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Abstract 
This paper consists of three parts which aim at 
developing an optimal dispatching algorithm for natural 
gas pipeline systems. First of all, a proficient model is 
proposed to determine the pressure level and the 
horsepower requirement in the network. This system 
constructs an input-output mapping based on human 
knowledge and input-output data pairs in the form of 
fuzzy if-then rules. In the second part, the problem of 
minimizing the energy consumption by compressor 
stations in a transmission network is addressed that is 
able to find an optimal solution using the model-based 
predictive scheme. The last part of the paper 
concentrates on dynamic modeling of gas distribution 
pipeline system; and deriving a simplified model from 
the set of PDE’s governing the dynamics of the system. 
 
Keywords: Gas Pipeline System, Modeling, 
Optimization, Fuzzy, Model-based Predictive Scheme 
 
Introduction 
Pipeline networks are the most effective and common 
ways for transporting natural gas. According to the 
National Iranian Gas Company (NIGC), a huge amount 
of 5 milliard m3 of natural gas are transported daily in 
Iran over 30,000 km of pipeline system. The main 
purpose of this project is to construct an autonomous 
natural gas dispatching system to satisfy customer 
demand with minimal operating cost, and document the 
operating knowledge of senior dispatchers as well as 
using a proficient system as a training tool for training 
new dispatchers. A brief literature history on the object 
of the presented research is proposed in “Relevant 
Literature”. “Proficient System” describes the main two 
tasks of the proficient system and its role in the 
presented problem. It is explained how this proficient 
system performs these two tasks using historical data as 
well as heuristic knowledge from human experts. 

As the gas flows through the network, energy and 
pressure are lost due to both friction between the gas 
and the pipes’ inner wall, and heat transfer between the 
gas and its environment. The lost energy of the gas is 
periodically restored at the compressor stations which 
are installed in the network. These compressor stations 
typically consume about 3-5% of the transported gas 
that leads to a significant amount of fuel cost. These 
facts make the problem of how to optimally operate the 
compressors driving the gas in a pipeline network 

important. “Optimization of Gas Pipeline Operation” 
addresses the problem of real time optimization of the 
natural gas pipeline system. This section starts with 
presenting a dynamic receding horizon optimization 
problem. Later in this section a quadratic programming 
problem is proposed by using a quadratic cost function. 
The cost function is the energy consumption of the 
compressor stations driving the gas in a transmission 
network under unsteady conditions.  

This paper continues in “Modeling of the Gas 
Pipeline Network” with a review of the set of PDEs 
(continuity and momentum equations) governing the 
dynamic of the gas flow through a pipeline; a simplified 
model is also derived from the original one.  

 
Relevant Literature 
Different researchers have worked on issues relating to 
the problems in the dispatching system of natural gas 
pipeline network. C.K. Sun et al. (2000) have developed 
an integrated decision support system combining 
proficient systems and mathematical modeling in order 
to optimize natural gas pipeline operations. In this 
integrated approach, both proficient systems and 
operations research techniques are used to model the 
operations of the gas pipelines, [1]. A. Martin et al. 
(2005) developed a mixed integer model for the solution 
of the stationary gas optimization problem. They 
described techniques for a piece-wise linear 
approximation of the nonlinearities in this model 
resulting in a large mixed integer linear program, [2]. S. 
Wu et al. (1999) addressed the problem of minimizing 
the fuel cost incurred by the compressor stations driving 
the gas in a transmission network under steady state 
assumptions, [3]. Rios-Mercado et al. (2001) presented 
a reduction technique for natural gas transmission 
network optimization problems, [4].  
 A. Herran-Gonzalez et al. (2008) have worked on the 
dynamic modeling and simulation of a gas distribution 
pipeline with a special emphasis on gas ducts, [5]. M. 
Herty et al. (2008) derived a model for gas dynamics in 
pipe networks by asymptotic analysis. The model is a 
strong improvement of the quasi static model and the 
SIMONE–model commonly used in the engineering 
community, [6]. Ke and Ti (2000) analyzed isothermal 
transient gas flow in the pipeline networks using the 
electrical analogy, [7]. Martinez-Romero et al. (2002) 
described steady-state compressible flow through a 
pipeline using software package “Gas Net”. They 
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presented a sensibility analysis for the most important 
flow equations defining the key parameters in the 
optimization process, [8]. The receding horizon 
optimization is tested in a simulation environment using 
predictive scheme by Hans Aelto (2005). A dynamic, 
receding horizon optimization problem is defined by 
means of predictive control algorithm [9]. Chapman et 
al. (2005) developed a Virtual Pipeline System Testbed 
(VPST) for natural gas transmission, [10].  Continious-
time System Identification from Discrete-time 
Measurements with Application to Natural Gas Pipeline 
Modeling was also done by E. St. Patrick Walter (2002) 
[11].  
 
