

*This research has been partially supported by the Ministry of Science and Technology of Spain under the research
project ECO2008-00667/ECON, in part financed by the European Regional Development Fund (ERDF).

 Working Paper Series

A Guided Reactive GRASP for the
Capacitated Multi-Source Weber
Problem*

Martino Luis
College of Business, Universiti Utara
Malaysia,

Said Salhi
Kent Business School

Gabor Nagy
Kent Business School

*This research has been partially supported by the Ministry of Science and Technology of Spain
under the research project ECO2008-00667/ECON, in part financed by the European Regional
Development Fund (ERDF).

Working Paper No. 236
December 2010

ISSN 1748-7595 (Online)

2

A Guided Reactive GRASP for the Capacitated
Multi-Source Weber Problem*

Martino Luisa, Said Salhib and Gábor Nagyb

aCollege of Business, Universiti Utara Malaysia,
06010 UUM Sintok, Kedah Darul Aman, Malaysia,

Email: martino@uum.edu.my

bThe Centre for Logistics & Heuristic Optimisation, Kent Business School,
University of Kent at Canterbury, Canterbury CT2 7PE, UK

Email: {S.Salhi, G.Nagy}@kent.ac.uk

Abstract

The capacitated multi-source Weber problem entails finding both the locations of capacitated

facilities on a plane and their customer allocations. A framework that uses adaptive learning and

functional representation to construct the restricted candidate list (RCL) within a greedy

randomized adaptive search procedure (GRASP) is put forward. An implementation of restricted

regions that forbids new facilities to be located too close to the previously found facilities is also

embedded into the search to build up the RCL more efficiently. The performance of this GRASP

based approach is tested on three classes of instances with constant and variable capacities. Very

competitive results are obtained when compared to the best known results from the literature.

Keywords: Reactive GRASP, learning, continuous location, capacitated location, restricted regions.

1. Introduction
In this study, we are given a set of customers, located at n fixed points, with their respective

demands, and we are required to locate M facilities in the plane to serve these n customers, and to

find the allocation of these customers to these M facilities without violating the capacity of any of

the facilities. It is usually assumed that all facilities have the same given capacity b. However, we

will also look at the case where the facilities may take different capacities, see section 6. The

3

objective is to minimize the sum of the weighted Euclidean distances. This capacitated continuous

location-allocation problem is also known as the capacitated multi-source Weber problem (CMSWP)

and can be formulated as follows:

1 1

(,)
M n

ij i j
i j

Minimize x d X a
= =
∑∑ (1)

Subject to

∑
=

=
M

i
jij wx

1
, j = 1, …, n (2)

1

n

ij
j

x b
=

≤∑ , i = 1, … M (3)

Xi = 1 2(,)i iX X ∈ ℜ2 ; 0≥ijx , i = 1, … , M; j = 1,…, n (4)

where

M : an upper bound on the number of facilities to be located;

xij : the quantity assigned from facility i to customer j, i = 1, … M; j = 1, …, n;

d(Xi, aj) : the distance between facility i and customer j;

aj = 1 2(,)j ja a ∈ ℜ2 is the given location of customer j;

Xi = 1 2(,)i iX X ∈ ℜ2 are the coordinates of facility i;

wj : the demand, or weight, of customer j, where wj ∈ n;

b : a fixed capacity of a facility.

The objective function (1) is to minimize the sum of the transportation costs. Constraints (2)

guarantee that the total demand of each customer is satisfied. Constraints (3) ensure that the

capacity constraints of the facilities are not exceeded, and constraints (4) refer to the continuous

location variables as well as the non-negativity of the allocation variables. Note that once the M

facilities are located, the problem reduces to the classical Transportation Problem (TP). We

consider the problem to have at least one feasible solution by assuming that
1

n

j
j

w Mb
=

≤∑ . The

case when there is a number of capacities available from which one chooses the sizes of the

facilities will be briefly described in Section 6.

The optimal solution of this continuous location problem could be infeasible in practice as the

locations could be on lakes, mountains, etc. Nonetheless there are applications for the MSWP such

as the location of oil drills in the sea or the desert. For instance, Rosing (1992) finds the location of

4

steam generators in the Orinoco heavy oil belt of Venezuela by solving the MSWP. Furthermore, a

solution of this problem could also be used as a lower bound for the discrete problem (see Daskin,

2008), as a way of identifying additional potential sites in the neighbourhood of these continuous

locations, or it can simply be transformed into a feasible solution that requires the presence of

barriers for example see Canbolat and Wesolowsky (2010). The problem is NP hard as it can be

transformed into either of the following problems. The first is the Multi-source Weber problem,

shown to be NP hard by Megiddo and Supowit (1984), which can be obtained by relaxing the

capacity constraints (3). The second is the capacitated discrete location problem, also known to be

NP hard (see Mirchandani and Francis (1990)), which can be derived by restricting the continuous

space to the discrete space of the potential sites only.

The remainder of this paper is organized as follows: in the next section we present a review

of the relevant literature. The following two sections thereafter address our general framework of

the GRASP heuristic. Section 6 describes the case when there are several capacities available to

choose from, followed by a section on computational experiments. Finally, the last section

summarizes our conclusions and outlines some research avenues that we believe to be worthwhile

investigating in the future.

2. Literature Review
Most of the literature on the continuous location problem focuses on the (uncapacitated)

multi-source Weber problem (MSWP). The solution approaches for this problem are mainly

heuristic. Hansen et al. (1998) tackle the MSWP by solving the p-median problem exactly while

considering all fixed points as potential facility sites and then apply the Weiszfeld equations to

derive the continuous location. Brimberg et al. (2000) carry out a comparison of heuristics

including those based on variable neighbourhood search and genetic algorithms. Gamal and Salhi

(2001) present a constructive heuristic based on the furthest distance rule to find initial locations

while introducing forbidden regions to avoid locations being too close to each other. Gamal and

Salhi (2003) create a discretisation-based approach known as a cellular heuristic whereas Salhi and

Gamal (2003) adopt a genetic algorithm to solve the problem. Taillard (2003) proposes a

decomposition/recombination heuristic that partitions the problem into smaller subproblems which

are then solved by a candidate list search for a large number of centres. Aras et al. (2006) tackle the

MSWP using self-organizing maps for both Euclidean and rectilinear distances. A variant of this

problem is the constrained Weber problem which is also known as the Weber problem in the

5

Presence of Forbidden Regions and/or Barriers to Travel. This was originally investigated by Katz

and Cooper (1981) but recent studies on this particular topic can be found in Bischoff and Klamroth

(2007), and Canbolat and Wesolowsky (2010) where interesting analytical results were derived. For

more details and references on the MSWP the reader is referred to the comprehensive survey by

Brimberg et al. (2008).

There is however a shortage of papers on the capacitated version of the MSWP (CMSWP for

short). The earliest work in this area was conducted by Cooper (1972) who develops exact and

heuristic methods. In the exact method, the idea is to generate all feasible basic solutions using the

transportation problem. Starting with any feasible basic solution, the connected graph of all basic

feasible solutions is constructed. For every solution, the location problem is solved and the solution

which yields the minimum cost is chosen as the optimal solution. In the heuristic method, the

alternating transportation-location heuristic known for short as ATL was proposed. Fundamentally,

ATL is a modification of the heuristic method originally developed by Cooper (1964) for the pure

location-allocation problem known as the alternate location-allocation method. The idea of ATL is

that the location-allocation problem and the transportation problem (TP) are alternately solved until

the improvement in the total cost becomes negligible. Cooper (1976) modifies his heuristic method

(Cooper, 1975) initially used for the fixed charge problem. Sherali and Shetty (1977) solve the

rectilinear distance CMSWP using an exact method known as a convergent cutting plane algorithm.

This was originally derived from a bilinear programming problem by substituting decision variables

by the difference of two non-negative variables.

