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1. Introduction

In 1992 in the United States (Energy Information Administration, 1992, 2008; Soto, 2008), and in 1995 in the European Union (IHS Engi-
neering, 2008), a number of regulation acts were issued by the respective governmental institutions to effectively separate several of the
processes that formed the natural gas supply chain. The resulting market configuration demanded the independence of the transportation
and commercialization processes. As a result of this paradigm shift – and the accompanying re-structurization of the market, – a systematic
analysis of several new features becomes indispensable.

Of particular interest to us is a problem that arises in the natural gas supply chain, namely that of balancing the fuel volumes over a
distribution network. Such a balancing procedure directly concerns the Pipeline Operating Company (POC), since the correct operation
of the pipeline means the well controlled volumes of the transported gas. Moreover, any Natural Gas Shipping Company (NGSC) is also
concerned with the balancing the volumes because it is often impossible to avoid an imbalance justified by certain economic reasons. A
natural gas shipping company’s business is to sell the gas by moving it through the pipeline to its clients: it has to fulfill signed contracts
first, and then market excesses of the gas to achieve the maximum profits. In order to do that, the NGSC has to manage the volumes at each
selling point (so-called pipeline meters) taking into account the balance, the selling prices, and the total revenue. The basic mathematical
framework of this problem’s modeling is found in Ríos-Mercado et al. (1999).

We must emphasize that, while natural gas pipeline networks have been thoroughly studied, most of the existent models focus on as-
pects of this part of the supply chain other than the NGSC–POC interaction in the system balancing, such as network operation optimization
(Borraz-Sánchor and Rís Mercado, 2005; Chebouba et al., 2009), or deployment of facilities (Kabirian and Hemmati, 2007). There are also
papers considering the natural gas supply chain in a multilevel scheme, in which both the NGSC and the POC are present and accounted for,
such as the related Gabriel et al. (2005) and Egging et al. (2008). These works are remarkable in the sense that they span the whole supply
chain with much emphasis on the traders (financial front-ends of the natural gas producers,) so that there is little to no mention of imbal-
ances in the system resulting from the dealings of the NGSCs and the POCs, even though both actors are present in the models.

Many authors do acknowledge (Hawdon, 2003; Arano and Blair, 2008) the existence of a problematic situation in the NGSC–POC system
following the paradigm shift, yet we have found very few sources that explain plausible ways in which this problem is nowadays solved.
Esnault (2003), for example, shows how storage is required by the NGSC when no flexibility exists in the network volume management,
either because it is not allowed, or because it is not technically possible. Nevertheless, balancing is an important part of the modern natural
ll rights reserved.
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gas supply chain management, and to date, no policy has been accepted as optimal regarding the way, in which the imbalances produced
by the NGSC, are physically and economically handled (Keyaerts et al., 2008). Among the most important tools that aid the POC in its task of
restoring the balance of the system are the arbitrage penalization policies, in which the POC performs a maintenance redistribution of the
imbalances in the system and charges the NGSC(s) for the cost of this operation.

In Kalashnikov and Ríos-Mercado (2001), one finds a modeling framework (which we are going to follow) of the penalization part of this
problem. This penalization refers only to the cash-out that occurs between the NGSC and the POC: it leaves outside any reference to actual
market conditions, which are obviously important to the NGSC. The paper presents a solution method through a modification of the ori-
ginal problem, as well as the analysis of how this modification affects the objective function and the obtained solutions. In Kalashnikov and
Ríos-Mercado (2006), the authors compare two algorithms that solve the problem making use of certain numerical procedures. In the pres-
ent paper, we adapt these algorithms to our extended model. We also make use of the idea proposed in Dempe et al. (2005) to divide our
problem into several generalized transportation problems when finding its numerical solution.

In Dempe et al. (2006) and Kalashnikov et al. (2007), we study a modified version of the above-described problem, in which the upper
level objective function includes certain new terms based upon the net profit of the leader – the natural gas shipping company. This for-
mulation assumes, however, the complete knowledge (perfect information) about the changes in the prices of natural gas during the pro-
cess, which is somewhat non-realistic and not quite useful, as the resulting function does not clearly reflect the reasons behind the actions
of the NGSC.

Therefore, we propose here a stochastic reformulation of the problem, so that the NGSC is now able to forecast the next several values of
the natural gas demand, and then to plan the extraction of natural gas from the pipeline. The resulting model is a stochastic variation of the
original mixed-integer bilevel optimization problem, for which we propose and compare two different solution methods.

To our best knowledge, there is no literature, beyond the works listed in the paragraphs above and their derivatives, that explicitly deals
with the NGSC–POC subsystem in the same way we propose, formulating a bilevel optimization problem out of the balancing operations.
We attribute this to the relatively recent nature of the problem we are dealing with, as well as the difficulty of its accurate formulation for
specific instances.

The rest of the paper is organized as follows: after recalling the original problem in Section 2, we formulate the new problem we deal
with, while Section 3 describes the corresponding mathematical models. This section also contains details concerning the generation of the
stochastic scenario tree. Section 4 presents the experimental results obtained when solving our problems with the proposed numerical
algorithms, as well as the discussion thereof. Finally, Section 5 presents the conclusions and the directions of future research related to
the model in question.
2. Problem specification

Following the scheme constructed in Kalashnikov and Ríos-Mercado (2001), we will consider a leader–follower system, in which the
first agent (the leader), namely, the Natural Gas Shipping Company (NGSC), buys the gas at the wells, arranges for its injection into an
(interstate) pipeline at its starting point, and extracts some amount of gas – ideally, equal to the deposited amount, from pipeline meters
in several pool zones across the country. The follower here is the administrator of the pipeline, which we call the Pipeline Operating Com-
pany (POC), who permits the NGSC to extract amounts of natural gas that may differ from the originally injected volumes, thus creating
positive or negative imbalances. The latter is a kind of usual market practice that allows for a dynamic flow of the fuel within the natural
gas supply chain.

However, since disrupting the system in this way implies extra costs for the NGSC, the company attempts to do it only when its pre-
dictions of future market conditions show that the total revenues overcome the losses incurred by the penalization policy applied to the
NGSC. It is clear that the NGSC needs tools that provide it with the best possible information and help it make advantage of the latter.

The NGSC–POC system operates in the following way:

1. The NGSC makes a forecast of the demand it is likely to have during the next period (month, year, etc.) and considers different scenarios,
in which this can occur.

2. The NGSC books certain capacity Dc for every pool zone and stage (day, week, month, etc.)
3. For each subsequent stage, the NGSC determines the amount of gas to extract and sell, which possibly creates positive and negative

imbalances in the process; this continues until the period is over.
4. The POC studies the resulting last day imbalances and rearranges them according to certain business rules.
5. The POC charges the NGSC with certain penalty for the final (rearranged) imbalances. The latter may occur to be negative, i.e. the POC

may pay to the NGSC.
6. The NGSC calculates the net profits as its sales revenue minus the penalty.

The resulting model is a bilevel multi-stage stochastic optimization problem (Kall and Wallace, 1994), in which the upper level decision
maker (the leader) is the NGSC who has the objective of maximizing its net profit as the revenue from the sales of its gas in the pipeline
minus the penalty imposed by the POC. The lower level decision maker (the follower) is the POC who aims at minimizing the absolute value
of the penalization cash-out flow, either from the POC to the NGSC or vice versa. The first stage of the stochastic problem corresponds to the
capacity booking made by the NGSC, and these capacity values remain unchanged throughout the whole process. At the next stages, the
decision variables are: the daily extraction amounts (and hence, the imbalances), unsatisfied demand, and the penalty cash-outs imposed
by the POC.

Note that, while the POC may appear as the party with more influence in the system, the NGSC is the leader of the bilevel problem. The
only reason why the NGSC is the upper level (leader) is because of the timing of the decision process. Indeed, it would seem logical that the
POC, enjoying stronger control over its own facilities, has to abide to the decisions (regarding final day imbalances) that the NGSC has al-
ready made. This is because of the relative freedom that has been awarded (in the current business’ practice) to the NGSC in creating imbal-
ances to maintain healthy business in favor of its customers.



