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Everyday, we are faced with a lot of uncertainties and discrete decisions. Stochastic

mixed integer programming is well suited to help us handle this situation. However, this

type of optimization problems are not easy to solve. The first half this dissertation gives

a brief review of stochastic programming and stochastic mixed integer programming,

and proposes a solution method, embedded Benders’ decomposition. Of all these

difficult problems, those arising from energy systems are very urgent and important,

since in the modern age, instead of human force, people rely more on other energy

sources to keep the whole society running. The second half of this dissertation is about

stochastic integer optimization applications in energy systems. Firstly, this dissertation

studies the stochastic security constrained unit commitment problem, which includes

both day-ahead and real time unit commitment, making it a very typical stochastic

mixed integer program. Numerical results show that embedded Benders decomposition

method suits well this problem, especially when it has a large number of scenarios.

Secondly, this dissertation discusses optimization models and algorithms in the natural

gas industry, and proposes natural gas transmission system expansion planning

models which include both natural gas transmission network expansion and LNG

(Liquified Natural Gas) terminals location planning. These models take into account the

uncertainties of demands and supplies in the future, which make the models stochastic

integer programs with discrete subproblems. In addition, this dissertation considers risk
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control in these models by including probabilistic constraints, such as a limit on CVaR

(Conditional Value at Risk). In order to solve the large-scale problems, especially those

with large numbers of scenarios, the embedded Benders decomposition algorithm is

applied to tackle the discrete subproblems. Numerical results show that this algorithm is

efficient for solving large scale stochastic natural gas transportation system expansion

planning problems.
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CHAPTER 1
INTRODUCTION

Optimization or mathematical programming is a very vibrant and important branch

of mathematics, which has a broad area of applications and great implications in our real

life. A mathematical programming problem is to minimize an objective function either or

not with respect to a set of constraints, which is shown as follows,

Min f (x)

s.t. g(x) ≤ 0,
(1–1)

where x is the decision variable vector in R
n, and f (x) and g(x) are vectors of functions

of x in R
l and R

m respectively. When l = 1, we have a unique objective function, which

makes the type of most studied mathematical programming problems. However, there

are a lot of problems with l > 1, which are called multiobjective optimization. Depending

on the properties of the objective function f (x), constraints g(x) and restrictions on the

decision variables, many different types of mathematical programming problems are

defined, and accordingly different solution techniques are developed.

Following the pioneering research by Dantzig, von Neumann, Kuhn, Tucker, etc, in

the 1940s and the 1950s, mathematical programming has been gaining more and more

attentions, while influencing the real life more broadly and deeply. Of all research fields

of mathematical programming, linear programming is a very basic type, which is rich in a

lot application areas, and is the first mathematical programming experience or class for

most of the researchers in optimization and operations research. In linear programming

problems, both f (x) and g(x) are linear functions of x , shown as follows,

Min cTx

s.t. Ax ≥ b,

x ≥ 0,

(1–2)
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where c and b are column vectors given in R
n and R

m respectively, and A is a fixed

matrix in R
m×n.

Because of the extensive studies, well developed theories, and solution techniques

on linear programming, such as simplex method, interior point method, etc, many other

optimization studies, e.g., stochastic programming, mixed integer programming, etc, are

based on linear programming.

1.1 Stochastic Programming

In reality, there is a great need for us to incorporate the future uncertainties when

we try to make some decisions right now, such as applications in energy, finance,

economics, business, transportation, etc. Stochastic programming or optimization has

been continuously gaining more and more popularity since its birth in 1950’s. Stochastic

programming takes into account all possible future outcomes, and assumes that we

perform optimally under any situation when the uncertainties unfold, and minimizes the

summation of the current cost and the future expected cost. In long run, this actually can

help us to achieve a better current decision than it would have been if we only consider

some scenario(s) or even the expected outcome.

1.1.1 General Formulation

The most extensively studied stochastic programming problems are the stochastic

linear programs, which only involve linear constraints and continuous variables. In the

two stage stochastic programs, the randomness is only observed once. Decisions need

to be made both before and the after the uncertainties unfold. The general formulation of

this type of problems is shown as follows,

Min cTx + E [Q(x ,w)]

s.t. Ax ≥ b,
(1–3)

where w is an random vector, and c and x are respectively a given vector of costs and a

decision vector in R
n, and E [Q(x ,w)] is called the value function or recourse function,
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which is the expected future cost of Q(x ,w), which is cost of the decisions made after

the uncertainties unfold and is shown as follows,

Q(x ,w) = Min [d(w)]Ty

s.t. F (w)y ≥ g(w)− T (w)x ,

y ≥ 0,

(1–4)

where y is the decision vector after the outcome of the random variable w is observed.

F (w) is called the recourse matrix, and T (w) is the technology matrix. But in most of

the literature, instead of F (w), a fixed recourse matrix F is used, which is considered

to be independent of the scenarios. (1–12) and (1–13) are usually referred to as the

first and second stage problems respectively. When the random variable is discretely

distributed and has a finite number of outcomes, the stochastic program is completely a

deterministic linear programming problem as follows,

Min cT x +
∑

ξ∈Ξ

Prob(ξ)[d(ξ)]Ty(ξ)

s.t. Ax ≥ b,

F (ξ)y(ξ) +T (ξ)x ≥ g(ξ), ∀ξ ∈ Ξ,

y(ξ) ≥ 0, ∀ξ ∈ Ξ,

(1–5)

where y(ξ) is the decision vector for scenario ξ with corresponding probability Prob(ξ),

and Ξ is the set of all possible outcomes of random variable w . Due to the special

structure of the above problem, decomposition algorithms are very useful when

experiencing a big number of scenarios. Benders’ decomposition [9] is well suited to

handle this situation. A brief introduction of the Benders’ decomposition algorithm is

presented in the following section.

In the two-stage stochastic programming problems, we assume that the random

variable will be realized only once, and decisions are made both before and after that

event. However, in reality, we may need to make a series of decisions along a time
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sequence, within which a sequence of random events happen alternately with the

decisions. Multistage stochastic programming is a very good modeling tool for this type

of problems. It generalizes the concept of the two-stage stochastic programming, and

can be seen as a sequence of two-stage stochastic programs. Its formulation is shown

as follows,

Qt(xt−1(ζ), ξ) = Min [dt(ξ)]
Txt(ξ) + E [Qt+1 (xt(ξ))]

s.t. Ft(ξ)xt(ξ) ≥ gt(ξ)− Tt(ξ)xt−1(ζ),

xt(ξ) ≥ 0,

(1–6)

where the subscript t and t − 1 denote the stages, ξ and ζ denote the scenarios of stage

t and t − 1 respectively. Multistage stochastic programming problems are much more

difficult to solve due to the curse of dimensionality explosion.

1.1.2 Solution Methods

The computational difficulty of stochastic programming lies in the fact that it involves

too many decision variables and constraints because for each scenario a whole second

stage formulation, (1–13), is required. If the first stage decision is given, the second

stage problem can be decomposed to many smaller problems which can be solved

separately. Then we can provide some feedback to the first stage to tell whether

the given first stage solution is good or not. Benders’ cut is a very good media that

coordinates this back-and-forth communication. Benders decomposition was proposed

by Benders [9] in 1962, which is explained briefly as follows. Suppose we are dealing

with the following optimization problem [P],

[P]: Min cTx + dTy

s.t. x ∈ X,

Ex + Fy ≥ g,

y ≥ 0.

(1–7)
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Given a solution x̂ , the above program reduces to a linear programming problem as

follows, called [SP],

[SP]: Min dTy

s.t. Fy ≥ g − Ex̂ , ← u (1–8)

y ≥ 0.

Its corresponding dual program is shown as follows, called [DSP],

[DSP]: Min (g − Ex̂)Tu

s.t. FTu ≤ d ,

u ≥ 0.

(1–9)

[DSP] and [SP] share the same optimal objective value since they are both linear

programs. The optimal objective value of [SP] or [DSP] is a piecewise linear function

with respect to master problem decision variable, x . In [DSP], the feasible region is not

related to the master problem decision, x . [DSP] is a linear program, and then its optimal

solution is on the vertex of the feasible region. This means if we can get all the extreme

points of the [DSP], we can define the value function of the subproblem. Up to now, we

assume the [DSP] is feasible and bounded. If the [DSP] is infeasible, which means the

[SP] is unbounded, then the original problem [P] is unbounded. If [DSP] is unbounded,

which means the [SP] is infeasible, then the given first stage decision, x̂ , is not a feasible

solution to the original problem [P]. Hence, in order to prevent unboundedness or this

kind of first stage solution, we need (g − Ex)Tv ≤ 0, where v is an extreme ray of the

unbounded [DSP]. Then the original problem can be redefined as follows,

[MP]: Min cT x + π

s.t. x ∈ X (1–10)

π ≥ (g − Ex)T ûi , ∀i ∈ I,
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(g − Ex)T v̂ j ≤ 0, ∀j ∈ J ,

where I and J are the extreme-point set and extreme-ray set of [DSP] respectively.

However, including all extreme points and extreme rays would not make it a very efficient

formulation. If we only include subsets of all extreme points and rays, we would be able

to get an lower bound of the problem. This problem with subsets of extreme points and

rays is called restricted master problem, [RMP], which is shown as follows,

[RMP]: Min cTx + π

s.t. x ∈ X,

π ≥ (g − Ex)T ûi , ∀i ∈ Ir ,

(g − Ex)T v̂ j ≤ 0, ∀j ∈ J r ,

(1–11)

where Ir and J r are the extreme-point subset and extreme-ray subset of [DSP]

respectively.

An combination of feasible solutions of both master and sub problems yields an

upper bound of the original problem. So we can iteratively solve the [RMP] and [DSP]

to update the lower bound and upper bound until they match each other. Given a very

small value, ǫ, the Benders’ decomposition algorithm is shown as follows,

Step 0. Set UB=∞, LB=−∞, Ir = J r = ∅;

Step 1. Solve [RMP], and optimal solution and objective value are x̂ and w
respectively;
LB← max(LB,w);

Step 2. Solve [DSP], and optimal solution is û or extreme ray v̂ .
UB← min(UB, cT x̂ + (g − Ex̂)T û);
Ir ← Ir ∪ {û} or J r ← J r ∪ {v̂};

Step 3. If UB−LB≤ ǫ, stop; O/W go to step 1.

When extended to stochastic programming, information from the solution of every

subproblem need to be considered. Generally there are two ways of feeding back the

future information, by either the aggregated cuts or disaggregated cuts. Van Slyke
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and Wets [63] proposed the L-shaped method, which adds a single aggregated cut at

each iteration, while Birge and Louveaux [11] proposed a multicut method. Detailed

discussion of advantages and disadvantages of both algorithms can be found in [10].

Also we can apply Benders decomposition sequentially to deal with the multistage

stochastic linear programs. The most difficult part to solve a multistage stochastic

programming problem is the dimensionality explosion. The variables and scenarios

grows exponentially as the number of stages goes up. Pereira and Pinto (1991) [50]

proposed Stochastic Dual Dynamic Programming (SDDP), which can deal with the

curse of dimensionality, to solve a multistage hydro power plant planning problem. Their

method iteratively use Bender’s cut to approximate the expected-cost-to-go function,

and use Monte Carlo forward simulation to avoid the explicit enumeration of all possible

scenarios.

SDDP is the stochastic version of Dynamic Dual Programming (DDP), which

applies Benders’ decomposition in the multistage problem. Suppose we have multistage

problem which has following format,

Min cT1 x1 +cT2 x2 +cT3 x3 + · · ·

s.t. A1x1 ≥ b1,

E1x1 +A2x2 ≥ b2,

E2x2 +A3x3 ≥ b3,

· · ·

Since the subproblem in stage n is only related to the subproblem in stage

n − 1, Benders’ cuts can still be applied to achieve the communication between two

consecutive stages. Given a solution of stage n − 1, i.e., xn−1, we can find a Benders’

cut for the stage n − 1 by solving the stage n problem with xn−1 being fixed, where

the dual optimal solution is the coefficients of the Benders’ cut. The DDP algorithm is

composed of two major procedures, i.e., the forward and backward iterations, where
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forward iterations find a feasible solution of each stage and backward iterations find the

Benders’ cuts for the previous stage. We can get the upper bound by calculating the

cost of a feasible solution, the lower bound by calculating the approximated objective

function.

In traditional stochastic programming, all variables denoting every scenario are

included in the formulation. For the multistage problem, the variable size could be

easily increased to billions, trillions, even more. SDDP is an algorithm that nicely avoids

the dimensionality explosion by the Monte Carlo forward simulation. In the backward

iteration of SDDP , Benders’ cuts for stage n − 1 are obtained by using the average of

the optimal dual solutions corresponding to different scenarios of stage n. For example,

π̄n−1 =
∑m

j=1 p
j
nπ
j
n−1, where πjn−1 is the optimal dual solution of stage n subproblem under

scenario j , which is associated with probability pjn. At each forward iteration, instead

of enumerating all possible scenarios, SDDP only find several sample paths by Monte

Carlo simulation, and solve the corresponding problems along the sample paths to

obtain a feasible solution.

1.2 Stochastic Mixed Integer Programming

In reality, we also need to make a lot of discrete decisions under uncertainties,

which need to include integer variables in the optimization problems, begetting the

stochastic mixed integer programs. The formulation of two-stage stochastic mixed

integer programs are very similar to the two-stage stochastic linear programs, except

that it has integer restrictions on the decision variables either in the first stage (1–12), or

the second stage (1–13), or both.

1.2.1 Formulation and Previous Approaches

The general formulation of stochastic mixed integer programs is as follows,

Min cTx + E [Q(x ,w)] (1–12)

s.t. Ax ≥ b,
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x ∈ R
n1
+ × Z

m1
+ ,

where Q(x ,w) is the recourse function shown as follows,

Q(x ,w) = Min [d(w)]T y (1–13)

s.t. F (w)y ≥ g(w)− T (w)x ,

y ∈ R
n2
+ × Z

m2
+ .

Stochastic mixed integer programming (SMIP) has been drawing a lot of attention

recently. When integer variables exist only in the first stage, the problem is relatively

easier to solve, since generally L-shaped method ([63]) or Benders decomposition ([9])

would work. This is because the value function for the second stage is convex with

respect to the first stage variables. However, the second stage value function becomes

non-convex and discontinuous, in general, when there are integer variables within

the second stage as discussed in [12]. This makes Benders decomposition ([9]) or

generalized Benders decomposition ([31]) not readily applicable because of the duality

gap of integer programs. Within the last two decades, a lot of research has been done to

solve SIMP problems with integer variables in the second stage. Laporte and Louveaux

[38] proposed a decomposition-based branch-and-cut method, where both feasibility

and optimality cuts are applied, for SMIP with pure binary variables in the first stage.

Carøe and Tind [18] proposed a generalized L-shape method by generalized Benders

decomposition ([31]), where both Gomory cuts and branch-and-bound algorithm are

applied. Sherali and Fraticelli [60] and Sherali and Zhu [61] developed modified Benders

decomposition methods by sequentially convexifying the discrete subproblem using

reformulation-linearization technique ([59]). Ntaimo and Sen [48], Sen and Higle [57]

and Ntaimo [47] proposed decomposition methods for SMIP with random recourse

and discrete second stage based on disjunctive programming ([5]). Ahmed et al. [1]
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developed a finite branch-and-cut solution algorithm for SMIP with a second stage

program of pure integer variables.

1.2.2 Generating Valid Benders Cuts from Discrete Subproblems

In order to tackle this difficulty, we may need to convexify the second stage mixed

integer programs to get valid and effective Benders cuts for the first stage or master

problem. The approach made by Sherali and Fraticelli [60] is inspiring. They analyze the

following two stage mixed integer program,

[P] : Min cTx + dTy

s.t. Ax +Dy ≥ b,

x ∈ X , x ∈ {0, 1}n, y ∈ Y ,

where y is a vector including integer variables, and X is a nonempty polytope. If we can

find the convex hull of the following region,

{Ax + Dy ≥ b, y ∈ Y }, (1–14)

for any given x , then Benders’ decomposition can be applied because the linear

relaxation of the subproblem (convex hull formulation) will have the same optimal

solution as the discrete subproblem, and then the subproblem can simply be treated as

a linear programming problem. To achieve this goal, Reformulation-Linearization-Technique

or Lift-and-Project cuts are iteratively added to the subproblem in [60]. These are called

global cuts, which means that they are valid for the original problem [P] but focus on

cutting the region of (1–14), which has the following format,

αTk y + ψ
T
k x ≥ βk , k = 1, ... ,K , (1–15)

where k denotes the k th cut. There are also other cuts ([6], [58], etc) which possess the

same properties (1–15) has. With these cuts added, the relaxed subproblem will be as
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follows,

Min dTy

s.t. Dy ≥ b − Ax ,

Γy ≥ γ,

αTk y ≥ βk − ψ
T
k x̂ , k = 1, ... ,K ,

where Γy ≥ γ is the linear relaxation of the set Y . Then we just need to solve the

above linear problem to produce Benders cut for the first stage. For convenience, the

subproblem is assumed to be feasible given any first stage solution, x̂ , since we can

always add an artificial variable and assign a big penalty on it to make the problem

feasible. Suppose the optimal dual solutions are φ1, φ2, and φ3 corresponding to the

above three constraints respectively. Then a valid Benders’ cut can be obtained as

follows,

z ≥ (b − Ax)Tφ1 + γ
Tφ2 +

K
∑

k=1

(βk − ψ
T
k x)φ3k .

Even when the convex hull of the subproblem is not completely obtained, the Benders

cuts are still valid to the first stage problem. This is because that the the relaxed

subproblem always provides a lower bound to the subproblem, which means it also

provides a valid lower bound for z .

1.3 Outline of this Dissertation

The dissertation is organized in such a way that we first introduce our proposed

methods for stochastic programming problems, and then describe some stochastic

optimization models, especially in the energy systems area, and finally discuss how to

apply our algorithms. In Chapter 2, we introduce the Embedded Benders decomposition

method, which also exploits Benders cuts for the second stage subproblems, and these

cuts are reusable given any first stage solution. Also our method generates multiple cuts
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while solving the subproblem of only one scenario, by taking advantage of the special

structure of the models.

The second half of this dissertation is about stochastic optimization applications in

the area of energy systems, such as stochastic unit commitment problems, optimization

models in natural gas industry. Chapter 3 introduces the stochastic security constrained

unit commitment model, which tries to solve both day-ahead commitment schedule

and real-time commitment schedule, while considering minimum up and down times,

spinning reserves and nonspining reserves, unit capacities, and piecewise linear fuel

cost functions. We apply the Embedded Benders decomposition on this problem, and

the numerical results show that EBD algorithm outperforms the default CPLEX MIP

solver for problems with large numbers of scenarios. The computational time almost

increase linearly when we increase the size of the problem, which make EBD a very

reliable method for solving stochastic security constrained unit commitment problems.

Chapter 4 gives a detailed survey of optimization models in the natural gas industry by

focusing on the natural gas production, transportation, and market. Chapter 5 proposes

expansion planning models which include both natural gas transmission network

expansion and LNG (Liquified Natural Gas) terminals location planning. These models

take into account the uncertainties of demands and supplies in the future, which make

the models stochastic integer programs with discrete subproblems. Also we consider

risk control in our models by including probabilistic constraints, such as a limit on CVaR

(Conditional Value at Risk). In order to solve the large-scale problems, especially with

a large number of scenarios, we also apply the embedded Benders decomposition

algorithm. Numerical results show that our algorithm is efficient for large scale stochastic

natural gas transportation system expansion planning problems. Chapter 6 concludes

this dissertation, while also talking about future research.
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CHAPTER 2
EMBEDDED BENDERS’ DECOMPOSITION

The method proposed by Sherali and Fraticelli (2002) [60] modifies the Benders’

decomposition for discrete subproblem by sequentially convexifying them using

Reformulation-Linearization Techniques (RLT) or lift-and-project method. However,

it takes a lot of efforts to find a global cut for each subproblem by using RLT or

lift-and-project method. At the each iteration, their algorithm needs to add a global

cut to get a better convex hull for the discrete subproblem. In this dissertation, a method

called embedded Benders’ decomposition which apply Bender’s cut to help approximate

the convex hull of the discrete subproblem is proposed. The Benders’ cut added to the

subproblem is valid for any first stage decision and then they are reusable along the

iterative computations, which save a lot time to generate different new convexification

cuts at each iteration. Several variants of Embedded Benders’ Decomposition algorithm

to solve different types of problems are explained in details in the following sections.

2.1 Two-stage Embedded Benders’ Decomposition

A typical deterministic formulation of two stage mixed integer program is as follows,

P0 : Min cT1 x1 +dT1 z1 +cT2 x2 +dT2 z2

s.t. A1x1 +B1z1 ≥ b1, ← π1

E1x1 +F1z1 +G1x2 ≥ h1, ← µ1

A2x2 +B2z2 ≥ b2, ← π2,

where xi is a vector of continuous variables and zi is a vector of integer variables, for

i = 1, 2. For convenience, we first discuss how to solve a two-stage deterministic

problem, where each stage contains both continuous and integer variables.

