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Abstract
Hierarchical Decision Making with Supply Chain Applications

Xiangrong Liu
Advisor: Hande Benson, Ph.D.; Avijit Banerjee, Ph.D.

Hierarchical decision making is a decision system, where multiple decision makers are

involved and the process has a structure on the order of levels. It gains interest not only

from a theoretical point of view but also from real practice. Its wide applications in supply

chain management are the main focus of this dissertation.

The first part of the work discusses an application of continuous bilevel programming in

a remanufacturing system. Under intense competitive pressures to lower production costs,

coupled with increasing environmental concerns, used products can often be collected via

customer returns to retailers in supply chains and remanufactured by producers, in order

to bring them back into “as-new” condition for resale. In this part, hierarchical models are

developed to determine optimal decisions involving inventory replenishment, retail pricing

and collection price for returns. Based on the simplified assumption of a single manufacturer

and a single retailer dealing with a single recoverable item under deterministic conditions,

all of these decisions are examined in an integrated manner. Models depicting decentral-

ized, as well as centralized policies are explored. Analytical results are derived and detailed

sensitivity analysis is performed via an extensive set of numerical computations.

In the second part of this dissertation, a discrete bilevel problem is illustrated by in-

vestigating a biofuel production problem. The issues of governmental incentives, industry

decisions of price, and farm management of land are incorporated. While fixed costs are

natural components of decision making in operations management, such discrete phenomena

have not received sufficient research attention in the current literature on bilevel program-

ming, due to a variety of theoretical and algorithmic difficulties. When such costs are taken



x

into account, it is not easy to derive optimality conditions and explore convergence proper-

ties due to discontinuities and the combinatorial nature of this problem, which is NP-hard.

In order to solve this problem, a derivative-free search technique is used to arrive at a so-

lution to this bilevel problem. A new heuristic methodology is developed, which integrates

sensitivity analysis and warm-starts to improve the efficiency of the algorithm.
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0.1 List of Symbols Used

Notation used for literature review

x = vector of decision variables controlled in an upper level problem(ULP)

y = vector of decision variables controlled in a lower level problem(LLP)

s = vector of slack variables controlled in a LLP

λ = vector of Lagrange multipliers in a LLP

z = vector of decision variables in a bilevel problem, z = (x, y, s, λ)

X = linear feasible set for decision variables controlled in an ULP

Y = linear feasible set for decision variables controlled in a LLP

F = objective function for an ULP

G = constraint functions for an ULP

f = objective function for a LLP

g = constraint functions for a LLP

Cx = objective coefficients for decision variables x in a linear ULP

Cy = objective coefficients for decision variables y in a linear ULP

cx = objective coefficients for decision variables x in a linear LLP

cy = objective coefficients for decision variables y in a linear LLP

B = right hand side of constraints in a linear ULP

b = right hand side of constraints in a linear LLP

Ax = constraint matrix for decision variables x in a linear ULP

Ay = constraint matrix for decision variables y in a linear ULP

ax = constraint matrix for decision variables x in a linear LLP

ay = constraint matrix for decision variables y in a linear LLP

d = directional derivative

dx = directional derivative for x

dy = directional derivative for y

P = coefficient matrix in a quadratic upper level problem

Q = coefficient matrix in a quadratic lower level problem

R = set of real numbers

Z = set of integers

L(x, y, λ) = Lagrangian function
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k = index of iterations

r = radius of neighborhood

ε = tolerance

ϑo(x) = best-case objective value of the ULP for a fixed x (optimistic)

ϑp(x) = worst-case objective value of the ULP for a fixed x (optimistic)

Φ(x) = penalty function of the objective value in the upper level problem

κ = maximum value of the upper level variable

Γ(x) = feasible region of the lower level variable given x

<(x) = reaction set for the lower level variable given x

εk = step length at the kth iteration

V(x, r) = the neighborhood of x with a radius of r

M = a large positive constant

k = iteration index

INT = interior

BD = boundary

F̄ = upper bound for the upper level objective function value

F = lower bound for the upper level objective function value

F ′ = the first derivative for the upper level objective function

f ′ = the first derivative for the lower level objective function

f = lower bound for the lower level objective function value

B = index set for basic variables

N = index set for nonbasic variables

Notation used for biofuel production model

V = set of biofuels

E = set of farms

C = set of food crops

D = set of nonfood crops

D(v) = subset of nonfood crops used to make biofuel v

D′ = subset of nonfood crops with subsidies

τv = government tax credit given to industry for biofuel v ($/ton)

pde = price paid by industry to farm e for the land assigned

to produce nonfood crop d($/ton)



xiv

xce = area allocated to food crop c by farm e (acres)

xnde = area allocated to nonfood crop d by farm e (acres)

xfe = area set aside as fallow by farm e (acres)

qde = binary variable to decide whether farm e will plant nonfood crop

αdve = conversion rate from the land assigned to nonfood crop d in farm e

to biofuel v (ton/acre)

γ = set-aside payment for fallow land ($/acre)

ρ = minimum percentage of set-aside land expected by the government

for nonfood crops

θ = percentage of arable land required to be set aside for nonfood crops or fallow

σe = total arable land available on farm e (acres)

uv = upper bounds on production of biofuel v from certain nonfood crops (ton)

πve = threshold for the industry price ($/ton)

mce = gross margin for food crop c grown on farm e ($/acre)

cde = net production cost for nonfood crop d on farm e ($/acre)

χde = upper bound on percentage of land permitted for nonfood crop d on farm e

δ = maximum percentage of land expected by government for fallow

tde = fixed cost for farm e for planting nonfood crop d ($)

Notation used for remanufacturing model(retailer)

d = demand rate of the product (units/time unit)

Sr = fixed ordering cost for retail stock replenishment($/order)

hr = inventory holding cost of the product ($/unit/time unit)

hrr = inventory holding cost of the used (returned) product ($/unit/time unit)

rc = unit reimbursement to customers for returns ($/unit)

ps = unit selling price of the product (new or remanufactured) ($/unit)

x = rate at which customers return the used item to the retailer (units/time unit)

X = total quantity of returns in a replenishment cycle (units)
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Notation used for remanufacturing model(manufacturer)

m = manufacturing or remanufacturing rate of the product(unit/time unit)

Sm = fixed manufacturing/remanufacturing setup cost per replenishment lot ($/setup)

Srm = total fixed cost of shipping a replenishment lot of new products to the retailer

and transporting the returned items back to the manufacturing facility ($/cycle)

Si = fixed ordering cost of inputs for manufacturing and remanufacturing ($/lot)

hm = inventory holding cost of new or remanufactured product ($/unit/time unit)

hi = inventory holding cost of input materials necessary for the production of a unit

of the new product($/unit/time unit)

hir = inventory holding cost of input materials necessary for remanufacturing a unit

of the used product($/unit/time unit)

rm = transfer price paid to retailer by manufacturer for collecting used products($/unit)

pw = wholesale price charged to retailer for the new product ($/unit);

cs = variable transportation cost of shipping new product to the retailer($/unit)

cr = variable cost of transporting, cleaning, preparation, etc for returned items($/unit)

cm = variable cost of manufacturing new product ($/unit)

crm = variable cost of remanufacturing a returned used product into a new one($/unit)

Notation used for remanufacturing model(common to both)

T = inventory replenishment cycle time, common to retailer and manufacturer

(time units)

Q = replenishment quantity consisting of new and/or remanufactured items

(units)
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1. Introduction to Hierarchical Decision Making (HDM)

1.1 Background

Hierarchical decision making is a decision making system, where multiple decision makers

are involved and the process has a hierarchical structure, i.e., decision making on the order

of levels. Usually, decision makers in the higher level make decisions first. After observing

the decisions in the higher level, decision makers in the lower level react with their optimal

strategies. With the assumption of perfect information about the lower level, the decision

makers in the higher level could anticipate the strategies from the lower level before their

decision making. As a result, the decision makers will take responses from the lower level

into consideration before the upper level decisions are made.

We call the decision makers in the upper level problem the leaders. Correspondingly, the

decision makers in the lower level are called the followers. The leaders usually are the players

who have more power and more information in this system. For example, government in

public economics, regional system operators in the electricity market, and system planners

in transportation lend to act as leaders. On the contrary, the followers often have less power

and less information and are put into reactive situations. Comparatively, industry sectors,

power generators and arbitragers in the electricity market and the travellers in the trans-

portation system generally act as followers.

The hierarchical decision making process in economics is formally referred to as a Stack-

elberg game. Therefore, the discussion of the development of hierarchical decision making

should date back to the introduction of the Stackelberg game. The concept was first in-

troduced by Von Stackelberg[74]. As outlined in the Economics literature, the Stackelberg

game, traditionally, can be solved by backward deduction. However, backward deduction is

restricted by problem size and characteristics of decision variables. With widespread appli-
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cations of Stackelberg games in the real word, hierarchical decision making systems become

more and more popular, and more and more complex as well. Decision systems may not

only include continuous variables, but also extend to include discrete variables, timing con-

cerns and uncertainty decisions, which add difficulties to computation and interpretation

efforts. New mathematical models and systematic study of solution methods which are able

to address such evolving situations have become necessary.

Hierarchical programming is a mathematical framework to represent Stackelberg games.

It has multiple optimization problems at different levels. If the number of levels is limited

to two, then this type of hierarchical programming is called a Bilevel Problem. To simplify

the terminology, we use BP to denote “bilevel problem” or “bilevel programming” in the

following text. Actually, no matter how multi-players act in the lower level or how com-

plex the system is, all hierarchical programming problems are able to be restructured as

a two-level problem, which means that a large-scale system could always be decomposed

into several smaller and manageable subproblems. As a simplified expression of hierarchical

problems[6], BP also can be treated as a special case of mathematical programs with the

optimization problem in the constraints, which is used by [18, 19, 20]. The discussion of BP

becomes the core of solving multi-level/hierarchical programming problems since BP is a

simplified hierarchical problem.

1.2 General Formulation and Categories

The terminology of bilevel programming was first introduced by Candler[24]. In the past

30 years, the area has grown fast with research on linear and nonlinear programming. Inter-

ested readers might refer to the books such as [71], [10] and [31]. The general formulation

of BP is:
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min
x

F (x, y)

s.t. G(x, y) ≤ 0

y ∈ argmin
y′

{f(x, y′) : g(x, y′) ≤ 0},

(1.2.1)

where the problem has two levels. x ∈ X ⊆ Rn1 is the set of the upper level decision vari-

ables, decided by the upper level decision maker and y ∈ Y ⊆ Rn2 is the set of the lower

level decision variables, decided by the lower level decision maker. Similarly, the functions

F : Rn1×n2 → R and f : Rn1×n2 → R are called the upper-level objective function and the

lower-level objective function, separately, while G : Rn1×n2 → Rm1 , and g : Rn1×n2 → Rm2

are the upper-level constraints and the lower-level constraints, respectively.

According to the different characteristics of objective functions and constraints, BP can

take various forms. For example, the upper level objective function in (1.2.1) can take the

form F (x) without the lower level decision variable y. It is also possible that the upper level

decision variables do not influence the constraints in the lower level so that the lower level

constraint functions can be written as g(y), while the problem (1.2.1) is general enough to

accommodate a wide range of problems. With the variation in the structure of the problems,

the corresponding algorithms change significantly and computational complexity of imple-

mentation can differ. Therefore, we will give sufficient attention to special cases of (1.2.1)

when we delve into algorithms.

If the objective function and constraints in (1.2.1) are linear, BP can be classified as a

Linear Bilevel Problem(LBP). Otherwise, it is called a Nonlinear Bilevel Problem(NBP).

In each type, some typical problems with certain features are discussed in the next sections.

Besides, if there exists discrete variables in the problem, whether in objective functions or

in constraints, whether in the upper level or in the lower level, these kinds of problems are

called Discrete Bilevel Problems(DBP).
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1.2.1 Linear Bilevel Programming

If the objective functions F , f and the constraints G, g are all linear, (1.2.1) can be cat-

egorized as a linear bilevel programming problem(LBP). Bialas and Karwan[17] summarize

geometric characteristics and track the development of related algorithms. They further

categorize LBP into two classes: linear resource control problems and linear price control

problems. The linear resource control problem is a type of BP where the decision variables

in the upper level are not the coefficients in the lower level problem:

min
x

F (x, y) = Cxx+ Cyy

s.t. G(x, y) = Axx+Ayy −B ≤ 0

y ∈ argmin
y′

{f(x, y′) = cxx+ cyy
′ : g(x, y′) = axx+ ayy

′ − b ≤ 0}.

(1.2.2)

This kind of problem may be applicable in many areas where limited resources are dis-

tributed among different entities, for a example, governmental budgets allocation among

various sectors.

The linear price control problem has an upper level objective function determined by

both x and y. The mathematical expression is:

min
x

F (x, y) = Cxx+ Cyy

s.t. G(x, y) = Axx+Ayy −B ≤ 0

y ∈ argmin
y′

{f(x, y′) = xT y′ : g(x, y′) = axx+ ayy
′ − b ≤ 0}.

(1.2.3)

Note that the inner product in the lower level objective function makes the upper level deci-

sion control the coefficients in the lower level. Given the decision in the upper level problem,

the lower level becomes a linear problem. This problem has a very wide application are in

the analysis of tax and subsidy programs.
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1.2.2 Nonlinear Bilevel Programming

If F or G are nonlinear in x, or if f or g are nonlinear in y, then (1.2.1) turns into a

nonlinear bilevel problem(NBP). Since LBP is NP-hard, the further complexity of NBP

has limited development in this area. However, the Quadratic Bilevel Problem (QBP)

has received a lot of attention due to its special structure, which makes most algorithms

implementable and robust. Generally, a QBP can be expressed as

min
x

F (x, y) = Cxx+ Cyy + (x, y)TP (x, y)

s.t. G(x, y) = Axx+Ayy ≤ B

y ∈ argmin
y′

{f(x, y) = cxx+ cyy
′
+ (x, y

′
)TQ(x, y

′
) : g(x, y

′
) = axx+ ayy

′
− b ≤ 0}.

(1.2.4)

1.2.3 Discrete Bilevel Problem

If a BP has discrete variables, the problem is called a Discrete Bilevel Problem(DBP).

These discrete variables can be integer-valued or binary, or represent other discrete choices,

and they can appear on either of the two levels of the BP. The existence of discrete variables

adds computational complexity to the problem.

1.2.4 Other Categories of BP

One special case in BP is the min-max problem. The leader(minimizer) tries to find

the optimal values of its decision variables to minimize an objective function, maximized

with respect to the follower(maximizer)’s variables. The decision makers consider the worst

case scenario. Meanwhile, both the maximizer and the minimizer have the same objective

function F (x, y) = f(x, y) and are subject to the same joint constraints G(x, y) = g(x, y).

Then the min-max problem can be written as:
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max
x

min
y

F (x, y)

s.t. G(x, y) ≤ 0.
(1.2.5)

Another special case is a Stackelberg game with multiple agents at each level. This

is a very common problem in economic markets of operations and contains problems with

oligopolistic competition where a Nash equilibrium may be sought among all the players at

the same level.

Cooperative games, where the upper level and the lower level can cooperate to attain the

goal, is also a special case of BP. It also belongs to the area of multi-objective optimization.

Usually, a centralized planner is assumed before the optimization of both participants. We

will examine it with models in our remanufacturing system in Chapter 3. Meanwhile, we also

focus on the non-cooperative game with applications in biofuel production. Non-cooperative

means that there exists conflicts between the objective of the upper level and that of the

lower level.

1.3 Characteristics of BP and its Solutions

1.3.1 Characteristics of BP

We can relax the feasible region for (1.2.1) without considering the optimal reaction of

y to x. Then the relaxed feasible region for the pair (x, y) is defined as

Γ = {(x, y) ∈ Rn1 ×Rn2 : G(x, y) ≤ 0 and g(x, y) ≤ 0} , (1.3.1)

which is generally assumed to be bounded and nonempty so that the original problem is not

trivial and does have a optimal solution. For a given x̄, we can have a lower-level feasible

set corresponding to x̄ as
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Γ(x̄) = {y ∈ Rn2 : g(x̄, y) ≤ 0} . (1.3.2)

If the lower level specifies its optimal reaction to a given x̄, the set of optimal y is called

the lower-level reaction set as:

<(x̄) = argmin {f(x̄, y′) : y′ ∈ Γ(x̄)} . (1.3.3)

This set groups all the best strategies of y for any given x̄. Consequently, we can have the

reaction set of y defined in their feasible region for all the given x defined in the upper-level

feasible set as:

IR = {(x, y) ∈ Rn1 ×Rn2 : G(x, y) ≤ 0, y ∈ <(x)} . (1.3.4)

The set is called as Induced Region or Inducible Region. If the upper level decision makers

choose actions to optimize their objective functions within this inducible region, the solu-

tions will be optimal for the original bilevel problem. Notice that the inducible region is

usually neither convex nor connected.

At some given x, the lower level may have multiple solutions which are all optimal for

the lower level problem with the same objective function. This is the same as saying that

the reaction set of the lower level problem <(x) is not a singleton. In this case, if the leader

has full control over the lower level feasible set Γ(x) so that he can choose the action which

benefits himself most, we call the scenario an optimistic situation.

A solution (x∗, y∗) is the local optimistic solution (LOS) if the lower level optimum

corresponding to the value of x∗ is always less than that from the other lower level optima

for x in the neighborhood V (x∗, r) of x∗ with a positive radius r. Let us define ϑo(x) =

min
y
{F (x, y) : y ∈ <(x)}. As a result, the sufficient conditions for a LOS are:
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x∗ ∈ V (x∗, r) ∩X

y∗ ∈ <(x∗)

G(x∗, y∗) ≤ 0

ϑo(x∗) ≤ ϑo(x) for all x ∈ V (x∗, r) ∩X.

(1.3.5)

If the above requirement is also met in all of X, we call it a global optimistic solution(GOS),

which means

x∗ ∈ X

y∗ ∈ <(x∗)

G(x∗, y∗) ≤ 0

ϑo(x∗) ≤ ϑo(x).

(1.3.6)

Relatively, if the coordination between the leader and the follower does not exist, or the

leader is risk-averse and avoids any loss at the least, then we redefine

ϑp(x) = max
y
{F (x, y) : y ∈ <(x)} .

A point (x∗, y∗) is called a Local Pessimistic Solution(LPS), if it follows the following

conditions within V (x∗, r):

x∗ ∈ V (x∗, r) ∩X

y∗ ∈ <(x∗)

G(x∗, y∗) ≤ 0

ϑp(x∗) ≤ ϑp(x) for all x ∈ V (x∗, r) ∩X;

(1.3.7)

Similarly, a Global Pessimistic Solution(GPS) has the following properties:
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x∗ ∈ X

y∗ ∈ <(x∗)

G(x∗, y∗) ≤ 0

ϑp(x∗) ≤ ϑp(x).

(1.3.8)

The particular choice among these options is determined by the power distributed between

the leader and the follower. If the follower is strong, the leader can only take the action to

reduce its loss in the worst case. However, if the leader is much stronger, the control he has

leads to the best scenario he wants.

