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ABSTRACT

In this research, a particle swarm optimization algorithmQ)P&sing random keys is
developed to schedule flexible flow lines with sequence dependent setep to
minimize makespan. The flexible flow line scheduling problemhbsaach of production
scheduling and is found in industries such as printed circuit board aochchike
manufacturing. It is well known that this problem is NP-hard. #his reason, we
approach the problem by implementing a particle swarm optimzatPSO), a
metaheuristic which is inspired by the motion of a flock of birdsa achool of fish
searching for food. The proposed PSO has many features, siehuse tof random keys
for encoding the solution, “bounceback” of particles into the solupacesand tuning of
learning and weighting factors. The proposed PSO algorithimpsemented in C and
tested on a large set of data found in the literature. Exteogiputational experiments
are facilitated through the use of high-throughput computing via @&mg€ondor grid.
The solution qualities are compared and evaluated with the help @ Ibaund
developed by Kurz and Askin [16]. Unfortunately, we conclude that the pd@@SO
does not perform well for the problem examined. Areas for futumi are identified to

improve the overall performance of proposed PSO.
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CHAPTER ONE
1. INTRODUCTION

In modern manufacturing, scheduling problems have become an imigréspic of
research. Satisfying the daily demand of product with top qualilyam-time delivery
leads manufacturing industries to invest money and time in sadeimgduling problems.
Scheduling problems arise in different industries including chenfmad] and discrete
parts manufacturing. Among the many manufacturing settingdletkible flow line is
one of the more complicated, especially when compared to the wedirohed single
machine environment. The existence of multiple machines per stagdl@nihg job to
skip stages make the flexible flow line environment more comptictitan the standard
flow line. The automobile and printed circuit board industries (Piramat al. [20] and
Agnetis et al. [1]) use flexible flow lines with an extemfure: sequence dependent setup
times between jobs being processed on the same machine. Titiveb@ the
scheduling problem may vary according to industry needs. Potentedtiobg include
minimizing the total weighted tardiness, total completion timenaximum completion
time (also known as makespan). Minimizing the makespan is thetigbjdor this
research. Minimizing makespan in a flexible flow line with ormgstand one machine in
that stage is exactly the traditional traveling salesman gamobiBased on the reduction,
we see that minimizing makespan on a flexible flow line withagmtrary number of
stages and machines with sequence dependent setup times isdNPHmnas NP-hard

problem is the focus of our research.



An example of the proposed flexible flow line is shown in Figure RAlflexible flow
line consists of several stages in series where each stagstsoigpossibly) multiple
parallel identical machines where at least one stage shoutdniare than one machine.
A job should not revisit a stage which it already visited but jodos skip stages. This
scenario is found in manufacturing industries where a job doegqate all operations.
We consider a flexible flow line similar to that developedWstrock [27] for a printed

circuit board manufacturing line.

Machine 2
F Machine 4
Machine 1 » Machine 2 Machine 3 [
‘ Machine 4
— Machine 2 —

Figure 1.1: Flexible flow line with multiple machines at some stages

The proposed flexible flow line uses data which are known determoaligt No
preemption is allowed between jobs. There is no priority valugphbs. Infinite buffers
exist between stages. Machines are available at allwimheut any breakdown. Travel
time between stages is zero and once the jobs are processed at the pre@otisestare
immediately available for the next stage. Therefore, thdyéime for the next stage is
the completion time of the current stage. One of the disshaqg factors of our research
is the existence of non-anticipatory sequence-dependent setufbétmesn jobs at each

stage. After one job is processed and before the next jab ptacessing, some kind of



setup is done. The time required is sequence dependent. We follow upetigst
concept described by Rios-Mercado and Bard [24] for their flow line problem.

In order to shorten the discussion about the proposed flexible flonnienéollow a
modified version of the notation and makespan calculation introduckdrayand Askin
[16].

n number of jobs to be processed

g number of stages

o] last stage visited by job

p[ processing time for jabat stage

Eadat

setup time from jobto jobj at stage

S  set of stages visited by job
S setofjobs that visit stage {i: >0}

C' completion time for jobat stage

The makespannfaxC?) is the maximum completion time and it is the objective caiter

in our research. The completion time of titk job (denotedi]) at staget can be

calculated using equation (1)

Clip = Ppiy+ max{C( " Cpy} + 8y (a



The processing time of job 0, representing the initial state ahdwhines, is assumed to
be O for all machines on all stages. Setup is non-anticipatoaningethat the job to be
setup must be available and the machine to be used must be idlenleton times at
staget are the ready time at stagd.

One of the most commonly applied methods to solve NP-hard problemssticis is
the application of heuristics. Generally heuristics are divided inmto groups:
constructive methods and improvement methods (Quan-Ke et al. [21])otAie 6n a
specific type of improvement method called metaheuristics, winidlade techniques
like Genetic Algorithm (GA), Simulated Annealing (SA), Tabu 18ka(TS), Particle
Swarm Optimization (PSO), and Ant Colony Optimization (ACO)rti€la swarm
optimization (PSO) is a population-based search algorithm develpp&nnedy and
Eberhart [14]. Each particle “flies” with a velocity which cha adjusted by flying
experience. It can be applied to NP-hard scheduling problems suchsgaasdetailed in
this thesis.

The major advantage of PSO over other metaheuristic approaches samplicity in
structure. PSO does not have mutation and evolution parameters likeiGA sasier to
implement. We utilize a random keys solution encoding while applyia@® to our
problem. We propose a novel updating strategy, called “bounceback” tae éhsur
particles remain in the feasible region. Computational expergaatfacilitated through
the use of high-throughput computing via Clemson’s condor grid. In llesist we
compare PSO-generated solutions to a strong lower bound, developedzlgngukskin

[16].