When x̄1 and z̄1 are given, we have the following problem,

P1: Min cT2 x2 + d
T
2 z2

23



s.t. G1x1 ≥ h1 − E1x̄1 − F1z̄1, ← µ1

A2x2 + B2z2 ≥ b2. ← π2

By solving P1, we can get the optimal solution, (z̄2, x̄2). With x̄1, z̄1, z̄2, we can solve

the following dual problem, i.e., DP1,

DP1: Max (h1 − E1x̄1 − F1z̄1)
Tµ1 + (b2 − B2z̄2)

Tπ2

s.t. GT1 µ1 + A
T
2 π2 ≤ c2. ← x2

Suppose the optimal solution to DP1 is (µ̄1, π̄2). Then the new cut, β ≥ (h1 − E1x1 −

F1z1)
T µ̄1 + (b2 − B2z2)

T π̄2, constructed by using (µ̄1, π̄2), is a global cut since the

feasible region of problem DP1 does not depend on (x̄1, z̄1, and z̄2). So, by adding these

embedded Bender’s cuts, we can help approximate the convex hull of the discrete

subproblem, and formulate a new subproblem, RLP1, as follows,

RLP1: Min dT2 z2 + β

s.t. β ≥ (h1 − E1x̄1 − F1z̄1)
Tµk1 + (b2 − B2z2)

Tπk2 , k ∈ K ,← λk

z2 ≤ 1,← ρ

where K is a subset of the vertex set of problem DP1, and integer variable z2 is relaxed

to continuous variable. Denote the optimal dual solution of constraint k of RLP1 by λk . A

valid Benders’ cut for the first stage problem is as follows,

α ≥ eTρ+
∑

k∈K

[

(h1 − E1x1 − F1z1)
Tµk1 + b

T
2 π
k
2

]

λjk (2–1)

The restricted master problem is as follows,

RMP0: Min cT1 x1 + d
T
1 z1 + α

s.t. A1x1 + B1z1 ≥ b1,

α ≥ eTρ+
∑

k∈K

[

(h1 − E1x1 − F1z1)
Tµk1 + b

T
2 π
k
2

]

λjk , j ∈ J,
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where J is a subset of the vertex set of dual problem to RLP1.

The algorithm for solving the two stage problem is shown below,

Step 0. Set UB=∞, LB=−∞, K = J = ∅.

Step 1. Solve RMP0, and optimal solution and objective value are (x̄1, z̄1) and w
respectively.
LB← max(LB,w)

Step 2. Solve P1, and optimal solution is (x̄2, z̄2).
UB← min(UB, cT1 x̄1 + d

T
1 z̄1 + c

T
2 x̄2 + d

T
2 z̄2)

Step 3. If UB−LB≤ ǫ, stop. O/W go to step 4.

Step 4. If necessary, solve DP1, and optimal solution is (µ̄1, π̄2).
K ← K ∪ (µ̄1, π̄2).

Step 5. Solve RLP1, and optimal solution is λ̄ = (λ̄k , k ∈ K ).
J ← J ∪ λ̄.
Go to step 1.

P1 is an integer programming problem with a smaller number of integer variables, which

need little effort to solve. This algorithm decompose a mixed integer programming

problem into multiple smaller MIPs, which make the total computational time less. We

can generalize this algorithm to multistage MIPs as DDP is generalization of Benders’

decomposition. Eventually, the generalized embedded Benders’ decomposition can

exploit the SDDP’s ideas to avoid the dimensionality explosion.

Below is a simple example of implementing Embedded Benders Decomposition:

P0: Min 2x1 + 3x2 + z1 + 6z2 + 4x3 + 3x4 + z3 + z4

s.t. x1 + 2x2 + 4z1 + 3z3 ≥ 4,

2x1 + x2 + z1 + z2 ≥ 2,

x2 + 2z1 + z2 + 3x3 + x4 ≥ 3,

2x3 + 3x4 + z3 + 2z4 ≥ 5,

x3 + x4 + 2z3 + z4 ≥ 2,
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x ≥ 0,

z ∈ {0, 1}4.

First we need to solve the first stage subproblem without considering any future

information.

DP0: Min 2x1 + 3x2 + z1 + 6z2

s.t. x1 + 2x2 + 4z1 + 3z2 ≥ 4,

2x1 + x2 + z1 + z2 ≥ 2,

x ≥ 0,

z ∈ {0, 1}2.

The optimal objective value is w = 2, with optimal solution being (x̄1, x̄2, z̄1, z̄2) =

(0.5, 0, 1, 0). Then we can set LB = 2. By fixing the first stage variable as (x̄1, x̄2, z̄1, z̄2)

we solve the second stage mixed integer subproblem to get a feasible solution for the

whole problem, which provides an upper bound.

P1: Min 2x̄1 + 3x̄2 + z̄1 + 6z̄2 + 4x3 + 3x4 + z3 + z4

s.t. x̄2 + 2z̄1 + z̄2 + 3x3 + x4 ≥ 3,← µ3

2x3 + 3x4 + z3 + 2z4 ≥ 5,← π4

x3 + x4 + 2z3 + z4 ≥ 2,← π5

x ≥ 0,

z ∈ {0, 1}2.

The optimal solution of P1 is (x̄3, x̄4, z̄3, z̄4)=(0, 1, 0, 1). Then the upper bound can be

calculated as follows

UB = c1x̄1 + c2x̄2 + d1z̄1 + d2z̄2 + c3x̄3 + c4x̄4 + d3z̄3 + d4z̄4 = 6

26



By fixing (z̄3, z̄4), we can solve DP1 as a linear program, of which the optimal dual

solution is (µ̄3, π̄4, π̄5)=(0, 1, 0). With the optimal dual solution, we can construct a

inner/convexification cut as in the following linear program,

RLP1: Min z3 + z4 + β

s.t. β ≥ (5− z3 − z4)(π̄4),← λ

z3 ≤ 1,← ρ3

z4 ≤ 1← ρ4

Then we solve the above relaxed/convexified linear program, and the optimal primal and

dual solution are, (β̂, ẑ3, ẑ4)= (3, 0, 1) and (λ̂, ρ̂3, ρ̂4)=(1, 0,−1) respectively. The new cut

for first stage is constructed as follows,

α ≥ 5π̄4λ̂+ ρ̂3 + ρ̂3 = 4

Then we solve the first stage mixed integer program again with the new cut from the

second stage,

RMP0: Min 2x1 + 3x2 + z1 + 6z2 + α

s.t. x1 + 2x2 + 4z1 + 3z2 ≥ 4,

2x1 + x2 + z1 + z2 ≥ 2,

α ≥ 4,

x ≥ 0,

z ∈ {0, 1}2.

The optimal objective of the above first stage MIP with new outer/feedback cut is

w = 6, and then we can update LB=6. Now we have UB=LB, and optimal solution is

(x∗1 , x
∗
2 , z

∗
1 , z

∗
2 , x

∗
3 , x

∗
4 , z

∗
3 , z

∗
4 )=(.5, 0, 1, 0, 0, 1, 0, 1).
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2.2 Stochastic Two-stage Embedded Benders’ Decomposition

We can extend the deterministic version of Embedded Benders’ Decomposition

to solve the stochastic two-stage mixed integer programs. The difference here is that

we need to do simulations to get the approximated expected upper bound, which is the

sample average of sampled subproblems plus the first stage solution. Or, we need to

solve all subproblems for all scenarios to get the exact expected cost given a first stage

solution. The algorithm (with the approximated upper bound) is shown as follows,

Step 1. Set UB=∞, LB=−∞, K = J = ∅.

Step 2. Solve RMP0, and optimal solution and objective value are (x̄1, z̄1) and w
respectively.
LB← max(LB,w)

Step 3. For i = 1 : n

Get a sample, ξ, from all scenarios

Solve P1(ξ), and optimal solution is (x̄2(ξ), z̄2(ξ)).
ZUB(ξ) = c

T
1 x̄1 + d

T
1 z̄1 + c

T
2 x̄2(ξ) + d

T
2 z̄2(ξ))

Solve DP1(ξ), and optimal solution is (µ̄1(ξ), π̄2(ξ)).
K ← K ∪ (µ̄1(ξ), π̄2(ξ)).

Solve RLP1(ξ), and optimal solution is λ̄(ξ) = (λ̄k(ξ), k ∈ K(ξ)).
J(ξ)← J(ξ) ∪ λ̄(ξ).

Step 4. Update UB by the sample average of ZUB(ξ)’s

Step 5. If UB-LB< ǫ, stop; o/w, go to step 1.

Usually this method is used when there exist a huge number of scenarios, and n

is a smaller number as compared to the cardinality of the scenario set. When the total

number of scenarios is not so big, we could solve all the subproblems corresponding to

the scenarios to get the exact expected future cost.

2.3 Deterministic Multistage Embedded Benders Decomposition

As can be seen in the two stage algorithm, there are two set of cuts :

• Outer/Feedback (OF) Cuts Ji : the cuts which provide information from the future
stages.
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• Inner/Convexification (IC) Cuts Ki : the cuts which convexify the mixed integer
subproblem.

It is easy to note that the first stage does not have IC cuts, and last stage does not have

any OF cuts.

For any stage i , we need to solve a mixed integer program to get a feasible solution,

MIPi Min cTi xi + d
T
i zi + αi

s.t. Aixi + Bizi ≥ bi − Ei−1x̂i−1 − Fi−1ẑi−1,

(µji)
TEixi + (µ

j
i)
TFizi + αi ≥ w

j
i , ∀j ∈ Ji ,

xi ≥ 0,

zi ∈ {0, 1}
ni .

After we get a solution of stage i , we can fix zi in MIPi and obtain a linear program,

which is denoted by LPi , shown as follows,

LPi Min cTi xi + αi

s.t. Aixi ≥bi − Ei−1x̂i−1 − Fi−1ẑi−1 − Bi ẑi , ← πi

(µji)
TEixi + αi ≥w ji (µ

j
i)
TFi ẑi , ∀j ∈ Ji , ← γ ji

xi ≥0.

In order to get an IC cut, which tries to convexify the subproblem MIPi , we need to

solve either the linear program LPi or its dual DLPi to get the dual optimal solution.

DLPi Max (bi − Ei−1x̂i−1 − Fi−1ẑi−1 − Bi ẑi)
T πi

+
∑

j∈Ji

(

w ji (µ
j
i)
TFi ẑi

)

γ ji

s.t. ATi πi +
∑

j∈Ji

(

(µji)
TEi

)T

γ ji ≤ ci ,

∑

j∈Ji

γ ji = 1,
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π≥0, γ
j
i ≥ 0 ∈ Ji .

Suppose the optimal dual solution is π̂newi and γ̂ j,newi , ∀j ∈ Ji . Then a new IC cut is

constructed as follows,
[

(πnewi )
TBi +

∑

j∈Ji

(µji)
TFi γ̂

j,new
i

]

zi + βi

≥ (πnewi )
Tbi +

(

∑

j∈Ji

w ji γ̂
j,new
i

)

−(πnewi )
TEi−1x̂i−1 − (π

new
i )

TFi−1ẑi−1 (2–2)

After adding the the newly constructed IC cut, we can get the relaxed/convexified

subproblem RLPi as follows,

RLPi Min dTi zi + βi

s.t. (θki )
Tzi + βi ≥ v ki − (πki )

TEi−1x̂i−1

− (πki )
TFi−1ẑi−1, ∀k ∈ Ki , ← λki

0 ≤ zi ≤ 1, ← ρi

where

θki = (πki )
TBi +

∑

j∈Ji

(µji)
TFi γ̂

j,k
i ,

v ki = (πki )
Tbi +

∑

j∈Ji

w ji γ̂
j,k
i .

Since RLPi is a relaxed linear program of the MIPi , a valid Benders (OF) cut for

stage i − 1 can be constructed by using the optimal dual solution of RLPi . Suppose the

newly obtained optimal dual solution is ρ̂newi , λ̂k,newi , ∀k ∈ Ki . The new OF cut for stage

i − 1 is as follows,

αi−1 ≥ e
T ρ̂newi +

∑

k∈Ki

λ̂k,newi

[

v ki − (π
k
i )
TEi−1xi−1 − (π

k
i )
TFi−1zi−1

]
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If we let

µnewi−1 =
∑

k∈Ki

λ̂k,newi π̂ki

w newi−1 = eT ρ̂newi +
∑

k∈Ki

λ̂k,newi v ki

Then the new OF cut will be like,

(µnewi−1 )
TEi−1xi−1 + (µ

new
i−1 )

TFi−1zi−1 + αi−1 ≥ w
new
i−1 (2–3)

To summarize, the deterministic multistage embedded Benders decomposition algorithm

is shown as follows,

Step 0. UB=∞, LB=−∞, Ki = Ji = ∅ for all stages.

Step 1. For stage i = 1, 2, ... ,T ,

(a) Solve MIPi with fixed values of x̂i−1 and ẑi−1, and suppose optimal
solution is (x̂i , ẑi ) .
If i = 1, LB← max(LB, cT1 x1 + d

T
1 z1 + α1).

If i = T , UB← min
(

UB,
∑T

i=1(c
T
i xi + d

T
i zi)

)

(b) If i > 1, solve LPi , and suppose the optimal solution is ( π̂i , αi ) and
dual optimal solution is (π̂newi , γ̂ j,newi , ∀j ∈ Ji ). Construct a new IC cut
as in (2–2), and add it into Ki .

(c) If i > 1, solve RLPi , and suppose optimal dual solution is
(λ̂k,newi , ∀k ∈ Ki , ρ̂newi ).
Construct a new OF cut as in (2–3), and add it into Ji−1.

Step 2. If UB−LB≤ ǫ, stop; otherwise go to Step 1.

2.4 The Stochastic Multistage Algorithm

In the stochastic case, we assume the uncertainties among stages are independent

of each other. This implies that for any stage with any possible outcome, there will be

only one future benefit function. This makes the problem easier without losing generality

because there is no need to generate the whole scenario tree. Since we have already

proposed a method to obtain valid feedback cuts even when the subproblems are mixed

integer program, we can still take advantage of this method to handle the dimensionality
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explosion in SDDP. Also SDDP only allows the random variables on the right hand side,

because it only construct an aggregated cut for each stage if a trial vector of previous

stage is given. The new approach in this proposal is to construct multiple cuts at a time,

which can cope with random variables at anywhere in the subproblem. However, we

focus on dealing with problem where random variables appear in the objective function

and right hand side.

As is shown in the deterministic algorithm, we calculate the the present stage

problem based on the fixed values of previous stage decision. Of course we can

calculate the previous stage solution for each node of the decision tree in stochastic

case. Doing this will lead to the dimensionality explosion disaster. For example, if we

are going to solve a multistage stochastic mixed integer program, each stage of which

only has 3 scenarios, there will be 312 = 531441 leaf nodes, and the number of integer

variables in only the leaf nodes will be 3 × 312 ≈ 1.6million. That is a difficult problem

for any state of the art MIP solver. However, this issue actually can be circumvented by

using forward simulation, which is shown as follows,

Step 0. Solve MIP1, and suppose the solution is x̂1 and ẑ1. Let x s1 = x̂1, z
s
1 = ẑ1,

s = 1, 2, ... ,N .

Step 1. For stage i = 1, ... ,T
For s = 1, ... ,S

Sample a (csi , b
s
i ) from

{

(cξ
i , b

ξ
i ), ξ ∈ Ξi

}

;

Solve MIPi with (csi , b
s
i );

Save the solution (x̂ si , ẑ
s
i ).

This actually provide an estimate of the upper bound,

ÛB =
1

S

S
∑

s=1

T
∑

i=1

[

(csi )
T x̂ si + (d

s
i )
T ẑ si
]

.

Also we need to cope with the future benefit functions (OF cuts). The backward

recursion shown below is mainly to construct the OF cuts to reflect the information of

future stages.
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For i = T ,T − 1,T − 2, ... , 2

For each x̂ si , s = 1, 2, ... ,S

For each scenario ξ ∈ Ξi
Solve LPξ

i with x̂ si
Construct an IC cut for RLPξ

i as in (2–2)
Solve RLPξ

i

Construct an OF cut for MIPi−1 as in (2–3)

Solve MIP1, which provide a lower bound, LB = cT1 x1 + d
T
1 z1 +

∑

ξ∈Ξ2
αξ
1.

The stochastic multistage algorithm actually keeps running the backward recursion

and forward simulation until UB and LB are sufficiently close to each other. The

multistage stochastic algorithm is shown as follows,

Step 0. Run Forward Simulation and calculate the ÛB .

Step 1. Run Backward Recursion and calculate the LB.

Step 2. If ÛB − LB ≤ ǫ, stop. Otherwise go to Step 0.

It is interesting to note that ÛB is an estimation of minimum mean value of total

cost,

µ̂TC = ÛB =
1

S

S
∑

s=1

T
∑

i=1

[

(csi )
T x̂ si + (d

s
i )
T ẑ si
]

.

So it would be nice we also can calculate the estimation of its standard deviation which

is as follows,

σ̂TC =

√

√

√

√

1

S

S
∑

s=1

[(csi )
T x̂ si + (d

s
i )
T ẑ si − µ̂TC ]

2

Hence we may stop when LB falls into the range
[

ÛB − σ̂TC , ÛB + σ̂TC
]

.
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CHAPTER 3
STOCHASTIC SECURITY CONSTRAINED UNIT COMMITMENT MODELS

Unit commitment has been a very important problem in the power system, because

it is to reduce the production cost of electricity by optimally scheduling the commitments

of generation units. This is also a challenging problem since it involves a great amount

integer variables. Traditionally, the mostly used method is Lagrangian relaxation. In this

chapter, we introduce a new type of unit commitment model which takes into account

the uncertainties of demands and the security constraints, e.g., spinning reserves, and

non-spinning reserves, to increase the system robustness during contingencies. Also,

we apply the EBD method previously proposed in Chapter 2 to these models.

3.1 Introduction

Since the 1980s, the energy sector has been experiencing a dramatic change

from regulated market to deregulated market. This introduces a lot of uncertainties to

the electricity producers, such as prices, demands, etc. Recently, in order to counter

the trend of global climate change, more and more renewable energy sources are

introduced into the energy market. This also brings uncertainties, such as wind power,

solar power, because of the weather. This makes stochastic programming models very

necessary for production companies to achieve profit maximization or cost minimization.

There are generally two types of fossil fuel generators, quick-start generators and

traditional generators, in use in most of the electricity companies. The traditional

generators are usually using coal and takes a long time to get started, i.e., a couple

of hours, which has to be scheduled a day ahead.The quick-start generators, instead,

are transferring gas or oil energy to electricity, and can get started almost immediately,

say, in less than 10 minutes. Then quick-start generators are usually used as remedies

to meet the high demands in real time. Because binary variables are used to model

whether a generator is on or off, the fuel cost and startup cost minimization problem

is a stochastic mixed integer program with discrete second stage. This is very difficult
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Table 3-1. SCUC Sets and Indices
Nc number of coal power units
Ng number of gas power units
Ξ the set of all possible scenarios
T length of planning horizon
i , j indices of generators
t time period

ξ, ζ indices of scenarios

Table 3-2. SCUC Parameters
SUit start-up cost of unit i in period t
SDgit shut-down cost of unit i in period t
li minimum down time of unit i
Li minimum up time of unit i

Pmini minimum amount of power generated by unit i
Pmaxi maximum amount of power generated by unit i
Ui ramping up limit of unit i
Di ramping down limit of unit i
Smaxi maximum spinning reserve of unit i
RS

ξ
t spinning reserve requirement at time t of scenario ξ

RO
ξ
t operating reserve requirement at time t of scenario ξ

PD
ξ
t real-time system demand at time t of scenario ξ

PL
ξ
t real-time system losses at time t of scenario ξ

to solve directly by any state of the art commercial optimization software when we

experience a big number of scenarios. Following this section, we first introduce the

model, and then apply the EBD algorithm to solve it, and finally show the numerical

results for different settings.