Table 1
Notation.

Sets
N number of time periods at each node in the process; N 2 Zþþ
P number of pool zones; P 2 Zþþ
K number of event nodes in the process; K 2 Zþþ
S number of stages in the process; S 2 Zþþ
T set of time periods at any given node; T ¼ f1;2; . . . ;Ng
J set of pool zones; J ¼ f1;2; . . . ; Pg
K set of event nodes; K ¼ f1;2; . . . ;Kg
Kl set of nodes at stage l; l ¼ 1; . . . ; S

Upper level parameters
xL

kti ; x
U
kti

lower and upper bounds for the daily imbalances on day t at node k, in pool zone i; i 2 J; t 2 T; k 2 K

xL
kt ; x

U
kt

lower and upper bounds for the sum of the daily imbalances on day t at node k; t 2 T; k 2 K

swL
kti ; swU

kti
bounds on balance swing before day t at node k starts, in pool zone i; t 2 T; i 2 J; k 2 K

x0 i imbalance at the beginning of day 1 at node 1, in pool zone i, i 2 J
Dkti expected demand on day t, at node k, in pool zone i; t 2 T; i 2 J; k 2 K
Pkti unit price for each unit of gas extracted/sold (contracted gas) on day t at node k in zone i; t 2 T; i 2 J; k 2 K

CI
kti; C

R
kti

recourse cost and booking capacity cost per gas unit on day t at node k, in pool zone i; t 2 T; i 2 J

pk probability of node k to occur in any scenario; k 2 K

Lower level parameters
eij fraction of gas used as the fuel when moving one unit from pool zone i to pool zone j; i; j 2 J; i < j
fij forward haul cost for moving a unit of gas from pool zone i to pool zone j; i; j 2 J; i < j
bij backward credit for ‘‘returning” a unit of gas from pool zone j to pool zone i; i; j 2 J; i < j
ri cash-out penalization coefficient in pool zone i; i 2 J

Table 2
Notation, cont.

Upper level decision variables

xkti imbalance on day t at node k in pool zone i; t 2 T; i 2 J; k 2 K
swkti imbalance swing before day t starts at node k in pool zone i; t 2 T; i 2 J; k 2 K
EAkti amount of gas actually extracted on day t at node k in pool zone i; t 2 T; i 2 J; k 2 K
EPkti amount of gas planned to be extracted (i.e. booked pipeline capacity) on day t at node k in pool zone i; t 2 T; i 2 J; k 2 K
xaktj amount of gas actually extracted and sold during day t at node k in pool zone i; t 2 T; i 2 J; k 2 K
xdktj amount of demand Dkti unmet on day t at node k in pool zone i; t 2 T; i 2 J; k 2 K

Lower level decision variables
yi final imbalance in pool zone i; i 2 J
uij volume of gas moved from pool zone i to pool zone j; i; j 2 J; i < j
v ij volume of gas credited from pool zone j to pool zone i; i; j 2 J; i < j
z total cash-out charge on the Natural Gas Shipping Company

Auxiliary variables
q binary variable equal to 1(0) if final imbalances yi are all non-negative (non-positive). In the special case when yi ¼ 0;8i 2 J, we accept q ¼ 1
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2.1. Notation

Tables 1 and 2 show the notation used throughout this article.
In Fig. 1, one can see a three-staged scenario tree, which generates nine scenarios. Scenario 1 ‘‘passes through” nodes 1, 2, and 5; sce-

nario 2 through nodes 1, 2, and 6, and so on. Each node has the probability to occur equal to the sum of probabilities of all the scenarios
passing through it; the leaf (termination) nodes have the same probabilities to happen that the corresponding scenarios ending at them.

Since the probabilities across all the scenarios sum 1, we have that
P

k2KS pk ¼ 1, where k 2 KS represents the set of all leaf nodes (as they
all belong to the last stage S.) It goes without saying that the root has the probability of 1. Then, for each subsequent stage, the sum of prob-
abilities of all nodes at that stage is equal to 1. The probabilities pk depend upon the scenario tree forecast scheme described in Section 3.3.

The function a : K! K identifies the predecessor of any given node k (except for the root, whose predecessor is void); that is, aðkÞ ¼ k0 if k
and k0 share an arc in the scenario tree, and k 2 Kl ) k0 2 Kl�1; l ¼ 2; . . . ; S. In the particular case of k ¼ 1, we accept xað1Þ;N;i :¼ x0i; i 2 J.

Notice that, since costs CI;CR are deterministic, they are the same for every node at a given stage l, that is, CI
kti ¼ CI

k0ti; C
R
kti ¼

CR
k0ti; k; k

0 2 Kl; l ¼ 1; . . . ; S. The similar is true for the variable EP, as explained below in (1i).
Finally, we will use the node imbalance matrix xk, which is defined by fixing one node k and selecting the imbalance matrix entries as

follows: xk ¼ ðxktiÞN; P
t¼1;i¼1, as well as the last day imbalance vector xkN introduced by ðxkNiÞi2J.

3. Model description

Using the model from Kalashnikov and Ríos-Mercado (2001) as a basis, we form a multi-stage stochastic bilevel optimization problem
described below by (1a)–(1j) and (4a)–(4l). This problem will be theoretically manipulated to reduce its complexity, transforming it into a
bilevel linear optimization problem, where the lower level resembles both a generalized transportation problem, and a quadratic assign-
ment problem. Bilevel problems over networks (Cruz et al., 1999; Chiou, 2005) often arise when dealing with transportation problems
(Yang and Bell, 2001), and even examples of bilevel linear problems in networks exist (Ben-Ayed et al., 1988).



Fig. 1. A 3-staged, ternary scenario tree.

V.V. Kalashnikov et al. / European Journal of Operational Research 206 (2010) 18–33 21
3.1. Upper level model

Lines (1b)–(1i) and (1j) represent the upper level of the bilevel problem; it is stochastic and based upon a ternary scenario tree similar to
that depicted in Fig. 1.
Minimize : H1ðx; sw; EA; EP; xd; y;u; v; z; d; qÞ ð1aÞ

¼
X
k2K

pk

X
t2T

X
i2J

CI
ktixdkti �Pkti minfEAkti;Dktig þ CR

ktiEPkti

� �" #
þ
X
k2KS

pkhðxkN; y;u; v; z; d; qÞ ð1bÞ

subject to : xL
kti 6 xkti 6 xU

kti; k 2 K; t 2 T; i 2 J; ð1cÞ
swL

kti 6 swkti 6 swU
kti; k 2 K; t 2 T; i 2 J; ð1dÞ

xL
kt 6

X
i2J

xkti 6 xU
kt ; k 2 K; t 2 T; ð1eÞ

xkti ¼
xaðkÞ;N;i þ swkti if t ¼ 1
xk;t�1;i þ swkti if t–1

�
; k 2 K; t 2 T; i 2 J; ð1fÞ

xkti ¼ EPkti � EAkti; k 2 K; t 2 T; i 2 J; ð1gÞ
xdkti ¼ maxf0;Dkti � EAktig; k 2 K; t 2 T; i 2 J; ð1hÞ
EPkti ¼ EPk0ti; k; k0 2 Kl; l ¼ 1; . . . ; S; t 2 T; i 2 J: ð1iÞ
EAkti P 0; k 2 K; t 2 T; i 2 J; ð1jÞ
In the objective function, the terms hðxkN ; y;u; v; z;d; qÞ ¼ z depend on both levels and are determined by the optimal solutions of the corre-
sponding lower level problems (4a)–(4l), or, in other words, represent the penalty cash-out imposed on the NGSC by the POC. The term
Pkti minfEa

kti;Dktig is the revenue from the gas extracted and sold in pool zone i on day t at node k. Further, CI
ktixdkti is the cost of the unsatisfied

demand, which could be interpreted either as a penalization on part of the clients, or the cost of a supply purchased from a third party in the
amount just enough to meet the demand completely.