It is only in 1992 that the problem was revisited by Sherali and Tuncbilek (1992). Their

problem version, which uses a distance proportional to the square of the Euclidean, is transformed

into a quadratic convex maximization problem. The authors propose an exact method based on a

branch and bound algorithm to compute strong upper bounds via a Lagrangean relaxation scheme

and a partitioning approach based on dichotomy that adopts a special structure of transportation

constraints. Experiments were conducted using randomly generated data with the number of

facilities (M) vary from 5 to 20. Sherali et al. (1994) formulate the rectilinear distance CMSWP as a

mixed integer nonlinear programming formulation and proposed a reformulation-linearization

technique (RLT) to transform the problem into a linear mixed-integer program. Gong et al. (1997)

put forward a hybrid evolutionary method based on a genetic algorithm to search the locatable area

and hence find the global or near global locations. In the allocation stage, a Lagrange relaxation

method was applied. Experiments were carried out on randomly generated data with the number of

6

facilities (M) varying from 2 to 6. Sherali et al. (2002) design a branch and bound approach based

on a partitioning of the allocation space to develop global optimization procedures for the

capacitated Euclidean and lp distances MSWP. Two bounding schemes were also put forward based

on solving a projected location space subproblem and a variant of RLT that reformulated the

problem into a linear programming relaxation. Aras et al. (2007a) propose three heuristic methods

that use Lagrangean heuristic, the discrete p-capacitated facility location heuristic which is similar

to the p-median method of Hansen et al. (1998), and the cellular heuristic of Gamal and Salhi (2003)

to deal with the CMSWP with Euclidean, squared Euclidean, and lp distances. In a subsequent

research, Aras et al. (2008) adopt their earlier approaches to solve the CMSWP with rectilinear

distance. Aras et al. (2007b) tackle the CMSWP with rectilinear, Euclidean, squared Euclidean, and

lp distances by adopting simulated annealing, threshold accepting, and genetic algorithms. These

heuristics perform well when tested on the Sherali et al. (2002) data sets which are small sized

instances (n ≤ 30) where the capacity of the facilities is not necessarily constant. Zainuddin and

Salhi (2007) present a perturbation-based heuristic for solving the Euclidean CMSWP. This

heuristic outperformed the classical ATL when tested on large instances (n = 50 to 1060 and M =5

to 50) with facilities having equal capacity. Very recently, Luis et al. (2009) tackle the CMSWP by

introducing the concept of region-rejection that restricts choosing areas which are too close to the

previously selected locations. A discretisation technique of converting a plane into a discrete space

is also presented. Competitive results are obtained when tested on previously published results.

3. Solution Framework
Our proposed solution method is based on Cooper’s Alternating Transportation-Location

Heuristic (see Cooper, 1972) which is integrated into a GRASP framework.

3.1. Cooper’s Alternating Transportation-Location Heuristic

Initially, M open facilities are chosen from the customer points (fixed points), then the TP,

using these M open facilities, is solved. The output is the M independent set of allocations, each

subset consisting of ni fixed points where i = 1, 2, …, M and ∑
=

≥
M

i
i nn

1
. Note that we used ‘≥’

instead of ‘=’ as some customers may have their demand split between different facilities during the

allocation stage. An iterative procedure based on the Weiszfeld equations, as given in Equation (5),

is then applied to find the new location of each of the M facilities (i = 1, 2, …, M) .

7

∑

∑

=
−

=
−

=
i

i i

i

i

i i

ii

k

n

j j
k

i

j

n

j j
k

i

jj

i

aXd
w

aXd
aw

X

1
)1(

1
)1(

1

1

),(

),()(

 and

∑

∑

=
−

=
−

=
i

i i

i

i

i i

ii

k

n

j j
k

i

j

n

j j
k

i

jj

i

aXd
w

aXd
aw

X

1
)1(

1
)1(

2

2

),(

),()(

 (5)

where

the superscript k is the iteration number within the Weiszfeld iterative procedure;
1 2(,)

i ij ja a represents the location of the ji
th fixed points where ji = 1, 2, …, ni;

() ()1 2(,)
k k

i iX X denotes the new location of the ith facility at iteration k (i = 1, 2, …, M) and

ij
w corresponds to all or a fraction of the jth customer demand that is served by facility i.

In other words, the demand of some customers might have been split as a result of the

solution of the TP (i.e., jj ww
i
≤). Note that some customers may be utilized more than once in

Equation (5) but at each time a portion
ij

w of their demand is used only. The process of alternating

between the location-allocation problem and the transportation problem is then applied until no

improvement in total cost can be found. Figure 1, which is used as a basis for our research, shows

the main steps of Cooper’s Alternating Transportation-Location Heuristic.

Step 1 Find the initial facility configuration, say 1,..,()i i MX = and set a threshold value
(tolerance) 0.001ε =

Step 2 Solve the TP using the initial facility configuration 1,..,()i i MX = to obtain the allocation

for the capacitated problem. Let old
iA be the set of customers served by facility i

and set the total cost
1

(,)
old
i

M

i j
i j A

TCOST d X a
= ∈

=∑ ∑

Step 3 Find the new location 1,..,()new
i i MX = using Equation (5) starting from 1,..,()i i MX = .

Step 4 Solve the TP using the new locations 1,..,()new
i i MX = to find the new corresponding

allocation new
iA and its total cost

1

(,)
new
i

M
new

i j
i j A

TCOST d X a
= ∈

=∑ ∑ .

Step 5 If | |newTCOST TCOST ε− ≤ stop and choose the best facility configuration as
*

1,..,()new
i i i MX X == and the least cost as * newTCOST TCOST= ,

 Else set 1,..,()i i MX = = 1,..,()new
i i MX = , newTCOST TCOST= and go to step 3.

Figure 1. Cooper’s Alternating Transportation-Location Heuristic (ATL)

In Step 1 of Figure 1, Cooper (1972) selects locations randomly from customer locations as

the initial facility configuration. In this study, we propose instead a novel reactive GRASP heuristic

8

where we adopt the strengths of this approach in the construction of the initial solution while the

local search we use is the standard application of the Weiszfeld equations as given in (5). This local

search is an iterative pure descent method which can be shown to yield (or converge to) a local

minimum. Though each facility, within its subset of assigned customers, converges to its global

minimum through Equation (5) as proved by Kuhn (1973) for the case of the Euclidean distance,

the overall solution concerning the location of all the facilities which is obtained by Cooper’s ALT

heuristic (see Figure 1), can be guaranteed to be a local minimum only. This theoretical

convergence result is generalised for other distances as proved by Brimberg and Love (1993). Some

may argue that this descent method namely the ATL of Figure 1, which happens to be appropriate

for the continuous case, is not a standard local search which is usually and specifically defined by

its move, its neighbourhood and its function evaluation. Of course one can follow these three steps

by constructing a circle centred at each facility location with an appropriate radius to act as the

neighbourhood with an infinite number of points, the move can be based on the generation of a

random point inside each of the circles to replace the existing facility and finally the evaluation

function is then just the computation of the new total distance between the generated points and

their corresponding assigned customers. Note that this way, though applicable for the discrete case,

is crude and inefficient for the continuous space as the ATL as described in Figure 1 is known to be

an efficient iterative approach in producing a local minimum. Obviously one may also opt to

improve this initial solution in the discrete space first through one of the standard local searches,

say by defining a move such as exchanging customers between facilities, opening a new facility and

dropping an existing one, etc. The obtained solution, which happens to be a solution for the p-

median problem, can be used as the initial solution in the ATL procedure of Figure1 to yield a

better location in the continuous space. Note that in Figure 1, the quality of the local solution is

constrained by a certain tolerance specified by the user in Step 5 (here we set 0.001ε =). Schemes

on how to obtain such initial solutions are presented in subsequent sections following a short

description of the GRASP meta-heuristic.

3.2. A Brief Outline of GRASP

Greedy randomized adaptive search procedure (GRASP for short) is a two phase meta-

heuristic method based on a multi-start randomized search technique to solve hard combinatorial

optimisation problems. GRASP was initially studied by Hart and Shogan (1987) and then by Feo

and Resende (1989) as a semi greedy heuristic. It was then formally introduced by Feo and Resende

9

(1995). Comprehensive reviews including some applications on this topic are given by Pitsoulis and

Resende (2002), and Resende and Ribeiro (2003). For instance, an efficient implementation of

GRASP for the case of the single source capacitated location problem is given by Delmaire et al.

(1999). Recent related location problems that were investigated using GRASP methodology include

the capacitated clustering by Deng and Bard (2010) who integrate GRASP with path relinking and

the territory design problem by Rios-Mercado and Fernandez (2009) who put forward a powerful

reactive GRASP.