3.2 Problem Formulation

In the stochastic security constrained unit commitment problem, we have both

day-ahead and real-time unit commitment scheduling. In the day-ahead scheduling,

we need to make commitment plans for all generating units, include both non-fast-start

generators and fast-start generators. However, in the real time scheduling, only fast-start

units can be rescheduled. Also the power generated by one unit can be adjusted in real

time if its status is “on” at that time period. In order to facilitate the description of our

model, we list the sets and indices used in this chapter in Table 3-1, parameters in Table
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Table 3-3. SCUC Decision Variables
αit commitment decision of unit i in period t
γit startup action of unit i at period t
δit shutdown action of unit i at period t
p

ξ
it amount of power generated by unit i in period t of scenario ξ
s

ξ
it spinning reserve of unit i in period t of scenario ξ
q

ξ
it operating reserve of unit i in period t of scenario ξ
γξ
it real-time startup action of gas unit i in period t of scenario ξ
δξ
it real-time shutdown action of gas unit i in period t of scenario ξ
βξ
jt commitment decision of gas unit i in period t of scenario ξ
y

ξ
it startup reschedule indicator of gas unit i in period t of scenario ξ
z

ξ
it shutdown reschedule indicator of gas unit i in period t of scenario ξ

3-2, and decision variables in Table 3-3. αit denotes the commitment status of unit i at

time period t, with “0” meaning “off” and “1” vice versa. γit is the start-up action indicator,

of which “1” means there is a start-up action and “0” vice versa, and δit is the shut-down

action indicator. βξ
jt is the rescheduled commitment status variable of fast-start unit j at

time t in scenario ξ. So do the start-up action indicator variable, γξ
jt , and the shut-down

action indicator variable, δξ
jt . y

ξ
jt is the start-up rescheduling indicator, of which “1” means

a start-up action happens in real time but not in the day-ahead schedule, and “0” means

real-time schedule is as same as day-ahead one, and “−1” means there is a start-up

action in day-ahead schedule but not in the real time. The extensive formulation is

shown as the following,

[ESCUC]:

min

T
∑

t=1

∑

i∈{Nc∪Ng}

(SUitγit + SDitδit) (3–1)

+

T
∑

ξ∈Ξ

Probξ

T
∑

t=1





∑

i∈{Nc∪Ng}

Fi

(

p
ξ
it

)

+
∑

j∈Ng

(

SUjty
ξ
jt + SDjtz

ξ
jt

)



 (3–2)

s.t. αit − αi(t−1) ≤ αiτ , ∀i ∈ Nc , τ = t, ... , min{t + Li − 1,T}, t = 2, ... ,T , (3–3)

αi(t−1) − αit ≤ 1− αiτ , ∀i ∈ Nc , τ = t, ... , min{t + li − 1,T}, t = 2, ... ,T , (3–4)

γit ≥ αit − αi(t−1), ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–5)
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δit ≥ −αit + αi(t−1), ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–6)
∑

i∈{Nc∪Ng}

p
ξ
it ≥ PD

ξ
t + PL

ξ
t , t = 1, ... ,T , ∀ξ ∈ Ξ, (3–7)

∑

i∈{Nc∪Ng}

s
ξ
it ≥ RS

ξ
t , t = 1, ... ,T , ∀ξ ∈ Ξ, (3–8)

∑

j∈Ng

q
ξ
jt ≥ RO

ξ
t , t = 1, ... ,T , ∀ξ ∈ Ξ, (3–9)

y
ξ
jt ≥ γξ

jt − γjt, ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–10)

z
ξ
jt ≥ δξ

jt − δjt , ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–11)

γξ
jt ≥ βξ

jt − β
ξ

j(t−1), ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–12)

δξ
jt ≥ −β

ξ
jt + β

ξ

j(t−1), ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–13)

p
ξ
it ≥ P

min
i αit , ∀i ∈ Nc , t = 1, ... ,T , ∀ξ ∈ Ξ, (3–14)

p
ξ
it + s

ξ
it ≤ P

max
i αit, ∀i ∈ Nc , t = 1, ... ,T , ∀ξ ∈ Ξ, (3–15)

p
ξ
jt ≥ P

min
j βξ

jt , ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–16)

p
ξ
jt + s

ξ
jt ≤ P

max
j βξ

jt , ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–17)

− Di ≤ p
ξ
it − p

ξ

i(t−1) ≤ Ui , ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–18)

s
ξ
it ≤ S

max
i , ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , ξ ∈ Ξ, (3–19)

q
ξ
jt ≤ (1− β

ξ
jt)P

max
j , ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–20)

βξ
jt , γ

ξ
jt, δ

ξ
jt ∈ {0, 1}, ∀j ∈ Ng, t = 1, ... ,T , ξ ∈ Ξ, (3–21)

αit , γit, δit ∈ {0, 1}, ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–22)

y
ξ
jt, z

ξ
jt ∈ {−1, 0, 1}, ∀j ∈ Ng, t = 1, ... ,T , ∀ξ ∈ Ξ, (3–23)

pξ, sξ, qξ ≥ 0, ∀ξ ∈ Ξ, (3–24)

where we can just treat both γit and δit as positive continuous variables since there are

positive costs related to them in the objective function. For convenience, let pξ be a

vector composed of all pξ
it , i = 1, ... ,Nc , t = 1, ... ,T . So do sξ, qξ, α, βξ, γ, γξ, δ, δg,ξ, y ξ

and z ξ through the rest of this chapter.
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Figure 3-1. Linear Approximation of the Fuel Cost Function

Because the cost function itself is convex, usually a quadratic function with a

positive second order derivative, its piecewise linear approximation function is still

convex. Hence we can use the following function and constraints to approximate the

original function F (p) in the objective function, as is shown in Figure 3-1.

F (p) =

K
∑

k=1

Ckλk

And we need to add the followings into the constraints,

p =

K
∑

k=1

∆kλk

K
∑

k=1

λk = 1

λk ≥ 0, k = 1, ... ,K
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3.3 Problem Decomposition

It is nontrivial to have a second stage with discrete variables especially when there

are a huge number of scenarios. In this chapter, we are going to adopt the same method

proposed by [67]. The extensive formulation, [ESCUC], is too difficult to solve because

of the huge number of scenarios. So we would like to decompose the problem into two

stages: the master problem and subproblems.

The restricted master problem is shown as follows,

[RMP]:

min

T
∑

t=1

∑

i∈{Nc∪Ng}

(SUitγit + SDitδit) +
∑

ξ∈Ξ

Probξχξ (3–25)

s.t. αit − αi(t−1) ≤ αiτ , ∀i ∈ Nc , τ = t, ... , min{t + Li − 1,T}, t = 2, ... ,T , (3–26)

αi(t−1) − αit ≤ 1− αiτ , ∀i ∈ Nc , τ = t, ... , min{t + li − 1,T}, t = 2, ... ,T , (3–27)

γit ≥ αit − αi(t−1), ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–28)

δit ≥ −αit + αi(t−1), ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–29)

αit ∈ {0, 1}, ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–30)

γit , δit ≥ 0, ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T , (3–31)
∑

i∈Nc

x̂ξ,n
it αit +

∑

ji∈Ng

(

d̂
ξ,n

jt γjt + êξ,n
jt δjt

)

+ χξ ≥ bξ,n, ∀n ∈ J ξ, ξ ∈ Ξ, (3–32)

where γit and δit are relaxed to nonnegative continuous variables, because they are

related to positive costs and are determined by binary variables αit and αi(t−1). χξ is a

upper bound variable for the recourse function of scenario ξ, and x̂ξ,n
it , d̂

ξ,n

jt , êξ,n
jt and bξ,n

are the coefficients of cut n, which will be explained in details later. When the first stage

decision variables are fixed, the second stage would be decomposed to |Ξ| separate

subproblems since only one scenario will happen in reality. The only difference between

two subproblems are the demands as shown in the following formulation. For each
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scenario ξ ∈ Ξ, the subproblem, with fixed values of first stage decision variables, is as

follows,

[SPξ]:

min

T
∑

t=1





∑

i∈{Nc∪NG}

∑

k∈Ki

Ci,kλ
ξ
it,k +

∑

j∈{Ng}

(

SUjty
ξ
jt + SDjtz

ξ
jt

)





s.t. pξ
it =

∑

k∈Ki

∆i,kλ
ξ
it,k, ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T ,

∑

k∈Ki

λξ
it,k = 1, ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T ,

∑

i∈{Nc∪Ng}

p
ξ
it ≥ PD

ξ
t + PL

ξ
t , t = 1, ... ,T ,

∑

i∈{Nc∪Ng}

s
ξ
it ≥ RS

ξ
t , t = 1, ... ,T ,

∑

j∈Ng

q
ξ
jt ≥ RO

ξ
t , t = 1, ... ,T ,

y
ξ
jt ≥ γξ

jt − γ̂jt , ∀j ∈ Ng, t = 1, ... ,T ,

z
ξ
jt ≥ δξ

jt − δ̂jt , ∀j ∈ Ng, t = 1, ... ,T ,

γg,ξjt ≥ βξ
jt − β

ξ

j(t−1), ∀j ∈ Ng, t = 1, ... ,T ,

δg,ξjt ≥ −β
ξ
jt + β

ξ

j(t−1), ∀j ∈ Ng, t = 1, ... ,T ,

Pmini α̂it ≤ p
ξ
it + s

ξ
it ≤ P

max
i α̂it , ∀i ∈ Nc , t = 1, ... ,T ,

Pminj βξ
jt ≤ p

ξ
jt + s

ξ
jt ≤ P

max
j βξ

jt , ∀j ∈ Ng, t = 1, ... ,T ,

− Di ≤ p
ξ
it − p

ξ

i(t−1) ≤ Ui , ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T ,

s
ξ
it ≤ S

max
i , ∀i ∈ {Nc ∪ Ng}, t = 1, ... ,T ,

q
ξ
jt ≤ (1− β

ξ
jt)P

max
j , ∀j ∈ Ng, t = 1, ... ,T ,

βξ
jt , γ

ξ
jt, δ

ξ
jt ∈ {0, 1}, ∀j ∈ Ng, t = 1, ... ,T ,

y
ξ
jt, z

ξ
jt ∈ {−1, 0, 1}, ∀j ∈ Ng, t = 1, ... ,T ,

pξ, sξ, qξ ≥ 0,
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For any given α̂, γ̂ and δ̂, SPξ might be infeasible, which means we may need

to solve its dual in order to construct a cut for [RMP]. However, we can relax the

subproblem to make it always feasible by introducing a dummy generator with higher

costs. We call the new problem the relaxed subproblem, which is shown as follows,

[RSPξ]:

min

T
∑

t=1





∑

i∈{Nc∪NG∪d}

∑

k∈Ki

Ci,kλ
ξ
it,k +

∑

j∈{Ng∪d}

(

SUjy
ξ
jt + SDjz

ξ
jt

)



 (3–33)

s.t. pξ
it =

∑

k∈Ki

∆i,kλ
ξ
it,k, ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , (3–34)

∑

k∈Ki

λξ
it,k = 1, ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , (3–35)

∑

i∈{Nc∪Ng∪d}

p
ξ
it ≥ PD

ξ
t + PL

ξ
t , t = 1, ... ,T , (3–36)

∑

i∈{Nc∪Ng∪d}

s
ξ
it ≥ RS

ξ
t , t = 1, ... ,T , (3–37)

∑

j∈{Ng∪d}

q
ξ
jt ≥ RO

ξ
t , t = 1, ... ,T , (3–38)

y
ξ
jt ≥ γξ

jt − γ̂jt, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–39)

z
ξ
jt ≥ δξ

jt − δ̂jt , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–40)

γg,ξjt ≥ βξ
jt − β

ξ

j(t−1), ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–41)

δg,ξjt ≥ −β
ξ
jt + β

ξ

j(t−1), ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–42)

p
ξ
it ≥ P

min
i α̂it , ∀i ∈ Nc , t = 1, ... ,T , (3–43)

p
ξ
it + s

ξ
it ≤ P

max
i α̂it, ∀i ∈ Nc , t = 1, ... ,T , (3–44)

p
ξ
jt ≥ P

min
j βξ

jt , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–45)

p
ξ
jt + s

ξ
jt ≤ P

max
j βξ

jt , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–46)

− Di ≤ p
ξ
it − p

ξ

i(t−1) ≤ Ui , ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , (3–47)

s
ξ
it ≤ S

max
i , ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , (3–48)
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q
ξ
jt ≤ (1− β

ξ
jt)P

max
j , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–49)

βξ
jt , γ

ξ
jt, δ

ξ
jt ∈ {0, 1}, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–50)

y
ξ
jt , z

ξ
jt ∈ {−1, 0, 1}, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–51)

pξ, sξ, qξ ≥ 0, (3–52)

where we assume γ̂dt = δ̂dt = 0, t = 1, ... ,T . Because the relaxed subproblem is still

a mixed integer program, we need to further decompose it in order to find a legitimate

dual optimal solution to construct a cutting plane for the [RMP]. Our strategy is to keep

convexifying the subproblem while returning cuts to the [RMP] along the iterations.

When the binary vector β is fixed, the subproblem associated with scenario ξ reduce to

a linear program, [LPξ], shown as follows,

[LPξ]:

min

T
∑

t=1

∑

i∈{Nc∪Ng∪d}

∑

k∈Ki

Ci,kλ
ξ
it,k (3–53)

s.t. pξ
it =

∑

k∈Ki

∆i,kλ
ξ
it,k, ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , (3–54)

∑

k∈Ki

λξ
it,k = 1, ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , ← l ξit (3–55)

∑

i∈{Nc∪Ng∪d}

p
ξ
it ≥ PD

ξ
t + PL

ξ
t , t = 1, ... ,T , ← hI,ξ

t (3–56)

∑

i∈{Nc∪Ng∪d}

s
ξ
it ≥ RS

ξ
t , t = 1, ... ,T , ← hII,ξ

t (3–57)

∑

j∈{Ng∪d}

q
ξ
jt ≥ RO

ξ
t , t = 1, ... ,T , ← hIII,ξ

t (3–58)

Pmini α̂it ≤ p
ξ
it + s

ξ
it ≤ P

max
i α̂it, ∀i ∈ Nc , t = 1, ... ,T , ← uξ∓

it (3–59)

Pminj β̂ξ
jt ≤ p

ξ
jt + s

ξ
it ≤ P

max
j β̂ξ

jt , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← v ξ∓
jt (3–60)

− Di ≤ p
ξ
it − p

ξ

i(t−1) ≤ Ui , ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , ← w ξ∓
it (3–61)

s
ξ
it ≤ S

max
i , ∀i ∈ {Nc ∪ Ng ∪ d}, t = 1, ... ,T , ← r I,ξit (3–62)
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q
ξ
jt ≤ (1− β̂

ξ
jt)P

max
j , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← r II,ξjt (3–63)

pξ, sξ, qξ,λξ ≥ 0. (3–64)

Solving the above [LPξ] can generate a global cut, which is shown in (3–65), to

convexify the following [RLPξ] which capture the integer part of [RSP].

π ≥
T
∑

t=1

∑

i∈Nc

α̂it

(

Pmini û
ξ−
it + P

max
i û

ξ+
it

)

+

T
∑

t=1

∑

j∈{Ng∪d}

βξ
jt

[

Pminj v̂
ξ−
jt + P

max
j

(

v̂
ξ+
jt − r

II,ξ
jt

)]

+

T
∑

t=1

[

ĥ
I,ξ
t

(

PD
ξ
t + PL

ξ
t

)

+ ĥII,ξ
t RS

ξ
t + ĥ

III,ξ
t RO

ξ
t

]

+

T
∑

t=1





∑

i∈{Nc∪Ng∪d}

(

l̂
ξ
it −Di ŵ

ξ−
it + Uiŵ

ξ+
it + S

max
i r̂

I,ξ
it

)

+
∑

j∈{Ng∪d}

Pmaxj r̂
II,ξ
it





(3–65)

where l̂ ξ, ĥI,ξ, ĥII,ξ, ĥIII,ξ, ûξ∓, v̂ ξ∓, ŵ ξ∓, r̂ I,ξ, r̂ II,ξjt are the optimal dual solution corresponding

to constraints (3–55) – (3–63) respectively. By “global”, it means that the cut is valid for

[RLPξ] given any first stage solution, i.e., the solution from the master problem, α̂, γ̂ and

δ̂. For convenience, we rewrite (3–65) in vector format as follows,

bξβξ + πξ ≥ f ξ + aξα̂

Then we can include these global cuts to construct a relaxed version of the subproblems

as follows,

[RLPξ]:

min

T
∑

t=1





∑

j∈{Ng∪d}

(

SUjty
ξ
jt + SDjtz

ξ
jt

)



+ πξ −
T
∑

t=1

∑

j∈{Ng∪d}

(SUjt + SDjt) (3–66)

s.t. y ξ
jt − γ

ξ
jt ≥ 1− γ̂jt , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← θξ

jt (3–67)

z
ξ
jt − δ

ξ
jt ≥ 1− δ̂jt , ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← σξ

jt (3–68)

γξ
jt − β

ξ
jt + β

ξ

j(t−1) ≥ 0, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–69)
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δξ
jt + β

ξ
jt − β

ξ

j(t−1) ≥ 0, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , (3–70)

b
ξ
kβ

ξ + πξ ≥ f ξ
k + a

ξ
k α̂, ∀k ∈ K

ξ, ← ηξ
k (3–71)

βξ
jt ≤ 1, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← ρξ

jt (3–72)

y
ξ
jt ≤ 2, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← φξ

jt (3–73)

z
ξ
jt ≤ 2, ∀j ∈ {Ng ∪ d}, t = 1, ... ,T , ← ψξ

jt (3–74)

βξ, y ξ, z ξ, γξ, δξ ≥ 0, (3–75)

where Kξ is the set containing all global cuts for scenario ξ.

Proposition 3.1. The cut, (3–65), obtained by solving [LPξ] is a global cut for [RLPξ]

given any first stage solution, α̂, γ̂ and δ̂.

Since the above [RLPξ] is a linear program, whose feasible region is an approximation

of the convex hull of [RSPξ]s feasible region, we can derive a valid Benders cut for

[RMP], shown in (3–76), by solving its dual problem optimally.

−
T
∑

t=1

∑

i∈Nc

(

∑

k∈Kξ

η̂ξ
ka

ξ
k,it

)

αit +

T
∑

t=1

∑

j∈Ng

(

θ̂ξ
jtγjt + σ̂

ξ
jtδjt

)

+ χξ

≥
∑

k∈Kξ

f
ξ
k η̂

ξ
k +

∑

j∈{Ng∪d}

(

θ̂ξ
jt + σ̂

ξ
jt

)

+

T
∑

t=1

∑

i∈{Ng∪d}

(

ρ̂ξ
jt + 2φ̂

ξ
jt + 2ψ̂

ξ
jt

)

,

(3–76)

where η̂ξ
k is the optimal dual solution corresponding to the k th global cuts in [RLPξ], and

θ̂ξ, σ̂ξ, ρ̂ξ, φ̂ξ and ψ̂ξ, are the optimal dual solutions corresponding to constraints (3–67),

(3–68), (3–72), (3–73) and (3–74) respectively.

Proposition 3.2. The cut from [RLPξ] is a valid Benders cut for [RMP].

It is interesting to note that all [LPξ]s share the same dual space (dual feasible

region) since the costs in the objective functions and left-hand-side coefficients are the

same. Hence the dual solution obtained by solving a specific [LPξ] could be used to

construct the global cuts for other scenarios. In constraint (3–71), the set of cuts, Kξ,

is designated to only one single scenario, ξ. However, we can generalize this set to all

scenarios, which is supported by the following corollary.
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Corollary 1. The global cut of scenario ξ, (3–65), with right hand side being changed to

f ζ − aξα̂, is also valid for [RLPζ ] given any first stage solution, for all ζ ∈ Ξ.

For all scenarios, this constraint, (3–65), is almost the same except f ζ
k , which is

calculated as follows,

f
ζ
k =

T
∑

t=1

[

ĥ
I,ξ
k,t

(

PD
ζ
t + PL

ζ
t

)

+ ĥII,ξ
k,tRS

ζ
t + ĥ

III,ξ
k,t RO

ζ
t

]

+ f c ,ξk

where the (k) in the superscripts denotes k th optimal dual solution in Kξ, and

f
c ,ξ
k =

T
∑

t=1





∑

i∈{Nc∪Ng∪d}

(

l̂
ξ
k,it − Di ŵ

ξ−
k,it + Uiŵ

ξ+
k,it + S

max
i r̂

I,ξ
k,it

)

+
∑

j∈{Ng∪d}

Pmaxj r̂
II,ξ
k,it





which is independent of scenario ζ . So f ζ
k can be considered as an affine function of

PD
ζ
t , PL

ζ
t , RS

ζ
t and ROζ

t , in which f c ,ξk is the constant. Then all [RLPξ]s can share the

same global cut set except for the right hand sides. Instead of multiple global cut sets for

all the scenarios, we only need to maintain a single global cut set as follows,

bkβ
ζ + πζ ≥ f ζ

k + ak α̂, ∀k ∈ K, (3–77)

where the only differences between the scenarios are the names of variables and right

hand sides.

After we replace (3–71) in [RLPξ] by (3–77), the left-hand-side coefficients of [RLPξ]

are not dependent of the scenarios any more because bk is the same for all scenarios.

This also means that all [RLPξ]s have the same dual feasible region because they are

all linear programs. So an optimal dual solution to one scenario is also a feasible dual

solution to another scenario. Hence the dual optimal solutions, θ̂ξ, σ̂ξ, ψ̂ξ, φ̂ξ, η̂ξ, and

ρ̂ξ to [RLPξ] can help construct valid Benders cuts from all other scenarios, but with

different f ζ
k ’s, which is stated in the following theorem.

Proposition 3.3. For all ζ ∈ Ξ,

−
∑T

t=1

∑

i∈Nc

(

∑

k∈Kξ η̂
ξ
kak,it

)

αit +
∑T

t=1

∑

j∈Ng

(

θ̂ξ
jtγjt + σ̂

ξ
jtδjt

)

+ χζ (3–78)
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≥
∑

k∈K f
ζ
k η̂

ξ
k +

∑

j∈{Ng∪d}

(

θ̂ξ
jt + σ̂

ξ
jt

)

+
∑T

t=1

∑

i∈{Ng∪d}

(

ρ̂ξ
jt + 2φ̂

ξ
jt + 2ψ̂

ξ
jt

)

is a valid Benders cut for [RMP] given any first stage solution, where θ̂ξ, σ̂ξ, ψ̂ξ, φ̂ξ, η̂ξ,

and ρ̂ξ are the dual optimal solutions to [RLPξ].

With these disaggregated cuts being added into the [RMP], we need to include |Ξ|

recourse variables, χξs. In the case of a big number of scenarios, this could increase

the computational burden of solving the restricted master problem. However, all the

cuts generated by the same dual solution of [RLPξ] can be aggregated to one single

cut by adding them together while multiplying each of them by the probability of its

corresponding scenario. The aggregated cut is shown as follows,

−
T
∑

t=1

∑

i∈Nc

(

∑

k∈Kξ

η̂ξ
kak,it

)

αit +

T
∑

t=1

∑

j∈Ng

(

θ̂ξ
jtγjt + σ̂

ξ
jtδjt

)

+ χ

≥
T
∑

t=1

[

h̄
I,ξ
t

(

PDt + PDt
)

+ h̄II,ξ
t RS t + h̄

III,ξ
t ROt

]

+
∑

k∈K

η̂ξ
k f
c
k

+
∑

j∈{Ng∪d}

(

θ̂ξ
jt + σ̂

ξ
jt

)

+

T
∑

t=1

∑

i∈{Ng∪d}

(

ρ̂ξ
jt + 2φ̂

ξ
jt + 2ψ̂

ξ
jt

)

(3–79)

where
∑

ξ∈Ξ χ
ξ is replaced by χ, and RS , RO, PD and PL are the expectations of

the random spinning reserve, operating reserve and demand. h̄I,ξ
t , h̄II,ξ

t and h̄III,ξ
t are

aggregated optimal dual solutions as follows,

h̄
I,ξ
t =

∑

k∈K

η̂ξ
k ĥ

I
k,t ,

h̄
II,ξ
t =

∑

k∈K

η̂ξ
k ĥ

II
k,t ,

h̄
III,ξ
t =

∑

k∈K

η̂ξ
k ĥ

III
k,t .

