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Preface 
 

 

 

 

This thesis is concerned with a logistics districting problem faced by a parcel company. The 

operations consist of the delivery and pickup of packages within a region. To perform the 

operations, the region is divided into “districts” (zones), each of which is served by a single 

vehicle that departs from a central depot where packages are received. The districting process 

consists of partitioning the region into smaller areas while optimizing some criteria under 

consideration.  Specifically, the parcel company is interested in two criteria: districts of compact 

shape and a balance of the workload content among the districts.  

 

 

In this dissertation we propose a mathematical model for the logistics districting problem 

previously described as well as a solution methodology that consists on a heuristic algorithm.  

The use of a heuristic is justified by the difficulty of the problem. The definition of the boundaries 

of district is a complex task that depends on different factors such as traffic conditions, the urban structure 

of the region which includes obstacles, bridges, close streets, as well as the density of the points to be 

served over the region. This problem has been shown to be NP-Complete in (Altman, 1997), reason for 

which an exact method may be difficult to implement and not practical, since the difficulty of the problem 

increases exponentially with respect to the size of the instance. Furthermore, the mathematical 

formulation proposed for this problem requires that the capacity of the districts with respect to the number 

of pickups and deliveries to be served should not be exceeded making that even finding a feasible solution 

results very difficult.  
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xv 

 

Since many combinatorial optimization problems of practical interest, such as the problem 

addressed here, are computationally intractable, heuristic and metaheuristic techniques have been 

widely used in the literature. In recent years, it has been shown that a skilled combination of 

concepts from different optimization techniques can provide better results and more flexibility to 

solve real-world and large-scale problems. These findings motivated us to propose hybrid 

heuristic procedures which combine elements of some metaheuristics such as Tabu search and 

GRASP, and also include simple hyperheuristics. 

 

The methodology proposed in this research may be part of a decision system that will support the 

process of redesigning the districting configuration of a parcel company with the aim of 

optimizing the criteria previously mentioned. To test the performance of the procedure, several 

types of instances were generated, including one that was created with data provided by a parcel 

company that operates in the metropolitan area of Monterrey. Experimental results in 

comparison to CPLEX solutions are presented in which we observe good solutions and low 

computation times.  
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Chapter 1 

 

Introduction 
 

 

 

Districting or territory design is a geographical problem that involves the partitioning of a region 

into smaller areas in order to optimize the operations for some criterion under consideration 

(Muyldermans et al., 2003). A district design is used for a relatively long period of time because 

of the big effort that a redistricting process requires.  For this reason, districting is considered a 

strategic activity allowing a good performance of the operations performed in the region and 

robustness to small changes in a variety of factors.  

 

Districting emerges in different contexts such as politics, health care, sales territory alignment, 

emergency centers such as fireman and police stations, logistics or routing applications, and 

schools. In each case, districting serves a different purpose and can be economically motivated or 

have a demographic background (Kalcsics et al. 2005). For instance, in a political districting 

problem, the region under consideration is partitioned into smaller regions from which electoral 

candidates are selected. On the other hand, logistics districting is mainly associated with the 

routing activities of a company, having a strong impact in their performance, (Van Oudheusden 

et al., 1998). The most common contexts of the logistics districting problem are: 

distribution/collection services, emergency services, medical,  fire and police, (Moonen, 2004). 

  

In this thesis, a logistics districting problem for the distribution and collection of packages within 

a service region is addressed, motivated by a real-world application. We present a mathematical 

model with some variants as well as a solution methodology based on a hybrid heuristic that 

combines some elements of metaheuristics such as Tabu search and GRASP. A heuristic is 

proposed because of the difficulty of the problem that has been shown by Altman (1997) to be 

NP-Complete.  



 19

 

The aim of the methodology proposed is to be part of a decision system that may support in the 

redesign of the districting configuration of a service region such that demand variations may be 

considered for the districting configuration. It was not possible to implement the proposed 

procedures in the parcel company under consideration, but the company provided GPS data with 

the location of the customers served according to their currently defined districts. Based on this 

data, some instances were generated and tested as part of the numerical experiments performed. 

Numerical results show a good performance of the methodology proposed,  and we solve 

relatively large instances in reasonable computational times. The heuristic proposed is able to 

find solutions for which CPLEX could not even find an integer solution.  

 

 

1.1 Problem description 
 

A parcel company needs to design the districting configuration of a service region with the aim 

of optimizing the performance of its operations. The service activities consist of picking up and 

delivering packages within the service region. The company has m vehicles, each serving a 

single district. The locations of most of the customers vary each day but there are also a small 

number of fixed customers. Demand is seasonal, tending to increase during the Christmas 

season. The company has a central depot from which the vehicles depart to perform the services 

required in each district before returning to the depot. There are two shifts: a.m. and p.m., each 

of 4 hours.  

 

The company currently performs its districting procedure manually, requiring approximately 

three weeks to be completed. Districts are redesigned every year and a half and the routing is 

assumed to be defined dynamically during the daily operations. The exact location of the 

customers and the daily volume of demand are stochastic.  However, the districting configuration 

managers think that a reasonable approach is to use the data of a high workload day which is 

representative of the current and growing demand. Using the data of the representative day, the 

locations of the customers are identified on a map and the districts are defined following what 

they call a spiral-sweep procedure in which they attempt to balance the workload of the districts.  
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The company has defined some metrics to measure the efficiency of its district designs. The most 

important of them is the Stops Per On-Route Hour (SPORH), which is computed by dividing the 

number of stops in a route by the number of hours on the route. Stops in a route include the 

number of deliveries, pickups, empty and special stops. Empty stops refer to the cases in which 

the customer was not at the address in which a package should be delivered and special stops 

include emergency stops (which are not common). The number of hours on the route includes the 

traveling time required for the vehicle departing from the depot until it returns. The company 

considers that a high value of this metric reflects an efficient and correct performance of the 

operations under a districting configuration, which is also affected by other factors of human 

nature not only by the districting design but allows the company to estimate the performance. 

The company desires that the districts may have a relatively equal value of this metric, because 

this estimates a balanced workload content among the districts.  

 

Another two metrics defined by the company are based on the line haul distance from the depot 

to a point in a district: the distance from the depot to the last point visited in the route (STEM 

IN) and the distance from the first point visited in the route to the depot (STEM OUT). The 

company is interested in designing districts such that the SPORH metric is maximized which 

implies that the workload content among the districts should be balanced. They are also 

interested in creating non-overlapping districts of compact shape.  A districting configuration in 

which the districts overlap would not have any meaning for the company, but it depends on the 

urban structure of the region. In this problem,  leaving the district to travel from one point to 

another point in the district is permitted.  
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1.2 Research problem 
 

It is required to cluster a set of points on a geographical area for pickup and delivery service 

operations. The location of the points is assumed to be known (from a representative working 

day that usually is a high workload day in order to estimate the demand growth). Each point 

represents a customer that requests a service: pickups and/or deliveries.  There exists a single 

depot from which m vehicles depart to perform the activities requested in their corresponding 

district and then come back to the depot. Districts should be defined such that the workload 

content among the districts is balanced the districts are of compact shape considering the urban 

structure of the service region. This research is only concerned with the districting design and the 

actual route that the vehicles follow within a district is assumed to be defined dynamically during 

the day’s operations. We also must point out that given that the methodology relies on a 

representative working day, there could be areas of the region in which no service is required by 

any customer but which may have required service on a different day. For this reason, the 

solution obtained by this methodology is part of a decision support system in which the final 

definition of the districts borders will be done manually.  

 

 

1.3 Research questions and objectives 

 

1. Is it possible to model the logistics districting problem as a deterministic mixed integer 

program?  

2. How can the different objectives and constraints of the parcel company may be included in the 

mathematical formulation of the problem? 

3. Is the heuristic solution methodology proposed in this research an efficient and 

computationally tractable approach? 

4. How can the urban road structure be modeled? 

5. For the parcel company under consideration, compared with the current districting 

configuration of the company, is the solution found with the proposed methodology a better 

districting design? 
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The general objectives of this research are: 

 

a) Propose a mathematical formulation of the districting problem faced by a parcel company 

that includes the requirements and considerations of the company. 

b) Propose a solution methodology to efficiently solve the problem.  

c) Generate a set of data with different characteristics, that include instances formed by data 

from a parcel company, and also that resembles the infrastructure of an urban area, with 

the aim of evaluating the performance of the heuristics proposed.  

 

 

1.4 Research Methodology  
 

The methodology followed in this thesis is described below: 

 

1. Obtain relevant information of the problem, 

2. Review of the literature related to the problem,  

3. Present some mathematical models of the problem,  

4. Propose a heuristic procedure to solve the problem,  

5. Design a set of test instances of different types, including instances that resemble the 

infrastructure of a urban area.  

6. Prepare an instance with real data provided by the parcel company. 

7. Solve the set of instances with the different algorithms proposed.  

8. For comparison purposes, model with AMPL-CPLEX the mathematical formulation 

proposed and solve the test instances in which CPLEX is able reports an integer solution.  
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1.5 Thesis Structure 
 

This document is organized as follows: a literature review of related work is presented in 

Chapter 2. In Chapter 3 a mathematical formulation of the research problem is presented as well 

as a short description of the complexity of the problem. Chapter 4 presents the solution 

methodology proposed to solve the problem and experimental results in comparison with 

CPLEX are presented in Chapter 5. Finally some conclusions and recommendations for future 

research are discussed in Chapter 6.  
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Chapter 2 

 

Literature review/ State of the Art 
 

 

 

In this chapter we survey the literature related to the districting problem with an emphasis on the 

logistics districting problem for the collection and distribution of services. We also include some 

literature that does not address a districting process but allows to assess the quality of a given 

district design. It is not intended to be an exhaustive survey of the field and for a more general 

literature review on the districting problem please refer to Moonen (2004), who presents the state 

of the art of the districting problem for the urban police context but also includes a survey for the 

different contexts of the problem. Also, Kalcsics et al. (2005) present an extensive review of 

territory design problems, identifying common features to many territory design problems with 

special attention to the politics and sales territory alignment applications. 

 

 

Section 2.1 presents a description of related work done for logistics districting applications as 

well as the differences with respect to the problem and approach proposed in this research. In 

Section 2.2  a brief review of related districting problems in other applications is done. Section  

2.3 presents a classification of the districting problem with respect to the solution method 

approach.  
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2.1 Main contributions on the logistics districting problem 
 

One of the earliest works done in this area is presented by Keeney (1972). He address the 

problem of districting an area for the case in which there is a set of service facilities with known 

location so that each district is assigned to a single facility. The objective function consists of a 

single criterion, which is the minimization of the distance traveled to serve the customers. The 

author proposes a graphical solution method. His work mainly differs to this research in that the 

author considers a single criterion and assumes a facility per district while here two criteria are 

optimized and there exists a central depot from which all the vehicles depart to service the 

region. Deckro (1977) presents a general heuristic to partition a region into districts considering 

multiple and divergent criteria. He proposes an algorithm based on a clustering technique, 

forming districts that fall between certain ranges of the criteria in a lexicographic order. His 

works differs in that he is not addressing a specific problem, and he proposes a general 

methodology which can be extended to the specific conditions of a districting problem.  

 

Hardy (1980) compares the method for vehicle routing proposed by Clarke and Wright (1964) 

with a methodology based on a districting approach. He analyzes the urban delivery network of a 

wholesale milk processor and shows that both procedures give similar results but the districting 

approach designs districts with a more balanced workload content.  The problem addressed by 

the author differs to the problem studied here in that there is a facility per district while in this 

research there is a central depot from which the vehicles depart. The methodology proposed to 

solve the problem is also different because the author proposes an algorithm based on the 

transportation problem while our approach is based on local search and we model the problem as 

a graph.  

 

Wong et al. (1984) consider a problem very similar to districting analysis known as the Vehicle 

Routing using Fixed Delivery Areas (VRFDA), in which a service area is divided into fixed sub 

areas in which the daily route followed may change from day to day. The authors propose a 

methodology in which the distance traveled is minimized, differing from the present work, in 

which two objectives are optimized.  
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The authors include the workload content of the districts as a constraint that should not exceed a 

defined limit and no attempt is made to balance workloads among districts.  Another difference 

is that the authors assume that location of the customers is known and only the demand is 

variable. A special case of the VRFDA is the Fixed Routes Problem (FRP) studied by Beasley 

(1984) in which the service region is divided into sub areas in which the route is fixed from day 

to day. 

 

Daganzo (1984a) proposes an approximation method for the design of multiple-vehicle delivery 

tours assuming that the underlying network is equivalent to a Euclidean metric and that the 

objective is to find tours of minimum total length, but the number of tours is not necessarily 

large. The objective of his work is to explore the impact that the zone shape has on the expected 

length of each route. He also shows how the travel time or distance depends on the parameters of 

the system such as the size of the region, the density of the points and the capacity of the vehicle. 

He presents a very simple strategy for building good traveling salesman tours in zones of 

irregular shapes without the help of a computer. This paper is related to the problem addressed 

here but the author does not specifically deal with a districting problem. Daganzo (1984b) 

presents a methodology in which the region is partitioned into zones of nearly rectangular shape 

elongated toward the source. In his work, the number of points is large compared to the capacity 

of the vehicles. This is different from our problem, in which this is not an issue because of the 

type of activities and the type of products managed by a parcel company.  

 

Newell and Daganzo (1986a) analyze the districting of a region in which the underlying network 

of roads is a dense ring-radial network. Their analysis is similar to that of Daganzo (1984a,b), 

and propose an approximation method for the design of multiple-vehicle delivery tours in which 

the aim is to minimize total distance, using a ring-radial network in a large region that contains 

many routes. They consider the situation in which the origin is located at the center of the region 

and the density of demand varies according to the distance from the origin. Their work differs 

from the present work in that a ring-radial network metric is assumed and a single criterion is 

optimized. Han and Daganzo (1986) investigate the design of delivery zones for distributing 

perishable freight without transshipment, with no consideration of the capacity of the vehicle.  
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Their work differs in that it is applied to perishable items and the aim of the methodology 

proposed is to minimized total costs. Langevin and Soumis (1989) study the problem of 

designing multiple vehicle delivery tours satisfying time constraints for the letter and parcel 

pick-up and delivery problem with a continuous approximation model, which is not employed in 

the present work. The authors proposed a methodology that involves partitioning the region into 

approximately rectangular delivery zones that are arranged into concentric rings around the 

depot, assuming a circular area with the depot located in its center and a random location of the 

points with point density as a function of the radius using a ring-radial grid. The present work 

differs in that the ring-radial representation is not employed.  

 

Rosenfield et al. (1992) study the problem of planning service districts with a time constraint and 

derive analytical expressions to determine the optimal number of service districts for the U.S. 

postal system. Their work differs in that they consider that each district contains a service facility 

at its center from which deliveries are made to the customers uniformly distributed within the 

district and analyze the tradeoff between the variable cost of delivery and the fixed cost of the 

facilities.   

 

Novaes and Graciolli (1999) present a methodology to design multi-delivery tours associated 

with the servicing of an urban region of irregular shape, where the density of servicing points 

and the amount of cargo vary over the served area. They propose a cluster first – route second 

strategy and consider customer demands and service times as random variables. Each route is 

assigned to a vehicle, being both restricted by time and capacity constraints in a stochastic way. 

The proposed methodology was applied to a parcel delivery problem in the city of Säo Paulo, 

Brazil. Their work differs in that the authors assume a rectangular grid structure and they 

propose a methodology based on a sweep approach. Novaes et al. (2000) present a methodology 

for solving the same problem but use a continuous approach to represent the region under 

analysis. Galvao et al. (2006) extend the previous work, introducing some improvements to the 

ring-radial model.  
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Muyldermans et al. (2002, 2003) address the problem of districting for salt spreading operations 

on roads. They utilize a graph model of the problem, which was not found in previous reviewed 

work, but it differs from this research in that demand occurs at the edges of the road network 

rather than at the nodes. They propose heuristics methodologies to solve the problem, but their 

main objective is based on the minimization of the deadheading distances and the number of 

vehicles required to service the region.  Another difference is that a facility to serve each district 

is assumed, while in this research there is only a central depot.  

 

Haugland et al. (2005) consider the problem of designing districts for vehicle routing problems 

with stochastic demands. They present a tabu search and a multistart heuristic to solve the 

problem. Their work differs in that they present a two-stage stochastic problem with recourse 

that aims to minimize the expected travel time for each district while in this work the 

mathematical formulation is a minimax objective function that aims to balance the workload 

content of the districts and form districts of compact shape. The solution approach proposed by 

the authors is similar to the methodology proposed here, but it differs in that we are proposing a 

hybrid heuristic that combines two metaheuristics (GRASP and Tabu Search), while the authors 

propose two different heuristics, one based on a multistart approach and  the other on a Tabu 

Search.  

 

Galvao  et al. (2006) extended the model presented by Novaes et al. (2000).They present a 

special case of Voronoi diagram: the Multiplicatively-Weighted (MV)-Voronoi diagram, 

combined with an iterative computational procedure that differs from a geometrically-shaped 

districting pattern such as a ring-radial structure. The problem is modeled as a continuous 

approximation that differs from the present work in which a graph model of the problem is 

utilized. Novaes et al. (2008) develop two continuous location-districting models applied to 

transportation and logistics problems combining a Voronoi diagram with an optimization 

algorithm, which also differs from the present work in that a continuous approximation model is 

assumed.   
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Tavares-Pereira et al. (2007a) consider the districting problem with multiple criteria. They 

propose a method to approximate the Pareto front based on an evolutionary algorithm with local 

search. They apply this methodology to the Paris public transportation system with the aim to 

analyze its current pricing system. Their work differs in that they measure the workload content 

of the districts by the number of points assigned to each district, with no inclusion of the line 

haul distance from the depot to the districts. Furthermore, they do not differentiate between the 

service activities as is done in this research. Tavares-Pereira et al. (2007b) propose some metrics 

to compare partitions obtained in a districting configuration, specifically for the case of a 

connected, undirected, and planar graph representation of the service region.  

 

 

2.2 Contributions on related districting problems 
 

In this section we present a brief review of related districting problems in the rest of the 

applications in which districting problems arise. Section 2.2.1 describes the Political districting 

applications and the main contributions in this application. Section 2.2.2 describes the Sales 

territory alignment application with a brief review of the work done in this context. Section 2.2.3 

presents a review on the School districting. Section 2.2.4 presents a review on the Emergency 

sites and Health care systems applications.  

 

 

2.2.1 Political Districting  
According to Morril (1981), the problem of determining political districts consists of dividing a 

governmental area such as a city or a state into subareas from which political candidates are 

elected. This problem is important for democratic countries such as New Zealand, Canada and 

most of the states of U.S. and Germany, in which each territory elects a single member to a 

parliamentary assembly. Several authors have worked in this problem, among we can mention 

Hess et al. (1965) who present a location-allocation heuristic under population equality, 

compactness and contiguity considerations.  Garfinkel and Nemhauser (1970) present an exact 

algorithm to solve this problem under contiguity, compactness and limited population deviation.  
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Hojati (1996) proposes a three-stage approach in which he first determines the district centers, 

then an assignment problem for allocating population units to districts and then a sequence of 

capacitated transportation problems are solved for dealing with splits. A column generation 

based on branch an price approach is proposed by Mehrotra et al. (1998) to solve a political 

redistricting problem. A review on political redistricting is presented by  Williams (1995).  

 
 
2.2.2 Sales Territory Alignment 
According to Moonen (2004) sales territory alignment is one of the main decisions that has to be 

taken for the sales force deployment. It consists of dividing a region into smaller regions to 

which salesman are assigned. An important concept in this problem is the Sales Coverage Units 

(SCU), which are interpreted as the atomic regions that are added together to constitute sales 

territories, (Howick and Pidd, 1990). The design of sales territories has different purposes, but in 

general the most common criteria optimized are contiguity, compactness and workload balance. 

Workload is measured according to the specific characteristics of the problem, and it may 

include the sales potential of the territory, the number of customers, number of activities to be 

performed, etc.  

 

This problem has been studied with numerous and different assumptions and techniques. In 

(Zoltners, 1979) and (Zoltners and Sinha, 1983) is presented the first review of sales territory 

design models. In this work,  sales units are assigned entirely to SCU. In (Fleishman and 

Paraschis, 1988) the authors study a sales territory alignment for a German company for 

consumer goods and develop a procedure based on a location-allocation approach in which sales 

units are assigned to SCU for a certain proportion of time.  This problem has been studied also 

simultaneously with some other elements of the sales deployment problem such as sales force 

sizing, salesman location and sales resource allocation, as it is done by Drexl and Haase (1999 ).  

 

More recently, a commercial territory design was introduced by Rios-Mercado and Fernandez 

(2009) that differs with respect to the sales territory design in that rather than placing salesmen in 

territories the authors are interested in locating centers. It can be also interpreted as providing 

customers with a commercial service by the firm. They propose a GRASP approach that 

incorporates reactivity and filtering.  
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The authors study the case of a beverage distribution firm in the city of Monterrey, Mexico. 

Other variants and extensions of this problem are presented in  (Caballero-Hernandez et al., 

2007), (Segura-Ramiro et al., 2007) and  (Fernandez et al., forthcoming). The authors propose a 

similar approach as it is done here, but differs in that they are addressing a different problem 

with different criteria to be optimized. Also the authors do not propose a hybrid algorithm as it is 

done here.  

 

 

2.2.3 School Districting 
According to Caro et al. (2004), School redistricting is the process of adjusting the boundaries of 

schools within a given school system. This process is done in response to different factors, such 

as overcrowded classrooms, projected growth and decline of enrolments, school capacities, etc. 

School districting aims to form districts in which students are assigned to their closest schools as 

possible. Some other criteria considered are capacity of the schools, grade levels, hazards for the 

students in their way to the school, racial balance and the urban structure.  Compactness is also a 

criteria to be optimized as well as contiguity, which avoid that children from the same 

neighborhood be assigned to different schools.  

 

Several authors have paid attention to this problem. Diamond and Wright (1987) also study this 

problem but they consider the case in which only a limited number of schools are allowed.  

Elizondo et al. (1997) presents a model in which individual students are assigned to schools and 

the objective is to minimized distances of the students to the schools. Later, Church and Murray 

(1993) extend previous work presenting a multi-objective model. For a review of the most 

relevant work in this problem refer to Caro et al. (2004).   
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2.2.4 Health care systems 
Districting for health care systems is the process of aggregating administrative units into 

territories for social facilities like hospitals, such that for every inhabitant is determined to which 

facility he should go in order to be serviced. According to Pierskalla and Brailer (1994) the 

regionalization of health services is the partitioning of an area into districts with the required 

number of hospitals to provide the medical services to the population within the district. The aim 

of this process is to lower the cost and improve quality of the service provided to the inhabitants. 

Blais et al. (2003) study a districting problem for a local community health clinic optimizing 

visiting personnel mobility and workload equilibrium combined into a single objective function, 

and propose a Tabu Search approach to solve the problem.   

 

 

 

2.2.5 Emergency sites 
The districting problem in this context consists of portioning a region into response areas for 

public services such as police, fire and medical emergency services. The servers such as 

ambulances are mobile and travel to the problem sites to perform the services required. This type 

of problem is labor intensive and is characterized by urgency and the most important criterion is 

response time. Police differs from medical and fire in that the servers are possibly mobile when a 

call is received, while for medical and fire servers are stationed in a fixed place from where they 

are dispatched according to the received calls.  

 

Several works exist in this context, from which we can mention Carter et al. (1972) who study 

the districting problem for emergency sites in the plane and Bernand and Larson (1985) who 

study the problem on a network. Baker et al. (1989) study the redistricting design of primary 

response areas for county ambulance services. Yang et al. (2004) present a case study  for a fire 

districting using simulation.  Regarding the police context, we can mention several works that 

are found in the literatures, such as Bodily (1978) that designs patrol sectors by a multi attribute 

utility theory approach to include preferences of the interest groups, which is not a common 

approach found in other applications of the districting problem.  
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More recently, D'Amico et al. (2002) present a simulated annealing algorithm for the 

redistricting police command boundaries, formulating the problem as a constrained graph-

partitioning problem, considering factors such as contiguity, compactness and convexity.  For a 

more extensive review of this application of the districting problem, Moonen (2004) presents a  

more detailed review.  

 

 

 

2.3 Classification of the solution methods 
 

Tavares-Pereira et al. (2007a) comment that districting problems can be classified in terms of 

two factors: the number of criteria and the solution method (exact and non-exact algorithms). 

However, since it has been shown that this problem is NP-Complete, all the reviewed works 

propose heuristic methods except for Keeny (1972). In this research a heuristic approach is also 

proposed. 

 

 

According to Grilli di Cortone et al. (1999), there are two main techniques for districting 

problems: division and agglomeration. In the former, the service region is considered as a whole 

and divided into pieces. The latter consider a region that is already split in small areas that are 

aggregated to build the districts. Table 4.2 presents a classification of the different districting 

techniques proposed by Moonen (2004).  
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Table 2.1: Districting techniques classification, Moonen (2004).  

DIVISION AGGLOMERATION 

a) Voronoi 

b) Sweep algorithms. 

a) Set Partitioning 

b) Graph Partitioning 

c) Clustering 

d) Improvement and local search 

e) Allocation 

i. Multi-Kernel growth 

ii. Transportation problem 

iii. Integer programming 

 

 

Appendix I presents a table in which summarizes the main contributions to the logistics 

districting problem discussed in section 2.1, with a classification according to the solution 

approaches proposed and also distinguishes the main differences with respect to the present work 

both in terms of the problem addressed and the solution methodology proposed.   
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Chapter 3 

 

Problem formulation 
 

 

 

In this chapter a mathematical formulation of the problem is presented. Section 3.1 presents the 

mathematical formulation proposed. Section 3.2 presents some variants of the formulation 

considering different metrics of the workload content. Section 3.3 presents a brief discussion of 

the complexity of the problem Section 3.4 presents some ideas for a lower bound computation.  

 

 

3.1 Mathematical formulation of the problem 

 
Consider a connected, undirected graph G(V,E) where V is the vertex set and E the edge set. The 

graph is generally not complete.  We assume that all the edges ),( srrs vve = have a positive length 

and represent a real road between adjacent points vr and vs. Distances between points are edge 

lengths for those points that are connected in the graph and shortest path distances for other pairs 

of points.  A district is defined as a subset of the points. Each vertex may require either a pickup 

or a delivery. The aim of the districting procedure is to optimize two criteria: balance of the 

workload content among the districts and compactness of district shapes. The mathematical 

model proposed for this problem consists of a single objective model in which the weighted sum 

of both criteria is minimized.  

 

Compactness is not defined precisely for all the districting problems in the literature and it is 

generally defined according to the application context. For this problem we define it as the 

distance between the two furthest apart points in a district and we proposed a minimax objective 

in which we attempt to obtain compact districts when the maximum compactness metric is 

minimized.  
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V,, ∈ki

The workload content of a district is defined to be the time required to perform all required 

pickups and deliveries and the time needed to drive from the depot to the farthest point in the 

district. In order to balance the workload content among districts, we propose to minimize the 

maximum workload allocated to a district. We also attempt to obtain districts with balanced 

workload content by minimizing the dispersion of the workload assigned to each district, which 

is represented by the sum of the absolute value of the differences between the workload content 

of each district with respect to the average workload.   

 

We propose a hierarchical mathematical formulation in which the first model is a linear 

programming problem in which the weighted sum of the compactness metric and the maximum 

workload content assigned to a district is minimized, each of them normalized.  

 

Then a second optimization model is solved in which the objective function aims to minimize the 

dispersion of the workload content among the districts, but respecting the value of the weighted 

sum of the compactness and balance workload metrics found when the first optimization 

problem was solved.  

 

The following notation is defined: 

 

α= Maximum number of pickups for each district, 

β= Maximum number of deliveries for each district, 

J= District set, J={1,…,m}, 

wpi= Number of pickups (1 or 0) requested by demand point i, V∈i , 

wdi= Number of deliveries (1 or 0) requested by demand point i, V∈i , 

Std= Stopping time per delivery in each demand point, 

Stp= Stopping time per pick up in each demand point, 

dik= Distance from point i to point k,   
λ= Scale factor, 0≤λ≤1,  

d0i= Distance from the depot to the point i                 

Sp= average speed, 

 

V,∈i
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Nz= normalization parameter for the compactness metric, 

Nw= normalization parameter for the workload metric. Computation of both normalization 

parameters is described in section 3.1.3. 

OF1= Objective function value of the first optimization lineal model.  

OF2= Objective function value of the second optimization quadratic model.  