The first phase of GRASP is a construction phase where a feasible initial solution is built one

at a time. The construction of these feasible solutions is based on the creation of a restricted

candidate list (RCL) made up of good attributes (facilities) including those facilities of the

configuration that yields the best solution. From this set, one element is chosen one at a time either

randomly or following a certain selection rule until the full solution is completed. The second

phase is a standard local search used to explore the neighbourhood of the constructed solution in

order to find a better solution. The two phases are reiterated several times either independently or

using a certain learning scheme and the best overall local optimum is then selected as the final

result. The main steps of the basic GRASP, which are adopted for the case of the continuous

location problem, are given in Figure 2. For further reading and references, the reader will find the

paper by Resende and Ribeiro (2005) to be useful.

Step 0 Set MAXRUNS to the maximum number of runs and define the local search with its

corresponding neighbourhood(s) made up of an infinite number of points, say 2(.) MN ⊂ℜ with

M denoting the number of facilities, and its function evaluation F(.) representing the corresponding
total transportation cost.

Step 1 (Initial Phase): Produce an initial solution for the M discrete location problem, say curX using a

greedy-randomised procedure based on the RCL. Record the total transportation cost ()curF X . In

the first run set best curX X= and ()best curF F X= .

Step 2 (Improvement Phase/local search): Starting from curX , find the local minimum ' ()curX N X∈

using Steps 3-5 of Cooper’s ATL heuristic given in Figure 1.
Step 3 (Termination Phase): If (') ()bestF X F X< set (')bestF F X= and 'bestX X= .

 If the total number of runs reaches MAXRUNS the search stops, otherwise go to Step 1 to generate
another initial solution either randomly or adaptively.

Figure 2. A Basic GRASP for the capacitated multi-source Weber problem

10

In our study, Step 1 will be implemented as if the problem is a discrete capacitated location

problem with all customers acting as potential sites with M denoting the number of facilities to be

located. The local search (Step 2 of Figure 2) is carried out using the iterative procedure made up of

Steps 3 to 5 of Cooper’s ATL as given in Figure 1. In the uncapacitated case, such a local search

was shown to be promising in transforming a solution of a discrete location problem such as the p-

median problem (an initial solution) into a solution in the continuous space such as the multi-source

Weber problem (an improved solution) by Hansen et al. (1998) and Gamal and Salhi (2001).

In the remainder we will concentrate on exploring ways of defining the RCL and how to

select an attribute from this subset using concepts borrowed from adaptive search.

3.3. The Construction of the RCL

GRASP requires a greediness function for selecting the new attribute to be chosen. In this

study, we adopt an ADD procedure to be our greedy function. The idea behind the ADD heuristic is

to add facilities one at a time until a required number of facilities, say M facilities, has been reached.

Kuehn and Hamburger (1963) were among the first ones to adopt this scheme. For our local search

phase, we use the Weiszfeld equations to improve the initial solution. Local search can also be used

at the discrete stage before the Weiszfeld equations are applied to yield a continuous location

solution.

In our implementation of the ADD scheme, all customer locations are considered as potential

sites for being selected. The process of adding one facility at a time is carried out by adding

temporarily a facility and then reallocating the customers to their nearest open facility (depot). The

cost of the objective function is evaluated and the facility that yields the lowest cost is set as a

starting point to make up the RCL. Given the excessive number of combinations, to reduce the

computational burden, we consider a subset of customer locations only, say (S), instead of all

customer locations. In addition, we also relax the restriction on the capacity of the facilities at this

stage. The cardinality of this subset S is found empirically as follows:

 |S| = max{20,min(3 ,50)}M (6)

Let

E: the current set of the selected facility locations, initially E = {∅},

Ai: the set of customers served by facility i (i ∈ E).

COSTl : the incremental cost when facility l is temporarily added to E (l ∈ S) and is computed as

11

COSTl = ∑
∈Ei

iϑ , ∀l ∈ S with iϑ = (,)
i

i j
j A

d X a
∈
∑ (7)

The process of computing iϑ ∀i ∈ E, when facility l is temporarily added, is given as follow:

For i ∈ E-{l}

 For j ∈ Ai ,

 If (,)i jd X a > (,)l jd X a {set Ai = Ai - {j}; Al = Al ∪ {j}, iϑ = iϑ - (,)i jd X a and lϑ = lϑ + (,)l jd X a }

 Let g(l) = (COSTl) be the greedy function within GRASP used for the selection of the lth facility

and define gmax and gmin as the maximum and the minimum cost for the function g(l), l ∈ S.

There are two commonly used ways to build the RCL. The first one is based on the

cardinality of the set as given by Hart and Shogan (1987) and the other is a value based approach

where RCL is associated with a threshold parameter α as put forward by Feo and Resende (1989).

The former uses a rank of the best k elements whereas in the latter candidates that have their greedy

values, or cost, lying within α% of the best greedy function value, are chosen. In this research, we

combine both designs when constructing our RCL. In other words, the proposed RCL consists of all

elements l ∈ S that have a function g(l) value that lies between gmin (0α =) and gmax (1α =). This

can be defined as

 RCL = min min max min{ () ()}l S g g l g g gα∈ ≤ ≤ + − with [0,1]α ∈ (8)

If α = 0, the rule induced by (8) reduces to the greedy rule of selecting the element that produces

the smallest cost whereas if α =1, (8) acts as a pure random search (i.e., all the elements will be

candidates in RCL). The idea is to have a compromise between these two extremes while being

closer to α =0. In addition, if RCL as found by (8) happens to be too small (i.e., |RCL| < Lmin), we

relax the value of the parameter α by allowing the next (Lmin - |RCL|) sorted elements in S, with

respect to cost, to be added to the RCL. In this study we set Lmin = max(5,[/ 2])M .

3.4. Selection of the Initial Solution (Facility Configuration)

At each iteration of the selection of the new facility (i.e., 1 to M), the attributes from the RCL

(i.e., the potential facilities for being selected) are chosen pseudo-randomly based on their

respective incremental cost COSTl. This selection procedure is repeated until M distinct facilities

are generated.

A pseudo-code for the construction of the RCL and the selection of the facility configuration in

Step 1 of GRASP is summarized in Figure 3. The complexity of this mechanism is of the order

12

(2(())O n Log n . This is performed as the choice of each facility (there are M) requiring 2 log()S S

operations for computing ming and maxg for which the computation of the cost ()g l needs n operations

(n customers at most at each iteration). Overall this accounts to 2MnSLog(S) which reduces to
2(())O n Log n as M is a constant and S can go up to n in the worst case.

Figure 3. The construction of the RCL and the selection of the initial solution

4. Schemes for Generating α

In our first implementation of GRASP, we set the threshold parameter α to a predefined

value. We then select α for each GRASP iteration randomly from the uniform distribution, U[0,1],

and also following a functional-based scheme using a non-increasing linear function in the number

of iterations. To make the search more adaptive, a learning phase that finds the best value of the

parameter α and its appropriate range when used in the above schemes is also introduced. This

framework is summarized in Figure 4 with ‘bold lines’ representing the path we are following in

this paper. A description of these schemes is presented in the next subsections.

Step 0 Set E={∅ }, | | max(20,min(3 ,50))S M= , min max(5, / 2)L M= and]0,1[α ∈ .

Step 1 For all l S∈ compute COSTl. using Equation (7) and set () lg l COST= .

 Compute min (())l Sg Min g l∈= and max (())l Sg Max g l∈= and construct RCL using Equation (8).

Step 2 If |RCL| < Lmin sort the elements of S in ascending order of the cost and select the top
 |Lmin-|RCL|) elements to complement the RCL.
Step 3 Choose facility *l RCL∈ pseudo-randomly (based on cost) and set E = E ∪ {l*}.
Step 4 If |E| <M go to Step 1, else stop and take E as the set of facility configuration.

13

4.1 GRASP with Fixed α

The idea is to construct the RCL by using a fixed value of the threshold parameter α

throughout the search. This is usually determined from preliminary experiments when several

values are first tested and the most promising one is recorded. We refer to this GRASP

implementation as GFAP for short. In this study we set the value of α = 0.2. This figure was found

to produce generally better results based on Equation (8) and some preliminary experiments when

values of α = 0.1 to 0.9 with a step size of 0.1 were used.

Figure 4. The Framework of Generating the Threshold Parameter α

4.2 GRASP with Random α ∈ U[0, 1]

We aim to choose a new value for the parameter α in making up the RCL at each iteration as

pointed out by Resende and Ribeiro (2003), instead of keeping it fixed throughout. One way is to

generate randomly the value of α from the uniform distribution U[0,1] at each GRASP iteration.

We adopted this simple implementation in the construction of the RCL which we call GUAP for

short.