If we choose to add the aggregated cuts to the relaxed master problem, RMP, the

term,
∑

ξ∈Ξ χ
ξ, in its objective function can be then simply replaced by χ. According

to the number of scenarios, we could choose different strategies to add valid Benders

cuts. As discussed in [10], the disaggregated scheme is chosen in the case of a small
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number of scenarios, and vice versa. We prefer the aggregated scheme because the

aggregated cuts contain more information from all scenarios and are very easy to

generate due to the sharing of same dual space.

3.4 Solution Algorithm

If there is no Benders’ cut being added in the [RMP], without including recourse

variable χ in the objective function, its optimal solution is (α̂, β̂, γ̂, δ̂) = 0. It is because

that all the variables are nonnegative and the costs of startup and shutdown are positive.

Hence 0 is the best objective value that [RMP] can achieve. Then we can use this as

the initial solution for the Embedded Benders Decomposition. At each iteration, after we

solve the [RMP], its optimal objective value is used as a lower bound of [ESCUC]. An

upper bound can be obtained as follows,

ZUB = ZRMP − χ̂+
∑

ξ∈Ξ

ProbξZξ
RSP (3–80)

where Zξ
RSP , ZRMP and χ̂ are the optimal objective values of [RSPξ] and [RMP], and the

solution of χ respectively. This actually represents the cost of a feasible solution to the

relaxed [ESCUC] with a dummy costly generator being added.

The lower bound based on the solution of [RMP] could improve very slowly in

practice when the UB and LB are very close to each other. One of the methods to avoid

slow convergence or even stalling is to apply the integer L-shaped cut since it is an

optimality cut which ensures to improve the lower bound if there exists a solution with a

higher objective value. An integer L-shaped “optimality” cut is as follows,

z ≥ (Q(x̂)− L)

(

∑

j∈T

xj −
∑

j∈F

xj − |T |+ 1

)

+ L

where Q(x̂) is the recourse function of x̂ , the first stage solution, and L is a lower bound

for the second stage problem, and T = {j |x̂j = 1} and F = {j |x̂j = 0}, if x is the

first stage decision variable and x̂ is the current solution. This follows from the fact

that the right hand side will be equal to Q(x̂) if x = x̂ , and less than L otherwise since
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(
∑

j∈T xj −
∑

j∈F xj − |T |+ 1
)

≤ 0 if x 6= x̂ . We refer interested readers to [38] for the

detailed proof. Without having to define the two sets, T and F , after rearranging terms

the cut can be expressed by the following equivalent inequality,

(Q(x̂)− L)
∑

j

(1− 2x̂j)xj + z ≥ Q(x̂)− (Q(x̂)− L)
∑

j

x̂j .

The first stage problem, [RMP], is a pure integer program with only 0-1 variables, and

then we can apply the integer L-shaped “optimality” cut in [RMP], which is shown as

follows,

[Q(α̂)− L]





T
∑

t=1

∑

i∈{Nc∪Ng}

(1− 2α̂it)αit



+ χ ≥ Q(α̂)− [Q(α̂)− L]





T
∑

t=1

∑

i∈{Nc∪Ng}

α̂it





(3–81)

where the recourse Q(·) is a function of only α, the commitment status of both coal and

gas power generators, since the best optimal objective value of the second stage is

uniquely defined once they are determined. If all generators remain “on” at each time

periods, there will be no startup and shutdown cost, and then the optimal objective

cost can be used as an lower bound of the second stage, L. The embedded Benders

decomposition algorithm is shown as follows,

Step 0. Set UB = ∞, LB = 0, K = ∅, (α̂, γ̂, δ̂) = 0, ZUB = 0, ZRMP = 0, and
χ̂ = 0;

Step 1. Solve [RSPξ], ∀ξ ∈ Ξ, and suppose that optimal solution and objective
value are (β̂ξ, p̂ξ, q̂ξ, λ̂ξ, ŷ ξ, ẑ ξ, γ̂g,ξ, δ̂g,ξ), and Zξ

RSP , ∀ξ ∈ Ξ;
Update ZUB ;
UB← min(UB, ZUB).

Step 2. Solve [LPξ], and dual optimal solutions are (ŵ , ĥ, û and v̂ );
Add this new dual solution to the set, K;
Repeat this for all ξ ∈ Ξ;

Step 3. Solve [RLPξ], and suppose the optimal dual solution is (ψ̂, φ̂, η̂, l̂ , r̂ and
ρ̂);
Add a new aggregated cut, as in (3–79), into [RMP];
Repeat this for all ξ ∈ Ξ;
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Step 4. Add an integer L-shaped “optimality” cut, as in (3–81), into [RMP];

Step 5. Solve [RMP], and suppose that optimal solution and objective value are
(α̂, γ̂, δ̂, χ̂) and ZRMP respectively;
LB← max(LB, ZRMP);

Step 6. If UB− LB ≤ ǫ, stop; Otherwise, go to Step 1.

where ǫ is a small value for the gap tolerance. As is shown above, we repeatedly solve

[LPξ] and [RLPξ] for all scenarios in step 2 and 3 respectively. However, in order to

improve computational efficiency we do not need to repeat for all scenarios since all

[LPξ]s and [RLPξ]s are corresponding to the same first stage decision. One way is to

sample from all the scenarios and only solve a limited amount of [LPξ]s and [RLPξ]s.

In this algorithm, we maintain two sets of cuts: one for convexifying the mixed

integer subproblems, and one for constructing the future benefit functions. The first set

of cuts are called inner convexification (IC) cuts, and the second set of cuts are referred

to as outer feedback (OF) cuts. Because both types of cuts are actually Benders cuts,

and IC cuts are embedded in the subproblems to provide valid OF cuts, we call this

algorithm Embedded Benders Decomposition algorithm. When the algorithm actually

terminate, we may need to check the solution in order to determine if the original

[ESCUC] is feasible or not. Any variable related to the dummy costly generator should

be equal to zero. Otherwise, [ESCUC] is infeasible because even the all the available

generators are turned on, some of requirement constraints (3–7), (3–8) or (3–9) cannot

be satisfied, which means the demands are actually greater than the total generation

capacity of all units.

3.5 Numerical Examples

In this section, we present numerical results of our algorithm on serval problems

with different sizes and settings. We code our embedded Benders decomposition

algorithm in Microsoft Visual C++ while calling CPLEX 10 (Concert Technology) to solve

the decomposed problems. All programs are run in Microsoft Windows XP Professional

2002 SP2 on a Dell Desktop with Intel Pentium 4 CPU 3.40 GHz and 2 GB of RAM.
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Table 3-4. Generators Data
Startup Generation Power 10 Minutes

Unit Cost Cost (MW) Spinning
(MBtu) (MBtu/MW) Max Min (MW)

G1 100 8 120 10 10
G2 80 10 100 20 10
G3 150 12 50 20 10
G4 180 15 60 10 10

Table 3-5. Load forecast of a simple example
Loads (MW)

ξ Prob(ξ)
t = 1 t = 2

1 0.2 220 260
2 0.5 250 280
3 0.3 270 300

A security constrained unit commitment problem with four generators, of which G3

and G4 are fast-start generators, is discussed below. The generator data are shown

in Table 3-4. For convenience, we solve a problem with two time period and three

scenarios, with data shown in Table 3-5.

By applying Embedded Benders Composition, after 5 iterations with 10 cuts added

in the first stage, the algorithm reaches the optimality and returns the same optimal

solution as the complete model solved by CPLEX, which takes 23 interations and adds

8 cuts . The results are shown in Table 3-6. Computational times (in milliseconds) of

more examples are shown in Table 3-7, in which we list the total computational times,

and computing times for [RMP], [SP], [LP] and [RSP]. As can be seen in Table 3-7,

computing times almost increase linearly with respect to the number of scenarios, which

Table 3-6. Solution of the 4-unit SCUC with 3 scenarios
Cost Generation (MW)

ξ
(MBtu)

t
G1 G2 G3 G4

1 120 100 0 0
1 4730 2 120 100 40 0

1 120 100 30 0
2 5540 2 120 100 50 10

1 120 100 50 0
3 6080 2 120 100 50 30
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means our EBD method is well suited to problems with a large number of scenarios.

Also, the EBD algorithm spends a big portion of time to solve [SP] and [LP]. Hence it

is possible to further reduce computing time if we do not calculate new IC and OF cuts

for each scenario in Step 1 because looping through all scenarios takes a lot of time,

especially when we have a huge number of scenarios. More advanced implementation

could help to achieve this and improve the overall performance.
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Table 3-7. Computational Results of SCUC
Instance Group |Ξ| ESCUC RMP RSP LP RLP TTL ItCnt TTL/ESCUC RMP/ESCUC

1 47 220 187 62 61 530 5 11.28 4.68
|Nc | = 2 3 62 234 517 62 31 844 5 13.61 3.77
|Ng| = 3 8 79 232 1356 77 47 1712 5 21.67 2.94
|K | = 4 20 141 203 3674 79 63 4019 5 28.50 1.44

100 781 202 18005 80 32 18319 5 23.46 0.26
1000 24922 187 148439 62 47 148735 4 5.97 0.01

1 47 203 187 126 77 593 5 12.62 4.32
|Nc | = 2 3 62 205 515 93 63 876 5 14.13 3.31
|Ng| = 3 8 79 218 1464 126 63 1871 5 23.68 2.76
|K | = 6 20 156 218 3708 124 64 4114 5 26.37 1.40

100 1000 236 18534 112 63 18945 5 18.95 0.24
1000 50485 187 184502 126 48 184863 4 3.66 0.00

1 62 203 220 78 80 581 5 9.37 3.27
|Nc | = 2 3 78 63 249 31 16 359 2 4.60 0.81
|Ng| = 3 8 125 172 1375 47 48 1642 5 13.14 1.38
|K | = 8 20 406 156 3154 48 31 3389 4 8.35 0.38

100 7611 156 16802 45 48 17051 4 2.24 0.02
1000 152526 125 133855 77 21 134078 3 0.88 0.00

1 63 233 265 77 79 654 5 10.38 3.70
|Nc | = 2 3 78 47 238 62 31 378 2 4.85 0.60
|Ng| = 3 8 141 172 1628 109 47 1956 4 13.87 1.22
|K | = 11 20 422 172 3281 77 47 3577 4 8.48 0.41

100 8890 140 16436 79 46 16701 4 1.88 0.02
1000 227877 126 133635 48 31 133840 3 0.59 0.00
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CHAPTER 4
OPTIMIZATION MODELS IN NATURAL GAS INDUSTRY

With the surge of the global energy demand, natural gas plays an increasingly

important role in the global energy market. To meet the demand, optimization techniques

have been widely used in the natural gas industry, and yielded a lot of promising results.

In this chapter, we give a detailed discussion of optimization models in the natural gas

industry with the focus on the natural gas production, transportation, and market.

4.1 Introduction

Concerned about global warming and shortage of crude oil, people become more

interested in natural gas which is a relatively clean energy source and abundant in

many places. Natural gas mainly consists of methane, and when burnt, it releases a

fair amount of energy and less green house gases (e.g., CO2) than oil and coal. As

we can see from Fig. 4-1, the world gas consumption/production is linearly growing

since 1980 from approximately 52,890 billion cubic feet to approximately 104,424

billion cubic feet in 2006, according to the International Energy Annual 2006 from

US Department of Energy, Energy Information Administration (EIA). Moreover, the

natural gas consumption is expected to continue to grow linearly to approximately 153

trillion cubic feet in 2030, which is an average growth rate of about 1.6 percent per year

according to the International Energy Outlook 2009 from EIA.

In 2008, the residential use of natural gas accounted for 21%, the commercial use

for 13%, the industrial use for 34%, the transportation for 3% and the electric power

production for 29% the Annual Energy Review 2009 from EIA. The industrial sector

is expected to remain the largest end-use sector for natural gas through 2030 with an

expected share of 40% according to the International Energy Outlook 2009 from EIA.

The electric power generation from natural gas was the second largest consumer of

natural gas after the industrial sector in 2006. The electricity generation accounted

in 2006 for 32% of the world’s total natural gas consumption. Due to the worldwide
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Figure 4-1. World Gas Consumption in Billion Cubic Feet

discussions/attempts to reduce green house gas emissions, the electricity generation

via natural gas is expected to become even more important and its share of the world’s

total natural gas consumption is expected to increase to 35% in 2030 according to the

International Energy Outlook 2009 from EIA. Hence, natural gas remains an important

source of energy for both the industrial and the electricity sectors.

This chapter discusses different optimization models in the natural gas industry.

We focus on three key applications: the natural gas production, the natural gas

transportation, and the natural gas market. This chapter is organized in such a way

that we start with the introduction of the problem itself, and then discuss a mathematical

formulation of the problem and finally review solution techniques to solve these models.

However, when well known algorithms, such as Branch & Cut, are used to solve the

mathematical programs, we do not go into details but refer to the literature instead.

Section 4.2 discusses the optimization applications in gas recovery and production.

We focus on the production scheduling problem and the maximal recovery problem.

Section 4.3 focuses on gas transportation, where the network design problems and

the optimal fuel cost problem are discussed. The natural gas market is discussed in

Section 4.4. We conclude with Section 4.5.
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4.2 Optimization in Gas Production (Recovery)

There is still a huge amount of gas natural gas reserves in the world: in 2009,

the reserves were estimated at 6,254 trillion cubic feet; 69 trillion cubic feet above the

estimate for 2008. This follows the general upwards trend of the world natural gas

reserves over years. With a share of approximately 40.7%, the Middle East has the

largest natural gas reserves of the world, followed by Eurasia with 32.2% and Africa

with 7.8%. On the country level, Russia has approximately 26.9% of the worlds natural

gas reserves and holds together with Iran (15.9%) and Qatar (14.3%) approximately

57% of the world’s natural gas reserves while the top 20 countries hold together 90.7%.

Interestingly, for most regions, the reserves-to-production rates are substantial, with

an worldwide estimate of 63 years according to BP 2008 report. Hence, natural gas

production and recovery will continue to be an important task in the future.

Optimization models and techniques are applied extensively in natural gas recovery

processes, such as production scheduling, placement of well head, gas recovery

systems or facilities designs. For a survey on gas and oil recovery and production, we

refer the reader to Horne [34]. These optimization problems are computationally difficult

to solve. One reason is that a huge number of parameters are subject to uncertainties.

Another reason are the nonlinear/nonsmooth/nonconvex functions and constraints, due

to the properties of gas production operations as explained in [8]. In the following, we

discuss some specific optimization problems occurring in the gas production.

4.2.1 Production Scheduling Considering Well Placement

Usually, a gas reservoir is accessed by drilling multiple wells on its surface. Also

gas withdrawal from any of the wells will lead to pressure reductions at all wells drilled

on the same reservoir. Then the pressure reductions will come back to decrease the

withdrawal rate at every well for the next period. The optimal production scheduling

problem is to find the optimal withdrawal rate at every drilled well at each time period

while determining the well location at the same time.
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4.2.1.1 Mixed Integer Linear Programming Formulation

Murray and Edgar [44] formulate this problem as a mixed integer linear programming

(MILP) problem. They try to determine the optimal well configuration (withdrawal rates)

while satisfying the demand schedule without exceeding it. Drilling or not at a particular

location, i , can be denoted by a binary variable, say, yi . Hence, the drilling decision can

only be made at particular locations i which have to be identified beforehand. Also, use

qki to denote the withdrawal rate from well i at time period k . The interaction between

withdrawal rates and pressures at all the wells can be delineated by the following gas

flow equation,

∇kg∇Φ+ q = φct
∂Φ

∂t
, (4–1)

where Φ = 2
∫ p

0
ρ

z(ρ)µ(ρ)
dρ. Including this constraint in a mathematical programming

formulation leads to huge computational difficulties. However, as stated in [44], this

nonlinear constraint has a very good linearization substitute, called influence equations

[2, 64]. In these equations, the pressure drop at well i is a linear function of withdrawal

flow rates from all drilled wells. This is defined by influence function matrices, Φk ,

k = 1, ... ,m, where Φij denotes the pressure drop at well i for a unit flow at well j during

time period k . The maximal profit problem can be formulated as follows,

max

m
∑

k=1

n
∑

i=1

bki q
k
i (4–2)

s.t.
n
∑

j=1

Φkijq
k
j = p

k
i , i = 1, ... , n, k = 1, ... ,m, (4–3)

n
∑

j=1

Φkijq
k
j ≤ p̄

k
i , i = 1, ... , n, k = 1, ... ,m, (4–4)

l
∑

k=1

n
∑

j=1

Φkijq
k
j ≤ p̂

l
i , i = 1, ... , n, l = 1, ... ,m, (4–5)

n
∑

j=1

qkj ≤ d
k , k = 1, ... ,m, (4–6)

qki ≤ Miyi , i = 1, ... , n, (4–7)
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qki ≥ 0, i = 1, ... , n, k = 1, ... ,m, (4–8)

yi ∈ {0, 1}, i = 1, ... , n, (4–9)

where, from well i during time period k , bki is the benefit of one unit gas flow, pki is the

pressure reduction, and p̄ki is the maximal pressure reduction at period k . p̂li is the

maximal total pressure drop allowed from the initial time point to time period l and dk is

the demand at time k . Mi is a big number to bound the withdrawal flow rate if yi = 1.

Its objective function is the total benefit from the withdrawal of gas. Constraints (4–3)

compute the pressure drop at each well location during every time period. Constraints

(4–4) specify the upper bound by which the pressure can drop during a specific single

period for each well location. Also there is an upper bound by which the pressure can

drop during the period between the initial time point and the current time period, which

is stated in constraints (4–5). Constraints (4–6) ensure that the total gas withdrawal

from all wells does not exceed the demand at each time period. Constraints (4–7) show

that only drilled wells can have a positive withdrawal flow rate. This results in a mixed

integer programming (MIP) problem, which can be solved by well Branch & Bound or

Branch & Cut techniques. We refer the reader to [35, 37, 39, 46, 65] for comprehensive

discussions of these techniques.

Let us discuss now the drawbacks of the proposed model (4–2) - (4–9). The model

does not include any other cost such as well drilling cost, it does not take into account

the relationship between the profit coefficient bki and the demand dk , and it assumes

that the operator can choose any flow rate without considering the concurrent wellhead

pressure. Also, after the deregulation of the natural gas market, the constraint (4–6) is

not necessary and can be incorporated into the objective function instead. Furthermore,

the different periods are intercorrelated to each other. For instance, the price of gas at

time period t will affect the demand at the next time period t + 1 and vice versa. By
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incorporating all these factors, a nonlinear mixed integer programming problem can be

formulated.

4.2.1.2 Nonlinear Programming Formulation

A multiple-stage nonlinear optimization problem is also proposed by Murray and

Edgar in [44]. They formulate a nonlinear problem for each time period taking into

account the interactions between two consecutive stages. The objective function

for each time period k incorporates more factors such as the well placement cost,

compressor operating cost, compressor setup cost, and the price of gas, which is shown

as follows,

f k =

n
∑

j=1

(

Aqkj − Cw
qkj

qkj + ǫ
− Ukj q

k
j − C

k
j q
k
j +D

k
j

)

, (4–10)

where A is the price per unit gas flow, and Cw is the setup cost of any well placement.

Instead of using the binary variables yi to denote whether a well is drill or not, this

nonlinear programming formulation uses the term
qk
j

qk
j
+ǫ

to approximate yi , where ǫ is a

small constant compared to the magnitude of gas withdrawal flow rates qkj , j = 1, ... , n,,

k = 1, ... ,m. To be able to use this approximation, the magnitude of the flow rates are

assumed to be known. Ukj is the operating cost of the compressors for a unit flow of

qkj . −C
k
j q
k
j and Dkj approximate the setup cost of a compressor at this location before

time period k . Setting Dkj = C
k
j q
k−1
j makes the summation of these two terms equal

to 0, which ensures that the compressor setup cost only occur once. For the nonlinear

formulation, the deliverability equations are considered besides the constraints in the

MIP formulation. The deliverability constraints specify the relationship between the

withdrawal rate and well head pressure, which is also approximated by linear functions

and shown as follows,

qkj ≤ e
1
j + e

2
j ρ
k
j , j = 1, ... , n, k = 1, ... ,m, (4–11)

where e1j and e2j are the linear coefficients and ρkj is the bottom-hole pressure at well site

j after time period k .
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Also a multi-stage based algorithm is proposed in [44], in which all stages (time

periods) are solved in an sequential order from 1 to m. We describe this algorithm as

follows:

Step 1: Set up the problem: obtain parameters, e1j and e2j , by some regression
techniques; assume that no compressor is needed initially and set
U1j = C

k
j = D

k
j = 0; start from the first period problem.

Step 2: Solve the period k problem with an appropriate nonlinear programming
algorithm, such as the gradient projection method [55].

Step 3: Examine the dual variables of the deliverability constraints. If none is
positive, an optimal solution has been found for time period k , then go to
Step 6. Otherwise, go to Step 4.

Step 4: If all positive dual variables are associated with deliverability constraints
of the lowest feasible delivery pressure, an optimal solution is found for
time period k , then go to Step 6. Otherwise, go to Step 5.

Step 5: Select the deliverability constraint with the largest associated dual
variable, and then relax this constraint to the next lowest delivery
pressure. Go to Step 2.

Step 6: By using the current period optimal solution, update the parameters
in the next period problem. If k = m, terminate the whole program.
Otherwise, set k = k + 1, and go to Step 2.

The drawback of the proposed model is that it does not consider all time periods

together but considers them separately. Obviously, with this approach, an optimal

solution to the practical problem cannot be obtained, as the interactions among all time

periods are not taken into account.