Our Intent with this research is to investigate how an optinsizatiethod PSO has been
developed for real valued decision variables, can be applied to coartahatoblems.
We utilize a solution representation (Random Keys) which has beeesstdly used for
this problem in Genetic Algorithm developed by Kurz and Askin [16].mb&tions,
assumptions and equations of the proposed PSO are explained in thentpldhapter,
along with a brief literature review in Chapter 2. The proposed RS@2scribed in
Chapter 3. The experiments and results are shown in Chapter 4y Kihapter 5

concludes the research.



CHAPTER TWO
2. LITERATURE REVIEW

This brief literature review focuses on the following areasveeit for this thesis: general
scheduling of flexible flow lines; literature that focuses on ritekespan objective in
flexible flow line scheduling; particle swarm optimization; ahe use of the random
keys encoding for flexible flow line problems.

2.1.Flexible Flow Line
We consider a flexible flow line to be an extension to the icldksv lines (with one
machine per stage and all jobs visiting all stages) suchstirat stages may have
multiple identical machines and jobs may not require processing stag#ts. Salvador
[25] considered a flexible flow line with multiple machines atesal stages and with no
buffers. They used branch and bound method to determine the optimal pemuta
schedule (in a permutation schedule, jobs enter the flow line acgalione of then!
permutation orderings and a first-in-first-out technique is tsessign jobs to machines
at all stages in order to calculate the makespan). Gupta [12¢&gphnson’s Rule to a
specialized flexible flow line with one machine in the first stage and praitthachines in
the second stage. A three stage flexible shop problem with setopeomachine was
designed by Bellman et al. [4]. A dynamic program was developéuild the schedule.
Cheng et al. [9] provides an overview of flexible flow lines. Chengl. [9] begins by
describing flexible flow lines with sequence dependent setup times anddlégibllines

with two or multiple stages. Finally they conclude by giving ®sgjgns to solve



complicated flexbile flow line problems. Campbell et al. [7kigeed a heuristic to
schedule flexible flow lines with a single machine per stagpldging jobs at the end of
current sequence considering the idle time of the machine. Ademsn to Campbell’s
single machine flexible flow line, a hybrid (multiple machiqpes stage, but no stage-
skipping) flow line was designed by Ding and Kittichatphayak [10]1981, a hybrid
flow shop with an arbitrary number of stages and intermediaterowfis modeled by
Brah and Hunsucker [6]. They used branch and bound to develop the scheduler In t
work, they explained that a non-permutation schedule with insereedna# can also be
created and may be optimal for some problems.

2.2. Makespan Objective
Santos et al. [26] developed an algorithm to schedule a flexibldifievibuilt on the idea
of a permutation schedule to minimize the makespan. The optimal solsitevaluated
with the use of a lower bound on the optimal makespan. Lee et al. [17] modeledbla flexi
flow line with sequence dependent setup times in which the bufferedetstages were
limited. They used a genetic algorithm to minimize the makesBanco et al. [5]
considered the flexible flow line with sequence dependent setup, tielease dates and
the requirement that jobs do not wait between stages (known as the&aitho
requirement), to minimize makespan. They utilized branch and bound to meniha
makespan. Kurz and Askin [16] attacked the flexible flow line w#fuence dependent
setup times and minimized the makespan using heuristic and getgicthaen
approaches. They also developed and evaluated a strong lower bound on thEamakes

for flexible flow lines with sequence dependent setup times.



2.3. Particle Swarm Optimization for Scheduling
Particle swarm optimization (PSO) was introduced by KennedyEhedahart [14]. In
recent years PSO has been implemented for combinatorial oftonizaoblems like
flow shop and job shop scheduling. Zhingnang et al. [29] consider the praflem
minimizing the makespan in job shop scheduling. They provide a procedure for
application of PSO for scheduling problems. As an extension to theiriv@®08 they
implemented the PSO for the job shop with makespan objective. Tlegaagared the
performance of PSO with the genetic algorithm (GA) and lcolec with research
motivation on mathematical validation of particle swarm theoiye proposed PSO
worked effectively better than the genetic algorithm (GA) inrtjab shop scheduling
problem. The job shop scheduling problem is sufficiently differentvwiieatannot apply
their PSO to our problem. Quan Ke et al. [21] proposed a PSOthaigdar the no-wait
flow line scheduling problem with makespan objective and evaluatgdcibinparing to
the heuristic developed by Rajendran [22] for the no-wait flexible shop. Cho-Tang
and Ching-Jong [8] proposed a particle swarm optimization algoritdinmyforid flow
line scheduling with multiprocessor tasks (tasks that can be pedcbganore than one
machine simultaneously). No PSO for minimizing makespan inbllexlow lines with

sequence dependent setup times is known in the open literature.



2.4.Encoding Using Random Keys
In 1994 Bean [3] proposed a new method to encode scheduling problem solutions using
random numbers. He proposed an algorithm called random keys genetithadganich
has been applied to many scheduling problems. Kurz and Askin [1&}edtthe flexible
flow line with sequence dependent setup times scheduling problem, tminein
makespan, with an adaptation of the random keys genetic algorithenreBearch uses
the same solution representation followed by Kurz and Askin [16]. RO
implementation for scheduling problems in the open literature hasthieegandom keys
encoding.