1.3.2 Karush-Kuhn-Tucker Conditions

The solution methods to optimize BP, especially NBP, rely heavily on Karush-Kuhn-

Tucker (KKT) optimality conditions. KKT conditions for the lower level problem can be

defined if the lower level problem is convex and regular. We can integrate KKT optimality

conditions into the upper level problem so that the BP becomes a single-level problem. The

formulation is:

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0

g(x, y) ≤ 0

λg(x, y) = 0

λ ≥ 0

∇yL(x, y, λ) = 0,

(1.3.9)

where

L(x, y, λ) = f(x, y) +
m2∑
i=1

λigi(x, y). (1.3.10)

To ensure that an optimal solution to the general nonlinear bilevel programming problem
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can be obtained by (1.3.9), we set up the following sufficient optimality conditions for the

lower level problem [67]:

1. The bilevel problem is well posed, i.e., at any given x̄, the optimal lower level solution

y(x̄) and the corresponding multipliers λ(x̄) are unique. Otherwise, the leader cannot

pose his decision within the set of y(x), which causes an ill-posed problem;

2. The gradients of all the active constraints in the lower level are linearly independent,

i.e., at any given x̄, the corresponding Lagrange multipliers λ(x̄) are unique.

3. Strict complementarity holds, i.e., the multipliers of any active inequality lower level

constraints are positive.

4. The second-order sufficiency conditions are satisfied, which means

{
dT∇2

yL(x, y(x), λ(x))d > 0 : ∀d ∈ E(x), d 6= 0
}
, (1.3.11)

where E(x) = {d ∈ Rm2 |∇yL(x, y, λ)d = 0} is the tangent space at y(x).

It should be noted that the new problem is not always exactly equivalent to the original

problem, only in the optimistic scenario. There does not exist any efficient way to apply

this approach to the pessimistic case. Also, even with the ideal assumptions, (1.3.9) is still

hard to solve. The major difficulty exists because of the complementary slackness condition

λ · g(x, y) = 0 in the KKT conditions of the lower-level problem.

1.4 Differences between HDM and Other Multi-Objective Models

Hierarchical Decision Making describes a decision making system with multiple stages,

each of which has one or more decision makers. Although Goal Programming Problems

also have multiple objectives, they differ from Hierarchical Programming Problem in the

sense that goal programming usually only has one decision maker. The decision makers

in goal programming can balance the trade-off among several objectives so that in the
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end the maximum utility can be realized. If the different levels of a hierarchical decision

making framework can be integrated in a systematic manner, or in other words, there

exists a centralized decision maker, the hierarical programming problem becomes a goal

programming problem. However, in most cases, the decision makers at different levels have

their own perspectives and their own separate objectives.

Another model, Analytical Hierarchy Process, is also close to Hierarchical Decision Mak-

ing, in that it also has a hierarchical structure, which is defined as goal, criteria and decision

making units. The major use of Analytical Hierarchy Process is to conduct comparisons,

evaluate and choose among several decision units according to multiple criteria. Priority

weights are assigned to different criteria. With the evaluation of these alternative deci-

sion units on these criteria, the overall scores for the decision units could be calculated

and compared. The applications of AHP involve planning, resource allocation, priority set-

ting, and selection among alternatives. Other application areas include forecasting, total

quality management, business process re-engineering, quality function deployment, and the

Balanced Scorecard. Again, under AHP, there is usually one decision maker. Even in the

presence of multiple stakeholders, the AHP framework seeks to reconcile their responses

to be consistent. Also, the choices being compared in an AHP framework are only dis-

crete; whereas continuous decisions variables, such as price can be included in hierarchical

programming models.
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2. Literature Review

In this chapter, we start with a review of the literature on solution methods for hier-

archical decision making. Then, we put emphasis on applications of hierarchical decision

making. Finally, the chapter is concluded with a summary to indicate the motivation of this

study.

2.1 Solution Methods for Continuous Bilevel Programming Problems

In this section, we review the features and the development of methodologies in the area

of BP. Our focus is on continuous BPs for now and postpone the discussion of DBPs. We

categorize the methods into two groups: vertex-enumeration based algorithms and gradient

based algorithms.

Vertex-enumeration based algorithms require solving the lower level problem or the re-

laxed problem explicitly to obtain the vertices. By enumerating all vertices, a global solution

can be found. The global solution might not be guaranteed if we only enumerate some of

the vertices. Gradient based algorithms require the evaluation of the first derivatives or

even the second derivatives. Some approximation methods are applied. Furthermore, the

methods in this category rarely can guarantee a global solution. We review all the methods

belonging to these two classes separately in the next two subsections.

2.1.1 Vertex-enumeration Based Algorithm

In this subsection, we summarize the direct enumeration method, the branch-and-bound

method and the complementarity pivoting method. All three methods are based on the

enumeration of all or part of all the possible solutions during optimization. A global optimum
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cannot be guaranteed whenever any solution procedure attempts to devise a system to only

partially enumerate the solution space.

a) Direct Vertex Enumeration

As its name suggests, direct vertex enumeration directly calculates all the vertices of the

feasible region. In this part, we review all the methods which require enumerating some or

all the points to get optimal solutions. This type of method has especially wide use in linear

bilevel programming because one of the significant features of LBPs is that the feasible sets

are polyhedral when all the constraints are linear. The feasible region (1.3.1) is examined.

At least one of the vertices in the region is the optimal solution for the bilevel problem if the

set is nonempty. This method is straightforward, however, computational efforts are highly

affected by the size of the problem, especially with the number of variables in the model.

Papavassilopoulos[59] proposes several algorithms to solve an LBP without constraints

in the upper level:

min
x

F (x, y) = Cxx+ Cyy

s.t. y ∈ argmin
y

{f(x, y) = cyy : s.t. g(x, y) = axx+ ayy − b ≤ 0}.
(2.1.1)

The first algorithm solves the lower level problem with respect to y at a given xk, that

is:

yk = argmin
y

{cyy : s.t. axx
k + ayy ≤ b}

, then checks all the neighboring vertices of the current optimal point (xk, yk) to find the

next start point (xk+1, yk+1) if it qualifies with both an improvement in the upper level ob-

jective value and stays in the reaction set. Meanwhile, the objective value of the upper level

problem at this point provides a lower bound, which can be enforced as a new constraint into

the optimization of the subproblem. The best point selected from the neighboring vertices

should be the one that leads to the largest change in the objective function or the one that
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lies on the edge as close as the coefficient of the upper level problem. The algorithm con-

tinues until all the vertices have been examined. The best point giving the smallest upper

level objective value is a global optimal solution to the original bilevel problem.

The second method presented in [59] separates all the constraint sets into different subsets

according to the binding properties. Combined with the KKT condition of the lower level

problem, the new problem is:

min
x,y,λ

F (x, y) = Cxx+ Cyy

s.t. cy + aT
y λ = 0

axx+ ayy ≤ b

λT (axx+ ayy − b) = 0

λ ≥ 0.

(2.1.2)

Let I = {1, 2, . . .m2} define the set of all the indices of the constraints, along with Ij
1

which denotes jth combination of binding constraints, where j = 1, 2, . . . , 2m2 . A comple-

ment subset Ij
2 are also defined. Then the above constraints can be divided into 2 subsets

of constraints in 2m2 ways. The jth such partition of the constraints is listed as follows:

cy +
∑
i∈Ij

1

ayiλ
j
i = 0

λT (axx+ ayy − b) = 0

axix+ ayiy = bi, i ∈ Ij
1

axix+ ayiy ≤ bi, i ∈ Ij
2

λj
i ≥ 0, i ∈ Ij

1

λj
i = 0, i ∈ Ij

2 .

(2.1.3)

A point (xj , yj) that satisfies the above constraints describes one of the vertices in the

reaction set of the original BP. As a result, any feasible point could be written as an affine
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function of the vertices that make a certain subset of the constraints hold, i.e.,

x = µ1x
1 + µ2x

2 + . . .+ µNx
N =

∑
j

µjx
j

y = µ1y
1 + µ2y

2 + . . .+ µNy
N =

∑
j

µjy
j

µ1 + µ2 + . . .+ µN = 1.

The equivalent problem is

min F (x, y) = Cx

∑
j

µjx
j + Cy

∑
j

µjy
j

s.t. µjcy +
∑
i∈Ij

1

ayiµjλ
j
i = 0, j = 1, . . . , N

∑
µj = 1.

µj ≥ 0, j = 1, . . . , N

(2.1.4)

Note that the computational complexity increases with the number of constraints in the

lower level problem.

The third algorithm in [59] starts from solving the upper level problem subject to the

relaxed feasible region Γ (1.3.1), that is

(x̄k, ȳk) ∈ argmin
x,y

{F (x, y) : s.t. axx+ ayy ≤ b} .

Then it gets the optimal solution (x̄k, ỹk) by solving the lower level problem within the lower

level feasible region(1.3.2) at a fixed x = x̄k:

ỹk ∈ argmin
y

{
f(x̄k, y) : s.t. axx̄

k + ayy ≤ b
}
.

The algorithm checks whether the solution satisfies ỹk = ȳk. If so, (x̄k, ȳk) is the optimal

solution. Otherwise, we find the next vertex (x̄k+1, ȳk+1) within the reaction set until no
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better upper objective value can be found.

Among the three algorithms, if the solution is already around the global solution, the

third algorithm will outperform the others. But if only a good guess of xk exists, the first

one is better. As to the second one, [59] suggests combining it with the first algorithm to

find the optimal solution fast.

Bialas and Karwan[16, 17] introduce the“K-th best” algorithm method, which is quite

close to the last method mentioned in [59]. Take the same steps to get (x̄k, ȳk) and (x̄k, ỹk).

If ỹk = ȳk, the solution is the global solution to the original problem. If not, search the ad-

jacent extreme points in the neighbourhood of (x̄k, ỹk) to get the relative smallest objective

value in the upper level, which is expected to be larger than that for (x̄k, ỹk). Then this

point is called (x̄k+1, ȳk+1), and the above process is repeated until ỹK = ȳK , which is the

“K-th best”.

Candler and Townsley [25] also focus on (2.1.1) and develop an equivalent problem as:

min
x,ỹ

Cxx+ Cy ỹ

s.t. axx+ ãy ỹ − b ≤ 0
(2.1.5)

where ãy is an optimal basis of ay with nonnegative reduced cost and ỹ is the solution,

with the components corresponding to the columns in ãy, since the solutions of the equiv-

alent problem are feasible for the original problem. Whenever no degeneracy appears, the

algorithm searches through moving from one optimal basis to another until there is no im-

provement in the objective function.

For a general LBP, Tuy et al.[79] outline the method of polyhedral annexation to get a

global solution. The general LBP can be written as a reverse convex constrained problem:
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min
x∈X

F (x, y) = Cxx+ Cyy

s.t. Axx+Ayy ≤ B

axx+ ayy ≤ b

cyy ≤ ϕ(x),

(2.1.6)

where ϕ(x) is the optimal objective value of the optimized problem, i.e.,

ϕ(x) = min
y
{cyy : axx+ ayy ≤ b, y ≥ 0} ,

and is a convex polyhedral function. The constraint cyy ≤ ϕ(x) is called a reverse convex

constraint. Without considering the last reverse convex constraint, we get the optimal solu-

tion (xk, yk), which denotes one of the polyhedron vertices. If (xk, yk) satisfies the reverse

convex constraint, i.e., cyyk = ϕ(xk), we can conclude that it is the optimal solution. If not,

we rewrite the objective function and constraints in terms of the nonbasic variables. The

method of finding the next vertex from the current vertex is to construct a new polyhedron

by cutting off the current vertex from the previous polyhedron, that is adding a new con-

straint F (x, y) ≤ F (xk, yk) − ε while ensuring the new vertex is not included in the region

of cyy ≤ ϕ(x). Whenever the convex region fully contains the polyhedron, the last solution

is the global optimal solution.

b)Branch-and-Bound Method

Falk[36] first applies a branch-and-bound method to solve a linear minmax problem

max
x

min
y
{F (x, y) = Cxx+ Cyy : G(x, y) = Axx+Ayy −B ≤ 0} , (2.1.7)

where both the objective function and the constraints are linear. The basic idea is to solve

two subproblems iteratively in each stage, where the first subproblem
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F̄ k = max
x,y

{F (x, y) = Cxx+ Cyy : Axx+Ayy −B ≤ 0} (2.1.8)

provides an upper bound for F at the solution (xk, yk), and the second subproblem

F k = min
y

{
F (xk, y) = Cxx

k + Cyy : Axx
k +Ayy −B ≤ 0

}
(2.1.9)

yields a lower bound for F . If F̄ k = F k, then (xk, yk) is the optimal solution to the original

BP. Otherwise, we construct stage (k + 1) by branching on each basic variable xk
j , where

j is in the index set of basic variables Bk, for the first subproblem of stage k. Each child

node has the form

max
x,y

{
F (x, y) = Cxx+ Cyy : Axx+Ayy −B ≤ 0, xk

j = 0,
}

(2.1.10)

for some j, that is, the basic variable xk
j is now required to be nonbasic. The process con-

tinues recurrsively until a solution is found.

In addition, [36] also considers constructing subproblems using the complementarity con-

ditions of the problem (1.3.9). The search tree is developed based on this condition. In fact,

most branch-and-bound methods used in BP rely on this idea, which is formally presented

in [7] and [9]. The branching scheme pertains to locating the segment in the inducible region

of the BP problem.

In [7], Bard discusses a convex BP with multiple followers in the lower level. For the

generalized model (1.2.1), the objective function F (x, y) and the constraints G(x, y) are

convex in all their arguments. A point in the inducible region is defined by the solution

(x0, y0) of the relaxed combined problem:

min
x,y

{F (x, y) : x ∈ X,∇yf(x, y) + λ∇yg(x, y) = 0, g(x, y) ≤ 0, λ ≥ 0} ,
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which provides a lower bound F = F (x0, y0). The relaxation is obtained by omitting the

complementarity constraints from (1.3.9). As before, the solution to the lower level problem

min
y

{
f(xk, y) : g(xk, y) ≤ 0

}
is obtained by (xk, ȳk). F (xk, ȳk) = F implies that it is the optimal solution to the original

problem. Otherwise, we branch on constraint gi(x, y), which is selected by

argmin
i

{
−∇F (xk, yk)T∇gi(xk, yk)
||∇F (xk, yk)|| · ||∇g(xk, yk)||

}
.

The upper bound is updated by solving the resulting child problem:

min
x,y

{F (x, y) : x ∈ X,∇yf(x, y) + λ∇yg(x, y) = 0, g(x, y) ≤ 0 and gi(x, y) = 0} (2.1.11)

If the objective value is greater than the current upper bound, the branch would be

fathomed. Next, the ongoing path is determined by the assignment of all the remaining

constraints into the following subsets:

S1 = {i : undetermined}

S2 = {i : gi(x, y) = 0, i /∈ S1}

S3 = {i : λi = 0, i /∈ S1} .
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With the new path, a new upper bound is attained at the solution of the following problem:

min
x,y

F (x, y)

x ∈ X,

∇yf(x, y) + λT∇yg(x, y) = 0,

gi(x, y) = 0, i ∈ S2,

λi = 0, i ∈ S3.

(2.1.12)

Optimality is reached if this bound equals F . While this is a branch-and-bound method,

the strategy of identifying the active sets S1, S2, S3 requires significant bookkeeping. In

[34], Edmunds and Bard devise strategies to efficiently implement this method.

A Branch-and-Bound method and an active set strategy are also applied to solve the

bilevel problem with a linear upper level problem and a quadratic lower level problem in [9].

Since the single problem converted by substituting the KKT conditions of the lower level

problem into the upper level problem is a linear problem with complementarity constraints,

the globally optimal solution can be guaranteed. The basic idea is similar to that described

above for [7], and the node to be branched is the one with the largest complementarity

product λigi(xk, yk).

[40] presents a way to apply a branch-and-bound method to LBPs of the form (1.2.2)

and (1.2.3). The discussion still focuses on the tightness of constraints in the lower level

problem, and new binary variables η are introduced to represent whether the constraints are

tight:

ηi :


0 if gi(x, y) < 0

1 if gi(x, y) = 0
(2.1.13)

for i = {1 . . .m2},



21

ηm2+j :


0 if yj < 0

1 if yj = 0
(2.1.14)

for j = {1 . . . n}. [40] further shows the following certain logical relationship about ηi holds:

if (cy)j > 0 ,
∑

i|aij>0

ηi ≥ 1

if (cy)j < 0,
∑

i|aij<0

ηi + ηm2+j ≥ 1

then a new branch-and-bound method based on the value of ηi is applied to get the optimal

solution in a linear case. With a determined ηi or a subset of η, according to the binding

constraints, some y in the lower level could be expressed by the other (x, y) values. It results

in the subproblems with all the parameters updated correspondingly:

min
x

F̃ (x, ỹ) = C̃xx+ C̃y ỹ

G̃(x, ỹ) = Ãxx+ Ãy ỹ − B̃ ≤ 0
(2.1.15)

ỹ ∈ argmin
ỹ′

{f̃(x, ỹ′) = c̃xx+ c̃y ỹ
′ : g̃(x, ỹ′) = ãxx+ ãy ỹ

′ − b̃ ≤ 0}. (2.1.16)

At every node, the algorithm needs to solve three subproblems: (1) the problem (2.1.15)

with all the constraints from (2.1.16) to get the solution (x̄, ȳ) (2) The problem (2.1.16) to

get the solution (x̄, ỹ). (3) the original lower level problem at the given x̄ to get (x̄, ỹo). In

each branch-and-bound process, we not only make sure that the solutions are rational by

checking ȳ = ỹ and ȳ = ỹo, but also make sure that there is enough improvement in the

objective function of the upper level problem.

The disjunctive nature of the complementarity slackness conditions is captured by Fortuny-
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Amat and McCarl[39]. When solving a quadratic bilevel problem:

min
x

F (x, y) = Cxx+ Cyy + (x, y)TP (x, y)

G(x, y) = Axx+Ayy −B ≤ 0

y ∈ argmin
y′

{f(x, y′) = cyy
′ + (x, y′)TP (x, y′) : g(x, y′) = axx+ ayy

′ − b ≤ 0}.

(2.1.17)

They add zero-one vectors η1 and η2 and reformulate (2.1.17) in a single problem as follows:

min
x,y,η1,η2

F (x, y)

s.t. G(x, y) ≤ 0

g(x, y) + s1 = 0

Ly(x, y) + s2 = 0

s1 ≤Mη1

λ ≤M(e− η1)

y ≤Mη2

s2 ≤M(e− η2)

η1, η2 ∈ {0, 1} ,

(2.1.18)

where M is a large positive parameter. Branch-and-bound can be employed to solve this

mixed integer problem and the global optimum can be guaranteed.