 

The following decision variables are defined: 

  

⎩
⎨
⎧

=
otherwise0

districttoassignediscustomerif1 ji
X ij

 
 

 

And the following auxiliary variables are defined: 

 

W= Continuous variable that represent the maximum workload content assigned to a district, 

Z= Continuous variable that measure the compactness as the maximum travel time between the 

furthest apart points of a district,  

Dj=Continuous variable that takes the value of the traveling time from the depot to the farthest 

point of district j, 

Mj= Continuous variable that takes the value of the traveling time between the two furthest apart 

points of district j,  

Yij= Auxiliary binary variables used to restrict that Dj takes the value of time to travel from the 

depot to a point in a district.  

dispersionj= Auxiliary continuous variables that take the absolute value of the difference 

between the workload content of each district with respect to the average workload assigned to 

the districts.  
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3.1.1 First Optimization Model 
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Equation (1) is the objective function that minimizes a weighted average of the maximum 

workload and maximum compactness metrics. The objectives are normalized and the relative 

weighting is given by λ. Constraints (2) guarantee that each demand point is assigned to only one 

district. Constraints (3) and (4) guarantee that each district has a maximum of α pickups and β 

deliveries, respectively. These constraints help to balance the number of pickups and deliveries 

allocated to a district so that the capacity of the vehicles is not exceeded.  Constraints (5)  

guarantee that Mj takes the value of the maximum travel time between the points assigned to 

each district in time units. Constraints (6) guarantee that Z takes the maximum value over Mj.  

Constraints (7) guarantee that Dj takes the value of the time from the depot to the farthest point 

of each district j. Constraints (8) guarantee that W takes the maximum amount of workload of a 

district. Constraints (9) are the binary requirements.  
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3.1.2 Second Optimization Model 
 

∑
∈Jj

jdispersionMin                        (10) 

subject to  

∑
∈

=
Jj

ijX 1               ,Vi∈∀     (11) 

α≤∑
∈Vi

iji Xwp               ,Jj∈∀     (12) 

β≤∑
∈Vi

iji Xwd
   

              ,Jj∈∀    (13) 

Sp
XXd

M kjijik
j

)1( −+
≥

                  
,,, VikIiJj ∈≠∈∈∀   (14) 

jMZ ≥             ,Jj∈∀    (15) 

ijij XdD 0≥                ,Vi∈∀ ,Jj∈∀  (16) 

( )∑
∈

−+=
Vi

ijijij YXdD 10                             ,Jj∈∀   (17) 

( ) 11 =−+∑
∈Vi

ijij YX                             ,Jj∈∀  (18) 

1≥+ ijij YX                              ,Vi∈∀ ,Jj∈∀     (19)  

SpDXwpStpXwdStdW j
Vi

iji
Vi

iji /++≥ ∑∑
∈∈

                          ,Jj∈∀   (20) 

J

SpDXwpStpXwdStd

SpDXwpStpXwdStddispersion

Jk
k

Vi
iki

Vi
iki

j
Vi

iji
Vi

ijij

∑ ∑∑

∑∑

∈ ∈∈

∈∈

++

−++≥

/

/

                           ,Jj∈∀   (21) 

SpDXwpStpXwdStd

J

SpDXwpStpXwdStd
dispersion

j
Vi

iji
Vi

iji

Jk
k

Vi
iki

Vi
iki

j

/

/

++

−
++

≥

∑∑

∑ ∑∑

∈∈

∈ ∈∈

                ,Jj∈∀  (22) 

ελλ
+≤

−
+ 1)1( OF

Nz
Z

Nw
W

                (23) 

{ }0,1, ∈ijij YX               ,Vi∈∀  Jj∈∀         (24) 



 40

 

Constraints (10) corresponds to the objective function of the second optimization model, that 

minimizes the sum of the absolute value of the dispersion of the workload content of each district 

with respect to the average workload. Constraints (11) to (16) are the same constraints as 

equations (2) to (7) of the first optimization model.  Constraints (17) to (19) are auxiliary 

constraints to guarantee that the variable Dj takes the exact value of the time to travel from the 

depot to the farthest point of each district. These set of constraints are included in this model 

because in the first optimization model, constraint (7) allows Dj to take any value greater or 

equal to the time to travel from the depot to the farthest point of the district, which for the second 

optimization model is not enough to model the real workload content of each district. Without 

the inclusion of these constraints, the model would assign to Dj the required value to make that 

all the districts have the same workload content as the district with the maximum workload 

assigned, which would make that the dispersion of the workload among districts seems to have 

the value of zero. Constraints (20) are the same as constraints (8).  Constraints (21) and (22) 

guarantee that for each district j, the difference of its workload content with respect to the 

average workload content takes a positive value.  Constraint (23) is included in the model in 

order to guarantee that the objective function value of the first optimization model may be equal 

or less to the value obtained when this model was solved, plus an epsilon to avoid conflicts with 

numerical precision. Constraints (24) are the binary requirements.  

 

 

 

3.1.3 Normalization Parameters 
 

Nw is determined by estimating an average workload per district when it is approximately 

balanced.: 

 

m
SpsfarStdsdelStpspickNw /+⋅+⋅

=
,                                 (25) 
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where spick and sdel refers to the total number of pickups and deliveries requested in the service 

region respectively, and sfar is used to estimate the distance to the farthest point from the depot 

of each district, by summing up the distance of the m farthest points to the depot.  

  

Nz is estimated by the length of the diameter (in time units) of a district, assuming that the 

service region is equally divided into m districts, which is defined by equation (26). For this, it is 

assumed that the area of the service region is of circular shape with the depot at the center. Also 

for the districts, it is estimated that are of circular shape and all of them have equal area.   

Sp
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=→=ππ

.
                           (26) 

 

 

3.2 Variants of the workload content metric 

 

We propose two variants for the workload content metric that differ in how the line haul distance 

from the depot to the district is measured. These variants will not be considered as part of the 

numerical experimentation but are proposed for further research.  

 

Instead of considering the time to travel from the depot to the farthest point of a district, first 

variant considers the time to travel to the closest point of each district and the second variant 

considers the time to travel to the centroid of each district. The centroid is defined as the point 

that minimizes the sum of distances from the rest of the points assigned to the district.  

 

3.2.1 Closest point optimization model 
 

The following decision variable is introduced: 

Cj=Travel time from the depot to the closest point of district j. 
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The first optimization model for the closest point is as follows: 
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Constraint (27) corresponds to the objective function of the first optimization model that is the 

same as constraint (1). Constraints (28) to (32) are the same constraints as (2) to (6). Constraint 

(33) are the analogous constraints to (7) but they guarantee that Cj takes the value of the time to 

travel from the depot to the closest point of the depot instead of the farthest point considered in 

the previous model. Constraints (34) are the same constraints as (8). Constraints (35) are the 

binary requirements.   
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The second optimization model based on the closest point is as follows: 
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Constraint (36) is the objective function of the second optimization model, that is the same as 

equation (13). Constraints (37) to (41) are the same as constraints (1) to (6) and constraints (42) 

to (45) are the same as constraints (16) to (19) but they guarantee that Cj takes the value of the 

time to travel from the depot to the closest point instead of to the farthest point. Constraints (46) 

to (51) are the same constraints as constraints (20) to (24).  

 

 

 

3.2.1 Centroid optimization model 
 

Consider the following definitions: 
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The mathematical model for the centroid model is as follows: 
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Constraint (56) corresponds to the objective function of the first optimization model that is the 

same as constraint (1). Constraints (57) to (61) are the same constraints as (2) to (6). Constraints 

(62) guarantee that W takes the value of the maximum workload content of a district which is 

accounted by the sum of the total time to perform the pickups and deliveries as well as the time 

to travel from the depot to the centroid of the district. Constraints (63) are the binary 

requirements.   
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The second optimization model based on the centroid is as follows: 
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Constraint (64) is the objective function of the second optimization model, that is the same as 

equation (13). Constraints (65) to (70) are the same as constraints (57) to (62) and constraints 

(71) to (73) are the same as constraints (24) to (26). Constraints (74) are the binary requirements.  
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3.3 Complexity of the problem. 

 
The redistricting problem has been shown to be NP-Complete by Altman (1997). Moreover, 

since constraints (3) and (4) impose a limit in the amount of pickups and deliveries assigned to a 

district, it turns out that even finding a feasible solution  is a difficult task. 

 

 

3.4 A lower bound. 
 

We need to estimate a lower bound on the maximum workload in a district (W) and the 

maximum compactness metric estimated by the maximum time to travel between the two 

furthest apart points on a district (Z).  For the lower bound on the maximum workload of a 

district we propose to compute it by taking the total pickup and delivery workload and divide it 

by the number of districts m and then add the mth shortest distance from a point to the depot. For 

the lower bound on the compactness metric we propose to estimated by the mth shortest distance 

between two points excluding the depot.  Finally a lower bound on the objective function is 

computed as using equation (1) using the lower bounds on W and Z . We compared the lower 

bound to optimal values of instances in which we know the optimal solution and it resulted very 

weak. For this reason, in the numerical experimentation section, we do not compare the solutions 

obtained with respect to a lower bound.  

 



 48

Chapter 4  

 

Methodology description  
 

 

 

In this chapter we describe the five heuristic solution procedures proposed for the logistics 

districting problem of a parcel company. The difficulty of the problem as described in section 3.2 

motivated us to propose a heuristic since it is well know that exact methods become impractical 

when applied to NP hard problems. Section 4.1 presents the general details of the methodology. 

Section 4.2 describes the procedure of the hybrid heuristic proposed. Section 4.3 presents the 

complexity analysis of the heuristics.  

 

 

4.1 General details 
 

The five heuristics consists of a hybrid multi-start heuristic algorithm that combines elements of 

metaheuristics as well as some hyperheuristics in the different steps of the procedure. All of them 

have in common the procedure to construct the initial solutions and differ with respect to the 

local search procedure.   

 

A metaheuristic is a heuristic method that solves an optimization problem by combining 

heuristics in a hopefully efficient way and is usually equipped with some way of escaping local 

optima. Metaheuristics are classified as point based and population based. Point based 

metaheuristics maintain only one solution at a time, while a population of solutions are 

maintained in the latter category. Among the point based metaheuristics we can mention Tabu 

search (TS), Simulated Annealing, Greedy randomized adaptive search procedures (GRASP), 

iterated local search, guided local search, variable neighborhood search and other perturbation 
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methods.  The five heuristics proposed in this research hybridizes two metaheuristics: TS and 

GRASP.   

 

TS is an adaptive memory based technique proposed in 1977 by Glover (1977), that enhances the 

performance of a local search procedure through the use of memory structures to aid escaping 

from local optima by accepting even non-improving moves. To prevent getting cycled back to 

previously visited solutions, last moves are labeled as “tabu-active” during a predetermined 

number of iterations. However, good quality solutions that are currently tabu active may be 

visited under some criteria that are referred to as “aspiration criteria”. 

 

Comprehensive tutorials on Tabu Search are found in Glover and Laguna (1997) and (2002).   

GRASP is a multi-start constructive metaheuristic proposed by Feo and Resende (1989) in which 

an iteration consists of two phases: construction of an initial solution from scratch and then 

improvement of the solution by a local search approach. The construction phase includes a 

greedy function but is randomized by the definition of a list with the best candidates, from which 

one is selected randomly. Among all the solutions created, the best solution is reported as the 

final step of the algorithm. For a detailed description of GRASP, see Resende and Ribeiro 

(2002), in which the authors present details of different solution construction mechanisms, 

techniques to speed up the search, strategies for the implementation of memory, hybridization 

with other metaheuristics, and some applications. 

 

 

As it was previously mentioned, the proposed methodology also involves hyperheuristics. A 

hyperheuristic is a heuristic that selects heuristics or metaheuristics and it has the advantage of 

being more general and of higher level of abstraction than a metaheuristic itself. The inclusion of 

some hyperheuristics in the procedure was motivated either by the wide variety of alternatives to 

evaluate a move and also as a way to combine local search algorithms.  
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4.2 Hybrid districting heuristics (HDH) description 
 

We propose a multi-start heuristic algorithm that hybridizes a GRASP with a TS metaheuristic 

including also some hyperheuristics. Given that we propose five different variants of the 

heuristic proposed for one of its main phases, we will refer to each of them as a different 

heuristic.  The general procedure for all the heuristics proposed consists of two phases as it is 

typical of a GRASP approach: construction of a feasible initial solution and improvement by 

local search. A solution is considered to be feasible if all the points are allocated to a district and 

the capacity limits with respect to both services (pickups and deliveries) are respected for all the 

districts, as it is established by equations (2), (3) and (4).  

 

Among all the solutions created and improved, the best of them is reported as the final solution 

for a given instance. Given that we have two metrics for the balance of workload content among 

districts, a solution will be evaluated according to equation (1) which is based on the primary 

balance workload metric. In case of ties, solutions will be evaluated with equation (10) and the 

solution that provides the lowest dispersion value for the workload content among districts will 

be selected.  

 

For the second phase of the algorithm, we propose three local search algorithms that may be 

applied independently or may be combined through the use of hyperheuristics. In all, five 

heuristics are proposed. All five attempt to improve the same initial solution constructed during 

each iteration of the procedure but may end up with a different final solution depending on the 

results of the local search phase.  

 

Let’s introduce some definitions before describing each of the five heuristics. First, we say that a 

point is allocated to a district when we are constructing the initial solution. Once a solution is 

constructed, it may be feasible or infeasible with respect to the capacity limits of the districts. A 

move refers to the process of reallocating a point from a district to an adjacent district.    An 

exchange refers to the process of reallocating a pair of points from adjacent districts. 
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A key concept is the adjacency among points and districts, which for all the heuristics is a 

condition that should be updated when a point is assigned or moved to a district. This 

requirement is imposed as part of the procedure with the aim of constructing districts of compact 

shape.  The definition of the adjacency structure has a big impact on the difficulty of an instance. 

For example, two points that are located on a plane may, at first sight, appear to be adjacent.  

However, a natural or man-made barrier may separate them, preventing direct travel between the 

two points and making the travel distance between them much greater than the direct distance 

between them.  Such situations are commonly present in urban settings. Figure 4.1 illustrates this 

situation: 

 

 

 

 

 

 

 

  Fig. 4.1 Illustration of the impact of the edge set definition. 

 

A point is considered adjacent to a district if there exists at least an edge connecting the point 

with one of the points already allocated to the district. A point can be allocated to a district only 

if it is adjacent to that district. Two districts are adjacent if there exists at least one edge 

connecting points from both districts. Those points are considered to be at the border of the 

districts and are potential points to be moved from their current district when searching for a 

better solution. The points are referred to as border points.  

 

Knowledge of the adjacency helps to avoid unnecessary evaluations that may result in long 

computational times and also enhance compactness of the solution constructed.  

 

Each time that a point is assigned to a district, adjacency among districts needs to be updated. A 

flow chart of the general procedure is shown in Figure 4.2 and details are explained in sections 

4.2.1 and 4.2.2.  

vs vs 
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Fig. 4.2: HDH flow diagram 

 

 

 

4.2.1 Phase I: Initial Feasible Solution Construction (IFSC) 
 

As it was mentioned in section 3.2, even finding a feasible solution is a hard task, but given that 

we propose a multi start approach a determined number of initial solutions are attempted to be 

constructed based on a greedy randomized approach.  

 

We propose two main steps to construct the initial feasible solution: Selection of a set of m seeds 

and allocation of points to the districts formed by a seed. During all the procedure, every time 

that a point is assigned to a district, the adjacency among points and districts should be updated. 

To enhance compactness, points are attempted to be assigned to the closest seed as long as 

adjacency conditions are fulfilled, for which we propose the following four different steps: 
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IFSC-1 Seeds Selection 

Five different approaches are proposed for this step. Four methods are based on a greedy 

randomized construction in which, according to their corresponding greedy function, potential 

points (those that are not selected yet as a seed) are evaluated and the better choices are placed 

on a restricted candidate list (RCL) from which the seed is randomly selected. The fifth method 

is a semi random approach and for this reason is not a greedy randomized construction. It is 

called semi random because the selection of the seeds is not completely done at random.  A 

pseudocode for each method is presented in Appendix II.  

 

The first three approaches are based on distance, and the last two approaches are based on the 

dispersion and workload content of the points. The first method is referred to as the “P-

Dispersion Algorithm” because points selected as seeds are the most dispersed relative to each 

other based on a modified version of the greedy algorithm of Erkut et al. (1991) that solves the 

P-dispersion problem.  The greedy function computes the sum of distances between the seeds 

and a potential point. Those points with the larger sums are placed in the RCL from which a seed 

is randomly selected.  

 

The second approach is referred to as the “Neighborhood algorithm” and it also consists of a 

greedy randomized construction in which the greedy function evaluates the points according to 

the number of points that are located within a “neighborhood” defined by a threshold distance. 

Those points that have more “neighbors” are placed in the RCL. Once a seed is selected, its 

neighbors are discarded as potential candidates. This procedure is repeated until all seeds have 

been selected. If no potential points remain and not all the seeds have been selected yet, then all 

the points that were discarded are now considered as potential points from which the remaining 

seeds are randomly selected. This method as it will be shown in the following section turned out 

to be most inefficient. However, it was included because it was observed during a preliminary 

experimentation that some of the solutions selected as the final districting for an instance 

corresponded to the set of seeds found by this method. Thus, it is not dominated by the other 

methods. 
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The third approach is similar but it is based on a semi random construction. Hence, it is named 

the “Semi-random algorithm”.  It randomly selects a point as a seed, but those points located in 

its neighborhood are discarded as potential points as it is done in previous method. Again this 

procedure is repeated until the set of seeds has been defined and also if not all the seeds have 

been selected and all the points have been discarded, the required seeds are selected randomly 

among the discarded points. Given that this method selects the seeds randomly but discards the 

neighbors of the seed, it is not a complete random approach. 

  

The fourth method is called the Angle method because its greedy function is based on the 

location of the points over the service region for which we compute the angle of the point with 

respect to the depot located in the origin. Once each angle is computed, the service region is 

partitioned into m radial sectors of equal size. The RCL is formed by the point whose location is 

closest to the corresponding division of each district and also by those points that are located 

either immediately before or after that division until all the candidates of the RCL have been 

selected from which the seed is randomly chosen. 

 

The last method is referred to as the Workload method and its greedy function is similar to the 

previous method except that instead of dividing the region into sectors of equal size, the region is 

divided into sectors of approximately equal workload content. Workload content for this method 

is measured only by the total number of points that demand a service, which are equally divided 

into the m districts. The RCL is formed by those points whose location better approximates the 

corresponding division of each district and also by those points located either immediately before 

or after the division that corresponds to each district, until all the candidates of the RCL has been 

selected.  For this method, as well as for the Angle method, an odd value of the RCL size is 

required in order to place in the RCL the point that better approximates the division of a district 

and also those located before and after that division, and so on until all the candidates have been 

selected.  

 

 

 

 



 55

IFSC-2 Compact allocation of points  
Once the set of seeds has been selected, districts are formed around the seeds. Unassigned points 

are allocated to a district, for which we propose four procedures. Each of them attempts to create 

a feasible solution and the next step is applied only if no feasible solution has been constructed. 

This procedure not only attempts to create a feasible solution, but also enhances compactness by 

assigning points to their closest seed but only if adjacency requirements are fulfilled. 

The first and second procedures also consider assigning a point to a district only if capacity 

limits of the districts are respected, reason for which we refer to them as feasible allocation of 

points. They differ in that each follows a different decision rule when assigning points, but both 

attempt to assign a point to its closest seed respecting the capacity limits of the districts. If no 

feasible solution was constructed during either of these two steps, a third procedure is applied in 

which infeasible allocations of points are allowed. However, due to the updating of adjacency 

during each assignment of points, the algorithm always attempts to make feasible assignments 

first and only if no feasible assignment is possible, then it is allowed to assign a point to a district 

even if capacity limits are not respected.  

 

The last procedure is performed with the aim of finding feasibility for the case in which an 

infeasible solution was constructed, and it consists of reallocating points among adjacent 

districts. If no feasible solution can be constructed the procedure is stopped and the set of seeds 

is discarded. Details of each procedure are presented as it follows: 

 

 

IFSC-2.1 Feasible allocation by seeds (FAS). 

Each district is formed around its corresponding seed. Once seeds have been assigned to a 

district, we repeat the following procedure during a number of iterations or until a feasible 

solution is constructed.  First step consists of selecting a seed at random. Then, a determined 

number of points are explored with the aim of assigning one point to the seed. The candidate 

points are those that are closest to the seed and are presented in a list sorted in ascending order in 

terms of the distance to the seed. A point is assigned to the district if capacity limits and 

adjacency requirements are respected.  This procedure is repeated a determined number of 

iterations.  
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We suggest that the number of iterations may be around two to three times the number of points. 

During each iteration, either one point or none is assigned to the randomly selected seed.  Also, 

as it is done during all the procedure, adjacency is updated each time that a point is assigned to a 

district. The procedure is stopped if a feasible solution is found or the stopping limit condition 

regarding a maximum number of iterations is reached.  Given that during this step capacity limits 

are respected, a feasible solution is found when all the points have been assigned.  

 

 

IFSC-2.2 Feasible allocation by points (FAP). 

If a solution found by FAS is not feasible because some of the points were not able to be 

assigned to a district, during this step an attempt to assign these points to a district respecting 

capacity limits is performed. In a sequential order , a point is selected and districts are explored 

with the aim of finding a district adjacent to the point with available capacity. If the point was 

assigned to a district, adjacency and capacity of the districts are updated, otherwise the point is 

discarded and another point is selected. The process is repeated until all the points have been 

assigned or attempted to be assigned during a determined number of iterations. If a feasible 

solution is obtained, which means that all the points are currently assigned to a district, we stop 

the procedure. 

 

 

IFSC-2.3 Infeasible allocation of unassigned points (IAUP). 

If a solution found by FAP is still infeasible, then we assign the points even if capacity limits are 

not respected. However, given that each time a point is assigned to a district the adjacency is 

updated, the procedure attempts to assign the remaining points to the adjacent district with more 

capacity available with the expectation of performing a feasible allocation or at least violate the 

capacity limits of a district as little as possible (avoiding the creation of districts with an 

excessive number of points with respect to others). First, districts are sorted with respect to the 

remaining capacity in terms of pickups or deliveries. Then the unassigned points are selected in a 

sequential order, and the districts are analyzed starting with the district with more available 

capacity in terms of pickups or deliveries (according to the workload that the point represents), 

with the aim of finding an adjacent district with enough capacity to receive the point.  



 57

If no feasible allocation is possible, then the point is assigned to the adjacent district with more 

available capacity even if the assignment violates the capacity limits. The procedure is repeated 

until all the points have been assigned, resulting in an infeasible solution that will be processed 

by the next procedure in an attempt to achieve feasibility. 

 

 

IFSC-2.4 Feasible-Reallocation of points (F-R) 

This step is performed when an infeasible solution is constructed, meaning that all the points 

have been assigned but capacity limits are not respected for one or more districts. The procedure 

consists of moving points between adjacent districts with the aim of finding a feasible solution. It 

is possible that no feasible solution exists, due to the adjacency structure.   

 

Figure 4.3 shows an example of an instance for which no feasible solution can be found. Suppose 

that each node represents a customer that requires either a pickup (P) or a delivery (D) and we 

want to define two districts for which capacity limits are: α= 1 unit and β= 2 units. It is possible 

to observe that no feasible solution exists since each district should contain one of the pickups. It 

is not possible to do so because one of the districts would be disjoint or not connected to the 

depot. 

 

 

 

 

 

 

 

Fig. 4.3: Illustration of an instance with no feasible solution. 

 

 

 

 

 

P P D D D Depot
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To move points between adjacent districts, different decision rules can be followed to determine 

which point should be moved and which district should receive the point.  The best decision rule 

depends on the current districting configuration, and it motivates the implementation of a 

hyperheuristic as part of this step that will be referred to as Hyperheuristic-Feasibility (Hyp-F). 

Details of the hyperheuristic are presented after the description of the general procedure of the 

feasible reallocation step (F-R). 

 

Given that each point requests a single service (whether a pickup or a delivery), feasibility in 

terms of each service can be addressed separately because capacity limits with respect to one of 

the services are not affected by a move of a point that requests the other service.  However, we 

may notice that a move of a point that requires one of the services has an impact on the possible 

moves to be done with respect to the other service because of the adjacency relationship among 

points and districts. For this reason we propose an iterative procedure in which, during a number 

of iterations, it is attempted to attain feasibility with respect to one type of service before 

addressing the other type of service. Once feasibility is achieved for one of both operations, the 

rest of the iterations address the service that still remains infeasible until a feasible solution is 

achieved or stopping conditions are met. 

 

For those solutions in which capacity is violated only in terms of one of the service activities, 

during each iteration only points that represent that service are analyzed for possible 

reallocations among adjacent districts. 

 

During the procedure of reallocating points, as it will be explained later, some of the low level 

heuristics proposed for the H-F allow infeasible moves. This means that moves that result in 

worse values of the infeasibility metrics are allowed. Hence, the best solution found over all the 

iterations that are performed for a specific service is maintained with the aim that if at the end of 

the procedure no feasible solution was found, some iterations over the best solution are done in a 

final attempt to get a feasible solution, but in this case allowing only moves that improve the 

infeasibility metrics.  
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To evaluate the feasibility of a solution the following metrics are defined:  

 

a) InfeasibilityP: Feasibility metric that accounts for the total number of pickups assigned to 

a district that exceeds the capacity limits,   

b) InfeasibilityD: Feasibility metric that accounts for the total number of deliveries assigned 

to a district that exceeds the capacity limits.  

 

A Feasible Solution (FS) is obtained when previous metrics have the value of zero units.  

 

c) W_dispersion: This is a secondary metric that measures the dispersion among the 

workload content allocated to the districts by computing the difference between the 

maximum and minimum district workloads. This metric mainly helps to balance the 

workload of the districts but it also contributes to measure the feasibility improvement on 

a current solution, since it is expected to get feasibility as long as the workload content 

may be balanced among the districts.  Since the only objective is feasibility, this metric is 

considered secondary and it allows moves that do not improve the infeasibility metrics, 

but decrease the dispersion on the workload content among the districts. A stopping limit 

is established for the number of consecutive iterations in which the moves performed 

only improve this metric.  

 

In section 5.2 the stopping rules for the F-R procedure are described, considering that the number 

of iterations in case that capacity is violated for a single service should be greater than those for 

the case in which the procedure alternatively iterates over both types of services.  A flow chart of 

the general procedure of the F-R is presented in figure 4.4. 
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Fig. 4.4 Flow chart of the F-R procedure. 

 

 

 

Hyperheuristic-Feasibility (Hyp-F) description 

The H-F procedure is performed to reallocate points related to a single service at a time, 

according to the process described both in the previous paragraph and figure 4.4. Table 4.1 and  

Table 4.2 present the details of the design issues of the H-F, based on the guidelines used in 

(Soubeiga, 2003). The metrics proposed to evaluate each solution are then described along with 

the low level heuristics. 
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Table 4.1 Design details of the H-F procedure (a).  

Level 0: Problem representation 

a) Complete or partial 

solutions? 

The procedure initiates with a complete but infeasible solution 

obtained in previous step of the construction phase.  

b) Acceptance criteria? Three of the low level heuristics accept only solutions that 

improve the objective function (Only improvements criterion). The 

other three heuristics consider an AM (all moves) criterion since 

worse solutions are accepted.  

c) Single or multiple 

objectives? 

Single objective: feasibility. However a secondary metric is also 

defined and a determined number of moves in which only this 

secondary metric is improved are allowed.  

d) Single solution or a 

population ?  

A single solution is created at a time.

Level 1: Low level heuristics 

a) How many? Six low level heuristics are proposed based on different decision 

rules that may be followed to determine the pair of districts from 

which a point is reallocated.  

b) How are they 

applied? 

They are randomly selected. 

c) How long are they 

applied for? 

They are either applied a single iteration or in a steepest descent 

fashion, which is randomly determined. 

d) Are they 

metaheuristics?  

All of them are based on a TS approach.
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Table 4.2 Design details of the H-F procedure (b).  

Level 2: High level Heuristic 

a) Learning 

mechanism, heuristic 

ranking? 

A simple hyperheuristic is proposed with no learning mechanism 

based on a combination of a “simple random” with a “random 

descent” hyperheuristic. For each iteration, the hyperheuristic 

randomly selects one of them.  

b) Definition of a 

decision point? 

Decision point at which a low level heuristic is chosen is defined 

in terms of the number of iterations that the heuristic selected is 

applied, which it is randomly determined between two options: 

the low level heuristic is applied during a single iteration in 

which a single point may be reallocated, or in a steepest descent 

fashion. Also as stopping rule, when a feasible solution is found 

the procedure is stopped (in terms of the type of service activity 

that is currently analyzed).  

c) Actual selection of 

heuristics? 

