applying MINOS with a single ran-
dom starting point is certainly faster, but this involves a
considerable risk of failing to find a feasible solution. When the
number of random starting points is increased such that the total
running time of MINOS exceeds the one of adaptive discretization,
the total cost of the best MINOS solution is in general higher than
the cost of the solution produced by its competitor. The relative
improvement of adaptive discretization when compared to MINOS
and fixed discretization, respectively, is given in columns 5–6 of
Table 6.

Table 7 shows the performance of BARON when applied to the
test instances. In addition, we compare the adaptive discretization
approach to the best results obtained by BARON in terms of the
quality of the solution. Columns 2–5 contain the number of itera-
tions in BARON (the number of convex subproblems solved), the
maximum number of open nodes the search tree ever had, the
objective function value of the best feasible solution found (if
any), and the lower bound on the minimum cost. For more conve-
nient comparison, we give the cost obtained by adaptive discreti-
zation in column 6 (identical to column 3 in Table 3), and in the
7th column, we give whenever applicable the relative improve-
ment (in percentages) of these solutions over the best BARON
solutions.

As seen in Table 7, in 15 out of 22 instances, BARON was able to
find a feasible solution, and in two instances (A and B), it was able
to prove optimality within the given tolerance. In the remaining in-
stances, no feasible solution was found before the time limit ex-
pired. By comparing columns 5 and 6, we also observe that the
relative optimality gap (relative distance from minimum cost) of
adaptive discretization in one instance (G) may be as large as
61.3%. In the instances where BARON found a feasible solution,
the largest gap is 42.9% (instance C).

Column 7 of Table 7 shows that BARON is able to find a better
solution than does our method in instances J, R and S. However,
extensive computations were needed to find these solutions. The
last column of the table gives the relative distance from the lower
bound on optimality provided by BARON. In nine of the instances,
we are less then 3% from the minimum cost, but in some instances,
the optimality gap is large (as large as 61.3% in instance G). It is
however unknown whether this is due to weak lower bounds or
shortcomings of our algorithm.

7. Concluding remarks

In this paper, we have studied a model (FCMP) for minimizing
compressor fuel cost in transmission networks for natural gas. An
arc in the network model corresponds to either a pipe or a com-
pressor, and the decision variables are arc flow and node pressure.
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In addition to flow conservation constraints, the model contains
non-linear constraints relating pipeline flow to inlet and outlet
pressure, as well as non-convex constraints defining the operation
domain of the compressors.

Following a general algorithmic idea, which has been suggested
and supported experimentally in several recent works, we consider
a procedure where each iteration consists of a flow improvement
step and a pressure optimization step. Alternating between flow
and pressure, one set of decision variables is kept fixed in each
step. Still in agreement with previously suggested methods, the
non-convex subproblem of optimizing pressure is approximated
by a combinatorial one. This is accomplished by discretization of
the pressure variables.

The contribution of this paper is a method for solving the dis-
crete version of the problem in instances where previously sug-
gested methods fail. Unlike methods based on successive
network reductions, our method does not make any assumptions
concerning the sparsity of the network. By constructing a tree
decomposition of the network, and apply dynamic programming
to it, we are able to solve the discrete version of the pressure opti-
mization problem without enumerating the whole solution space.
By an adaptive discretization scheme, we obtain significant speed-
up of the dynamic programming approach in comparison with
fixed discretization.

We have tested our solution methods on a set of imaginary in-
stances, and compared the results to those obtained by applying
both a global and a local optimizer to the continuous version of
the problem. The experiments indicate that a method guaranteeing
the global optimum in reasonable time seems unrealistic even for
small instances. Further, discretizing the pressure variables and
applying dynamic programming to a tree decomposition gives bet-
ter results than applying a commercially available local optimiza-
tion package.

Non-convex continuous optimization problems can in general
be approached by discretization of the variable space, and in many
cases, the resulting discrete problem can be solved by dynamic
programming. The challenge of finding the ideal balance between
accuracy in the discrete model and speed of the DP-algorithm is
however hardly avoidable by the approach. We therefore believe
that the adaptive discretization scheme developed in this paper
may have merit beyond the specific application in gas transmission
networks studied here.
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