Al-Khayyal[3] applied a branch-and-bound algorithm to the bilevel problem with a con-

cave objective function and quadratic constraints in the lower level. Upper bounds and

lower bounds are obtained through rectangular partitions, which confine arguments to small

intervals, corresponding to upper bounds and lower bounds for the objective function. The

complementarity condition λigi(x, y) = 0 is rewritten as

0 =
∑

i

λigi(x, y) =
∑

i

[λi −max {0, λi + gi(x, y)}] ,

then converted to the quadratic form:
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0 =
∑

i

[
λ2

i − zi

]
,where zi ≥ [max {0, λi + gi(x, y)}]2 .

The upper level objective function is replaced by F (x, y)+
∑

i zi. The lower level constraint

functions g have a quadratic form and by defining x in certain regions such asmk ≤ xk ≤ mk,

we can divide the whole feasible region into several rectangular intervals, which provide the

upper bounds and lower bounds for the upper level objective functions.

The algorithm is further extended by Jaumard et al.[42] to the situation with convex

objective functions in both levels, quadratic upper level constraints and affine lower level

constraints.

c)Parametric Complementarity Pivot Algorithm

The sequential linear complementarity problems(SLCP) method is a type of parametric

complementarity pivot(PCP) algorithm. It was introduced by Bialas and Karwan [17] as

a continuation of the work in [15]. The basic idea is presented in the following. After

combining the upper level problem with the KKT conditions of the lower level and adding

slack variables, a standard LBP can be rewritten as :

min Cxx+ Cyy

subject to −s1 = −b+ ayy + axx

−s2 = cy − axλ

λT s1 = yT s2 = 0

x, y, λ, s1, s2 ≥ 0.

(2.1.19)

A parameter κ is introduced to change the objective function to a constraint and the

problem into a linear complementarity problem:
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min κ

subject to −s1 = −b+ ayy + axx

−s2 = cy − axλ

λT s1 = yT s2 = 0

κ ≥ Cxx+ Cyy

x, y, λ, s1, s2 ≥ 0.

(2.1.20)

Instead of solving a nonconvex nonlinear problem, we solve the parametric LCP(κ):


−s1

−s2

s3

 =


−b

cy

0

 +


0

0

1

κ+


0 ay a1

−aT
y 0 0

0 −Cy −Cx



λ

x

y

 . (2.1.21)

In the kth iteration, κk is defined by

κk = Cxx
k−1 + Cyx

k−1 − γ|Cxx
k−1 + Cyx

k−1|,

where γ is a small positive constant and (xk−1, yk−1) is the optimal solution in the (k−1)th

LCP corresponding to κk−1. The global solution is claimed to be found if LCP(κk) has no

solution. Correspondingly, the solution (x, y) associated with κk−1 is the optimal solution.

2.1.2 Gradient-Based Algorithms

In this section, we will review the literature on solving BPs with gradient-based meth-

ods. We put special emphasis on three methods: direct descent method, trust region method

and penalty method.

For all three, the gradient of the objective function in the upper level with respect to its

decision variables is evaluated by using partial derivatives:

∇xF (x, y(x)) = ∇xF (x, y) +∇yF (x, y)∇xy(x). (2.1.22)
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In some special cases such as the BP without constraints in the lower level, it is not

difficult to calculate the gradient ∇xy(x) by directly differentiating an explicit form of the

function y(x) [33]. However, there exists either complicated constraints or multiple vari-

ables in the lower level problem, and the calculation of partial gradients becomes extremely

difficult.

In [51], Kolstad and Lasdon propose a method to calculate the gradients ∇xy. Distin-

guished by whether the solution is between bounds or at a bound, y(x) is partitioned as yB1,

yN1 respectively. Binding constraints and nonbinding constraints are denoted by gB2 and

gN2. Correspondingly, we have the Lagrange multipliers λB2 and λN2. For any component

of x, say xi, the derivatives satisfy

dyN2/dxi = 0

dλN2/dxi = 0 ∇2
yL (∇ygB2)T

(∇ygB2)T 0

 ·
 dyB1/dxi

dλB2/dxi

 = −

 (∇y(∂L/∂xi))T

∂gB2/∂xi

 .
(2.1.23)

This method to calculate the gradients is efficient if the lower level has mostly inactive con-

straints or simple bounds on the variables. Originally, a procedure for computing derivatives

needed to solve a linear system of size n2 +m2. However, this method just requires solving

a linear system of size equal to the sum of the number of active constraints and the number

of between-bounds-variables.

a)Direct Descent Method

With the Lagrangian expression developed in (1.3.10), Savard and Gauvin[67] propose a

steepest descent method to solve the bilevel problem without upper level constraints. For

the optimal solution (x∗, y(x∗)), the following relationship holds:

F (x∗, y(x∗)) = ∇xF (x∗, y(x∗))dx +∇yF (x∗, y(x∗))dy(x∗, dx) ≥ 0, (2.1.24)
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where dy(x∗, dx) is the directional derivative for y, related to both the value of x∗ and

the directional derivative dx. As a result, in order to find the steepest descent direction

d = (dx, dy), the algorithm needs to solve the following linear quadratic bilevel program:

min
dx

∇xF (x, y)dx +∇yF (x, y)dy(x, dx)

s.t. ||dx|| ≤ 1
(2.1.25)

where the value of dy(x, dx) is obtained by solving the quadratic program:

min
dy

(dT
x , d

T
y )∇2

xyL(x, y, λ)(dx, dy)

s.t. ∇ygB(x, y)dy ≤ −∇xgB(x, y)dx

∇ygNB(x, y)dy = −∇xgNB(x, y)dx

∇yf(x, y)dy ≤ −∇xf(x, y)dx +∇xL(x, y, λ)dx.

(2.1.26)

Using the existing algorithms to solve quadratic bilevel problem [9, 42], dx can be determined

in each iteration. If (2.1.25) provides a positive objective value, a local optimum is reached.

Otherwise, along with the direction dx, the step length ε is calculated by

F (x+ εdx, y(x+ εdx)) ≤ F (x, y(x)).

The algorithm continues from the new startpoint (x+ εdx, y(x+ εdx)) in the next iteration

until it stops at the local optimal solution. In order to get the global optimal solution, some

global schemes need to be included.

Vicente et al.[85] propose and develop several new terminologies such as extreme induced

region points(EIR points), extreme induced direction(EIR direction) and local star induced

region point(LSIR point). EIR points are obtained by solving the optimization problem of

replacing the lower level problem with its KKT conditions. The EIR direction is defined as

the direction between two EIR points. The LSIR point is an EIR point, at which there ex-

ists an EIR direction pointing to the adjacent EIR point that gives a better objective value.

Thus, the LSIR point cannot be a local optimum. The basic algorithm is described as con-
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structing Dk =
{
∇F (zk)T d < 0 and d is an EIR direction

}
at an EIR point zk = (xk, yk)

in kth iteration. If Dk is a null set, the local optimum is arrived; Otherwise, if a better

objective function can be found by dk ∈ Dk at the adjacent EIR point, the current check

point moves to that point as zk+1; otherwise, zk is an LSIR point.

Vicente et al.[85] go further into the modified steepest descent algorithm by search-

ing the descent direction dk = (dk
x, d

k
y) and calculating the exact step size εk so that

zk+1 = (xk+1, yk+1) = (xk, yk) + εk(dk
x, d

k
y). The direction dk = (dk

x, d
k
y) can be obtained

by the sequential LCP method[43]. Another hybrid method takes advantages of both of

the above two methods. The algorithm can converge to the local optimum if the objective

function in the upper level is concave. However, a global optimum cannot be guaranteed.

The work that integrates the descent method and a bundle method is done by Falk and

Liu[37]. They propose two methods: leader predominate algorithm and adaptive leader

predominate algorithm. The former uses a bundle method on the upper-level problem and

combined with a trust region method to ensure converge to certain points. The latter in-

corporates a quasi-Newton method into a bundle method in the inner problem. The quasi-

Newton method relies on the second-derivative indicator. The local structure of the current

estimated solution is very helpful in the scheme. Global convergence and local superlinear

convergence to regular points have been proved. Both methods subtract the subgradient

information to compute directional derivatives, however, they are all confined to local solu-

tions instead of global solutions.

b)Trust Region Method

The core of a trust region method is to approximate the original problem H(z) with a

linear or a quadratic function H̃(z), that is considered accurate enough in a neighborhood

of the current point with ||z − z̃|| ≤ r. This neighborhood is referred to as the trust region.



28

The effectiveness of the new approximation model is measured by the ratio:

H(z)−H(z̃)
H̃(z)− H̃(z̃)

. (2.1.27)

The value of this ratio determines the radius and the step length from the current point

to the next point. It is a measure of how well the approximation represents the original

problem. The next iteration may continue to stay at the current search point or move to a

new point. Additionally, the radius could remain the same, increase, or decrease. All these

changes are determined by the above ratio (2.1.27).

A bilevel program of the form

min
x

F (x, y)

s.t. f(x, y)T (y − y′) ≤ 0, ∀y′ ∈ Γ(x)
(2.1.28)

is considered in Marcotte et al’s work [58]. At the kth iteration based on the current solution

(xk, yk), the algorithm forces x to lie within the distance rk, replacing F and f by their

respective first-order Taylor series expansion F̃ and f̃ to approximate the original problem,

that is

min
x

F̃ (x, y)

s.t. f̃(x, y)T (y − y′) ≤ 0, ∀y′ ∈ Γ(x)

||x− xk|| ≤ rk.

(2.1.29)

As before, the lower level problem is replaced by its KKT conditions with the com-

plementarity condition transferred to a mixed-integer problem. The subproblem in each

iteration is:
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min
x

F̃ (x, y)

s.t. ||x− xk|| ≤ rk

axx+ ayy − b ≤ 0

λay = F̃ (x, y)

λ ≥ 0

λ ≤Mη

axx+ ayy − b ≤M(e− ηT ).

(2.1.30)

The solution to the above problem is (x̄k, ȳk), which can be substituted into (2.1.31) to

get the ratio.
f(xk, y(xk))− f(x̄k, y(x̄k))
f(xk, y(xk))− f(x̄k, y(x̄k))

(2.1.31)

where y(xk) and y(x̄k) are the best reaction of the follower to the choice of xk and x̄k,

respectively.

Colson et al.[29] approximate F , G and g with linear functions F̃ , G̃ and g̃, respectively,

and approximate f with a quadratic model f̃ . That is, the upper level problem becomes

min F̃ (x, y) = F (xk, yk) +∇xF (xk, yk)(x− xk) +∇yF (xk, yk)(y − yk)

s.t. G̃(x, y) = G(xk, yk) +∇xG(xk, yk)(x− xk)
(2.1.32)

and the lower level problem becomes

min f̃(x, y) = f(xk, yk) +∇xf(xk, yk)(x− xk) +∇yf(xk, yk)(y − yk)

+ 1
2

(
x− xk y − yk

)
D2f(x, y)

x− xk

y − yk


s.t. g̃(x, y) = g(xk, yk) +∇xg(xk, yk)(x− xk) +∇yg(xk, yk)(y − yk).

(2.1.33)

To rewrite the problem as a mixed integer problem incorporating the KKT conditions in the
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lower level problem, the following subproblem yields the solution (x̄k, ȳk) in the iteration k:

F̃ (x, y) = ∇xF (xk, yk)x+∇yF (xk, yk)y

s.t.
∥∥x− xk

∥∥ ≤ rk

∇xG(xk)x ≤ G(xk)−∇xG(xk)xk

∇xg(xk, yk)x+∇yg(xk, yk)y ≤ g(xk, yk)−∇xg(xk, yk)xk +∇yg(xk, yk)yk

λ ≥ 0

λ ≤Mη

−g̃(x, y)−∇xg(xk, yk)x−∇yg(xk, yk)y ≤M(e− η)

∇2
xyf(xk, yk)(x− xk) +∇2

yyf(xk, yk)(y − yk) +∇yf(xk, yk) + λ∇yg(xk, yk) = 0

η ∈ {0, 1} .
(2.1.34)

When we fix x̄k and solve the lower level problem, we can get that the optimal reaction

from the follower is y(x̄k). The ratio of achieved versus predicted reduction is

F (xk, y(xk))− F (x̄k, y(x̄k))
F̃ (xk, yk)− F̃ (x̄k, ȳk)

,

and the algorithm will continue the search from the new start point (x̄k, y(x̄k)) or stay at

the same point (xk, yk) searching with a smaller step length.

Trust region methods are designed for single-level nonlinear programming problems and

cannot be stand-alone methods to solve a BP. They are usually used to solve BP after

a certain reformulation on the problem. The above two papers both implement the trust

region method after combining the KKT conditions of the lower level with the upper level

problem and incorporating the mixed integer method from [39]. It is also possible to apply a

penalty method with the trust region method implemented to accelerate the computational

performance[26].
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c)Penalty Approach

Due to the nonconvexity of the lower level problem, it can guarantee neither continuity

nor differentiability at every point. In order to smooth the lower level objective function, a

penalty method can be employed. A penalty approach adds a penalty term to the original

objective function so that the new objective function is smoothed and can be solved easily.

If the lower level problem is linear, the duality gap is zero when it reaches optimality.

It is not difficult for the leader to anticipate the reaction of the follower during its decision-

making if it can directly penalize the duality gap of the follower’s problem in its objective

function. Two assumptions are required to take this penalty approach.

1. If x∗ is an optimal solution for the leader, then the reaction set for this x∗ is a singleton.

2. The feasible region for λ and for x are non-empty bounded polyhedral, i.e. polytope.

It can be proved that with these assumptions, lower level optimality can be reached by in-

creasing penalty parameter monotonically. The method is first introduced by Anandalingam

and White [5] to get a global optimal solution in a linear static Stackelberg game:

min
x

F (x, y) = Cxx+ Cyy

s.t. G(x, y) = Axx+Ayy −B ≤ 0

y ∈ argmin
y′

{f(x, y′) = cxx+ cyy
′ : g(x, y′) = axx+ ayy

′ − b ≤ 0}.

(2.1.35)

For any given x, axx and cxx become constants. The dual problem for the lower level

problem can be expressed as:

min
λ≥0

λT (b− ayy)

s.t. λTay ≥ cy.

(2.1.36)

If the duality gap Φ(y, λ) =
[
cyy − λT (b− axx)

]
is treated as a penalty term and appended
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into the upper level problem with a penalty parameter t, then the new problem is:

max
x,y,λ

F̃ (x, y, λ, t) = (Cxx+ Cyy)− t · Φ(y, λ)

s.t. Axx+Ayy −B ≥ 0

axx+ ayy − b ≥ 0

λTay ≥ cy

x ≥ 0, y ≥ 0, λ ≥ 0.

(2.1.37)

Therefore, the original bilevel problem transfers to a single problem, which can be solved

easily. Later on, White and Anandalingam[88] further extend their work by using a sequen-

tial t generation and cone splitting algorithm to find the global optimum under the same

framework of penalizing the dual-gap. The cone splitting algorithm generates a better cone

in the current local optimal solution so that the size of the feasible region under examination

is reduced. They also study a way to find starting points not only for the penalty algorithm

but for other algorithms such as the branch and bound method. However, the effectiveness

depends on the correlation between the objectives. The penalty method does not always

outperform the branch-and-bound method in the linear case although it is much better than

the K-th best method according to their numerical results.

Another main penalty approach that has been used in BP is the barrier method. The

barrier method is also called the interior penalty method, which constructs a barrier function

appropriately defined on the interior of the feasible region. Therefore, the method trans-

forms the parametric constrained optimization problem for the lower level/ the combined

problem in BP into an unconstrained problem.

Aiyoshi and Shimizu [1] propose a barrier penalty method based on the lower level feasible
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region. The penalty function Φ(g(x, y))is defined as

Φ(g(x, y))


> 0 if y ∈ INTΓ(x)

→∞ if y → BDΓ(x).
(2.1.38)

The augmented lower level problem is represented by:

min
y
f̃(x, y) = f(x, y) + tkΦ(g(x, y)), tk > 0. (2.1.39)

With the assumptions mentioned, the KKT conditions for the lower level problem are

combined with the upper level problem to get a single problem:

min
x,y

F (x, y)

s.t. G(x, y) ≤ 0

∇y f̃(x, y) = 0.

(2.1.40)

Under the convexity assumption, it can be shown that there exists a strictly decreasing

sequence
{
tk

}
→ 0 for which the solution to (2.1.40) is the same as the original problem.

The same method can be applied to solve a Min-Max problem [70].

The method in [2] not only considers constructing an interior barrier function Φ(g(x, y))

of (2.1.38) for the lower-level problem but also Φ2(G(x, y)) for the upper level problem

defined as:

Φ2(G(x, y))


> 0 if (x, y) ∈ INTΓ

→∞ if (x, y) → BDΓ.
(2.1.41)

It also constructs an exterior barrier function Φ1(||∇y f̃(x, y, t)||) based on the follower’s
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first-order optimality condition:

Φ1(||∇y f̃(x, y, t)||)


= 0 if (x, y) ∈

{
(x, y) ∈

⋃
x∈RN

x× INTΓ(x)|∇y f̃(x, y, t) = 0

}

> 0 if (x, y) ∈

{
(x, y) ∈

⋃
x∈RN

x× INTΓ(x)|∇y f̃(x, y, t) 6= 0

}
.

(2.1.42)

Then, the bilevel problem converts to a single level problem without constraints:

min
x,y

F̃ (x, y, t, t1, t2) = F (y, x)+ tΦ(g(x, y))+ t1Φ1(||∇y f̃(x, y, t)||)+ t2Φ2(G(x, y)). (2.1.43)

Here t, t1 and t2 ≥ 0 are the penalty parameters. This penalty method effectively avoids

the difficulty of dealing with the complementarity slackness conditions which arise when

replacing the follower’s problem with the corresponding optimality conditions. The only

concern is ill-conditioning, which may be avoidable by using different initial points.

A double penalty method where both in the upper and lower level objective functions are

penalized also can be applied to the NBP problem. Loridan and Morgan[55] first propose a

double penalty function method for the BP with non-singleton reaction sets with pessimistic

concerns. Instead, Ishizuka and Aiyoshi[41] prove that the method can be easily implemented

for optimistic NBP. The basic principle is the same in both cases. They define the lower

level constraints for (x, y) as

S1 = {(x, y) : x ∈ X,Y ∈ Y, g(x, y) ≤ 0} ,

and the upper level constraints combined with the optimal reaction of the lower level variable

define IR as S2:

S2 = {(x, y) : x ∈ X,Y ∈ <(x), g(x, y) ≤ 0, G(x, y) ≤ 0} .
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Then the nonnegative valued continuous penalty functions are:

Φi(x, y)


= 0 if (x, y) ∈ Si, i = 1, 2

> 0 otherwise.
(2.1.44)

The algorithm also constructs a penalty function defined on the lower level feasible region:

Φ0(x, y)


= 0 if y ∈ INTΓ(x)

→ +∞ if y → BDΓ(x).
(2.1.45)

With a positive penalty parameter, the augmented objective function for the lower level

problem is

f̃(x, y; t) = f(x, y) + tΦ2(x, y) +
1
t
Φ0(y).