4.2.2 Total Gas Recovery Maximization

In order to withdraw as much natural gas from a reservoir as possible, one option is

to use waterflooding. This leads to the following immediate question. What is an optimal

water injection rate with respect to different objectives, such as the maximal ultimate

recovery, or the total revenues? A lot of models have been proposed for this problem.

Mantini and Beyer [41] proposed optimal control models to this system and defined

several objective functions due to different aspects of the problem.

59



Now, suppose there are two wells drilled on the surface of the gas reservoir, one for

gas recovery and one for water injection. Therefore, let r(t) denote the withdrawal rate

of gas which is bounded by the maximum rate of gas extraction rm(t). Through the water

injection, well water is injected into the reservoir at the nonnegative rate s(t). This model

assumes a constant g which is the ratio of gas entrapped behind the injected water to

the volume of water at any time. The model to maximize the ultimate gas recovery can

then be stated as

max

∫ ∞

0

r(t)dt (4–12)

s.t. PV = NRT , (4–13)

dV

dt
= −s(t)− gs(t), (4–14)

dN

dt
= −r(t)−

gs(t)P(t)

RT
, (4–15)

rm(t) ≥ r(t) ≥ 0,

s(t) ≥ 0,

where P(t), V (t) are the pressure and volume of the gas reservoir, N(t) is the amount

of gas which is not entrapped at time t. R is the universal constant of gas, and T is

the temperature. Constraint (4–13) is the ideal gas law, constraint (4–14) shows the

entrapped gas equals to constant g times the volume of the water while constraint

(4–15) states that gas is entrapped at the current pressure in the reservoir and remains

at the same pressure and has no effect on the reservoir. By introducing another variable

Q = P/RT and plugging constraint (4–13) into constraint (4–15), a more concise model

can be obtained as follows,

max

∫ ∞

0

r(t)dt

s.t.
dV

dt
= −(1 + g)s(t),

dQ

dt
=
−r(t) + P(t)s(t)

V (t)
,
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rm(t) ≥ r(t) ≥ 0,

s(t) ≥ 0.

Mantini and Beyer [41] also discuss several other objective functions. For example,

the objective function to maximize the present worth value of the net revenues for

internal rate of return, ρ, not equal to 0, is

β

∫ ∞

0

e−ρt [r(t)− αs(t)]dt,

where α is the ratio of the water price (per cubic meter) to the gas price (per mole),

and β is the gas price per mole. Due to the presents of the differential equations, these

problems are generally computationally difficult to solve. However, Mantini and Beyer

established a very interesting theorem, characterizing the properties of (some) optimal

solutions of the control variable r(t) and s(t). Let us re-state this theorem here.

Theorem 4.1. [41] The objective function
∫∞

0
r(t)dt is maximized by any functions r̂ and

ŝ such that,

∫ t1

0

r̂(t) = V0(P0 − Pc), (4–16)
∫ t2

0

r̂(t) =
Pc(V0 − Vc)

1 + g
, (4–17)

r̂(t) = 0, ∀t > t2, (4–18)

ŝ(t) =































0, 0 ≤ t < t1,

r̂(t)
Pc
, t1 ≤ t ≤ t2,

0, t > t2.

(4–19)

for t1 and t2 are any numbers with 0 < t1 < t2, where P0 and V0 are the initial pressure

and volume respectively and gas recovery stops when P ≤ Pc or V ≤ Vc .

This theorem leads to the interesting statement that it is optimal to start the

waterflooding when the first time P is lower than Pc ; that is, the entrapped gas is at
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the lowest possible pressure. Although, in practice, this may not be valid for some

specific gas wells due to discrepancies between modeling and reality.

4.3 Natural Gas Pipeline Network Optimization

Originally natural gas was treated as a byproduct of crude oil or coal mining and

was spared. The flares in the mining field were usually natural gas [62]. Not until the

introduction of pipelines did the natural gas become one of the major sources of energy.

The earliest gas pipelines were constructed in the 1890’s and they were not as efficient

as those that we are using nowadays. The modern gas pipelines did not come into being

until the second quarter of twentieth century. Because of the properties of natural gas,

pipelines were the only way to transport it from the production sites to the demanding

places, before the concept of Liquefied Natural Gas (LNG). The transportation of natural

gas via pipelines remains still very economical, but it is highly impractical across oceans.

Although LNG market is burgeoning in high speed now, pipeline network remains the

main transportation system for natural gas.

Gas pipelines play a major role in energy supply and security. The Nord Stream

Gas Pipeline (NSGP) project, transporting Russian gas to Germany, is one of the

recent large scale pipeline projects. The NSGP is planned as a twin-pipeline with a

total capacity of 55 billion cubic meters per annum. The estimated investment cost

are 4 billion euros, financed by a joint venture of the three companies JSC Gazprom,

BASF AG and E.ON AG. Not least, the decision to build the marine pipeline was driven

politically, passing by Poland, Lithuania, Estonia, Belarus and Ukraine, in order to

increase the natural gas supply security for Germany, mainly.

After the post war gas pipeline boom, a lot of research has been done in optimization

applications to pipeline networks; for instance, how to setup the pipeline network, how to

determine the optimal diameter of the pipelines, how to allocate compressor stations in

the pipeline network, and what is the minimal fuel consumption of the network. Typically,

the mathematical programming formulations of the pipeline optimization problems
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contain a lot of nonlinear/nonconvex/nonsmooth constraints and functions. The most

common constraints are the so-called Weymouth panhandle equations, which relate the

pressure and flow rate through a segment of pipeline (i , j). They read as follows

sign(fij)f 2ij = p
2
i − p

2
j , (i , j) ∈ Ap, (4–20)

where fij is the flow rate of pipeline (i , j), pi and pj are the pressures at node i and j

respectively. Hence, the direction of the gas flow depends on the pressure difference of

the two nodes i and j . Therefore, the nonsmooth function sign(fij) is needed.

Recently, more research is related to the network optimization of gas transmission;

given the network structure other than the design of the network topology. One of the

few papers dealing with the design of network topology is the one by Rothfarb et al. [56],

where the authors propose a tree generating algorithm to design the network topology.

4.3.1 Compressor Station Allocation Problem

Once a network topology is chosen, one problem is to determine the optimal

configuration of the pipelines and the location of the compressor stations in this network.

Because of the high setup cost and high maintenance cost, it is desirable to have the

best network design with the lowest cost. This problem concerns a lot of variables: the

number of compressor stations which is an integer variable, the pipeline length between

two compressor stations, the diameters of the pipelines, and the suction and discharge

gas pressures at compressor stations. This problem is computationally very challenging

since it includes not only nonlinear functions in both objective and constraints but, in

addition, also integer variables.

A simple and typical network for this type of problem is shown in Fig. 4-2. Node

s is the supply node where the gas is produced. Nodes a and b are the demand

nodes where the gas is consumed. The trapezoids 1 through 6 denote the compressor

stations. There are three branches: s to 3 is the first branch, 3 to a is the second branch,

and 3 to b is the third branch.
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Figure 4-2. A gas pipeline network configuration problem with three branches.

Suppose there are at most n compressor stations to be set up, and n1, n2, and

n3 denote the number of compressor stations on branch 1, 2, and 3 respectively. For

each pipeline segment i , there are five associated parameters: the flow rate fi , the

discharge pressure (from the upstream compressor) pdi , the suction pressure (from the

downstream compressor) psi , the diameter di , and the length li .

The formulation for the three branches problem by Edgar et al. [26, 27] reads as,

Min
n
∑

i=1

(Oy + Cc)α
Ts

ηs

γ

γ − 1

[

1−

(

pdi
psi

)

z(γ−1)
γ
]

+

n+1
∑

i=1

Cl lidi (4–21)

s.t. pdi ≥ p
s
i , i = 1, ... , n, (4–22)

pdi ≤ Kip
s
i , i = 1, ... , n, (4–23)

pd
i
≤ pdi ≤ p̄

d
i , i = 1, ... , n, (4–24)

ps
i
≤ psi ≤ p̄

s
i , i = 1, ... , n, (4–25)

l i ≤ li ≤ l̄i , i = 1, ... , n, (4–26)

d i ≤ p
d
i ≤ p̄

d
i , i = 1, ... , n, (4–27)

fi = Ad
8
3

i

[

(pdi )
2 − (psi )

2

li

]
1
2

i = 1, ... , n, (4–28)

n1
∑

i=1

li +

n1+n2
∑

i=n1+1

li = L1, (4–29)

n1
∑

i=1

li +

n1+n3
∑

i=n1+1

li = L2, (4–30)
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where γ is the ratio of specific heats, Ts is the suction temperature, z is the gas

compressibility factor, ηs is the efficiency factor, Oy and Cc are cost functions with

respect to horsepower. The objective function (4–21) contains two parts, of which

the first is the compressor station costs and the second is the maintenance costs of

the pipeline segments. Constraints (4–22)-(4–27) are the upper and lower bounds on

pressures, pipeline lengths and diameters. L1 and L2 are the distances between the

supply node and two demand nodes.

Model (4–21) - (4–30) can be solved by applying Branch and Bound techniques

using reduced gradient nonlinear optimization method to solve the subproblem at each

node in the Branch and Bound tree [26, 27]. The drawback of this model is that it highly

depends on the topology of the network.

4.3.2 Least Gas Purchase Problem and Optimal Dimensioning

In the modern natural gas industry, the gas production companies are rarely

affiliated with the gas transmission and distribution companies. Thus, for gas distribution

companies, one problem is to determine the best flow rate and gas pressures in each

pipeline by which the least cost on purchasing gas from producers is achieved. This

problem can be formulated as a optimization problem with linear objective function and

nonlinear/noconvex constraints.

Consider now Fig. 4-3. s1 and s2 are the supplies for source nodes 1 and 2, the

set of which is denoted by Ns . Nodes 6 to 9 are demand nodes with demands −si ,

i = 6, 7, 8, 9. In this model, there are two kinds of arcs: those with compressor stations

such as (1, 4) and (2, 4), which is denoted by Ac ; and those without, which are also

called pipeline arcs and denoted by Ap. Flows on arcs with compressors are directed

such that fij ≥ 0, ∀(i , j) ∈ Ac , and flows on pipeline arcs are undirected and the direction

depends on the pressures of both ends of this arc.
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Figure 4-3. Least cost problem network.

A mathematical programming formulation can be stated as

min
∑

i∈Ns

cisi (4–31)

s.t.
∑

j∈A+
i

fij −
∑

j∈A−

i

fji = si , ∀i ∈ N, (4–32)

sign(fij)f 2ij = Cij(p
2
i − p

2
j ), ∀(i , j) ∈ Ap, (4–33)

f 2ij ≥ Cij(p
2
i − p

2
j ), ∀(i , j) ∈ Ac , (4–34)

s i ≤ si ≤ s̄i , ∀i ∈ N, (4–35)

p
i
≤ pi ≤ p̄i , ∀i ∈ N, (4–36)

fij ≥ 0, ∀(i , j) ∈ Ac , (4–37)

where pi is the gas pressure at node i , ci is the purchase cost per unit gas from supplier

i , and Cij an coefficient for arc (i , j), which is determined by the length, diameter and so

on. A+i denotes the set of arcs which are emanating from node i , while A−
i denote the

one of incoming arcs to node i .

The nonlinear constraints of the model above can be simplified by letting πi

substitute p2i . Then, constraints (4–33), (4–34), and (4–36) can be replaced by
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sign(fij)f 2ij = Cij(πi − πj), ∀(i , j) ∈ Ap,

f 2ij = Cij(πi − πj), ∀(i , j) ∈ Ap,

πi ≤ πi ≤ π̄i , ∀i ∈ N

With this substitution, the ‘only’ nonlinear functions left are sign(fij) and f 2ij .

De Wolf and Smeers [25] propose a piecewise linear programming algorithm to

solve this problem, in which they construct a piecewise linear approximation to the

nonlinear constraints and solve the relaxed problem by simplex algorithm extensions

[22]. The performance of the algorithm depends highly on the choice of the initial point.

It is crucial to have a good starting solution, which can be obtained by solving the

following problem:

Min
∑

(i,j)∈A

|fij |f
2
ij

3C 2ij
(4–38)

s.t.
∑

j∈A+
i

fij −
∑

j∈A−

i

fji = si , ∀i ∈ N,

s i ≤ si ≤ s̄i , ∀i ∈ N.

The objective function (4–38) in this problem is the amount of mechanical energy

consumed in the gas pipeline per unit time. Its KKT necessary conditions (see [7]) is

equivalent to the constraints (4–32), (4–33), and (4–35). The KKT necessary point is a

good approximation starting point which does not take into account pressures’ bounds

and the existence of compressors. The algorithm proposed by [25] is as follows:

(o) Initialization: Let (f 0,p0, s0) be a vector of flows, pressures, and net
supplies that satisfy constraints (4–32), (4–33), (4–34), (4–35), and
(4–37). Replace the nonlinear function sign(fij)f 2ij by a piecewise linear
approximation including f 0ij as a breakpoint. Use f 0ij as starting point for
the piecewise linear programming approach. Also set k = 1.

(i) Iteration k: Solve the approximation problem by the piecewise linear
programming approach. Let (f k ,pk ,sk) be the solution.
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(ii) Stopping rule: Compute f̄ kij by the following equation:

f̄ kij = sign(pki − p
k
j )Cij |(p

k
i )
2 − (pkj )

2|
1
2

If the error ekij = f̄
k
ij − f

k
ij is greater than a given tolerance, for example,

10−5, then add f̄ kij as a new discretization point and return to step (i).
Otherwise stop and the incumbent solution is optimal.

It can be noticed that the optimal objective function value of problem (4–31) is a

function of the diameters of the pipelines, say, Q(D), because the parameter Cij of

pipeline (i , j) is a function of the diameter, where Cij = KijDij and Kij is a coefficient. If

the network structure and the length of each pipeline are fixed, the investment problem

is to find the best pipeline diameters which achieve the lowest investment cost including

both the gas purchase cost Q(D) and the pipeline construction cost C(D). They are

given as

C(D) =
∑

(i,j)∈A

= (kGD
2
ij + k

I
GDij + k

II
G )lij ,

where lij is the length of pipeline (i , j). Then the investment problem becomes

Min C(D) +Q(D) (4–39)

s.t. Dij ≥ 0, ∀(i , j) ∈ A,

which is a bilevel programming problem. The second part of the cost function, Q(D), is

nonconvex/nodifferential and has an implicit domain. De Wolf and Smeers [23] propose

how to get one generalized subgradient, as in the next proposition.

Proposition 4.1. Denote by f ∗, s∗, π∗ an optimal solution of the operations problem

(4–31). Let w ∗
ij be an optimal value of the dual variable associated to constraint (4–33).

Then

(... ,w ∗
ij 5K

2
ijD

4
ij , ... ) ∈ ∂Q(D), (4–40)

where ∂Q(D) is the generalized subdifferential.

The investment problem (4–39) can be solved by a bundle method which performs

well for nondifferential optimization problems. By using a bundle method, we do not
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Figure 4-4. A gas pipeline network.

need to know the explicit domain of the objective function. Hence it is a good fit for the

investment problem because the objective function domain is implicit. At each step, it

only needs the value of the objective function and one of the generalized subgradient,

which can be computed by (4–40). The dual variables, wij , can be obtained while solving

the operations problems by using simplex algorithm extensions. Readers may find more

comprehensive discussions of the bundle method in [33].

4.3.3 Minimum Fuel Consumption Problem

To let the consumer receive an acceptable withdrawal rate of gas, the pipeline

needs to maintain a certain pressure. This is achieved by adding compressor stations

in the network. One well known problem is the minimal fuel cost problem due to the

fuel consumption of compressor stations, which are usually considered as special arcs

in the network of this type of models. The minimal fuel cost problem has been widely

discussed in the literature; see for instance [20, 32, 51–53, 66].

An typical gas pipeline network is shown in Fig. 4-4. Node s is the source node,

and t, p, and q are the demand nodes. Arc (j , t) is an ordinary pipeline arc, arcs (i , j),

(k , p), (s, q) are compressor station arcs. In each compressor station (i , j), there are Cij

compressors, and the pressures at i and j are denoted by pi and pj respectively. Let AI

denote the set of compressor station arcs, AII denote the set of ordinary pipe arcs, V
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denote the node set. Then, the minimal fuel cost problem can be stated as

Min
∑

(i,j)∈AI

gij(xij , pi , pj) =
∑

(i,j)∈AI

xijZiRTi
ω
[(
pj
pi
)ω − 1]

µij
(4–41)

s.t.
∑

j∈A+
i

xij −
∑

j∈A−

i

xji = bj , ∀i ∈ V (4–42)

p2i − p
2
j = Rijx

2
ij , ∀(i , j) ∈ A

II (4–43)

0 ≤ xij ≤ uij , ∀i , j ∈ A (4–44)

pLi ≤ pi ≤ p
U
i , ∀i ∈ V (4–45)

(
xij

nij
, pi , pj) ∈ Dij , ∀(i , j) ∈ A

I (4–46)

nij ∈ 0, 1, 2, ... ,Nij , ∀(i , j) ∈ A
I (4–47)

where pLi and pUi are the lower and upper bounds on the pressure of node i . At each

compressor station (i , j), uij is the capacity, Ni,j is the total number of compressor,

and xij , nij are the gas flow rate and number of compressor in use respectively. Also

there are several other related parameters for (i , j): zi is the gas compressibility factor,

Ti is the gas temperature, µij is the compressor adiabatic efficiency, and Rij is a gas

constant. The most complicated constraint is (4–46) in which Dij is the feasible domain

of compressor station (i , j) as for variable triplet ( xij
nij
, pi , pj). The feasible domain is stated

below by the set of equations,

hij

s2ij
= AH + BH(

qij

sij
) + CH(

qij

sij
)2 + DH(

qij

sij
)3 (4–48)

µij =
CE(

qij
sij
)2 + BE(

qij
sij
) + AE

100
(4–49)

Smin ≤ sij ≤ Smax (4–50)

Surge ≤
qij

sij
≤ Stonewall (4–51)

hij =
ZiRTi

ω
[(
pj

pi
)ω − 1] (4–52)

qij = ZiRTi
xij

pinij
(4–53)
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In the above equations, qij denote the flow through the compressor unit, sij denote the

speed of the compressor(s), and AH , BH , CH , DH , CE , BE , AE are the compressor unit’s

constants.

This problem is very difficult to solve, and its solution algorithms are highly

dependent on the topology of underlying network. Most of the algorithms for this

problem are based on dynamic programming [51–53] and gradient search approaches

[66]. Also meta heuristic approaches have been conducted, such as ant colony

optimization [20] or genetic algorithms [32].

4.4 Natural Gas Market Models

Government regulation over the gas industry dates back to the early days of natural

gas usage. At the first glance, this seams to be reasonable, as government and the

public are the main users of natural gas and investments in the natural gas industry

are tremendous. Not until the 1980s began the deregulation of this industry to improve

both equity and efficiency of the natural gas market. Between the original producers

and end users, there exists a variety of participants, each of which acts to optimize its

own benefits. Under different government policies, a lot of natural gas market models

are proposed. In this section we discuss optimization models of both a regulated and a

deregulated gas market.

4.4.1 Reallocation Problem in a Regulated Natural Gas Market

O’Neil et al. [49] propose a model on how to allocate gas to users with different

priorities under the government regulations when encountered a gas shortage

emergency. In this model there are multiple gas transmission systems among which

any two systems are not necessarily connected physically. All users are divide into 9

categories with priorities 1 through 9. The transportation network is composed of two

types of arcs and nodes: the physical arcs and nodes which really exist in practice -

denoted by Aphy and Nphy , respectively - and the pseudo counterparts which are for

convenience of modeling - denoted by Apseudo and Npseudo , respectively. Let Kw be the set
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of users who withdraw gas from gas system w . This model also includes the panhandle

constraints (4–20) for each of the pipeline arcs. However, instead of using the actual

nonlinear constraints, this model incorporates two linearized approximation constraints

in each iteration, which read as

−ǫij ≤ −fij + αipi − αjpj ≤ ǫij , ∀(i , j),

ǫ1ij ≤ pi − pj ≤ ǫ2ij , ∀(i , j),

where ǫ, ǫ1ij , and ǫ2ij are parameters determined at each iteration through

ǫij = α1|f
new
ij |,

ǫ1ij = (1− α1)(p
new
i − pnewj ),

ǫ2ij = (1 + α1)(p
new
i − pnewj ),

α1 = max{α(γ2)m,
1

2
δ2},

with the positive constants α, γ2, δ2.

The allocation algorithm proposed by O’Neil et al. [49] is as follows:

Step 0: Allocate the minimum amounts that all users must receive. If no feasible
solution exists, then stop; no allocation exists under the specified
parameters.

Step 1: Allocate gas according to the priorities within each transporter’s system,
starting with priority 1 and proceeding in ascending order of priority.

Step 2: Determine if priorities 1 through 5 are satisfied. If so, go to step 4.
Otherwise, fix the lower (6 through 9) priority users, in pipelines with a
shortage in any higher priority, at their lower bounds.

Step 3: Allocate gas according to the priorities within the entire system.

Step 4: Incorporate the linearized nonlinear constraints and find the optimal
solution minimizing the amount transferred between systems, as in the
optimization problem (4–54) - (4–64).