Proficient System 
Proficient system is used in problems and process 
control engineering where no mathematical models can 
be formulated, the working knowledge of the system is 
nonlinear and incomplete, and the knowledge of an 
experienced human expert can give a satisfactory 
solution. The main tasks of the proficient system in our 
model are first to determine the level of the pressure in 
the pipeline and  recommend the control commands to 
be issued, and second to evaluate the associated 
horsepower requirement. An overview of the role that 
the proficient system plays in the operation of the 
pipeline network is shown in “Figure 1”, [1]. 
 

 
Figure 1: Proficient system role in pipeline network  

 
 The knowledge base of the proficient system is 
based on an analysis of historical data, heuristic 
knowledge from human experts in the natural gas 
transportation company, and a computer simulation 
program that belonged to the gas company. 
 
Determining the Level of the Pressure in a Pipeline 
and Recommend the Control Commands 
Determining the level of the pressure in a pipeline is 
realized with an if-then decision algorithm. Both the 
conditional variables and the decision variable of this 
algorithm are listed in “Table 1”. 
 
Table 1: Decision algorithm for natural gas pipeline operation 

Kind of 
Variables Variables Variable Region 

Conditional 
Variables 

(IF) 
 
 
 

Change of 
pressure at the 
end points 

Є {rapidly decrease, 
decrease, no change, 
increase,  
rapidly increase}  

Rate of change of 
pressure at the 
end 

Є {+,-} 

Flow Є {very high, high, 
medium, low, very low}  

Current Pressure 
level 

Є {CLP1, CLP2, CLP3, 
CLP4, CLP5}  

Decision 
Variables 
(THEN) 

State of the line 
pack 

Є { low,  high,  enough} 
                        

No Action   
No Extra Compression  

Extra Compression 
 
 Total of 250 Rules are generated using the above if-
then algorithm that are presented in 10 decision table.  
“Table 2” is a sample of these tables. 
 

Table 2: Sample Decision Table 
Current Line Pack = CLP1 
+ Rate of Change of Pressure at the End Point 

∆ܲ 
end 
 

Flow 

Rapidly 
Decrease Decrease No 

change Increase Rapidly 
Increase 

Very 
high Enough Enough Enough High High 

High Enough Enough Enough High High 

Medium Enough Enough Enough Enough High 

Low Low Enough Enough Enough High 
Very 
Low Low Low Enough Enough Enough 

 
Evaluating the Horsepower Requirement 
The horsepower (HP) requirement can be derived from 
heuristic data points. x and y components of each point 
represent the volume of natural gas (Load) and the 
amount of HP requirement respectively. After clustering 
the data points, Takagi-Sugeno Kang (TSK) fuzzy 
model, [12], of the form “Figure 2” is considered to be 
used in order to develop the linear rule fitting the 
historical data points.  

 
Figure 2: the horsepower requirement chart 

 
 We assume the fuzzy inference system under 
consideration has one input x and one output y.  
Suppose that the rule base contains two fuzzy if-then 
rules of Takagi and Sugeno’s type: 

ܴ: ܨܫ ݔ ݏ݅ ܣ ܰܧܪܶ ݂ ൌ ݔ       ;   i=1,2ݎ
  
 Calculating the rule firing strength by equation (1); 
 

ݓ ൌ ሻ   ;   i=1,2 (1)ݔሺߤ
  
 The overall output can be expressed as linear 
combinations of the consequent parameters. 
 