The term CR
ktiE

p
kti represents the cost the NGSC incurs in when allocating capacity in the pipeline on day t at node k in pool zone i; this

term is particularly important for the non-triviality of solutions: were the capacity booking free for the NGSC, the latter would respond by
maximizing the values of variables EP and selling all the available gas amount at the prices P.

Notice that if we have more than one stage, then
P

k2Kpk > 1. This means that the first term in the objective function is an expected
value not over the nodes but rather over the scenarios. Here, the non-anticipativity constraints (Kall and Wallace, 1994) have been implicitly
imposed by using the node formulation instead of a scenario formulation.

Constraints 1c, 1d and 1e describe the technological limits on the creation of imbalances at each node, on their daily totals, and the daily
imbalance swings.

Relationships (1f) show the nature of the day-to-day imbalance swings. At every node, time period and pool zone, the imbalance on one
day must not differ too much from the imbalance on the previous day; this is expressed in distinct ways depending upon whether we are at
an in-node (i.e. when t ¼ 2; . . . ;N,) or at a cross-node (when t ¼ 1), although the essence is the same. If we are at an in-node, then the swing
from the imbalance xk;t�1;i to the imbalance xkti is determined by the value of the swing variable swkti, and the latter is bounded from above
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and from below by parameters swU
kti; swL

kti. This also holds for the cross-node case, but the day before the first day at such a node is the last
day at the predecessor node, thus the notation xkti ¼ xaðkÞ;N;i þ swkti is used.

A further note on the imbalance swing variables sw is due: their values are completely determined by the imbalance variables x, along
with the predefined initial imbalances x0. The purpose of adding them here is merely illustrative, but they are not actually used in the solu-
tion process. The modified upper level problem that is actually solved as described later by Eqs. (2b)–(1i) and (2j), drops these variables in
favour of equivalent bounds on imbalances x.

Constraint (1g) shows the relationship between the imbalance, the booked capacity, and the extraction in every pool zone at each time
period, whereas (1h) gives the definition of the unmet demand variables. Finally, constraint (1i) represents the one-stage nature of vari-
ables EP, in the sense that every node at a given stage must share the same values of those variables.

While model (1b)–(1i) and (1j) satisfactorily abstracts the NGSC–POC subsystem for our purposes, the difficulty of solving a nonlinear
problem with max and min operators is considerable when compared to, say, a linear programming problem. We can reduce the complexity
of this problem by adding certain variables carefully chosen so that the objective function remains the same. This equivalent problem,
while no longer having max, min operators, remains nonlinear in the sense that the objective function contains the variable z. This variable
is controlled by the lower level in response to the upper level’s actions. However, if we omit z (as the only variable not controlled by the
upper level) from the objective function, we have a completely linear model, and, once the lower level has been reduced in turn to a linear
equivalent, the resulting scheme (a lower level linear problem plus an upper level linear problem except for a set of variables linearly rep-
resented and controlled at the lower level) is called a bilevel linear optimization problem.

We will deem the optimization problem (2b)–(1i) and (2j) as an‘‘almost” linear programming problem, one that is equivalent to the
original upper level formulation as is detailed in Lemma 1 in Appendix A.
Minimize : H2ðx; EA; xa; y;u;v ; z; d; qÞ ð2aÞ

¼
X
k2K

pk

X
t2T

X
i2J

CI
ktiðDkti � xaktiÞ �Pktixakti þ CR

ktiðxkti þ EAktiÞ
" #

þ
X
k2KS

pkhðxk; y; u;v ; z;d; qÞ ð2bÞ

subject to : xL
kti 6 xkti 6 xU

kti; k 2 K; t 2 T; i 2 J; ð2cÞ
xL

kt 6
X
i2J

xkti 6 xU
kt ; k 2 K; t 2 T; ð2dÞ

swL
k1i 6 xk1i � xaðkÞ;N;i 6 swU

k1i; k 2 K; i 2 J; ð2eÞ

swL
kti 6 xkti � xk;t�1;i 6 swU

kti;
t ¼ 2; . . . ;N; k 2 K;
i 2 J;

ð2fÞ

xakti 6 Dkti; k 2 K; t 2 T; i 2 J; ð2gÞ
xakti 6 EAkti; k 2 K; t 2 T; i 2 J; ð2hÞ
xkti þ EAkti ¼ xk0ti þ EAk0ti; k; k0 2 Kl; l ¼ 1; . . . ; S; t 2 T; i 2 J: ð2iÞ
EAkti P 0; xakti P 0; k 2 K; t 2 T; i 2 J; ð2jÞ
where hðxk; y; u;v ; z;d; qÞ ¼ z is the lower level’s response to this upper level problem, as defined in (3a)–(3k) and (3l).

3.2. Lower level model

This lower level is exactly the same as the one found in Kalashnikov and Ríos-Mercado (2006), using the linear objective function d to
substitute an absolute-value objective function, with the aid of constraints (3i):
Minimize : h1ðxkN; y;u; v; q;d; zÞ ¼ d ð3aÞ
subject to : yj ¼ xkNj þ

X
i2J:i<j

½ð1� eijÞuij � v ij� þ
X

m2J:m>j

ðv jm � ujmÞ; j 2 J; ð3bÞ
X

j2J:i<j

uij þ
X

m2J:m<i

vmi 6 maxf0; xkNig; i 2 J; ð3cÞ

uij 6
xkNi if xkNi > 0 and xkNj < 0;
0 otherwise;

�
i; j 2 J; i < j; ð3dÞ

v ij 6
xkNj if xkNj > 0 and xkNi < 0;
0 otherwise;

�
i; j 2 J; i < j; ð3eÞ

minf0; xkNig 6 yi 6 maxf0; xkNig; i 2 J; ð3fÞ
�M1ð1� qÞ 6 yi 6M1q; i 2 J; ð3gÞ
z ¼ �

X
i2J

riyi �
X
ði;jÞ:i<j

v ijbij þ
X
ði;jÞ:i<j

fijð1� eijÞuij; ð3hÞ

� d 6 z 6 d; ð3iÞ
yi; z 2 R; i 2 J; ð3jÞ
uij;v ij P 0; i; j 2 J; i < j; ð3kÞ
q 2 f0;1g; ð3lÞ
here, M1 > 0 is a large fixed scalar parameter.
Constraint (3b) shows the relationship between the last day imbalances xkN , the final imbalances y, and the forward and backward hauls

of gas u;v performed by the POC in order to minimize the absolute value of the resulting cash-out payments. Constraints (3c)–(3e) and (3f)
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taken together say that the maximum amount of gas hauled forward [backward] from zone i to zone j [from zone j back to zone i] cannot
exceed either the positive part of the last day imbalance existing in the donor pool zone i [j] or the negative part of the imbalance present in
the recipient pool zone j [i] on the last day N.

Inequalities (3f) also imply that by the business rules, the final imbalance yi in zone i must have the same sign as the last day imbalance
xkNi in this zone. Next, inequalities (3g) force the final imbalances to be either all non-negative ðq ¼ 1Þ or all non-positive ðq ¼ 0Þ, which is a
usual business demand as well. Constraint (3h) describes how the penalty cash-out imposed on the NGSC is calculated, while 3j, 3k and 3l
define the bounds of the variables.