The linear programming formulation used in the allocation problem [49] can be

stated as follows,
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Min
∑

(i,j)∈I

|fij |+
∑

(i,j)∈S

fij (4–54)

s.t.
∑

j∈A+
i

fij −
∑

j∈A−

i

fji = si −
∑

k∈K

9
∑

l=0

dikl , ∀i ∈ N, (4–55)

∑

i∈N

∑

k∈K

dikl + ul = d̄l , l = 0, ... , 9, (4–56)

5
∑

l=1

∑

k∈Kw

∑

i∈N

dikl + rw = gw , ∀w ∈W , (4–57)

− ǫij ≤ −fij + αipi − αjpj ≤ ǫij , ∀(i , j) ∈ Aps , (4–58)

ǫ1ij ≤ pi − pj ≤ ǫ2ij , ∀(i , j) ∈ Avc , (4–59)

0 ≤ si ≤ s̄i , ∀i ∈ N, (4–60)

d ikl ≤ dikl ≤ d̄ikl , ∀i ∈ N, k ∈ K , l = 0, ... , 9 (4–61)

p
i
≤ pi ≤ p̄i , ∀i ∈ N, (4–62)

ul ≥ 0, l = 0, 1, ... , 9, (4–63)

rw ≥ 0, ∀w ∈W , (4–64)

where s is the supply, d is the demand, u is the slack variable for the demand of each

priority, and r is the slack variable for the demand of priority 1 through 5. In constraints

(4–58), −fij + αipi − αjpj is the linearized version of the panhandle equation, where αi

and αj are the coefficients of the first order Taylor series expansion. Aps and Avc denote

the pipeline arc set and the compressor arc set, respectively. The objective function is

the amount of gas transferred between two systems, I is the set of physical arcs that

connect two systems, and S is the set of pseudo arcs that realize swapping by allowing

flow into redistribution node. This is one of earliest mathematical models describing the

natural gas market under regulation.
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Figure 4-5. Participants Relationship in Regulated Gas Market.

4.4.2 Deregulated Natural Gas Market Models

In North America, before the 1980’s, the natural gas market had been greatly

regulated by the government since the 1930’s. In the regulated market, there were

primarily four participants: the gas producers, the gas pipeline companies, local gas

distribution companies, and customers. The relationship of these participant is shown

in Fig. 4-5, where producers sold gas to pipeline companies, and pipeline companies

sold the gas to local gas distribution companies, and then local distribution companies

sold the gas to various customers, such as industrial, commercial, and residential

customers. In this regulated market, gas prices in each of the above transactions are

tightly regulated by Federal and State governments as pipeline companies and local

distribution companies had monopolies in the gas market. Since the mid 1980’s, a

series of deregulation policies have been announced. These polices encourage pipeline

companies to switch from their traditional role as owners of natural gas by allowing

producers and buyers to bypass the pipeline companies in that the buyers can transport

their own gas through the pipeline system by paying some fees.

The deregulation of the gas market not only changed the roles of the former

participants but also helped to create more participants, such as the gas marketing

companies. Many models have been proposed for the deregulated gas market,
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especially for North America and Europe. Optimal purchasing strategies considering

storage, contract, spot prices, peak day demands local distribution companies under

North America gas market conditions have been studied by Avery et al. [4]. A model

based on generalized network to provide optimal strategies for the marketing companies

and local distribution companies, and a system, GRIDNET, to store all the dealed

information were proposed by Brooks and Neill [17] and Brooks [15]. The Natural

Gas Transmission and Distribution Module (NGTDM) is an important model of the

North American gas market, which is a submodule of the U.S. Department of Energy’s

National Energy Modeling System (NEMS). The Gas System Analysis Model (GSAM)

is another North American gas market model, which tries to maximize the social

welfare function to get the equilibrium, see for instance Gabriel et al. [30]. One of the

most recent North American gas market models is the Mixed Complementarity-Based

Equilibrium Model of Natural Gas Markets; see Gabriel et al. [29].

Gabriel et al. [29] consider six types of participants: the pipeline operators, the

production operators, the marketers/shippers, the storage reservoir operators, the

peak gas operators, and the customers. Each participant is trying to minimize cost

or maximize profit for itself. For the sake of simplicity, this model assumes only linear

relationship within each problem faced by a participant. Hence, every participant faces

a linear programming problem. Because natural gas is a highly seasonal product, the

model specifies three seasons in each year, which are denoted by s = 1, 2, 3. Every year

has index y ∈ Y .

• s = 1: low demand season, Apr.-Oct.;

• s = 2: high demand season, Nov., Dec., Feb., Mar.;

• s = 3: peak demand season, Jan.

In this formulation, pipeline gas is available for all three seasons, and gas is injected

to storage reservoir in season 1 and extracted in season 2 and 3, and peak gas is only

used in the peak season.
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The operator of pipeline a is trying to maximize its own profit by solving the following

problem,

Max
∑

y∈Y

3
∑

s=1

dayssτasy fasy (4–65)

s.t. fasy ≤ f̄a, ∀s, y , (4–66)

fasy ≥ 0, ∀s, y , (4–67)

where dayss is the number of days in season s, τasy and fasy are the prices and flow

rates respectively of pipeline a in season s of year y . Constraints (4–66) are the upper

bound constraints of the flows. τasy are the equilibrium show prices determined by the

optimization problems of the other participants. Other than τasy , there are some other

conditions relating this pipeline operator problem to the other pipelines and other kinds

of participants. These conditions are usually called Market-Clearing conditions. The

corresponding Market-Clearing conditions for the gas pipeline operator problem reads

days1fa1y =
∑

r∈R(n1(a))

days1gary +
∑

m∈M(n1(a))

days1ham1y τa1y free ∀y ∈ Y , (4–68)

dayss fasy =
∑

m∈M(ns(a))

daysshamsy τasy free s = 2, 3, ∀y ∈ Y .(4–69)

These two Market-Clearing conditions state that all the supplies equal all the demands.

gary is the flow rate of gas to storage operator r from the producers of season 1 through

arc a, and hamsy is the gas flow rate from producers of season s to marketer m through

arc a.

The production operator’s problem, for production company c ∈ C at node n ∈ N , is

to maximize its profit by solving the following problem,

Max
∑

y∈Y

3
∑

s=1

dayss
(

πnsyqcsy − c
pr
c qcsy

)

(4–70)

s.t. qcsy ≤ q̄c , ∀s, y , (4–71)
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∑

y∈Y

3
∑

s=1

dayssqcsy ≤ prodc (4–72)

qcsy ≥ 0, ∀s, y , (4–73)

where πnsy and cprc are the price of gas sold by the production company and cost to

produce one unit of gas, respectively, for company c , and qcsy is the production rate of

the company in season s of year y . Constraints (4–71) specify the upper bounds of the

production rate in each period, and constraints (4–72) give the total production capacity

for the whole planning horizon. Except this optimization problem, the coupling conditions

for the production company c at node n are as follows,

∑

c∈C(n)

days1qc1y =
∑

a∈A+n

(

∑

r∈R(n1(a))

days1gary +
∑

m∈M(n1(a))

days1ham1y

)

, πn1y free ∀y ∈ Y ,(4–74)

∑

c∈C(n)

dayssqcsy =
∑

a∈A+n

∑

m∈M(ns (a))

daysshasy , πasy free s = 2, 3, ∀y ∈ Y . (4–75)

The storage reservoir operator’s problem, the marketer’s problem, and the peak

gas operator’s problem are all described in the same way, first the linear programming

problem and then the market-clearing conditions. Since all operator’s problems are

linear programming problems, the KKT conditions are necessary and sufficient.

Combining all the KKT conditions and market-clearing conditions of every operator’s

problem, we then get a Linear Complementarity Problem (LCP), which is a special case

of nonlinear complementarity problem (NCP) or variational inequality problem (VI).

Gabriel et al. [29] proved that there exists a solution of the system and the prices are

unique in this case. For more details about LCP, NCP, and VI, we refer the reader, for

instance, to [21, 28, 40, 45].

Also a lot of models for the European gas markets have been proposed. A

stochastic Stackelberg-Nash-Cournot equilibrium model for natural gas producers

are proposed by De Wolf and Smeers [24]. Breton and Zaccour [14] propose a duopoly
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Figure 4-6. Relationship between Gas Network and Electricity Network.

producer model. A recent European gas market model similar to the model in [29] is

GASTALE proposed by Boots et al. [13].

4.4.3 Combining Natural Gas System and Electricity System

Natural gas is widely used in electricity production. Because combined-cycle plants

are highly efficient and have less damage to the environment, more and more power

plants of this type are build around the world. Hence the electricity and the gas system

are now highly correlated. Here we discuss some related optimization applications

regarding this relationship.

4.4.3.1 Electricity System Reliability Study

Due to the increasing number of combined-cycle power plants being built, electricity

production relies more and more on the amount of gas the power plants can get.

However, the electricity plants are not the only users of natural gas; see Sec. 4.1. In

order to perform a reliability analysis of the electricity system, it is important to study

the maximal amount of gas which the gas network can supply to the electricity plants.

The relation between gas network and electricity network is shown in Fig. 4-6. Munoz

et al. [43] studied the problem of the maximal gas supply the electricity system can

receive, taking into account the other gas users, the pipeline capacity and the production

capacity. The formulation is very similar to the gas pipeline operations problem (4–31).
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Instead of minimizing the gas purchase cost as in (4–31), this problem maximizes the

total electricity which can be produced by using gas from the gas system. It can be

formulated as

Max
∑

i∈Ne

Aiei + Bie
2
i + Cie

3
i (4–76)

s.t.
∑

j∈A+
i

fij −
∑

j∈A−

i

fji = si − di − ei , ∀i ∈ N, (4–77)

sign(fij)f 2ij = Cij(p
2
i − p

2
j ), ∀(i , j) ∈ Ap, (4–78)

f 2ij ≥ Cij(p
2
i − p

2
j ), ∀(i , j) ∈ Ac , (4–79)

s i ≤ si ≤ s̄i , ∀i ∈ N, (4–80)

p
i
≤ pi ≤ p̄i , ∀i ∈ N, (4–81)

d i ≤ di ≤ d̄i , ∀i ∈ N, (4–82)

e i ≤ ei ≤ ēi , ∀i ∈ N, (4–83)

fij ≥ 0, ∀(i , j) ∈ Ac , (4–84)

where the objective function is a polynomial function of withdrawal of gas from the gas

network. ei is the gas withdrawal to produce electricity. di is the demand not related to

electricity production. A+i denotes the set of arcs which are emanating from node i , while

A−
i denotes the set of incoming arcs to node i .

Munoz et al. [43] solve the above problem in two phases. First, by dropping all

nonlinear constraints, a mixed integer linear programming problem is obtained and

then solved, where the integer variables denote the directions of flows in the pipeline

segments. Second, by knowing the directions of flows from the phase I problem,

a nonlinear problem is solved. However, two theoretical questions still remain in

the correctness of optimality obtained by the method. First, it remains unanswered

whether the solution from phase I will ensure the phase II problem to be feasible.

Second, it is not true that the second phase problem is a convex problem for which a
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simple counterexample can easily be constructed, such as the single pipeline segment

problem.

4.4.3.2 Optimization in Natural Gas Contracts

Many electricity production plants use a lot of sources among which natural gas

is a very reliable alternative to meet the high electricity demand. The optimization of

fuel contracts for a hydro-based power system is a very good example. In hydro power

systems, precipitation varies from season to season. For the low precipitation seasons,

the plants need to buy gas to generate electricity.

Let us now discuss a model which deals with the optimal dispatch strategy while

considering the particular specifications of gas supply contracts as in Chabar et al.

[19]. This model assumes a take-or-pay contract, which is widely adopted, especially

in Europe. If a take-or-pay contract is signed, specifying a monthly amount and a total

annual amount, then at least X% of the monthly amount has to be bought every month

and at least Y% of the contracted annual amount for the year has to be bought. Hence,

there might be some gas excess based on contracts of this type. Two reservoirs are

added into this model to accommodate the situations where gas excess exists. All

excesses of gas not consumed monthly are stored in the gas reservoir A, the difference

between the annual take-or-pay amount and the sum of all monthly take-or-pay amounts

of the year is stored in reservoir B. Also, one of the gas contract provisions state that the

gas purchased at any time point cannot “stay in the reservoir”, or actually hold by the

gas provider by more than N time periods, which means that if any amount of gas stays

in the reservoir more than N time periods, it will have to be discarded. GDt is used to

denote the amount of gas discarded at time t. Figure 4-7 shows how the model, based

on reservoirs, deals with the contract provisions.

Also the maintenance schedule is modeled by reservoirs. A fictitious remaining-hours

reservoir is assigned to every power unit for each maintenance cycle. For a 3 power

units 3 cycles problem, there will be 9 reservoirs. The length of each kind of cycle is
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Figure 4-7. Gas Contracts Modeled by Reservoirs.

Table 4-1. Maintenance cycle length
Cycle Frequency Average Duration Cost(MMR$)

Combustor 8000 hours 7 days 3.5
Hot path circuit 24000 hours 14 days 10

Major maintenance 48000 hours 21 days 20

shown in Table 4-1. For each power unit, the reservoirs are filled with the amount of

remaining hours of operation until next maintenance. The capacity of each reservoir

is the length of the cycle. As the unit operates, all reservoirs for that unit are reduced

by the quantity of the elapsed hours. After maintenance, the fictitious maintenance

reservoir is filled to its capacity.

Considering also the maintenance scheduling of the thermal plant, a dynamic

programming formulation of the problem, for a given stage and price, is proposed by

Chabar et al. [19]:

FBF kt (VAt ,VBt , {VH
i,j
t , ∀i , j}, π

k
t ) (4–85)

= Max RIt +
S
∑

s=1

pt+1(k , s)FBF
s
t+1(VAt+1,VBt+1, {VH

ij
t+1, ∀i , j}, π

k
t+1) (4–86)

s.t. VAt+1 = VAt + ARMt − GToPt + GTRt − GDt , (4–87)

VBt+1 = VBt − GTRt (4–88)

VH i,jt+1 = VH
i,j
t (1− x

i,j
t ) + VH

j
x i,jt − γEG

i
t , ∀i , j , (4–89)

n
∑

i=1

ψitEG
i
t = Hc(CToPt + GToPt +∇Gt), (4–90)
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where VAt and VBt are the volume of gas in reservoirs A and B, respectively, and

VH i,jt is the “volume” of remaining hours of operation that the unit i has until the next

maintenance of cycle j . GToPt is the amount of gas actually used to generate electricity,

and GSt is the amount of gas purchased or sold to the gas spot market. ARMt is the

amount of gas purchased from the gas distributor, and should be bounded below

by X%M. GTRt is the amount of gas transfer from A to B, and GDt is the amount of

gas discarded when it is in the reservoir more than the maximum storage time, N . n

and m are the total number of power units and total number of maintenance cycles,

respectively. RIt is the immediate revenue in stage t. πst is the spot price in stage t

of scenario s. pt+1(k , s) is the transition probability of the spot price of scenario k in

stage t to the spot price of scenario s in stage t + 1. x i,jt is the binary decision variable

associated with the schedule of maintenance of cycle j for unit i at stage t. VH
j

is

the maximum capacity of the reservoir of remaining hours of operation until the next

maintenance of cycle j . EG jt is the energy generated by unit i at stage t. γ is an inverse

coefficient of the power unit, and ψit is conversion factor from MMBTU to MWh of unit i at

stage t, and Hc is the heat rate of the gas.

Constraints (4–87)-(4–89) are the fictitious reservoir balance constraints and (4–90)

is the transformation from gas to electricity. Except constraints (4–87)-(4–90), there are

also a lot of other constraints, such as gas consumption priority constraints, maximum

and minimum gas consumption constraints, maintenance constraints, constraints related

to the mechanism implemented for the modeling of the contracts and so on. For this

problem, each stage is a mixed integer linear programming problem. And the whole

problem is solved by using stochastic dual dynamic programming, first proposed by

Pereira and Pinto [50].

Also the natural gas market can be modeled as a natural gas value chain. The

primary component is natural gas in this chains. Various market models are proposed

and utilized in reality at different stages along this value chain, e.g., production,
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transportation and processing, storage, import terminals and markets, wholesale

and retail markets. Please refer to [42] for more details about market models within the

natural gas value chain.

4.5 Conclusion

This chapter discuss various optimization models occurring in the natural gas

industry; focusing on three aspects: production, transportation, and market. As we can

see, the natural gas industry is a complex system and in great need of optimization

techniques to improve performance. Especially the nonlinear and nonconvex nature of

the problems makes it computationally challenging to find good solutions. We observe

that linearization techniques are a common method to tackle these nonconvex functions,

often reducing the problem to a (series) of linear or mixed integer liner programming

problems. With the computational power of computers increasing over the last decade,

the use of meta-heuristics is become more and more popular; especially for problems

which cannot be handled with the current MINLP solvers either due to the size of the

problem or due to the degeneracy.

The deregulation of the gas market introduced additional modeling aspects and

computational challenges: various (additional) stochastic elements have been added to

the ‘classical’ problems. This underlying structure of the problems cannot be ignored by

any serious model and we expect that future research will focus on stochastic models

and, especially, on new techniques how to solve these (large-scale) practical problems

when also integer and nonconvex, nonlinear functions are present.
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CHAPTER 5
NATURAL GAS NETWORK EXPANSION PLANNING

Due to the increasing demands for natural gas, it is playing a more important role

in the energy system, and its system expansion planning is drawing more attentions.

In this chapter, we propose expansion planning models which include both natural

gas transmission network expansion and LNG (Liquified Natural Gas) terminals

location planning. These models take into account the uncertainties of demands and

supplies in the future, which make the models stochastic integer programs with discrete

subproblems. Also we consider risk control in our models by including probabilistic

constraints, such as a limit on CVaR (Conditional Value at Risk). In order to solve the

large-scale problems, especially with a large number of scenarios, we propose the

embedded Benders decomposition algorithm, which applies Benders cuts in both first

and second stages, to tackle the discrete subproblems. Numerical results show that

our algorithm is efficient for large scale stochastic natural gas transportation system

expansion planning problems.

5.1 Introduction

Natural gas, which once was considered the byproduct or spare gas of oil and

coal mining, has become a very precious and important energy source in the world’s

energy system. It is a relatively cleaner energy source compared to coal and oil because

it releases less green house gas. Especially after the introduction of combined cycle

power turbines, which is much more efficient than the traditional electricity power

generators using coal, natural gas is playing a more important role in the world’s energy

supply. From 1986 to 2006, the annual world’s consumption of natural gas has been

doubled to 102.2 trillion cubic feet from 52.9 trillion cubic feet according to EIA (Energy

Information Administration) 2009 annual report. Its annual demand is forecasted to

increase by 50% in 2030. Because of the increasing demands for natural gas, it is

very important to study the natural gas system expansion planning, especially its
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Figure 5-1. US natural gas transmission corridor from EIA 2008

transportation system. Traditionally, its transportation system is mainly composed of

transmission pipelines. (The US transmission corridor of natural gas is shown in Figure

5-1 according to EIA 2008 report.) With the increasing intercontinental LNG (Liquified

Natural Gas) shipment, the expansion planning on selecting the locations and sizes of

the LNG terminals should also be considered an important part of the transportation

system. The proposed and accomplished LNG terminals of US is shown in Figure 5-2

according to Federal Energy Regulation Commission.

As is discussed in [68], mathematical modeling and optimization have been

extensively applied in natural gas industry and yielded a lot of great results. In this

paper, we try to come up with a stochastic expansion planning model which considers

both transmission pipeline network expansion planning and LNG terminal location

planning. We model the expansion of a pipeline and the setup of a new size of LNG

terminal by binary variables. The model is trying to minimize the total expansion cost

and transmission cost while considering the whole transportation system. Also this

model assumes generalized network flows as in [16]. In addition, we also propose a risk
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Figure 5-2. Existing and Proposed North American LNG Terminals

management model which includes CVaR (Conditional Value at Risk) risk constraints, in

order to balance between the minimal cost and the risk of losing demands. Due to the

existence of integer variables within both stages, the stochastic program is not a trivial

problem to solve, especially when the number of scenarios is big.

The remaining part of this chapter is organized as follows. First, in section 5.2, we

propose the stochastic model and the risk management model with CVaR constraints. In

section 5.3 we explain our Embedded Benders Decomposition process and propose the

algorithm. Section 5.4 shows the computational results and compares the solutions with

different CVaR constraints.

5.2 Expansion Planning Models

We have already known that the world’s natural gas supply will not last for ever

because the reserves are dwindling and will not grow by themselves. So a very

interesting and important question to ask is whether we need to expand our gas system.
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Figure 5-3. Natural gas long term consumption expectation

The up-shooting trend will not always hold in the future, and some time the demand

will drop for sure. However, it seems the gas reserves can still support us for multiple

decades or even a hundred years. (A natural gas long term consumption expecting is

shown in Figure 5-3) Hence, it is important to do the expansion planning economically

and reliably, which can cope with different future situations. The gas reserves are quite

different in different regions of the world. According to EIA International Energy Outlook

2009, the world average RTP (Reserves-To-Production) ratio is about 63 years; Central

and South America RTP is about 48 years; Russia and Africa RTP are 78 and 79 years

respectively ; RTP of middle east is more than 100 years; US production rate is about

20 TCF (Trillion Cubic Feet) per year and its estimated reserves are about 1747.47 TCF,

which make its RTP 87 years. The imbalance of natural gas reserves and economic

growth in different regions make intercontinental transportation necessary. The main

intercontinental transportation is LNG shipment. In the national level, it is important

to analyze the whole natural gas system by considering pipeline networks and LNG

locations together. A network example which considers both of them is shown in Figure

5-4, in which all transmission lines are expandable and those dashed lines denote

possible new transmission lines, and nodes associated with “LNG” are possible LNG

terminals.
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Figure 5-4. A natural gas transmission network example

5.2.1 The Stochastic Planning Model

Our modeling aims to formulate the problem in the system level while considering

uncertainties of future supplies and demands. The objective is to minimize the total cost,

which includes the costs of both arc expansions and LNG terminal expansions, and the

transmission costs, while satisfying all demands. In this model, we assume discrete

expansions, which are actually what is happening now. For example, the diameters of

the gas pipelines and sizes of LNG containers are usually discrete when you try to buy

them from the manufacturers. Figure 5-5 shows the discretized expansion costs of the

gas pipeline. We use 0-1 integer variable, αkij , to denote whether an expansion of size

∆kij is made for arc (i , j), and then total cost of pipeline expansion is

CostARC =
∑

(i,j)∈A

∑

k∈Kij

ckij α
k
ij

So does the LNG terminal opening cost as follows,

CostLNG =
∑

i∈NLNG

∑

k∈Ki

cki β
k
i
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Table 5-1. EXPN Sets and Indices
N The set of all nodes in the network
A The set of all arcs in the network
A+i The set of outgoing arcs from node i
A−
i The set of incoming arcs to node i
Kij The set of all possible expansion sizes on arc (i , j)
Ki The set of all possible expansion sizes on arc i

NLNG Possible(approved) LNG terminals
Ξ The set of all scenarios of the demand patterns

ξ, ζ Denote a specific scenario

For the convenience, we make the following three assumptions, (A.1-A.3), which

always hold throughout the whole paper.