4.3 A Functional-based α

This subsection discusses a mechanism to define the threshold parameter α within GRASP

using a non-increasing function in the number of iterations. Here, we propose a decreasing linear

function. Note that other functions such as concave and convex functions were also attempted but

the results were found to be slightly inferior, see Luis (2008) for more details. This scheme starts by

14

setting α0 and αmin which correspond to the initial and the final value of α, respectively. In other

words, the value of α gradually decreases from α0 to αmin proportionally as follow:

αi = α0 – iφ with
M

min0 αα
φ

−
= for i= 1, …, M

In this approach, we set the value of α0 = 0.30 and αmin = 0.10. These values are based on our

preliminary experiments (see subsection 4.1) that showed that the best fixed value of α was found

to be 0.2 which we then used as a centre location for our small range. The algorithm which uses this

linear function is referred to as GALNP for short.

5. Guiding GRASP
In this section, we propose two approaches to guide GRASP and hence enhance its

implementation. The first is to incorporate information through learning from the past whereas the

second is to introduce some forbidden regions that are continuously constructed during the search to

guide the search.

5.1 Enhancing GRASP via a Learning Process

The idea is to learn through gathering information from the previous iterations which are then

used in subsequent iterations. As GALNP showed to outperform the other two variants (see Luis

(2008) for details), we have based our learning scheme on this variant only. The reasoning behind

this scheme is to find the range for α, (i.e., min 0[,]α α) after running GUAP 0K times, say a

proportion of the total number of runs (K). Subsequently, the obtained range for the parameter α is

then used to continue the execution of the remaining runs of the GALNP. Here, we used a range

size of 0.3 as this value was shown to provide good results in our preliminary testing. We

constructed ranges of the form [0.1 - 0.4], [0.2 - 0.5], ..., [0.6 - 0.9] leading to 6 overlapping ranges.

We recorded those results that are not too far away from the overall best and assigned their

respective α values to the corresponding ranges (some may be counted more than once). The range

which has the highest number of solutions is then chosen as our final range min 0[,]α α to be used for

the remaining (0K K−) runs. We refer to this scheme with learning as GALNPL for short and its

main steps are summarized in Figure 5.

15

Figure 5. Step by Step Description of the GALNPL Approach

5.2 Guiding GRASP via the Presence of Restricted Regions

The idea is to introduce additional information into the search using restricted regions. This

was originally and successfully implemented by Luis et al. (2009) to solve the CMSWP. Here, we

adopt this idea to guide the construction of the RCL. In other words, the RCL will only contain

promising elements which are outside the restricted regions at any given iteration of GRASP. We

briefly discuss this concept here. The idea is to build restricted regions around the previously

selected locations to avoid the new ones to be too close to the previous ones. A restricted region is

defined by a circle whose radius can be either a predefined value based on the sparsity of the

customers and the number of facilities or be dynamically adjusted using an iterative procedure. In

this study, we only adopt a dynamic radius as the authors already showed (see Luis et al., 2009) that

the latter yields better results. The RCL, formed as in Equation (8), is then reconstructed by

embedding these restricted regions. The condition of accepting or rejecting a candidate location, say

y, is defined as follows:

Step1 Run the GUAP approach for 0K runs (say / 2K where K refers to the maximum
 number of runs to be used),
 Record

01,...,()k k Kα = (i.e. α for the kth run), the corresponding facility configuration

0(1,...,)()k k Kσ = and cost

0(1,...,)()k k KCost = .
 Determine the least cost of these configurations as
 *

0(, 1,...,)kC Min Cost k K= =
Step 2 Set the range size as 0 0.3n = and construct the following ranges as follows [,]s sA B

with 0 1,...,6s sB A n s= + ∀ = ; 1 0.1A = and 6 0.9B = leading to 6 overlapping ranges
of width 0n each. Set the minimum number of solutions for which a range will be
appropriate for further selection as minN = max (2, min (0.05 0K , 5)) and set the
correction factor ϕ = 0.01.

Step 3 Compute the subset of facility configurations that pass the threshold as

0

*
(1,...,){() / (1)}k k K kG Cost Cσ ϕ== ≤ + and record their corresponding

01,...,()k k Kα = in

 the set
01,...,{() / }k k K k Gα σ=Γ = ∈ .

 If there are no new attributes in G (initially { }G = ∅), set ϕ = 2ϕ and repeat Step 3.
Step 4 In each range [,]s sA B ; 1,...,6s = determine the number of solutions from G, say sN .
Step 5 Choose the range * *[,]s sA B for which * (, 1,...,6)s sN Max N s= =
 If * minsN N≥ stop and select the corresponding range * *[,]s sA B as min 0[,]α α that will

be used in the remaining (K - 0K) runs in GALNP.
 Else set ϕ = 2ϕ and return to Step 3.

16

(,)i id y X r> , ∀Xi ∈ E (9)

Where E denotes the set of previously selected facilities, and ri is the radius of the circle whose

centre is the location Xi. For more details about the way the ri are defined and dynamically adjusted,

one can refer to Luis et al. (2009).

Candidate locations are therefore included in the RCL if and only if elements in Equation (8)

also satisfy Equation (9). As a result, the RCL with restricted regions, say LĈR , is defined as

LĈR = min min max minˆ{ () ()}il S g g l g g gα∈ ≤ ≤ + − (10)

where)(ˆ lg denotes the increment cost function when adding a facility l, l ∈ S, to the already

chosen locations while satisfying (9).

The algorithm GALNP with the introduction of region rejections (RR) is implemented with

and without learning which we refer to as GALNPRR and GALNPLRR for short respectively.

6. A simple adaptation to the case of several possible capacities

In certain situations, the capacity of a facility may not be fixed a priori and can take a set of

available capacities. Here we introduced a simple but quick procedure to assign or match facilities

to capacities. Every time the uncapacitated problem is solved, we record the total demand from each

of the configurations and then use Vogel’s Approximation method (VAM) (Bazaraa et al., 2005) to

find an approximate assignment. Here, the costs for each row and column are represented by the

absolute difference between the prospective supply and the total demand from each configuration.

Once this cost matrix is constructed, VAM is applied to assign or match the supply/capacity to a

facility. The process then continues as before. As some published results exist for small instances,

the results for this case will be provided in the next section under Class II instances and then

extended to large instances where no previous results exist in Class III instances. A mathematical

formulation for this related problem which is similar to the one shown in the introduction section is

given here as follows:

1 1

(,)
M n

ij i j
i j

Minimize x d X a
= =
∑∑ +

1 1

T M

k ik
k i

F z
= =
∑ ∑ (11)

Subject to

∑
=

=
M

i
jij wx

1
, j = 1, …, n (12)

1 1

n T

ij k ik
j k

x b z
= =

≤∑ ∑ , i = 1, … M (13)

17

1
1 1,...,

T

ik
k

z i M
=

= ∀ =∑ (14)

Xi = 1 2(,)i iX X ∈ ℜ2 ; 0≥ijx , {0,1}ikz ∈ i = 1, … , M; j = 1,…, n; k = 1,…, T (15)

where

bk: the kth possible capacity, k=1,..,T where T represents the number of possible capacities;

kF kM= with M a large positive penalty (this setting will guarantee that the use of the smallest

possible capacity in the optimal solution);

1ikz = if the kth capacity is used for facility i; i = 1, … M; k = 1, …, T; and 0 otherwise.

The remaining notations are the same as described earlier in the introduction section.

The objective function (11) includes the transportation cost and the fixed facility cost. Constraints

(12) show that every customer is fully served. Constraints (13) guarantee that one of the capacities

will be able to accommodate the total allocation from a given facility i, and constraints (14) impose

that there would be only one type of capacity used for each of the M facilities. Constraints (15)

relate to the real, non negative and binary nature of the variables used.

In the implementation of our heuristic, the second term of (11) is not implicitly incorporated as we

guarantee the use of the smallest capacity that is able to accommodate the total customer allocation

from each facility. In addition, if two or more facilities have the same capacity, we choose

randomly one of them.