Selection of the heuristics is randomly performed. 

 

 

Low level heuristics description: 

The heuristics attempt to find a pair of adjacent districts such that a point can be reassigned from 

one (the sending district) to the other (the receiving district). Each of the heuristics has a TS 

function that aids in escaping local optima. The first three heuristics allow only feasible moves. 

This means that a district can receive a point only if has enough capacity. For all the heuristics, 

the districts are first sorted in descending order by workload content according to the type of 

service that is currently selected.  After this initial step the heuristics differ.  

 

Heuristic 1 designates the district at the top of the list as the sending district. Then starting from 

the bottom of the list, it seeks a receiving district that is adjacent to the sending district until a 

feasible and non tabu move can be performed. If no feasible move is found, the sending district 

is discarded and the same procedure is repeated (new sending district from top of list) until a 

feasible move is found or all possibilities are exhausted.  
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Heuristic 2 is similar and designates the sending district in the same way but the list is searched 

from top to bottom to find a receiving district. Heuristic 3 designates the district at the bottom of 

the list as the receiving district and seeks a sending district by searching the list from top to 

bottom. Heuristic 4 is similar to heuristic 1 in that the sending district is designated in the same 

way and the list is searched in the same direction. However, a move is always made on the first 

search of the list. If a feasible move is found it is executed. If no feasible move is found, the 

entire list is examined and the non tabu move that least increases the infeasibility metric is 

performed. Heuristics 5 and 6 are similar to Heuristics 2 and 3, respectively, but also may allow 

infeasible moves.  

 

The following notation is defined to identify each heuristic: 

 

F= if a district allows only feasible moves, 

I= for those districts that accept both feasible and infeasible moves (under the conditions 

previously described), 

MM=for a heuristic that selects the first and second district among those with more workload 

content, 

ML= for a heuristic that selects the first district among those with more workload content but the 

second district among those with less workload content, 

LM= for a heuristic that selects the first district among those with less workload content but the 

second district among those with more workload content. 

 

For example, FMM denotes for a heuristic that allows only feasible moves and selects the first 

district among those with more workload content and the second district also among those with 

more workload content (independently of whether the heuristic selects the receiving or sending 

district first). 

 

The six heuristics are implemented in the black box of the hyperheuristic at the beginning of the 

procedure and none of them is modified during the iterations. As it was mentioned previously, 

each heuristic is applied either in single applications or in a steepest descent fashion. In addition, 

the following stopping rules are defined: 



 64

 

a) Three consecutive iterations in which both feasibilities metrics do not improve. 

b) Five consecutive iterations in which only W_dispersion metric improves.  

 

Once a point has been reallocated, the improvement of the  infeasibility metrics with respect to 

previous iteration is computed as described in equation (75): 

 

 

 (75) 

 

where Metric refers to any of the infeasibility metrics previously defined.  

 

 

TS features of the low level heuristics:  

 

The search space consists of all the possible moves between a pair of adjacent districts, which 

differs among the low level heuristics depending on the decision rule used to select the pair of 

adjacent districts and on the criterion used to include infeasible moves as part of the search 

space. Moves that lead to assign a point to a district from which has recently moved to another 

district are classified as “tabu active” during a number of iterations (permanence) in order to 

avoid cycling back to previously visited solutions.  Aspiration criteria allows a tabu active move 

if the resulting solution is better than the currently known best solution. The following variables 

are defined:  

 

Tabu(i,j)=iteration in which point i leaves district j ,,, JjVi ∈∈  

Move(i,j)=solution in which point i is assigned to district j ,,, JjVi ∈∈  

TA=set of tabu active moves, 

Tabu tenure= Tabu permanence which is the number of iterations that a move is not allowed or 

tabu active, 

iter= Current iteration counter, 

Titer= number of iterations in which the tabu tenure is incremented twice its current value. 
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And the following condition establishes if a move is considered tabu active: 

 

itertenureTabujiTabuTAjiMove ≥+∈ ),( if  ),(          (76) 

 

See Appendix III for a pseudocode of the algorithm of the hyperheuristic and the six low level 

heuristics.  

 

 

4.2.2 Phase II: Local Search (LS) 
Once an initial feasible solution has been constructed, it is now improved by a local search (LS) 

technique. The metaheuristic employed is a Tabu Search and we propose three neighborhood 

structures: 

 

a) 1-Step LS  (1-S) 

b) 2-Steps LS  (2-S) 

c) K-Steps/Pairs LS (K-S/P) 

 

These neighborhood structures can be searched in a combined fashion. For this we propose two 

methods, resulting in total five neighborhood structures: 

 

d) Hyperheuristic LS (HypLS) 

e) 2-Iterations LS (2-IterLS) 

 

The procedure consists of an evaluation over a search space, determined by each of the 

neighborhood structures previously mentioned, that consists of the solutions found once a move 

or interchange of points among adjacent districts is performed with the aim of finding a better 

districting configuration. We programmed  five procedures that differ from each other in the 

neighborhood structure over which the solutions are explored with the aim of finding a better 

solution.  
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An iteration of the LS phase consists of the evaluation of all the solutions over a determined 

search space by equation (1). Solutions evaluated are those that result by the move or interchange 

of points among adjacent districts according to the neighborhood structure under consideration. 

In case of ties, we evaluate the solutions by equation (77) for the 1-S, 2-S, HypLs and 2IterLS 

and by equation (78) for the K-S/P. Equation (77) measures the dispersion of the workload 

content of each district with respect to an average workload assigned to the districts and equation 

(78) measures the difference on the workload content between the pair of districts analyzed. The 

solution that presents the less dispersion or difference on the workload content is preferred.  

 

∑
∈
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where  

,/ SpDXwpStpXwdStdW j
Vi

iji
Vi

ijij ++= ∑∑
∈∈               (79) 

J

W
W Jj

j∑
∈=

                (80) 

 

and d1, d2 are the pair of adjacent district selected during the iteration of the K-S/P. 

 

 

Also, it is important to mention before describing each of the neighborhood structures proposed, 

that during each iteration it is allowed to select solutions that resulted to be worse than the 

current solution found, with the aim of enhancing diversity over the search space. However, a list 

is maintained with the tree overall best solutions found for all the neighborhood structures except 

the K-S/P for which only the overall best solution is maintained. At end of the procedure, an 

attempt to improve those best solutions is made.  

 

 



 67

The procedure reports as the final districting configuration the overall best solution that was 

found for a given set of seeds from which an initial solution was constructed.  Finally, the best 

overall solution is reported as the final solution. We report both the value of the objective 

function defined by (1) that is the weighted sum of the maximum workload content and 

compactness metrics. We also report the dispersion of the workload content among the districts 

with respect to an average workload as defined by equation (77).  

 

 

 

4.2.2.1 Description of Neighborhood Structures  

 

This section presents the details of the neighborhood structures proposed. Each of them 

implements a TS short term memory with an aspiration criterion that allows a tabu active move 

only if the resulting solution is better than the current best solution. The search space consists of 

the solutions that resulted after the move or interchange of points among adjacent districts. The 

best solution found is reported after a number of iterations. As it was previously mentioned, in 

the case of ties, the solution that with the less dispersion on the workload content of the districts 

is selected.  

 

The first and second neighborhood structures consists of the solutions that result after the 

evaluation of “moves” of points between adjacent districts, which means that a single point is 

translated from one district to an adjacent district. The third neighborhood structure also 

evaluates solutions that result of “exchanges” of points, but restricts the search space over a pair 

of adjacent districts while the first and second search over all the adjacent districts. The fourth 

and fifth neighborhood structures are a combination of the first and third neighborhood 

structures.  For an interchange of points, since adjacency is a requirement for any move it is 

necessary to have at least two pairs of connected points between the pair of districts under 

consideration. 
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1-Step LS  (1-S) 

First neighborhood structure is a greedy approach that consists of a quick evaluation of all the 

feasible moves between adjacent districts. The best solution is selected and the corresponding 

move of a point is performed during each of the iterations. Given that the best move may result 

in a worse solution than current solution, during the procedure a list of the three best solutions is 

maintained. At the end of the procedure a final attempt is made to improve these three best 

solutions in hopes of finding a better solution with a small amount of additional effort. The 

overall best solution found is reported as the final solution for the given initial feasible solution.  

 

 

2-Steps LS (2-S) 

This neighborhood structure consists of an evaluation of all the possible moves between adjacent 

districts including also infeasible moves. This part of the procedure is referred to as the first step. 

For each solution found during the first step, now the search space consists of all the feasible 

solutions that result from moving a point between adjacent districts. This is referred to as the 

“second step”. Among all the solutions evaluated in the “second step”, the best solution is 

selected but only the move done during the “first step” is performed. If it turns out that it is an 

infeasible solution, then the move selected during the “second step” is also performed so that we 

always end up with a feasible solution.  Also, in case of ties, the solution that results in the lower 

dispersion metric according to equation (79) is selected and as it is done in the 1-S procedure, a 

list of the three best solutions is maintained and at the end of the procedure a final attempt is 

made to improve these three solutions, but the search is done by evaluations of a single step. The 

overall best solution found is reported as the final solution for the given initial feasible solution.  

 

The second step is performed with the aim to avoid a completely greedy selection of a solution 

as it is done in 1-S, by searching beyond the solutions that result after the move of a point and 

also exploring infeasible moves during the first step but recovering feasibility during the second 

step. However, as it is shown during the numerical experimentation stage of this research, it 

resulted in long computation times for large size instances, reason for which the algorithm based 

on this neighborhood structure was only tested with small instance sizes.  
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k-Steps/Pair LS  (k-S/P) 

This neighborhood structure is an extension of the algorithm proposed by Kerninghan and Lin 

(1970) for graph partitioning. It is an improvement routine that tries to find a better partition 

given a current, feasible partition among pairs of adjacent districts. This procedure evaluates 

both moves and exchanges of points among a pair of adjacent districts. This procedure is not 

completely greedy as the 1-S algorithm because it explores the possible moves and also 

exchanges of points in a determined number of consecutive steps. However, it restricts the search 

to a single pair of adjacent districts, while the 1-S and 2-S are more global by searching all pairs 

of adjacent districts. 

 

In this procedure, during a “first step”, all the solutions that resulted after a move or interchange 

of points between a selected pair of adjacent districts are evaluated and the best of them is 

selected. Also in case of ties, the solution that results in the lower dispersion metric according to 

equation (78) is selected. Based on the solution that resulted from the first step, a second step 

searches over all the solutions that result of moving a point or interchanging a pair of points 

among the selected districts, and again, the best solution is selected.  This procedure is repeated 

during k steps. At the end, the best overall solution among the k steps is selected.   The suggested 

value of k is ⎣ ⎦2/n , where n is the maximum number of points allocated to one of the two 

districts under consideration.  

 

To select the pair of districts, the first district is selected randomly and among its adjacent 

districts, the second one is randomly selected. To enhance diversity, during an iteration the 

probability of the selected districts is decreased by a determined percentage, and the probability 

of the rest of the districts is equally increased so that the probabilities of the districts sum to one.  

During all the iterations, the overall best solution is maintained. This is because during an 

iteration is possible to select worse solutions than the current solution to enhance diversity. 

However, at the end of the procedure the overall best solution is reported as the final districting 

configuration for the given feasible initial solution.  
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Hyperheuristic-LS (HypLS) 

This neighborhood structure is a combination of the 1-S and kS-P by a hyperheuristic. The 

hyperheuristic proposed is very similar to that for the F-R step. Also the details of the procedure 

are described based on the guidelines used in (Soubeiga, 2003) and summarized in Table 4.3. 

The hyperheuristic randomly selects one of the two neighborhood structures and explores the 

solutions according to the characteristics defined by the 1-S or kS-P search space. The best 

solution is selected and next iteration the hyperheuristic randomly selects the neighborhood 

structure over which solutions will be evaluated. This procedure is repeated a determined number 

of iterations, maintaining also a list with the three best solutions to perform a final attempt to 

improve those solutions at the end, based on 1-S. The best overall solution found is reported as 

the final solution for the given initial feasible solution. 

 

 

Table 4.3: Design details of the H-LS (a). 

Level 0: Problem representation 

a) Complete or partial 

solutions? 

The procedure initiates with a complete and feasible solution 

obtained from phase I.  

b) Acceptance criteria? All solutions that resulted of a move or interchange of points are 

accepted as long as they lead to a feasible solution even though 

may be worse than current solution.  

c) Single or multiple 

objectives? 

Single objective defined in equation (1) by a weighted 

combination of the two objectives related to workload balance and 

compactness. 

d) Single solution or a 

population of 

solutions?  

A single solution is created as a result of an iteration.  
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Table 4.4: Design details of the H-LS (b). 

Level 1: Low level heuristics 

a) How many? Two: 1-S and k-S/P

b) How are they 

applied? 

They are randomly selected. 

c) How long are they 

applied for? 

They are applied during a single iteration from which the best 

solution is reported.  

d) Are they 

metaheuristics?  

Yes all of them are based on a TS approach.

Level 2: High level Heuristic 

a) Learning mechanism, 

heuristic ranking? 

A simple hyperheuristic is proposed with no learning mechanism 

based on a “simple random” approach.  

b) Definition of a 

decision point? 

Decision point at which a low level heuristic is chosen is defined 

in terms of the number of iterations that the heuristic selected is 

applied. Stopping rules for the hyperheuristic are based on a 

maximum amount of iterations. 

c) Actual selection of 

heuristics? 

Selection of the heuristics is randomly performed. 

 

 

2-Iterations LS (2-IterLS) 

The search space defined here is also a combination of the neighborhood structures defined in   

1-S and kS-P, that results in the union of both search spaces. Given a current solution, the 

procedure consists of evaluating all the possible solutions according to each search space defined 

by 1-S and kS-P. The best solution found is selected. This procedure is repeated a certain number 

of iterations and also the three best solutions are maintained so that a final attempt to improve 

them is done based on 1-S. The best overall solution found is reported as the final solution of the 

initial feasible solution generated.  

 
See Appendix IV for a pseudo code of the algorithms based on each neighborhood structure. 
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4.3 Complexity analysis of the heuristics 
 

In this section an analysis of the computational complexity of the five heuristics based on the 

five neighborhood structures previously described is presented, for which we analyze the 

computations required to perform the two main phases of the heuristics: IFSC and LS. All the 

heuristics have in common the IFSC procedure and differ in the LS phase according to the 

neighborhood structure over which solutions are evaluated with the aim of finding a better 

solution. We first present the analysis of the IFSC procedure and then the analysis of each LS 

neighborhood structure. At the end we present the computations required for each of the five 

algorithms. 

 

 

4.3.1 IFSC Complexity Analysis 
 

As it will be shown during the analysis, the F-R turned out to be the most significant procedure 

for the number of operations required to construct the feasible initial solution. However, this 

procedure is not performed for all the solutions that are constructed and improved, only for the 

cases in which an infeasible solution was previously constructed and it is required to reallocate 

points among adjacent districts with the aim of obtaining a feasible solution.  For this reason, we 

present an analysis of the complexity for both situations, when a feasible solution is obtained 

without requiring the F-R procedure and when an infeasible solution was constructed and the F-

R is applied with the aim of obtaining feasibility.   

 

 

IFSC-1 Seeds Selection 

Given that five different methods to select the set of seeds we present the complexity of each 

method, reporting the worst case scenario for the total complexity of the construction of an initial 

feasible solution. For the procedures that required to sort either angles or distances, we used the 

“Quicksort routine” for which we consider the average case performance of )logO( nn   

comparisons.  
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The “P-Dispersion” requires )logO( VJV  time to select the set of seeds, the “Semi-Random” 

requires )O(JV , the “Neighborhood” )O( 2JV , and the “Angle” and “Workload” procedures each 

of them require )logO( JVVV +  time. We can observe that the “Neighborhood” procedure turned 

out to required the maximum number of computations among the five methods to select a set of 

seeds. We will consider this number of computations as the worst case for the selection of a set 

of seeds.  

 

 

IFSC-2 Compact allocation of points 

This procedure consists of four sub-procedures in which the first three procedures attempt to 

assign a point to a district, and the last procedure is applied in order to obtain feasibility by the 

reallocation of points (F-R). The computations required for the  FAS are )logO( 4 VV , the FAP 

requires )O( 3JV , the IAUP requires )logO( 23 JJVJV +  and the F-R )O( 25JV .  For the cases in 

which the F-R procedure is required, the total number of computations to construct an initial 

feasible solution are the sum of the computations required to select a set of seeds, for the FAS, 

FAP, IAUP and F-R procedures, resulting in )O( 25JV . When the F-R procedure is not required, 

the time required to construct an initial feasible solution is  )logO( 34 JVVV + . 

 

 

4.3.2 LS Complexity Analysis 
 

In this section we present the analysis of complexity for each of the local search procedures of 

the five heuristics proposed, considering both cases previously described for the construction of 

an initial feasible solution.   

 

 

1-Step LS algorithm 

The time required to perform the local search of this algorithm is )O( 3JV . When the F-R 

procedure is required in the construction of an initial feasible solution, the total time required for 
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the 1-S algorithm is )O( 25JV . When the F-R procedure is not required, the 1-S algorithm 

requires )logO( 34 JVVV + . 

 

 

2-Step LS algorithm 

This algorithm requires for the local search )O( 24JV  computations, resulting the LS algorithm 

that requires more time over the five procedures proposed. However, given that the time required 

to construct an initial solution is even bigger when the F-R procedure is applied, the total time 

required for the 2-S algorithm turns out to be the same as for the 2-S algorithm, which is )O( 25JV

. When the F-R procedure is not required, the 2-S algorithm requires )logO( 244 JVVV + . 

 
 
K-Steps/Pairs LS algorithm 

The time required to perform the local search phase for this algorithm is )O( 24 JVV + .  When the 

F-R procedure is required in the construction of an initial feasible solution, the total time 

required for the K-S/P algorithm is )O( 25JV  When the F-R procedure is not required, the 

algorithm requires )logO( 34 JVVV + . As we can observe, for both cases, the complexity of this 

algorithm is the same as for the 1-S algorithm. 

 

 

HypLS and 2-Iter LS algorithm 

The computations required for each of the combined LS algorithms are the same, requiring 

)O( 34 JVV +  time to perform the local search and )O( 25JV total time for the entire procedure in 

the cases in which the F-R is required and )logO( 34 JVVV + otherwise. As we can observe, for 

the entire procedure the computations required for both cases in which it is required or not the   

F-R is the same as in the 1-S and K-S/P algorithms.  
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Chapter 5 

 

Experimentation and results 
 

 

 
To test the performance of the proposed solution procedure, a set of instances was generated. All 

problem instances were solved on a 2.00 GHz Pentium processor with 2 GB of RAM running 

under Windows XP. Section 5.1 describes the instance generation procedure. Section 5.2 

presents the stopping rules conditions. Section 5.3 presents the numerical results. Section 5.4 

describes the analysis to the heuristic’s performance and Section 5.5 presents an analysis of the 

methods to select the set of seeds.  

 

 

5.1 Instance generation.  

 
Five types of instances were defined: Symmetric, Semi-Symmetric, Asymmetric, Urban and 

Parcel-based instances. The first four types are randomly generated and last type is made using 

data provided by the company under consideration, which was obtained by sending some GPS in 

the routes to store the location of stops made during some days. Further details will be provided 

in this chapter.  

 

A symmetric instance is that in which the optimal solution consists of “symmetric” districts, that 

is, districts with the same workload content and the same shape. These instances are the most 

unrealistic type, but are included in the numerical experimentation in order to measure the 

performance of the algorithm for larger instances in which CPLEX is not able to find neither the 

optimal nor at least an integer solution. For this type of instances, even though the graph is not 

complete, Euclidean distances are computed even if the points are not connected to guarantee 

symmetry.  
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We also include a variant of this type of instances that we referred as Semi-Symmetric. These 

instances differ to the former type in that the distances are computed by finding a shortest path 

among the points that are not connected by an edge instead of computing Euclidean distances for 

all the points as it is done in the symmetric instances. Semi-symmetric instances are included in 

the numerical experimentation since they are a type of instance that CPLEX can solve more 

easily (for smaller instance sizes), allowing more optimal solutions to be found for comparison 

purposes.  

 

 

Asymmetric instances are more general instances and consists of points uniformly distributed 

over a plane.  Urban instances consist of points distributed over a region that resembles the 

structure of the metropolitan area of Monterrey, N.L. Mexico. As it was previously mentioned, 

this last type of instance is made by data provided by the parcel company. It consists of the 

locations of the stops made by the vehicles during a representative day, obtained by a GPS unit 

that was carried in the delivery vehicles. The edge set is formed by real distances between 

adjacent points, considering as a rule that there must be an edge connecting a pair of points only 

if there are no intermediate points between them.  Details of the generation of each of the 

instance types will be described in the following subsections.  

 

 

5.1.1 Symmetric, Semi-Symmetric and Asymmetric instances generation 
Five different instance sizes were defined, which are classified by the number of points and 

districts: 

 

• Small instances:  50 points/5 districts and  200 points/10 districts; 

• Medium instances:   450 points/15districts; 

• Large instances: 1000 points/20 districts and 1500 points/30 districts.  

 

To generate all the types of instances, the location of points is first determined over a plane using 

polar coordinates (which are then converted to Cartesian coordinates) with the depot located at 

the origin. Then the workload of each point is randomly assigned (either a pickup or delivery) 
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and the edge set is defined according to each type of instance. The last step consists of 

determining the shortest path among all pairs of points including the depot.  

 

 

For the case of a symmetric instance, we first generate one of the districts and then we rotate this 

district to form the rest of the districts symmetrically, such that districts consists of subgraphs of 

equal size. There must exist an empty and small region of equal size separating the districts with 

respect to each other. Workload content is also equal for all the districts, such that the farthest 

point to the depot has the same distance for all, and each point of a district represents the same 

workload for the corresponding symmetric points in the rest of the districts.  

 

The details of the procedure to generate the instance are as follows: for each district, the radius of 

the farthest point is estimated by defining a range from which the value is randomly selected. 

The range is defined as a function of the instance size as it will be described later in this section. 

Once the districts are defined as well as the spanning tree that connects the edges within a 

district, m edges are included in E to connect the m closest points to the depot. Also, in order to 

connect the districts between each other, the point with the maximum angle with respect to the 

depot of a district is selected and the edge that connects that point to the closest point of an 

adjacent district is included in E. The symmetric edge for the rest of the districts is also included. 

Finally a random edge that connects points within a district as well as the corresponding 

symmetric edges for the rest of the districts are also included in E. Euclidean distances are 

computed for all the points independently of the edge set definitions. For the case of the Semi-

Symmetric instances, Euclidean distances are computed only for the points that are connected by 

an edge, and for the rest as it was previously mentioned, all shortest paths are found using the 

Floyd-Warshall algorithm, (Floyd, 1962). 

 

For an asymmetric instance, all points are uniformly generated over the plane and a spanning tree 

is computed to include the corresponding edges in E, as well as the edges to connect the m 

closest points to the depot. Additional edges are randomly selected. The distance matrix is found 

following the same procedure than for the Semi-Symmetric instances.  
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Even though these instances do not resemble the urban structure of a city, the size of the region 

is defined according to the size of the metropolitan region of Monterrey city, Mexico. This 

region has 3159.4 km2 and includes eight adjacent cities:   

1. Apodaca : 183.5 km² 

2. Escobedo: 191 km² 

3. Guadalupe:  151.3 km² 

4. Juárez: 277.8 km² 

5. Monterrey: 451.30 km² 

6. San Nicolás de los Garza: 86.8 km² 

7. San Pedro Garza García : 69.40 km² 

8. Santa Catarina :  984.50 km²    

Figure 5.1 shows a map of the region. Garcia city is not included as part of the metropolitan 

region by the parcel company because it is assigned to a different service region. The figure and 

data were obtained from the Enciclopedia de los Municipios en Mexico, 2005. 

 

  
Fig. 5.1 Metropolitan region of Monterrey city.  
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We consider for the large instance size that the corresponding region of the instance should be 

approximately equal in size to the metropolitan region of Monterrey city, assuming a circular 

shape, and a scaled sub region for the rest of the instances according to their size. For this, the 

value of the farthest point to the depot is generated among a range that contains the desired 

radius value for each instance size, with a tolerance of +/-5%.  Table 5.1 presents the 

corresponding area of the region, the radius, and the range for each instance size. 

 

Table 5.1: Corresponding radius for each instance size. 

Instance 

(points) 

Area Radius Range 

1500 3159.4 31.71224 30.12662 - 33.29785 

1000 2106.266667 25.89293 24.59829 - 27.18758 

450 947.82 17.36951 16.50103 - 18.23798 

200 421.2533333 11.57967 11.00069 - 12.15865 

50 105.3133333 5.789836 5.50034 - 6.07933 

 

 

Regarding the stopping times for the pickup and delivery activities, we fixed them at a realistic 

value for all the instances generated, considering that the service activities are done in an urban 

region and that a pickup usually requires more time than a delivery: 5 minutes (1/12 hour) for the 

average stopping time that a delivery requires, 10 minutes (1/6 hour) for a pickup. We define 

three levels of average speed, assuming that all the vehicles assigned to the districts travel on 

average at the same speed over the entire service region: 25 kilometers/hour, 30 kilometers/hour 

and 35 kilometers/hour. These values were validated by the parcel company operating in 

Monterrey, Mexico.  

 

Each point was assigned a pickup or a delivery at random with equal probability. The limits on 

the number of pickups and deliveries were set using equations (82) and (83), respectively.  

 

toleranceJwp
Vi

i +⎥
⎥

⎤
⎢
⎢

⎡
= ∑

∈
/α                                   (82) 
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toleranceJwd
Vi

i +⎥
⎥

⎤
⎢
⎢

⎡
= ∑

∈
/β                                   (83) 

 

Two levels of capacity are defined: tight (T) and less restricted (LR). The tolerance term is 

determined according to the instance size and the tightness of capacity. Table 5.2 shows the 

expressions used to compute the tolerances: 

 

 

Table 5.2 Tolerance definition.  

Tight (T) Less restricted (LR) 

 )/15.0Floor( JV ⋅ ))/22.0Floor( ,2Max( JV ⋅  

 

 

 

The edge set is formed such that the graph is connected and incomplete. For this, a spanning tree 

is first found. Then the edges that connect the depot to its m closest points are added to the graph. 

Finally, points are connected to their nearest neighbors at random until the average number of 

edges per point is in a range of two to four edges. This is the realistic range for a real urban road 

network. The relative weighting factor was varied over three values: λ=0.25, 0.5, and 0.75.   

 

 

We generated three replicates for each of the five instance sizes and for each of the three types of 

instances. Each instance was solved varying the three values of the relative weighting factor, the 

two levels of capacity limits and the three values of speed resulting in a total of  3 x 5 x 3 x 3 x 2 

x 3 = 810 instances.  
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5.1.2 Urban instances generation 
As we have previously mentioned, these instances are generated such that they may resemble the 

structure of the metropolitan region of Monterrey, excluding also Garcia city since this city is not 

served by the depot located in Monterrey by the parcel company that motivated the study of this 

problem. Points were generated such that their location correspond to places over the region in 

which there actually exists a home, office or a building that may be visited by the service 

vehicles. This means that points cannot be located over the mountains that are found in the 

metropolitan region such as the “Cerro de la Silla”, “Cerro de Topochico”, “Cerro de las 

Mitras” and “Cerro de la Huasteca”.   

 

To define the location of the points for each of the instances of this type, we generated two sets 

of what we call “base points”, from which points are randomly selected to form each of the 

instances. Both sets of base points respect the conditions mentioned in previous paragraph. The 

first set of base points consists of 2211 points that are located over the entire metropolitan region 

under consideration and includes the data of the customers provided by the parcel company that 

correspond to 1176 points as well as additional points in order to cover the regions in which 

there were no demand points for the routes of the parcel company.   

 

The depot is located in the same place as it is for the parcel company, which is approximately at 

the center of the geographical region. Among this set of base points, for the larger size instances 

of 1000 and 1500 points, the points are randomly selected to resemble a geographical region that 

covers the entire metropolitan area. The workload content of each point is randomly determined 

following the same procedure as for the asymmetric instances. Figure 5.2 and 5.3 show two 

different views of the base points over the metropolitan region of Monterrey by the use of 

Google Earth version 4.3.7284.3916 and Figure 5.4 shows them over a plane as rendered by GPS 

Trackmaker Version 13.3.  
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Fig. 5.2 View (a) of the location of the base points for the large size instances. 

 

 
Fig. 5.3 View (b) of the location of the base points for the large size instances. 
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Fig. 5.4 Location of the base points for the large size instances.  