Note that while the upper level problem (2b)–(2i) and (2j) is an ‘‘almost” linear program, this is not the case with the lower level one,
that is, not even when removing the upper level controlled variables this problem becomes linear. Just as we did with the upper level, in-
stead of solving this problem, we will solve an equivalent mixed-integer programming problem with linear constraints, so that the iterative
process of solving the lower level program be faster. This lower level mixed-integer programming problem with linear objective function
and constraints, is equivalent (under the conditions given in Dempe et al., 2005) to problem (3a)–(3k) and (3l). The equivalence is guar-
anteed by Lemma 2 in Appendix A.
Minimize : h2ðxkN; y;u; v; q; d; z; n; fÞ ¼ dþM2

X
i2J

ðni þ fiÞ ð4aÞ

subject to : uij 6 ni; i; j 2 J; i < j; ð4bÞ
uij 6 fj; i; j 2 J; i < j; ð4cÞ
v ij 6 nj; i; j 2 J; i < j; ð4dÞ
v ij 6 fi; i; j 2 J; i < j; ð4eÞ
� fi 6 yi 6 ni; i 2 J; ð4fÞ
ni P xkNi; i 2 J; ð4gÞ
ni P 0; i 2 J; ð4hÞ
fj P �xkNj; j 2 J; ð4iÞ
fj P 0; j 2 J; ð4jÞ
and 3b; 3g; 3h; 3i; 3j; 3k; 3l: ð4kÞ
The value of M2 in the linear lower level problem’s objective function is loosely bounded from below by the expression
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; ð5Þ
where ðgÞþ ¼maxf0;gg. In order to determine a suitable value for parameter M2, one can calculate (5) and multiply it by, say, one thousand.
The result, when assigned to parameter M2, should be enough to guarantee the forceful maximization of the values of n and f, and therefore
the equivalence of the linear lower level and the original one.

3.3. Scenario tree construction

The upper level problem (and hence, the lower level one, too) is subject to a scenario scheme: the decisions taken by the NGSC will vary
according to a scenario assumed and/or met by the company. This section shows the scheme of creating the scenario tree that underlies the
problem.

The Scenario Tree, as shown in Fig. 1, consists of several event nodes (Midthun, 2007), each of which contains N periods, and also of
several branches connecting it with other nodes. In our case, each node represents one week (five working days), although this is not man-
datory. For every node k, the data concerning prices/demands for all scenarios passing through k are calculated as certain a prediction per-
centile based on a forecast made with the corresponding data up to the last node in the tree. The possible outcome of prices higher (or
lower) than the mean forecast corresponds to a taking a value higher (or lower) than 0.5, whereas the outcome of prices following the
expected mean forecast will have a ¼ 0:5. Every weekend, however, we will allow for the high, mean, or low expected outcome to change
for the upcoming week.

Consider the time series for the monthly consumption of natural gas in the state of Alaska, USA, from January 1989 to September
2005 (200 observations,) shown in Fig. 2(a). This is a rather well-behaving time series with a noticeable 12-period seasonality. The ex-
pected 12-observations forecast using the Seasonal Holt-Winters (SHW) (Brockwell and Davis, 2002) method is shown next in Fig. 2(b),
cropped to the last observations and with the forecast values in red. These forecast data correspond to the first node of the scenario tree
(Fig. 1).

For nodes 2, 3, and 4, we will obtain 12 new observations per each node by taking the historic time series used in the forecast at node 1,
adding the forecasts obtained in that node as new historic observations, then forecasting the 25th, 50th, and 75th percentiles ‰, corre-
sponding to low, mean and high predictions and calculated by obtaining the nth prediction error parameters for an assumed normal dis-
tribution. The resulting three time series can be seen in Fig. 2(c), sharing the blue section among them. We have now a three-leaf scenario
tree, formed by nodes 1, 2, 3, and 4, and underlying the shown time series.

For nodes 5 through 13, we make this process iterative, by taking the three time series shown in Fig. 2(c) (formed by a historic
part, a mean forecast, and the three percentiles, one for each series) as historic and branching out at their endpoints as done with
nodes 2 through 4, thus obtaining nine time series and the corresponding nine-leaved scenario tree in Fig. 1 underlying the series
in Fig. 3.

Each scenario is then assigned the probability to occur. If trends are likely to be higher (lower) in the near future, then one would in-
crease the chances of the middle and upper (lower) branches of each node. Assigning equal probabilities to both upper and lower branches
will reduce the impact of the scenario stochasticity in the optimization problem. Every three nodes branching from a single node k will
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Fig. 2. Scenario generation through forecasting.
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Fig. 3. Nine (partially overlapping) time series resulting from a 3-staged scenario tree: All share the initial observation, whereas only groups of tree share the second section
(first forecast).
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have probabilities of being chosen whose sum equals pk. Hence, the three nodes branching from the root will have probabilities p2; p3; p4

summing up to p1 ¼ 1; the three nodes branching from node 2 will have probabilities summing up to p2, and so forth. As stated above, this
process guarantees that the sum of probabilities of all leaf nodes totals one.
4. Results of the numerical experiments

The above-described models were tested computationally on a batch of 21 problems, labeled B001 to B020, in order to compare: (1) the
perfect information solution value, (2) the obtained stochastic value, and (3) the expected value solution, as well as the implementation
values for the latter two. Each problem instance was generated by an algorithm which guarantees the existence of a solution to the upper
level by proposing a random solution based in input parameters and then setting the different values for the bounds so that the proposed
solutions is feasible, using inverse uniform random distributions to determine the bounds’ tightness. The problem instance generating
algorithm then goes on assigning random suitable values for the parameters not involved in bounds (like matrices eij; fij; and bij, which
are created based on a Poisson inverse distribution.) The consumption and price parameters in the upper level were obtained from a Sea-
sonal Holt-Winters forecast performed over the time series for residential natural gas consumption and price found in the data by the United
States Energy Information Administration (Energy Information Administration, 2008).

The consumption (forecast) figures from many of the states of the US that were used as parameters vary considerably. Maine’s con-
sumption, for example, its average being one of the lowest, ranges from 18� 106 ft3 in summer to 235� 106 ft3 in winter. On the contrary,
Illinois consumption, one of the largest throughout the year, lies between 8400� 106 ft3 and 104083� 106 ft3 for the summer/winter peri-
ods. As for prices, at their minimum (in Utah,) they are around 8.98 dollars per ft3 during winter and 12.29 dollars per ft3 during summer.
The range goes up to 31.42 and 41.94 dollars per ft3 in winter/summer in the state of Hawaii, one of the most expensive states. The ri values
are usually set at around 120 dollars per million ft3 (which is treated as the imbalance unit), and transportation costs at the lower level vary
around 10–12 dollars per imbalance unit.



Table 3
Solution reports for problems B001–B020.

Instance N P S ULOV mLLOV RT (s) q

B001 12 4 3 891,190.48 29.01 245.77 1
B002a 8 5 2 2,043,938.57 49.69 905.63 1
B002b 8 5 2 1,564,324.37 0 1,856.12 1
B003 12 5 3 8,413,667.18 68.34 929.99 1
B004 12 5 3 7,943,942.17 �53.73 3,319.53 0
B005 12 5 3 1,306,501.04 �7.86 421.23 0
B006 12 5 3 510,335.27 �2.13 120.43 0
B007 12 5 3 2,123,587.05 �87.48 281.89 0
B008 12 5 3 2,753,643.38 0 650.31 0
B009 12 5 3 1,853,811.99 �6 398.76 0
B010 12 5 3 3,973,184.60 47.30 706.78 1
B011 28 4 4 2,663,283.93 �56.74 7,893.23 0
B012 8 5 2 3,298,333.98 0.00 2,321.69 0
B013 8 5 2 3,417,055.13 0.00 2,078.14 0
B014 8 5 2 2,477,883.48 0.00 1,891.12 0
B015 8 5 2 3,667,407.35 �2.04 701.21 0
B016 10 7 2 4,742,822.11 �49.00 5,002.13 0
B017 10 7 2 2,862,635.34 38.00 2,548.44 1
B018 10 7 2 1,901,243.90 0.00 4,518.93 1
B019 10 7 2 2,413,298.05 37.34 4,950.69 0
B020 10 7 2 3,437,553.53 10.00 4,735.71 1
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More detailed data is given in Appendix B, where a complete example for the largest problem instance, B011 is displayed. While indi-
vidual values for each problem are different, they generally resemble the figures above.