7. Computational Results
The proposed methods were coded in C++, compiled with Salford FTN95 compiler, and run

on a PC with an Intel 1.5 GHz Pentium M processor and 1.3 GB RAM. We tested our approaches

on three classes of instances. In Class I, we adopted instances originally used for the MSWP

(Brimberg et al., 2000). In Class II, we used the instances designed by Al-Loughani (1997) and

Sherali et al. (2002). In Class III, we adapted Class I instances by incorporating various capacity

values. Based on our experiments, the number of runs, K, is defined as follows:

K =
3

max(100,5), 50

max(100,),

M n
otherwiseM n

≤⎧⎪
⎨
⎪⎩

 (16)

18

Also, within each run, the search terminates when there is no improvement (i.e., less than 0.0001)

between the costs of the solutions of two successive iterations. Here, we used the Euclidean

distance as the measure of distance.

Class I Instances

There are four sets of test data which contain 50, 287, 654, and 1060 fixed points,

respectively (see Brimberg et al., 2000). The proposed methods are implemented using the number

of open facilities (M) to be from 2 to 25 for the 50-fixed points and 5 to 50 with an increment of 5

for the other three data sets. The demand of all data sets is set to unity except the 287 fixed points.

As these data sets do not have a capacity of the facilities, we set the capacity of a facility to

be the average demand of all customers, i.e. ⎥
⎥

⎤
⎢
⎢

⎡
= ∑

=

Mwb
n

j
j

1

, where x⎡ ⎤⎢ ⎥ is the smallest integer

greater than or equal to x. This is also the setting used in Zainuddin and Salhi (2007) and Luis et al.

(2009) whose results will be used for comparison purposes. It is worth noting that there would be

cases where the total capacity of the facilities (i.e. Mb) would be larger than the total customer

demand (∑
=

n

j
jw

1
). In this situation, (i.e., if Mb >∑

=

n

j
jw

1
), a dummy customer with a 0 transportation

cost and a demand equals to ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−∑

=

n

j
jwMb

1

will be used. This dummy customer will only contribute

to the search at the transportation problem phase and will not be considered at either the location or

the allocation phases.

We take the solutions of the MSWP given by Brimberg et al. (2000) as ‘lower bounds’ for

the capacitated problem. These solutions are optimal for the 50 and 287 fixed points data sets and

the best known solutions for the others. Note that these ‘lower bounds’ may not be valid for the

larger problems where the optimal solutions are unknown but we consider these values as good

reference points. Therefore, for each instance the percentage deviation (Dev(%)) is calculated based

on these ‘lower bounds’ as follows:

(%) 100best LB

LB

F FDev
F
−

= × (16)

where Fbest is the best solution cost obtained by the proposed algorithms and FLB denotes the ‘lower

bound’ or ‘best’ cost for the uncapacitated problem. In addition, the overall average (OAV) over all

instances for each of the four test data is also recorded.

19

To our knowledge, the results of the heuristic of Zainuddin and Salhi, ZS for short, and of

Luis et al. (2009), LSN for short, are the only ones available for direct comparison for these

instances. The ATL results are not reported here as this original method was already outperformed

by ZS. As there is a large number of instances in this class (55 in total), we only provide the

summary results in Table 1. However, for further references and future benchmarking, we also give

the detailed results in Appendix A under Tables A1 to A4. The bold numbers in Table 1 indicate the

best deviation and the bold numbers in the brackets refer to the number of instances where a best

solution is found, including ties. Based on these empirical results, our proposed methods appeared

to outperform ZS with respect to both the solution quality and computing times.

Table 1. Comparison of Overall Average Results for Class I Instances

Data
Sets

ZS LSN GALNP
GALNPL

(GALNP with
learning)

Presence of Restricted Regions
GALNPRR

(no learning)
GALNPLRR

(with learning)
Dev
(%)

CPU
(secs)

Dev
(%)

CPU
(secs)

Dev
(%)

CPU
(secs)

Dev
(%)

CPU
(secs)

Dev
(%)

CPU
(secs)

Dev
(%)

CPU
(secs)

50
fixed
Points
(24)

10.2
[5] 4.0 7.52

[5] 1.2 7.52
[9] 15.9 7.41

[9] 16.1 6.50
[17] 23.7 6.47

[17] 24.2

287
fixed
Points
(10)

57.0
[4] 6601.8 56.91

[2] 104.7 56.91
[2] 994.4 56.91

[2] 1004.8 56.89
[7] 1055.8 56.89

[7] 1092.9

654
fixed
Points
(10)

59.2
[4] 4279.3 56.41

[6] 296.3 56.55
[9] 2925.8 56.50

[6] 2951.7 56.41
[10] 2956.9 56.40

[10] 3043.3

1060
fixed
Points
(10)

4.0
[4] 40625.5 3.99

[3] 1058.0 3.95
[6] 6637.6 3.95

[7] 6816.1 3.93
[6] 7097.0 3.92

[9] 7357.2

OAV 26.79 9540 25.06 27 25.08 1962 25.03 2002 24.60 2068 24.58 2139

Best [17] [16] [26] [24] [40] [43]
[o] : o instances for which a new best solution is found, including ties
(p) : total number of instances in that category
OAV: Overall average

For example, in the case of n = 50 customers, our methods reduce the overall average

deviation by 35% from ZS and by 13% from LSN. The low improvement (in %) in the larger

instances looks less convincing. The ZS heuristic was run on a Sun Enterprise workstation dual

processor at 300 MHz 450 running Solaris 2.6. This machine is approximately five times slower

than ours, according to Dongarra (2008). Taking into account the comparative speed of the

20

machines, our algorithms are found to be relatively much faster than ZS, except for the smallest

instances.

It is also observed that for M = 25 in the case of 50 fixed points, the deviation between the

‘lower bound’ and the total cost is very high approximately by 71%. This case exists because each

facility happens to serve only two customers and in some circumstances one of the customers is

forced to be served by a farther facility as the nearest facility cannot satisfy its demand. Though the

percentage deviation can in the larger instances, be particularly high when based on the ‘lower

bound’, in our view such information, still provides a clear and consistent reference point for

comparison purposes.

Class II Instances

There are 18 instances for which the number of customers varies between 2 and 30 and the

number of facilities from 2 to 10. Instances 1 – 12 are from Al-Loughani (1997) and instances 15 –

20 are from Sherali et al. (2002) who created these from instance 12. These instances differ from

Class I, being much smaller, but having different capacities. Sherali et al. (2002) found optimal

solutions to instances 1 – 8 and 15. For the remaining instances, their results are the best found so

far. We use these results as benchmarks. For completeness, we also report the heuristic solutions

from Aras et al. (2007 a, b) which are found using a PC with a 3.2 GHz Pentium IV processor and 2

GB RAM and a 1.7 GHz Pentium Centrino processor and 256 Mb RAM respectively. Our machine

is aproximately twice slower than a 3.2 GHz Pentium IV and has the same speed as the 1.7 GHz

Pentium Centrino (Dongarra, 2008).

Given that GALNPRR and GALNPLRR were the best performers when compared to our

other variants, for simplicity we record their solutions only. Note that instances 13 and 14 are not

considered here as these are also omitted from Aras et al. (2007 a, b) being not in that unpublished

thesis.

The comparison of all results is given in Table 2. The solutions of our proposed methods are

found to be very close to the optimal solutions. The overall average deviation found by GALNPRR

and GALNPLRR are 0.04% and 0.03% respectively. In addition, the computing times for our

heuristics are almost negligible (less than 0.01 second) and hence compete favourably against other

methods that used similar machine speed. In other words, our heuristics could be used, as shown in

Class I, to tackle larger instances without any computational handicaps when compared to the

others.

21

Though the p-median based approach in Aras et al. (2007a) appears to perform well while

using a small amount of computing time for small problems, for larger instances this may not be the

case as shown by Luis et al. (2009). The main reason is that for larger instances, solving the discrete

p-capacitated facility location problem to optimality is likely to require a significant amount of

computational effort.

Table 2. Comparison of the Results for Class II Instances

: Instances 1 and 12 are not reported in their paper.
** : CPU time is less than 0.01 seconds and hence this is not reported here.
OAV: Overall average deviations

Class III Instances

These Class III instances are an adaptation of Class I instances. The aim is to evaluate the

performance of GALNPRR and GALNPLRR for the larger problems. There are four data sets as in

Class I, i.e. the case of n = 50, 287, 654, and 1060 customer points. The customer locations for each

data set are the same as those in Class I except here we generate a set of capacities for each data set.

For the number of open facilities (M) equal to 5, three set of capacities are generated and for M > 5

five set of different capacities are used. For the case of n = 50, we generate randomly capacities in

the interval of [1,20], for n = 287, [50, 2100], for n = 654, [5, 164], and for n = 1060 it is [5, 250].