2.5.Conclusion

From the literature review which we carried out throughout our reiseeork we found
that many journal articles have been written about schedulintlfeflow lines but
many of them are restricted to special cases like nbavgiermutation schedules. There
does not seem to be work focused on minimizing makespan in the fléaléne with
sequence dependent setup times using a random keys encoding in [zavbahe

optimization. This motivated the work in this thesis.



CHAPTER THREE
3. PROPOSED PARTICLE SWARM OPTIMIZATION

3.1. Introduction

In this section, a particle swarm optimization (PSO) algorifor the flexible flowline
scheduling problem is developed. We begin the chapter with therbaokigand brief
description of PSO followed by the proposed PSO. The main featuwar giroposed
PSO is the use of a random keys representation for sorting. Intonexintain feasible
solutions, the random keys representation in a PSO requires one adapttions; this
is evaluated in Chapter 4. Finally we conclude this chapter wigxample illustrating
random key PSO.

3.2. PSO Background
PSO was developed by Kennedy and Eberhart [14] in 1995. The motivatiogitedbl
metaphor is the motion of flock of birds or fish searching for foods dhe of the swarm
intelligence and optimization techniques that operate in real nusymmes. The
algorithm operates on a “swarm” of “particles”, which repregaténtial solutions, and
searches for an optimal solution by updating the velocities antlopgsof particles. The
objective function value is used to determine the quality of thecjgarEach particle has
its own velocity used to update its position. A particle is comgbad four pieces of
information: position, velocity, current objective function value and positievhah the
particle has achieved its best-ever objective function valuéedcB| for particlei,
representing the personal best ever experienced). The swaromposed of a set of

particles and the position at which a particle achieved the bestebjective function

10



value ever held by any particle in the swarm (cafgdepresenting the global best). Each
particlei’s velocity is updated usinB; andPy. The details of the particle and velocity
updates are provided below.

This description of PSO is based on Kennedy and Eberhart [13] and ElzertiaBhi

[11]. LetY' = (Y, Yo, Vigerene:) b )» Y;€Y V |, be particlei's position inD-dimensional
space at iteratioh Sis the number of particles in a swarm. Détbe the velocity of

particlei denoted a¥' = (V,;,Vi,,Vi;.....V;; ), V; €Y V | atiterationt. Each coordinate’s

personal best position B = (p, P, Pls...... p,), peY V j atiterationt. The global
11 12 13 1D 1j
best particle i®, = (P, Py, Pys-----Pyp ). Py €Y V | atiterationt. All particles modify

their position on a coordinate-by-coordinate basth the help of velocities as shown in
the following equation:

Yo =Yo +Vp (2)
Each element of the velocity vector is updated gisirweighted combination of three
factors: the current velocity; the difference betwéhe current position and the particle’s
personal best position; and the difference betwbercurrent position and the swarm’s
global best position. The weight on the differebe¢ween the current position and the
particle’s personal best position is composed i@aom number;, between (0, 1), and
a tunable learning factoc;. The weight on the difference between the curpasition
and the swarm’s global best position is composeal raihdom numbes, between (0, 1),
and a tunable learning factaps, Equation (3) illustrates the velocity updatirguation,

in which w is the weight on the current velocity. We discuilks tuning of these

11



parameters in Chapter 4. Eberhart and Shi [11¢dhiced the weighting parametgrto

the velocity equation to balance local and glolealeh.

Vip =WVip " +¢r,(Pp = Yip) +¢.1,(Pp —Yp) (3
Chao-Tang and Ching-Jong [8] describe the velagityate’s intent as the adjustment of
the searching direction of particles Dyxdimensional space. One consideration in the

generic PSO is that velocities may increase (oredse) without bound, leading to

particles making large steps in the solution speanedy [15] used a constaWta to
limit the range of velocity, requiring thdte (-V,,..V,.,) - Figure 3.1 illustrates the idea

of a swarm with 4 particles for a problem in whigh2.

Solution
4 Space

v

Updated
| __Particle
d/ /04/ Position

Updated Particle
/Vo\ Velocity based on
/ ~—

Co-ord 2

warm and
historical best

Best .

Particle

v

Co-ord 1

Figure 3.1: Example Swarm with Four Particles atab&@ Best — Two Coordinates
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A generic description of the PSO algorithm is do¥es:

Step O: Initialize each particle position and vélocandomly. Go to Step 3.

Step 1. Update each particle’s velocity accordm&duation (3)

Step 2: Update each particle’s position accordingduation (2)

Step 3: Evaluate the objective function for eadtiga.

Step 4. Update the personal best particle for eaohdinate.

Step 5: Update the swarm’s global best particle.

Step 6: If the stopping conditions are met, rettine global best particle.

Otherwise, go to Step 1.
Steps 0, 2 and 3 require further description basedur application of PSO to the FFL
problem. First, we describe the solution represt@rt, which impacts Steps 0 and 3.
Then we describe how we initialize the particless{pon and velocities) for Step 0. Two
alternatives for updating velocities are then dised. We conclude this chapter with an
example problem.
3.2.1. Random Keys Representation

PSO operates ili° and so cannot be directly applied to a permutatpnesentation of a
combinatorial optimization problem such as the dfiag salesman problem or the
problem of interest, flexible flow line scheduliniyVe represent solutions for the flexible
flow shop with random keys in the same manner az kimd Askin [16]. In Random
Keys PSO for FFL, each potential solution is repnésd by a particle witD equal to the

number of jobs in the problem instance. For examible particler; = (1.32, 1.22, 0.55,

0.35, 1.74, 0.65) is for a problem with 6 jobs.clEaf the particle positiomﬁ e[O,M),

13



whereM is the number of machines in stage 1, serve ahima@ssignment and sort
keys to decode the solution, following Bean [3] &tz and Askin [16]. The integer
part is the machine number to which the job isgmesi and fractional part serves as the
sort key to sort the jobs assigned to each machine.