The experiments were run on an Intel� Core 2 Quad™ 2.66 MHz running Windows Vista™ Home Premium, and using Matlab� R2008b.
The upper level was solved using Matlab’s Optimization Toolbox™ optimization function fmincon, while the lower level was processed
with the linear programming tool linprog.
4.1. Solution reports

The report for each instance provides one upper level value (weighted for all scenarios,) one N � P matrix for the variable EP, plus 3S�1

blocks of solution variables (one per scenario) and one final running time, as well as the best value of variable q for the instance. Each sce-
nario block consists of P � N -matrices for the upper level variables x; EA; one P-vector for the final imbalances y, and two P � P-matrices for
the backward/forward hauls of gas u;v . Scenarios that share one or more nodes have values of x; EA equal at the corresponding nodes.
Appendix C contains charts comparing the some data presented throughout this section.

The figures in Table 3 are, for each problem: the optimal value for the upper level (ULOV), the mean optimal lower level value (mLLOV),
the running time for the problem (RT), and the optimal value for the variable q.

Running times are varied, even among similarly sized problems. Overall, around half of the 21 instances tested delivered results in less
than 1000 s. This, of course, is not overly meaningful, as different hardware and software configurations may deliver vastly different results.
All running times should be evaluated only in the context of this experimentation.

An important feature to look at is the comparison of the stochastic solution (SS) shown above, the perfect information solution (PIS,
obtained when knowing beforehand the values of the parameters previously considered stochastic,) and the expected value solution
(EVS,) obtained using the expected values of the stochastic parameters in a single-staged optimization problem.

Both the PIS and the EVS are procured by solving a SPR2 problem with a single scenario. The PIS is the best possible solution: it can only
be attained by having a perfect forecast method. The EVS is the result of solving a simply-designed stochastic problem using only mean
prediction estimates. The results for these values are summarized in Table 4, in columns PIS, SS and EVS. Notice the considerably low rev-
enues predicted by the EVS.

The solution values provided by the SS and the EVS are calculated using estimates of the realized (future) prices and demands the
NGSC will face. If estimates are highly optimistic (pessimistic,) the revenue obtained may overestimate (underestimate) the actual
attainable revenue, represented by the PIS. It is easy to see from the data in columns PIS and SS in Table 4 that the overestimation
occurs in problems B002a, B003, B004, B010, B014, and B020, whereas the underestimation happens for the rest of the test
problems.

If the NGSC uses the SS and EVS decisions to plan its operations, the realized parameters will likely differ from the estimates used in the
stochastic problems, hence the actual revenue would be less than the estimated by the SS and EVS (because the SS and EVS are optimized
for the estimates, and not for the unknown future realizations of the parameters.)

The values for the stochastic solution implementation (column SSI) and the expected value solution implementation (column EVSI,)
represent the actual gain from implementing the SS and EVS solutions. They are obtained by evaluating the SS and EVS solutions with
the realized parameters that the PIS uses. Both the SSI and the EVSI may be only as high as the PIS (which optimizes for perfect infor-
mation,) and will likely be lower than their correspondent SS and EVS solutions: only in the case that realized prices/demands are
advantageous and the SS or EVS approximate them well, will the SSI and EVSI be better than the SS and EVS, respectively.

To compare the quality of the SSI and EVSI values, we also present the relative error ratios, SSRE and the EVSRE. These relative errors are
calculated as the difference between the PIS value and the SS (EVS) value, divided by the PIS value, that is,



Table 4
Revenue comparisons for various solutions.

Instance PIS SS SSI SSRE EVS EVSI EVSRE

B001 892,046 891,190 690,430 0.226 321,597 225,820 0.747
B002a 2,003,464 2,043,938 1,391,160 0.305 480,584 397,752 0.801
B002b 1,705,313 1,564,324 1,425,829 0.163 389,726 16,356 0.990
B003 7,565,976 8,413,667 6,775,471 0.104 299,320 243,360 0.968
B004 7,314,748 7,943,942 6,679,739 0.087 277,613 254,197 0.965
B005 1,450,506 1,306,501 1,191,949 0.178 64,176 23,320 0.984
B006 687,882 510,335 440,987 0.359 33,709 8,356 0.988
B007 4,009,499 2,123,587 2,836,230 0.293 75,496 71,259 0.982
B008 4,753,643 4,464,049 3,439,549 0.276 107,444 103,326 0.978
B009 3,660,097 1,853,811 2,563,110 0.300 69,717 56,860 0.984
B010 3,973,184 5,732,921 3,636,830 0.085 148,418 142,463 0.964
B011 2,860,385 2,663,283 1,281,300 0.552 10,941 20,145 0.993
B012 3,339,391 3,298,333 3,248,556 0.027 594,800 410,164 0.877
B013 3,456,927 3,417,055 2,350,283 0.320 613,688 430,266 0.876
B014 2,346,027 2,477,883 1,885,270 0.196 404,106 223,830 0.905
B015 3,770,818 3,667,407 2,995,647 0.206 729,237 504,094 0.866
B016 5,544,639 4,742,822 3,928,716 0.291 1,009,750 466,874 0.916
B017 3,498,196 2,862,635 378,844 0.892 484,217 22,034 0.994
B018 3,620,877 1,901,243 3,190,119 0.119 364,856 394,682 0.891
B019 4,007,071 2,413,298 2,860,895 0.286 438,157 460,516 0.885
B020 2,714,532 3,437,553 2,355,637 0.132 484,318 297,257 0.890
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SSRE ¼ jPIS� SSIj
PIS

; EVSRE ¼ jPIS� EVSIj
PIS

;

for each instance. A ratio near 0 means that the approximation of the PIS value by the SSI (EVSI) is good; on the contrary, a ratio near 1 im-
plies that the SSI (EVSI) are considerably poor when implemented in a given situation.

Of the 21 SSREs, only two are above 0.5 (the SSI solution is less than half that of the PIS,) with the highest relative error (abnormally
large) at 0.89 in problem B017, while still below the EVSRE corresponding to the problem. Only one of the EVSREs values displayed is below
0.75. Results employing the ARAR forecasting method instead of the Seasonal Holt-Winters method delivers similar results, heavily under-
estimating the PIS value.

It is clear that solving the problem with forecasting only the mean predictions heavily underestimates the possible future gains, and,
since the solution vector is obtained optimizing under thus underrated gains scenario, the implementation also ends up producing profit
values far below the optimal ones, at least for this data and model selection. Comparing the relative errors for the EVS and the SS, it is safe
to state that the usage of a stochastic framework considerably improves over the simpler approach of solving a deterministic-like variant
obtained by solely forecasting the mean predictions (as it is done with the EVS.)

In a final note, solving the original, nonlinear problem (1b)–(1i), (3a)–(3k) and (3l), proved to be very inefficient. As it was expected,
solving nonlinear models took considerably longer time and, in most cases, their solutions obtained after interrupting very long runs were
worse than those produced by solving their bilevel linear reformulations. Again, using other specialized (nonlinear) solvers such as IPORT,
KNITRO could modify these findings, but our hardware-software configuration points to a clear superiority of the bilevel linear
implementations.

5. Conclusions and future work

In this paper, we present a bilevel multi-stage stochastic optimization model, which is developed to deal with a certain subsystem of the
natural gas supply chain. While former models were focused on the arbitrage policies in a deterministic setting, here we have expanded the
problem to include such elements as gas sales and booking costs, and added a stochastic framework to model the uncertainty in demand
and prices faced by the upper level decision maker (the leader).

The developed model was implemented numerically and compared to the perfect information solution (PIS) and the expected value
solutions (EVS). Experimental findings show that 19 of the 21 instances deliver implementation values of over half of the PIS, whereas
only one of the EVS implementation values has a relative error below 0.75. The Stochastic Solution Implementation values are better
than those of the EVS values in all but one case – which corresponds to the simplest instance tested, – which testifies in favour of our
approach. The performed linear reformulation also proved advantageous, as solving the original model with nonlinear levels takes con-
siderably longer time and does not provide better solutions after up to 10 hours of running time in 20 of the 21 experiments.