ഥݓ ൌ ௪
௪భା௪మ

   ;   i=1,2 (2)

Proficient 
System 

Final 
Decision 

Suggest 

Dispatcher System 
Conditions 

System 
Reactions 
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݂ ൌ ഥଵݓ ଵ݂  ഥଶݓ ଶ݂ (3)

 
 The simplified fuzzy if-then rules become of the 
following form in which the output z is described by a 
crisp value (or equivalently, a singular membership 
function). 

ܴ:  ݂ ݏ݅ ݖ ܰܧܪܶ  ܣ ݏ݅ ݔ ܨܫ
  
 Most of all, with this simplified fuzzy if-then rule, it 
is possible to prove that under certain circumstance, the 
resulting fuzzy inference system has unlimited 
approximation power to match any nonlinear functions 
arbitrarily well on a compact set [13]. We will precede 
this in a descriptive way by applying the Stone-
Weierstrass theorem [14] stated below. 
 Weierstrass theorem: let domain D be a compact 
space of N dimensions, and let F be a set of continuous 
real-valued functions on D, satisfying the following 
criteria. 

1. Identity function: The constant f(x)=1 is in F. 
2. Separability: For any two points xଵ ് xଶ in D, 

there is an f in F such that f( xଵሻ ് fሺxଶሻ. 
3. Algebraic closure: If f and g are any two functions 

in F, then fg and af + bg are in F for any two real 
numbers a and b. 
 Then F is dense in C(D), the set of continuous real-
valued functions on D. In other words, for any Ԗ  0, 
and any function g in C(D), there is a function f in F  
such that |gሺxሻ െ fሺxሻ| ൏ ߳ for all x א D. 
 In application of fuzzy inference systems, the 
domain in which we operate is almost always closed 
and bounded and therefore it is compact. For the first 
and second criteria, it is trivial to find simplified fuzzy 
inference systems that satisfy them. Now all we need to 
do is examine the algebraic closure under addition and 
multiplication. Suppose we have two fuzzy inference 
systems S and ሚܵ; each has two rules and the output of 
each system can be expressed by equations (4) and (5).  
 

ܵ: ݖ ൌ
ଵݓ ଵ݂  ଶݓ ଶ݂

ଵݓ  ଶݓ
 (4)

 

ሚܵ: ݖ ൌ
ଵݓ ሚ݂ଵ  ଶݓ ሚ݂ଶ

ଵݓ  ଶݓ
 

(5)

     
 ଵ݂, ଶ݂, ሚ݂ଵ ܽ݊݀ ሚ݂ଶ  are constant outputs of each rule; 
 
 

ݖܽ  ݖܾ̃ ൌ ܽ ௪భభା௪మమ
௪భା௪మ

 ܾ ௪భሚభା௪మሚమ
௪భା௪మ

ൌ
௪భ௪భ൫భାሚభ൯ା௪భ௪మ൫భାሚమ൯

௪భ௪భା௪భ௪మା௪మ௪భା௪మ௪మ
  

 ௪మ௪భ൫మାሚభ൯ା௪మ௪మ൫మାሚమ൯
௪భ௪భା௪భ௪మା௪మ௪భା௪మ௪మ

   

(6)

 
ݖ̃ݖ ൌ ௪భ௪భభሚభା௪భ௪మభሚమା௪మ௪భమሚభା௪మ௪మమሚమ

௪భ௪భା௪భ௪మା௪మ௪భା௪మ௪మ
  

 

(7)

 These equations are of the same form as (4) and (5). 
Apparently the model architectures that compute 
ݖܽ   are of the same class of S and ሚܵ if and ݖ̃ݖ and ݖܾ̃
only if the class of membership functions is invariant 

under multiplication. This is loosely true if the class of 
membership functions is the set of all bell-shaped and 
scaled Gaussian membership functions, as pointed out 
by Wang [12]. 
 Therefore by choosing an appropriate class of 
membership functions, we can conclude that the TSK 
model with simplified fuzzy if-then rules satisfy the four 
criteria of the Stone-Weierstrass theorem. 
Consequently, for any given ߳  0, and any real-valued 
function g, there is a fuzzy inference system S such that 
|݃ሺݔሻ െ ܵሺݔሻ| ൏ ߳ for all x in the underlying compact 
set. Moreover, we can draw the conclusion that all the 
TSK model that is used to evaluate the horsepower 
required, have unlimited approximation power to match 
any given data set. However, caution has to be taken in 
accepting this claim; there is no mention about how to 
construct the model according to the given data set. 
 