Let us consider a problem with only a single stagd two machines. The positions for
the six jobs are shown in Table 3.1. The partitgddls us that in this solution, machine 0O
has jobs 4,3 and 6, in that order and machine jdss2, 1 and 5 in that order shown in
Table 3.2. With this sequence and with job procgsdime and sequence-dependent
setup times, we can determine when each job coegpfebcessing on the machines for
each schedule.

Table 3.1: Positions for an Example Patrticle

Job 1 2 3 4 5 6

Position 1.32) 1.22 | 0.55| 0.35| 1.74 | 0.65

Random Keys and Particle Representation

Table 3.2: Sequences for an Example Particle

Machine O 4 3 6

Machine 1 2 1 5

Job Sequence

14



As described in Chapter 2, the makespan for alfleXlow line is computed using these
sequences on stage 1 and the Best Completion Tigoeitam. This computation of
makespan€') comprises Step 3.
3.2.2. Particle Initialization (Step 0)

Recall thatSis the number of particles in a swarm. Posijiaf particlei is initialized
randomlyyfj €[0,M), as described in the previous section. Kennedyalet[15]
introduced the constalt to limit the range of velocity. We must also lirthie velocity
because of the limited range of values that th&ipas can take on. Consider a problem
with two machines in the first stage, in which e@olition must be in the range [0, 2). If
the velocity in some coordinate is greater thait &5 obvious that any position update
will result in an infeasible solution. We introdutwo potential mechanisms to deal with
the issue of positions being outside the rangdlofvable values in the position update
step, but first, we focus on setting a value Vg, for the purposes of initializing the
particle velocities. We séf,ux as 0.5 in this research so that jobs change meshin
approximately in 50% of position updates. We atitie and maintain the velocifyof
particlei at iteratiort asV; € (—Vyuo Vo) -

3.2.3. Position Update: Particle Bounceback

As described in the previous section, some velo@tyes may force a particle out of the

range of allowable values for the position. For areple, ifyi‘j €[0,2),
Y,; =1.95andv,, =0.2, the new valuey,, =2.15 will be found. We propose two

potential solutions. First, we can fix the valde)@ to a value close to its upper bound,

15



if it is too big, or at O if it is too small. Alteatively, we can ricochet the particle off the
boundary back into the solution space. We callrit@chet “bounceback” and indicate
the fixing of the position to near the boundarytihg phrase “no bounceback”. This is an
innovative feature in the proposed PSO. Figuresh@ws the difference in potential

positions in the case of bouncing back and not bioigrback.

Solution Space

M v

Location if Do o
Job2 Key Bounce Back Location if Do

x/ Not Bounce Back

Edge

0 Job1 Key

Figure 3.2: Graphical Representation lllustratirauBce back of Random Keys PSO

We first update the positions according to Equgfihn Then we consider the potential
for violation of the range of position values.

We implement the “no bounceback” option accordmhe following decision rules:

Ifyitsz,yi‘sz—g 4

If y; <0,y =0 ¢

16



We implement the “bounceback” option accordingw® following decision rules:

Ify; =M, y; =2M —y; (6,

If y; <0, y; =—Vj (7

3.2.4. Key Features of the Proposed PSO
The proposed PSO provides a contribution to tleeditire due to its use of the random
keys representation, developed originally for usegenetic algorithms, and in its

development of the “bounceback” mechanism to enthatethe particles remain feasible.

3.3. Sample Example
For the sake of clarity, we illustrate an examdlew Random Keys PSO for a flexible

flow shop problem with 2 jobs and 3 machines ogesth and 1 machine on stage 2. All
time units used in our example are seconds. Dét be the processing time of jolon

staget shown in Table 3.3 ansl‘yj be the setup time from jalio jobj on staget.

Table 3.3: Example Processing Time Data

Staget | Jobi | Pi
1 3
1
2 6
1 1
2
2 7
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We assume that no setup is required for the tistgn each machine. The input data for

the example problem is shown in Table 3.4. The B&@meters are set es c,=w=1

andVmex = 3.0.
Table 3.4: Example Setup Time Data
Staget S | To jobj

From jobi 1 2
1 1 - 4
2 2 -
From jobi 1 2
5 1 - 8
2 5 -

Consider a 3 particle swarm, illustrated in Fig@t8 and Table 3.5. The randomly

generated positions and velocities of all thrediglas are shown in Table 3.5. Since the

number of machines is 3, the positions are randaelgcted such thgt €[0,3). The

initial velocities are randomly generated as shaowiable 3.5. Now with the help of

particle locations we can compute the makespaadohn particle.
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Particles
3 ]

(0.01. 2.98

1
3
(2.48.2.22 .

Solution
Job2 Key — Space
(1.48. 1.5€
2
0 Jobl Key 3

Figure 3.3: Example Initial Swarm Position withdahrparticles
Consider the first particle. At stage 1, machin®8 Job 1 and machine 2 has job 2. Job
1 will complete stage 1 at 3 and job 2 completagestl at 6, as shown in Figure 3.4. Job
1 arrives at stage 2 at time 3, and then compédtéme 4. Once job 2 arrives at stage 2,

at time 6, the setup between jobs 1 and 2 can begin

Stage 1
1
Py
AN
M/C 0 1
3
M/C 2 2
6

Figure 3.4: Processing time for job 1 and 2 atesthg
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Setup completes at time 14 (=6+8) and then job rBptetes at time 19, as shown in

Figure 3.5. Following the same procedure, the nyzkes of particle 2 and particle 3 are

determined and shown in Table 3.5.