Future work includes assessing the convenience of using heuristic approaches for solving the lower level (as opposed to using a special-
ized linear solver,) and reformulating the linear lower level in the form of its duality conditions, adding these to the upper level to solve a
single-level problem instead of a bilevel one. We also intent to study these models under different time series not showing seasonality is
also planned, as it is the implementation of a rolling horizon approach to remedy the lack of accuracy over long-period problems (such as
problem B011 involving 28 periods).
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Appendix A. Linearization lemmas

Lemmas 1 and 2 present the way in which the nonlinear bilevel problem (A.1b)–(A.1j), (A.2a)–(A.2l) is reduced to the equivalent bilevel
‘‘almost” linear problem (A.3b)–(A.3i), (A.5a)–(A.5j) and (A.5k). Both lemmas rely on using artificial variables to eliminate the max and min
operators.

A.1. Original bilevel problem

First we recall the original bilevel problem, which is nonlinear at both levels and has max and min operators.

Upper level:
Minimize : H1ðx; sw; EA; EP; xd; y;u; v; z; d; qÞ ðA:1aÞ

¼
X
k2K

pk

X
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X
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xk;t�1;i þ swkti if t–1

�
;

k 2 K; t 2 T;
i 2 J;

ðA:1fÞ

xkti ¼ EPkti � EAkti; k 2 K; t 2 T; i 2 J; ðA:1gÞ
xdkti ¼ maxf0;Dkti � EAktig; k 2 K; t 2 T; i 2 J; ðA:1hÞ
EPkti ¼ EPk0ti; k; k0 2 Kl; l ¼ 1; . . . ; S; t 2 T; i 2 J: ðA:1iÞ
EAkti P 0; k 2 K; t 2 T; i 2 J; ðA:1jÞ
where hðxk; y; u;v ; z;d; qÞ ¼ z is the lower level’s response to this upper level problem, as defined in (A.2a)–(A.2k) and (A.2l).
Lower level:
Minimize : h1ðxkN; y;u; v; q; d; zÞ ¼ d ðA:2aÞ
subject to : yj ¼ xkNj þ

X
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here, M1 > 0 is a large fixed scalar parameter.

A.2. Linearization lemmas

Lemmas 1 and 2 show the theoretical work needed to reduce the bilevel problem (A.1b)–(A.1i), (A.2a)–(A.2k) and (A.2l) to an equivalent
bilevel ‘‘almost” linear model, provided that the condition on M2 is fulfilled. Each of the levels are linearized in such a way that the only
nonlinearities allowed are the lower level variables appearing in linear expressions at the upper level.
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Lemma 1. Consider the following ‘‘almost” linear programming problem:
Minimize : H2ðx; EA; xa; y;u;v ; z; d; qÞ ðA:3aÞ

¼
X
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xakti 6 Dkti; k 2 K; t 2 T; i 2 J; ðA:3gÞ

xakti 6 EAkti; k 2 K; t 2 T; i 2 J; ðA:3hÞ

xkti þ EAkti ¼ xk0ti þ EAk0ti; k; k0 2 Kl; l ¼ 1; . . . ; S; t 2 T; i 2 J; ðA:3iÞ

EAkti P 0; xakti P 0; k 2 K; t 2 T; i 2 J; ðA:3jÞ
The two assertions below imply that this problem is equivalent to the original nonlinear program (1c)–(1j):

1. Let ðx�; sw�; EA�; EP�; xd�; y�;u�;v�; z�; d�; q�Þ be an optimal solution to (A.1b)–(A.1i) and (A.1j). Then, there exists an xa� such that
ðx�; EA�; xa�; y�;u�;v�; z�; d�; q�Þ is an optimal solution of (A.3b)–(A.3i) and (A.3j) with the same optimal objective function value.

2. Let ðx��; EA��; xa��; y��;u��;v��; z��; d��; q��Þ be an optimal solution of (A.3b)–(A.3i) and (A.3j). Then there exist sw��; EP��; xd�� such that
ðx��; sw��; EA��; EP��; xd��; y��;u��;v��; z��; d��; q��Þ solves (A.1b)–(A.1i) and (A.1j) with the same optimal objective function value.

Proof

(a) As the vector x� from an optimal solution
ðx�; sw�; EA�; EP�; xd�; y�; u�;v�; z�; d�; q�Þ to (A.1b)–(A.1i) and (A.1j) satisfies (A.1c) and (A.1e), then (A.3c) and (A.3d) are trivially true
for this x�. Next, because (A.1g) and (A.1i) are valid for ðx�; EA�; EP�Þ, then (A.3i) clearly holds for ðx�; EA�Þ. Further, if ðx�; sw�Þ satisfies
(A.1f), (A.1d), then (A.3e) and (A.3f) are evidently true for x�.
Now define xa�kti ¼minfDkti; EA�ktig; k 2 K; t 2 T; i 2 J and notice that xa� yields (A.3g), (A.3h) and (A.3j). Furthermore, taking (A.1h) into
account, it is easy to see that xd� ¼ D� xa�. Plugging the latter equality and (A.1g) into the upper level objective function of the non-
linear problem and taking into account that x� ¼ x�� implies h1ðx�kN ; y�;u�;v�; z�; d�; q�Þ ¼ h1ðx��kN ; y��;u��;v��; z��; d��; q��Þ (i.e. the opti-
mal value of the lower level objective function is completely determined by the imbalance term x), we come to the equality
H1ðx�; sw�; EA�; EP�; xd�; y�;u�;v�; z�;d�; q�Þ ¼ H2ðx�; EA�; xa�; y��;u��;v��; z��;d��; q��Þ: ð�Þ
(b) Let x�� from an optimal solution
ðx��; EA��; xa��; y��;u��;v��; z��; d��; q��Þ to (A.3b)–(A.3i) and (A.3j) satisfy (A.3c) and (A.3d); then it is easy to see that (A.1c) and (A.1e)
also hold for x��. Next, if (A.3i) is valid for ðx��; EA��Þ then we can define EP�� ¼ EA�� þ x�� so that ðx��; EA��; EP��Þ satisfies (A.1g) and
(A.1i).
Furthermore, if (A.3e) and (A.3f) are true for x��, we can define sw�� as
sw��k1i ¼ x��k1i � x��aðkÞNi; k 2 K; i 2 J; and

sw��kti ¼ x��kti � x��k;t�1;i; t ¼ 2; . . . ;N; k 2 K; i 2 J;
ðA:4Þ

so that (A.1f) and (A.1d) are valid for sw��.
Now take xa�� and consider the coefficient of the objective function H2 for xakti in (A.3b), that is, ð�CI

kti �PktiÞ. Since no variable other
than EA�� – together with the parameter value D, – limits the growth of xa��, then we can state that, in the minimization process, the
variable xakti will naturally achieve the maximum value allowed by constraints (A.3g) and (A.3h), which is the minimum of the EA��kti

and Dkti. This means that in the optimal solution of (A.3b)–(A.3i) and (A.3j), one has xa�� ¼minfDkti; EA��ktig. Defining
xd��kti ¼ Dkti � xa��kti; k 2 K; t 2 T; i 2 J, yields the xd�� satisfying (A.1h) and (A.1j). Therefore, if we substitute xd�� ¼ D� xa�� into the objec-
tive function of the nonlinear problem (A.1b) we obtain:

H1ðx��; sw��; EA��; EP��; xd��; y�;u�;v�; z�;d�; q�Þ ¼ H2ðx��; EA��; xa��; y��;u��;v��; z��;d��; q��Þ: ð��Þ
(c) We have proved so far that starting from an optimal solution of one problem, a feasible solution for the other problem can be con-
structed such that their corresponding objective function values will be equal. Hence, it is readily seen that any optimal solution for
one problem will give a correspondent optimal solution for the other problem with the same optimal value. Indeed, if any problem
had an optimal solution with the objective function value j� strictly less than the optimal value of the other problem, s�, then, by
either (*) or (**), this latter problem would also have a feasible solution with the objective function value j� < s�, thus denying the
optimality of the value s� and bringing us to a contradiction. This establishes both assertions of the lemma and implies the equiv-
alence of problems (A.1b)–(A.1i), (A.3b)–(A.3i) and (A.3j). h
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Lemma 2. Consider the (linearized) problem:
Minimize : h2ðxkN; y;u; v; z; q; d; z; n; fÞ ¼ dþM2

X
i2J

ðni þ fiÞ ðA:5aÞ

subject to : uij 6 ni; i; j 2 J; i < j; ðA:5bÞ
uij 6 fj; i; j 2 J; i < j; ðA:5cÞ
v ij 6 nj; i; j 2 J; i < j; ðA:5dÞ
v ij 6 fi; i; j 2 J; i < j; ðA:5eÞ
� fi 6 yi 6 ni; i 2 J; ðA:5fÞ
ni P xkNi; i 2 J; ðA:5gÞ
ni P 0; i 2 J; ðA:5hÞ
fj P �xkNj; j 2 J; ðA:5iÞ
fj P 0; j 2 J: ðA:5jÞ

and ðA:2bÞ; ðA:2gÞ � ðA:2lÞ: ðA:5kÞ
where M2 is as described in the main body of the article.