Optimization of Gas Pipeline Operation 
In this step a dynamic, receding horizon optimization 
problem is defined, where the free response prediction 
of the pipeline is to be obtained from a pipeline 
simulator and the optimal values of the decision 
variables are obtained solving a quadratic programming 
problem. Quadratic Programming problem set up by 
using linear models, linear constraints and quadratic 
approximations of a cost function. The cost function is 
the energy consumption of the compressor stations. 
 
Model-based Predictive Scheme 
Model-based Predictive Control (MPC) algorithms are 
reported to be very versatile and robust in process 
control applications. They usually outperform PID 
controllers and are applicable to non-minimum phase, 
open-loop unstable, time delay, and multivariable 
processes [16]. 

 
Figure 3: The Concept of Model-based Predictive Control 

 
 The Concept of Model-based Predictive Control is 
shown in “Figure 2”. Predictive Control strategies bases 
on the idea of determining the manipulated variable in 
every step by optimizing the projected future control 
policy using a suitable chosen cost function. Although 
the whole future control trajectory was calculated in the 
previous step, only its first element u(k) is actually 
applied to the process at the next sampling time the 
procedure is repeated. This is known as the Receding 
Horizon concept [17]. 
 
Receding Horizon Optimization 
A discrete-time receding horizon real-time optimization 
problem is defined as finding optimal sequence of 
system inputs u(k), u(k+1),…,u(k+M-1) at the discrete 
moment of time “k” based on historical values of 
measured system outputs …,y(k-1), y(k) and inputs …, 
u(k-2), u(k-1) as well as predicted values of output yො 

Plant Predictive 
Controller 

Model 

y(t)u(t) 
w(t)
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(k+1), yො (k+2), ... yො (k+P) over the prediction horizon P, 
Fig. 3. The past input and output values before the 
present time "k" are used to calculate the predicted 
outputs for time steps k+i, i=1,2,...,P in the future under 
the assumption, that there is no change in future input 
values from the latest implemented input value u(k-1). 
This is often referred to as the "free response". The final 
output response is a combination of the free response 
and the response to optimal future input variables u(k), 
u(k+1),..., u(k+M-1) to be determined by the optimizer 
or controller at time "k". 

 
Figure 4: Discrete-time receding horizon real-time 

optimization problem 
 
 Optimal inputs are obtained by solving the following 
optimization problem, equation 8, in which c is the cost 
function [9]. 

min
௨ሺሻ,௨ሺାଵሻ,…,௨ሺାெିଵሻ

ሺ݇ሻܬ

ൌ  ܿሾݕොሺ݇  ݅ሻ, ሺ݇ݑ  ݅ െ 1ሻሿ


ୀଵ

(8)

 
 This equation subjects to the constraints (9), (10), 
(11) and (12). 
 

ሺ݇ݔ  1ሻ ൌ ,ሺ݇ሻݔ൫ܨ ,ሺ݇ሻݑ ݀ሺ݇ሻ, ଵሺ݇ሻ൯ݒ  ଶሺ݇ሻ (9)ݒ
 

ሺ݇ሻݕ ൌ ,ሺ݇ሻݔ൫ܩ ଷሺ݇ሻ൯ݒ  ସሺ݇ሻ (10)ݒ
 

݄ሺݔሺ݇ሻ, ,ሺ݇ሻݕ ሺ݇ሻሻݑ  0 (11)
 
ሺ݇ݑ  ܯ  ݅ሻ ൌ ሺ݇ݑ  ܯ െ 1ሻ, ݅ ൌ 0, . , ܲ െ ܯ െ 1 (12)

 
 This problem is considered to be linear if and only if 
the first three constrains are linear. In this case the 
related MPC problem is linear and called Linear Model-
based Predictive Control (LMPC) [16]. 
 
Linear State-Space Model-Based Predictors 
In LMPC, the predicted system output yො (k) is written as 
a sum of the predicted free response at moment “k”, 
yො(k-1) and the contribution of the future inputs using a 
step response matrix S as it is shown in equation (13). 
 