 

 

 

The second set of base points covers a smaller region that includes only Monterrey, and part of 

the cities of San Pedro, San Nicolas and Guadalupe. This set consists of 1185 base points and it 

is created to generate the small and medium size instances such that the region may be of smaller 

size than that of the large size instances.  For each of the five instance sizes, three replicates were 

generated, and each of them were tested varying over the two capacity limits, the three values of 

the relative weighting factor as well as the three values of speed, resulting in total 

5x3x2x3x3=270 instances.  

 

Figure 5.5 and 5.6 show two views of the set of points located on a map by Google Earth and 

figure 5.7 shows the view of the points over a plane by GPS Trackmaker. 
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Fig. 5.5 View (a) of the location of the base points for the small and medium size instances. 

 
Fig. 5.6 View (b) of the location of the base points for the small and medium size instances. 

 



 85

 
Fig. 5.7 Location of the base points for the smaller and medium size instances. 

 

 

 

5.1.3 Parcel instances generation 
This type of instance is generated by considering the data provided by a parcel company whose 

operations are performed over the metropolitan region of Monterrey, Nuevo Leon, Mexico, 

excluding the city of Garcia. Data was collected from some days in which a GPS was sent with 

each of the vehicles and the stops made over the route were registered. Given that information 

provided from the GPS is not totally accurate, since it includes any type of stops that may be due 

to traffic signs or any other stop made during the route, we had to form a representative instance 

from the data registered by the GPS that may resemble the structure of the districting 

configuration of the parcel company.  Approximately among 30 to 50 points were taken from 

each route and with the required adjustments to exclude points that are very close to each other 

and may not represent different customers we constructed the instance with the real location of 

1109 customers over the metropolitan region of Monterrey, as it is illustrated by figure 5.8 and 

5.9 shows the location of the points over a map and on a plane respectively.  
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Fig. 5.8 Location of the points on a map for the Parcel instance. 

 

 
Fig. 5.9 View of the location of the points on a plane for the parcel instance. 

 

The set of edges was defined according to the following rule: for each pair of points, an edge will 

be included in the graph if the points are adjacent which means that there are no intermediate 

points to cross between the pair of points. Each point may have in average around three to four 

edges, with a maximum of six and a minimum of two edges. The depot was defined so that it has 

fifteen edges connecting the depot with its closest point. Previous considerations allows the 

instance to be created such that it may resemble the structure of the region under consideration.  
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Each edge represents the real distance between the pair of points, and it is computed respecting 

the street structure, which implies that for this type of instance, points that may appear to be 

close may actually be far apart due to the existence of obstacles such as bridges, drainage canals, 

and private streets. Figure 5.10 illustrates the computation of the distance between a pair of 

points. 

 

 
Fig. 5.10 Illustration of the computation of the real distances for the parcel instances. 

 

 

Once the edge and distance matrix was defined, we randomly assigned the workload content of 

each point, generating a single replicate of the instance which was solved for the case of each of 

the two capacity limits that were defined for the rest of the instance types and also varying the 

three values of the relative weighting factor as well as the three values of the speed.  

In total 2x3x3= 18 instances were tested.  Results are compared to the current districting design 

of the parcel company. Figure 5.11 illustrates the location of the points over a map, without any 

districting configuration and figure 5.12 shows the current districting design of the parcel 

company with 28 districts: 
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Fig. 5.11 General view of the points for the parcel instance. 

 

 
Fig. 5.12 Districting configuration of the parcel instance. 

 

Section 6 contains the comparison of the solution value of both the objective function defined by 

equation (1) and the dispersion of the workload content among districts as defined in equation 

(81).  
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5.1.4 Total number of experiments performed 
Considering all the types of instances, a total of 810+270+18= 1,098 instances were generated. 

From these instances, only the smallest size instances were able to be solved by CPLEX, which 

correspond only to the smallest size instances (50_5 and 200_10) of the four types of instances: 

 symmetric, semi-symmetric, asymmetric and urban type.  In total, considering all the variants on 

the parameters, 54 instances of each size and type were solved, resulting in total 2x4x54=432 

instances that were solved by each of the two optimization models based on the farthest point 

line haul metric defined in Chapter 3.   

 

The best integer solution found by CPLEX is reported, for both the weighted sum of the metrics 

for the compactness and balance of the workload metric defined by equation (1) as well as the 

value of the dispersion that corresponds to the objective function of the second optimization 

model defined by equation (10).  For the heuristics, the value of the objective function defined by 

equation (1) as well as the value of the dispersion of the workload content among the districts 

defined by equation (10) is also reported.  

 

 

The 1,098 instances were solved by each of the five proposed heuristics except for the 2-steps 

LS, since it turned out to be computationally inefficient for the larger size instances. For this 

heuristic we present results for all the instance types of 50_5, 200_10 and 450_15 size, as well as 

the Parcel instances. In total for this 666 instances were solved by the 2-S heuristic. The runs 

performed by the five heuristics accounts to 1098x4= 4392+66= 5058 runs.  All the heuristics 

evaluate the solutions based on the farthest point line haul metric, defined by equation (1), and in 

case of ties, they select the solution with less dispersion as it is described in equations (77) for all 

the algorithms except for the k-Steps/Pairs  that uses equation  (78). 
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5.2 Stopping Rules.    

 
A limit time of 3600 seconds was set for the small size instances solved by CPLEX. For the 

medium size instances of 450 points a limit time of 7200 was set but CPLEX could not find an 

integer solution, even with no limit time the memory ran out. Hence only the small size instances 

were solved by CPLEX. For the all the heuristics we set a maximum limit time of 3600 seconds 

as it was done for CPLEX, however as results will show, only the larger instances reached this 

limit time.  

 

 

We also define some stopping conditions as a function of the instance size. Table 5.3 presents the 

number of iterations that were established for the F-R procedure as well as the LS procedures of 

each heuristic according to the instance size. We also define a maximum number of points to 

explore during the FAS procedure in which it is attempted to assign a point to a district 

according to the instance size. 

 

 

Table 5.3: Stopping conditions according to the instance size. 

Instance 

(points) 

F-R 

procedure  

LS procedure FAS 

procedure 

50 15 iterations 40 iterations 5 points 

200 25 iterations 40 iterations 10 points 

450 25 iterations 40 iterations 15 points 

1000 30 iterations 50 iterations 25 points 

1500 40 iterations 70 iterations 35 points 

Parcel-1109 40 iterations 60 iterations 25 points 

 

We also defined for all the heuristics some stopping conditions for the cases in which the F-R 

may be required to be applied, since there might be some cases in which it was possible to find a 

feasible solution during whether the FAS or FAP procedures. 
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The stopping conditions are divided in two categories: the cases in which capacity is violated in 

terms of a single service activity (pickup or delivery) and the cases in which capacity is violated 

for both activities and the procedure alternates the iterations performed to attempt obtaining 

feasibility with respect to each activity. Table 5.4 and 5.5 summarize these stopping conditions. 

 

Table 5.4: Stopping conditions for the F-R procedure (a). 

Capacity is violated in terms of a single service activity (pickup or delivery) 

Max_iter =Maximum number of 

iterations for the H-F procedure applied  

to achieve a feasible solution with 

respect to each service activity 

(P=pickups, D=deliveries). 

⎡ ⎤ PP ityInfeasibilMaxFiterMax +=_ , 

 

⎡ ⎤ DD ityInfeasibilMaxFiterMax +=_  

 

Max_Best =Maximum number of 

iterations for the H-F applied over the 

best solution previously found. 

PP ityInfeasibilMaxFBestMax +⎥⎥
⎤

⎢⎢
⎡=

2
_ , 

DD ityInfeasibilMaxFBestMax +⎥⎥
⎤

⎢⎢
⎡=

2
_  

Capacity is violated in terms of both service activities (pickup and delivery) 

Tot_iters= Total number of iterations in 

which the H-F is applied with respect to 

one of the types of service activities. The 

H-F procedure includes the iterations 

performed over the current solution and if 

required over the best solution found.  

⎡ ⎤VitersTot ⋅+= 01.05_  

 

 

 

Max_iter PP ityInfeasibilMaxFiterMax +⎥⎥
⎤

⎢⎢
⎡=

4
_ , 

DD ityInfeasibilMaxFiterMax +⎥⎥
⎤

⎢⎢
⎡=

4
_  

Max_Best PP ityInfeasibilMaxFBestMax +⎥⎥
⎤

⎢⎢
⎡=

8
_ , 

DD ityInfeasibilMaxFBestMax +⎥⎥
⎤

⎢⎢
⎡=

8
_  
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Table 5.5: Stopping conditions for the F-R procedure (b). 

Capacity is violated in terms of both service activities (pickup and delivery) cont. 

Maximum number of iterations 

for the H-F applied over the current solution 

when only one of the services remains 

infeasible after a number of consecutive 

iterations in which it was applied alternating 

the services that is referred as iters. 

⎡ ⎤ PityInfeasibilitersMaxFiterMax +−= 4/)(_ *  

 

⎡ ⎤ DityInfeasibilitersMaxFiterMax +−= 4/)(_ *  

 

Maximum number of iterations 

for the H-F applied over the best solution 

previously found when only one of the 

services remains infeasible. 

  

⎡ ⎤ PityInfeasibilitersMaxFBestMax +−= 8/)(_ *  

⎡ ⎤ DityInfeasibilitersMaxFBestMax +−= 8/)(_ *

 

 

 

5.3 Numerical Results.  

 
For each of the instances solved by CPLEX and the heuristics, we compute a gap between the 

best integer solution reported by CPLEX (that in some cases corresponds to the optimal) and 

each of the five heuristics proposed as described by equation (84). Positive gaps are obtained 

when CPLEX finds a better solution than the heuristics. Gap is computed for the objective 

function defined by equation (1) found by CPLEX and the heuristics. A positive Gap indicates 

that CPLEX found a better solution than the heuristic, and a negative gap indicates that the 

solution found by the heuristic is better than the best integer solution found by CPLEX under the 

limit time that was set. 

 

solCPLEX
solCPLEXsolHeurGap

_
__ −

=                                     (84) 
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Also, for the case of the symmetric instances, the value of the symmetric optimal solution that is 

known with advance is compared to the solution found by the heuristic and an analogous gap to 

that computed with respect to CPLEX solutions is reported.   

 

It is important to point out that the inclusion of constraints (17) to (19) for the second 

optimization model was required given that during the experimentation we observed that 

constraint (7) allows Dj to take any value greater or equal to the time to travel from the depot to 

the farthest point, which for the first model did not represent any problem since we want to 

minimize the maximum workload content of a district and constraints (7) are enough to 

guarantee that we compute the value of the maximum workload content of a district. However, 

for the second optimization model constraints (7) did not guarantee that Dj takes the exact value 

of the time to travel from the depot to the farthest point of each district, and  allow the model to 

give the required value to Dj so that all the districts seem to have the same workload content 

resulting in a zero value of the variance. For this reason, the experimentation was redone and 

constraints (17) to (19) were included in the second optimization model.  

 

 

We also want to report that even though that we feed an initial solution for the second 

optimization model, there were some instances in which CPLEX did not report an integer 

solution during the limit time that was set. This is because the first model did not include the Yij 

variables, and hence we only feed to the second model the values of the Xij variables, reason for 

which it was not a complete initial solution for the model. We also observe that for the instances 

of 200_10, the integer solution reported by CPLEX resulted with some empty districts, which 

makes even more difficult for the second model to obtain a feasible solution. For this cases, we 

report the best integer solution reported by CPLEX and we compute the corresponding 

dispersion.  
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5.3.1 Results by type and instance size 

 

In this section we present the results found summarized by type and instance size. Table 5.6, 5.7 

and 5.8 present the results for the Asymmetric, Semi-Symmetric and Urban instances with 

respect to CPLEX solutions. CPLEX found at least an integer solution only for the size instances 

of 50_5,  200_10 and 450_15 for which the maximum, average and minimum gap is shown. 

Table 5.8 presents the results for the Symmetric instances with respect to the “Optimal 

symmetric” solution that is known with anticipation because of the structure of this type of 

instance, and the table present the gaps for CPLEX, and the five heuristics for each instance size 

(for CPLEX only the instance sizes that could be solved).  

 

We can observe from Table 5.6 that CPLEX did not find the optimal solution for the instances of 

200_10, and as we can observe from the table, all the heuristics found a better solution than the 

best integer solution reported by CPLEX for this instance size. For the smaller size instances of 

50_5, CPLEX found the optimal solution for almost all the instances, and in all the cases 

reported a better or equal solution than the heuristics. We can also observe that the heuristics 

reported in average small gaps, and a maximum gap of less than 15%. Among the heuristics, the 

1-S reported the smallest gaps.  

 

 

Table 5.6 Gaps with respect to CPLEX for the Asymmetric instances by instance size. 

SIZE GAP with 
respect to 
CPLEX 

ASYMMETRIC 

2-S K-S/P 1-S HypLS 2-IterLS 

50_5 max 0.07606 0.13267 0.08730 0.13925 0.12692
average 0.00725 0.04004 0.01588 0.02093 0.01203
min 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 max -0.21486 -0.19276 -0.19794 -0.20084 -0.20060
average -0.41733 -0.37214 -0.40205 -0.40342 -0.40772
min -0.57094 -0.53633 -0.55535 -0.55232 -0.54543
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As we can observe in Table 5.7, for all the instances of 50_5, the heuristics found the optimal 

solution that CPLEX found, and for the case of the instances of 200_10, all the heuristics found a 

best solution than the integer solution reported by CPLEX or at least the same solution found by 

CPLEX, except for the K-S/P heuristic that in some instances CPLEX found a better solution, 

however as we can observe, gaps are quite small.  

 

 

Table 5.7 Results for the Semi-Symmetric instances with respect to CPLEX by instance size. 

SIZE GAP with 
respect to 
CPLEX 

SEMI-SYMMETRIC 

2-S K-S/P 1-S HypLS 2-IterLS 
50_5 max 0.00000 0.00000 0.00000 0.00000 0.00000

average -0.00107 0.00000 0.00000 0.00000 0.00000
min -0.01011 0.00000 0.00000 0.00000 0.00000

200_10 max 0.00000 0.05697 0.00000 0.00000 0.00000
average -0.45756 -0.42499 -0.45540 -0.46049 -0.46116
min -0.59868 -0.56347 -0.59868 -0.59868 -0.59868

 

 

Regarding the urban instances we can observe in Table 5.8 small gaps for the smaller instances 

of 50_5 for which CPLEX found the optimal solution and even for some of the instances the 

heuristics found also the optimal solution and on average present small gaps with respect to 

CPLEX. For the instances of 200_10 all the heuristics found a better solution than the best 

integer solution reported by CPLEX.  

 

 

Table 5.8 Results for the Urban instances with respect to CPLEX by instance size. 
SIZE GAP with 

respect to 
CPLEX 

URBAN 

2-S K-S/P 1-S HypLS 2-IterLS 
50_5 max 0.00000 0.12911 0.00018 0.04565 0.00000

average 0.00000 0.01637 0.00002 0.00572 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 max -0.29542 -0.24098 -0.23136 -0.28321 -0.28790
average -0.51376 -0.45043 -0.49329 -0.50453 -0.51675
min -0.70590 -0.65553 -0.68156 -0.69891 -0.72161
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For the Symmetric instances we can observe in Table 5.9 that CPLEX found the optimal solution 

for the 50_5 instances and as well as all the algorithms except the K-S/P. For the latter, small 

gaps are presented on average, and only for some instances that are the tight instances a gap of 

20% was found. For the instances of 200_10 the heuristics did not find the optimal solution 

neither CPLEX, and on average present small gaps, even though there were some instances with 

quite bigger gaps of around 20 to 30% for all the instances sizes. 
 

 

Table 5.9 Results for the Symmetric instances with respect to the optimal symmetric solution by 

instance size. 
SIZE GAP with 

respect to 
the 

Optimal 
Symmetric 

SYMMETRIC 

CPLEX 2-S K-S/P 1-S HypLS 2-
IterLS 

50_5 max 0.00000 0.00000 0.20224 0.00000 0.00000 0.00000

average 0.00000 0.00000 0.03336 0.00000 0.00000 0.00000

min 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 max 1.55344 0.22334 0.37775 0.22334 0.23084 0.22334

average 0.16309 0.04859 0.17315 0.04859 0.08682 0.02933

min -1.00000 0.00000 0.08048 0.00000 0.00000 0.00000

450_15 max   0.21164 0.28140 0.22616 0.26886 0.26160

average 0.06062 0.12696 0.07794 0.11443 0.09237

min 0.00000 0.02804 0.00000 0.00000 0.00000

1000_20 max   0.38083 0.18808 0.23955 0.24019

average 0.12535 0.07167 0.09078 0.07868

min 0.04102 0.02865 0.01743 0.01743

1500_30 max   0.34573 0.33690 0.34573 0.33690

average 0.10375 0.13772 0.12852 0.08862

min 0.00000 0.00000 0.00000 0.00000
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5.3.2 Results by type, instance size and capacity limits 
In this section we present the results found summarized by type, instance size and the two 

capacity limits defined for the instances. Table 5.10, 5.11, 5.12 and 5.13 presents the results for 

the Asymmetric, Semi-Symmetric, Urban and Symmetric instances, in comparison to CPLEX 

solutions, respectively.  

 

In table 5.10 we can observe that the tight instances resulted more difficult to solve in general, 

and smaller gaps are found for the instances of 50_5 with respect to CPLEX that in most of the 

cases found the optimal solution for these instances, and for the 200_10 instances the gaps with 

respect to the solution found by CPLEX and the algorithms are similar for both type of capacity 

limits, in which the heuristics found a better solution than the reported by CPLEX. 

 

 

Table 5.10 Results for the Asymmetric instances vs. CPLEX by instance size and capacity limits 
SIZE CAPACITY GAP with 

respect to 
CPLEX 

ASYMMETRIC 

2-S K-S/P 1-S HypLS 2-
IterLS 

50_5 Less 
restricted 

max 0.01396 0.08264 0.03061 0.04564 0.01396
average 0.00438 0.03110 0.00925 0.00903 0.00320
min 0.00438 0.03110 0.00925 0.00903 0.00320

Tight max 0.07606 0.13267 0.08730 0.13925 0.12692
average 0.01012 0.04899 0.02251 0.03283 0.02087
min 0.01012 0.04899 0.02251 0.03283 0.02087

200_10 Less 
restricted 

max -0.21486 -0.19276 -0.19794 -0.20084 -0.20060
average -0.41084 -0.37448 -0.39350 -0.39931 -0.40256
min -0.57094 -0.53633 -0.54468 -0.54450 -0.54543

Tight max -0.24750 -0.21661 -0.25302 -0.23635 -0.24443
average -0.42382 -0.36980 -0.41060 -0.40754 -0.41287
min -0.55652 -0.50011 -0.55535 -0.55232 -0.53779
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In table 5.11 we can observe that for the Semi-Symmetric instances, given that the heuristics 

found the optimal solution as well as CPLEX did it for the smaller size instances, there is no 

difference with respect to the capacity limits. For the case of the instances of 200_10 we can 

observe that the tight instances resulted either easier to be solved than the less restricted, or at 

least the heuristics found the same solution than CPLEX. For the tight instances, all the 

heuristics found a better solution than the reported by CPLEX.  

 

 

Table 5.11 Results for the Semi-Symmetric instances vs. CPLEX by instance size and capacity 

limits. 
SIZE CAPACITY GAP with 

respect to 
CPLEX 

SEMI-SYMMETRIC 

2-S K-S/P 1-S HypLS 2-IterLS
50_5 Less 

restricted 
max 0.00000 0.00000 0.00000 0.00000 0.00000
average 0.00000 0.00000 0.00000 0.00000 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000

Tight max 0.00000 0.00000 0.00000 0.00000 0.00000
average 0.00000 0.00000 0.00000 0.00000 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 Less 
restricted 

max 0.00000 0.05697 0.00000 0.00000 0.00000
average -0.44501 -0.40638 -0.44069 -0.44368 -0.44501
min -0.59868 -0.55672 -0.59868 -0.59868 -0.59868

Tight max -0.30760 -0.28311 -0.30760 -0.30760 -0.30760
average -0.47012 -0.44359 -0.47012 -0.47730 -0.47730
min -0.59484 -0.56347 -0.59484 -0.59674 -0.59674

 
 

For the case of the urban instances, in Table 5.12 we observe similar gaps for both type of 

capacities. In the case of the 50_5 instances, the 2-IterLS found the optimal solution as well as 

CPLEX did it and for the 1-S algorithm it resulted that some instances of less restricted capacity 

could not find the optimal solution but presents gaps very small. For the instances of 200_10 

size, all the heuristics found a better solution than CPLEX and results do not differ too much 

between both types of capacity.  
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Table 5.12 Results for the Urban instances vs. CPLEX by instance size and capacity limits. 
SIZE CAPACITY GAP with 

respect to 
CPLEX 

URBAN 

2-S K-S/P 1-S HypLS 2-IterLS

50_5 Less 
restricted 

max 0.00000 0.02875 0.00018 0.01168 0.00000
average 0.00000 0.00783 0.00004 0.00271 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000

Tight max 0.00000 0.12911 0.00000 0.04565 0.00000
average 0.00000 0.02490 0.00000 0.00872 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 Less 
restricted 

max -0.31338 -0.24705 -0.30749 -0.30609 -0.31563
average -0.51458 -0.45661 -0.50240 -0.50373 -0.51341
min -0.70590 -0.65553 -0.68156 -0.69702 -0.70568

Tight max -0.29542 -0.24098 -0.23136 -0.28321 -0.28790
average -0.51294 -0.44424 -0.48418 -0.50534 -0.52009
min -0.69921 -0.65100 -0.67780 -0.69891 -0.72161

 

 

 

Regarding the symmetric instances, we can observe in table 5.13 that results do not differ too 

much between both types of capacity and depending on the instance size there are cases in which 

some heuristics present bigger gaps with the less restricted capacity such as for the K-S/P 

algorithm and the 200_5 size, and there are cases in which the tight capacity resulted in bigger 

gaps such as for the same heuristic and the instance of 1000_20 size.  
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Table 5.13 Results for the Symmetric instances with respect to the optimal symmetric by 

instance size and capacity limits. 

SIZE CAPACITY GAP with 
respect to 

the Optimal 
Symmetric 

SYMMETRIC 

CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 Less 
restricted 

max 0.00000 0.00000 0.20224 0.00000 0.00000 0.00000
average 0.00000 0.00000 0.06672 0.00000 0.00000 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Tight max 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
average 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 Less 
restricted 

max 1.55344 0.22334 0.37775 0.22334 0.23084 0.03767
average 0.29240 0.04859 0.18327 0.04859 0.09761 0.00646
min -1.00000 0.00000 0.09358 0.00000 0.02820 0.00000

Tight max 1.45398 0.22334 0.26715 0.22334 0.23084 0.22334
average 0.03377 0.04859 0.16303 0.04859 0.07603 0.05220
min -1.00000 0.00000 0.08048 0.00000 0.00000 0.00000

450_15 Less 
restricted 

max 0.14265 0.27613 0.20954 0.26160 0.26160
average 0.02928 0.13545 0.05099 0.10783 0.09143
min 0.00000 0.04152 0.00000 0.00000 0.00000

Tight max 0.21164 0.28140 0.22616 0.26886 0.22616
average 0.09197 0.11847 0.10488 0.12103 0.09331
min 0.02089 0.02804 0.02999 0.01349 0.00495

1000_20 Less 
restricted 

max 0.31193 0.11724 0.23536 0.16267
average 0.12026 0.06612 0.09425 0.06791
min 0.04914 0.02865 0.04558 0.01743

Tight max 0.38083 0.18808 0.23955 0.24019
average 0.13044 0.07723 0.08732 0.08944
min 0.04102 0.02865 0.01743 0.03291

1500_30 Less 
restricted 

max 0.34573 0.33690 0.34573 0.33690
average 0.09848 0.14400 0.11974 0.09391
min 0.00000 0.00000 0.00000 0.00000

Tight max 0.34573 0.33248 0.34132 0.26889
average 0.10902 0.13144 0.13731 0.08333
min 0.00000 0.00000 0.00000 0.00000
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5.3.3 Objective function and dispersion of the workload content values by 

instance type and size 
 

In this section we present the minimum, average and maximum value of the objective function 

found for each instance as defined by equation (1) and also for the dispersion of the workload 

content among the districts as defined by equation (77). Tables 5.14 to 5.21 present the results 

for each instance type. 

 

 

In Table 5.14 we can observe that for the asymmetric instances, the objective function values are 

very similar to those found by CPLEX for the instances of 50_5, resulting the 2-S algorithm with 

better objective function values, but very close to those found by the 1-S. For the 200_10 

instances all the algorithms found a better solution than CPLEX, and also the 2-S resulted with 

better solutions but very close to those reported by the 1-S. For the 450_15 instances it is 

possible to observe that even though for the smaller size instances the 2-S resulted in better 

solutions, for this instance size that was the biggest size instance solved by this algorithm, the 1-

S performed better. This make us think that the 2-S algorithm that consumes such long time for 

large size instances, would not actually provide better solutions as those algorithms that are more 

efficient.  

 

 

In table 5.15 the dispersion of the workload content is presented. We can observe that for the 

case of the hyperheuristic, there are instances of the biggest size of 1500_30 in which the 

heuristic found a solution with a dispersion of zero value, and on average it resulted in the 

smallest value of the workload dispersion for the medium and large instance sizes. For the 

smaller size instances of 50_5 the 2-S found solutions with less workload dispersion, and for the 

200_10 the 1-S resulted in better solutions.  
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Table 5.14 Objective function values for the Asymmetric instances by instance size. 
SIZE METRIC ASYMMETRIC 

OBJECTIVE FUNCTION 
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 0.94953 0.94953 1.01772 0.94953 0.97601 0.96096
average 0.86612 0.87254 0.90121 0.88002 0.88443 0.87673
min 0.73923 0.73923 0.74909 0.73923 0.73923 0.73923

200_10 max 2.27857 1.12006 1.25560 1.13878 1.15585 1.12936
average 1.74385 0.98316 1.06500 1.00986 1.00833 1.00082
min 1.21589 0.86576 0.95652 0.89946 0.90280 0.88679

450_15 max   1.38493 1.42181 1.21598 1.34886 1.22486
average 1.15369 1.21059 1.08904 1.12892 1.08770
min 1.04996 1.06012 1.00393 1.01917 0.99298

1000_20 max 1.67838 1.53757 1.53481 1.53268
average 1.37688 1.27487 1.28518 1.27241
min 1.17574 1.08738 1.12186 1.10148

1500_30 max 1.89246 1.65811 1.69469 1.85812
average 1.44037 1.34197 1.22138 1.37479
min 1.18246 1.13763 0.83142 1.14144

 

 

Table 5.15 Dispersion values for the Asymmetric instances by instance size. 
SIZE METRIC ASYMMETRIC 

WORKLOAD DISPERSION 
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 1.96579 2.83872 6.54424 3.45351 2.60502 2.17911
average 0.50514 0.68649 3.12133 0.97097 0.79962 0.70234
min 0.07215 0.14797 1.30597 0.07630 0.05924 0.07630

200_10 max 0.29184 19.44014 32.63868 14.42094 21.96877 16.79725
average 0.20634 10.73822 19.05335 8.86711 10.17375 9.37112
min 0.08525 3.67042 6.60917 3.05867 3.71981 2.38643

450_15 max   142.19948 149.83945 157.77258 126.58720 149.47059
average 72.96754 80.95720 78.53688 60.07404 70.14381
min 8.05624 16.87058 41.50168 20.37104 37.51399

1000_20 max 457.17610 433.35831 309.17219 413.04939
average 274.21254 253.70523 208.14440 245.56166
min 129.59389 55.16285 131.88706 57.51319

1500_30 max 873.37492 874.74138 503.83913 745.16830
average 553.44177 502.07141 106.37232 465.58103
min 313.46919 235.95466 0.00000 223.70942
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In Table 5.16 we present the objective function values for the Semi-Symmetric instances. We 

can observe that for the smallest size instance, the heuristic found the optimal solution as it was 

done by CPLEX and found better solutions than CPLEX for the 200_10 size. For the rest of the  

instance sizes, the heuristics found similar solutions, resulting the most difficult the biggest size 

instance of 1500_30.  