Stage 2 2

3 4 6 14 19

Figure 3.5: Total Completion time for job 1 a&hdt stage 2

Table 3.5: Example Problem Initial Swarm Data

Locations Velocities Makespan
Particlei
Job 1y Job 2y Job 1v; Job 2vi, C/
1 0.01 2.98 0.19 0.80 19
2 1.48 1.56 -0.06 0.38 28
3 2.48 2.22 -0.52 0.09 17

Since this is the initialization stef} =Y, Vi andP, =Y,. Next, we update all velocities.

For particle 1, assume that r,=0.5,c;= c,=w=1 andVxx = 3.0. Using Equation (3), the
velocity of particle 1 for job 1 is calculated by = 0.19 + (2.48-0.01) = 2.66, and the
velocity of particle 1 for job 2 is calculated @s= 0.8 + (2.22-2.98) =0.04. Similarly,

particle 2 and 3 velocities are determined and sarzed in Table 3.5.
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Now, we update all particle locations. Using Eqoa{(2) for particle 1, job 1, we fing;

=0.01 + 2.66 = 2.67. Similarly;> = 2.98 + 0.04 = 3.02. Sincg, €[0,3) we have the

situation that the particlg;» is going beyond the solution space as illustrateBigure

3.6.

A (2.67.3.02
1
3
Job2 Key 3
(196. 2.31
2
(2.42, 2.18) ¢ Solution
Space
0 Job1 Key 3

Figure 3.6: Example Swarm Position (Before Bounaek}

If we do not utilize “bounceback”, the new valueygfwill be set as 2.99, if we are using
2 decimals. If we utilize “bounceback”, Equation (@ovides the new value of, as

2.98. Now the particle key is inside the solutipace. Figure 3.7 shows the bounce back

of particles into solution space.
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4
r (2.67.3.02
]
3
1 *
(2.67.2.98
Job2 Key 3 ¢ Solution
(196. 2.31 Space
2
(2.42,2.18)
0 Job1 Key 3

Figure 3.7: Example Swarm Position (After BouncelBa

The makespans of all three particles are determanddshown in Table 3.6. Now particle
2 has the lowest makespan of 17.

Table 3.6: Example Problem Final Swérata

Locations Velocities Bounce | Makespan
Particlei
Job 1y;; | Job 2y, | Job1lvy | Job 2vp Back C.on
1 2.67 2.98 2.66 0.04 Yes 28
2 2.42 2.18 0.94 0.62 No 17
3 1.96 2.31 -0.52 0.09 No 25
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CHAPTER FOUR

4. EXPERIMENT AND RESULTS
In this chapter we elaborate about the experimatdatd setup for Random Keys PSO,
tuning of learning and weighting factors, implenaitin of Random Keys PSO and

finally discuss the results of our Random Keys PSO.

4.1. Generation of Experiment Test Data

Kurz and Askin [16] generated a large data setterflexible flow line with sequence
setup times. We used their experimental data forflenible flow shop problem. Data
required for our flexible flow shop with sequenagpdndent setup times consists of the
range of processing times, number of jobs to beqssed, number of stages with data
explaining how many machines exist at each padicatage, processing times, ready
times and sequence dependent setup times. Thespiogdimes are from one of two
levels: uniformly distributed in the range of [50}70or [20-100]. The distinguishing
factor in our flexible flow line problem is the sexnce dependent setup times. Our setup
times are asymmetric; Kurz and Askin [16] generatezin using the characteristics of
setup time developed by Rios-Mercado and Bard [Pi3§ setup time matrices satisfy the
triangle inequality and the setup times are unifgrdistributed with the range of [12-
24]. It is assumed that the largest number of mm&shin a stage should be less than the
number of jobs to be processed at that stage.obl jare assumed to be available for
scheduling at time 0; at subsequent stages, th@letion times at stageare the ready

times at stage+1. In the proposed flexible flow line a job shouldt revisit a stage
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which is already visited and jobs can skip somegesta Following Leon and
Ramamoorthy [18], the probability of a job skippiagtage was fixed to be 0, 0.05 or
0.04.

Based upon the above discussion, we see that thexierental data depends up on the
factors and levels described in Table 4.1. Theee3a2x3x5x2=180 test scenarios. For
each scenario, Kurz and Askin [16] provide ten datts. Therefore there are 1800 input

data files. We subjected each of these 1800 injast o the Random Keys PSO multiple

times.
Table 4.1: Experimental Data Setup
Factor Levels Values
1 0.00
Skipping Probability 2 0.05
3 0.40
. . 1 Unif(50-70)
Processing Times 5 Unif(20-100)
1 2
Number of Stages 2 4
3 8
1 1
2 2
Number of Machines 3 10
4 Unif(1,4)
5 Unif(1,10)
1 30
Number of Jobs 5 100
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4.2. Stopping Criteria and Other Parameters
In each replication, Random Keys PSO will run f@05terations or until the lower
bound is achievedolutions are evaluated by their deviation fromldveer bound. Each
swarm has a population size of 100 particlggy is set at 0.5.