ܻሺ݇ሻ ൌ ሺ݇ሻݑ∆ܵ  ܻሺ݇ െ 1ሻ (13)
 
 Where 

ܻሺ݇ሻ
ൌ ሾݕොଵሺ݇  1|݇ሻ ݕොଵሺ݇  2|݇ሻ ොଵሺ݇ݕ …  ܲ|݇ሻ | 
ොଶሺ݇ݕ   1|݇ሻ ݕොଶሺ݇  2|݇ሻ … ොଶሺ݇ݕ  ܲ|݇ሻ| … 
ොሺ݇ݕ  1|݇ሻ ݕොሺ݇  2|݇ሻ … ොሺ݇ݕ  ܲ|݇ሻሿԢ (14)

 
ሺ݇ሻݑ∆ ൌ ሾ∆ݑଵሺ݇ሻ∆ݑଵሺ݇  1ሻ … ଵሺ݇ݑ∆  ܯ െ 1ሻ | 
ଶሺ݇ݑ∆ ଶሺ݇ሻݑ∆  1ሻ ଶሺ݇ݑ∆ …  ܯ െ 1ሻ| … 
ሺ݇ݑ∆ ሺ݇ሻݑ∆  1ሻ ሺ݇ݑ∆ …  ܯ െ 1ሻሿԢ (15)

 

ሺ݇ሻݑ ൌ ሾݑଵሺ݇ሻ ଵሺ݇ݑ  1ሻ ଵሺ݇ݑ …  ܯ െ 1ሻ | 
ଶሺ݇ሻݑ ଶሺ݇ݑ  1ሻ … ଶሺ݇ݑ  ܯ െ 1ሻ| … 

ሺ݇ሻݑ ሺ݇ݑ  1ሻ … ሺ݇ݑ  ܯ െ 1ሻሿԢ (16)
 
 The nP ൈ mM system step response matrix S has the 
structure S. 

ܵ ൌ 
ଵܵଵ ڮ ଵܵ
ڭ ڰ ڭ

ܵଵ ڮ ܵ

൩ 

 
 Each P ൈ M matrix Sij contains the step response 
coefficients for input uj to output yi. 
 A non-minimal state-space model like equation (17) 
can be used as a basis for the estimator design required 
(Li et al., 1989). 
 

ܺሺ݇ሻ ൌ ௦௦ܺሺ݇ܯ െ 1ሻ  ଵܵ∆ݑሺ݇ െ 1ሻ (17)
 
 Where 

ܺሺ݇ሻ ൌ ሾݕොଵሺ݇|݇ െ 1ሻ … ොଵሺ݇ݕ  ܲ|݇ െ 1ሻ| 
݇|ොଶሺ݇ݕ െ 1ሻ … ොଶሺ݇ݕ  ܲ|݇ െ 1ሻ| … 

݇|ොሺ݇ݕ െ 1ሻ … ොሺ݇ݕ  ܲ|݇ െ 1ሻሿԢ   (18)
 

ܺሺ݇ െ 1ሻ
ൌ ሾݕොଵሺ݇ െ 1|݇ െ 2ሻ … ොଵሺ݇ݕ  ܲ െ 1|݇ െ 2ሻ| 
ොଶሺ݇ݕ െ 1|݇ െ 2ሻ … ොଶሺ݇ݕ  ܲ െ 1|݇ െ 2ሻ| … 

ොሺ݇ݕ െ 1|݇ െ 2ሻ … ොሺ݇ݕ  ܲ െ 1|݇ െ 2ሻሿԢ  (19)
 
 Where n ൈ (P+1) State Vector X includes the current 
output value at time “k” and P predicted values. Block 
diagonal matrix Mss includes n shift matrices Ms, 
diag(Ms, Ms, …, Ms), each of dimension (P+1) ൈ 
(P+1). n ൈ (P+1) matrix S1 account for the last 
implemented incremental inputs. S1 is obtained by 
expanding the step response matrix S by one sample 
interval to a n(P+1) ൈ mM matrix and then, in each sub-
matrix Sij, delete all columns except the left ones [9]. 
 