 

 

Table 5.16 Objective function values for the Semi-Symmetric instances by instance size. 
SIZE METRIC SEMI-SYMMETRIC 

OBJECTIVE FUNCTION 
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 0.95086 0.95086 0.95086 0.95086 0.95086 0.95086
average 0.85708 0.85617 0.85708 0.85708 0.85708 0.85708
min 0.69069 0.69069 0.69069 0.69069 0.69069 0.69069

200_10 max 2.64807 1.13396 1.21859 1.13396 1.13396 1.13396
average 1.83609 0.95339 1.01112 0.95707 0.94787 0.94701
min 0.94208 0.81348 0.86883 0.82625 0.78923 0.78923

450_15 max   1.36855 1.49135 1.40093 1.50382 1.48777
average 1.04916 1.11393 1.05578 1.09213 1.06793
min 0.87095 0.87923 0.87095 0.87095 0.87095

1000_20 max 1.42977 1.42478 1.42727 1.41765
average 1.18175 1.15756 1.16359 1.14938
min 1.03348 1.01123 1.03348 1.00278

1500_30 max 2.14385 2.15251 2.01899 2.13735
average 1.55418 1.51379 1.34227 1.54330
min 1.09899 1.03854 1.07672 1.06930

 
 

Regarding the dispersion of the workload content, we can observe in Table 5.17 that for this type 

of instances, the dispersion is quite small, and only the HypLS algorithm found solutions with an 

average value of 155 seconds, but for the rest of the heuristics, the dispersion resulted in less 

than 20 seconds  for all the instance sizes.  
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Table 5.17 Dispersion values for the Semi-Symmetric instances by instance size. 

SIZE METRIC SEMI-SYMMETRIC 
WORKLOAD DISPERSION

CPLEX 2-S K-S/P 1-S HypLS 2-IterLS
50_5 max 0.00000 0.33333 1.66667 0.00000 0.00000 0.00000

average 0.00000 0.09877 0.66667 0.00000 0.00000 0.00000
min 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 max 17.06306 0.33333 3.50000 0.00000 0.00000 0.00000
average 6.67522 0.19444 1.19444 0.00000 0.00000 0.00000
min 0.00000 0.00000 0.33333 0.00000 0.00000 0.00000

450_15 max   0.25477 7.51649 1.00954 1.31706 1.06212
average 0.14305 4.40926 0.18877 0.67163 0.20079
min 0.00000 2.16667 0.00000 0.00000 0.00000

1000_20 max 11.50000 0.83333 3.00000 1.66667
average 8.62963 0.38889 1.45062 0.44444
min 7.00000 0.00000 0.33333 0.00000

1500_30 max 19.66667 4.33333 457.17610 2.66667
average 13.95136 1.11111 154.24457 1.59368
min 7.83333 0.00000 0.83333 0.00000

 
 
For the symmetric instances, we observe in Table 5.18 that the heuristics found the optimal 

solution for all the instances of 50_5 except the K-S/P.  In comparison to the results obtained for 

the asymmetric instances shown in table 5.14, we can observe smaller values of the objective 

function, especially if we focus our attention to the largest size instances of 1500_30, from which 

we can conclude that the asymmetric instances resulted more difficult to be solved.  

 
 
Regarding the values of the dispersion of the workload content of the symmetric instances, in 

table 5.19 is possible to observe that for this type of instance the dispersion resulted in very small 

values, even for the largest size instances of 1500_30, for which the heuristics found for some 

instances a solution in which the workload content is equally distributed among the districts.  
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Table 5.18 Objective function values for the Symmetric instances by instance size. 
SIZE METRIC SYMMETRIC

OBJECTIVE FUNCTION 
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 0.94445 0.94445 0.99654 0.94445 0.94445 0.94445
average 0.87384 0.87384 0.90264 0.87384 0.87384 0.87384
min 0.77580 0.77580 0.77580 0.77580 0.77580 0.77580

200_10 max 1.90615 1.11275 1.12306 1.11275 1.11957 1.11275
average 0.99633 0.92052 1.02261 0.92052 0.95217 0.90250
min  0.71559 0.90643 0.71559 0.71559 0.71559

450_15 max   0.97724 0.99841 0.98595 1.00110 0.97724
average 0.88751 0.94079 0.90162 0.92962 0.91170
min 0.70511 0.83611 0.70511 0.85636 0.82893

1000_20 max 1.03070 1.01369 1.03070 1.01369
average 0.95314 0.91217 0.92592 0.91636
min 0.83794 0.73362 0.81199 0.76445

1500_30 max 1.36603 1.50609 1.49927 1.31107
average 1.10151 1.14247 1.12954 1.08796
min 0.83099 0.82323 0.82841 0.78309

 
 
 

Table 5.19 Dispersion values for the Symmetric instances by instance size. 
SIZE METRIC SYMMETRIC 

WORKLOAD DISPERSION
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 0.00000 0.33333 0.66667 0.00000 0.00000 0.01596
average 0.00000 0.05556 0.13889 0.00000 0.00000 0.00075
min 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

200_10 max 16.17730 0.33333 8.16667 0.00000 1.00000 0.83333
average 10.39527 0.20771 3.43541 0.00000 0.19136 0.12037
min 0.00188 0.00000 0.83333 0.00000 0.00000 0.00000

450_15 max   2.00000 7.33333 4.00000 2.33333 2.16667
average 0.55864 4.90883 1.08333 0.66696 0.52160
min 0.00000 3.33333 0.00000 0.00000 0.00000

1000_20 max 15.16667 1.33333 5.00000 3.50000
average 10.12144 0.76852 2.47222 1.40741
min 4.00000 0.00000 1.16667 0.00000

1500_30 max 37.33333 23.00000 2.00000 5.66667
average 12.55556 6.10185 1.18966 2.13889
min 0.00000 0.00000 0.00000 0.00000
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Table 5.20 presents the objective function values for the urban type instances. It is possible to 

observe in the table, smaller values than those found for the asymmetric instances, and  also very 

close values to those found by CPLEX for the smaller size instances of 50_5 for which CPLEX 

found the optimal solution. In case of the 200_10 instances, we observe that all the heuristics 

found a better solution than CPLEX, and the 2-S found a better solution than the other 

procedures. However, we can observe that for the instances of 50_5 the 2-IterLS reported  the 

same results than CPLEX and the 2-S. For the 200_10 instances, the 2-S reported better values 

for the minimum objective function but the 2-Iter reported better values for the maximum and 

average objective function. For the larger instance sizes, the 1-S reported better solutions on 

average but the 2-Iter reported smaller maximum and minimum objective function values.  

 
 

Table 5.20 Objective function values for the Urban instances by instance size. 
SIZE METRIC URBAN 

OBJECTIVE FUNCTION
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 0.93661 0.93661 0.94306 0.93661 0.93661 0.93661
average 0.73699 0.73699 0.74759 0.73700 0.74066 0.73699
min 0.54227 0.54227 0.54861 0.54227 0.54861 0.54227

200_10 max 1.98814 0.91608 1.01847 1.03535 0.92841 0.91917
average 1.59931 0.74589 0.85331 0.78066 0.76122 0.74101
min 1.26096 0.54231 0.63532 0.58732 0.55847 0.53018

450_15 max   0.95961 1.06564 0.96283 0.94059 0.93126
average 0.82420 0.86449 0.85214 0.82589 0.79397
min 0.58710 0.62924 0.58726 0.62924 0.59365

1000_20 max 1.43967 1.41477 1.31399 1.36568
average 1.16988 1.12227 1.12348 1.10705
min 0.93130 0.90656 0.97140 0.92908

1500_30 max 1.66709 1.57777 1.52848 1.48707
average 1.33567 1.24259 1.30543 1.28487
min 0.97898 0.92996 0.97076 0.85244
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Regarding the dispersion of the workload content among this type of instances that resemble the 

structure of a urban region, we can observe in Table 5.21 relatively large values of dispersion. 

However, if we observe the smaller size instance of 50_5 for which CPLEX found the optimal 

solution, the heuristics found similar values of dispersion and this value tends also to be big. 

Hence for this type of instance, given its characteristics, it resulted difficult to have a perfect 

balance of workload content among the districts and as long as the instance size of the instances 

increases it is expected that the value of the dispersion tends to increase.  

 
 
 

Table 5.21 Dispersion values for the Symmetric instances by instance size. 
SIZE METRIC URBAN 

WORKLOAD DISPERSION
CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 764.61300 784.74437 795.34310 794.62386 840.05954 949.01457
average 584.92330 589.73779 627.28868 604.57349 605.04910 644.24126
min 445.11200 439.55939 445.93141 445.11160 424.33735 445.11160

200_10 max 267.38600 1869.22931 2161.32844 1758.99071 1715.59088 1879.00128
average 143.13093 1284.89590 1400.27025 1268.27201 1240.43266 1249.48070
min 59.36390 914.91277 960.33445 941.34388 805.68118 757.42086

450_15 max   2739.69385 3265.45663 2977.65324 2901.46206 3161.96745
average 2195.35235 2232.97055 2237.50232 2125.33201 2155.09940
min 1773.21289 1672.01362 1704.35172 1643.94637 1474.71149

1000_20 max 8220.29673 8264.06014 7472.33124 6447.01348
average 5938.91967 5630.09660 5452.43349 5055.76068
min 4293.05354 4062.05036 4100.00381 3935.10474

1500_30 max 11118.55023 12153.24513 12336.32887 10941.97639
average 8840.01673 8936.94271 9044.27607 8361.15860
min 6774.82096 5941.24238 5941.24238 6688.72410
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5.3.4 Results of the Parcel instance in comparison to the current solution. 
 

In this section we present the results for the parcel instance in comparison to the current solution 

according to the data provided by the company. Tables 5.22 and 5.23 present the results. 

 

In Table 5.22 we can observe the gaps with respect to the current solution. It is possible to 

observe that all the heuristics found a better solution because for all the cases we have negative 

gaps that indicates that current solution resulted in a worst value. From all the methods we can 

observe that the most negative values corresponds to the 2-Iter algorithm, meaning that better 

solutions were found by this algorithm. Worst solutions correspond to the 2-S algorithm. 

Regarding the capacity levels, we can observe that results are very similar, but on average, more 

negative gaps are found for the tight instances, meaning that better solutions than the current 

solution were found. Regarding the values of lambda, better solutions were found when lambda 

has the value of 0.25, which means that more weight is given to the compactness metric.  

 

Table 5.22 Gap with respect to the current solution of the parcel instance. 
VARIANTS Gap with 

respect to 
current 
solution 

PARCEL INSTANCE 
2-S K-S/P 1-S HypLS 2-IterLS

ALL max -0.19247 -0.19919 -0.19387 -0.22020 -0.23475
average -0.29536 -0.31405 -0.34229 -0.34900 -0.37110
min -0.38604 -0.43666 -0.50448 -0.47008 -0.49870

TIGHT max -0.19247 -0.21803 -0.25260 -0.23544 -0.24928
average -0.29461 -0.32299 -0.38697 -0.36062 -0.38231
min -0.38390 -0.43666 -0.50448 -0.47008 -0.49870

LESS 
RESTRICTED 

max -0.19311 -0.19919 -0.19387 -0.22020 -0.23475
average -0.29611 -0.30510 -0.29761 -0.33738 -0.35990
min -0.38604 -0.39753 -0.38832 -0.43967 -0.46920

Lambda=0.25 max -0.38373 -0.33188 -0.38826 -0.43949 -0.46904
average -0.38489 -0.39958 -0.44634 -0.45479 -0.48388
min -0.38604 -0.43666 -0.50448 -0.47008 -0.49870

Lambda=0.5 max -0.30710 -0.31797 -0.31015 -0.35164 -0.37518
average -0.30807 -0.33365 -0.35693 -0.36402 -0.38711
min -0.30900 -0.34924 -0.40387 -0.37638 -0.39900

Lambda=0.75 max -0.19247 -0.19919 -0.19387 -0.22020 -0.23475
average -0.19312 -0.20891 -0.22360 -0.22820 -0.24233
min -0.19371 -0.21846 -0.25334 -0.23619 -0.24982
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In table 5.23 we can observe that in general, the heuristics found better objective function values 

than the current solution, however current solution presents less dispersion than the heuristics, 

but it does not differ too much. Regarding computational times, we can observe that the all the 

heuristics except the 2-S have an average of less than 1800 seconds (half of an hour) which is a 

good time given that we are solving a strategic problem.  The 2-S algorithm on the other hand, 

presents longer computational times, reaching and exceeding the limit time. Given that this is an 

strategic problem it may be considered reasonable that the heuristic requires on average 2.38 

hours. However, the heuristic could only construct and improve a single solution, while the other 

heuristics are able to generate more solutions.  

 
 

Table 5.23  Objective function and dispersion values of the parcel instance. 

METRIC PARCEL INSTANCE
CURRENT 
SOLUTION 

2-S K-S/P 1-S HypLS 2-IterLS

OF

max 2.35216 1.44958 1.57153 1.43884 1.31834 1.24886
average 1.96205 1.35761 1.32108 1.26150 1.24784 1.20252
min 1.57174 1.26729 1.22863 1.16549 1.20075 1.17908

METRIC WORKLOAD DISPERSION
max 6333.65870 7788.14042 8414.61597 7221.64446 8644.82118 7341.21931
average 5379.47538 6318.98775 7011.99013 5978.91691 7252.88124 6206.77851
min 4525.73240 5066.48535 5857.33099 4988.45573 6029.14154 5183.34200

METRIC COMPUTATIONAL TIME
max   9962.70400 4041.40300 1146.68700 1569.92200 1690.34300
average 8585.09383 1632.66022 1125.19478 1538.04172 1612.27472
min 7208.25000 1479.25000 1103.93700 1506.26700 1535.26600
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5.3.5 Computational times per instance type and size 
 

Tables 5.24 to 5.27 presents the computational time for each of the instance sizes required by 

CPLEX and the heuristics in CPU-seconds.  In table 5.24 we present the time for the asymmetric 

instances. The time reported for CPLEX includes the time to solve the first and second 

optimization models, that for the case of the instances of 200_10 reached the limit time in most 

of the cases. For the heuristics, we can observe considerable small computational times of less 

than 2 seconds for the instances of 50_5, and less than 33 seconds for the instances of 200_10 

size. For the rest of instances in which CPLEX could not find any integer solution, the 

algorithms present small computational gaps, and only for the largest size instances reached the 

limit time of 3600 seconds. However, for the instances of 1000_20 which most approximates to 

the instances size of a real instance, all the heuristics takes less than 1800 seconds (half of an 

hour), which is a reasonable amount of time given that we are dealing with a strategic problem. 

The HypLS algorithm resulted with the smaller times in most of the instance sizes, including the 

largest size instances of 1500_30. 

 

  

Table 5.24 Computational time for the Asymmetric instances. 

SIZE AVERAGE 
TIMES 

ASYMMETRIC 

CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 7203.24000 20.10900 0.98600 0.56300 0.81200 1.31200
average 3200.69089 13.98128 0.79598 0.41485 0.65300 1.06320
min 166.48500 8.63900 0.59400 0.29600 0.53000 0.89000

200_10 max 7209.93000 2083.14200 20.48500 16.43700 20.64000 32.90600
average 4604.93819 1504.95961 17.86404 14.00572 17.88026 28.15261
min 0.64100 1064.32800 14.81400 12.17200 14.92300 23.32900

450_15 max   4695.94800 150.40600 140.04800 167.88900 260.78000
average 4147.51370 119.59681 116.51735 132.65069 209.38937
min 3611.86000 86.43900 95.87700 93.29600 163.75100

1000_20 max 1793.29600 1173.82700 339.12500 1555.92300
average 1441.03896 1032.09939 295.02496 1303.13004
min 1230.31400 924.79900 268.25100 1159.09300

1500_30 max 3779.56500 3829.18700 3754.78100 3898.06100
average 3610.31274 3733.51220 2546.77924 3730.87119
min 3271.64300 3608.01500 1506.00000 3603.82800
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Table 5.25 shows the computational time for the Semi-Symmetric instances, in which we can 

observe that given the special structure of this type of instances, they resulted easier to solve for 

the heuristics and also for CPLEX than the Asymmetric instances. In this type of instances, 

computational times in general are small, and only for the largest size instance of 1500_30 the 

HypLS heuristic reached the maximum computational time for some instances, presenting the 

biggest times, which is was the opposite as for the Asymmetric instances in which this heuristic 

presented the smaller times for this instance size. . For the case of the 1-S algorithm we can 

observe that it has less than 1800 seconds and in average less than 1300 seconds for the largest 

instance.   

 

 

Table 5.25 Computational time for the Semi-Symmetric instances. 

SIZE AVERAGE 
TIMES 

SEMI-SYMMETRIC 

CPLEX 2-S K-S/P 1-S HypLS 2-IterLS

50_5 max 471.62500 3.96900 10.37500 7.18700 9.26500 13.90600
average 70.33074 2.89839 9.03409 5.93739 8.30209 12.02143
min 7.12500 2.04600 7.13900 4.90800 7.00100 9.56500

200_10 max 3605.58000 258.90700 84.81200 53.35900 78.15700 112.75000
average 3603.08130 160.31030 61.69493 43.55681 58.16463 80.46946
min 3602.12000 77.71900 32.71900 32.13900 33.62500 41.45400

450_15 max   2413.54400 84.81200 53.35900 78.15700 112.75000
average 1779.66294 61.69493 43.55681 58.16463 80.46946
min 1122.68700 32.71900 32.13900 33.62500 41.45400

1000_20 max 608.37500 431.92100 450.78000 737.46800
average 494.72872 351.37283 404.31037 585.83657
min 307.89000 285.73300 306.04700 375.86100

1500_30 max 2233.57900 1595.54800 4097.26500 2774.37400
average 1815.40643 1286.22300 2638.16837 2251.16904
min 1414.78100 993.57900 1218.51400 1564.35900
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In table 5.26 we can observe the computational time required for the Urban instances. We can 

observe that in general the heuristics present small times, and only for the largest size instance 

reached the limit time as it was done for the asymmetric instances. However for the instances of 

1000_20 and smaller, computational times are quite small for all the heuristics. For this type of 

instance, we observe that the 1-S resulted with the smaller computational times for all the 

instance sizes, and the K-S/P resulted with the biggest time for the largest size instances. Also as 

it happens in all the types of instances, the 2-S resulted in long computational times reason for 

which it was tested only in the small and medium size instances.  

 

 

Table 5.26 Computational time for the Urban instances. 

SIZE AVERAGE 
TIMES 

URBAN 

CPLEX 2-S K-S/P 1-S HypLS 2-IterLS
50_5 Max 1174.65600 10.06300 0.92100 0.42300 0.64000 1.03100

Average 467.11759 6.58956 0.70831 0.31500 0.51341 0.80439
Min 300.70300 4.34400 0.51600 0.23400 0.37600 0.62300

200_10 Max 3606.01000 406.15600 13.35900 6.59300 11.73400 17.86000
Average 3603.76296 237.32409 9.72185 5.47674 8.64683 12.01083
Min 3601.76000 62.18700 5.71800 3.95300 5.45300 6.10900

450_15 Max   3151.53200 96.28000 59.04700 90.81400 120.89100
Average 1868.59059 86.28944 48.86133 84.35357 94.97598
Min 1155.56200 77.81100 44.03100 74.21900 81.93700

1000_20 Max 577.96800 413.09300 558.00000 558.00000
Average 952.36226 603.70213 878.69080 878.69080
min 1447.76600 806.31200 1242.11000 1242.11000

1500_30 max 5307.62200 4097.26500 4097.26500 4259.99900
average 3912.29444 3497.02524 3840.50806 3867.53633
min 3604.01600 2653.71900 3607.31200 3605.61000
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Table 5.27 presents the results for the Symmetric instances. We can observe similar times than 

those found for the Semi-Symmetric instances, that as we may remember, both types of instances 

are symmetric but the Semi-Symmetric differ in that the optimal solution may not correspond to 

the symmetric solution because the distances between points are not Euclidean for all the points 

as it is for the Symmetric instances. Only the Hyp-LS algorithm reached the time limit for the 

largest size instance of 1500_30. In general we can observe small times for all the types of 

instances, and only for the largest size average times of 2000 to 3000 seconds.  The heuristic that 

resulted with smaller times is the 1-S, requiring less than 1550 seconds for the instance of 

1500_30 which is less than half of an hour, which is very efficient for a strategic activity.  

 

  

Table 5.27 Computational time for the Symmetric instances. 
SIZE AVERAGE 

TIMES 
SYMMETRIC 

CPLEX 2-S K-S/P 1-S HypLS 2-IterLS
50_5 max 621.96900 3.96900 11.37600 7.12600 10.09400 15.32600

average 84.94474 2.89839 9.53502 6.14987 8.66322 12.43248
min 6.15700 2.04600 6.51500 4.98600 6.31300 8.26300

200_10 max 3605.53000 258.90700 72.32800 50.61000 65.17200 98.34400
average 2201.91593 160.31030 60.00980 45.04163 56.56943 78.36443
min 0.00000 77.71900 47.82700 37.32700 46.98500 62.71800

450_15 max   2413.54400 72.32800 50.61000 65.17200 98.34400
average 1779.66294 60.00980 45.04163 56.56943 78.36443
min 1122.68700 47.82700 37.32700 46.98500 62.71800

1000_20 max 660.76600 379.21800 533.70300 770.64000
average 561.68274 317.43774 488.34600 620.73741
min 447.03100 194.78100 418.37500 460.23600

1500_30 max 2855.84400 1523.92200 4097.26500 2917.28000
average 2224.10326 982.32620 2873.36076 2430.00152
min 1506.00000 546.99900 1778.57700 1582.31200

 
Appendix V  presents an analysis of the computational time required for the different types and 

sizes of instances. Also we present the corresponding fitted curves to compare them with respect 

to the complexity analysis that was performed in Section 4.2. Results from this analysis indicate 

that a cubic model best fits to the average and worst cases computational times. This indicates 

that in practice the complexity of the heuristics is actually better than the estimated worst case 

complexity.   



 114

5.4 Analysis of the heuristics’ performance.  
 

Appendix VI presents a statistical analysis to compare the results found by the heuristics. For this 

we performed a Wilcoxon signed test on the differences between the solutions found by the 

methods. The results show that the 2-IterLS algorithm found the best solutions for all of the five 

instance types solved.  

 

 

5.5 Analysis of the methods to select the set of seeds.  
 

We analyzed with more detail the impact that the seed methods have on the quality of the final 

solution found by each algorithm and also the impact that the methods have in the ability to 

construct a feasible solution. In Appendix VII we present this analysis. In Section VII.A we 

determine the percentage of final solutions that correspond to each of the seed methods. The  

results show that the method with the largest percentage is the Workload method, with 33.42%. 

and the Semi-Random method resulted with the lowest percentage of 6.29%.   

 

In Section VII.B we also explore the impact of the seed method on the quality of the final 

solution reported by each heuristic, and also the percentages in which a feasible solution was 

constructed by each of the seed methods. We performed a Two-Way ANOVA analysis for a set 

of the instances solved, considering two instances (one for each capacity level) of the medium 

size instances of 450_15 for each type of instance. 

 

The results indicate that the seed method has a strong impact and is significant for the quality of 

the solution reported, and also in the ability to construct a feasible solution. The type of instance 

is significant, since results vary according to the instance type and also according to the capacity 

restrictiveness of the instance. We also observed that in general the 2-S or 2-IterLS resulted with 

the best solutions. Interaction between the Seed method and the heuristic is observed in most of 

the instances analyzed. We can conclude that including different seed methods as part of the 

procedure contributes to make a more robust method to different characteristics of instances that 

may be solved.  
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Chapter 6 

 

Conclusions and Recommendations for Future Research 
 

 

 

In this chapter we present some conclusions in Section 6.1 from the research that was performed 

and the numerical results found. We also present some research extensions of this work that are 

propose for future research in section 6.2. 

 

 

6.1 Conclusions 
 

In conclusion, we were able to obtain a mathematical formulation of the problem as well as a 

solution methodology to solve the problem. Difficulty of the problem motivated us to employ a 

heuristic procedure. Solution methodology was tested with data sets with different 

characteristics.  

 

The mathematical formulation of the logistics districting problem accounts for the requirements 

of a parcel company that serves a determined region. The model proposed aims to balance the 

workload content among the districts and to form districts of compact shape, for which a 

hierarchical optimization model is proposed. We propose also some variants for the workload 

content metric used in the optimization model,  that were not tested during the experimentation.  

 

The solution methodology includes five heuristics. All of them consist are hybrid algorithms that 

combine elements of the metaheuristics GRASP and Tabu Search, and have in common the 

procedure to construct the initial feasible solution and differ from each other in the neighborhood 

structure.  
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We generated a reasonable number of instances of a wide variety of types and sizes, including an 

instance generated by data from a parcel company. We solved the instances with the heuristics 

and with CPLEX. However, CPLEX could only find integer solutions for the small size 

instances. For most of the instances of 50_5 size, CPLEX found the optimal solution. For the 

instances of 200_10, CPLEX only reported an integer solution because it reached the time limit 

of 2 hours. In section 5.3 we present the gaps for the heuristics with respect to CPLEX.  

 

The results show small gaps for the heuristics with respect to the optimal solutions found by 

CPLEX, and all the heuristics found better solutions than those reported by CPLEX for the 

200_10 instances.  For the symmetric instances, we compared the heuristic solutions with respect 

to the symmetric optimal solution. For some instances, the heuristics found the optimal solution, 

including some cases in which the instance was solved with tight capacity limits. For the largest 

size instance of 1500_30, the heuristics present an average gap between 8.33%  and 13.73%, 

which is reasonable even though the maximum gaps are larger.  

 

Low computational times were observed for all the heuristics except for the 2-S heuristic, which 

could solve only the small and medium size instances in a reasonable time. The remainder of the 

heuristics reached the 3600 second time limit only when solving the largest size instances, and 

only for certain instance types. For the symmetric and semi-symmetric instances, only some of 

the instances solved by the HypLS heuristic reached the limit, and the rest of the heuristics had a 

computational time of less than 2800 seconds. The urban instances were the most time and all 

the heuristics reached the time limit when the 1500_30 instances were solved. The exception was 

the 1-S that had an average solution time of less than 3500 seconds, but a maximum 

computational time of almost 4100 seconds. This indicates that for some instances it reached the 

time limit. Overall, a maximum time of 5300 seconds, which is  less than one hour and a half, 

was reported.  This solution time was for an urban instance of 1500_30 size. These are good 

solution time for a strategic level problem.  
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For the instances generated from the data from the parcel company, we observed that the 

solutions found by the heuristics are better than the current design, but current solution presented 

less dispersion in the workload content among the districts, however the solution is worst with 

respect to the compactness. We believe that this is mainly because the company performs a 

sweep procedure to design the districts, without considering the urban structure of the service 

region. We can also observe that computational times for the parcel instance are very good, and 

all the heuristics except the 2-S, had computational times of less than 4100 seconds, and for the 

1-S and the combined algorithms the maximum computational time was always less than 30 

minutes. Compared to the time that the company requires for the redesign of their districting 

configuration (around 3 weeks), the heuristics are fast and produce solutions of good quality. 

 

We also solved this instance by the 2-S algorithm, which consumed a lot of time requiring to 

construct and improve a single solution almost 10,000 seconds, which is almost 3 hours. As we 

have previously mentioned, given that the problem is a strategic type, it may be reasonable that 

the heuristic takes this time. However, since the other procedure proposed required much less 

time to find the solution and the quality of the solutions is similar and even in some cases better, 

the 2-S algorithm did not turn out to be a good method for this problem.  

 

A statistical analysis to test which of the heuristics found better solutions was performed. From 

this analysis we conclude that the 2-IterLS is the best. The 1-S had the lowest times, but the 

solutions reported by the 2-IterLS are better.  

 

Regarding the seeds methods proposed for the construction phase, we observed that the method 

from which the biggest proportion of best solutions reported was the Workload method, and the 

smallest proportion corresponds to the Semi-Random method. We performed a statistical 

analysis and the results indicate that the seed method impacts the quality of the solution and there 

is interaction with the local search heuristic employed. Also, we observe that the results differ 

according to the instance type and restrictiveness of the capacity limits. Hence, we can conclude 

that including different seed methods makes the algorithm more robust to different 

characteristics of the instances solved.    
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6.2 Recommendations for Future Research  
 
For future research we propose to formulate a stochastic version of the problem and analyze 

different demand scenarios. The problem may also be solved as a bi-objective optimization 

problem to find the efficient frontier instead of a single solution. We also propose to analyze 

different metrics of the workload content of a district and its effect on the performance of the 

heuristics, such as the closest point and centroid line hauls metrics proposed here that were not 

explored during the numerical experimentation. 