4.3. Lower Bound
Kurz and Askin [16] developed a strong lower botordflexible flow line with sequence
dependent setup times. Two lower bounds are agtaathputed for each of the input
files; the higher of each is used as the lower Hdan the input file. LB' assumes that
every job must be processed at every stage WHfds developed with the assumptions
that every stage must process all of its jobs aadsmould also include the time for the

first job to get to each stage and leave it as.Wdlé solutions of our Random Keys PSO

are evaluated with the help of their derivatiomirthe lower bound.

LBY = m ( '+ min t.) )
.1%{; D! +,-=o,.|..nsl (8
t H t
S(eemng)
: r in o | ics ’ i g ins
t=1,..g L o 1
— min '+ min S |— min '+ mins
m' k=l|: ieS' [k] z'=]_( P j=0...n Sh) ies' ;L( d J=0.. K )}
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Following Kurz and Askin [16] we used the best loweund for each test scenario. The
solutions are compared and evaluated by the “Laglére loss is the percentage
deviation above the lower bound for the makespahitais used as the key performance
measure in our research. Loss is computed as shot#quation (10) wher€« is the
makespan determined by Random Keys PSO Ldhds the lower bound. A loss of 0
indicates that the optimal solution is found.

(Coe ~LB)

loss = * 100 (10)

4.4. Random Numbers
The random numbers are generated using the Mers&mngter random number
generator. It is a pseudorandom number generatoelamed by Matsumoto and
Nishimura [19]. Their algorithm generates randormbar uniformly in the range of [0,
232 - 1] for 32 bit integers, with a period of°®"1. This pseudorandom number
generator allows the coder to ensure that non-appihg but reproducible

pseudorandom number streams are used.

4.5. Computational Environment
The proposed Random Keys PSO is developed usirangithge and compiled with
Microsoft Visual Studio 2005. Computational expegitts are facilitated through the use
of high-throughput computing via Clemson’s CondadgThe quality of this research

heavily depends on computing throughput. It is metommon to find problems that
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require weeks or months of computation to solvedéscribed by Basney et al. [2], high-
throughput computing (HTC) refers to environments which large amounts of
computing capacity are available over long periofiime. The initial set of 1800*54

runs used for Experiment 1 took less than one daleday, using over 1500 CPU hours.

4.6. Experiment 1: Tuning of Parameters
The learning and weighting parameters play a nrajerin determining the velocity and
position of the particles in the solution space. otder to evaluate the performance of
Random Keys PSO, an experiment was conducted lygtihe learning and weighting
factors in Equation (3). The initial population wgsnerated randomly. The initial

velocities are determined using Equation (3).

Following Kennedy et al [15], the learning parametevaluated are;€ {1, 1.5, 2} and
c€ {1, 1.5, 2}. Following Chao-tang and Ching-Jong [ilBe weighting factors evaluated
arewe {0.8, 1, 1.2}. One of the distinguishing charawtcs of our Random Keys PSO
is the proposed “bounce back” of particles intogbkition space so we consider the PSO
with and without bounceback to be tuned as welle &t the factdb to be either “Yes”
(we use bounceback) or “No”. These tunable RandawskKPSO parameters have the
different levels summarized in Table 4.2. In Tothkre are 3x3x3x2=54 settings
considered in our experiments. Since there are 800 problem data files, we consider

1800x54=97200 test scenarios with our Random K&G.P
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Table 4.2: Tuning of Parameters

Parameter Levels Values
1 1
C1 2 1.5
3 2
1 1
Co 2 15
2
1 0.8
w 2 1
3 1.2
1 No
b
2 Yes
Number of Settings 3*3*3*2=54

Each of 54 settings of Random Keys PSO were tdetd/e replications; this low level

of replications was used for the tuning experim&nte tuning experiments should be
smaller than the final experiment. Each of the @f30makespans generated by this
experiment was transformed into loss values udieglawer bound. The range of loss
values is found be between 1.5% and 95% aboveotherlbound. Since the number of

replications is low, a non-parametric test was coted in order to find the best
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parameter setting for the Random Keys PSO. Theageeof the 5 replications for each

of the 54 setting and 1800 file combinations weseduas input into the test.

Session
Friedman Test: C wversus B blocked by A
S = 42.319% DF = 53 P = 0.857
S = 42.24 DF = 53 P = 0.855 ({(adjusted for ties)
Sum of
B o Est Median Ranks
1 1800 0.25432 S0213.0
-] 1800 0.25424 49285.5
3 1800 0O.25416 4d8428.0
4 1200 0.25428 49771.5
s 1=s00 0O.25425 49451.0
& 1800 0.25427 49644.0
7 1=00 0_2%5431 S0185.0
8 1800 0.25434 SO0361.5
= 1s00 0.25427 439&868Z2.0
&
BEH Sheet2 =
. c1 | c2 c3 | ca [ C5
. B [ o
1 1 1 0069397
> 2 1 0059587
> 3 1 0068248
4 4 1 0_059906
5 =1 1 0071448
6 =] 1 0068794
i g | 0070013
Figure 4.1: Friedman Test Results

The Friedman test was executed using MINITAB 15 #radresults are shown in Figure

4.1 and Appendix A. The 54 settings are considagsethe treatments. The treatment with

lowest sum of ranks was the best treatment andhtakebest parameter settings for

Random Keys PSO.

The results shown in Appendix A were analyzed. ddwhately, we cannot conclude

that there is any significant difference betweea $lettings.