The detailed data can be collected from Luis (2008). In the case of n = 50 customers, the number of

open facilities (M) is set to vary from 5 to 15 with an increment of 5, for n = 287, M starts from 5 to

Instance (M, n)

Sherali et al.
(2002)

Aras et al.
(2007a)

Aras et al.
(2007b)# LSN** GALNPRR** GALNPLRR**

Best
Known

CPU
 (secs)

Dev
(%)

CPU
(secs)

Dev
(%)

CPU
(secs)

Dev
(%)

Dev
(%)

Dev
(%)

1 (2, 2) 0.00 0.04 0.00 0.02 -- -- 0.00 0.00 0.00
2 (2, 4) 247.28 0.20 0.00 0.02 0.00 1 0.00 0.00 0.00
3 (2, 4) 214.34 0.90 0.00 0.03 0.01 1 0.01 0.01 0.01
4 (3, 5) 24.00 2.30 0.00 0.03 0.00 10 0.00 0.00 0.00
5 (3, 5) 73.96 2.00 0.00 0.02 0.00 13 0.01 0.01 0.01
6 (3, 9) 221.40 66.40 0.00 0.06 0.00 95 0.01 0.01 0.01
7 (3, 9) 871.62 42.20 0.00 0.05 0.00 81 0.01 0.01 0.01
8 (4, 8) 609.23 360.00 0.00 0.06 0.00 163 0.01 0.01 0.01
9 (5, 15) 8169.79 1380.00 0.00 0.33 0.00 3823 0.00 0.00 0.00
10 (5, 20) 12846.87 8040.00 0.00 0.52 0.00 5479 0.00 0.00 0.00
11 (5, 20) 1107.18 4380.00 0.00 0.92 0.00 8217 0.02 0.01 0.01
12 (5, 30) 23990.04 18960.00 0.00 3.86 -- -- 0.00 0.00 0.00
15 (5, 10) 2595.47 480.00 0.00 0.14 0.00 647 0.14 0.11 0.11
16 (6, 10) 7797.21 540.00 0.00 0.20 0.00 1147 0.13 0.13 0.11
17 (7, 10) 6967.90 18900.00 0.01 0.27 0.00 1782 0.11 0.09 0.09
18 (8, 10) 1564.46 28080.00 0.00 0.31 0.00 3287 0.16 0.11 0.11
19 (9, 10) 3250.68 720.00 0.00 0.38 0.00 4778 0.10 0.11 0.07
20 (10, 10) 7719.00 27720.00 0.00 0.16 0.01 10087 0.19 0.11 0.01

OAV 0.00 0.41 0.00 2476 0.05 0.04 0.03
Best 19 16 6 6 6

22

30 with an increment of 5 until M = 20 and then an increment of 10. For the other two data sets, M

is set to be from 10 to 50 with an increment of 10. The results of these data sets are given in Table 3.

For comparison purposes, we also present the best results from LSN (i.e., LSN with dynamic

radius). It can be observed that GALNPLRR outperforms LSN and GALNPRR for every instance.

The bold numbers highlight the new best found solutions.

Table 3. Comparison of results for Class III Instances

n M Lower
Bound

LSN GALNPRR GALNPLRR

Dev
(%)

CPU
(sec)

Dev
(%)

CPU
(sec)

Dev
(%)

CPU
(sec)

50
fixed
Points

5 72.24 15.50 2 15.23 2 15.23 3
10 41.69 33.18 2 30.27 11 30.23 13
15 27.63 43.22 3 38.77 24 38.77 29

OAV 30.63 2.33 28.09 12.33 28.08 15.00

287
fixed
Points

5 9715.63 17.42 18 16.10 20 16.10 28
10 6705.04 31.19 30 28.48 49 28.48 57
15 5224.70 30.28 40 24.95 120 23.15 142
20 4148.84 39.25 65 32.97 275 32.97 319
30 2716.91 59.66 123 53.18 775 50.27 835

OAV 35.56 55.20 31.14 247.80 30.19 276.20

654
fixed
Points

10 115339.03 58.02 58 45.52 106 45.51 131
20 63389.02 49.86 156 42.15 717 42.15 787
30 44705.19 60.97 326 51.12 2214 50.55 2499
40 35704.41 67.56 576 61.96 4327 56.88 4651
50 29338.01 71.43 986 67.35 9688 67.35 11001

OAV 61.57 420.40 53.62 3410.40 52.49 3813.80

1060
fixed
Points

10 1249564.75 14.06 187 12.66 252 12.66 381

20 828802.00 19.06 550 17.67 1692 17.67 1825

30 638263.00 23.27 1176 20.11 5375 20.08 5741

40 529866.19 35.21 2012 32.53 11384 32.13 11884

50 453164.00 51.87 3192 48.44 21514 48.21 22191

OAV 28.69 1423.40 26.28 8043.40 26.15 8404.40

OAV 37.70 528 35.53 3252 29.10 3473

Best 0 9 18

 OAV: Overall average deviations over all instances and over each of the 4 data set

It is worth noticing that all the best results are found by GALNPLRR. In addition, this

method produces better results on average with a 5 to 13% improvement when compared with the

23

one given by LSN. However, it is worth pointing out that LSN appears to be relatively faster than

our GRASP-based methods requiring about 15 to 20% of their total CPU time only.

7. Conclusions and Future Research

In this study, a guided reactive GRASP to tackle the capacitated multi-source Weber problem

is proposed. The construction of RCL is guided by using a functional threshold parameter α namely

a linear function. A learning process is also embedded into the search to define the bounds of the

parameterα. To guide the search further, we introduced restricted regions to avoid generating

locations that are sited too close to each other by having dynamically adjusted radiuses of these

regions. This adjustment is carried out to cater for the capacity of the facility as well as the demand

of the allocated customers. Three classes of data sets are used, those with large instances but having

facilities with constant capacities, the small ones that allow the facilities to have different capacities

from which the optimal solutions exist and the new large ones designed by the authors to allow for

different capacities. The results from all these instances show that our proposed methods produce

competitive results when compared against the optimal solutions and recent heuristics.

The following research directions may be worthy of investigation in the future. The restricted

region could include other shapes such as rectangular or square. In this study, the runs within

GRASP are used independently, but the information from one run to the next could be taken

advantage of and used efficiently to guide the search better in subsequent runs. This concept of

memory is useful not only for this type of location problems but also in a variety of combinatorial

problems. From a practical point of view, the impact of introducing the opening cost of a facility

(fixed cost) is important and could be explored. The fixed cost can be constant, dependent on the

location (zone-dependent as in Brimberg and Salhi (2005)), or throughput-related. Another direct

modification to the existing problem would be the case of restricting a customer to be served by one

facility only as in the case of the single source type problem.

Acknowledgments- The authors would like to thank both referees for their constructive comments
which improved both the content as well as the presentation of the paper.

24

References

1. Al-Loughani, I., 1997. Algorithmic Approaches for Solving the Euclidian Distance Location-

Allocation Problems. Ph.D. Dissertation, Industrial and System Engineering, Virginia
Polytechnic Institute and State University, Blacksburg, Virginia.

2. Aras, N., Ozkisacik, K. C. and Altinel, I. K., 2006. Solving the Uncapacitated Multi-Facility
Weber Problem by Vector Quantization and Self-organizing Maps. Journal of the Operational
Research Society 57, 82-93.

3. Aras, N., Altınel, I. K. and Orbay, M., 2007a. New Heuristic Methods for the Capacitated
Multi-Facility Weber Problem. Naval Research Logistics 54, 21-32.

4. Aras, N., Yumusak, S. and Altınel, I. K., 2007b. Solving the Capacitated Multi-Facility Weber
Problem by Simulated Annealing, Threshold Accepting and Genetic Algorithms. In Doerner,
K. F., Gendreau, M., Greistorfer, P., Gutjahr, W. J., Hartl, R. F. and Reimann, M., editors.
Metaheuristics: Progress in Complex Systems Optimization, Springer, 91-112.

5. Aras, N., Orbay, M. and Altinel, I. K., 2008. Efficient Heuristics for the Rectilinear Distance
Capacitated Multi-Facility Weber Problem. Journal of the Operational Research Society 59,
64-79.

6. Bazaraa, M., Jarvis, J. J. and Sherali, H. D., 2005. Linear Programming and Network Flows,
third edition, WileyBlackwell.