Additionally, an exterior penalty function for the upper level problem is constructed as:

F̃ (x, y; t) = F (x, y) + tΦ2(x, y) + tΦ1(x, y).

For each t, the approximate BP problem is formulated as:

min
x,y

F̃ (x, y; t)

s.t. x ∈ X,

y ∈ argmin
y′

f̃(x, y′; t),

(2.1.46)

The algorithm is similar to the one in [2].

Another penalty method is proposed by Shimizu and Lu in [72]. The optimal-value

function of the lower level on the feasible region Γ(x) = {y : g(x, y) ≤ 0, y ∈ Y } is

f̄(x) = f(x, y∗) = min
y∈Γ(x)

f(x, y).
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We set κ1 as an upper bound for the lower level problem and get an equivalent problem

with y replaced by an upper level decision variable ỹ:

min
x,ỹ,κ1

F (x, ỹ)

s.t. G(x, ỹ) ≤ 0

g(x, ỹ) ≤ 0

f(x, ỹ)− κ1 = 0

f̄(x)− κ1 = 0.

(2.1.47)

The exterior penalty method is applied:

min
x,ỹ,κ1

F (x, ỹ)− t(f(x, ỹ) + h(x)− 2κ1)

s.t. G(x, ỹ) ≤ 0

g(x, ỹ) ≤ 0

f(x, ỹ)− κ1 ≤ 0

f̄(x)− κ1 ≤ 0.

(2.1.48)

By adding another artificial variable κ2, (2.1.48) can be reformulated as

min
x,ỹ,κ1,κ2

κ2 − t [f(x, ỹ) + h(x)− 2κ1]

s.t. F (x, ỹ)− κ2 ≤ 0

G(x, ỹ) ≤ 0

g(x, ỹ) ≤ 0

f(x, ỹ)− κ1 ≤ 0

f̄(x)− κ1 ≤ 0,

(2.1.49)

then solving (2.1.49) is equivalent to solving the original problem.

All of the above penalty methods are used for solving NBP. For large enough values of

the penalty parameters, the methods attain local optima if the penalty function is convex

and might get global solution.
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2.1.3 Discrete Bilevel Problem Algorithm

Due to the difficulty of dealing with discrete variables, the amount of literature in the

area of the mixed-integer bilevel problem is quite limited. Most discussions focus on the

linear case and few exist in nonlinear cases with favorable problem structures.

To solve a BLP which has binary decision variables in both levels, Bard and Moore[10]

use the previously discussed methodology of [7] and combine an active set method and a

branch-and-bound method. The original bilevel problem is

min
x∈{0,1}

F (x, y) = Cxx+ Cyy (2.1.50)

with the lower level problem as:

min
y∈{0,1}

f(y) = cyy

s.t. axx+ ayy ≤ b.

(2.1.51)

They reformulate and repeat solving the following subproblem with parametric constraints

min
(x,y)∈{0,1}

f(y) = cyy

s.t. axx+ ayy ≤ b

F (x, y) = Cxx+ Cyy ≤ κ
n1∑

j=1

xj ≥ l.

(2.1.52)

The parameter κ is an upper bound for the objective function of the upper level prob-

lem, which is similar to a cut added to enforce a satisfactory result for the leader. Another

right-hand-side parameter l restricts the number of x variables being set as 1, which offers

a good rule to branch. The value of both variables get updated in each iteration. This

subproblem means to find good points in the follower’s rational reaction region according to
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a specific active set for the leader. The depth-first branch-and-bound and active set method

are identical to those in [7].

Edmund and Bard [35] further develop a branch-and-bound method for a class of BLP

with a discrete upper level problem and a convex nonlinear lower level problem. As in

[34], they replace the lower level problem with its KKT conditions and integrate with the

upper level problem to get a mixed-integer nonlinear single problem. Then they relax the

problem by eliminating the complementarity slackness conditions and replacing the integer

conditions with 0 ≤ x ≤ 1. Based on the solution of the relaxed problem, they conduct a

branch-and-bound search tree by finding the live node with the maximum complementarity

or integrality violation. They also point out the potential of applying this method to solve

DBP with a discrete lower level problem.

[45] and [44] model the gas shipper problem on a mixed integer bilevel problem. Then

they solve the problem with a penalty function. Dempe and Kalashnikov [31] solve a mixed

integer bilevel problem with integer variables located in the lower level problem by mov-

ing the integer variables to the upper level problem. Recent work [66] by Saharidis and

Lerapetritou is based on Benders decomposition and solves a mixed integer BLP. In each

iteration, a master problem and a subproblem are generated. The master problem relaxes

the original problem by removing integer variables while the subproblem provides bounds

given fixed values for some variables in the master problem. The master problem in the

next iteration uses additional cuts produced according to Lagrangian information from the

current subproblem.

2.2 Applications of Hierarchical Decision Making

The economic interpretation underlying hierarchical decision making implies that the

upper level sends a signal to the lower level by setting up the price or allocating limited re-
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sources so that the lower level can adjust its strategy. Since the upper level problem usually

has more power in the game system, government or other dominant players make decisions

first. Instead, some subordinate sectors and other dominated players respond sequentially.

Therefore, we mention the following applications with emphasis on the supply chain appli-

cations.

2.2.1 Agriculture Problems

Candeler and Norton [24] mention the model regarding the regulation of milk by the

government in the Netherlands. Government decides a milk subsidy and duties on import in

the upper level problem to maximize the overall benefits from the perspective of consumer,

government and farms. The lower level problem deals with the revenue of the monopoly for

producing milk, butter and cheeses from the perspective of farmers.

In [23], policies of Mexican agriculture are suggested to be examined such as subsidies

on fertilizer use, subsidies on irrigation investment loans, support prices on wheat and corn

and water taxes, as well, in an upper level problem of bilevel problem. Correspondingly,

the outputs regarding employment, farm income, corn/wheat production and governmental

expenses could be set to be optimized in the upper level problem. The response of Mexican

agriculture is modeled in the lower level problem. Specifically, Candler et al. illustrate with

an example of an irrigation problem concerned with water policy.

Fortuny-Amat and McCarl [39] discuss the case where the farmers can make decisions

on fertilizer use in the lower level problem. The alternative combinations include whether

or not fertilizer application equipment is loaned with the fertilizer, whether or not prices

use FOB at the fertilizer plant or delivered to the farm. The fertilizer supplier decides the

product price and production variations in the upper level problem.
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Bard [8] first proposes a biofuel model as a bilevel problem. However, he does not consider

any integer variables, which plays a key role in decision making for farms and government.

2.2.2 Resource Allocation Problems

This type of application problem addresses the issue of allocating limited resources to

different uses to create maximum benefit. However, since various decision makers at dif-

ferent levels control various resources and have different profits, the objectives cannot be

accumulated together directly and bilevel models are applied.

Bracken and McGill [19] first summarize several applications of bilevel problems in mili-

tary applications: strategic offense or defense force structure optimization, strategic bomber

force structure and basing optimization, optimization of weapon mix and targeting for attri-

tion processes, strategic defense optimization to achieve post-attrack production capabilities

and optimization of aircraft deployment and sortie allocation. The lower and upper level

problems are assignment problems of resources for defensive and the offensive decision mak-

ers and minimizing the cost of the force, seperately, to satisfy their individual targets. Their

work is extended by [22].

Bracken and McGill [20] also introduce the application of bilevel problems to balance the

conflict of resouces needed for production and marketing. They illustrate with an example

in the airline industry.

Anandalingam and Apprey [4] propose a model to deal with water conflicts in India and

Bangladesh. Recent work by Smith et al. [73] points to renewed interest in this area for a

new product development application.
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2.2.3 Pricing Problems

Cote et al. [30] model price and fare optimization in the airline industry with a bilevel

model. In the upper level problem, the leader airline decides the fare vector. At the lower

level, passengers respond by choosing among different airline companies(the leader or the

leader’s competitor), different classes and different flows to minimize their costs.

2.2.4 Transportation Problems

BP appears frequently in network design problems. One typical problem is the toll set-

ting problem, where the leader is the manager(the owner) of a highway, who plans the toll

setting to maximize his profits. The travellers(the users of the hightway) decide their usage

of the highway to minimize their costs, which consist of time cost, gas cost and toll fees ([57],

[12],[13] and [53]). Ben-Ayed et al. [12, 13] discuss Tunisia’s inter-regional highway by using

a bilevel linear model, which is the first application of bilevel problem in transportation

design systems. [53] proposes a model for a single product, and the model is extended to

multiple commodities[21].

Dempe and Kalashnikov[31, 45, 44] present a discrete bilevel model to compute a cash-

out penalty when the supply and the demand are not equal for a natural gas shipping

company.

2.3 Literature Review for HDM Problems in Closed-loop Supply Chains

Fleischmann et al. [38], Guide et al. [27], Rubio et al. [65] and Pokharel and Mutha

[60] provide thorough surveys of existing research involving remanufacturing. A significant

portion of the work on product recovery addresses inventory control and related matters.

In one of the earliest such works, Schrady [68] presents a deterministic model for repairable

items and derives EOQ type fixed lot sizes for recovery and reorder. Richter [62, 63] studies



42

a similar scenario and develops a different control approach utilizing the relationships be-

tween control parameters and the return rate. Schrady’s model is extended to the multiple

items case by Mabini et al., who suggests numerical solution methods. More recently, Koh

et al. [50] propose a deterministic recovery model with a fixed return rate deriving optimal

policies under limited remanufacturing capacity, and Tang and Teunter [77] have embel-

lished the economic lot scheduling problem via the incorporation of returns. As opposed to

these deterministic approaches, stochastic recovery models have also received a substantial

amount of research attention. Cohen et al. [28] study the case where a fixed proportion of

returns are received after the passage of a fixed amount of time, treating recoverable and

serviceable inventories in an identical manner. Their work has been extended by Kelle and

Silver [47, 46], who outline a purchasing policy under random returns. More recently, van

der Laan et al. [81, 82] present a general model for remanufacturing and disposal involving

four control parameters, leading to approximations for deriving the average cost of an (s,

Q) type inventory model for remanufacturing. Subsequently, the differences between dis-

counted cash flow vs. average cost based remanufacturing models have been examined in

detail (Teunter and van der Laan, 2002 [76]; van der Laan, 1996 [83]; van der Laan et al.,

2003 [80]). In conjunction with remanufacturing, issues concerning product disposal have

also received a significant amount of research attention, although this is not a major con-

cern here. Amongst other works, various types of remanufacturing systems with PUSH and

PULL types of disposal strategies have been studied [48, 56].

The major thrust of the extant remanufacturing literature is on the timing and siz-

ing decisions for manufacturing and remanufacturing activities, with primary attention on

inventory related matters. Efforts towards integrating the decisions of inventory replenish-

ment, product pricing and customer incentive for returning used items (in the form of a cash

refund or a discount coupon) in a remanufacturing environment have been relatively rare.

As a notable exception, in a recent study Savaskan et al. [69] have dealt with the questions

of pricing and return incentives from a game theoretic perspective, in examining alternative
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reverse logistics structures for the collection of recoverable products. Bhattacharya et al.

[14] conduct the integration of optimal order quantities in different channels, reflecting the

various relationships among retailer, manufacturer and remanufacturer. Also, Vorasayan

and Ryan [86] outline procedures for deriving the pricing and quantity decisions for refur-

bished products.

Inventory control decisions, which are intertwined with such questions, however, have

been only superficially treated in the pricing related research. This study is an attempt to

address this deficiency in the current body of work involving remanufacturing. We address

some of the major issues concerning inventories, pricing, used product collection, materi-

als procurement, product delivery and planning for manufacturing and remanufacturing in

an integrated manner. Specifically, we develop procedures for developing such integrated

policies towards achieving a well-coordinated supply chain, incorporating a lean production

process. Our emphasis is on the mathematical modeling of product remanufacturing under

a scenario involving a single retailer and a single manufacturer, dealing with a single re-

coverable product. Furthermore, as mentioned earlier, the models developed here attempt

to establish an integrated policy, simultaneously specifying decisions concerning inventory

replenishment at various stages of the supply chain, retail pricing, as well as the appropri-

ate incentive level for inducing customer returns of used items, from the perspectives of,

maximizing the profits of, respectively, the retailer, the manufacturer and the entire supply

chain. For simplicity of analysis and implementation, we assume a deterministic environ-

ment. Furthermore, the product’s demand and return rates are modeled as simple linear

functions.

2.4 Literature Review for HDM Problems in Biofuel Supply Chains

The majority of the biofuel literature focuses on the political decisions and economic cost

and benefit analysis of biofuel production according to the practice in different countries.
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Rozakis et al. [64] use a partial-equilibrium model to discuss the biofuel cost of chains op-

erating under different policy scenarios in France. The possibilities of biofuel cost reduction

are analyzed. Monte Carlo simulation is implemented to deal with uncertainty, and minimal

tax exemption levels for the viability of the activity are obtained. The study by Kruse et

al. [52] uses a stochastic model to find out the effects of extension of the tax credits and

import tariff on future growth in biofuels. The trade-off between maximizing farm income

and minimizing goverment costs are balanced by setting up the appropriate tax credits and

import tariff. Rajagopal and Zilberman [61] summarize the literature on the biofuel problem

from the perspective of environment, economics and policy-setting.

Regarding the application of bilevel programming to the biofuel problem, the study by

Candler et al. [23] points out the potentials and the difficulties. Bard et al. [11] formulate a

leader-follower game that helps decision makers arrive at a rational policy for encouraging

biofuel production. In this dissertation, we base our work on [11] and incorporate fixed costs

in the farm’s problem to further extend the model. Doing so requires that we include binary

variables in the lower level, which greatly increases the computation complexity. However,

the resulting model is more consistent with the practice. Fixed costs are a significant part

of biofuel production costs, and therefore our models make a very important contribution

to the field by incorporating it into the model. These costs can be related to equipment,

transportation, or other ramp-up costs associated with switching to a new type of crop

and/or harvesting methods.

2.5 Conclusions of Literature Review

Motivated by the real issues in supply chain management, this dissertation studies pric-

ing, lot sizing in remanufacturing and biofuel production with hierarchical decision making

models. In the remanufacturing system we investigate the price setting decision and the

inventory strategy simultaneously. In the cooperative game, the manufacturer and the re-

tailer can work together to avoid side-payment and double-marginalization. The hierarchical
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decision making model becomes a single problem with a multi-objective function if we as-

sume an ideal case with a centralized planner. However, it might not always be the case in

supply chain. According to asymmetrical information acquisition and power distributed in

the different levels, noncooperative games/Stackelberg games are more common. Through

comparing different strategies in different hierarchical decision frameworks, we exploit and

study the decision making and the profits in this closed loop supply chain.

Meanwhile, we also look at the biofuel production model, in which the participants are

the government, the industry and farms. As suppliers, the farms have less power and only

respond to the government’s decision. Thus, we develop models as noncooperative Stack-

elberg games. The government chooses policy decision variables, and the farmers decide

the behavior strategy. Our efforts complement this work by providing a methodology for

solving a mixed integer linear BP. Due to the special structure of the problem, we propose

two methods. The first method is based on a derivative-free search method. Since there are

several “jumps” due to the inclusion of integer variables, it is too difficult for a gradient-

based method to obtain a global optimal solution. However, we still exploit the gradient

techniques locally by applying sensitivity analysis information to speed the computation.

Another method proposed is based on a nonlinear algorithm. We consider a way to calcu-

late the derivative for the objective function in the upper level with respect to the decision

variable belonging to that level. The chain rule is used to incorporate the gradient informa-

tion, which is obtained through solving the lower level problem at any given x directly.
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3. Hierarchical Decision Making Problems in Closed-loop Supply Chains

3.1 Background

Under intense competitive pressure to lower production costs, coupled with increasing

environmental concerns, more and more manufacturers today are focusing on possibilities

of product recovery and reuse. Practices of waste paper and scrap metal recycling, reuse

of containers, and, more recently, recovery of electronic components have given rise to the

notion of environment friendly, or “green” manufacturing. The Xerox Green World Alliance

remanufactured and recycled more than 90%, 25% and 100%, respectively, of remanufac-

tured print cartridges, new toners and plastic parts. This program has led to significant

environmental and financial benefits for Xerox. First, it has prevented 128 million pounds

of waste materials from entering landfills. Secondly, the savings in terms of energy have

been estimated to be 320, 000 megawatt-hours in 2005, due to reuse of parts, in addition to

those resulting from the associated reduction in materials purchasing costs [89].

The efficient incorporation of used products and/or materials considerations into man-

ufacturing processes and supply chain contracts have proven to be important from the

standpoint of “waste free” goals with “sustainable initiatives”. One issue a manufacturer

faces involves the process of collecting the returns. In such a reverse channel structure, our

attention is confined to the case of customer returns at the retail level, which is cited to

be the most effective method for used products collection according to Savaskan et al. [69].

This is a common practice for items such as disposable cameras and mobile phones, where

manufacturers utilize retailers for collecting the used products. For instance, the Eastman

Kodak Company receives returned single-use cameras from large retailers who also develop

film for customers. On the average, 76% of the weight of a disposed camera is reused in the

production of a new one (Savaskan et al., 2004[69]). Generally, retailers are responsible for

providing incentives to customers and finally are reimbursed by the manufacturer to ensure
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that end-of-life products are returned for remanufacture in a timely manner. The various

pricing decisions made in this context significantly affect the profitability of both stages of

the supply chain.

Another concern for the manufacturer, as well as the retailer pertains to inventory issues.

Economies of scale may dictate that manufacturers collect and take back returns at peri-

odic intervals, requiring retailers to have storage space for holding the products returned by

customers. By the same token, manufacturers also need to allocate storage space for such

items. Needless to say that a product’s retail price, customer incentive for returns (both

determined by the retailer), as well as the transfer price paid by the producer to the retailer

for collecting returns are likely to shape the inventory policies for returned items at both

the retailer’s and the manufacturer’s ends. This study is an attempt to examine these issues

from an integrated supply chain perspective.

3.2 Assumptions

The supply chain under study consists of a single retailer and a single manufacturer in-

volved in the production and sale of a single recoverable product. Customers are refunded a

part of the purchase price by the retailer as an incentive to return used products, which can

be restored to “as new” condition for resale through a remanufacturing process deployed by

the manufacturer. The manufacturing/remanufacturing environment is a batch production

system where each batch of the product may consist of a mix of remanufactured and new

manufactured items within a single setup. The used items, after cleaning, restoration, etc.

are completely reincorporated in the existing production process, so that remanufacturing

and new product manufacturing rates are the same, although their variable costs may differ.

For coordination purposes, the lot-for-lot policy is in effect for input materials ordering,

manufacturing and remanufacturing, product delivery and retail inventory replenishment,
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with a common cycle time of T . In other words, the necessary input materials procurement,

production (including remanufacture), delivery and retail stock replenishment cycles are one

and the same. This lot-for-lot feature is commonly found in JIT based lean manufacturing

systems, where minimal levels of material and product inventories are desired.