State Update Model for Free Response Prediction 
A final state update model for the free response 
prediction is obtained by using a Kalman filter. 
Equations (20), (21), and (22) show this model. 
 

തܺሺ݇ሻ ൌ ௦௦ܺሺ݇ܯ െ 1ሻ  ଵܵ∆ݑሺ݇ െ 1ሻ (20)
 

ܺሺ݇ሻ ൌ തܺሺ݇ሻ  ெሺ݇ሻݕ൫ܭ െ ܶ തܺሺ݇ሻ൯ (21)
 

ܻሺ݇ െ 1ሻ ൌ ሺ݇ሻܺܪ (22)
 
 Where K is a n(P+1) ൈ n dimensional Kalman filter 
gain matrix. T is an n ൈ n(P+1) “output” matrix used to 
pick the predicted output values corresponding to the 
measured value yM(k): for i=1,2,…,n, Tij=1 if j=i(P+1)-
P, otherwise Tij=0. H is an nP ൈ n(P+1) shift matrix 
modified from Mss so, that the last row of each Ms is 
left away. 
 
A Quadratic Cost Function 
As it is shown in equation (23), for the non-linear cost 
function of the real-time optimization problem at hand, 
the energy consumption of the CSs over the prediction 
horizon P is chosen, [9]. 
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ܬ ൌ  ቌ ܽܨሺ݇  ݅ሻ ቆቆ ௗܲ,ሺ݇  ݅ሻ
௦ܲ,ሺ݇  ݅ሻቇ

ఊ

െ 1ቇ
ே

ୀଵ

 ܾቍ


ୀଵ (23)
 
 Discharge pressure of CS j, Pୢ ,୨ is replaced by u୨ in 
the previous equations. 
 

ௗܲ, ൌ ൣ ௗܲ,ሺ݇  1ሻ, … , ௗܲ,ሺ݇  ܲሻ൧்

ൌ ܵ∆ݑሺ݇ሻ  ሺିଵሻ (24)ݑܫ
 
 Where 
 

ሺ݇ݑ  ݅ሻ ൌ  ሺ݇ݑ∆  ݆ሻ  ሺ݇ݑ െ 1ሻ


ୀ

 
(25)

 
ܫ ൌ ሾ1 1 1 1 … 1ሿ் (26)

 
ሺ݇ሻݑ∆ ൌ ሾ∆ݑሺ݇ሻ ∆ݑሺ݇  1ሻ ሺ݇ݑ∆ …  ܯ

െ 1ሻሿ் (27)
 
 ܵ is also a sub triangular matrix; all of its non zero 
elements are set to 1. 
 
Modeling of the Gas Pipeline Network 
The set of Partial Differential Equations (PDEs) 
governing the one-dimensional gas flow dynamic 
through a gas pipeline, continuity, momentum and 
energy equations (28), (29) and (30), are obtained from 
Herran-Gonzalez [1] and Anderson [18].  
 

ߩ߲
ݐ߲ 

߲
ݔ߲

ሺݒߩሻ ൌ 0 
(28)

 
߲
ݐ߲

ሺܣݒߩሻ  
߲

ݔ߲
ሺܣ   ܦߨ|߬| ሻ ܣଶݒߩ

 ݃ܣߩ  sin ߠ   ൌ 0 

(29)

 
߲
ݐ߲ ቈቆ݁ 

ଶݒ

2 ቇ ܣߩ 
߲

ݔ߲ ቈቆ݄ 
ଶݒ

2 ቇ ܣݒߩ െ Ω

 ݒ݃ܣߩ sin ߠ ൌ 0 

(30)

 
 The state for gas is also defined with equation (31). 
 

 ൌ ߩ
ܼܴ௨ܶ

ܯ ൌ ܶ (31)ܴܼߩ

 
 Two important cases usually are considered in 
literature to solve the above Equations: 
 (a) Isothermal flow (T = constant) corresponding to 
slow dynamic changes, in which the value of Ω can be 
calculated through energy equation 
 (b) Adiabatic flow (Ω= 0) corresponding to fast 
dynamic changes, that includes the particular isentropic 
flow case 
 Rewriting the equations (28), (29) and (30) in 
function of fanning friction factor, f, and mass flow, q, 
that are evaluated from equations (32) and (33) and 
assuming isothermal flow, the one-dimensional gas flow 
dynamics inside a gas pipeline is described by the set of 
PDE’s shown in Equation (34). 