7. Bischoff, M. and Klamroth, K., 2007. An Efficient Solution Method for Weber Problem with
Barriers Based on Genetic Algorithms. European Journal of Operational Research 177, 22-41.

8. Brimberg, J. and Love, R.F., 1993. Global convergence of a generalized iterative procedure for
the minimum location problem with pl distances. Operations Research 41: 1153-1163.

9. Brimberg, J., Hansen, P., Mladenović, N. and Taillard, E. D., 2000. Improvements and
Comparison of Heuristics for Solving the Uncapacitated Multisource Weber Problem.
Operations Research 48, 444-460.

10. Brimberg, J. and Salhi, S., 2005. A Continuous Location-Allocation Problem with Zone-
Dependent Fixed Cost. Annals of Operations Research 136, 99-115.

11. Brimberg, J., Hansen, P., Mladenović, N. and Salhi, S., 2008. A Survey of Solution Methods
for the Continuous Location-Allocation Problem. International Journal of Operations
Research 5, 1-12.

12. Canbolat, M. S. and Wesolowsky, G. O., 2010. The Rectilinear Distance Weber Problem in the
Presence of a Probabilistic Line Barrier. European Journal of Operational Research 202, 114-
121.

13. Cooper, L., 1964. Heuristic Methods for Location-Allocation Problems. SIAM Review 6, 37-53.
14. Cooper, L., 1972. The Transportation-Location Problem. Operations Research 20, 94-108.
15. Cooper, L., 1975. The Fixed Charge Problem – I: A New Heuristic Method. Computers and

Mathematics with Applications 1, 89-95.
16. Cooper, L. 1976. An Efficient Heuristic Algorithm for the Transportation-Location Problem.

Journal of Regional Science 16, 309-3015.
17. Daskin, M. S., 2008. What you should know about location modelling. Naval Research

Logistics 55, 283-294.
18. Delmaire, J., Diaz, A., Fernandez, E. and Ortega, M., 1999. Reactive GRASP and tabu search

based heuristics for the single source capacitated plant location problem. INFOR 37, 194-225.
19. Deng, Y. and Bard, J. F., 2010. GRASP with path relinking for capacitated clustering. Journal

of Heuristics (forthcoming), doi: 10.1007/s10732-010-9129-z

25

20. Dongarra, J. J., 2008. Performance of Various Computers using Standard
Linear Equations Software. Technical Report available on line at
http://www.netlib.org/benchmark/performance.ps.

21. Feo, T. A. and Resende, M. G. C., 1989. A Probabilistic Heuristic for a Computationally
Difficult Set Covering Problem. Operations Research Letters, 8, 67-71.

22. Feo, T. A. and Resende, M. G. C., 1995. Greedy Randomized Adaptive Search Procedures.
Journal of Global Optimization, 6, 109-133.

23. Gamal, M. D. H. and Salhi, S., 2001. Constructive Heuristics for the Uncapacitated Location–
Allocation Problem. Journal of the Operational Research Society 51, 1233-1240.

24. Gamal, M. D. H. and Salhi, S., 2003. A Cellular Heuristic for the Multisource Weber Problem.
Computers and Operations Research 30, 1609-1624.

25. Gong, D., Gen, M., Yamazaki, G. and Xu, W., 1997. Hybrid Evolutionary Method for
Capacitated Location-Allocation Problem. Computers and Industrial Engineering 33, 577-580.

26. Hansen, P., Mladenović, N. and Taillard, E. D., 1998. Heuristic of the Multisource Weber
Problem as a p-Median Problem. Operation Research Letters 22, 55-62.

27. Hart, J. P. and Shogan, A. W., 1987. Semi-greedy Heuristics: An Empirical Study. Operations
Research Letters, 6, 107-114.

28. Katz, I. N. and Cooper, L., 1981. Facility Location in the Presence of Forbidden Regions, I:
Formulation and the Case of Euclidean Distance with One Forbidden Circle. European
Journal of Operational Research 6, 166-173.

29. Kuehn, A. A. and Hamburger, M. J., 1963. A Heuristic Program for Locating Warehouse.
Management Science 9, 643-666.

30. Kuhn, H.M. , 1973. A note on Fermat’s problem. Mathematical Programming 3, 193-209.
31. Luis, M., 2008. Meta-heuristics for the Capacitated Multi-Source Weber Problem, Ph.D.

Thesis, University of Kent, UK.
32. Luis, M., Salhi, S. and Nagy, G., 2009. Region-Rejection Based Heuristics for the Capacitated

Multi-Source Weber Problem, Computers and Operations Research 36, 2007-2017.
33. Megiddo, N. and Supowit, K. J., 1984. On the Complexity of Some Common Geometric

Location Problems, SIAM J. Comp. 13, 182-196.
34. Mirchandani, P. B. and Francis, R. L., 1990. Discrete Location Theory, New York: Wiley.
35. Pitsoulis, L. S. and Resende, M. G. C., 2002. Greedy Randomized Adaptive Search Procedures.

In Pardalos, P. M. and Resende, M. G. C., editors. Handbook of Applied Optimization. Oxford
University Press, 168-181.

36. Resende, M. G. C. and Ribeiro, C. G., 2003. Greedy Randomized Adaptive Search Procedures.
In Glover, F. and Kochenberger, G. A., editors. Handbook of Metaheuristics. Kluwer
Academic Publishers, 219-249.

37. Resende, M. G. C. and Ribeiro, C. G., 2005. GRASP with path-relinking: recent advances
and applications. In Ibaraki T., Nonobe, K. and Yagiura, M., editors. Metaheuristics: progress
as real problem solvers, Springer, NY, 29-63.

38. Rios-Mercado, R. Z. and Fernandez, E., 2009. A reactive GRASP for a commercial territory
design problem with multiple balancing requirements. Computers and Operations Research 36,
755-776.

39. Rosing, K. E., 1992. The Optimal Location of Steam Generators in Large Heavy Oil Fields.
American Journal of Mathematical and Management Sciences 12, 19-42.

40. Salhi, S. and Gamal, M. D. H., 2003. A GA Based Heuristic for the Uncapacitated Continuous
Location-Allocation Problem. Annals of Operations Research 123, 203-222.

41. Sherali, H. D., Shetty, C. M., 1977. The Rectilinear Distance Location-Allocation Problem.
AIIE Transaction 9, 136-143.

26

42. Sherali, H. D. and Tuncbilek, C. H., 1992. A Squared-Euclidean Distance Location-Allocation
Problem. Naval Research Logistics 39, 447-469.

43. Sherali, H. D., Ramachandran, S. and Kim, S., 1994. A Localization and Reformulation
Discrete Programming Approach for the Rectilinear Distance Location-Allocation Problem.
Discrete Applied Mathematics 49, 357-378.

44. Sherali, H. D., Al-Loughani, I. and Subramanian, S., 2002. Global Optimization Procedures
for the Capacitated Euclidean and lp Distance Multifacility Location-Allocation Problem.
Operations Research 50, 433-448.

45. Taillard, E. D., 2003. Heuristics Methods for Large Centroid Clustering Problems. Journal of
Heuristics 9, 51-73.

46. Zainuddin, Z. M. and Salhi, S., 2007. A Perturbation-Based Heuristic for the Capacitated
Multisource Weber Problem. European Journal of Operational Research 179, 1194-1207.