 

Another extension is to propose a decomposition approach in which the sub problems consist of 

defining each of the districts and the master problem selects a set of districts so that all the points 

are allocated to a district. We may also try to find a better mathematical formulation for the 

problem that may allow CPLEX to solve larger instances.  A stronger lower bound could also be 

developed.  A Reactive GRASP could be tested. The RCL size could be determined by value 

instead of cardinality.  
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APPENDIX  I. Literature Review classification 
 

The following table summarizes the related work to logistics districting and the main 

characteristics and differences of each work with respect to the problem addressed in this 

dissertation and the solution methodology proposed: 

 

Table I.1: Literature review summary  

Literature Criteria Division Agglomeration Main characteristics of the 
problem and solution method 
differences with respect to the 

proposed methodology 
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Keeney 
(1972) 

X   X   -A facility is assigned to each 
district instead of a central depot.  
-Objective consists of minimizing 
travelling distance.  
-No graph formulation of the 
problem. 
-Graphical solution method. 

Deckro (1977)   X     X -General problem with multiple 
objectives. 
-Clustering technique forming 
districts that fall between ranges 
of the criteria in a lexicographic 
order.

Hardy (1980) X       X -A facility is assigned to each 
district instead of a central depot.  
-Comparison of the Clark-Wright 
savings algorithm for VRP and a 
districting first-routing last 
approach by an approach based on 
the transportation problem.

Wong et al. 
(1984) 

X       X -They address the “Vehicle 
routing using fixed delivery 
areas” problem. 
-The objective is to minimize 
distance travelled and there is no 
attempt to balance the workload 
content among the districts. 
-Location of the customers is 
known and only demand varies. 
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Daganzo 
(1984b) 

 X     X X -The methodology consists on 
partitioning a region into zones 
of nearly rectangular shape 
elongated toward the source 
-The number of points is large 
compared to the capacity of the 
vehicles. 

Newell and 
 Daganzo 
(1986a) 

 X     X  -The underlying network of 
roads is a dense ring-radial 
network. 
-Approximation method for the 
design of multiple-vehicle 
delivery tours. 
-The objective is minimize total 
distance of the tours. 

Han and  
Daganzo 
(1986) 

X      X  -Problem related to perishable 
items not parcel items. 
-The objective is to minimize total 
costs. 

Langevin and 
 Soumis 
(1989) 

X      X -Continuous approximation 
model and a ring radial grid.  
-The methodology partitions 
the region  into approximately 
rectangular delivery zones that 
are arranged into concentric 
rings around the depot. 
-Points  are randomly located 
with a density as a function of 
the radius. 

Rosenfield      
et al.  (1992) 

 X       - Each district contains a 
service facility at its center. 
-Analyze the tradeoff between 
the variable cost of delivery 
and the fixed cost of the 
facilities 

Novaes and  
Graciolli 
(1999) 

  X   X - A rectangular grid structure 
for the representation of the 
variables is assumed and a 
ring-radial model. 
-Sweep approach. 

Novaes et al.  
(2000) 

  X     X -Continuos approach for the 
previous problem (Novaes and 
Graciolli 1999). 

Muyldermans  
et al. (2002)  

  X      X X X -Graph formulation but 
demand occurs at the edges. 
- A facility to serve each 
district is assumed. 
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Muyldermans 
 et al. (2003) 

X       X X X X -Graph formulation but 
demand occurs at the edges. 
- A facility to serve each 
district is assumed. 

Haugland et 
al. 
 (2005). 

X       X -Two-stage stochastic problem 
with recourse. 
-Objective is to minimize the 
expected travel time of each 
district.  
-Propose a tabu search and a 
multistart local search 
algorithms, but differs in that 
we present a hybrid algorithm 
that combines both 
metaheuristics.  

Galvao  et al.  
(2006) 

  X  X    -Extended Novaes et al. (2000) 
to introduce some 
improvements to the ring-radial 
model. 
-Multiplicatively-weighted 
(MV)-Voronoi diagram 
approach 
-Continuous approximation 
problem. 

Tavares-
Pereira  
et al. (2007a) 

  X     X -Workload content is measured 
only by the amount of points 
assigned to the district, while 
the proposed methodology 
includes the line haul distance 
to the depot, and also 
distinguishes between the times 
required by each kind of 
service demanded. 

Novaes et al. 
 (2008) 

  X  X    - Continuous location-
districting model. 
-Combine a Voronoi diagram 
with an optimization algorithm. 
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Proposed  
methodology 

 X   X  X    - A central depot is assumed 
for which the vehicles depart to 
service the region. 
-The problem is formulated as 
a graph. 
-Two types of workload are 
considered: pickups and 
deliveries.  
-Two objectives are optimized: 
balanced workload content 
among the districts and 
compactness 
-No ring-radial structure or 
approximation method is 
proposed. 
-A heuristic procedure is 
proposed based on a multi-start 
approach and local search. 
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APPENDIX  II.   Pseudo code of the seed selection algorithms   

 

The following variables are defined including those previously defined:  

 

RCL=Set of points that are placed in the restricted candidate list.  

Neigh(i)= Set of points that are located within a determined distance defined by a threshold 

value from point i and then considered to be at the neighborhood of point i, V∈i , 

Del= Set of discarded points formed by the points at the neighborhood of  the seed points, 

seedj= Point that is selected as a seed for district j, Jj∈ , 

Sdist= Distance among the two first seeds selected, 

anglei=Angle of point i measured in degrees, V∈i , 

worki= Number of pickups and deliveries assigned to the point i, V∈i . 

 

The pseudocode of the algorithm for each method are as follows: 

 

P-dispersion algorithm 
Set }{φ=RCL , 
for k=1,…,|RCL| do 

Set RCLdi
RCLVi

∈
−∈

}{argmax 0  

Select seed1  randomly from RCL,  
Set V’=V-{seed1} and }{φ=RCL , 
for k=1,…, |RCL| do 

Set RCLd seedi
RCLVi

∈
−∈

}{argmax
1,

'
 

Select seed1 randomly from RCL,  
Set V’=V’-{seed2}, }{φ=RCL  and Sdist= dseed1,seed2, 
for j=3,…,m do 

for k=1,…, |RCL|  do 

Set RCLdSdist
Vi

j

k
seedi

RCLVi
k
∈+ ∑∑

∈

−

=−∈
}{argmax

'

1

1
,

'
,  

Select seedj randomly from RCL,  

            Set V’=V’-{seedj}, }{φ=RCL  and ∑
−

=
+=

1

1
,

j

k
seedseed kj

dSdistSdist  
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Semi-Random algorithm 
Set VVDel == '},{φ , 
for j=1,…,m do 
 if { }φ≠−DelV '  then 
  Select seedj randomly from V’-Del 
  Set }|'{ , thresholddDelViDelDel

jseedi ≤−∈= U   

 else 
  Select seedj randomly from Del   
 
 
Neighborhood algorithm 
Set }{φ=RCL , VVDel == 'and}{φ , 
for j=1,…,m do 

if { }φ≠'V  then 
for i=1,…,V’ do 

Set Neigh(i)= { ≤≠∈ ikdikVk |,' threshold} 
for k=1,…, |RCL| do 

Set RCLiNeigh
RCLVi

∈
−∈

})({argmax
'

, 

Select seedj randomly from RCL,  
Set )}(|{ jseedNeighkkDel ∈=  
Set V’=V’-{seed1}-Del and }{φ=RCL , 

Else 
Select seedj randomly from Del  

                        Set }{ jseedDelDel −= , 
 
 
Angle algorithm  
Define ]1,|[' 1 ≥≤∈= + iangleangleVvV ii , 

 Set
m

angleMax
A

i
Vi

}{
∈=  

Select seed1 randomly from V’,  
Set }{φ=RCL , '1 Vseed ∉ and 

1
angleseedAΑ +=  

for j=2,…,m do 
if }{Max i

Vi
angleΑ

∈
> then 

Set }{angleMin}{angleMax iVii
Vi

AΑ
∈∈

+−=  

Set RCLAVia i ∈≥∈= }angle|'Min{ , 
for k=2,…,( |RCL|-1)/2 do 

Set RCLRCLVk ak ∈≥−∈ }angleangle|'Min{  
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Set RCLRCLVk ak ∈≤−∈ }angleangle|'Max{  
Select seedj randomly from RCL,  

            Set 'Vseed j ∉ , }{φ=RCL and 
jseedAΑ angle+= , 

 
 
Workload algorithm 
Define ]1,|[' 1 ≥≤∈= + iworkworkVvV ii , 

Compute Viwdwpwork iii ∈∀+=  and  
m

work
W Vi

i∑
∈=  

Set }{φ=RCL and p=0,  
for j=1,…,m do 

Set RCLWworkVia
i

pk
k ∈≥∈= ∑

+=
}|'Min{

1
, 

for k=2,…,( |RCL|-1)/2 do 
Set RCLworkworkRCLVk ak ∈≥−∈ }|'Min{  
Set RCLworkworkRCLVk ak ∈≥−∈ }|'Max{  

Select seedj randomly from RCL,  
            Set 'Vseed j ∉ , }{φ=RCL  
            Set p to the value of the position of the seed in set V’. 
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APPENDIX  III.   Pseudo code of the low level heuristics for the H-F.  

 

 

The following parameter is defined: 

 

bigM=a very big value,  

 

And the following variables are defined in addition to previously defined: 

 

Pcapj= remaining capacity of  district j in terms of pickups, Jj∈ , 

Dcapj= remaining capacity of  district j in terms of deliveries, Jj∈ , 

Best_sol= Value of the Sum_neg metric that corresponds to the current best solution known, 

BDC=Best districting configuration that corresponds to Best_sol, 

none=  
⎩
⎨
⎧

    otherwise0
iterationcurrent for been  has performed be  tomove a if1

,
 

Ibest= best value of the Sum_neg metric over a set of infeasible moves evaluated, 

Ipoint= corresponding point of the move that leads to Ibest, 

Isending= corresponding district that sends the Ipoint that leads to Ibest, 

Ireceiving= corresponding district that receives the Ipoint that leads to Ibest, 

 

adj(i,j)=
⎩
⎨
⎧ ∈∈≠=∈∃=∈

otherwise0
;',;',1that such  and 1 ,pointif1 ' VkJjjjjXEeXVi kjikij ,   

 

⎩
⎨
⎧ =∈∃∈

=
                                                         otherwise       0

1)(such that   and  point  if        1 i,jadjJjVi
borderi ,                                                 

 
The pseudocodes of the algorithms are as follows: 
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Hyperheuristic-Feasibility 

 

Compute Infeasibilitys and W_dispersion metrics of the current solution 
for the type of service S, currently attempted to achieve feasibility; S=P,D. 
Set Best_sol = Infeasibilitys and establish current districting configuration 
as BDC, 
Determine JjworkDcapPcap jjj ∈∀and, , 

Initialize Tabu(i,j)= -tperm and compute adj(i,j)  JjVi ∈∈∀ , , 
Do 

Select a low level heuristic randomly among: 
-FMM       -IMM 
-FML        -IML 
-FLM        -ILM 

Determine randomly the iterations (one or steepest descent), 
Apply the low level heuristic according to the iterations selected, 

Until one of the stopping conditions is met, 
return Best_sol  and BDC.  
 
 
FMM heuristic algorithm 
Set iter=0 and tperm’=tperm, 
Do 

Set  J’=J, iter=iter+1 and none=0,  
if module(iter,Titer)=0 then 
 

tperm’=2.tperm’, 
while none=0 do  

Set }{argmax
'

j
Jj

worksending
∈

= , }{'' sendingJJ −= , 

Set } a is |{ pointborderisendingiQ ∈= , 
while }{φ≠Q  and none=0 

Select Qi∈ and set Q=Q-{i} and  
},and,1),(|}{{ jiji DcapwdPcapwpjiadjsendingJjK ≤≤=−∈=

while none=0 and }{φ≠K  
Set },{argmax k

Kk
workreceiving

∈
=  

if Tabu(i,receiving)+tperm’< iter then 
MOVE(i,sending,receiving), 

else  
ASPIRATION(i,sending,receiving), 
Set K=K-{receiving}, 

Until one of the stopping conditions is met.  
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FML heuristic algorithm 
Set iter=0 and tperm’=tperm, 
Do 

Set  J’=J, iter=iter+1 and none=0,  
if module(iter, Titer)=0 then 

tperm’=2.tperm’, 
while none=0 do  

Set }{argmax
'

j
Jj

worksending
∈

= , }{'' sendingJJ −= , 

Set }, a is |{ pointborderisendingiQ ∈=  
while }{φ≠Q  and none=0 

Select Qi∈ and set Q=Q-{i} and  
},and,1),(|}{{ jiji DcapwdPcapwpjiadjsendingJjK ≤≤=−∈=

while none=0 and }{φ≠K  
Set },{argmin k

Kk
workreceiving

∈
=  

if Tabu(i,receiving)+tperm’< iter then 
MOVE(i,sending,receiving), 

else  
ASPIRATION(i, sending,receiving), 
Set K=K-{receiving}, 

Until one of the stopping conditions is met.  
 
 
FLM heuristic algorithm 
Set iter=0 and tperm’=tperm 
Do 

Set  J’=J, iter=iter+1,none=0,  
if module(iter, Titer)=0 then 

tperm’=2.tperm’, 
while none=0 do  

Set }{argmin
'

j
Jj

workreceiving
∈

= , 

Set }{'' receivingJJ −= and },{receivingJK −=  
while none=0 and }{φ≠K  

Set }{argmax k
Kk

worksending
∈

= ,and },{sendingKK −=  

                                     , } and              

,1),(|{QSet 

receivingi

receivingi

Dcapwd

Pcapwpreceivingiadjsendingi

≤

≤=∈=
  

while none=0 and }{φ≠Q  
Select Qi∈ and set Q=Q-{i}, 
if Tabu(i,receiving)+tperm’< iter then 

MOVE(i,sending,receiving), 
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else  
ASPIRATION(i,sending,receiving), 

Until one of the stopping conditions is met.  
 
 

IMM heuristic algorithm 
Set iter=0 and tperm’=tperm, 
Do 

Set   iter=iter+1, none=0, Ibest= bigM, Ipoint=0, Isending=0 and 
Ireceiving=0, 
if module(iter, Titer)=0 then 

tperm’=2.tperm’, 
Set },{argmax j

Jj
worksending

∈
=  

Set }, a is |{ pointborderisendingiQ ∈=  
while }{φ≠Q  

Select Qi∈ and set Q=Q-{i}, 
Set },1),(|}{{ =−∈= jiadjsendingJjK  
while }{φ≠K  

Set },{argmax k
Kk

workreceiving
∈

=  

if receivingireceivingi DcapwdPcapwp ≤≤ and  then 
if Tabu(i,receiving)+tperm’< iter then 

MOVE(i,sending,receiving), 
Set }{φ=K  and },{φ=Q  

else  
ASPIRATION(i,sending,receiving), 
Set K=K-{receiving}, 

else 
INFEASIBLE(i,sending,receiving,Ibest), 
Set K=K-{receiving}, 

if none=0 
IMOVE(Ibest, Ipoint,Isending, Ireceiving), 

Until one of the stopping conditions is met  
 
 
IML heuristic algorithm 
Set iter=0 and tperm’=tperm, 
Do 

Set   iter=iter+1, none=0, Ibest= bigM, Ipoint=0, Imoving=0 and Ireceiving=0, 
if module(iter, Titer)=0 then 

tperm’=2.tperm’, 
Set },{argmax j

Jj
workmoving

∈
=  



 136

Set }, a is |{ pointborderisendingiQ ∈=  
while }{φ≠Q  

Select Qi∈ and set Q=Q-{i}, 
Set },1),(|}{{ =−∈= jiadjsendingJjK  
while }{φ≠K  

Set }{argmin k
Kk

workreceiving
∈

= and K-{receiving}, 

if receivingireceivingi DcapwdPcapwp ≤≤ and  then 
if Tabu(i,receiving)+tperm’< iter then 

MOVE(i,sending,receiving), 
Set }{φ=K  and },{φ=Q  

else  
ASPIRATION(i,sending,receiving), 

else 
INFEASIBLE(i,sending,receiving,Ibest), 
 

if none=0 
IMOVE(Ibest, Ipoint,Isending, Ireceiving), 

Until one of the stopping conditions is met.  
 
 
ILM heuristic algorithm 
Set iter=0 and tperm’=tperm, 
Do 

Set   iter=iter+1, none=0, Ibest=bigM, Ipoint=0, Imoving=0 and Ireceiving=0, 
if module(iter, Titer)=0 then 

tperm’=2.tperm’, 
Set }{argmin j

Jj
workreceiving

∈
= and },{receivingJK −=  

while none=0 and }{φ≠K  
Set }{argmax k

Kk
worksending

∈
=  and },{sendingKK −=  

Set },1),(|{ =∈= receivingiadjsendingiQ  
while }{φ≠Q   

Select Qi∈ and set Q=Q-{i}, 
if receivingireceivingi DcapwdPcapwp ≤≤ and  then 

if Tabu(i,receiving)+tperm’< iter then 
MOVE(i,sending,receiving), 
Set }{φ=K  and },{φ=Q  

else  
ASPIRATION(i,sending,receiving), 

else 
INFEASIBLE(i,sending,receiving,Ibest), 

if none=0 
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IMOVE(Ipoint,Isending, Ireceiving), 
Until one of the stopping conditions is met.  

 
 

 
MOVE(i,sending,receiving) 
Set receivingi∈ and sendingi∉  and none=1, 
Update: 

Workload capacities: Pcapj, Dcapj and workj, j=sending, receiving, 
Feasibility metrics and improvement: Infeasibilitys, W_dispersion,  
Impr(Infeasibilitys) and Impr(W_dispersion), 
adj and Tabu matrixes, 

if Infeasibilitys<Best_sol then 
            Set Best_sol =Infeasibilitys and BDC= current districting configuration.  

 
 
 

ASPIRATION(i,sending,receiving) 
Set receivingi∈ and sendingi∉  and compute Infeasibilitys’, 
if Infeasibilitys’<Best_sol then 

Set Best_sol =Infeasibilitys’  and BDC= current districting configuration, 
Set none=1, and Infeasibilitys= Infeasibilitys’, 
Update: 

Workload capacities: Pcapj, Dcapj and workj for j=sending, receving, 
Remaining feasibility metric and improvement: W_dispersion,  
Impr(Infeasibilitys) and Impr(W_dispersion), 
adj(i,j) and Tabu(i,j) matrixes, 

else 
            Set receivingi∉ and .sendingi∈  

 
 
 

IMOVE( Ipoint,Isending, Ireceiving) 
Set IreceivingIpoint∈  and IsendingIpoint∉  and none=1, 
Update: 

Workload capacities: Pcapj, Dcapj and workj, j=Isending, Ireceiving, 
Feasibility metrics and improvement: Infeasibilitys, W_dispersion,  
Impr(Infeasibilitys) and Impr(W_dispersion), 

                       adj(i,j) and Tabu(i,j) matrixes, 
if Infeasibilitys< Best_sol then 
            Set Best_sol =Infeasibilitys saving the current districting configuration. 
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INFEASIBLE(i,sending,receiving,Ibest) 
Set Infeasibilitys’= Infeasibilitys, P’capj=Pcapj and D’capj=Dcapj ,  j=sending, 
receiving, 
Set receivingi∈ and ,sendingi∉   
Update:  

Temporal workload capacities: P’capj, D’capj, j=moving, receiving, 
Temporal feasibility metric: Infeasibilitys’, 

if Infeasibilitys’<Ibest then  
             Set Ibest= Infeasibilitys’, Ipoint=I, Isending=sending and 
Ireceiving=receiving, 
Set receivingi∉ and .sendingi∈   
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APPENDIX  IV.   Pseudo code of  the five hybrid heuristics.  
 
The following variables are defined in addition to previously defined: 

Distri = District where point i is currently assigned,  

OFbest1, OFbest2 and OFbest3= Three best known objective function values, where OFbest1 is 

the overall best solution value.  

XBest1, XBest2, XBest3 = corresponding binary values of the three best solutions, where XBest1 

defines the overall best solution. 

adjcopy(i,j)= copy of the current adjacency matrix that is updated according the temporal move 

performed in the first step so that the second step evaluates moves conditioned on the first step. 

candidate=1 if the point under revision is potential to be moved during a second step in order to 

get a feasible solution given that first step lead to an infeasible solution and only points that may 

be moved from the district in which capacity is violated are considered; 0 otherwise.  

Tot_iter= maximum number of iterations set for a LS algorithm. 

 

The pseudocodes of the LS algorithms are as follows: 

 

1-S_LS(OF, Xij ) 
Set: 

iter=0, tperm’=tperm 
 OFbest1=μ1, OFbest2=μ2, OFbest3=μ3, 

,,03,02,0 JjViXBestXBestXBest1 ijijij ∈∈∀===  
i*=0, imin=0, jmin=0, j2_prev=0, 

Do             
           FIRST STEP:  
            for (i = 1; i ≤ |V|; ++i) { 
              iter++, 
              if (borderi =1){ 

         i*=i; 
         0

**, =
iDistriX , 

       ** iDistr wpPCap
i

=+ ,  ** iDistr wdDCap
i

=+   

         for (j = 1; j ≤ |J|; ++j) {         
          if (adj(i,j)=1 &  *ij wpPCap ≥  &  *ij wdDCap ≥   

                           & Tabu(i*,j)+tperm< iter  ){ 
    1*, =jiX , 
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    *ij wpPCap =−  and  *ij wdDCap =−  
    =FO ZW )1( λλ −+    

   if (OF<minOF){  
minOF=OF, 
imin=i*, jmin=j, 

∑
∈

−=
Jj

j WWnWDispersio *  

} 
else if (OF=minOF){ 

            ∑
∈

−=
Jj

j WWnWDispersio   

if (WDispersion<WDispersion*){ 
minOF=OF, 
imin=i*, jmin=j, 
WDispersion*=WDispersion,   

            }}} 
ASPIRATION CRITERIA: 
else if (adj(i,j)=1 &  *ij wpPCap ≥  & *ij wdDCap ≥  ){  

1*, =jiX , 
 *ij wpPCap =−  and  *ij wdDCap =−  
 =FO ZW )1( λλ −+    
            if (OF<minOF){  

minOF=OF, 
imin=i*, jmin=j, 

∑
∈

−=
Jj

j WWnWDispersio *  

} 
else if (OF=minOF){ 

             ∑
∈

−=
Jj

j WWnWDispersio   

if (WDispersion<WDispersion*){ 
minOF=OF, 
imin=i*, jmin=j, 
WDispersion*=WDispersion, 

                        }} 
OFBEST(OF, Xij), 

 0*, =jiX , 

*ij wpPCap =+  and  *ij wdDCap =+ ,  
}   

        1
**, =

iDistriX , 

** iDistr wpPCap
i

=− ,  ** iDistr wdDCap
i

=−    
} 
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Perform the best move found: 
if (imin>0){ 

0
*min, =

iDistriX ,  1, =jminiminX  

** iDistr wpPCap
i

=+ ,  ** iDistr wdDCap
i

=+    

                   *ijmin wpPCap =− ,  *ijmin wdDCap =−    
}   

                        Update: 
 adj(i,j), Tabu(i,j) matrixes and capacity of the districts (Pcap and 
Dcap) 

   
Until one of the stopping conditions is met. 

 
LAST_SEARCH(OFbest1, OFbest2, OFbest3, XBest1ij, XBest2ij, XBest3ij) 

   
Return OFbest1 and XBest1ij 
 
 
2-S_LS(OF, Xij ) 
Set: 

iter=0, tperm’=tperm 
 OFbest1=μ1, OFbest2=μ2, OFbest3=μ3, 

,,03,02,0 JjViXBestXBestXBest1 ijijij ∈∈∀===  
i*=0, imin=0, jmin=0, j2_prev=0, 
adjcopy(i,j)= adj (i,j) ,, JjVi ∈∈∀  

Do          
           FIRST STEP:      

for (i = 1; i ≤ |V|; ++i) { 
              iter++, 

if (borderi =1){ 
 i*=i; 

  0
**, =

iDistriX , 

** iDistr wpPCap
i

=+ ,  ** iDistr wdDCap
i

=+   
          for (j = 1; j ≤ |J|; ++j) {         

  if (adj(i,j)=1 &  Tabu(i*,j)+tperm< iter  ){ 
1*, =jiX , 

   *ij wpPCap =−  and  *ij wdDCap =−    
} 

)D & (if ** ijij wdCapwpPCap ≥≥  
=firstFO ZW )1( λλ −+  

else  

 ∞=firstFO  

               Update adjcopy(i,j) matrix  
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                                     SECOND STEP: 

             if )(O ∞≠firstF { 
  OFBEST( FO ), 

    for (p = 1; p ≤ |V|; ++p) {       
 if (borderi =1){ 

             p*=p; 
            0

**, =
pDistrpX , 

          ** pDistr wpPCap
p

=+ ,  ** pDistr wdDCap
p

=+   
      for (m = 1; m ≤ |J|; ++m) {         

              if (adjcopy(i,j)=1 &  Tabu(i*,j)+tperm< iter   
              & ** D & ijij wdCapwpPCap ≥≥ ){ 

           1*, =mpX , 
           *pm wpPCap =−   

 *pm wdDCap =−  
           =FO ZW )1( λλ −+               

         if (OF<minOF){  
                          minOF= FO , 
                          imin=i*, jmin=j, 
              i2min=p*,j2min=m, 
              minOFfirst =OFfirst, 

∑
∈

−=
Jj

j WWnWDispersio *

 
        }     

          OFBEST(OF, Xij),              } 
ASPIRATION CRITERIA: else if (adj copy(i,j)=1 &  *ij wpPCap ≥  &    

 *ij wdDCap ≥ ){ 
       1*, =mpX , 
           *pm wpPCap =−   

 *pm wdDCap =−  
           =FO ZW )1( λλ −+               

                 if (OF<minOF){  
minOF= FO , 

                          imin=i*, jmin=j, 
              i2min=p*,j2min=m, 
              minOFfirst =OFfirst, 
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∑
∈

−=
Jj

j WWnWDispersio *

} 
else if (OF=minOF){ 

             ∑
∈

−=
Jj

j WWnWDispersio  

if(WDispersion<WDispersi
on* ) { 

imin=i*, jmin=j, 
               i2min=p*,j2min=m, 
               minOFfirst =OFfirst, 

WDispersion*= 
WDispersion, 

} 
                        } 

OFBEST(OF, Xij), 
   }}}}} 
                                  SECOND STEP (only moves that lead to a feasible solution) 

            else {  
    for (p = 1; p ≤ |V|; ++p) {      
     candidate=0, 
     if (Xpj=1& adjcopy(i,j)=1  & jPCap <0 &  1=pwp  )  
      candidate=1, 
     else if  (Xpj=1& adjcopy(i,j)=1  & jDCap <0 &  1=pwd ) 
      candidate=1,     

if(candidate=1){ 
      for (m = 1; m ≤ |J|; ++m) {         

              if (adjcopy(i,j)=1 &  Tabu(i*,j)+tperm< iter   
              & ** D & ijij wdCapwpPCap ≥≥ ){ 

       1*, =mpX , 
           *pm wpPCap =−   

*pm wdDCap =−  
           =FO ZW )1( λλ −+               

         if (OF<minOF){  
                         minOF= FO , 

                          imin=i*, jmin=j, 
              i2min=p,  j2min=m, 
              minOFfirst =OFfirst, 

∑
∈

−=
Jj

j WWnWDispersio *

 }     
          OFBEST(OF, Xij), 

             } 
ASPIRATION CRITERIA: 
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else if (adj copy(i,j)=1 &  *ij wpPCap ≥  &    
 *ij wdDCap ≥ ){ 

       1*, =mpX , 
           *pm wpPCap =−   

 *pm wdDCap =−  
           =FO ZW )1( λλ −+               

                 if (OF<minOF){  
minOF= FO , 

                          imin=i*, jmin=j, 
              i2min=p*,j2min=m, 
              minOFfirst =OFfirst, 

∑
∈

−=
Jj

j WWnWDispersio *

} 
else if (OF=minOF){ 

             ∑
∈

−=
Jj

j WWnWDispersio  

if   (WDispersion<WDispersion*){ 
imin=i*,      jmin=j, 

               i2min=p*,   
                                                                         j2min=m, 
               minOFfirst =OFfirst, 
      WDispersion*= 

WDispersion, 
                        }} 

OFBEST(OF, Xij), 
}}}}}} 
PERFORM THE BEST MOVE (only first step) 

  if (imin>0){ 
   0

*min, =
iDistriX ,  1, =jminiminX  

            minmin iDistr wpPCap
i

=+ ,  minmin iDistr wdDCap
i

=+    
                        minijmin wpPCap =− ,  minijmin wdDCap =−    

OF= minOFfirst, 
  }   
                        PERFORM ALSO SECOND STEP (since first was infeasible) 
  if(minOFfirst ∞= ){ 
   0

min2min,2 =
iDistriX ,  1min2min,2 =jiX  

            niniDistr wpPCap
i 2min*2

=+ ,  min2min2 iDistr wdDCap
i

=+    
                        min2ijmin wpPCap =− ,  min2ijmin wdDCap =−    
   OF= minOF, 

} 
                        Update: 
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adj(i,j), Tabu(i,j) matrixes and capacity of the districts (Pcap and Dcap)
  

Until one of the stopping conditions is met. 
LAST_SEARCH(OFbest1, OFbest2, OFbest3, XBest1ij, XBest2ij, XBest3ij)   
Return OFbest1 and XBest1ij 

 
 
k-S/P_LS(OF, Xij ) 
Set: 

iter=0, tperm’=tperm 
 OFbest1=μ1, OFbest2=μ2, OFbest3=μ3, 

,,03,02,0 JjViXBestXBestXBest1 ijijij ∈∈∀===  

           ,1
J

Probj =  

Do:             
             SelectPair(Probj) 
              k-S(OF, Xij, d1, d2), 
             Set:   
                       OF=OFcop, 
                       ,,   JjVi=XcopX ijij ∈∈∀              
      Update: 

adj(i,j) matrix, Tabu(i,j) matrixes and capacities of the districts (Pcap 
and   Dcap)   

Until one of the stopping conditions is met. 
 