 

݂ ൌ
|߬|

1
2 ଶݒߩ

 
(32)

 
ݍ ൌ ܣݒߩ ൌ ܳߩ (33)

 

ە
ۖ
۔

ۖ
ۓ ߩ߲

ݐ߲ 
1
ܣ

ߩ߲
ݔ߲ ൌ 0

ݍ߲
ݐ߲ 

߲
ݔ߲ ቆܵ 

ଶݍ

ቇߩܣ 
|ݍ|ݍ2݂

ߩܣܦ  ݃ܣߩ sin ߠ ൌ 0
(34)

 
 Friction term turns the equations of the non viscous 
gas classic dynamics to viscous ones. Inertia term 
changes the creeping motion to undulatory propagation 
phenomenon [5].  
 As the first simplification the third term in equation 
(34) is neglected, making reference to horizontal 
pipeline. Then, the gas flow dynamics through a gas 
pipeline can be represented by the system of PDE’s 
shown in Equation (35) in which it is considered to have 
isothermal process,  ൌ ܽଶߩ. Besides the relation q = 
qvS = constant = qQ = qnQn is used to express the model 
in function of flow rate in normal conditions, Qn(x, t) 
and pressure p(x, t), where the subscript n refers to 
quantities at standard conditions of pressure Pn=0.1 MPa 
and temperature Tn=288K. This system was used by 
Herran-Gonzalez, Cruz, Andres-Toto, and Risco-Martin 
[6] for unsteady flow simulation. 
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Results and Discussion 
As shown in “Table 1”, determining the level of the 
pressure in a pipeline is realized with an if-then decision 
algorithm. Consequently 250 rules are generated using 
the above if-then algorithm presented in 10 decision 
table such as “Table 2”. Clustering the heuristic data 
points that represent load and HP requirement, TSK 
fuzzy model is used to develop a linear rule fitting the 
data; this rule is used to calculate the HP requirement. 
 Moreover it was shown that adequate results can be 
obtained from real-time receding horizon optimization, 
based on free response predictions obtained from a 
pipeline system simulator, using linear control variable 
models and approximate quadratic cost function 
presented in equation (23).  
 The final dynamic equations governing the pressure 
and flow dynamics of the system is obtained moving the 
x-derivatives to the left had side the system of equations 
(35) as shown in equation (36). 
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Conclusions 
In order to generate an optimal dispatching system for 
natural gas pipeline system a proficient decision making 
system was proposed as well as a dynamic, receding 
horizon optimization problem. The proficient system is 
responsible for specifying the level of pressure in the 
pipeline in addition to finding out the needed 
horsepower of the costumers. In the receding horizon 
optimization problem, the optimal values of the decision 
variables are obtained solving a quadratic programming 
problem. In addition a quadratic cost function for 
approximating the energy consumption of the 
compressor stations was developed. 
 Furthermore, the dynamic modeling of a gas 
distribution pipeline network was demonstrated by 
means of equations governing the pressure and flow 
dynamics of the system.  
 
List of Symbols 
A gas pipeline cross-sectional area (m2) 
D gas pipeline diameter (m) 
e specific internal energy (J kg-1) 
h specific enthalpy (J kg-1) 
L L gas pipeline length (m) 
M molecular mass of gas (kg mol-1) 
P gas pressure (bar) 
q mass flow rate (kg s-1) 
Q Q volumetric flow rate (m3 s-1) 
Qn volumetric flow rate in normal condition(m3 s-1) 
Ru universal gas constant (J mol-1K-1) 
Rg gas constant (J kg-1K-1) 
T temperature of gas (K) 
v velocity (m/s) 
x axial coordinate (m) 
Z compressibility factor 
Ω heat flow per unit length (J m-1 s_1) 
 gas density (kg m-3) ߩ
  gas density in normal conditions (kg m3)ߩ
 (°) inclination angle of the pipeline to horizon ߠ
߬ tangential stress (N) 
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