1. Let ðxkN ; y�;u�;v�; q�; z�; d�Þ solve the original problem (A.2a)–(A.2k) and (A.2l). Then there exists ðn�; f�Þ such that
ðxkN ; y�;u�;v�; q�; z�; d�; n�; f�Þ is an optimal solution to (A.5a)–(A.5j) and (A.5k).

2. Let ðxkN ; y��;u��;v��; q��; z��; d��; n��; f��Þ solve the mixed-integer program (A.5a)–(A.5j) and (A.5k). Then ðxkN ; y��;u��;v��; q��; z��; d��Þ is an
optimal solution to problem (A.2a)–(A.2k) and (A.2l).

Proof

(a) Let ðxkN ; y�;u�;v�; q�; z�; d�Þ solve the original problem (A.2a)–(A.2k) and (A.2l). If we define n�i ¼maxfxkNi;0g; f�i ¼maxf�xkNi;0g; i 2 J,
then it is clear that n� and f� satisfy (A.5g)–(A.5i) and (A.5j). Variables y�;u�;v�; q�; z�; d� trivially satisfy the constraints referenced in
(A.5k). It is also clear that if restrictions A.2c, A.2d and A.2e hold for u�;v� , then the latter make (A.5b) and (A.5d) true, which,
together with (A.2b) and (A.2f), imply (A.5c) and (A.5e) being valid. With n�; f� defined above, constraint (A.2f) can be rewritten
as (A.5f), i.e. as y� satisfies the former, then it yields the latter. Hence, the vector ðxkN ; y�;u�;v�; q�; z�; d�; n�; f�Þ is feasible for problem
(A.5a)–(A.5j) and (A.5k). The objective function value (5a) of this problem at that point coincides with
H4ðxkN ; y�;u�;v�; q�; z�;d�; n�; f�Þ ¼ h2ðxkN; y�;u�;v�; z�; q�; d�; z�Þ þM2

X
i2J

ðmaxfxkNi; 0g þmaxf�xkNi;0gÞ ðA:6Þ
(b) Consider now an optimal solution ðxkN ; y��;u��;v��; q��; z��; d��; n��; f��Þ to the linearized problem (5a)–(5k). If M2 is large enough, a
minimization process will force the variables n�� and f�� to take their minimum feasible values in order to minimize their contribu-
tion to the objective function. Thus, we will have
n��i ¼ maxfxkNi;0g; f��i ¼maxf�xkNi;0g; i 2 J: ðA:7Þ

The variables ni and fj represent the amount of gas that can be drawn from zone i and the amount of gas that can be deposited into zone j,
respectively. Now if either n��i or f��j is equal to zero, then u��ij ;v��ij is also 0 because of (A.5b)–(A.5d) and (A.5e). Hence, u��;v�� will satisfy
(A.2d) and (A.2e). With n��; f�� defined in (A.7), constraint (A.5f) can be rewritten as (A.2f), that is, if the former is true for y�� then the
latter also holds. Let us establish that (A.2c) is valid for u��;v��. If xkNi P 0 for an arbitrary i 2 J, then expression (A.5f) becomes

�f��i ¼ 0 6 yi 6 xkNi ¼ n��i :

Constraint (A.2b) can be rewritten as follows:X
j:j>i

uij þ
X

m:m<i

vmi ¼ xkNi þ
X
j:j<i

ð1� ejiÞuji þ
X

m:m>i

v im � yi; i 2 J: ðA:8Þ

By (A.5c) and (A.5e), the sums in the right-hand side of the latter equation become equal to 0, which, together with (A.5f), yields:X
j:j>i

uij þ
X

m:m<i

vmi ¼ xkNi � yi 6 xkNi ¼ n��i ðA:9Þ

Now, on the contrary, suppose that xkNi 6 0, for an arbitrary i 2 J. In this case, the left-hand side sums in (A.8), when combined with
(A.5b) and (A.5d), become zero:X
j:j>i

uij þ
X

m:m<i

vmi ¼ 0 ¼ n��i : ðA:10Þ

Relationships (A.9) and (A.10) show that constraint (A.2c) is fulfilled, and hence the values y��;u��;v��; q��; z��;d�� are feasible for prob-
lem (A.2a)–(A.2k) and (A.2l). The objective function value of the (nonlinear) problem is then

h2ðxkN; y��;u��;v��; z��; q��;d��; z��Þ ¼ H4ðxkN ; y��;u��;v��; q��; z��;d��; n��; f��Þ �M2

X
i2J

ðmaxfxkNi;0g þmaxf�xkNi; 0gÞ ðA:11Þ
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(c) We have shown that for any optimal solution of either of the two problems we can find a corresponding feasible solution of the other
problem with an explicit link between the two problems’ objective function values. Now it is clear that if a vector solves one prob-
lem, so does its counterpart to the other problem. Indeed, let
Table B
Lower a

t

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
j ¼M2

X
i2J

maxfxkNi; 0g þmaxf�xkNi;0gð Þ;
then if the nonlinear problem has an optimal solution with the objective function value r� strictly less than ðs� � jÞ, where s� is the optimal
objective function value in the linearized problem, then part (a) of this proof would imply the linearized problem to have a feasible solution
with its objective function value r� þ j < s�. That would deny the optimality of s� and thus yield a contradiction. The similar argument can be
easily applied to the reciprocal case. This verifies both assertions of the lemma and justifies the linearization of the original problem. h
Appendix B. Problem instance B011

Problem instance B011 has N ¼ 28 days divided in S ¼ 4 stages, and P ¼ 4 pool zones. It is the largest instance tested – among problem
instances B001 to B020, – in terms of days and stages, with a total of 28 nodes of 7 days.

Table B.1 shows the upper and lower bounds for the problem, xL
ti and xL

ti, as well as the daily total bounds xL
t and xU

t . Since all nodes in a
given stage share the same bounds, these values are indexed by t, which represent the chronological day rather than the nodal day. For the
first stage, t corresponds to t as is given in the notation table. For all nodes k in stage 2, for example, t ¼ t þ 7, and so on.

Table B.2 shows the mean forecasted consumptions Dti, and the mean forecasted prices Pti. They correspond to the centermost of the 27
scenarios of this problem instance, that is, scenario 15. These numbers are also used to obtain the Expected Value Solution.

Likewise the values in the Table B.1, the rows here are indexed by t instead of by k and t.
Finally, Tables B.3 and B.4 display the most important parameters for the lower level problem. The forward haul cost charged to the

NGSC in the final re-arrangement fij, the backward credit given to him, bij, and the imbalance penalization per pool zone, ri, are all shown
first, whereas the percentage of gas lost when moving it forward (mainly considered to be used as fuel for the pipeline pumps,) eij, appears
in the final table.