Return OFbest1 and XBest1ij 
            
 
 
 
 
 
k-S(OF, Xij, d1, d2) 
Set: 

iter=0, tperm’=tperm 
},{φ=Pairs  

  OFcop=OF, 
,, JjVi=XXcop ijij ∈∈∀  

Wcopj=Wj  ,Jj ∈∀  
n=maximum number of points assigned either to d1 or d2, 

⎣ ⎦2/nK = , 

,1),(such that  ',',,;'';',;' if',',, =∈≠≠≠∈≠∃∈ jiadjVkikikikiJjjjjPairskiki              
1)','(and1)','(,1),( === jkadjjiadjjkadj  
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npairs =total number of pairs of adjacent points between d1 and d2  
mink=0,  ∞=minOF , ∞=minkOF ,  

for (k = 1; k ≤ K; ++k) { 
FROM d1 to d2: 

Initialize: 
OFcop=OF, 

,, JjVi=XXcop ijij ∈∈∀  
             Evaluate: 
             Moves(OFcop, Xcopij, d1, d2, Wcopd1,Wcopd2)              
             Update best solution: 
             mind1=imin, 
             mind2=0, 
             BestminOF=minOF,  

            )(* 21 dd WcopWcopabsonPWDispersi −=  
FROM d2 to d1: 

Initialize: 
OFcop=OF, 

            ,, JjVi=XXcop ijij ∈∈∀  
             Evaluate: 
             Moves(OFcop, Xcopij, d2, d1, Wcopd1, Wcopd2) 
            Update best solution: 

if (minOF< BestminOF) { 
                     mind2=imin, 
                     mind1=0, 
                     BestminOF=minOF, 

} 
else if (minOF= BestminOF) { 

       )Wcopabs(WcoponPWDispersi d2d1 −=  
        if(PWDispersion<PWDispersion*){ 

                                 mind2=imin, 
                                 mind1=0, 
                                 BestminOF=minOF, 

                    PWDispersion*=PWDispersion 
                         }} 

INTERCHANGHES: 
}){(if φ≠Pairs {    

Initialize: 
OFcop=OF, 

            ,, JjVi=XXcop ijij ∈∈∀  
            Evaluate: 
            Exchanges(OFcop, Xcopij, Pairs, npairs, Wcopd1,Wcopd2) 
           Update best solution: 

if (minOF< BestminOF) { 
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                         mind1=imin1, 
                         mind2=imin2, 
                          BestminOF=minOF, 
             } 

else if (minOF= BestminOF) { 

       )Wcopabs(WcoponPWDispersi d2d1 −=  
        if(PWDispersion<PWDispersion*){ 

                                 mind2=imin1, 
                                 mind1=imin2, 
                                 BestminOF=minOF, 

                    PWDispersion*=PWDispersion                  

}}} 
PERFORM BEST MOVE FOR STEP k 

)0(if ≠mind1 { 
0=mind1,d1Xcop , 

,1=mind1,d2Xcop  
} 

)02(if ≠mind { 
022 =,dmindXcop , 
,112 =,dmindXcop  

} 
            Update: 

adj(i,j) matrix, Tabu(i,j) matrixes and capacities of the districts (Pcap 
and Dcap) 

Set Xminij=Xcopij , 
SELECT BEST SOLUTION OVER THE k STEPS 
if(minOF<minkOF){ 
           mink=k, 
           Xkminij = Xminij , 

          minkOF=minOF, 

         )(** 21 dd WWabsonPWDispersi −=  

} 
else if (minOF=minkOF){ 

          )( 21 dd WWabsonPWDispersi −=  
          if (PWDispersion<PWDispersion**) 
          mink=k, 
          Xkminij = Xminij , 
          minkOF=minOF,         PWDispersion**= PDispersion, 

           } 
} 
UPDATE BEST SOLUTION OVER THE K STEPS 

)0(if ≠mink { 
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Xcopij=Xkminij,  
OFcop=minkOF, 

} 
Update: 

 adj(i,j) matrix, Tabu(i,j) matrixes and capacities of the districts (Pcap and                  
Dcap) 

Return OFbest1, XBest1ij, OFcop, Xcopij, 
 
 
 
SelectPair(Probj) 
Set: 
          rmax0=0,          
         d1=0, d2=0, 
DEFINE RANGES 
for (j = 1; j ≤ |J|; ++j) {         
          rminj = rmaxj-1 
          rmaxj = rminj+Probj 
} 
SELECT d1 
Random= rand(.)   
Set jj rmaxRandomrminjd1 <≤= |  
SELECT d2 
While (d2=0){ 
           Random= rand(.)   

           
){,   ;,    ;   ;     

;and,such that 1and1( if 1

Jd1jVkid1jki
rmaxRandomrminEeXX jjikkjid

∈∈≠≠

<≤∈==∃
 

                       Set d2=j. 
} 
UPDATE PROBABILITIES: 
          Probd1= Probd1- α, 
          Probd2= Probd2-α, 
          for (j = 1; j ≤ |J|; ++j) {         
                        ){ & ( if d2jd1j ≠≠                                                 

                                    
2

2
−

+=
J

ProbProb jj
α ,   

          } 
Return d1 and d2 
 
            
Moves(OF, Xij, sending, receiving, Wcopd1,Wcopd2) 
 
Set: 
           imin=0, 
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           OFmin=∞,  
EVALUATIONS:            
for (i = 1; i ≤ |V|; ++i) { 

if (borderi =1 &  adj(i,receiving)=1 & Xi,sending=1 &  ireceiving wpPCap ≥ &
 ireceiving wdDCap ≥  & Tabu(i,receiving)+tperm< iter ){ 

  0, =sendingiX , 
,1, =receivingiX  

      isending wpPCap =+ ,  ,isending wdDCap =+   
      ireceiving wpPCap =− ,  ,ireceiving wdDCap =−   
 =FO ,)1( ZW λλ −+  

OFBEST(OF, Xij), 
1, =sendingiX , 

,0, =receivingiX  
 isending wpPCap =− ,  ,isending wdDCap =−   
 ireceiving wpPCap =+ ,  ,ireceiving wdDCap =+   
  if (OF<minOF){   

   minOF=OF, 
imin=i, 
minsend=sending, 

                                    minreceive=receiving, 
),(* sendingreceiving WWabsonPWDispersi −=  

} 
else if(OF<minOF){ 

)( sendingreceiving WWabsonPWDispersi −=  
if (PDispersion<PDispersion*){ 

minOF=OF, 
imin=i, 
minsend=sending, 
minreceive=receiving, 
PWDispersion*=PWDispersion, 

               }}} 
  ASPIRATION 

else if (borderi =1 &  adj(i,receiving)=1 & Xi,sending=1 & 
 ireceiving wpPCap ≥ &  ireceiving wdDCap ≥ ){ 

    0, =sendingiX , 
,1, =receivingiX  

        isending wpPCap =+ ,  ,isending wdDCap =+   
        ireceiving wpPCap =− ,  ,ireceiving wdDCap =−   
   =FO ,)1( ZW λλ −+  
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OFBEST(OF, Xij), 
    1, =sendingiX , 

,0, =receivingiX  
        isending wpPCap =− ,  ,isending wdDCap =−   
        ireceiving wpPCap =+ ,  ,ireceiving wdDCap =+   
                       if (OF<minOF){   

     minOF=OF, 
imin=i, 

),(* sendingreceiving WWabsnPDispersio −=  
} 
else if(OF<minOF){ 

)( sendingreceiving WWabsonPWDispersi −=  
if (PWDispersion<PWDispersion*){ 

minOF=OF, 
imin=i, 
PWDispersion*=PWDispersion,  

} }}} 
 

Return (minOF, imin) 
            
 
Exchanges(OF, Xij, Pairs, npairs,d1,d2,Wd1,Wd2) 
Set: 
           imin=0, 
           OFmin=∞,  
EVALUATIONS:            
for (a = 1; a ≤npairs; ++a) { 
            for (b =a+ 1; b ≤ npairs; ++b) { 
                   FIRST PAIR OF ADJ POINTS 
                   p1=Pairs(a,1), q1=Pairs(a,2), 
                   SECOND PAIR OF ADJ POINTS 
                   p2=Pairs(b,1), q2=Pairs(b,2),      

       EVALUATE: p1 to d2, q2 to d1   
 if (  12 pd wpPCap ≥ &  12 pd wdDCap ≥  &  21 qd wpPCap ≥   &  21 qd wdDCap ≥  & 
Tabu(q2,d1)+tperm< iter & Tabu(p1,d2)+tperm< iter ){ 

   01,1 =dpX , ,12,1 =dpX 02,2 =dqX , 11,2 =dqX  
  =FO ,)1( ZW λλ −+  

OFBEST(OF, Xij), 
11,1 =dpX , ,02,1 =dpX 12,2 =dqX , 01,2 =dqX  

   if (OF<minOF){   
    minOF=OF, 

imin1=p1, 
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imin2=q2, 
),(* 21 dd WWabsonPWDispersi −=  

} 
else if(OF<minOF){ 

)( 21 dd WWabsonPWDispersi −=  
if (PWDispersion<PWDispersion*){ 

minOF=OF, 
imin1=p1, 
imin2=q2, 
PWDispersion*=PWDispersion, 

             }}} 
 ASPIRATION  

else if (  12 pd wpPCap ≥ &  12 pd wdDCap ≥  &  21 qd wpPCap ≥   & 
 21 qd wdDCap ≥ ){ 

   01,1 =dpX , ,12,1 =dpX 02,2 =dqX , 11,2 =dqX  
  =FO ,)1( ZW λλ −+  

OFBEST(OF, Xij), 
11,1 =dpX , ,02,1 =dpX 12,2 =dqX , 01,2 =dqX  

   if (OF<minOF){   
    minOF=OF, 

imin1=p1, 
imin2=q2, 

),(* 21 dd WWabsnPDispersio −=  
} 
else if(OF<minOF){ 

)( 21 dd WWabsonPWDispersi −=  
if (PWDispersion<PWDispersion*){ 

minOF=OF, 
imin1=p1, 
imin2=q2, 
PWDispersion*=PWDispersion, 

             }}} 
       EVALUATE: q1 to d1, p2 to d2   

 if (  11 qd wpPCap ≥ &  11 qd wdDCap ≥  &  22 pd wpPCap ≥   &  22 pd wdDCap ≥  & 
Tabu(q1,d1)+tperm< iter & Tabu(p2,d2)+tperm< iter ){ 

   01,2 =dpX , ,12,2 =dpX 02,1 =dqX , 11,1 =dqX  
  =FO ,)1( ZW λλ −+  

OFBEST(OF, Xij), 
11,2 =dpX , ,02,2 =dpX 12,1 =dqX , 01,1 =dqX  

   if (OF<minOF){   
    minOF=OF, 

imin1=p2, 
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imin2=q1, 
),(* 21 dd WWabsonPWDispersi −=  

} 
else if(OF<minOF){ 

)( 21 dd WWabsonPWDispersi −=  
if (PWDispersion<PWDispersion*){ 

minOF=OF, 
imin1=p2, 
imin2=q1, 
PWDispersion*=PWDispersion, 

             }}} 
 ASPIRATION  

else if (  11 qd wpPCap ≥ &  11 qd wdDCap ≥  &  22 pd wpPCap ≥   & 
 22 pd wdDCap ≥ ){ 

   01,2 =dpX , ,12,2 =dpX 02,1 =dqX , 11,1 =dqX  
  =FO ,)1( ZW λλ −+  

OFBEST(OF, Xij), 
11,2 =dpX , ,02,2 =dpX 12,1 =dqX , 01,1 =dqX  

   if (OF<minOF){   
    minOF=OF, 

imin1=p2, 
imin2=q1, 

),(* 21 dd WWabsonPWDispersi −=  
} 
else if(OF<minOF){ 

)( 21 dd WWabsonPWDispersi −=  
if (PDispersion<PDispersion*){ 

minOF=OF, 
imin1=p2, 
imin2=q1, 
PWDispersion*=PWDispersion, 

}} }}} 
Return (minOF, imin1,imin2) 
            
 
Hyperheuristic_LS(OF, Xij ) 
Set: 

iter=0, tperm’=tperm 
 OFbest1=μ1, OFbest2=μ2, OFbest3=μ3,

 ,,03,02,0 JjViXBestXBestXBest1 ijijij ∈∈∀===  

            ,1
J

Probj =  
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            Do 
                        SELECT A LS ALGORITHM 
                                   Random= rand(.)   
                                   )5.0(if ≤Random { 
                                                APPLY k-Steps/Pairs LS algorithm 

              SelectPair(Probj) 
              k-S(OF, Xij ,d1, d2) 

                                                  Set:   
                                                             OF=OFcop, 
                                                            ,,   JjVi=XcopX ijij ∈∈∀  
                                   } 
                                    else { 
                                                  APPLY 1-Step LS algorithm 

              1-S_LS(OF, Xij) 
                                    } 

            Update: 
adj(i,j) matrix, Tabu(i,j) matrixes and capacities of the  
districts (Pcap and Dcap) 

 
Until one of the stopping conditions is met, 
LAST_SEARCH(OFbest1, OFbest2, OFbest3, XBest1ij, XBest2ij, XBest3ij) 
Return OFbest1 and XBest1ij 

 
 
 
2-Iters_LS(OF, Xij ) 
Set: 

iter=0, tperm’=tperm 
 OFbest1=μ1, OFbest2=μ2, OFbest3=μ3,

 ,,03,02,0 JjViXBestXBestXBest1 ijijij ∈∈∀===   
 Xcopij=Xij           ,, JjVi ∈∈∀  
 OFcop=OF, 

 ,1
J

Probj =  

            Do 
                       Set:  

OFcop=OF  and Xcopij=Xij           ,, JjVi ∈∈∀  
              EVALUATE with  k-Steps/Pairs LS algorithm 
                                    SelectPair(Probj) 
                                    k-S(OFcop, Xcopij, d1,d2) 
                       Set: 
                                   OF_first=OF and X_firstij= Xij   ,, JjVi ∈∈∀  
              ∑

∈

−=
Jj

j WWDispersion *  
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EVALUATE with 1-Step LS algorithm 
                                     1-S_LS(OFcop, Xcopij)                         
                        SELECT BEST SOLUTION 
                        if (OF > OF_first){ 
                                    OF=OFcop 
                                    Xij=Xcopij    ,, JjVi ∈∈∀  
                        } 
                        else if (OF < OF_first){  
                                  OF=OF_first, 
                                   Xij=X_firstij    ,, JjVi ∈∈∀  

             } 
                        else if (OF =OF_first){ 

                        ∑
∈

−=
Jj

j WWDispersion  

                         if (Dispersion<Dispersion*){                                    Dispersion* = Dispersion, 

                                              OF=OFcop 
                                              Xij=Xcopij    ,, JjVi ∈∈∀  
                                    } 
                                    else{ 
                                          OF=OF_first, 
                                           Xij=X_firstij    ,, JjVi ∈∈∀  
                                    } 
                       } 

Update: 
 adj(i,j) matrix, Tabu(i,j) matrixes and capacities of the  districts 
(Pcap and Dcap) 

Until one of the stopping conditions is met, 
LAST_SEARCH(OFbest1, OFbest2, OFbest3, XBest1ij, XBest2ij, XBest3ij) 
Return OFbest1 and XBest1ij 
 
 
LAST_SEARCH(OFbest1, OFbest2, OFbest3, XBest1ij, XBest2ij, XBest3ij) 
Set:             

Set Tot_iter=5 
1-Step_LS(OFbest1, XBest1ij) 

Set:  
Set Tot_iter=3 
1-Step_LS(OFbest2, XBest2ij) 

Set:  
Set Tot_iter=2 
1-Step_LS(OFbest3, XBest3ij) 

Return OFbest1 and XBest1ij 
            
 



 155

OFBEST(OF) 
            Set OFbest1 and XBest1ij as the current solution 

For iter=1 to 5 
        1-Step LS 
end 
Set OFbest2 and XBest2ij as the current solution 
For iter=1 to 3 
        1-Step LS 
end 
Set OFbest3 and XBest1ij as the current solution 
For iter=1 to 2 
        1-Step LS 
end 

Return OFbest1 and XBest1ij 
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APPENDIX V: Analysis of the computational time of the heuristics and 

fitted curves. 
 
In this section we present an analysis of the computational times and the fitted curves according 

to the instance size (measured by the number of points) based on the maximum (worst case) and 

average computational time. This analysis is done based on the results for the 1-Step LS 

algorithm, given that this algorithm resulted in the good solutions and can be considered as an 

average case with respect to the rest. Also, we selected this algorithm because there is not too 

much difference among the computational times of the heuristics except the 2-Steps that resulted 

very inefficient and for this reason only some of the smallest instance sizes were tested with this 

algorithm.  We used LAB Fit [48] and Minitab 14.0 for this analysis, and we found similar 

results by both software.  Table V.1 summarizes the computational times for the 1-S for the 

worst and average cases according to the instance size measured by the amount of points.  

 

 

Table V.1 Computational times for the 1-S LS algorithm  

1-S Computational Time 
Number 
of Points 

Worst 
Case 

Average 
Case 

50 0.563 0.3026713

200 16.437 7.8924306

450 140.048 63.494282

1000 1173.827 576.15302

1500 4097.265 2374.7717
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V.1 Worst case analysis 
 

In this section we present the curves found for the maximum computational time according to the 

instance size. In section 4.2 the complexity analysis of the heuristics was presented, for which we 

distinguish between the cases in which the F-R procedure was required or not, which does not 

depend on the instance size. For the 1-S heuristic, it was defined that algorithm requires 

)  time when the F-R procedure is not required. Figure V.1 shows the fitted line plot 

obtained by LAB Fit, which is obtained by a Power function of order cubic. From the Minitab 

analysis, we can observe in figure V.2 that actually a Squared order function may fit, with a R-

Squared value of 99.5% and in figure V.3 we observe that for the Cubic order we have a R-

Squared value of 100% which is consistent to the result found by LAB Fit 

 

 
Fig V.1. Fitted Line Plot for the maximum computational times by LAB Fit. 
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Fig V.2. Fitted Line Plot (Squared) for the maximum computational times by Minitab. 

 

 
Fig V.3. Fitted Line Plot (Cubic) for the maximum computational times by Minitab. 
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The result found by the Fitting curves differs with respect to the complexity analysis computed 

in Section 4.2 in which the order of the function was of fourth or fifth depending on the 

requirement of the F-R procedure. This is due to the different stopping rules that were defined 

and also because of the amount of initial solutions that are attempted to construct, and that 

several procedures of the algorithms are guided by random numbers. For the complexity analysis 

we assumed the worst cases, and we can observe that in practice the performance of the 

algorithm is actually better than what was expected.  We also present the regression analysis 

found by Minitab in figure V.4, from which we can observe that around 86% of the variability is 

described by the model, which is a reasonable value.  

 

 

 
Analysis of Variance 

 
Source              DF        SS        MS              F        P 
Regression        1    10576469  10576469  18.49  0.023 
Residual Error  3    1715924     571975 
Total                 4    12292393 
 
S = 756.290   R-Sq = 86.0%   R-Sq(adj) = 81.4% 

 

Fig. V.4. Regression analysis for the Maximum computational times. 

 

 

 

V.2 Average case analysis 

 
In this section we present the curves found for the average computational time according to the 

instance size as it was done for the maximum computational time in section V.5. Figure V.1 

shows the fitted line plot obtained by LAB Fit, which is obtained by a Power function of order 

cubic. From the Minitab analysis, we can observe in figure V.6 that actually a Squared order 

function may fit, with a R-Squared value of 99% and in figure V.7 we observe that for the Cubic 

order we have a R-Squared value of 100% which is consistent to the result found by LAB Fit and 

also with respect to the results of the worst case analysis. 
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Fig V.5. Fitted Line Plot for the average computational times by LAB Fit. 

 

 
Fig V.6 Fitted Line Plot (Squared) for the average computational times by Minitab. 
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Fig V.7. Fitted Line Plot (Cubic) for the average computational times by Minitab. 

 

 

We also present the regression analysis found by Minitab in figure V.8, from which we can 

observe that around 83% of the variability is described by the model, which is a reasonable 

value.  

 

 
Analysis of Variance 

 
Source              DF        SS        MS              F        P 
Regression        1     3449048     3449048  14.80  0.031 
Residual Error  3     699300        233100 
Total                 4     4148347 
 
S = 482.804   R-Sq = 83.1%   R-Sq(adj) = 77.5% 

 

Fig. V.8. Regression analysis for the Maximum computational times. 
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APPENDIX VI: Test of Hypothesis to determine which heuristic resulted 

the best. 
 

In this appendix we present a statistical analysis to determine which of the five heuristics 

resulted the best. For this, we made a Wilcoxon Signed Rank Test for the differences between 

pairs of methods using Minitab 14.0.  Comparisons are based on the 1-S heuristic with respect to 

the rest of the methods. To determine which method has a better performance, we compare the 

differences of the solutions found for each heuristic under consideration.  

 

The Null hypothesis establishes that there is no difference in the results found by both methods 

and for the alternative hypothesis we tested either that the difference is less than zero or greater. 

A negative median value of the differences indicates that the 1-S method performed better.  

Results indicates that the best seed method resulted the 2-Iter LS.  Section VI.A presents an 

analysis of the results found for all the instance types except the Parcel instances, that were 

analyzed separately and results are presented in section VI.B.  

 

 

VI. A:  Analysis of the results obtained for the Asymmetric, Semi-Symmetric, 

Symmetric and Urban type instances.  
 

In figure VI.1 we present the Wilcoxon signed rank test for the median difference between 

solutions found by the 1-S and 2-S methods. We reject that the heuristics provide equal solutions 

values, and conclude that 1S-2S>0, which indicates that 1-S resulted in greater values for the 

Objective Function and hence the 2-S method is better. We can observe an estimated mean of the 

difference of 0.003031. 

 
 

Test of median = 0.000000 versus median > 0.000000 
 
               N 
             for   Wilcoxon         Estimated 
         N  Test  Statistic      P     Median 
1S-2S  648   329    40503.0  0.000   0.003031 

 

Fig VI.1. Wilcoxon Signed Rank Test:  (1-S) – (2-S) 
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Figure VI.2 presents the test for the difference of medians between the 1-S and K-S/P. We reject 

the null hypothesis that establishes that there is no difference between the solutions found by 

those algorithms and conclude that there is a negative value of the median difference, which 

indicates that the 1-S found better solutions than the K-S/P procedure.  

 

 
Test of median = 0.000000 versus median < 0.000000 
 
                N 
              for   Wilcoxon         Estimated 
          N  Test  Statistic      P     Median 
1S-KS  1080   930    36702.5  0.000   -0.04045 
 

Fig VI.2. Wilcoxon Signed Rank Test:  (1-S) – (K-S/P) 

 

 

In figure VI.3 we observe the test for the difference between 1-S and HypLS heuristics. We have 

enough evidence to reject the null hypothesis and conclude that there is difference between the 

solutions found by both algorithms and that 1-S found better solutions, as the median value of 

the differences is negative. This indicates that combining the 1-S and K-S/P by a hyperheuristic 

resulted with worse solutions than applying only the 1-S which is a simpler neighborhood 

structure.  

 

 
Test of median = 0.000000 versus median < 0.000000 
 
                 N 
               for   Wilcoxon         Estimated 
           N  Test  Statistic      P     Median 
1S-Hyp  1080   788   130732.5  0.000  -0.002473 

 
Fig VI.3. Wilcoxon Signed Rank Test:  (1-S) – (HypLS) 

 

 

Figure VI.4 shows the Test of the difference between the 1-S and 2-IterLS algorithms. We have 

strong evidence to reject the Null Hypothesis that both algorithms have the same performance 

and conclude that the 2-Iter found better solutions given that the estimated median of the 

differences between the solutions is positive.  
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Test of median = 0.000000 versus median > 0.000000 
 
                 N 
               for   Wilcoxon         Estimated 
           N  Test  Statistic      P     Median 
1S-2IT  1080   700   156521.5  0.000   0.003561 

  
Fig VI.4. Wilcoxon Signed Rank Test:  (1-S) – (2-IterLS) 

 

 

Given that the 2-S and 2-IterLS algorithms resulted better than the 1-S, we made a test between 

these procedures to determine which is better. For the 2-S we must consider that only the small 

and medium size instances could be solved in reasonable time. Figure VI.5 presents the results of 

the Test, and we can observe a p-value of 0.048, which is very close to the value of  α (0.05), 

hence we can conclude that there is no strong evidence to reject the null hypothesis that 

establishes that both methods have the same performance. Actually we observe  that the 

estimated value of the median is very close to zero.  

 

 

 
Test of median = 0.000000 versus median < 0.000000 
 
                N 
              for   Wilcoxon 
          N  Test  Statistic      P  Estimated Median 
2IT-2S  648   309    21323.0  0.048       0.000000000 

 
Fig VI.5. Wilcoxon Signed Rank Test:  (2-IterLS) – (2-S). 

 

 

Hence, for the Asymmetric, Semi-Symmetric, Symmetric and Urban instances we can conclude 

that the 2-IterLS algorithm performed better, considering that even thought there is no strong 

evidence to conclude that 2-IterLS is better than 2-S, since these method did not solve in 

reasonable computational time the large size instances as it was done for the rest of the 

heuristics.  
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VI. B:  Analysis of the results obtained for the Parcel Instances.  
 

Figure VI.6 presents the results of the test between the 1-S and 2-S methods. We have strong 

evidence to reject the null hypothesis and conclude that the 1-S fond better solutions, since the 

difference between the solutions found by both algorithms resulted with a negative value.  

 
 

Test of median = 0.000000 versus median < 0.000000 
 
                N 
              for   Wilcoxon         Estimated 
          N  Test  Statistic      P     Median 
1S-2S_1  18    18        0.0  0.000   -0.09523 

 

Fig VI.6. Wilcoxon Signed Rank Test-Parcel:  (1-S) – (2-S). 

 

 

Figure VI.7 presents the results of the test between the 1-S and K-S/P methods. We may reject 

the null hypothesis that establishes that there is no difference between solutions found by both 

methods for α ≥0.041. Since this value is very close to 0.05 and we may also consider that there 

is not too much difference between the solutions found by both algorithms, which differs from 

the results of the rest of the instances presented in Section VI.A, where we observe a strong 

evidence that the 1-S performed better.  

 

 
Test of median = 0.000000 versus median < 0.000000 
 
                N 
              for   Wilcoxon         Estimated 
          N  Test  Statistic      P     Median 
1S-KS_1  18    18       45.0  0.041   -0.04568 
 

Fig VI.7. Wilcoxon Signed Rank Test-Parcel:  (1-S) – (K-S/P). 

 

Figure VI.8 presents the results of the test between the 1-S and HypLS methods. We performed 

the test under an alternative hypothesis that indicates that the median difference is greater than 

zero and also for the case that is less than zero. In both cases the p-value resulted greater than the 

level of significance value of α =0.05. For this reason we present the general test in which the 

alternative hypothesis indicates that results of both heuristics are different.  
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We observe a p-value of 0.338, hence we do not have evidence to reject the Null Hypothesis that 

establishes there is no difference between the solutions found by both methods. This result 

differs than the analysis performed for the rest of the instances, however it still indicates that 

combining 1-S and K-S/P by a hyperheuristic does not provide better results than applying the   

1-S. 

 

 
Test of median = 0.000000 versus median not = 0.000000 
 
                 N 
               for   Wilcoxon         Estimated 
           N  Test  Statistic      P     Median 
1S-Hyp_1  18    18      108.0  0.338    0.01389 

 
Fig VI.8. Wilcoxon Signed Rank Test-Parcel:  (1-S) – (HypLS). 