It was observed that the

settingci=2, c,=2, w=2, b=2, appears to yield the lowest makespan when ceedpa the

other parameter settings. Therefore, these finerpater values are selected for use in

Experiment 2 and are shown in Table 4.3.
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Table 4.3: Final Parameter Levels and Values

Parameter Level Values
o 2 15
c 2 15
2 1
w
b 2 Yes

4.7. Experiment 2: Replication of Tuned RK PSO
With the final parameter values:{c;, w, b) = (1.5, 1.5, 1, yes), Random Keys PSO is
applied to the same 1800 data set for 50 replicatitn each replication Random Keys
PSO will run for 500 iterations or until the lowbound is achievedComputational
experiments are facilitated through the use of tighughput computing via Clemson’s
Condor grid. The 1800*50 runs took less than orlencir day, using over 1400 CPU
hours.
The results are compared with the Genetic Algori{dA) developed by Kurz and Askin
[16] for flexible flow line. It is found that GA wis better than the Random Keys PSO
even though the values sometimes appears to deofarthe lower bound followed by
Kurz and Askin [16]. The makespans of Random Key® Rre compared and evaluated
with the help of the loss figure of merit. The age loss over the 50 replications for
each of the 1800 test scenarios is calculated., er@assume that the sample size allows
us to use the Central Limit Theorem and the average assumed to be normally

distributed. A single factor ANOVA test is donedemonstrate at 99% confidence level
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whether there is any significant difference betweach of the factors or not. The p-value
from the ANOVA test is compared witiivalue. Single factor ANOVA for all five factors
are shown in Appendix B.

Table 4.4: Experimental Results

Single | Does level
Factor Levels | Minimum | Average| Maximum | Factor matter?
p-value | (conclusion)
1 0.03 0.09 0.27
Skipping 2 0.08 0.21 0.47 | <0.01 Yes
Probability
3 0.12 0.29 0.55
1 0.04 0.19 0.55
Processing <0.01 Yes
Times 2 0.03 0.20 0.48
1 0.03 0.19 0.50
Number of 2 0.04 0.19 0.49 <0.01 Yes
Stages
3 0.04 0.20 0.55
1 0.04 0.17 0.31
2 0.05 0.19 0.41
Number of 3 0.12 0.28 0.55 <0.01 Yes
Machines
4 0.03 0.17 0.33
5 0.04 0.18 0.32
1 0.03 0.17 0.50
<0.01 Yes
Number of Jobg— 0.06 0.22 0.55
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4.7.1. Impact of skipping probability on RK PSO

From Table 4.4, we see that the levels of the Skgpprobability factor are significant.
From Figure 4.2 it is found that when all jobs vigll stages (level 1 of the Skipping
Probability factor), Random Keys PSO performs digantly better with the average loss

of makespan between 0.03 to 0.27.

0.50 —
m Minimium of Loss
0.40 |
Averaoe
Average
0.30 B Average of Loss
0.20 | Average
0.10 | Maximum of Loss
l Average
0.00 - T

1 2 3

Figure 4.2: Difference in levels of Skipping Proliip

We conjecture that the more “flexible” the flowdir{fas in a semiconductor industry in
which all jobs do not undergo the same operatidhs)ess appropriate PSO may be as a
scheduling algorithm. In the proposed PSO with camdeys encoding, a job that does
not visit stage 1 will still have a key but the @ilghm will spend time trying to find a
good coordinate for that job. The PSO may maka aflmoves in the swarm space that

don’t actually move the job in the schedule ingb&ution space.
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4.7.2. Impact of Processing Time on RK PSO

From Table 4.4, we see that the levels of the Riog Time factor are significant.

Figure 4.3 indicates that level 1 has a bettergoevdnce than level 2. The processing
times are uniformly distributed with the same m&&®) but the level 1 range is 50 - 70
while the level 2 range is 20 - 100. Consider haakespan can be impacted by
reversing the order of two jobs when at both erfdhi® processing time ranges. When
the job processing times range from 50 to 70, tfierdnce in makespan could be only as
much as 20 time units, assuming one of these th® @efine the makespan. When the
job processing times range from 20 to 100 but #fleo factors are identical, the

difference in makespan could be much as 80 times.uWe find that RK PSO performs

better when the range of processing times is smaltessibly because the order of jobs
impacts makespan less in this case. We conjetttatehis observation may hold true for

any algorithm used to solve this problem.

0.60

0.50

.40 —

730 B Minimium of Loss Average
.30 |

B Average of Loss Average

0.20 faximum of Loss Average

0.10 -

Figure 4.3: Difference in levels of Processing Tsme
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4.7.3. Impact of Number of Stages on RK PSO

From Table 4.4, we see that the levels of the NunolbeStages factor are significant.
Figure 4.4 indicates that level 1 has a bettergperance than levels 2 or 3. Recall that
level 1 corresponds to 2 stages, level 2 to 4 stagd level 3 to 8 stages. In general, the
order induced by the stage 1 schedule persistsgdyréhroughout the later stages due to
the algorithm used to assign jobs to machines ter latages. The more stages the
problem has, the less appropriate the initial orday be on later stages. This is insight
can be understood by considering a regular flowlidehnson’s Rule tells us an optimal
permutation schedule can be created for a 2 stadpe, and that a three stage problem
can be solved optimally in some situations. Schiegditerature also tells us that in a
regular flow line, the first two stages and thd &g stages should have the same order
of jobs, even if these orders are not the same.caieuse this knowledge to conjecture
that in a two stage flexible flow line problem, ewsith sequence dependent setup times,
the order induced by the first stage may be redseriar the second stage. However, the
sequence induced by the first stage may be veryfpothe later stages in an eight stage
problem. A more detailed solution representaticmy rallow a better solution for the

problems with more stages, but with a concurrecrigi@se in running time.
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Figure 4.4: Difference in levels of Number of Stage