Appendix C. Figures

In this Appendix C we show a graphical exposition of the findings in Tables 3 and 4 of the article’s main body.
Fig. C.1 shows four graphs for the running times (RT), agains the instance number, days N, pool zones P, and stages S. The number of pool

zones seems to be clearly affecting the time required to reach a solution, with the problems with 7 pool zones having a noticeable larger
average running time than 4- and 5-staged instances. As for days, while the 28-day instance B011 takes longer than any other, 12-day are in
average faster than 10-day instances. There is, therefore, no conclusive findings regarding days and running time for small-scale
differences. Results regarding stages are also not so conclusive. Problems with 2 stages may take, in general, longer than problems with
.1
nd upper bounds xL

kti ; x
U
kti , and total lower and upper bounds xL

kt ; x
Ukt .

xL
ti xU

ti xL
t xU

t

i i

6 �190 �125 �79 78 �121 �59 �15 �307 �198
11 �193 �131 �84 78 �116 �58 �13 �304 �195

8 �189 �128 �81 76 �123 �58 �14 �308 �197
11 �193 �125 �82 78 �122 �55 �19 �305 �193
10 �189 �127 �88 86 �120 �61 �16 �302 �199
12 �190 �133 �88 79 �117 �56 �21 �309 �200
14 �182 �132 �89 85 �111 �64 �21 �303 �200
21 �184 �130 �93 83 �109 �61 �20 �304 �199
22 �178 �132 �94 93 �115 �62 �24 �304 �193
21 �181 �136 �91 92 �110 �64 �24 �301 �193
20 �181 �132 �95 90 �109 �63 �22 �305 �194
19 �172 �138 �93 91 �107 �64 �26 �299 �187
24 �171 �134 �97 89 �102 �70 �21 �297 �184
21 �169 �141 �98 96 �101 �71 �20 �297 �182
24 �172 �135 �92 91 �102 �62 �23 �291 �177
22 �173 �141 �97 92 �100 �71 �28 �287 �177
26 �167 �136 �97 97 �103 �74 �25 �290 �185
31 �169 �138 �98 95 �91 �69 �31 �288 �183
34 �167 �137 �103 103 �98 �67 �25 �287 �178
30 �159 �142 �98 105 �98 �70 �27 �287 �184
30 �164 �144 �101 106 �94 �75 �30 �293 �179
34 �159 �144 �101 100 �94 �75 �37 �289 �180
38 �164 �143 �111 105 �90 �74 �35 �295 �178
36 �153 �145 �109 104 �89 �69 �43 �289 �181
39 �155 �146 �110 110 �81 �78 �41 �293 �181
40 �154 �148 �112 109 �80 �72 �42 �287 �176
39 �152 �148 �112 111 �87 �75 �45 �291 �175
40 �153 �152 �115 110 �78 �79 �47 �289 �176



Table B.2
Mean forecasted consumption Dti and mean forecasted price Pti .

t Dti Pti

i i

1.00 31155.79 13994.25 14411.06 12611.35 9.14 9.10 10.45 10.00
2.00 24691.38 12166.05 12114.09 9855.41 9.57 9.02 10.66 10.01
3.00 19816.90 10083.20 10291.52 7743.05 10.47 9.57 10.92 9.98
4.00 12061.31 5749.90 5582.72 3625.71 10.95 10.02 12.14 10.23
5.00 6660.73 3011.50 2679.29 1625.01 11.71 11.26 13.31 10.55
6.00 3752.60 1671.43 1623.71 1172.28 13.12 13.70 14.63 11.02
7.00 2577.78 1321.90 1329.66 1108.88 13.41 14.49 14.75 11.50
8.00 2585.35 1215.14 1234.47 1092.33 12.43 14.27 14.59 11.64
9.00 3182.31 1406.26 1312.38 1327.00 10.80 13.71 14.16 11.50

10.00 7450.13 3241.46 2148.22 2842.65 9.02 9.85 12.60 10.64
11.00 14039.66 6834.42 5431.59 6294.54 8.60 9.07 10.44 10.20
12.00 24677.59 11173.85 10730.31 11195.84 8.44 9.13 9.91 9.91
13.00 31282.64 13980.78 14379.48 12647.35 9.03 9.43 10.92 10.23
14.00 24818.23 12152.57 12082.50 9891.41 9.47 9.35 11.13 10.24
15.00 19943.75 10069.73 10259.93 7779.05 9.61 9.90 11.39 10.42
16.00 12188.15 5736.42 5551.13 3661.71 9.85 10.35 12.61 11.24
17.00 6787.57 2998.03 2647.70 1661.01 10.18 11.59 13.78 12.65
18.00 3879.44 1657.96 1592.13 1208.28 10.75 14.03 15.10 13.07
19.00 2704.62 1308.43 1298.07 1144.88 10.87 14.82 15.22 13.14
20.00 2712.19 1201.67 1202.88 1128.33 10.86 14.60 15.06 13.08
21.00 3309.14 1392.78 1280.79 1363.00 10.15 14.04 14.63 12.15
22.00 8433.53 3680.93 2609.77 3292.77 9.39 10.56 14.47 11.56
23.00 15069.22 7302.87 5933.64 6746.70 9.30 9.82 14.09 11.24
24.00 25717.85 11648.63 11241.35 11647.91 9.36 9.93 14.01 11.06
25.00 32338.20 14473.55 14909.41 13101.72 10.22 10.26 14.05 11.47
26.00 25875.63 12657.51 12624.80 10347.81 10.05 10.21 14.15 11.55
27.00 21000.68 10578.38 10808.82 8236.52 10.23 10.76 14.21 11.56
28.00 13255.74 6250.17 6103.85 4120.54 10.47 11.22 14.45 11.82

Table B.3
Forward haul costs fij , backward move credits bij , and pool zone imbalance penalizations ri .

fij j

i 0 16 9 10
0 0 9 13
0 0 0 9
0 0 0 0

bij j

i 0 16 9 10
0 11 3 11
0 0 15 11
0 0 0 14
0 0 0 0

ri 120 100 120 140

Table B.4
Forward haul gas loss eij .

eij j

i 0 16 9 10
0 0.003 0.085 0.021
0 0 0.001 0.130
0 0 0 0.034
0 0 0 0
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3 stages, though the 4-staged problem takes clearly longer than the smaller instances, while this may be attributed to the 28 days instance
B011 has.

A comparison of the perfect information solution (PIS) values, stochastic solution implementation (SSI) values, and expected value solu-
tion implementation (EVSI) values, is displayed next in Fig. C.2. The red line, connecting all the observation points, represents the PIS value
against the instance number, that is, the maximum revenue that can be obtained by the NGSC, only attainable with perfect forecasting
abilities. The blue line is the SSI value. This value is obtained by solving the stochastic optimization problem (2 b)–(2j), (4a)–(4k), and then
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Fig. C.1. Plots for instances B001-B020 running times.
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Fig. C.2. PIS, SSI, and EVSI comparison.

32 V.V. Kalashnikov et al. / European Journal of Operational Research 206 (2010) 18–33
plugging the obtained values into the corresponding PIS problem. The blue line, of course, cannot surpass the red line; we can see that,
except for instance B017, it follows the PIS values relatively well. On the contrary, the EVSI values, represented by the green line, stands
quite low compared to the other two. Only a handful of instances have the green and blue lines relatively closer to one another, which
speaks of the lack of efficiency of the EVS approach when compared to the SS approach we propose.

Finally, Fig. C.3 compares the relative errors for the SSI and the EVS, SSRE and EVSRE, when compared to the PIS, for every instance
tested. The closest the points are to 1, the more different the EVS or the SS are from the PIS. The closest these latter are to 0, the more
the SS and EVS resemble the PIS. The red line, corresponding to the SSREs, only raises above 0.5 (meaning a SSI value below half of the
PIS value,) in two instances, B011 and B017. The first one, though, is the largest instance with four stages and 28 days, so forecasts become
increasingly unreliable and as a consequence the SSI accurateness is downgraded. Instance B017, though, appears as a very problematic
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instance in spite of the resemblance of its design parameters (ranges for initial imbalances, tolerances for bounds, etc.) to problems B016–
B020.

Every instance has a EVSRE over 0.7, above the red line (except for instance B017.)
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