All input materials for manufacturing or remanufacturing are treated as a composite bun-

dle. In each case, the total bundle of inputs necessary for producing (or remanufacturing) a

unit of the end product is defined as a “unit”. All of the input materials (for manufacturing

and remanufacturing) are ordered on a lot-for-lot basis with a single procurement order prior

to the setup of a batch.

The retailer is responsible for collecting returned items and holding them in inventory

until picked up by the producer. In our decentralized models, the manufacturer pays the

retailer a unit transfer price for the returned items, in order to induce the latter to engage

in the collection activity. Without loss of generality, it is assumed that the retailer’s cost of

this collection effort is negligibly small, although the cost of holding the returned products

in inventory at the retail level is taken into account. Under the centralized scenario, the

used product transfer price and the producer’s wholesale price become irrelevant for avoiding

double marginalization. In the decentralized models, the retailer sets the item’s selling price

and the unit reimbursement to customers for returns. The wholesale price, where applicable,

is the same for new or remanufactured items.

We assume that the market demand, the customer return rate and all lead times are

deterministic. Thus, a production batch of Q units consists of Q−X new items and X units

of remanufactured product as shown in Figure (C.1), which depicts the process flow schema

of the supply chain under consideration. Figure (C.2) shows the various inventory-time plots

at the retail and manufacturing facilities. Without loss of generality, these plots are con-

structed with the assumption that the setup and transit times, as well as the cleaning and
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refurbishment times for the recovered items are zero. Before setting up a production batch,

the X units of returned items collected during the cycle are transported back to the plant for

remanufacturing. Therefore, the value of the quantity Q−X is known prior to each setup.

After completion of the manufacturing and remanufacturing process, the replenishment lot

of Q is delivered to the retailer for sale. All transportation costs are paid by the producer.

Consistent with classical microeconomic theory, we model the retail demand rate, d, as

a decreasing function of its selling price, ps, i.e. d = A − Bps. Furthermore, the product’s

return rate, x, and the total units returned, X, during a cycle are expressed, respectively,

as x = arc − bps and X = Tx = Qx/d. The parameters A, B, a, and b are known, or can

be estimated empirically. It is reasonable to assume that the average rate of used product

returns is likely to increase as the return incentive, rc, as well as the overall demand level,

d, increase (or, alternately, as the retail price decreases). Furthermore, as mentioned earlier,

we adopt linear structures for both d and x for simplicity of analysis and implementation.

3.3 Profit Analyses

3.3.1 The Retailer’s Profit

The retailer has two sources of revenue, captured by the first two terms in the below

profit function. The first of these represents the revenue from the sales of new products and

the second term expresses the net revenue, through reimbursements from the manufacturer,

for collecting the used items. The next term represents the average ordering cost and the

remaining two terms show, respectively, the costs of holding new product and returned item

inventories per time unit at the retailer’s end (see Figures (C.2(a) and (b))). Its profit per

time unit can be expressed as

Πr = (ps − pw)d+ (rm − rc)x− Sr
d

Q
− hr

Q

2
− hrr

Qx

2d
. (3.3.1)



50

Substituting x = arc− bps and d = A−Bps into (3.3.1), the retailer’s average profit per

time unit can be rewritten as

Πr = (ps− pw)(A−Bps)+ (rm− rc)(arc− bps)−Sr(
A−Bps

Q
)− Q

2

[
hr + hrr

(arc − bps)
(A−Bps)

]
.

(3.3.2)

3.3.2 The Manufacturer’s Profit

Thus, in order to develop the manufacturer’s profit function, we need to determine

the average inventories at the manufacturing facility. From Figure (C.2(c)), the average

inventory of the finished product at the manufacturer’s end is

(
Q

2
)(
Q

m
)/(

Q

d
) =

Qd

2m
.

Also, from Figure (C.2(d)) it can be shown that the average inventories of the input

materials necessary for remanufacturing and manufacturing purposes, respectively

x2Q

2md
+

Q

2m
[d− 2x+ x2/d].

Incorporating these results, the profit per time unit for the manufacturer can be expressed

as

Πm =(pw − cs)d−
d

Q
(Sm + Srm + Si)− (rm + cr)x

− hmQd

2m
− hirQx

2

2md
− hiQ

2m
(d− 2x+

x2

d
)− cm(d− x)− crmx.

(3.3.3)

The first term in (3.3.3) shows the manufacturer’s revenue based on the wholesale price,

less the variable shipping cost to the retailer. The second term includes the fixed costs

involving production set up, transportation of new products to and used items from the

retailer and ordering of input raw materials. The third term expresses the reimbursement
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cost to retailer, as well as the variable transportation, cleaning and preparation costs for

the returned items. The next three terms represent the holding costs, respectively, for

the finished product and input materials inventories necessary for remanufacturing and

manufacturing. The final two terms in (3.3.3) are the variable costs per time unit for

manufacturing and remanufacturing, respectively. Substituting for d and x into (3.3.3), and

collecting terms, the manufacturer’s profit per time unit is rewritten as follows:

Πm =(pw − cs − cm)(A−Bps)−
A−Bps

Q
(Sm + Srm + Si)

− (rm + cr + crm − cm)(arc − bps)

− Q

2m

[
hm(A−Bps) +

hir(arc − bps)2

(A−Bps)

]
− Q

2m
hi

[
A−Bps − 2(arc − bps) +

(arc − bps)2

A−Bps

]
.

(3.3.4)

3.3.3 The Supply Chain’s Profit

Suppose that the retailer and the manufacturer agree to cooperate towards formulating

a jointly optimal integrated policy for the supply chain as a whole. The focus of such a cen-

tralized policy, where both parties are willing to freely share their cost and other relevant

information, is to maximize the profitability of the entire system, rather than that of either

party. In this centralized approach, we propose that in order to avoid double marginaliza-

tion, the parameters wholesale price pw and manufacturer’s rebate for returned items rm

need not be considered and are omitted. Thus, combining (3.3.1) and (3.3.4), without an

explicit wholesale price and a direct manufacturer’s reimbursement to the retailer for prod-

uct returns, the total supply chain profit is
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Πs =(pw − cs − cm)(A−Bps)−
A−Bps

Q
(Sm + Srm + Si + Sr)

− (rc + cr + crm − cm)(arc − bps)

− Q

2m

{
m

[
hr + hrr

arc − bps

A−Bps

]
+ (hir + hi)

[
(arc − bps)2

(A−Bps)

]}
− Q

2m
{(hm + hi)(A−Bps)− 2hi(arc − bps)} .

(3.3.5)

3.4 Development of Hierarchical Decision Making Models and Analysis

3.4.1 Retailer Controlled Model with pw Given

In some industries, due to intense competition, the wholesale price for the manufacturer

is determined by the existing market conditions and is, consequently, treated as a constant

parameter. The exposition in this subsection pertains to such cases.

Suppose that the retailer can set the integrated optimal order quantity and pricing policy

for sales and returns, independent of the manufacturer, with the assumption that it wields

sufficient power as a dominant member of the supply chain. The system is described by the

following model:

max
Q,rc,ps

Πr. (3.4.1)

In such a case, subject to certain assumptions to ensure joint-concavity, the necessary con-

dition for optimality could be applied to calculate the optimal decision from retailer.

The first order optimality conditions are shown below, obtained by setting ∂Πr

∂Q , ∂Πr

∂rc
and

∂Πr

∂ps
, respectively, equal to 0; i.e.

Q =

√
2Sr(A−Bps)

hr + hrr(arc − bps)/(A−Bps)
(3.4.2)
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rc =
1
2

[
rm +

b

a
ps −

Qhrr

2(A−Bps)

]
(3.4.3)

(A−Bps)2[B(pw−2ps)+A−b(rm−rc)+Sr
B

Q
]−Q

2
hrr[B(arc−bps)−b(A−Bps)] = 0. (3.4.4)

The above conditions (3.4.2), (3.4.3) and (3.4.4) can be solved simultaneously by any

standard equation solving software, in order to obtain Q, rc, and ps . Since the return rate

cannot exceed the demand rate of the item, i.e. d ≥ x, we can then easily show that any

feasible solution must satisfy the requirement: ps ≤ (A− arc)/(B − b). Hence, the roots of

ps in equation (3.4.4) that are negative or violate this feasibility condition are disregarded

in this and subsequent models for computational purposes.

Proposition 3.4.1. Q, rc and ps obtained from (3.4.2), (3.4.3) and (3.4.4) represent the

global optimum if the following conditions are satisfied:

a)
d

Q
≥ (

ah2
rr

16Sr
)1/3

b)

ah2
rr(Ab− aBrc)(Ab− aBrc − bd)

2d4
+
aBhrr[4Sr(Ab− aBrc) +Q2a− 2dbSr]

2Q2d2

+
2aSr(B2Sr − 4BdQ+ b2dQ)

Q4
≤ 0

A proof of the above proposition is provided in the Appendix A.
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3.4.2 Manufacturer Controlled Model with pw Given

If the manufacturer, instead of the retailer, is in a position of dictating supply policy,

it would prefer to implement a production and delivery policy (assuming the lot-for-lot op-

erating framework) that is optimal from its own perspective. In this case, the supplier’s

wholesale price is treated as a given parameter. The retailer, nevertheless, is likely to be

free to set its own selling price and the level of incentive to induce customers to return the

used products, given the manufacturer’s preferred replenishment lot size.

Note that the item’s selling price, ps, and the customer return reimbursement, rc are set

by the retailer. Then the manufacturer’s optimal batch size and the consequent retailer’s

policy variable values are established by the scheme of a sequential game, denoted as:

max
Q

Πm

s.t. (rc, ps) ∈
{

argmax
rc,ps

Πr

} (3.4.5)

which can be solved by combining the optimality conditions (3.4.3) and (3.4.4) resulting

from the retailer’s problem as constraints with the optimality condition with respect to the

order quantity in the upper level problem. The set of equations (3.4.6) shown below

Q =

√√√√ 2m(A−Bps)(Sm + Srm + Si)

hm(A−Bps) + hir(arc−bps)2

A−Bps
+ hi

[
A− (B − 2b)ps − 2arc + (arc−bps)2

A−Bps

] (3.4.6)

rc =
1
2

[
rm +

b

a
ps −

Qhrr

2(A−Bps)

]

(A−Bps)2
[
B(pw − 2ps) +A− b(rm − rc) + Sr

B

Q

]
−Q

2
hrr [B(arc − bps)− b(A−Bps)] = 0

can be solved simultaneously. Neither the retailer nor the manufacturer would benefit from

any deviation from the optimal solution above, which represents the equilibrium state of the

whole system.
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Proposition 3.4.2. The manufacturer would adopt a remanufacturing strategy only when

the condition:

rm + cr + crm ≤ cm − Q

2m

[
hirx

d
+ hi(

x

d
− 2)

]
is satisfied.

(see the Appendix A for proof).

3.4.3 Manufacturer Controlled Model with pw Unknown

Under monopolistic market conditions, manufacturers may lower the wholesale price in

order to encourage retailers to increase their order quantities. As discussed before, under a

decentralized policy, the retailer determines its order quantity as one of the decision variables

along with the selling price and the customer return incentive. It will make these decisions

after the observation of a wholesale price set by the manufacturer. Initially, the manufacturer

would anticipate the optimal response from the retailer when it decides on the wholesale

price, resulting in the following model:

max
pw

Πm

s.t. (rc, ps, Q) ∈
{

argmax
rc,ps,Q

Πr

} (3.4.7)

As before, the optimality condition of the lower level problem (3.4.2)-(3.4.4) could be

combined with the upper level problem as

max
pw

Πm = (pw − cs − cm)(A−Bps)−
A−Bps

Q
(Sm + Srm + Si)

− (rm + cr + crm − cm)(arc − bps)

− Q

2m

{
hm(A−Bps) +

hir(arc − bps)2

(A−Bps)

}
− Q

2m
hi

[
A−Bps − 2(arc − bps) +

(arc − bps)2

A−Bps

]
subject to

(3.4.8)
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Q =

√
2Sr(A−Bps)

hr + hrr(arc − bps)/(A−Bps)

rc =
1
2

[
rm +

b

a
ps −

Qhrr

2(A−Bps)

]

(A−Bps)2[B(pw − 2ps) +A− b(rm − rc) + Sr
B

Q
]− Q

2
hrr[B(arc − bps)− b(A−Bps)] = 0

If the manufacturer, instead of the retailer, has control of the order quantity, the model

above may be written as a bilevel problem, as shown below:

max
Q,pw

Πm

s.t. (rc, ps) ∈
{

argmax
rc,ps

Πr

}
,

(3.4.9)

which, as before, is the same as:

max
pw,Q

Πm = (pw − cs − cm)(A−Bps)−
A−Bps

Q
(Sm + Srm + Si)

− (rm + cr + crm − cm)(arc − bps)

− Q

2m

[
hm(A−Bps) +

hir(arc − bps)2

(A−Bps)

]
− Q

2m
hi

[
A−Bps − 2(arc − bps) +

(arc − bps)2

A−Bps

]
subject to:

(3.4.10)

rc =
1
2

[
rm +

b

a
ps −

Qhrr

2(A−Bps)

]

(A−Bps)2
[
B(pw − 2ps) +A− b(rm − rc) + Sr

B

Q

]
−Q

2
hrr [B(arc − bps)− b(A−Bps)] = 0.

This constrained nonlinear problem may be solved by one of several widely available

optimization software packages, such as “fmincon” in MATLAB.
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3.4.4 Centralized Model for Supply Chain Optimality

Suppose that the retailer and the manufacturer agree to cooperate towards formulating a

jointly optimal integrated policy, involving inventory replenishment, retail pricing and cus-

tomer return reimbursement decisions, for the supply chain as a whole. The focus of such a

centralized policy, where both parties are willing to freely share their cost and other relevant

information, is to maximize the profitability of the entire system, rather than that of either

party. We illustrate in the next section that this centralized joint optimization approach

can be economically attractive from the standpoint of both the parties through an equitable

profit sharing methodology. In this centralized approach, we propose that in order to avoid

double marginalization, the parameters wholesale price pw and manufacturer’s rebate for

returned items rm need not be considered and are omitted. With the deduction in (3.3.5),

the first order optimality conditions of the total supply chain profit yield the optimal values

of the replenishment lot size, Q, unit customer reimbursement for returns, rc and the unit

selling price, ps, which maximize the total supply chain profit under the proposed centralized

policy, as shown below:

Q =

√
2m(A−Bps)(Sr + Sm + Srm + Si)

TH
, (3.4.11)

where

TH =m
[
hr + hrr

(arc − bps)
(A−Bps)

]
+ (hir + hi)

[
(arc − bps)2

(A−Bps)

]
+ (hm + hi)(A−Bps)− 2hi(arc − bps)

(3.4.12)

rc =
[(hir + hi)bps + 2hid− hrrm]− 2m(A−Bps)

Q (cr + crm − cm − a
b ps)

2a(hir + hi) + 4m(A−Bps)
Q

(3.4.13)
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(A−Bps)2
[
A−B(2ps − cm − cs) + b(rc + cr + crm − cm) +

B

Q
(Sr + Sm + Srm + Si)

]
− Q

2m
{
(hir + hi)

[
B(arc − bps)2 − 2b(arc − bps)(A−Bps)

]}
− Q

2m
{
hrrm(aBrc − bA)−Bhm(A−Bps)2 + hi(2b−B)(A−Bps)2

}
= 0.

(3.4.14)

Once again, conditions (3.4.11), (3.4.13) and (3.4.14) can be solved via any appropriate

equation solving software, such as fmincon in MATLAB, for determining the centrally con-

trolled inventory replenishment, retail pricing and return reimbursement decisions.

Proposition 3.4.3. Q, rc and ps obtained from solving (3.4.11), (3.4.13) and (3.4.14)

are globally optimal if the following conditions, in addition to conditions (a) and (b) under

Proposition (3.4.1) are satisfied:

(c)

4(Sm + Srm + Si)(db− xB)2(hir − hi)
mQ2d2

−
[
−B(Sm + Srm + Si)

Q2
+
Bhm − hi(2b−B)

2m
+

(2db−Bx)x(hir − hi)
2md2

]2

≥ 0
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(d)

a2B2Q(hir − hi)(hi + hm)2

4m3d
− a2B2Qxhi(hir − hi)(hi − hm)

m3d2

− a2BQx2(hir − hi)(Bhirhi − 6bhirhi +Bhirhm − 5Bh2
i + 6bh2

i −Bhihm)
4m3d3

− a2B2Qx3hi(hir − hi)2

m3d4
+
a2B2Qx4(hir − hi)3

4m3d5

+
a2B2(hir − hi)(Sm + Srm + Si)2

Q3md
− a2B2(hir − hi)(hi − hm)(Sm + Srm + Si)

Qm2d

+
2a2B2xhi(hir − hi)(Sm + Srm + Si)

Qm2d2
− a2B2x2(hir − hi)2(Sm + Srm + Si)

Qm2d3
≤ 0

(see the Appendix A for proof).

3.5 A Numerical Illustration and Discussion

To illustrate our models outlined above, a numerical example is provided below. The

following information pertaining to the two parties in the supply chain are available.

Retailer:
hr = $0.015/unit/day, hrr = $ 0.002/unit/day,

A = 120, B = 3.0

a = 15, b = 0.1

Sr = $50/order.

That is, the daily demand rate is d = 120 − 3ps and the daily return rate is x =

15rc − 0.1ps.

Manufacturer:
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Sm = $300/batch, Srm = $200/batch, Si =$30/batch

hm =$0.01/unit/day, hi =$0.009/unit/day, hir =$0.007/unit/day

cs =$2/unit, cm = $8/unit, crm = $2/unit

cr =$1.20/unit, pw = $20/unit, rm = $2.80/unit

m =100 units/day.
All the results obtained from the various perspectives are summarized in Table (B.1,B.2).

It can be easily verified that the chosen parameters satisfy the joint concavity conditions

(a), (b), (c) and (d). Hence, all the solutions shown in Table (B.1,B.2) are globally optimal.

From this table it is clear that if the retailer has sufficient policy implementation power

in the supply chain, it attempts to keep the replenishment lot size comparatively small (i.e.

428.46 units), in view of its relatively low fixed ordering cost. Furthermore, through its

retail pricing (ps = $30.032/unit), in conjunction with a customer return reimbursement

price of $1.485/unit, it prefers to achieve daily market demand and customer return rates

of 29.904 and 19.391 units, respectively, that attempt to balance the gains from sales and

returns against the ordering and inventory carrying (for both new and used items) costs.

The maximum attainable daily profit for the retailer is, thus, $318.361, resulting in a profit

of $299.918/day for the manufacturer. Note that as every unit of the returned product

represents a net gain of $1.315 (i.e. the difference between the amount, rm, compensated

by the manufacturer and the customer reimbursement, rc) for the retailer, it attempts to

achieve a relatively high used item return rate of about 64%.