 

 

Figure VI.9 presents the results of the test between the 1-S and 2-IterLS methods, results 

indicates that for an α=0.05 we may reject the null hypothesis that indicates that both methods 

provided the same results and conclude that there is a positive difference between the solutions, 

hence the 2-Iter performed better than the 1-S. However, the p-value is very close to the 

significance level so the evidence is not as strong as that found for the rest of the instances in 

Section VI.A, but we still are able to conclude that the 2-Iter performed equal or better than the 

rest of the heuristics for all the instances types.  

 

 
Test of median = 0.000000 versus median > 0.000000 
 
               N 
             for   Wilcoxon         Estimated 
         N  Test  Statistic      P     Median 
12-2IT  18    18      126.0  0.041    0.05920 
 

Fig VI.9. Wilcoxon Signed Rank Test-Parcel:  (1-S) – (2-IterLS). 
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APPENDIX VII: Analysis of the methods to select the set of seeds. 
 

 

In this section we present an analysis of the five methods proposed to select a set of seeds, with 

the objective to determine the impact that the seed method has on the solution and analyze if 

there is a relation between the seed method and the quality of the solutions.  Section VII.A 

analyze the percentage in which the final solution reported corresponds to each seed method. 

Section VII.B presents a statistical analysis of the impact that the seed method and the heuristics 

have on the quality of the solution, for which we used Minitab 14.0. 

 

 

VII. A Corresponding proportion of the Final solution to each Seed method 
 

For this analysis, we considered the results found by the 1-S heuristic for all the instance types 

and sizes. Tables VII.1 to VII.3 show the proportion in which the final solution reported for an 

instance corresponds to each seed method. Table VII.1 presents the results by instance size for 

each of the four types of instances: asymmetric, semi-symmetric, urban and symmetric. For each 

type of instance, 54 instances were solved, which includes the variants on the capacity 

restrictiveness, values of average speed, replicates and lambda variants. Table VII.2 presents the 

results that correspond to the parcel instances for which 18 instances were solved.  Table VII.3 

summarizes the results for all the types of instances per size as well as the global proportion that 

corresponds to each seed method for all the instances tested.  

 

We can observe in table VII.1 that the proportions varies according to the instance type. For 

example, the Workload method resulted with the biggest proportions for the urban and 

asymmetric instances, but the P-Dispersion method resulted the best for the Semi-Symmetric and 

Symmetric instances. Results also vary according to the instance size.  
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Table VII.1  Proportion per instance size and type. 

SEED 
METHOD 

ASYMMETRIC
50_5 200_10 450_15 1000_20 1500_30 All sizes 

P-Disp 0.37037 0.314815 0 0.018519 0 0.140741
Semi-Rand 0.092593 0.111111 0 0.166667 0 0.074074
Neigh. 0.12963 0 0.074074 0.037037 0 0.048148
Angle 0.296296 0.5 0.481481 0.444444 0.666667 0.477778
Workload 0.111111 0.074074 0.444444 0.333333 0.333333 0.259259

SEED 
METHOD 

SEMI-SYMMETRIC
50_5 200_10 450_15 1000_20 1500_30 All sizes 

P-Disp 1 0.5 0 0.481481 0.611111 0.518519
Semi-Rand 0 0 0 0 0 0
Neigh. 0 0.333333 0.666667 0.166667 0.388889 0.311111
Angle 0 0.166667 0 0.185185 0 0.07037
Workload 0 0 0.333333 0.166667 0 0.1

SEED 
METHOD 

URBAN
50_5 200_10 450_15 1000_20 1500_30 All sizes 

P-Disp 0.166667 0 0 0 0 0.033333
Semi-Rand 0 0.388889 0 0.166667 0.333333 0.111111
Neigh. 0.333333 0.055556 0 0 0 0.077778
Angle 0 0.166667 0 0.166667 0           0.066667
Workload 0.5 0.388889 1 0.666667 0.666667  0.511111

SEED 
METHOD 

SYMMETRIC
50_5 200_10 450_15 1000_20 1500_30 All sizes 

P-Disp 0.944444 0.166667 0.277778 0 0.333333 0.344444
Semi-Rand 0 0 0 0 0 0
Neigh. 0.055556 0.333333 0.333333 0.333333 0 0.211111
Angle 0 0.333333 0.222222 0.333333 0 0.177778
Workload 0 0.166667 0.166667 0.333333 0.666667 0.266667

 
 
In table VII.2 we present the proportions for the Parcel instances. We can observe that 100% of 

the solutions corresponded to the Workload method, in which the seeds are selected according to 

the dispersion of the workload over the region. Parcel instances are similar to the Urban 

instances and only differ in that for the Parcel instances,  the location of the points corresponds to 

real points of demand. For the urban instances we observed that the biggest proportion 

corresponds also to the workload method.  
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Table VII.2 Proportion for the Parcel instances. 
SEED 

METHOD 
Parcel
1109_28

P-Disp 0
Semi-Rand 0
Neigh. 0
Angle 0
Workload 1

 
 

In Table VII.3 we observe the global proportions that correspond to each seed method. The 

workload method resulted with the biggest fraction, while the smallest corresponds to the Semi-

Random. There are some instance sizes in which none of the best solutions corresponded to the 

Semi-Random method.  For the smallest size instances of 50_5 and 200_10 the P-Dispersion and 

Angle method respectively resulted with biggest proportions. For the rest of the instance sizes, 

the Workload method was the best. 

 

Table VII.3 Proportion for all the instances types. 

SEED 
METHOD 

ALL INSTANCES TYPES
50_5 200_10 450_15 1000_20 1500_30 Parcel ALL 

Workload 0.152778 0.157407 0.486111 0.375 0.416667 1 0.334259
P-Disp 0.62037 0.24537 0.069444 0.125 0.236111 0 0.259259
Angle 0.074074 0.291667 0.175926 0.282407 0.166667 0 0.198148
Neigh. 0.12963 0.180556 0.268519 0.134259 0.097222 0 0.162037
Semi-Rand 0.023148 0.125 0 0.083333 0.083333 0 0.062963
 

 

From previous results we may notice that including different types of seed methods enhances the 

diversity over the search space and increase the likelihood to construct a feasible solution. Given 

that depending the type and size of instance the seed method that resulted in a biggest proportion 

of the best solutions reported may vary, including several types of seed methods makes the 

algorithm more robust to different types and sizes of instances.  
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VII. B Impact of the Seed Method on the final solution and the ability to 

construct a feasible solution. 
 

 
 
In this section we present an analysis of the impact that the seed method has on the quality of the 

solution found by each heuristic. For this, we analyzed the results of a set of eight instances that 

corresponds to the medium size of 450_15. For this set, we selected two instances of each type: 

asymmetric, semi-symmetric, symmetric and urban, each solved by one of the capacity levels 

(less restricted and tight).  These instances were solved with an average speed value of 30 

kms./hr. and with a value of 0.5 for the relative weighting factor.  It is important to recall that 

each of the five heuristics construct the same feasible initial solutions and only differ to each 

other in the local search.  

 

 

Tables VII.4 to VII.11 and Figures VII.1 toVII.15 present the results for each instance type. We 

must recall that for each instance, up to five initial feasible solutions are attempted to be 

constructed by each seed method. Hence, for each instance we constructed in total up to 25 

solutions. Each table shows the best solution that was found for each seed method and each of 

the heuristics.  

 

 

The tables also present the seed method that corresponds to the best solution for each algorithm. 

This allows to analyze how much the quality of the solution may be affected if only one seed 

method would have been used in the construction phase. The tables also present in the last two 

columns, the proportion in which a feasible solution was constructed by each seed method and 

the proportion in which a feasible solution was constructed without requiring the F-R procedure.  
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Asymmetric and Less Restricted instance (ASYM-LR) 

 

Table VII.4 presents the values of the best solution found by each heuristic per seed method. We 

can observe that for this type of instance, the Angle method resulted the best. We also can notice 

that we were able to construct the 25 feasible initial solutions, but only 16% of those solutions 

did not require the F-R procedure to obtain feasibility, and most of this solutions were 

constructed with the Angle method. We also can notice that the best solution reported by each of 

the heuristics differ, for which the best is found by the 2-IterLS heuristic. We also observe the 

results found by a heuristic are not similar for the different seed methods. For instance, in the 

case of the 1-S algorithm, best solution found is 1.1556 but if we would have used only the 

neighborhood method, the resulting solution would have been 1.2758, around 10% bigger.  

 

Table VII.4 Objective Function values per Seed Method and Heuristic, ASYM-LR. 

SEED 
METHOD 

INSTANCE: ASYMMETRIC AND LESS RESTRICTED 

1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      
(no F-R) 

P-Dispersion 1.212466 1.287208 1.180128 1.206438 1.212466 1.00 0.00
Semi-Random 1.259279 1.289325 1.257479 1.25742 1.23285 1.00 0.00
Neighborhood 1.275855 1.350773 1.224901 1.230515 1.263233 1.00 0.00
Angle 1.155622 1.275975 1.155363 1.190741 1.150938 1.00 0.60
Workload 1.185871 1.202102 1.1841 1.194474 1.185871 1.00 0.20
Best OF value 1.155622 1.202102 1.155363 1.190741 1.150938 All: 25 Solutions
Best Seed Meth. Angle Workload Angle Angle Angle 1.00 0.16
 

 

In Fig. VII.1  we present the Two-way ANOVA from which we observe that both factors, the 

Heuristic and Seed method are significant and affect the quality of the solution found. In Fig. 

VII.2 we present the interaction plot for both factors, in which we can observe that there is 

interaction between the Heuristics and Seed methods. Is also possible to observe that the Angle 

method resulted better for all the algorithms except the K-S/P, for which the Workload resulted 

better.  
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Two-way ANOVA: OF versus Heuristic, Seed 
 

Source  DF         SS         MS      F      P 
Heur.    4  0.0206885  0.0051721   9.24  0.000 
Seed     4  0.0293830  0.0073457  13.12  0.000 

Error   16  0.0089587  0.0005599 
Total   24  0.0590302 

 
S = 0.02366   R-Sq = 84.82%   R-Sq(adj) = 77.24% 

 

Fig VII.1 Two-way ANOVA, ASYM-LR. 
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Fig VII.2 Interaction Plot, ASYM-LR. 
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Asymmetric and Tight instance (ASYM-T) 

 

Table VII.5 presents the results of the same instance type but now solved with the tight level of 

capacity restrictiveness. We observe that now the best seed method corresponds to the Workload 

method. Angle and Workload methods are more similar than the rest of the methods because 

they select the seeds based on the dispersion of the points and workload within the region. We 

can observe that for both instances, either the less restricted or tight case, both seed methods are 

the best. We also observe in the table that not all the 25 solutions could be constructed as was the 

case for the less restricted instance, because it resulted more difficult. In this instance we can also 

observe that results found by the seed methods are very different,  which indicates that the seed 

method impacts the quality of the solutions. For example, if K-S/P would have reported the 

solution found by the Neighborhood seed instead of the Angle, the value of the solution would 

have been around of 20% bigger. 

 

Table VII.5 Objective Function values per Seed Method and Heuristic, ASYM-T. 
SEED 

METHOD 
INSTANCE: ASYMMETRIC AND TIGHT 

1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      
(no F-R) 

P-Dispersion 1.250928 1.320985 1.219019 1.271257 1.250607 0.80 0.00
Semi-Random 1.262051 1.345179 1.246433 1.296183 1.237604 1.00 0.00
Neighborhood 1.378905 1.53425 1.336733 1.349565 1.358564 1.00 0.00
Angle 1.216347 1.269468 1.190982 1.238352 1.208699 1.00 0.20
Workload 1.212967 1.300957 1.191178 1.205245 1.18962 1.00 0.00
Best OF value 1.212967 1.269468 1.190982 1.205245 1.18962 All: 25 Solutions
Best Seed Meth. Workload Angle Angle Workload Workload 0.96 0.04

 

 

In figure VII.3 we present the ANOVA for this type of instance, in which we can observe that 

both factors, seed method and heuristics have a strong impact on the solution value.  In figure 

VII.4 we present the interaction plot of this factors in which we can observe some interaction 

between the seed method and heuristic. For all the heuristics, the angle and workload methods 

resulted in the better solutions. The K-S/P heuristic found the worst solutions for all the seed 

methods.  
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Two-way ANOVA: OF versus Heuristic, Seed  
 
Source  DF        SS         MS      F      P 
Heur.    4  0.042601  0.0106503  18.14  0.000 
Seed     4  0.096529  0.0241322  41.10  0.000 
Error   16  0.009394  0.0005871 
Total   24  0.148524 
 
S = 0.02423   R-Sq = 93.68%   R-Sq(adj) = 90.51% 

 
 

Fig VII.3 Two-way ANOVA, ASYM-T. 
 
 
 

 
Fig VII.4 Interaction Plot, ASYM-T. 
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Semi-Symmetric and Less restricted instance (S-SYM-LR) 

 

Table VII.6 presents the results for the Semi-Symmetric instance with the less restricted capacity 

limits. It is possible to observe that the Semi-Random method only could construct one feasible 

solution of the five attempts. For this type of instance, there are ties in the best solutions found 

by some of the seed methods. However, for all the algorithms the Angle resulted the best. Ties 

may indicate that for this type of instance there may be not too much difference on the quality of 

the solution if we wouldn’t include several seed methods. However, if we compare the results 

found by the best and worst seed method of each algorithm there is a gap of around 44%. Hence, 

we can still consider that it is a good approach to include several types of seed methods. We can 

also observe in the last column that for the P-Dispersion and Neighborhood methods, none of the 

solutions required the F-R procedure, and for the rest of the methods except the Semi-Random, 

there were several cases in which this procedure was not required. This indicates that for this 

type of instance constructing a feasible solution is easier than for the asymmetric instances.  

 

 

Table VII.6 Objective Function values per Seed Method and Heuristic, S-SYM-LR. 

SEED 
METHOD 

INSTANCE: SEMI-SYMMETRIC AND LESS RESTRICTED 
1-S K-S/P 2-S HypLS 2-IterLS %FS %FS       

(no F-R) 
P-Dispersion 1.056218 1.056218 1.056218 1.056218 1.047592 1.00 1.00
Semi-Random 1.316394 1.281889 1.316394 1.290515 1.316394 0.20 0.00
Neighborhood 0.922592 1.064845 0.922592 0.922592 0.913966 1.00 1.00
Angle 0.913966 0.932102 0.913966 0.922592 0.913966 1.00 0.60
Workload 0.913966 0.967146 0.913966 0.932102 0.914849 1.00 0.40
Best OF value 0.913966 0.932102 0.913966 0.922592 0.913966 All: 25 Solutions
Best Seed Meth. Angle, 

Workload 
Angle Angle, 

Workload 
Neighb., 
Angle 

Neighb., 
Angle 

0.88 0.60

 
Figure VII.5 presents the ANOVA for this instance, in which we observe that the Seed Method is 

significant and impact the quality of the solution reported. However, for this type of instance 

there is no evidence that the heuristic method has an impact on the solution. Actually if we 

observe in Table VII. 6, the solutions reported by each of the methods do not differ too much.  
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Two-way ANOVA: OF versus Heuristic, Seed 
 
Source  DF        SS        MS       F      P 
Heur.    4  0.005396  0.001349    1.45  0.264 
Seed     4  0.524622  0.131156  140.75  0.000 
Error   16  0.014909  0.000932 
Total   24  0.544927 
 
S = 0.03053   R-Sq = 97.26%   R-Sq(adj) = 95.90% 

 

Fig VII.5 Two-way ANOVA, S-SYM-LR. 
 

 

In Figure VII.6 we present the interaction plot of both factors. If we observe there is not too 

much interaction between the factors and results of the heuristics for each seed method are very 

similar, with a slight variation for the K-S/P.  
 
 
 

 
Fig VII.6 Interaction Plot, S-ASYM-LR. 
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Semi-Symmetric and Tight instance (S-SYM-T) 

 

Table VII.7 presents the results for the Semi-Symmetric instance but now considering the tight 

level of capacity restrictiveness. In this case we can observe that the Semi-Random method could 

not find any feasible solution,  because this instance resulted more difficult. For the rest of the 

heuristics we observe that the proportion of feasible solutions constructed without requiring the 

F-R procedure is the same as for the less restricted instance. We also observe ties in the best 

solutions found by each seed method, and also the Angle resulted the best for all the heuristics.  

The table also shows that there were two heuristics for which the P-Dispersion found the best 

solution as well as the Angle, which did not happen when the instance was solved with the less 

restricted capacity level.  

 

 

Table VII.7 Objective Function values per Seed Method and Heuristic, S-SYM-T. 

SEED METHOD INSTANCE: SEMI-SYMMETRIC AND TIGHT 
1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      

(no F-R) 

P-Dispersion 0.913966 1.064845 0.922592 0.922592 1.047592 1.00 0.80
Semi-Random  0.00 0.00
Neighborhood 1.047592 1.056218 0.922592 1.047592 0.913966 1.00 1.00
Angle 0.913966 0.932102 0.913966 0.922592 0.913966 1.00 0.20
Workload 0.913966 0.975773 0.931219 0.931219 0.913966 1.00 0.60
Best OF value 0.913966 0.932102 0.913966 0.922592 0.913966 All: 25 Solutions
Best Seed Meth. P-Disp., 

Angle, 
Workload 

Angle Angle P-Disp., 
Angle 

Neighb., 
Angle, 

Workload 

0.80 0.52

 

In Figure VII.7 we presented the ANOVA results. We can observe that the R-Sq has a very small 

value as well as the R-Sq adjusted. Under this condition, the ANOVA indicates that none of the 

factors impact the solution reported. We assume that the main reason are the ties in the solutions 

found by the algorithms and also among the seed methods. Also if we observe in Figure VII.8 

the interaction plot does not show a clear pattern.  
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Two-way ANOVA: OF versus Heuristic, Seed 
 
Source  DF         SS         MS     F      P 
Heur.    4  0.0155594  0.0038899  1.51  0.260 
Seed     3  0.0196472  0.0065491  2.55  0.105 
Error   12  0.0308739  0.0025728 
Total   19  0.0660806 
 
S = 0.05072   R-Sq = 53.28%   R-Sq(adj) = 26.02% 
 

 

Fig VII.7 Two-way ANOVA, S-SYM-T. 
 
 
 
 
 

 

 
Fig VII.8 Interaction Plot, S-ASYM-T. 
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Symmetric and Less restricted instance (SYM-LR) 

 

In this section we analyze the Symmetric instances, that differ from the Semi-Symmetric in that 

the optimal solution corresponds to symmetric districts always. Table VII.8 presents the results 

for the less restricted capacitated instance. It is possible to observe that the Workload method 

resulted the best for all the heuristics, and there is a tie only for the 2-S with the Angle method. 

We may also observe that all the Seed Methods found at least one feasible solution and only the 

Semi-Random and Neighborhood did not find the five feasible solutions. It is possible to observe 

also that for each seed method, at least there was an instance in which the F-R procedure was not 

required. This indicates that this type of instance because of the symmetry the F-R procedure is 

not required as much as for the Asymmetric instances for example.  

 

Table VII.8 Objective Function values per Seed Method and Heuristic, SYM-LR. 

SEED METHOD INSTANCE: SYMMETRIC AND LESS RESTRICTED 

1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      
(no F-R) 

P-Dispersion 1.062542 1.105157 1.044044 1.040222 1.025546 1.00 1.00
Semi-Random 0.972514 1.044044 0.972514 0.972514 1.017849 0.80 0.20
Neighborhood 0.972514 0.972514 0.963265 1.025546 0.972514 0.60 1.00
Angle 0.977116 0.973499 0.954016 0.972514 0.96425 1.00 0.40
Workload 0.954016 0.965728 0.954016 0.954253 0.916747 1.00 0.40
Best OF value 0.954016 0.965728 0.954016 0.954253 0.916747 All: 25 Solutions
Best Seed Meth. Workload Workload Angle, 

Workload 
Workload Workload 0.88 0.60

 
 
 
Figure VII.9 presents the ANOVA for this instance, we can observe that the Seed method 

resulted significative and impact the quality of the solution value reported. However, the 

Heuristic did not result significative, since the p-value is greater than the significance level of 

α=0.05. Also if we observe in Table V.II. 8, results reported by the heuristics do not differ too 

much as for other types of instances.  So this indicates that for this type of instance, all the 

heuristics could find solutions of relatively equal quality, but the seed method affects the solution 

that can be found.  And also in Table V.II.8 we may observe that the gap between the best and 

worst solution found by a heuristic can be around of 10%. 
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Two-way ANOVA: OF versus Heuristic, Seed  
 
Source  DF         SS         MS      F      P 
Heur.    4  0.0038686  0.0009672   1.80  0.179 
Seed     4  0.0327907  0.0081977  15.24  0.000 
Error   16  0.0086045  0.0005378 
Total   24  0.0452638 
 
S = 0.02319   R-Sq = 80.99%   R-Sq(adj) = 71.49% 

 
 

Fig VII.9 Two-way ANOVA, SYM-LR. 
 
 
 

Figure VII.10 shows the interaction plot for both factors. We can observe that there is interaction 

between the seed method and the heuristic. And we also observe that the 2-IterLS algorithm 

found the best solution with the workload seed method.  

 
 

 
Fig VII.10 Interaction Plot, SYM-LR. 
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Symmetric and Tight instance (SYM-T) 

 

Now we present the results for the symmetric instances with tight capacity limits in Table VII.9. 

We can observe that results differ too much with respect to the less restricted instance of this 

type, in which the best seed method resulted the Workload. However, for the tight capacitated 

instance, the P-Dispersion method resulted the best for all the algorithms and there is no tie 

among the results of the seed methods. All the seed methods found at least one initial feasible 

solution and even though the P-Dispersion method resulted the best, it  failed to construct one of 

the five feasible solutions, and all of them required the F-R procedure. We can also observe that 

the 2-S and 1-S both found the best solution.  

 

 

Table VII.9 Objective Function values per Seed Method and Heuristic, SYM-T. 

SEED METHOD INSTANCE: SYMMETRIC AND TIGHT 

1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      
(no F-R) 

P-Dispersion 0.884749 0.930824 0.884749 0.921575 0.893998 0.80 0.00
Semi-Random 0.972514 1.000827 0.972514 0.981763 0.981763 0.20 0.00

Neighborhood 0.963265 0.965057 0.954253 0.963265 0.963265 1.00 0.40
Angle 0.954016 0.973499 0.954016 0.972514 0.954742 0.80 0.20
Workload 0.972514 1.000857 0.96425 0.935755 0.954253 1.00 0.40

Best OF value 0.884749 0.930824 0.884749 0.921575 0.893998 All: 25 Solutions
Best Seed Meth. P-Disp. P-Disp. P-Disp. P-Disp. P-Disp. 0.76 0. 20

 

Figure VII.11 presents the Two-way Anova. We can observe that the Seed method is significant 

and impacts the quality of the solution reported, but the heuristics are not significant because the 

p-value is equal to 0.179. This is similar as in the less restricted case of this type of instance, and 

we think that it is mainly because there is ties in the solutions reported by the heuristics and 

results do not differ too much. Figure VII.12 present the Interaction Plot of both factors, and we 

can observe that there is small interaction, but not as significant as was observed for other 

instances.  
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Two-way ANOVA: OF versus Heuristic, Seed  
 
Source  DF         SS         MS      F      P 
Heur.    4  0.0038686  0.0009672   1.80  0.179 
Seed     4  0.0327907  0.0081977  15.24  0.000 
Error   16  0.0086045  0.0005378 
Total   24  0.0452638 
 
S = 0.02319   R-Sq = 80.99%   R-Sq(adj) = 71.49% 

 
 

Fig VII.11 Two-way ANOVA, SYM-T. 
 

 

 

 
Fig VII.12 Interaction Plot, SYM-T. 
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Urban and Less Restricted instance (URB-LR) 

 

In this section we present the analysis for the urban type instances with the less restricted 

capacity limit. This type of instances resulted the more difficult to construct a feasible solution. 

In Table VII.10 we can observe that only the Neighborhood and Workload methods were able to 

construct at least one initial feasible solution. And all the solutions constructed required the F-R 

procedure. This indicates that this type of instance was the most difficult, because the specific 

characteristics in which we attempt to create instances that resembles the structure of the 

Metropolitan region of Monterrey. We also can observe that the Workload resulted with the best 

solutions for all the heuristics, and that the 2-S found the best solution for this type of instance 

followed by the 2-IterLS. 

 

Table VII.10 Objective Function values per Seed Method and Heuristic, URB-LR. 

SEED METHOD  INSTANCE: URBAN AND LESS RESTRICTED 

1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      
(no F-R) 

P­Dispersion      0.00 0.00
Semi­Random      0.00 0.00

Neighborhood  0.993024 1.008811 0.993024 0.992948 0.986883 0.20 0.00

Angle      0.00 0.00
Workload  0.848623 0.87572 0.799966 0.831518 0.825846 0.40 0.00

Best OF value  0.848623 0.87572 0.799966 0.831518 0.825846 All: 25 Solutions
Best Seed Meth.  Workload Workload Workload Workload Workload 0.12 0

 

 

Figure VII.13 presents the ANOVA results, for which we only include the Neighborhood and 

Workload seed methods. Results indicates that the seed are significant and have an impact on the 

quality of the solution but the heuristics does not. This is mainly because the solutions found by 

the heuristics do not differ too much.  We also present in Figure VII.14 the Interaction plot for 

both factors, from which we can observe that there is no interaction between the heuristics and 

seed methods.  
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Two-way ANOVA: OF versus Heuristic, Seed  
 
Source  DF         SS         MS       F      P 
Heur     4  0.0023999  0.0006000    2.34  0.216 
Seed     1  0.0628876  0.0628876  244.98  0.000 
Error    4  0.0010268  0.0002567 
Total    9  0.0663143 
 
S = 0.01602   R-Sq = 98.45%   R-Sq(adj) = 96.52% 

 

Fig VII.13 Two-way ANOVA, URB-LR. 
 
 
 
 
 

 
Fig VII.14 Interaction Plot, URB-LR. 
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Urban and Tight  instance (URB-T) 

 

The last instance analyzed is the Urban with tight capacity limits. Table VII.11 presents the 

results, which are similar to the less restricted case, because only the Neighborhood and 

Workload methods were able to find a feasible solution. Also all the solutions constructed 

required the F-R procedure, and the best solution corresponds to the Workload method. It is 

possible to observe that the 2-S reported the best solution, and for this heuristic solutions found 

by each seed method do not differ too much.  

 

Table VII.11 Objective Function values per Seed Method and Heuristic, URB-T. 

SEED METHOD  INSTANCE: URBAN AND TIGHT 

1-S K-S/P 2-S HypLS 2-IterLS %FS %FS      
(no F-R) 

P­Dispersion      0.00 0.00
Semi­Random      0.00 0.00
Neighborhood  1.036851 1.036834 0.880663 1.036775 0.903754 0.20 0.00
Angle      0.00 0.00
Workload  0.893199 0.91099 0.83338 0.843343 0.861466 0.40 0.00
Best OF value  0.893199 0.91099 0.83338 0.843343 0.861466 All: 25 Solutions
Best Seed Meth.  Workload Workload Workload Workload Workload 0.12 0.00

 

Figure VII. 15 presents the ANOVA results, in which none of the factors resulted significant for 

this type of instance. However, we must recall that only 2 of the seed methods found a feasible 

solution. Therefore, the seed methods actually have a big impact on the solution reported and 

even more in the ability to construct a feasible solution. This indicates that it is the most difficult 

type of instance. We can also observe in Figure VII.16 the interaction plot of the factors, 

considering only the seed methods that could construct a feasible solution. In this case we 

observe more interaction than for the less restricted capacitated instance of the urban type.  
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Two-way ANOVA: OF versus Heuristic, Seed  
 
Source  DF         SS         MS      F      P 
Heur     4  0.0212620  0.0053155   2.52  0.196 
Seed     1  0.0305255  0.0305255  14.48  0.019 
Error    4  0.0084307  0.0021077 
Total    9  0.0602183 
 
S = 0.04591   R-Sq = 86.00%   R-Sq(adj) = 68.50% 

 

Fig VII.15 Two-way ANOVA, URB-T. 
 
 
 

 
Fig VII.16 Interaction Plot, URB-T. 

 

Finally, based on the statistical analysis that we performed, we can conclude that the seed 

method has a big impact on the quality of the solutions reported by the heuristics, and also in the 

ability to construct a feasible solution. The best seed method varies according to the instance 

type and capacity restrictiveness. Also, the heuristics impact on the quality of the solution, and 

either the 2-S or 2-IterLS resulted with the best solutions in general.  
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