A.1 Assume discrete distribution of uncertainties, Ξ = {ξ1, ξ2, ... , ξr}, where r is a finite

positive integer;

A.2 (1 − l)|A|
∑

i∈N SF
0 ≥

∑

i∈N d
0, and (1 − l)|A|

∑

i∈N SF
1(ξ) ≥

∑

i∈N d
1(ξ), ∀ξ ∈ Ξ,

where l = max(i,j)∈A lij ;

A.3 Making the maximum expansion on every node and arc is enough to satisfy all

demands.
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Table 5-2. Parameters
∆kij The k th expansion size of arc (i , j)
∆ki The k th expansion size of LNG port i

c0,kij , c
1,k
ij Current and future costs of the expansion of size ∆kij on arc (i , j)

c0,ki , c
1,k
i Cost of the expansion of size ∆ki of LNG port i

h0ij , h
1
ij Unit transportation cost of arc (i , j)
d0i Current demand of the node i

d1i (ξ) Future demand of node i under scenario ξ
lij Transmission loss rate on arc (i , j)

SF 0i Current self supply limit of node i
SL0i Current LNG supply limit of node i

SF 1i (ξ) Future self supply limit of node i under scenario ξ
SL1i (ξ) Future LNG supply limit of node i under scenario ξ
uij The previous capacity of arc (i , j)
v i The previous capacity of LNG port i

Pr(ξ) Probability of scenario ξ

In order to facilitate the description of our models, Table 5-1 defines all the sets of

arcs, nodes, scenarios, etc, and Table 5-2 defines all coefficients and parameters, while

Table 5-3 defines all decision variables of both first and second stages.

Our stochastic planning model is to minimize the current cost plus the expected

future cost which are shown in (5–1) and (5–2) respectively. Within each of them,

there are three parts: arc (pipeline) expansion cost, LNG terminal expansion cost

and transportation cost. (5–3) defines the flow balance constraints, where gas loss

is considered by multiplying different factors on all the incoming flows, since in reality

there are always leaking problems and compressor stations need to use some gas

to maintain pressure of pipelines. We assume bidirectional flows on each arc and the

capacity constraint of each arc is defined in (5–4). Since we include transportation

cost in the objective function, for each arc the optimal solution will only have nonzero

flow at most in one direction. (5–5) is the arc expansion constraints. Constraint (5–6)

requires that LNG supply at any LNG port node cannot exceed its throughput capacity,

while constraint (5–7) requires that LNG supply at any LNG port node also cannot

exceed its LNG supply limit. Constraint (5–8) states that the total supply of every LNG
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Table 5-3. Decision Variables
α0,kij Binary variable to denote whether a

∆kij expansion is made right now for arc (i , j)
α1,kij (ξ) Binary variable to denote whether a

∆kij expansion is made in the future for arc (i , j) under scenario ξ
β0,ki Binary variable to denote whether a

∆ki expansion is made right now for LNG port i
β1,ki (ξ) Binary variable to denote whether a

∆ki expansion is made in the future for LNG port i under scenario ξ
f 0ij Flow of arc (i , j) right now

f 1ij (ξ) Flow of arc (i , j) in the future under scenario ξ
s0i Total Supply from node i right now

s1i (ξ) Total Supply from node i in the future under scenario ξ
g0i LNG supply from node i right now

g1i (ξ) Future LNG supply from node i in the future
u0ij The current Capacity of arc (i , j)

u1ij(ξ) The future Capacity of arc (i , j) under scenario ξ
v 0i The current capacity of LNG port i

v 1i (ξ) The future capacity of LNG port i under scenario ξ

node should be less than its self supply limit plus its LNG supply. (5–9) is the LNG

throughput capacity expansion constraints. At all the non-LNG nodes, the supply is

bounded by its self supply limit, which is shown in (5–10). Constraints (5–11), (5–12)

and (5–13) define the nonnegative continuous flow, capacity and supply variables, and

binary expansion variables. Constraint (5–14)-(5–24) define the second stage feasible

region, which almost replicates the first stage |Ξ| times for all scenarios with different

demands, supplies, and, most importantly, the decision variables. The whole extensive

formulation of the stochastic planning problem is shown in the following mixed integer

linear minimization program, [EXPN].

[EXPN]:

Min
∑

(i,j)∈A

∑

k∈Kij

c0,kij α
0,k
ij +

∑

i∈NLNG

∑

k∈Ki

c0,ki β0,ki +
∑

(i,j)∈A

h0ij f
0
ij (5–1)

+
∑

ξ∈Ξ

Pr(ξ)





∑

(i,j)∈A

∑

k∈Kij

c1,kij α
1,k
ij (ξ) +

∑

i∈NLNG

∑

k∈Ki

c1,ki β1,ki (ξ) +
∑

(i,j)∈A

h1ij f
1
ij (ξ)



(5–2)
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s.t.
∑

(i,j)∈A+
i

f 0ij −
∑

(j,i)∈A−

i

(1− lji)f
0
ji = s

0
i − d

0
i , ∀i ∈ N, (5–3)

f 0ij + f
0
ji ≤ u

0
ij , ∀(i , j) ∈ A, (5–4)

u0ij = uij +
∑

k∈Kij

∆kijα
0,k
ij , ∀(i , j) ∈ A, (5–5)

g0i ≤ v
0
i , ∀i ∈ NLNG , (5–6)

g0i ≤ SL
0
i , ∀i ∈ NLNG , (5–7)

s0i ≤ g
0
i + SF

0
i , ∀i ∈ NLNG , (5–8)

v 0i = v i +
∑

k∈Ki

∆ki β
0,k
i , ∀i ∈ NLNG , (5–9)

s0i ≤ SF
0
i , ∀i ∈ N \ NLNG , (5–10)

s0i , f
0
ij , u

0
ij , v

0
i , g

0
i (ξ) ≥ 0, ∀(i , j) ∈ A, i ∈ N (5–11)

α0,kij ∈ {0, 1}, ∀k ∈ Kij , (i , j) ∈ A, (5–12)

β0,ki ∈ {0, 1}, ∀k ∈ Ki , i ∈ NLNG , (5–13)

(constraints to be continued)

[EXPN] is a two stage mixed integer program, where binary variables are present

in both stages. Because the second stage also includes binary variables, we can

not generate Benders cuts directly as in the L-Shaped method. One method of

getting valid Benders cuts from the second stage for the first stage is the Embedded

Benders Decomposition which relaxes the second stage to a linear program and also

use Benders cuts to approximate the convex hull of the second stage program. To

enhance the convergence, we also add integer L-shaped optimality cuts [38] when

necessary. The solution to the simple example is shown in Figure 5-6, which indicates

only LNG terminal expansions are needed at the current point, with size 2 LNG terminal

expansions at node 1 and 10, and size 3 LNG terminal expansions at node 2, 3 and 11.
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Figure 5-6. Solution of a Simple EXPN Example

The constraints of second stage are as follows,

(constraints continued)

∑

(i,j)∈A+
i

f 1ij (ξ)−
∑

(j,i)∈A−

i

(1− lji)f
1
ji (ξ) = s

1
i (ξ)− d

1
i (ξ), ∀i ∈ N, ξ ∈ Ξ, (5–14)

f 1ij (ξ) + f
1
ji (ξ) ≤ u

1
ij (ξ), ∀(i , j) ∈ A, ξ ∈ Ξ, (5–15)

u1ij (ξ) = u
0
ij +

∑

k∈Kij

∆ki,jα
1,k
ij (ξ), ∀(i , j) ∈ A, ξ ∈ Ξ, (5–16)

g1i (ξ) ≤ v
1
i (ξ), ∀i ∈ NLNG , ξ ∈ Ξ, (5–17)

g1i (ξ) ≤ SL
1
i (ξ), ∀i ∈ NLNG , ξ ∈ Ξ, (5–18)

s1i (ξ) ≤ g
1
i (ξ) + SF

1
i (ξ), ∀i ∈ NLNG , ξ ∈ Ξ, (5–19)

v 1i (ξ) = v
0
i +

∑

k∈Ki

∆ki β
1,k
i (ξ), ∀i ∈ NLNG , ξ ∈ Ξ, (5–20)

s1i (ξ) ≤ SF
1
i (ξ), ∀i ∈ N \ NLNG , ξ ∈ Ξ, (5–21)

s1i (ξ), f
1
ij (ξ), u

1
ij(ξ), v

1
i (ξ), g

1
i (ξ) ≥ 0, ∀(i , j) ∈ A, i ∈ N, ξ ∈ Ξ, (5–22)

α1,kij (ξ) ∈ {0, 1}, ∀k ∈ Kij , (i , j) ∈ A, ξ ∈ Ξ, (5–23)

β1,ki (ξ) ∈ {0, 1}, ∀k ∈ Ki , i ∈ NLNG , ξ ∈ Ξ, (5–24)
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Figure 5-7. Value at Risk v.s. Conditional Value at Risk

5.2.2 The Planning Model with Risk Constraints

The solution to [EXPN] might have to sacrifice a lot to satisfy an extreme scenario

which has big demands, which means we may pay for extremely “bad” things which

are very unlikely to happen. In order to find such kind of scenarios and tolerate risks

to a certain extent, we may need to include a measure which can help us locate those

scenarios and tell how “bad” they are and how “unlikely” they are. A risk management

model with chance constraints would take care of this situation while controlling the risk

in an acceptable manner.

Value at Risk (VaR) and Conditional Value at Risk (CVaR) are two generally used

risk measures in the literature due to their structural and computational easiness

compared to variance. As is stated in [36], VaR has been widely used in financial

areas and is also the standard risk measure of Bank for International Settlements.

Mathematically speaking, VaR is the minimum value, such that the probability of random

loss is greater than or equal to this value is less than a small predefined a percentage
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(the risky area), which is defined as follows,

VaRθ = inf {l ∈ R : P(L(X , y) ≥ l) ≤ 1− θ} ,

where L(X , y) is the loss function of random variable X and decision variable y , θ

is the confidence level. However, modeling VaR constraints needs to use integer

variables, which makes some linear programming models difficult to solve. Instead

CVaR constraints does not need to introduce integer variables and only involves linear

constraints. In general, CVaR is the expected loss given the fact that the loss is greater

than or equal to VaR, which is shown as follows,

CVaRθ = E {L(X , y)|L(X , y) ≥ VaRθ} .

As discussed in [3], CVaR constraints are tighter than VaR constraints since the risk

constraints are generally of the format as VaRθ ≤ φ̄ or CVaRθ ≤ φ̄, and CVaRθ is

a bigger value than VaRθ, as shown in Figure 5-7, in which FL(l) is the cumulative

distribution function of random loss L, and Lmin and Lmax are respectively the minimum

and maximum values that L can take.

In our risk management model, we would like to use CVaR as the risk measure

because it not only provides a tighter bound but also consists of only linear constraints

and continuous variables. The risk in this expansion problem is the shortage of gas

supply to the customers. So we introduce a new variable, λi(ξ), to denote the shortage

in the future at node i under scenario ξ. So the original flow balance constraint (5–14)

in the second stage (stochastic part) is changed to constraint (5–25), which includes

the shortage variable λi(ξ). Also, in order to differentiate nodes by priorities, we only

allow a certain amount of shortage, λ̄i , for the nodes in NR , a subset of all nodes. This is

realized by constraints (5–26) and (5–27).
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The expansion planning model with CVaR constraints, which shares the same

objective function (5–1) + (5–2), same first stage constraints (5–3)-(5–13) and

(5–15)-(5–24) with [EXPN], is formulated as follows,

[EXPN-R]:

Min (5–1) + (5–2)

s.t. (5–3)− (5–13),
∑

(i,j)∈A+
i

f 1ij (ξ)−
∑

(j,i)∈A−

i

(1− lji)f
1
ji (ξ)

= s1i (ξ)− d
1
i (ξ) + λi(ξ), ∀i ∈ N, ξ ∈ Ξ, (5–25)

(5–15)− (5–24),

λi(ξ) = 0, ∀i ∈ N \ NR, ξ ∈ Ξ, (5–26)

λ̄i ≥ λi(ξ) ≥ 0, ∀i ∈ NR, ξ ∈ Ξ, (5–27)
∑

i∈N

λi(ξ) ≤ η + w(ξ), ∀ξ ∈ Ξ, (5–28)

η +
∑

ξ∈Ξ

Pr(ξ)

1− θ
w(ξ) ≤ φ̄, (5–29)

w(ξ) ≥ 0, ∀ξ ∈ Ξ, (5–30)

where constraints (5–28)-(5–30) are the risk constraints which are equivalent to

CVaRθ ≤ φ̄. Constraint (5–30) introduces the nonnegative continuous variable, w(ξ),

to denote the amount of loss greater VaRθ for scenario ξ. Constraint (5–28) defines the

bounds for the total losses of all scenarios, where the solution of η, after solving the

problem, is actually VaRθ for most of the time as discussed in [54]. Constraint (5–29)

then finally defines the bound on CVaRθ.

5.3 Embedded Benders Decomposition

The two problems proposed in Section 5.2 are both stochastic mixed integer linear

programs, which also include integer variables in the second stage. When the number of

scenarios are big, these problems will include a huge number of integer variables, which
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make the problem difficult to solve as a whole. Hence it is necessary to decompose

the problems and solve the second stage problems separately. L-shaped method [63]

and Benders Decomposition [9] are widely used to solve the two stage stochastic

linear programs as described in [10]. However, they are not directly applicable to our

problems because the second stage includes integer variables and solving mixed

integer programs does not generally produce useful dual solutions.

In this chapter, we propose a different kind of valid global cuts to approximate the

convex hull of the second stage discrete problem. In constraints (5–14)-(5–24), there are

both linear and integer parts. Hence it is possible to further decompose the subproblem

itself by Benders decomposition, and the Benders cuts within the subproblem can

help cut off the combination of the first stage and second stage integer solution. Our

approach tries to also use Benders cuts to convexify the subproblem. So we call our

algorithm Embedded Benders Decomposition in which Benders cuts are generated

for both master and subproblems. In this section, we will discuss how to implement

our decomposition scheme to solve the stochastic expansion planning problem. The

restricted master problem, [RMP], is as follows,

[RMP]:

Min
∑

(i,j)∈A

∑

k∈Kij

c0,kij α
0,k
ij +

∑

i∈NLNG

∑

k∈Ki

c0,ki β0,ki +
∑

(i,j)∈A

h0ij f
0
ij +

∑

ξ∈Ξ

Pr(ξ)z(ξ) (5–31)

s.t. (5–3)− (5–12),

z(ξ) ≥
∑

(i,j)∈A

x̂ tij(ξ)u
0
ij +

∑

i∈NLNG

ŷ ti (ξ)v
0
i + r

t(ξ), ∀t ∈ T (ξ), ξ ∈ Ξ, (5–32)

where t denotes the t th cut of scenario ξ, and x̂ tij(ξ), ŷ
t
i (ξ) and r t(ξ) are respectively

the optimal dual multipliers and sum product of multipliers and right hand sides of the

relaxed subproblem of scenario ξ, which will be shown later. This program is always

feasible because of (A.2) and (A.3). Also, in the above [RMP] formulation, we show how

the disaggregated cuts are added, and we also will talk about the aggregated cuts and

compare these two kinds of cuts adding schemes after we finish the discussion of how
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the valid Benders cuts for the first stage are generated. (Note [RMP] itself can be further

decomposed, since the network constraints are not related to the expansion decisions

directly.)

After solve the [RMP] and obtain its solution, we can solve the second stage

problem or the subproblem by fixing the first stage expansion decisions, û0 and

v̂ 0. Because we also have expansion decision variables in the second stage, the

subproblems are always feasible due to the assumptions, (A.2) and (A.3). This allows us

to solve the subproblems of different scenarios separately because there is no coupling

between scenarios except the first stage decisions. The subproblem corresponding to

scenario ξ is shown as follows,

[SP(ξ)]:

Min
∑

(i,j)∈A

∑

k∈Kij

c1,kij α
1,k
ij (ξ) +

∑

i∈NLNG

∑

k∈Ki

c1,ki β1,ki (ξ) + h
1
ij f
1
ij (ξ)

s.t. −
∑

(i,j)∈A+
i

f 1ij (ξ) +
∑

(j,i)∈A−

i

(1− lji)f
1
ji (ξ) + s

1
i (ξ) = d

1
i (ξ), ∀i ∈ N,

−f 1ij (ξ)− f
1
ji (ξ) + u

1
ij (ξ) ≥ 0, ∀(i , j) ∈ A,

u1ij (ξ)−
∑

k∈Kij

∆kijα
1,k
ij (ξ) = û

0
ij , ∀(i , j) ∈ A,

g1i (ξ)− v
1
i (ξ) ≤ 0, ∀i ∈ NLNG ,

g1i (ξ) ≤ SL
1
i (ξ), ∀i ∈ NLNG ,

s1i (ξ)− g
1
i (ξ) ≤ SF

1
i (ξ), ∀i ∈ NLNG ,

v 1i (ξ)−
∑

k∈Ki

∆ki β
1,k
i (ξ) = v̂

0
i , ∀i ∈ NLNG ,

s1i (ξ) ≤ SF
1
i (ξ), ∀i ∈ N \ NLNG ,

s1i (ξ), f
1
ij (ξ), u

1
ij(ξ), v

1
i (ξ), g

1
i (ξ) ≥ 0, ∀(i , j) ∈ A, i ∈ N,

α1,kij (ξ) ∈ {0, 1}, ∀k ∈ Kij , (i , j) ∈ A,

β1,ki (ξ) ∈ {0, 1}, ∀k ∈ Ki , i ∈ NLNG .
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This is a mixed integer linear program and will not directly provide useful Benders cuts

for [RMP] in general. However, compared to the whole problem, this program is much

easier to solve since it only involves one scenario and has much less both integer and

continuous variables. After solve [SP(ξ)] and fix the integer variable at its optima, α̂1(ξ)

and β̂1(ξ), then we can solve the following [LP (ξ)] to generate embedded Benders cuts,

the global cuts, for the subproblem of scenario ξ. Again, the program [LP (ξ)] is always

feasible since [SP(ξ)] is always feasible and the binary variables are fixed as the optimal

(feasible) solution of [SP(ξ)].

[LP(ξ)]:

Min
∑

(i,j)∈A

h1ij f
1
ij (ξ) (5–33)

s.t. −
∑

(i,j)∈A+
i

f 1ij (ξ) +
∑

(j,i)∈A−

i

(1− lji)f
1
ji (ξ) + s

1
i (ξ) = d

1
i (ξ), ∀i ∈ N, (5–34)

−f 1ij (ξ)− f
1
ji (ξ) + u

1
ij (ξ) ≥ 0, ∀(i , j) ∈ A, (5–35)

u1ij (ξ) =
∑

k∈Kij

∆kij α̂
1,k
ij (ξ) + û

0
ij , ∀(i , j) ∈ A, (5–36)

g1i (ξ)− v
1
i (ξ) ≤ 0, ∀i ∈ NLNG , (5–37)

g1i (ξ) ≤ SL
1
i (ξ), ∀i ∈ NLNG , (5–38)

s1i (ξ)− g
1
i (ξ) ≤ SF

1
i (ξ), ∀i ∈ NLNG , (5–39)

v 1i (ξ) =
∑

k∈Ki

∆ki β̂
1,k
i (ξ) + v̂

0
i , ∀i ∈ NLNG , (5–40)

s1i (ξ) ≤ SF
1
i (ξ), ∀i ∈ N \ NLNG , (5–41)

s1i (ξ), f
1
ij (ξ), u

1
ij(ξ), v

1
i (ξ), g

1
i (ξ) ≥ 0, ∀(i , j) ∈ A, i ∈ N, (5–42)

Now we have a pure linear program without expansion decisions, and then solving it

can help generate the following global cut which is valid given any first stage expansion

decision status, û0 and v̂ 0.