If, on the other hand, the manufacturer is in a position to exert a greater level of nego-

tiating power in the supply chain, its individual optimal policy would dictate a significantly

larger replenishment batch of 6083.1 units, due to the relatively high fixed setup and trans-

portation costs. In spite of a more than six-fold increase in the lot size, however, the selling

price and return reimbursement, set by the retailer in response, are both only slightly lower

than their values under its own optimal policy, i.e. $29.90 and $1.40 per unit, respectively.

It is interesting to note that, consequently, the retail demand rate increases slightly to 30.200
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units/day and the average product returns decline slightly to 18.00 units/day. The returns,

however, now decline slightly to 59.6% of sales. Not unexpectedly, implementing the manu-

facturer’s optimal replenishment policy reduces the retailer’s profit to $275.698/day, whereas

the manufacturer’s profit increases to $377.596/day. Nevertheless, in terms of total supply

chain profitability, the difference between adopting any one party’s optimal policy over the

other’s amounts to only about 5.36%.

Table (B.1) and Table (B.2) show that if the retailer and the manufacturer decide to

cooperate through the sharing of necessary information and adopt a jointly optimal policy

that maximizes the total supply chain profit, instead of optimizing either party’s position,

both parties stand to gain considerably from such an approach. As mentioned earlier, the

centralized model attempts to avoid double marginalization, i.e. the manufacturer does

not explicitly charge the retailer a wholesale price, nor does it explicitly offer the latter

a reimbursement for collecting the returns (implying that pw = rm = 0). Without these

cost factors, the centrally controlled approach results in a maximum supply chain profit of

$ 830.78/day, representing a more than 34.4% improvement in total system profitability,

compared to the retailer’s optimal policy, or over 27.2% improvement vis-a-vis the manufac-

turer’s optimal policy. As expected, the jointly optimal replenishment quantity now is 1562.4

units, which is less than the manufacturer’s optimal batch size, but larger than the retailer’s

optimal order quantity. More interestingly, the retail price is reduced to $23.3/unit and the

return reimbursement is decreased to $ 0.5/unit, respectively, resulting in a considerably

larger demand rate of 50.2 units/day, as well as a smaller average product return rate of 5.5

units/day (i.e. about 10.96% of items sold are returned by customers). The implication of

our centralized model is that under a jointly optimal policy, relatively fewer products sold

are remanufactured items. Under the given set of problem parameters, it appears desirable

to increase the overall market demand through a lower retail price. Also, there is a lesser

emphasis on collecting customer returns for remanufacturing. The centralized model reduces

the incentive for customer returns, which maximizes the total supply chain profitability.
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The absence of a wholesale price and an explicit incentive for the retailer to collect re-

turned items raises some interesting questions concerning a fair and equitable sharing of

the total gain resulting from the centralized cooperative policy shown in Table(B.1) and

Table(B.2). Although this can be achieved in several possible ways, we propose a profit

sharing plan under a scenario where the retailer is the more powerful member of the supply

chain and can dictate the implementation of its own optimal policy. The task of the manu-

facturer is then to offer sufficient incentive to the retailer in order for the latter to adopt the

results of this procedure. Note that under its own individual optimal policy, the retailer’s

share is 51.5% of the total profit for both parties. Therefore, it would be reasonable if the

retailer is allocated the same percentage of the total supply chain profit of $ 830.78/day

yielded by the centralized model. In other words, the retailer’s share of the total profit

is $ 427.78/day and that of the manufacturer is $ 402.999/day. With this profit sharing

arrangement, each party’s daily profit is more than 30% larger than that achieved under

the retailer’s optimal policy. Thus, it is economically attractive for both parties to adopt

the jointly optimal policy yielded by our centralized model. If the manufacturer is more

powerful of the two parties, the terms of a corresponding profit sharing arrangement, can

also be derived easily along similar lines.

Finally, Table(B.1) and Table(B.2) also show the results for the decentralized models

where under monopolistic competition, the manufacturer can set its wholesale price, which

is now treated as a decision variable. Compared with the results for a given wholesale

price, the retailer’s individual optimal policy dictates increasing both the selling price from

$30.032/unit to $31.680/unit and the customer return reimbursement from $ 1.485/unit to

$ 1.498/unit. Consequently, the order quantity is reduced from 428.46 units to 388.392

units. These changes indicate that the retailer would expend less effort to increase market

demand and would tend to compensate by attempting to increase its revenue from returns.

This appears to be a rational response to a higher wholesale price. Also, as expected, the
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manufacturer’s share of the total supply chain profit now increases from 48.5% to 61.11%,

while, the total profits for the supply chain declines to $586.83/day. These effects, not un-

expectedly, tend to be magnified when the supplier is in a position to dictate the adoption

of its own optimal policy by the retailer. Now the total supply chain profit shrinks further

to $512.792/day, although the manufacturer’s relative share of this, as well as its own daily

profit go up substantially, albeit at the expense of the retailer.

3.6 Sensitivity Analysis

Based on the numerical example cited above, we conduct a focusedsensitivity analysis

to explore the effect of varying some selected parameters on system performance and the

decision variables, e.g., the total supply chain profit and the retailer’s share of it. We

vary each of the selected parameters in the range of 60% to 140% of their original values

cited in section 3.5 and record the percentage changes in the objective function value and

decision variables of interest. The results outlined below are about only those parameters

that significantly affect the selected target variables. “Significant” is defined as a larger than

±10% impact. Finally, the economic insights underlying the analyses are highlighted.

3.6.1 Selling Price

As can be seen in the Figures (C.3) through (C.6), the major factors which affect the

selling price of the new product are the parameters A and B in the demand function. The

effects of varying these two variables are similar in all the four situations examined, regardless

of whether the decision-making is decentralized or centralized or whether the wholesale price

is exogenous or endogenous. The selling price is an increasing function of the relative market

share (A) while it is a decreasing function of the elasticity of the demand(B). As can be

expected, the larger the market share, the higher the price the retailer can set. Also if

the product demand is relatively price-sensitive, the retailer tends to set a lower price to

increase demand, leading to higher profitability. However, if the new product is less price
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sensitive, there appears to be some sacrifice in the profit margin in order to increase profit.

In both the retailer controlled and the manufacturer controlled situation, as observed in

Figures (C.4) and (C.5), the wholesale price has a very strong impact on the decision of

setting the retail price. A higher wholesale price tends to lead to a higher retail price. Since

a higher wholesale price results in higher costs for the retailer, a higher selling price seems

to be necessary on its part.

3.6.2 Reimbursement Price

With respect to the reimbursement level for the returned product, the centralized deci-

sion maker is only concerned with the market share, A, and the production cost, cm, (refer

to Figure (C.7)). If the market share is sufficiently high, the retailer has little incentive

to increase the reimbursement price. In other words, the reimbursement price appears to

be quite stable if the retailer enjoys a relatively large market share. Nevertheless, as its

market share declines, the retailer tends to lack interest in collecting the returned products.

Consequently, the reimbursement price will be reduced quickly. Similar effects of the market

size on the reimbursement price can be found in the decentralized, the retailer controlled

and the manufacturer controlled situations.

Under decentralized decision making(refer to Figure (C.8) through (C.10), the reimburse-

ment, rm, the retailer obtains from the manufacturer for collecting the returns determines

the reimbursement price, rc, set by the former to induce customers to return the used prod-

uct. The positive relationship between these decision variables reflects the source of creating

incentives for obtaining end-user returns in the closed-loop supply chain.

Figure (C.10) indicates that if the wholesale price is not given exogenously in the man-

ufacturer controlled situation, the coefficient, a, of the return price in the return rate func-

tion, x = arc − bps, has a slightly negative impact on the reimbursement price. Since the

coefficient, a, along with the reimbursement price, rc, decide the return rate, the special
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relationship observed here illustrates that the customer return rate is likely to remain rela-

tively stable in the manufacturer controlled scenario.

3.6.3 Order Quantity

The analysis of the effect of varying individual model parameters on the order quan-

tity is more complex. As can be seen in Figure (C.11) through (C.14), the parameters

which have a significant influence on the order quantity differ remarkably depending on

the operating environment. As before, the relative market share measure, A, appears to

have a major impact on the order quantity under all cases examined. The parameter A

has positive relationships with the order quantity in the centralized, as well as the retailer

controlled situations, whereas, this relationship exhibits a curvature and a negative relation-

ship in the manufacturer controlled situation. This observation appears to be somewhat

counterintuitive. Under centralized control (refer to Figure (C.11) for the new product, sm,

in traditional EOQ model, and varies positively with the production rate, m. The holding

cost rate for the used and returned product, hrr, has a negative relationship with the order

quantity in the centralized situation.

In the retailer controlled scenario (refer to Figure (C.12), its relative market share, A,

and the price-sensitivity parameter, B, included in the demand rate function are major fac-

tors. At the same time, the changes in setup cost for returned product, Sr, and the holding

cost rate, hr, appear to affect the order quantity. In addition the wholesale price also tends

to impact the order quantity.

In the manufacturer controlled scenario (refer to Figures(C.13) and (C.14)) parameters

appear to be interrelated and complex in their interaction. Most of these, nevertheless, do

not appear to affect the order quantity within the range of parameter variations considered.
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3.6.4 Supply Chain Profits

As before, changes in the parameters, A and B, which define the market demand rate ap-

pear to appreciably impact the supply chain profit in all of the four operating environments

as can be seen in Figure (C.15)-(C.18). The total supply chain profit changes positively

with changes in market share, A, and negatively with changes in the price-demand sensitiv-

ity parameter, B. The production cost rate, as the cost for the input for the whole system,

tends to affect the supply chain profit in the centralized situation (see Figure (C.15)). In

the decentralized situations (as Figures (C.16) and (C.17) above), changes in the wholesale

prices, pw, has a slightly negative effect on total supply chain profit. In the manufacturer

controlled situation, the reimbursement price, rm, paid by the manufacturer to the retailer

to encourage the retailer to collect the returns, appears to significantly impact supply chain

profit. This implies that selecting the price to encourage the retailer to collect the returns,

under the manufacturer controlled situation should be given some attention. Otherwise, it

is likely to reduce the profitability of the entire supply chain.

3.6.5 Retailer’s Share in Supply Chain Profit

The parameters in the demand rate function, A and B, and the wholesale price, pw,

have major impacts on the retailer’s profit share ratio in both the retailer controlled and

the manufacturer controlled situations (see Figure (C.19) -(C.21)), if pw is not given. For

the latter case, as can be seen in Figure (C.20), increasing the reimbursement price, rm, set

by the manufacturer is likely to increase the retailer’s efforts in collecting the returns. If the

wholesale price is not given exogenously, the only major factor that seem to have an impact

on the retailer’s share in the supply chain profit is the unit production cost. None of the

other parameters appear to have any significant influence in this regard.
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3.7 Summary and Conclusions

In this study, we have developed mathematical models under a deterministic scenario,

for simultaneously determining the production/delivery lot size, the retail price and the cus-

tomer return reimbursement level for a single recoverable product in a two-echelon supply

chain consisting of a single retailer and a single lean manufacturer. Items returned by cus-

tomers at the retail level are refurbished and totally reintegrated into the manufacturer’s

existing production system for remanufacturing and are sold eventually as new products.

As in many lean manufacturing (JIT) environments, we assume a lot-for-lot operating mode

for production, procurement and distribution, as an effective mechanism for supply chain

coordination.

Decentralized models are developed and solved for determining profit maximizing op-

timal policies from the perspectives of both members of the supply chain. A centralized,

jointly optimal procedure for maximizing total supply chain profitability is also presented.

A numerical example illustrates that the centralized approach is substantively superior to

individual optimization, due to the elimination of double marginalization. The example

also outlines a fair and equitable proportional profit sharing scheme, which is economically

desirable from the standpoint of either member of the supply chain, for the purpose of im-

plementing the proposed centrally controlled model.

Of necessity, the simplifying assumptions made here (e.g. deterministic parameters and

the lot-for-lot modality), are the major limitations of this study. Embellishments by future

researchers, such as relaxation of the lot-for-lot assumption, incorporation of uncertainty,

more realistic and complex demand and product return functions, multiple products, manu-

facturers, etc. will, undoubtedly, lead to more refined remanufacturing and related models.

Furthermore, future efforts in this area should consider the development of integrated de-

cision models under stochastic conditions, which are likely to be more realistic from an

implementation standpoint. Nevertheless, the results obtained in this study are likely to be
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of some value to practitioners as broad guidelines for integrated pricing, recoverable prod-

uct collection, production planning and inventory control decisions, as well as for designing

more streamlined, well-coordinated supply chains towards gaining competitive advantage.

We also hope that our efforts will prove to be useful for researchers in shedding light on

some of the intricate and inter-related aspects of product remanufacturing towards develop-

ing more effective decision making models for supply chain and reverse logistics management.

Finally, we have outlined the parametric conditions, (a), (b), (c) and (d), under

Proposition (3.4.1) and Proposition (3.4.3), for joint concavity, that are sufficient for yielding

globally optimal solutions for the various operating scenarios examined here. If, however, in

a given case, one or more of these conditions are violated, the respective solutions yielded

by our models represent merely local optima. The quality of such locally optimal solutions

with respect to truly global optima remains a matter for future research.
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4. Discrete Hierarchical Decision Making Problems in Biofuel Supply Chains

4.1 Introduction of the Biofuel Problem

Biofuel is a type of fuel derived from biomass and used for power and automotive trans-

port. Many crops such as wheat, corn, rapeseed and sunflower can be the resources to

produce biofuel. Recently, with more concerns over rising oil prices, gas emission effects

and rural development interests significantly drive the biofuel use and development. The

legislation, HB3543 signed by Oregon Governor Ted Kulongoski in July 2007, requires “all

gasoline sold in the state to be blended with 10% bioethanol and all diesel fuel sold in the

state to be blended with 2% biodiesel” [75]. In order to break its dependence on imported

oil, the U.S. government now provides more funding, including $179 million for the Presi-

dent’s Biofuels Initiative[78] and $375 million by the Department of Energy[32], to reduce

the cost and improve the efficiency of biofuel production.

In this paper, we base our analysis closely on a model proposed in [11]. Government,

industry and farms form a supply chain through which material, product and currency flow.

Generally, there are three levels of decision making in this biofuel production problem:

• As a leader, the government plays an active role in encouraging biofuel production.

Under economical, environmental and social considerations, the government would like

to provide direct incentives such as tax exemptions to industry. Naturally, the cost to

the government is expected to be minimized while ensuring the required amounts of

production.

• Due to the high production cost of biofuel, industry expects more tax exemption from

goverment to ensure its own profit. Otherwise, industry has no incentive to replace oil

with biofuel products. The industry will determine the price paid to the farmers at

the gate.
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• Because of surging demand for biofuels, farms benefit by switching from producing

food crops to nonfood crops, which are the raw materials for biofuel production. Farms

choose among three options: planting food crops, growing nonfood crops or leaving a

part of the land fallow. The strategic plan needs to be set for the allowable land to be

better utilized to realize the maximum profits.

Models involving such decisions for biofuel production are typically formulated as bilevel

programming problems. At each level, a certain objective function needs to be optimized

without forcing lower levels to make suboptimal decisions.

• In the upper level problem, the government needs to minimize its total expenditure

by setting the optimal tax exemption level provided to the industry. Meanwhile, the

industry will determine the price paid to the farmers at the gate.

• In the lower level problem, farms decide the optimal assignments of allowable lands to

maximize their profits.

However, in order to ensure sufficient food and enough fuel, a license fee might be charged

if the farms sell crops as a biofuel resource. In addition, transportation and equipment costs

for nonfood crops may be incurred because of the new destination and purpose of the final

products. We categorize all these costs into fixed costs. As a result, the increased impor-

tance of the biofuel development program with fixed cost stimulated our interest to improve

modeling and solution methods used in the past. The introduction of binary variables is

essential in the agronomic practice and policy making, despite adding significant complexity

to the computation of the optimal solution.

In this study, we examine an instance with two types of biofuel: ester and ethanol.

Having only two such considerations allows us to use a grid search algorithm to handle the

upper level problem, as was proposed in [3]. For each instance of the lower level problem, we

use a cutting plane algorithm to handle the mixed-integer linear programming problem. By

using sensitivity analysis and warm-starts, we illustrate the efficient solution of a numerical
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example. We also investigate another approach based on nonsmooth nonlinear optimiza-

tion. We treat the dependence on the lower level as a nonlinearity in the upper level, and

apply a sequential quadratic programming method to solve government model, leading to

the introduction of quadratic penalty term to smooth farm’s model and the incorporation of

nonlinear mixed integer cuts. The efficiency of the extended method also has been examined.

4.2 Models

Using the notation introduced at the beginning of this dissertation, we introduce the

upper and lower level models.

4.2.1 The Goverment Model (Upper Level)

The upper level problem consists of the government model:

min
τ,p,xn

∑
v∈V,d∈D,e∈E

αdvexndeτv − γ
∑

e∈E,d∈D′

xnde (4.2.1)

subject to
∑

e∈E,d∈D

xnde ≥ ρθ
∑
e∈E

σe (4.2.2)

∑
e∈E,d∈D

αdvexnde ≤ uv ∀v ∈ V (4.2.3)

pde = max
v∈V

{(τv − πdv)αdve} ∀d ∈ D(v), e ∈ E (4.2.4)

pde ≥ 0, τv ≥ 0 ∀v ∈ V, d ∈ D, e ∈ E (4.2.5)

The objective (4.2.1) is to minimize the total value of tax credits provided by the govern-

ment after the savings to the government of not having to pay set-aside payments due to the

planting of certain nonfood crops on what would otherwise be fallow land. The conversion

rate α considers the rate of transferring the nonfood crops to biofuel for the industry as well

as the yield rate for each farm, which can vary significantly due to soil fertility and plant
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nutrition. Inequality (4.2.2) ensures the minimum percentage of the total arable land to be

used for food crops. Constraints (4.2.3) limit the production of biofuel v to no more than

uv. These constraints explain the need for a certain amount of biofuel for the government,

but ensure that those biofuels with storage issues, such as ethanol, do not get produced

excessively. The next constraint (4.2.4) represents the industry’s problem to price the non-

food crops appropriately. The quantity πdv represents a threshold, which should be set large

enough to guarantee that the industry plants which convert the nonfood crops to biofuel

will make profit. The price, pde, is the price offered per unit of area and is equal to the price

offered per unit of weight of nonfood crop(independent of farm) multiplied by the yield of

the nonfood crop per unit area on farm e. Although not expressed in (4.2.1)-(4.2.5), the

variables xn are assumed to be in the set of optimal solutions for the lower level problem

parameterized by p, discussed next.