27

Appendix A. Detailed Deviation (%) for Class I Instances

Table A1. Comparison for All the Results for the 50 Customers Problem

M
Lower
Bound

ZS LSN GFAP GUAP GALNP GALNPL GALNPRR GALNPLRR

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

2 135.52 0.83 0.56 0.84 1 0.84 0 0.84 1 0.84 0 0.84 1 0.84 1 0.84 1
3 105.21 1.02 0.70 1.06 0 1.06 1 1.06 0 1.06 1 1.06 1 1.06 1 1.06 1
4 84.15 2.76 0.67 2.75 1 2.75 1 2.75 1 2.75 0 2.75 1 2.75 1 2.75 2
5 72.24 5.94 1.14 5.93 0 5.93 1 5.93 1 5.93 2 5.93 2 5.93 3 5.93 2
6 60.97 0.85 0.76 0.88 1 0.88 1 0.88 2 0.88 1 0.88 1 0.88 4 0.88 3
7 54.50 3.35 2.17 3.37 1 3.37 2 3.37 2 3.37 2 3.37 2 3.37 4 3.37 3
8 49.94 2.76 1.06 2.40 0 2.40 3 2.40 2 2.40 3 2.40 3 2.40 5 2.40 5
9 45.69 4.05 3.05 3.46 1 3.46 3 3.46 4 3.46 3 3.46 3 3.46 6 3.46 8
10 41.69 15.72 4.21 15.67 1 15.54 5 15.54 4 15.54 5 15.54 5 15.54 7 15.54 10
11 38.02 6.57 3.42 6.07 1 6.07 6 6.08 6 6.07 6 6.07 6 6.07 9 6.07 10
12 35.06 1.98 1.40 2.00 1 1.99 7 2.55 8 1.99 7 1.99 8 1.99 12 1.99 12
13 32.31 8.83 2.81 8.80 2 8.80 10 8.79 10 8.80 10 8.80 10 8.79 14 8.80 13
14 29.66 6.62 2.86 4.69 1 5.47 12 4.68 11 4.69 12 4.69 12 4.68 16 4.68 15
15 27.63 6.49 3.68 2.60 2 2.80 14 2.60 14 1.53 14 1.53 14 1.53 20 1.53 20
16 25.74 5.93 4.41 2.15 1 2.60 17 2.13 17 1.01 17 1.01 17 0.46 25 0.46 26
17 23.99 7.92 6.47 7.60 1 2.38 20 7.59 20 7.59 20 7.59 20 7.59 30 7.59 28
18 22.29 6.89 6.85 5.59 2 7.59 22 5.59 22 5.58 22 5.58 22 5.58 32 5.58 34
19 20.64 7.32 5.97 5.44 1 5.58 24 4.85 24 5.03 24 5.03 25 5.03 35 5.03 37
20 19.36 17.43 9.56 4.47 1 6.24 27 4.70 27 6.06 27 5.22 27 3.16 40 3.16 40
21 18.08 16.41 9.53 7.31 2 3.16 31 3.01 31 2.44 31 2.44 31 1.36 46 1.36 48
22 16.82 13.60 6.21 5.84 1 3.31 36 5.89 36 3.51 36 3.51 36 1.20 55 1.20 55
23 15.61 16.12 6.35 4.08 2 5.11 40 3.91 40 4.90 40 3.83 40 0.49 60 0.49 61
24 14.44 15.35 5.92 4.46 2 7.35 46 9.91 46 5.96 46 5.96 46 0.26 68 0.26 70
25 13.30 70.96 6.25 73.05 2 74.79 52 76.53 51 79.00 52 78.31 53 71.61 76 70.96 77

OAV 10.24 4.00 7.52 1.17 7.76 15.88 7.71 15.83 7.52 15.88 7.41 16.08 6.50 23.75 6.47 24.21

28

Table A2. Comparison for All the Results for the 287 Customers Problem

M Lower
Bound

ZS LSN GFAP GUAP GALNP GALNPL GALNPRR GALNPLRR

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

5 9715.63 7.90 56.57 7.92 11 7.92 11 7.92 12 7.92 12 7.92 12 7.92 12 7.92 14
10 6705.04 25.77 539.11 25.80 17 25.80 34 25.80 34 25.80 33 25.80 35 25.80 37 25.80 41
15 5224.70 33.82 1837.17 33.89 25 33.99 93 33.89 93 33.89 92 33.99 94 33.89 111 33.99 118
20 4148.84 38.99 2532.21 38.48 38 38.48 224 38.48 225 38.48 223 38.48 231 38.48 242 38.48 251
25 3348.71 44.37 3442.54 44.33 64 44.32 427 44.33 427 44.39 424 44.33 429 44.31 462 44.31 478
30 2716.91 54.23 6265.81 54.15 85 54.15 724 54.15 722 54.15 720 54.15 730 54.14 770 54.14 792
35 2238.18 69.27 8310.36 69.24 125 69.23 1140 69.33 1129 69.23 1135 69.23 1151 69.23 1190 69.23 1202
40 1900.84 84.96 10948.99 84.33 151 84.34 1679 84.34 1665 84.41 1671 84.35 1688 84.33 1680 84.33 1688
45 1630.31 94.82 12169.82 94.92 219 94.92 2382 94.92 2362 94.92 2368 94.92 2389 94.82 2454 94.82 2530
50 1402.58 115.94 19814.90 116.06 312 115.95 3281 115.95 3255 115.95 3266 115.95 3289 115.93 3600 115.93 3815

OAV 57.01 6601.76 56.91 104.70 56.91 995.50 56.91 992.40 56.91 994.40 56.91 1004.80 56.89 1055.80 56.89 1092.90

Table A3. Comparison for All the Results for the 654 Customers Problem

M Lower
Bound

ZS LSN GFAP GUAP GALNP GALNPL GALNPRR GALNPLRR

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

5 209068.80 54.00 62.67 54.00 18 54.00 20 54.00 20 54.00 20 54.00 21 54.00 21 54.00 25
10 115339.03 42.81 136.94 42.81 31 42.81 70 42.81 71 42.81 72 42.81 77 42.81 75 42.81 81
15 80177.04 67.69 852.92 67.69 64 67.69 272 67.69 270 67.69 275 67.69 327 67.69 280 67.69 355
20 63389.02 69.37 1086.59 69.36 107 69.36 662 69.36 664 69.36 663 69.36 677 69.36 680 69.36 726
25 52209.51 47.52 3842.79 47.52 180 47.52 1266 47.52 1265 47.51 1264 47.51 1277 47.51 1291 47.51 1331
30 44705.19 86.77 852.18 76.33 247 76.33 2131 76.33 2126 76.33 2132 76.33 2155 76.33 2160 76.33 2199
35 39257.27 78.13 5772.53 78.13 354 78.22 3340 78.13 3324 78.13 3334 78.13 3357 78.13 3370 78.13 3455
40 35704.41 44.25 4740.56 43.85 517 43.88 4956 43.84 4932 43.84 4949 43.84 5012 43.84 5026 43.84 5112
45 32306.97 59.23 5112.34 55.28 638 55.29 7000 55.28 6968 55.26 7002 55.26 7021 55.26 7045 55.26 7265
50 29338.01 41.96 20333.38 29.13 807 30.68 9544 30.68 9488 30.61 9547 30.11 9593 29.13 9621 29.13 9884

OAV 59.17 4279.29 56.41 296.30 56.58 2926.10 56.56 2912.80 56.55 2925.80 56.50 2951.70 56.41 2956.90 56.40 3043.30

29

Table A4. Comparison for All the Results for the 1060 Customers Problem

M Lower
Bound

ZS LSN GFAP GUAP GALNP GALNPL GALNPRR GALNPLRR

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

Dev.
(%)

CPU
(sec)

5 1851879.88 1.06 370.85 1.06 60 1.06 58 1.06 56 1.06 60 1.06 66 1.06 58 1.06 72
10 1249564.75 3.11 1167.35 3.11 101 3.11 199 3.11 198 3.11 201 3.11 231 3.11 201 3.11 264
15 980132.13 1.63 4063.94 1.63 255 1.63 722 1.63 716 1.63 731 1.63 791 1.63 742 1.63 845
20 828802.00 3.42 5116.90 3.35 436 3.35 1632 3.35 1616 3.35 1646 3.35 1751 3.35 1659 3.35 1833
25 722061.19 3.87 30551.64 3.91 662 3.87 3036 3.87 2985 3.86 3048 3.85 3056 3.86 3063 3.85 3261
30 638263.00 3.92 45191.83 3.95 1002 3.95 4998 3.93 4955 3.92 4979 3.92 5111 3.93 5034 3.92 5311
35 577526.63 3.35 21713.60 3.36 1365 3.32 7740 3.32 7680 3.31 7734 3.31 7900 3.31 7839 3.31 8253
40 529866.19 6.02 47253.61 6.16 1700 6.05 11124 6.05 11974 6.05 11154 6.10 12354 5.99 11242 5.99 12754
45 489650.00 7.83 120072.31 7.88 2204 7.74 15617 7.74 15159 7.74 15605 7.74 15513 7.76 15722 7.74 17125
50 453164.00 5.87 130753.06 5.50 2797 5.52 21182 5.50 20912 5.50 21218 5.45 21388 5.29 25410 5.29 23854

OAV 4.01 40625.51 3.99 1058.00 3.96 6630.80 3.96 6625.10 3.95 6637.60 3.95 6816.10 3.93 7097.00 3.92 7357.20

30