π ≥
∑

(i,j)∈A

p̂uij









∑

k∈Kij

∆kijα
1,k
ij (ξ)



+ û0ij




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+
∑

i∈NLNG

p̂vi

[(

∑

k∈Ki

∆ki β
1,k
i (ξ)

)

+ v̂ 0i

]

+
∑

i∈N

(

q̂di d
1
i (ξ) + q̂

SF
i SF

1
i (ξ)

)

+
∑

i∈NLNG

q̂SLi SL
1
i (ξ) (5–43)

where p̂uij , p̂
v
ij , q̂

d
i , q̂SLi , q̂SFi are the optimal dual multipliers corresponding to (5–36),

(5–40), (5–37), (5–38), (5–39) and (5–41) respectively. For convenience, this cut can be

rewritten in vector format as follows,

π ≥ aTl α
1(ξ) + bTl β

1(ξ) + (Pul )
T û0 + (Pvl )

T v̂ 0

+(Qdl )
Td1(ξ) + (QSLl )

TSL1(ξ) + (QSFl )
TSF 1(ξ) (5–44)

where l denote the l th cut. Then we can include these global cuts to construct a relaxed

version of the subproblems as follows,

[RSP(ξ)]:

Min
∑

(i,j)∈A

∑

k∈Kij

c1,kij α
1,k
ij (ξ) +

∑

i∈NLNG

∑

k∈Ki

c1,ki β1,ki (ξ) + π (5–45)

s.t. π ≥ aTl α
1(ξ) + bTl β

1(ξ) + (Pul )
T û0 + (Pvl )

T v̂ 0

+(Qdl )
Td1(ξ) + (QSLl )

TSL1(ξ) + (QSFl )
TSF 1(ξ), ∀l ∈ L(ξ),(5–46)

0 ≤ α1,kij (ξ) ≤ 1, ∀k ∈ Kij , (i , j) ∈ A, (5–47)

0 ≤ β1,ki (ξ) ≤ 1, ∀k ∈ Ki , i ∈ NLNG , (5–48)

where the second stage expansion decision variables are relaxed to be continuous while

being bounded within [0, 1].

Proposition 5.1. (5–43) is valid Benders cuts for [RSP(ξ)] given any first stage solution

û0 and v̂ 0.

Proof. In [LP(ξ)], first stage solutions û0 and v̂ 0 only exist on the the right hand sides

of constraints (5–36) and (5–40). [LP(ξ)]s with different first stage solutions share the

same dual space even they have different primal feasible regions. This is because the

objective coefficients and left hand side coefficients are the same for different problems.
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The cut, (5–43), is constructed by using the dual solution to [LP(ξ)], and then it is valid

for any given first stage decision.

This means that we still can use the previously generated embedded Benders

cuts, (5–43), for the current first stage decision. So we could sequentially add the

embedded Benders cuts to [RSP(ξ)]. But we need to change the right hand sides of the

embedded Benders cuts by plugging in the current first stage solution. Subproblems of

all scenarios have the same left hand sides because the uncertainties in the expansion

planning model lie in the demands and supplies, which are all on the right hand sides

of the constraints. So all [LP(ξ)]s share the same dual space, and then the dual optimal

solution to any [LP(ξ)], (a, b,Pu,Pv ,Qd ,QSL,QSF ), can be used to construct embedded

Benders cuts for [LP(ζ)], ∀ζ ∈ Ξ, as follows,

π ≥ aTα1(ζ) + bTβ1(ζ) + (Pu)T û0 + (Pv)T v̂ 0

+(Qd)Td1(ζ) + (QSL)TSL1(ζ) + (QSF )TSF 1(ζ).

Hence we do not need to maintain a individual set of dual optimal solutions, L(ξ), for

every scenario, but only need to maintain one set L for all scenarios, because the

dual solutions can be used for all scenarios. Then we can solve the [RSP(ξ)] to derive

Benders cuts for the first stage, which is shown as follows,

z(ξ) ≥
∑

l∈L

γ̂tl (ξ)
[

(Pul )
Tu0 + (Pvl )

Tv 0 + (Qdl )
Td1(ξ) + (QSLl )

TSL1(ξ) + (QSFl )
TSF 1(ξ)

]

+
∑

(i,j)∈A

∑

k∈Kij

ρ̂k,tij (ξ) +
∑

i∈NLNG

∑

k∈Ki

σ̂k,ti (ξ) (5–49)

where γ̂tl (ξ) is the optimal dual multiplier corresponding to the l th embedded Benders

cut in L, and t denotes the t th Benders cut for [RMP]. ρ̂tij(ξ) and σ̂ti (ξ) are optimal dual

multipliers corresponding to (5–47) and (5–48) respectively.

Proposition 5.2. (5–49) is a valid Benders cut for [RMP].

101



Proof. Suppose that ZSP(ξ) and ZRSP(ξ) are the optimal objective values of [SP(ξ)] and

[RSP(ξ)] respectively. Given any first stage solution, ZSP(ξ) ≥ ZRSP(ξ), because (5–43) is

a global cut for [RSP(ξ)] and the feasible region of [RSP(ξ)] contains [SP(ξ)]’s. Also, we

have

ZRSP(ξ) ≥
∑

l∈L

γ̂tl (ξ)
[

(Pul )
Tu0 + (Pvl )

Tv 0 + (Qdl )
Td1(ξ) + (QSLl )

TSL1(ξ) + (QSFl )
TSF 1(ξ)

]

+
∑

(i,j)∈A

∑

k∈Kij

ρ̂k,tij (ξ) +
∑

i∈NLNG

∑

k∈Ki

σ̂k,ti (ξ).

Hence, (5–49) is a valid Benders cut for [RMP].

If we move all items involving variables to the left hand side for constraint (5–46), we

will get

−aTl α
1(ξ)− bTl β

1(ξ) + π ≥ (Pul )
T û0 + (Pvl )

T v̂ 0

+(Qdl )
Td1(ξ) + (QSLl )

TSL1(ξ) + (QSFl )
TSF 1(ξ), ∀l ∈ L

where L(ξ) is replaced by L, since any embedded Benders cut is valid for all restricted

subproblems. It is interesting to note that the coefficients of α1(ξ) and β1(ξ) are

independent of scenarios. So all [RSP(ξ)]s have the same left hand side coefficients

and objective function, which means they share the same dual space (dual feasible

region). Hence solving one [RSP(ξ)] means that we obtain multiple cuts for all scenarios,

and then we have following proposition.

Proposition 5.3. For all ζ ∈ Ξ,

z(ζ) ≥
∑

l∈L

γ̂tl (ξ)
[

(Pul )
Tu0 + (Pvl )

Tv 0 + (Qdl )
Td1(ζ) + (QSLl )

TSL1(ζ) + (QSFl )
TSF 1(ζ)

]

+
∑

(i,j)∈A

ˆ∑

k∈Kij
ρk,tij (ξ) +

∑

i∈NLNG

∑

k∈Ki

σ̂k,ti (ξ) (5–50)

is a valid Benders cut for [RMP], where
(

γ̂tl (ξ), ρ̂
t
ij(ξ), σ̂

t
i (ξ)

)

are the dual optimal solution

to [RSP(ξ)].

102



Because of Proposition 5.3, in constraint (5–32) we only need to maintain a single

set of dual solutions, T , instead of multiple sets for each individual scenario, T (ξ). In

the [RMP], however, we still need |Ξ| recourse variables, z(ξ)s, and |T | × |Ξ| Benders

cuts, which we refer to as disaggregated cuts. Actually each dual solution in T is

corresponding to multiple disaggregated cuts in (5–32), which can be aggregated to one

cut, (5–51). The aggregated cut is obtained by adding the weighted disaggregated cuts

together, where the weight to a cut is its corresponding probability. It is shown as follows,

z ≥
∑

l∈L

γ̂tl (ξ)
[

(Pul )
Tu0 + (Pvl )

Tv 0 + (Qdl )
T d̄1 + (QSLl )

T S̄L
1
+ (QSFl )

T S̄F
1
]

+
∑

(i,j)∈A

∑

k∈Kij

ρ̂k,tij (ξ) +
∑

i∈NLNG

∑

k∈Ki

σ̂k,ti (ξ), (5–51)

where
∑

ζ∈Ξ Pr(ζ)z(ζ) is replaced by z , and d̄1, S̄L1 and S̄F 1 are the expected demand

and supply vectors, which are equal to
∑

ζ∈Ξ Pr(ζ)d
1(ζ),

∑

ζ∈Ξ Pr(ζ)SL
1(ζ) and

∑

ζ∈Ξ Pr(ζ)SF
1(ζ) respectively. Aggregation can reduce the numbers of recourse

variables and Benders cuts greatly if there are a huge amount of scenarios. If the

aggregated cuts (5–51) are used in [RMP], it only needs one recourse variable, z , and

its objective function needs to be modified accordingly as follows,

∑

(i,j)∈A

∑

k∈Kij

c0,kij α
0,k
ij +

∑

i∈NLNG

∑

k∈Ki

c0,ki β0,ki +
∑

(i,j)∈A

h0ij f
0
ij + z . (5–52)

According to the number of scenarios, we could choose different strategies to add valid

Benders cuts in [RMP]. As is discussed in [10], the disaggregated scheme is chosen

in the case of a small number of scenarios, and vice versa. For the model [EXPN],

we prefer the aggregated scheme because the aggregated cuts need less variables,

contain more information from all scenarios, and are very easy to generate due to the

sharing of same dual space among [RSP(ξ)]s. For the [EXPN-R] model, we can do the

same decomposition by separating the risk constraints, and changing the flow balance

constraint as (5–25). Because constraint (5–29) bundles all the variables together,
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it is included the [RMP]. So do the variables, w(ξ)s, related to this constraint. The

remaining risk constraints, (5–26, 5–27, 5–28), are added to [SP(ξ)]s. Then the same

decomposition strategy applies.

As is described in section 5.3, Benders cuts are used in both the master problem

and the subproblems, and Benders cuts in the subproblems help to construct the

Benders cuts for the master problem, which is the reason that we name this algorithm

Embedded Benders Decomposition. In practice, Benders decomposition could converge

very slowly. Then, in order to speed up convergence, in the master problem we add

another type of cuts, integer L-shaped “optimality” cuts, which is proposed by [38]. An

integer L-shaped “optimality” cut is as follows,

z ≥ (Q(x̂)− L)

(

∑

j∈T

xj −
∑

j∈F

xj − |T |+ 1

)

+ L

where Q(x) is the recourse function and L is a lower bound for the second stage

problem, and T = {j |x̂j = 1} and F = {j |x̂j = 0}, if x is the first stage decision variable

and x̂ is the current solution. This follows from the fact that the right hand side will be

equal to Q(x̂) if x = x̂ , and less than L otherwise since
(
∑

j∈T xj −
∑

j∈F xj − |T |+ 1
)

≤

0 if x 6= x̂ . We refer interested readers to [38] for the detailed proof. Without having to

define the two sets, T and F , after rearranging terms the cut can be expressed by the

following equivalent inequality,

(Q(x̂)− L)
∑

j

(1− 2x̂j)xj + z ≥ Q(x̂)− (Q(x̂)− L)
∑

j

x̂j .

Because the second stage problems, SP(ξ)s, are actually affected only by the

binary solutions, α̂0 and β̂0 because û0 and v̂ 0 are determined if these binary variables

are chosen. This means we can use the integer L-shaped “optimality” cuts for solving

our models because first stage continuous decisions (flows) does not affect the second
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Step 0. Set UB =∞, LB = 0, L = ∅, T = ∅, ẑ = 0;
Solve [RMP] without taking into account recourse variable, z ;
Get the optimal objective, ZRMP , and solution (û0, v̂ 0);

Step 1. For ξ ∈ Ξ
Solve [SP(ξ)] with (û0, v̂ 0);
Get the optimal objective, ZSP(ξ), and solution (α̂1(ξ), β̂1(ξ));
Solve [LP(ξ)] with (û0, v̂ 0) and (α̂1(ξ), β̂1(ξ));
Compute (a, b,Qd ,QSL,QSF ,Pu,Pv ) after solving LP(ξ);
L ← L ∪ (a, b,Qd ,QSL,QSF ,Pu,Pv);
Solve [RSP(ξ)] with (û0, v̂ 0), obtain optimal dual solution (γ̂, ρ̂, σ̂);
Construct a new aggregated cut as in (5–51) and add it to T ;

End For
U = ZRMP − ẑ +

∑

ξ∈Ξ Pr(ξ)ZSP(ξ);

UB← min(UB,U);
Step 2. Add a new integer L-shaped cut to [RMP] as in (5–53);
Step 3. Solve [RMP] and obtain optimal objective, ZRMP , and solution (ẑ , û0, v̂ 0);

LB← max(LB, ZRMP);
Step 4. If UB− LB ≤ ǫ, then stop; Otherwise go to Step 1.

Figure 5-8. Embedded Benders Decomposition Algorithm for EXPN

stage. An integer L-shaped “optimality” cut for [RMP] is as follows,

[

Q(α̂0, β̂0)− L
]





∑

(i,j)∈A

∑

k∈Kij

(

1− 2α̂0,kij
)

α0,kij +
∑

i∈NLNG

∑

k∈Ki

(

1− 2β̂0,ki

)

β0,ki



+ z ≥

Q(α̂0, β̂0)−
[

Q(α̂0, β̂0)− L
]





∑

(i,j)∈A

∑

k∈Kij

α̂0,kij +
∑

i∈NLNG

∑

k∈Ki

β0,ki





(5–53)

The best the case, in the sense of lowest cost, for the second stage problems is that

no expansion is needed. Even there is no expansion cost, there is always transportation

cost. Hence, a lower bound L is the minimal transportation cost of the second stage,

which can be calculated as follows,

L =
∑

ξ∈Ξ

Pr(ξ)hT f∗ξ ,

where f∗ξ is the optimal solution of the network flow problem of scenario ξ.

An initial solution of the first stage decisions can be obtained by solving the [RMP]

without including the recourse variable z and any Benders cut. The lower bound is

105



actually the optimal objective value of [RMP]. The upper lower bound can be obtained by

adding up the total cost of a feasible solution. The embedded Benders decomposition

algorithm is shown in Figure 5-8.

5.4 Numerical Examples

In this section, we present numerical results of our algorithm on serval problems

with different sizes. We code our embedded Benders decomposition algorithm in

Microsoft Visual C++ while calling CPLEX 10 (Concert Technology) to solve the

decomposed problems. All programs are run in Microsoft Windows XP Professional

2002 SP2 on a Dell Desktop with Intel Pentium 4 CPU 3.40 GHz and 2 GB of RAM.

We test three groups of instances, each of which has different numbers of LNG

nodes, total nodes, arcs, arc expansion and LNG terminal expansion sizes. Also, we

assume all arcs are expandable, and same possible arc and node expansion capacities

at different arcs and LNG nodes. So let |Kij | denotes the number of possible expansion

sizes of all arcs, and |Ki | denotes the number of possible expansion sizes of all LNG

nodes. Then the number of binary variables in the extensive formulation, [EXPN],

is (|Ki | × |NLNG |+ |Kij | × |A|) × (1 + |Ξ|), which means (|Ki | × |NLNG |+ |Kij | × |A|)

binary variables in each decomposed problem. In each group, we randomly generate

different amounts of scenarios for a specific instance. The numbers of scenarios

range from 10 to 10 thousand. When the number of scenarios is big, this extensive

formulation is not an easy problem. While dealing with the extensive formulation,

[EXPN], directly, CPLEX-MIP solver does not efficiently solve the instances with a big

number of scenarios, e.g., 10k scenarios, with either exceeding the 2 hour computational

time limit or running out of computer memory. However, our EBD algorithm can solve

these instances with a big number of scenarios in a timely manner. In Table 1, we

define three groups of instances. And then computational results are shown in Table

5-5, 5-6 and 5-7, where times are counted in seconds. In the three tables, we list that

total computational times, and computing times for RMP, SP, LP and RSP. As can be
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Table 5-4. Groups of Instances EXPN
Group No. |NLNG | |N | |A| |Kij | |Ki |

1 2 4 5 2 2
2 3 7 12 3 3
3 7 11 20 5 5

Table 5-5. Computational times for instances group 1
|Ξ| Total RMP SP LP RSP
10 5.157 0.549 3.203 0.971 0.434
20 11.699 0.579 7.765 2.182 1.173
50 2.876 0.031 2.045 0.499 0.253

100 5.781 0.047 3.889 1.029 0.566
200 12.574 0.035 8.273 2.610 1.189
300 18.652 0.031 11.717 3.048 1.613
500 29.155 0.046 18.477 5.923 2.626
700 36.198 0.32 24.421 6.511 4.045
1k 58.660 0.047 34.632 9.343 5.455
2k 115.244 0.047 68.916 18.672 13.059
10k 419.715 0.31 286.709 125.629 3.209

seen in the tables, computing time almost increase linearly with respect to the number

of scenarios, which means our EBD method is well suited to problems with a huge

number of scenarios. Also, the EBD algorithm spends a big portion of time to solve

SP and LP. Hence it is possible to further reduce computing time if we do not calculate

new IC and OF cuts for each scenario in Step 1 because looping through all scenarios

takes a lot of time, especially when we have a huge number of scenarios, e.g. 10k or

more. More advanced implementation could help to achieve this and improve the overall

performance.

In addition to testing the computational time of our algorithm, we also conduct

numerical examples on the risk management model, [ESPN-R], to find out how the

risk constraints affect the performance (optimal objective value) of the model. Figure

5-9 shows how the optimal objective function changes when we vary the confidence

level, θ, and the upper bound of the risk measure, Conditional Value at Risk. As is

seen from the figure, the optimal objective value decreases as the upper bound, φ̄, on

CVaR increases. Four lines are drawn according to different confidence levels, and
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Table 5-6. Computational times for instances group 2
|Ξ| Total RMP SP LP RSP
10 1.608 0.156 0.904 0.345 0.203
20 2.639 0.125 1.748 0.504 0.262
50 6.113 0.109 3.874 1.383 0.745
100 11.696 0.126 7.815 2.422 1.333
200 23.221 0.110 15.305 4.974 2.832
300 37.490 0.109 25.633 7.002 4.746
500 52.650 0.108 38.809 10.152 3.581
700 78.342 0.94 51.567 18.222 8.459
1k 100.656 0.109 68.513 23.712 8.322
2k 190.851 0.093 134.326 45.323 8.179

10k 934.013 0.109 685.224 240.201 8.479

Table 5-7. Computational times for instances group 3
|Ξ| Total RMP SP LP RSP
3 .577 0.124 0.280 0.109 0.64

10 1.609 0.109 1.033 0.301 0.156
20 3.449 0.125 2.172 0.699 0.453
50 7.222 0.094 4.863 1.440 0.825

100 15.216 0.093 10.517 2.848 1.758
200 27.932 0.109 18.767 5.844 3.212
300 41.837 0.094 28.996 8.722 4.025
500 73.950 0.093 50.584 14.977 8.296
700 127.578 0.095 85.583 26.902 14.998
1k 145.097 0.094 98.226 26.963 19.814
2k 295.885 0.094 215.374 60.724 19.693

10k 1290.880 0.94 996.116 276.143 18.526

the line with higher confidence level bounds from below the one with lower confidence

level, which says that we need to pay more if want we want to be more secure (higher

confidence level). Another interesting fact to note from the figure is that the four lines

become more deviated from each other when the upper bound φ̄ increases. This is may

be explained by a simple example. If φ̄ = 0, then the optimal objective value of any

confidence level should be the same, because the right hand side of constraint (5–29) is

0, and then θ will not be able to affect the optimal solution of η and wis. With φ̄ gradually

increasing, the effectiveness of θ on the optimal objective value keeps increasing. It,

directly reading from the figure, looks like that the optimal objective value is a convex
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Figure 5-9. Minimal Cost V.S. Limit of CVaR

function of φ̄. This is true if we are dealing with pure linear models. However, this may

not hold for our models since we also have discrete decision variables.
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CHAPTER 6
CONCLUSIONS

This dissertation discusses stochastic integer programming and its applications

in the energy systems. First this dissertation gives a brief review about stochastic

programming, stochastic integer programming, and solution methods. Then this

dissertation proposes the Embedded Benders’ Decomposition (EBD) method for

both deterministic and stochastic mixed integer programming, which include integer

decision variables in the second stage. This method takes advantage of Benders’

decomposition and applies the Benders’ cuts in both first and second stages. All

Benders’ cuts generated for the second stage are reusable along the iterations of the

algorithm since these cuts are valid for the second stage given any first stage decision.

Next, this dissertation studies the two-stage stochastic security constrained unit

commitment (SSCUC) problem by applying the EBD method. The SSCUC problem

includes both day-ahead scheduling of coal fired generators and real-time quick-start

generators scheduling. Computational results show that EBD is very well suited for

the SSCUC problems, especially when dealing with a lot of scenarios. After that, a

detailed review of optimization models and techniques applied in natural gas industry

is presented. Also, this dissertation proposes a mathematical programming model for

natural gas transmission system expansion planning, which, to our best knowledge, is

the first model that combines transmission line expansion and LNG terminal expansion

together, and considers uncertainties in demands and supplies, and risk controlling.

Numerical results indicate that CVaR is a very good risk measure in the sense of taking

risk to reduce cost. Because expansions are modeled by integer variables, the model

is a two stage stochastic mixed integer programs where integer variables exist in both

stages. SMIP of this type is a very challenging problem. EBD algorithm is also applied

to solve the expansion planning problem. Benders cuts are implemented in both stages,

but they act as different roles. The Benders cuts for the second stage are reusable given
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any first stage solution, and solving the subproblems of one scenario can help generate

multiple cuts for all scenarios due to their sharing of dual feasible space. The numerical

results show that the EBD algorithm is also very well suited for the expansion planning

problems, especially when there are a huge number of scenarios. Future research

would focus on how to further improve the EBD algorithm by reducing the computational

time on RSP, LP and RSP. Also, more sophisticated techniques to generate strong

Benders cuts could be used to improve the convergence rate of the algorithm.

There are two types of future research we would like to pursue, theories and

applications. On the theoretical side, we would like to find a finitely convergent method

for general stochastic mixed integer programs based on the results of Embedded

Benders Decomposition. Also, the development of fast convergent methods for

multistage stochastic integer programs based on Benders decomposition and polyhedral

theory is fascinating. On the application side, network based stochastic unit commitment

problems are very important in reality, since generators are located in a decentralized

power grid. Network-based models can provide more insights about how to coordinate

and integrate all resources within the power grid. The natural gas contract optimization

problem is another very interesting application problem on which we can apply the

multistage EBD if we can enhance the convergence. More and advanced studies of

polyhedral properties of subproblem in each stage are crucial to develop advanced

algorithms for the multistage problems.
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