4.2.2 The Farms Model (Lower Level)

The lower level problem consists of the farms model:

max
xc,xn,xe,q

∑
e∈E,c∈C

mcexcce +
∑

e∈E,d∈D

(pde − cde)xnde + γ
∑
e∈E

xfe −
∑

e∈E,d∈D

qdetde (4.2.6)

subject to
∑
c∈C

xcce +
∑
d∈D

xnde + xfe ≤ σe, ∀e ∈ E (4.2.7)

∑
d∈D

xnde + xfe = θσe, ∀e ∈ E (4.2.8)

xcde + xnde ≤ χdeσe, ∀e ∈ E, d ∈ D (4.2.9)

xnde ≤ qdeσe, ∀e ∈ E, d ∈ D (4.2.10)

xfe ≤ δσe, ∀e ∈ E (4.2.11)

xcce ≥ 0, xnde ≥ 0, xfe ≥ 0, qde ∈ {0, 1}, ∀c ∈ C, d ∈ D, e ∈ E (4.2.12)

Function (4.2.6) is the objective function of the agriculture sector to maximize its profits

by assigning the total arable land among food crops, nonfood crops and fallow lands. In-

equality (4.2.7) confines the assignments to the total available land. Among them, a certain

amount of land, called set-aside land, is only used for nonfood crops and for keeping fallow
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in (4.2.8). Agronomic considerations are reflected in (4.2.9). For example, previous year’s

production levels, soil nutrient levels, or the amount of labor and equipment available can

limit the amount of land available for a type of crop. As such, for each nonfood crop, an

upper bound may also be given as a percentage of available land on each farm. (4.2.10) is

used to implement capacity constraints, where the value of qde determines whether or not

land is available at farm e to grow crop d. (4.2.11) gives the upper bound on the amount of

land left fallow. (4.2.12) ensures that all the continous variables are nonnegative and qde are

binary variables. Without the last term in the objective function (4.2.6) and the capacity

constraints (4.2.10), the model would turn into the biofuel model without fixed cost. The

inclusion of fixed costs affects the optimization methodology and the complexity.

4.3 Solution Methods

Two solution methods, grid search and nonsmooth nonlinear programming, are intro-

duced in [11] and varying degrees of efficiency and success are reported. The grid search

method can be applied even if the objective function is neither continuous nor differentiable.

However, the solution is at a low level of accuracy and the whole process is computationally

intensive. The nonlinear approach has the potential to reach a higher level of accuracy, but

[11] does not report much success with it as the algorithm is highly sensitive to the initial

point and the magnitude of the smoothing term.

In this paper, we chose to investigate the extension of these two solution methods to the

problem introduced in the previous section. In order to solve the discrete bilevel program-

ming problem obtained by introducing fixed costs into the biofuel model, we pay particular

attention to the handling of the integer variables. As a first solution method, we apply

a pattern search approach as a more efficient alternative to grid search for handling the

upper level problem, while solving the lower level problem using a cutting plane method for

mixed integer linear programming problems. As a second method, we also investigate the

use of nonsmooth nonlinear programming. For both approaches, sensitivity analysis and
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warm-starts are implemented to exploit efficiencies.

4.3.1 Pattern Search

In this paper, we are considering a problem instance with two types of biofuel, ester and

ethanol, so it is convenient to perform a pattern search to handle the upper level problem.

The pattern observed in the government objective function value and the feasible region

after solving the lower level problem for a few different pairs of τ values indicates potential

for success of the pattern search [54]. We have implemented the algorithm as follows:

Step 1: (Initialization)

(a) ζ = the minimum change of objective value

(b) εlb = the lower bound for the step length

(c) δ = the factor to change the search length, usually δ ≤ 1

(d) Set up the initial starting point as τ i and the search length ε as ε0

Step 2: (Check the feasibility of the initial point τ i)

(a) Solve the lower level problem with p determined by τ i in the constraint (4.2.4)

(b) Substitute the optimal solutions of the lower level problem into the upper level

problem

(c) Check feasibility in the constraints (4.2.2) and (4.2.3) and calculate the objective

value U(τ i);

If feasible, go to Step 3;

Otherwise, randomly reselect a new start point τ i and go back to Step 1;

Step 3: (Start the search)

Search the neighborhood of τ i in all eight directions with step length as ε, thus we
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have the τ̃ i as

(
τ̃ i
ethanol, τ̃

i
ester

)
=



τ i
ethanol + ε τ i

ester

τ i
ethanol − ε τ i

ester

τ i
ethanol τ i

ester + ε

τ i
ethanol τ i

ester − ε

τ i
ethanol + ε τ i

ester + ε

τ i
ethanol − ε τ i

ester + ε

τ i
ethanol + ε τ i

ester − ε

τ i
ethanol − ε τ i

ester − ε


Step 4: (Check the feasibility of the neighborhood):

(a) For each pair of τ̃ i, calculate the corresponding price p respectively ;

(b) Substitute into the lower level problem and solve the lower level problem

(c) Substitute the optimal solution of the lower level problem into the upper level

problem

(d) Check the feasibility in the constraints (4.2.2) and (4.2.3).

If none of τ̃ i can satisfy the constraints in the upper level problem,

If ε ≤ εlb conclude that the current solution cannot be improved;

Otherwise, let ε = ε/δ and go back to the Step 3 to continue iterations

Otherwise, go to Step 5

Step 5: (Adjust step length at the original τ i as necessary ):

(a) Get the upper level objective value F (τ̃ i
j) corresponding to each τ̃ i

j ;

(b) Set F (τ̃ i) = min
j

(F (τ̃ i
j))

(c) If F (τ̃ i) ≥ F (τ),

If ε ≤ εlb conclude that the current solution cannot be improved;

Otherwise, let ε = ε/δ and go back to the Step 2 to continue iterations
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Otherwise, go to Step 6

Step 6: (Move to the new τ i along the pattern as necessary):

(a) Stop and conclude optimal solution if F (τ i)− F (τ̃ i) ≤ ζ

(b) Otherwise, let τ i = τ̃ i
j , where j ∈ argmin

j
F (τ̃ i

j), ε = ε0, and go back to the Step

3 to continue iterations

This pattern search method greatly improves the computational efficiency over the tra-

ditional grid search. Instead of checking every pair of τ values in the possible area, pattern

search makes good use of the related information from the previous iterations and follows the

direction to further improve the objective value within the feasible region. Notice, however,

that the method would be less effective if a large number of decision variables are included

in the upper level problem.

The farms model

Because of the consideration of setup costs, the farms model given by (4.2.6)-(4.2.12) is a

mixed-integer linear programming problem. We use a mixed-integer cutting plane method to

solve this problem. Unlike branch-and-bound, which solves multiple problems with different

dictionary, cutting plane algorithm can get the optimal solution by using a single dictionary,

when the price is change, we can still use sensitivity analysis on the single dictionary.At each

iteration of the algorithm, we relax the binary constraints and apply parametric self-dual

simplex method [84].

Following the notation of the general bilevel problem with m2 = 0 and letting J denote

the index set of the integer variables, the lower level problem has the generalized form

max
y′

f(x, y′)

subject to Ay′ = h

y′j ≥ 0 for j /∈ J

y′j ∈ {0, 1} for j ∈ J .

(4.3.1)
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Note that in (4.3.1), the objective function is linear.

We partition the decision variables and the constraint coefficients as y′ =

 y′B

y′N

 and

A = [ AB AN ] according to the optimal basis using the index sets B and N . Then, the

constraint rows of the final dictionary can be written as:

y′B = A−1
B h−A−1

B AN y
′
N . (4.3.2)

For j ∈ J , if y′j /∈ {0, 1}, then we can add a Gomory mixed-integer cut to (4.3.2):

∑
j∈N∩J :aij−baijc≤hi−bhic

(aij − baijc)y′j

+
∑

j∈N∩J :aij−baijc>hi−bhic

(hi −
⌊
hi

⌋
)(1− aij + baijc)

1− hi +
⌊
hi

⌋ y′j

+
∑

j∈N/J :aij>0

aijy
′
j +

∑
j∈N/J :aij<0

hi −
⌊
hi

⌋
1− hi +

⌊
hi

⌋aijy
′
j ≥ 0

(4.3.3)

where aij is the (i, j)th element of A−1
B AN and hi is the ith element of the vector A−1

B h in

the final dictionary. Thus, the resulting cutting plane algorithm starts by relaxing all the

binary constraints and alternately solves the linear programming problem and adds cuts to

obtain a mixed integer solution.

Sensitivity analysis and warm-starts

If we investigate the lower level problem, we find that only the objective function coef-

ficients of the lower level problem depend on the decision variables τ from the upper level

problem, since p is the only component affected by the government’s choice. We know that

changes in the coefficients of the objective function may not change the optimal solution

and dictionary of the new problem, which means that in the pattern search framework we

might be able to skip solving some of the lower level problems. Even if the solution changes,

the previous optimum still remains feasible for the current problem, and starting the search

from the final dictionary of the previous problem may require fewer iterations to reach the
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new optimum. Therefore, after solving each lower level problem, we save the optimal basis

and reuse it as the starting basis for the solution of the next lower level problem. This

simple strategy seems to have a significant impact on the efficiency of the solution method,

as indicated by the numerical results presented in the next section.

4.3.2 Nonsmooth Nonlinear Optimization

Even though numerical results of the next section indicate good performance for the

pattern search method, it cannot be easily extended to larger problems due to the signif-

icant computational effort required to perform a search in multiple dimensions. Another

possible approach investigated in [11], albeit without much success, is nonsmooth nonlinear

programming. With this method, the government’s problem can be solved in one shot with

the lower level problem treated as a nonsmooth, nonlinear constraint. A gradient-based

nonlinear programming algorithm is used to solve the resulting problem, and the deriva-

tives associated with the lower-level problem are computed numerically after a smoothing

term is applied. In our numerical studies, we used the function fmincon in MATLAB which

implements a sequential quadratic programming algorithm and has built-in capabilities to

apply the finite differences method to numerically approximate derivatives by measuring

the average change in the objective function with respect to small changes in the decision

variables.

The government model.

For the upper level problem, the objective function (4.2.1) is an implicit function of the

decision variable τ since the optimal land assignments xn are determined as functions of p,

which is a function of τ as defined by (4.2.4). In other words, the general problem (1.2.1)

can also be written as
min
x∈X

F (x, y(x))

s.t. G(x, y(x)) ≥ 0,
(4.3.4)
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where y is now expressed as a function of x, and the definition of y as the solution of the

lower level problem is now treated as one of the nonlinear constraints G. Expressed as above,

(4.3.4) is now a single-level nonlinear programming problem. In order to use a gradient-based

approach to solve it, we need to evaluate the gradients of the objective function and the

constraints with respect to the decision variables x. We now outline the finite differences

approach used for the objective function, and the details of the constraint gradients are

identical.

Using the chain rule, the gradient of F in (4.3.4) can be expressed as

∇xF =
∂F (x, y)
∂x

+
∂F (x, y)
∂y

dy

dx

While we can explicitly formulate the partial derivatives of F with respect to x and y, y is a

nonsmooth function of x defined as the solution of the lower level problem. Because of the

definition, we can only evaluate dy
dx numerically, and we use the smoothing technique of [11]

to alleviate the nondifferentiability. This approach is outlined below.

If the derivative information can be obtained, (4.3.4) can be solved using any nonlinear

solver. As mentioned, we used fmincon in MATLAB as our solver. We will discuss the

numerical performance of this implementation in the next section.

The farms model.

In order to evaluate the function y(x) for the upper level problem, we need to solve the

lower-level problem once in each iteration of the nonlinear programming method. To do so,

we use the mixed-integer cutting plane approach outlined for the pattern search method.

In order to evaluate the derivative dy
dx for the upper level problem, we need to solve the

lower-level problem again after a small perturbation to x. However, if the optimal solution

of the lower-level problem does not change, the resulting numerical derivative will be zero,

or if the solution does change, it can be a significant change. This jump in the value of

the derivative is undesirable and may cause the overall algorithm to make erratic progress

and/or stall. In order to alleviate the effects of the jump, we introduce a smoothing term
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to the objective function of the lower level problem:

max
y′

f(x̂, y′)− ψ‖y′ − ỹ‖, (4.3.5)

where x̂ is the new, perturbed vector x, ψ > 0 is a smoothing parameter, and ỹ is the

solution of the problem at the original value of x. The quadratic penalty term smooths and

regularizes the objective function.

In our implementation, we introduce an intermediate variable ξ ∈ R and rewrite the

objective function as

max
y′,ξ

ξ. (4.3.6)

We also introduce a new nonlinear constraint

ξ − (f(x̂, y′)− ψ‖y′ − ỹ‖) ≤ 0 (4.3.7)

The reason for reformulating the nonlinear problem with a nonlinear objective function as

a nonlinear problem with a nonlinear constraints is to implement a cutting plane method

to solve the lower level problem. This allows us to reuse information gained by solving the

lower-level problem to evaluate the function y(x) for the current value of x and build on

the cutting plane method used to solve that mixed-integer linear programming problem.

As a result, in order to solve this mixed-integer nonlinear problem within the cutting-plane

framework, we apply an extended cutting plane method introduced by Westerlund et al. [87].

Starting with the optimal basis obtained by solving the mixed-integer linear programming

problem, we add the following linear cuts as necessary to obtain an optimal solution to the

smoothed-lower level problem:

∑
i∈J

(
∂f

∂y′i
|y′k)y′i +

∑
i/∈J

(
∂f

∂y′i
|y′k)y′i ≤ f(y′k)−

∑
i∈J

(
∂f

∂y′i
|y′k)y′i

k −
∑
i/∈J

(
∂f

∂y′i
|y′k)y′i

k (4.3.8)

Westerlund et al. ([87]) have proved convergence of this approach.
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4.4 Numerical Results

In this section, we provide a numerical example to illustrate the effect of fixed costs on

the model and its solution. Three farms of different size, σE1 = 3300 acres, σE2 = 14600

acres and σE3 = 6300 acres respectively, need to allocate their lands to plant 7 food crops.

Some of them can be used as nonfood crops to produce biofuels. Wheat, corn and sugar beet

could be converted to ethanol by industry. Rapeseed and sunflower can produce ester. We

used data consistent with [11] and filled any gaps in the data with further research into the

agricultural conditions in Europe. We use γ = 193.2 $/acre, θ = 0.35, δ = 0.1, uv = 100000

acres and ρ = 0.7674, and the rest of the data are shown in Tables (B.3, B.4 and B.5) .

4.4.1 Solutions

We coded the solution procedures in Matlab, Version 7.3.0.267(R2006b), then ran them

on a PC with Intel(R) Pentium(R)4 CPU at 3.20GHz, with 1.99 GB of RAM. Using the

pattern search method, we get the optimal land assignment for each food crop and each

nonfood crop in each farm listed in Table (B.6) and Table (B.7). We compare the results

with fixed costs to those without fixed costs in the same table to gauge the effect of fixed

costs on the optimal solution. When fixed costs are considered, the tax exemption level for

ethanol is reduced from 45.77($/ton) to 43.50($/ton), while the level for ester increases a

little bit from 3.93 ($/ton) to 3.95 ($/ton). With the change in the tax exemption levels,

there is a 16.42% decrease in the total cost for the government. Although the farms are

faced with an increased amount of costs, we observe that they do not produce less of the

nonfood crops, but instead change their allocation in response to the fixed costs. As a result,

the total profits of the farms decrease by 62.23%. It is obvious that fixed costs influence the

expenses of the government and the profits of the farms as well, which is consistent with

our intuition that the farmers would adjust their strategies, however, the total profit will be

reduced according to the extra costs since the farms would not like to take efforts to switch

from the food crops to nonfood crops. Simutaneously, the government might instead save

the expense with less land to be used to produce crops for biofuel.
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The same solutions were obtained by using the nonsmooth nonlinear programming ap-

proach. However, the nonsmooth nonlinear optimization is sensitive to initial points. Some

initial points drive the system to become stuck at the initial point without any improvement

or at an infeasible solution. For large enough values of the smoothing parameter and the

use of bounds to define tax exemption levels that produce feasible solutions for the upper

level problem, we were able to replicate the solution given in Table (B.6) and Table (B.7)

using the nonlinear programming approach.

4.4.2 Computational Efficiency

To evaluate the computational effort required by each solution approach, we compare

the points skipped and total iterations for each level of the pattern search in Table (B.8).

From the results of Table (B.8), we can observe our new method with sensitivity analy-

sis and warm-starts outperforms the one without sensitivity analysis and warm-starts. For

example, considering a searching step size of 25 at starting point (250, 250) in the case of

without fixed cost, 170 points have been skipped due to the use of sensitivity analysis and

warm-starts. If we treat the traditional method without warm-starts and sensitivity anal-

ysis as the base situation, we find that the proposed method could reduce the number of

iterations by 86.14%. Although there is no constant pattern for the amount of reduction,

the proposed method finds the optimal solution efificiently. In summary, we can solve the

discrete bilevel problem easily using our proposed new method for pattern search. The total

number of iterations it takes is just 27159, much less than 41031, which is for the approach

without sensitivity analysis and warm-starts. The CPU time also reduces significantly.

4.5 Conclusions

From the numerical example, we can see that there is a significant impact of the fixed

cost on the final decision and the profits which farms and the government share. In order

to encourage farms to produce nonfood crops in the presence of fixed costs, the government
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needs to provide more incentives. At the same time, farms also make their strategic plans

to assign land so that they can reach their maximum profit. The consideration of fixed cost

could reduce their profitability, however the loss could be controlled by changing the final

assignment of lands directly and easily.

From a computational point of view, we have demonstrated that efficient solution meth-

ods can be developed to solve this problem. By incorporating sensitivity analysis and

warm-starts into both of our solutions approaches, we have dramatically improved their

performance. While the practical applicability of the pattern search approach is limited to

problems with only a few variables in the upper-level problem, it can nevertheless be vi-

able with increasing computational power and memory. On the other hand, the nonsmooth

nonlinear programming approach allows us to get solutions quickly and with a good level of

accuracy if a good initial solution and reasonable variable bounds can be provided.
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5. Conclusions and Future Extensions

5.1 General Conclusions

Hierarchical decision making involves multiple decision makers who make decisions in

a hierarchy of levels. This framework has wide application in technology development,

public policy, and business. Due to the complexity of the current marketplace and intensive

competition, more and more decision makers at different levels are getting actually involved.

The decisions at each level present profit opportunities for the decision maker at this level.

This framework also handles the interactions among different levels because the parameters

at any level may be determined by the reaction of another level. Therefore, it is important

to explore the nature of hierarchical decision making systems.

In this dissertation, applications of hierarchical decision making are provided in the con-

text of supply chain management, specifically in a remanufacturing setting and in a biofuel

production case. The relationship between suppliers and buyers, for instance, as the reman-

ufacturer and the retailer or the feedstock provider and the government/ the industry, can

be expressed by hierarchical decision making. Those decision makers pursue different objec-

tives and make decisions from their own perspectives. With more and more problem aspects

taken into consideration, the current solution methods for simple environments cannot sat-

isfy the need for examining more complex business problems. Particularly when discrete

decisions are involved, new solution procedures are often wanted. This work advances the

current literature by proposing algorithms for solving complex hierarchical programming

problems. This has been the motivation for conducting this research.

As the concepts of environment sustainability, lean production, and green manufacturing

have been widely accepted by the public, remanufacturing supply chain management has

become an importation research concern. This dissertation represents an early attempt

to consider acquisition management and inventory management in an integrated manner.

We have found explicit solutions for decentralized, as well as centralized scenarios and these
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solutions indicate that centralized decision making in remanufacturing leads to higher supply

chain profits. Subsequent numerical results and sensitivity analysis confirmed our theoretical

findings. Under our assumed deterministic scenario, sensitivity analysis indicates that the

relative market share and the elasticity of the demand significantly influence the optimal

decisions and the total profits.

The second application presented a case of biofuel production, representing the study of

a more complicated hierarchical decision making model. Recently, due to the pressures of

oil price increases and the potential shortage of food crops, intense debate has surrounded

government tax exemptions, which serves as an incentive to encourage biofuel production.

With data collected from real-world sources, we find that the government can set up the ap-

propriate policy to provide appropriate incentives for biofuel production and ensure enough

food crop output, as well. Unlike previous work in this area, we include fixed costs. Fixed

costs are a significant part of biofuel production costs for farms, and therefore our mod-

els make a very important contribution to the field by incorporating them into the model.

With recent advances in nonlinear programming and integer programming methods, we de-

velop solution methods for solving these types of problems. In this study, search methods

for derivative-free optimization are used to solve discrete bilevel problems, and smart im-

plementation techniques, such as sensitivity analysis and warm-starts, greatly improve the

performance of such solution procedures.

5.2 Suggested Future Research

The remanufacturing problem presented assumes a deterministic operating. In most

situations, industries such as electronic products OEM, such an assumption is unrealistic

environment. For example, the return rate is likely to depend on the price of new products,

a stochastic model can assume that the return rate would follow some distribution with a

mean value as a function of the collection price which the retailer pays to the customers.

In addition, the quality of the returns may also be uncertain, which leads to an uncertain

remanufacturing variable cost. This multilevel decision making problem in a stochastic
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environment needs further consideration and analysis.

Additionally, the simplifying assumptions made here on the model parameters and the

decision making scenario present further opportunities for extension of this research. For

instance, relaxation of the lot-for-lot assumption, incorporation of more realistic and complex

demand and product return functions, and the considerations of the multiple products and

manufacturers are likely to be more realistic and more complex to analysis.

Although the dissertation explores the solution algorithms and the applications of bilevel

programming, some extensions are expected to make it even more practical and convenient

to solve. We will continue to work on further improving the algorithm for the discrete bilevel

problem by focusing on computational efficiency. Our attempt to solve the discrete linear

bilevel problems in this paper will be further extended to solve other types of problems such

as discrete nonlinear bilevel problems and stochastic nonlinear problem. Once the time and

efforts to solve our discrete linear bilevel programming problems are further reduced, it will

provide the possibility to improve the computational efficiency to solve nonlinear discrete

bilevel programming problem.

There are possible extensions of the biofuel production model, as well. For example, if

the influence of food supply on food price is investigated, a Nash game can be integrated

in the farms’ level to form a mathematical program with equilibrium constraints. If some

of the farms switch from the food crops production to the nonfood crops production, the

decrease in the production level of food crops leads to the increase in the price of food crops.

Comparing the new price of food crops with the price of nonfood crops, the production

level will be re-allocated among the total lands until final equilibrium is reached. If this

perspective has been considered, the market could adjust itself. The only concern is the

time lag.

Additionally, the biofuel models in this dissertation are deterministic models. In some

settings, some parameters which have been assumed to be known in this paper are not

certain. For example, weather is one of the uncertain factors. The change of the weather

results in different yield levels of the lands, which cannot be predicted by the farms before
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they organize the land assignments. However, if the farms take these stochastic factors into

consideration, their rational decisions showed focus on avoiding large variability in profits.

Finally, a third generation biofuel, produced from the biomass such as algae, will expand

our research area. Related topics such as considerations of transportation, logistics, and

inventory related factors can further extend and estabilish our biofuel models.

The adequacy of food supply is not only important to feed the world population, but

also essential to the stability of society. As the result, the social consideration of ensuring

enough food supply could be treated as an integral part of the goal of the government. In

future extensions of the model, we will include constraints in the governments model to

ensure the adequate and stable food supply. We will then assess whether the government

can provide an incentive structure to the farms to achieve this goal naturally or whether

legislation needs to be introduced to regulate individual farms obligations for growing food

crops. In the latter case, we will need to also add constraints to farms’ model.

Also called “green manufacturing”, remanufacturing considers reusing products instead

of merely disposing of them. Similarly, nonrenewable resources such as crude oil. Both ideas

play important roles in the study of Sustainability and should be emphasized in courses

such as production management, operations management, and supply chain management.

I would integrate those contents into my teaching and enforce students understanding of

these concepts, which will be essential in product design and operational strategy in our

current stages of production management. Furthermore, the bilevel program presented in

the dissertation also can be applied to illustrate to students the basic idea of game theory,

which will help them solve lots of practical problems in real business since hierarchical

structure has been widely used in contemporary management.

As we stressed in this dissertation, discrete bilevel programming problems have wide

applications in real business problem. We are looking forward to extending them to many

other problems. One of the potential applications is group decision making proble([49], where

each group member needs to solve his individual problem in the lower level problem while

the final selection has to be made with respect to the group member’s importance weight
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in the upper level problem. The multilevel problem is inter-connected because the objective

function values in the lower level problem are coefficients in the upper level problem. Also,

since the deciison variables in the upper level problem do not affect the lower level problem,

this type problem is easy to solve.
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[43] J. J. Júdice and A. M. Faustino. A linear-quadratic bilevel programming problem.
INFOR, 32(2):87–98, 1994.

[44] V. V. Kalashnikov and R. Z. Rios-Mercado. An algorithm to solve a gas cash out
problem. In Proceedings of the International Business and Economic Research Confer-
ence(IBERC2002), Puerto Vallarta, Mexico, 2002.



93

[45] V. V. Kalashnikov and R.Z. Rios-Mercado. A penalty-function approach to a mixed
integer bilevel programming problem. In Proceedings of the 3rd International Meeting
on Computer Science, volume 2, pages 1045–1054, 2001.

[46] P. Kelle and E.A. Silver. Forecasting the returns of reusable containers. Journal of
Operations Management, 8:17–35, 1989.

[47] P. Kelle and E.A. Silver. Purchasing policy of new containers considering the random
returns of previously issued containers. IIE Transactions, 21(4):349–354, 1989.

[48] G.P. Kiesmuller. A new approach for controlling a hybrid stochastic manufacturing/
remanufacturing system with inventories and differnt lead times. European Journal of
Operational Research, 147(1):62–71, 2003.

[49] S. Kim and B. Ahn. Group decision making procedure considering preference strength
under incomplete information. Computer Operations Research, 24:1101–1112, 1997.

[50] S.C. Koh, H. Hwang, S. Kwon-IK, and C.S. Ko. An optimal ordering and recovery
policy for reusable items. Computers and Industrial Engineering, 43:59–73, 2002.

[51] C. D. Kolstad and L. S. Lasdon. Derivative evaluation and computational experience
with large bilevel mathematical programs. Journal of Optimization Theory and Appli-
cation, 65:485–499, 1990.

[52] J. Kruse, P. Westhoff, S. Meyer, and W. Thompson. Economic impacts of not extend-
ing biofuel subsidies. The Journal of Agrobiotechnology Management and Economics,
10(2):94–103, 2007.
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Appendix A. Proof of Propositions in Remanufacturing Models

Note: All the proofs outlined are based on the following concepts: f is concave on D

if and only ∇2f(x) is a negative semi-definite matrix for all x ∈ D. An n × n matrix A is

negative semi-definite if and only if (−1)k|Ak| ≥ 0 for all k ∈ {1, . . . , n} where Ak is the

upper left k-by-k corner of A.

Proof. Proposition (3.4.1)

If Q∗,r∗c ,p∗s obtained from (3.4.2),(3.4.3) and (3.4.4) are globally optimal, the sufficient

condition is that the objective function (3.3.2) should be jointly concave in these three vari-

ables. The Hessian matrix for (3.3.2) is:
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Since all the parameters are strictly positive, |A1| ≤ 0 always holds. Also,
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Simplification of this expression leads to condition (a) under Proposition (3.4.1).
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)− (−2a)(

−BSr

Q2
+
bhrr

2d
− Bhrrx

2d2
)
]

=
2aBhrrSr(Ab− aBrc)

2Q2d3
+

2DSrb
2

Q3
+
a2Bh2

rr

2d2
− 8aBDSr

Q3

+
2abhrrSr

Q2d
− abh2

rr(Ab− aBrc)
2d3

+
2DB2S2

r

Q4
+
ah2

rr(Ab− aBr2c )
2d4

≤ 0

This implies condition (b) under proposition (3.4.1).

2

Proof. (Proposition 3.4.2)

Only when all the remanufacturing cost parameters are smaller than the corresponding cost

parameters associated with producing the product afresh, the producer would benefit from

a remanufacturing strategy. In addition, we check whether it is profitable for the producer

to resort to such a strategy. The profit per time unit for the manufacturer without reman-

ufacturing is
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Π
′

m = (pw − cs)d−
d

Q
(Sm + Srm + Si)−

hmQd

2m
− hmQd

2m
− hiQd

2m
− cmd

Comparing this with equation (3.3.4) it is clear that the manufacturer can benefit from

remanufacturing if Πm −Π
′

m ≥ 0, i.e.

−(rm + cr)x−
hirQx

2

2md
− hiQ

2m
(
x2

d
− 2x) + cmx− crmx ≥ 0

This directly yields condition (e) under proposition (3.4.2).

2

Proof. (Proposition 3.4.3)

If Q∗∗∗,r∗∗∗c and p∗∗∗s obtained from (3.4.11), (3.4.13) and (3.4.14) are to be globally optimal,

the sufficient condition is that the objective function (3.3.5) should be jointly concave in

these three variables. The Hessian for the manufacturer’s profit function (3.3.4) is

D2Πm(Q, rc, ps) =

∣∣∣∣∣∣∣∣∣∣
∂2Πm

∂Q2
∂2Πm

∂Q∂ps

∂2Πm

∂Q∂rc

∂2Πm

∂Q∂rc

∂2Πm

∂p2
s

∂2Πm

∂rc∂ps

∂2Πm

∂Q∂ps

∂2Πm

∂rc∂ps

∂2Πm

∂r2
c

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣
h11 h12 h13

h21 h22 h23

h31 h32 h33

∣∣∣∣∣∣∣∣∣∣
where

h11 =
−2d(Sm + Srm + Si)

Q2

h22 =
−(hir − hi)Q(db− xB)2

md3

h33 = −−a
2Q(hir − hi)

md

h12 = h21 =
−B(Sm + Srm + Si)

Q2
+
Bhm − hi(2b−B)

2m
+

(2db−Bx)x(hir − hi)
2md2

h13 = h31 =
ahi

2m
− ax(hir − hi)

md

h23 = h32 =
aQ(hir − hi)(db− xB)

md2
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Set H = D2Πm(Q, rc, ps), then if H is negative semi-definite, the following must hold:

|H1| =
∂2Πm

∂Q2
= h11 =

−2d(Sm + Srm + Si)
Q2

≤ 0

Since all variables and parameters are nonnegative, this requirement is always satisfied.

∣∣∣∣H12

∣∣∣∣ =

∣∣∣∣∣∣∣
∂2Πm

∂Q2
∂2Πm

∂Q∂rc

∂2Πm

∂Q∂rc

∂2Πm

∂r2
c

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
h11 h12

h21 h22

∣∣∣∣∣∣∣ ≥ 0

It can be easily verified that the above inequality results in condition (c) in Proposition

(3.4.3).

|H3| =

∣∣∣∣∣∣∣∣∣∣
∂2Πm

∂Q2
∂2Πm

∂Q∂ps

∂2Πm

∂Q∂rc

∂2Πm

∂Q∂ps

∂2Πm

∂p2
s

∂2Πm

∂rc∂ps

∂2Πm

∂Q∂rc

∂2Πm

∂rc∂ps

∂2Πm

∂r2
c

∣∣∣∣∣∣∣∣∣∣
=
a2B2Q(hir − hi)(hi + hm)2

4m3d
− a2B2Qxhi(hir − hi)(hi − hm)

m3d2

− a2BQx2(hir − hi)(Bhirhi − 6bhirhi +Bhirhm − 5Bh2
i + 6bh2

i −Bhihm)
4m3d3

− a2B2Qx3hi(hir − hi)2

m3d4
+
a2B2Qx4(hir − hi)3

4m3d5

+
a2B2(hir − hi)(Sm + Srm + Si)2

Q3md
− a2B2(hir − hi)(hi − hm)(Sm + Srm + Si)

Qm2d

+
2a2B2xhi(hir − hi)(Sm + Srm + Si)

Qm2d2
− a2B2x2(hir − hi)2(Sm + Srm + Si)

Qm2d3
≤ 0

Again, this inequality reduces to condition (d) in Proposition (3.4.3).

Conditions (c) and (d) are necessary to ensure that the profit function (3.3.4) of the

manufacturer is jointly concave with respect to Q∗, r∗c and p∗s. Also, as shown earlier,
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conditions (a) and (b) are sufficient for joint concavity of the retailer’s profit function (3.3.2).

Since the total supply chain profit (3.3.5) is the sum of (3.3.4) and (3.3.2), all four of these

conditions are necessary for it to be jointly concave in Q∗, r∗c , and p∗s.

2
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Appendix B. Tables

Table B.1: Summary of Results(1)

Q ps rc pw

(units) ($/unit) ($/unit) ($/unit)
Retailer’s given pw 428.5 30.032 1.485 20

optimal policy variable pw 388.4 31.680 1.498 23.286
Manufacturer’s given pw 6083.1 29.900 1.400 20
optimal policy variable pw 12146.0 32 1 24.138
Centralized 1562.4 23.3 0.5 -

optimal policy

Table B.2: Summary of Results(2)

d X
∏

r

∏
m

∏
s

(units/day) (units/day) ($/day) ($/day) ($/day)
Retailer’s given pw 29.904 19.391 318.361 299.918 618.279

optimal policy variable pw 24.960 19.299 228.215 358.616 585.830
Manufacturer’s given pw 30.200 18.000 275.698 377.596 653.293
optimal policy variable pw 24.000 16.000 113.753 399.039 512.792
Centralized 50.2 5.5 427.781* 402.999* 830.780

optimal policy
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Table B.3: Parameters Table (1)

π α(ton/acre) χ
biofuel crops ($/ton) E1 E2 E3 E1 E2 E3
ethanol wheat -42.3 26.46 24.955 24.5 0.07 0.1 0.13

corn -49.3 30.4 30.4 34.2 0.12 0.11 0.08
sugar 33 28 28 28 0.14 0.07 0.1

ester rapeseed -4 50 50 50 0.08 0.13 0.11
sunflower 11 80 80 80 0.1 0.09 0.12

Table B.4: Parameters Table (2)

m($/acre)
crops E1 E2 E3
wheat 609.04 608.04 607.04
barley 121.2 123.2 125.2
corn 1813 1708 1713
sugar 200 200 200

rapeseed 472.8 272 272
sunflower 479.8 279 279

peas 234.3 231.3 230.3

Table B.5: Parameters Table (3)

t($) c($/acre)
crops E1 E2 E3 E1 E2 E3
wheat 1956000 299000 212000 1262.53 1262.53 1262.53
corn 200000 200000 200000 1164.25 1764.25 1764.25
sugar 200000 200000 200000 164.25 164.25 164.25

rapeseed 800000 200000 600000 162.52 162.52 162.52
sunflower 273000 270000 290000 236.42 232.52 252.52
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Table B.6: Solution of the Numerical Example Without Fixed Cost

x(acres) F1 F2 F3
wheat 0 0 0
barley 0 0 0
corn 264 1606 504
sugar 0 0 0

rapeseed 264 730 567
sunflower 330 1314 756

peas 1287 5840 2268
xn(acres) F1 F2 F3

wheat 231 1460 819
corn 132 0 0
sugar 462 1022 630

rapeseed 0 1168 126
sunflower 0 0 0
xf(acre) 330 1460 630

τester($/ton) 3.93 τethanol($/ton) 45.77
govobj ($) 5747435 farmobj($) 11219413
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Table B.7: Solution of the Numerical Example with Fixed Cost

x(acres) F1 F2 F3
wheat 0 0 0
barley 0 0 0
corn 264 1606 504
sugar 0 0 0

rapeseed 264 0 567
sunflower 330 1314 756

peas 1287 6570 2268
xn(acres) F1 F2 F3

wheat 231 1460 819
corn 132 0 0
sugar 462 292 630

rapeseed 0 1898 126
sunflower 0 0 0
xf(acres) 330 1460 630

τester($/ton) 3.95 τethanol($/ton) 43.50
govobj($) 4828156 farmobj($) 6915626

Table B.8: Computational Efficiency of the Proposed Solution Methods

(τ0
ester, τ

0
ethanol) = (250, 250), ε0 = 25

CPU time iterations skipped points
without sensitivity analysis 21.32 24371 0

and warm-starts without fixed cost
with sensitivity analysis 8.05 3379 170

and warm-starts without fixed cost
without sensitivity analysis 105.40 46961 0

and warm-starts with fixed cost
with sensitivity analysis 75.92 27483 13

and warm-starts with fixed cost
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Appendix C. Figures and Graphics
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Figure C.1: The Recovery and Remanufacturing Process
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Figure C.2: Inventory Time Plot
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Figure C.3: ps vs. Parameters in the Centralized Situation
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Figure C.4: ps vs. Parameters in the Retailer Controlled Situation
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Figure C.5: ps vs. Parameters in the Manufacturer Controlled Situation (pw given)
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Figure C.6: ps vs. Parameters in the Manufacturer Controlled Situation (pw not given)
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Figure C.7: rc vs. Parameters in the Centralized Situation
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Figure C.8: rc vs. Parameters in the Retailer Controlled Situation
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Figure C.9: rc vs. Parameters in the Manufacturer Controlled Situation (pw given)
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Figure C.10: rc vs. Parameters in the Manufacturer Controlled Situation (pw not given)
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Figure C.11: Q vs. Parameters in the Centralized Situation
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Figure C.12: Q vs. Parameters in the Retailer Controlled Situation
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Figure C.13: Q vs. Parameters in the Manufacturer Controlled Situation (pw given)
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Figure C.14: Q vs. Parameters in the Manufacturer Controlled Situation (pw not given)
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Figure C.15: Supply Chain Profits in the Retailer Controlled Situation
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Figure C.16: Supply Chain Profits in the Manufacturer Controlled Situation (pw given)
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Figure C.17: Supply Chain Profits in the Manufacturer Controlled Situation (pw given)
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Figure C.18: Supply Chain Profits in the Manufacturer Controlled Situation (pw not given)
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Figure C.19: Πr/Πs in the Retailer Controlled Situation
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Figure C.20: Πr/Πs in the Manufacturer Controlled Situation (pw given)
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Figure C.21: Πr/Πs in the Manufacturer Controlled Situation (pw not given)
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