4.7.4. Impact of Number of Machines on RK PSO

From Table 4.4, we see that the levels of the Nurob&achines are significant. Recall
that level 1 corresponds to exactly 1 machine faages level 2 to exactly 2 machines per
stage, level 3 to exactly 10 machines per stags/els 4 and 5 correspond to the cases of
between 1 and 4 machines per stage (level 4) amekba 1 and 10 machines per stage
(level 5). From Table 4.4 and Figure 4.5 RandonysKBSO performs best when the
number of machines is exactly 1 per stage. Whemtimber of machines is exactly 10
per stage, random keys PSO performs very poorlth thie average loss increasing to

0.12 to 0.55.
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Figure 4.5: Difference in levels of Number of Mauts

The insights from the previous factor are applieatol this case as well: in the level 1
cases, the permutation induced by the stage 1 ®deeserved in later stages. On the
other hand, when the number of machines per staga&dctly 10, the solution space is
much larger and the solution representation camtioiv the changes that may be
necessary in later stages. We believe this is @dkded to the interplay between the
number of machines and the stopping criteria. &the search space is so much larger
when the number of machines is higher, the Randeys RSO needs more time to find a

good particle location; the current design is fldvwence the number of iterations and

particles is fixed regardless of the size of tHetsmn space.
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4.7.5. Impact of Number of Jobs on RK PSO

From Table 4.4, we see that the levels of the Nunabelobs are significant. As the
number of jobs increases, makespan increases pim@ily. Random keys are used to
sort the jobs to suitable machines so increasiagntimber of jobs will leads the Random

Keys PSO to take more time to search for the basicie in solution space.

0.60

0.50 |

0.40 . EMinimium of Loss
Average

030  mAverage of Loss

0.20 | Average

0.10 - | Maximum of Loss
Average

0.00 -

1 2

Figure 4.6: Difference in levels of Number of jobs

Figure 4.6 illustrates how the average loss in@gagen the number of jobs increases.
We believe this performance is also directly raldi® the interplay between the number
of jobs and the stopping criteria. Since the deagace is so much larger when the
number of jobs is higher, the Random Keys PSO nees time to find a good particle

location; the current design is flawed since thenber of iterations and particles is fixed.
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CHAPTER FIVE
5. CONLUSION AND FUTURE WORK

This research focused on one metaheuristic apprealled Particle Swarm Optimization
applied to find the makespan minimizing schedula fitexible flow line with sequence-
dependent setup times. PSO for scheduling problsrtise vast area where there is an
unlimited opportunity for researchers. The propoB&D has been adapted for use in
permutation problems in a novel fashion. The predo8SO features the “bounceback”
mechanism, using Random Keys as a solution repissn and tuning of learning and
weighting parameters. The experimental data coora urz and Askin [16]. There are
180 test scenarios with 10 files of each type. Raadom Keys PSO is evaluated based
on its performance on the 1800 data files. The eadatpnal experiments are facilitated
through Clemson’s high throughput machine via Clam€ondor grid. The results are
compared with the lower bound developed by Kurz Aaskin [16].

We find that the proposed PSO does not perform wveajleneral to minimize makespan
in a flexible flow line with sequence-dependentupetimes. The makespan deviates
from the lower bound more as the number of machijobs and stages increases. These
problem characteristics increase the search spgodicantly, requiring the particles to
explore more space before finding a good locaftwam the results it is also evident that

Random Keys PSO performs significantly better witenall jobs visit all the stages.
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We use this experience to provide the followinggasgions for future research:

e The solution representation should allow for caroexs to the ordering in later
stages, perhaps by allowing the entire schedulgishime assignment and job
ordering to be explicitly represented.

e The stopping criteria must consider the size of shkition space, which is a
function of the number of stages, the number oflnmss at each stage and the
number of jobs.

Using these insights, the performance of RandomsKe$O (and other heuristics and

metaheuristics) can be improved.
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APPENDIX A

FRIEDMAN TEST AND RESULTS

Friedman Test: Cversus B blocked by A
S =42.19 DF =53 P=0.857
P=0.855
S =42.24 DF =53 | (adjusted for ties
B N Est Median| Sum of Ranks Results
Lowest
1| 1800 0.25432 50213| Rank 48322.5
2| 1800 0.25424 49285.5| Treatment | 28
3| 1800 0.25416 48488| Experiment | 2222
4| 1800 0.25428 49771.5
5| 1800 0.25425 49451
6| 1800 0.25427 49644
7| 1800 0.25431 50185
8| 1800 0.25434 50361.5
9| 1800 0.25427 49662
10| 1800 0.25434 50481
11| 1800 0.2542 48923| Parameter | Values | Levels
12| 1800 0.25423 49241| cl 1.5 2
13| 1800 0.2542 48888.5| c2 1.5 2
14| 1800 0.25424 49343.5| w 1 2
15| 1800 0.25434 50457| b TRUE |2
16| 1800 0.25425 49453.5
17| 1800 0.25416 48454.5
18| 1800 0.25426 49561
19| 1800 0.25427 49690.5
20| 1800 0.25426 49480.5
21| 1800 0.25427 49571.5
22| 1800 0.25429 49895.5
23| 1800 0.25426 49507.5
24| 1800 0.25425 49466.5
25| 1800 0.2543 49988
26| 1800 0.25422 49086.5
27| 1800 0.25428 49751
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29| 1800 0.2542 48839
30| 1800 0.25423 49215.5
31| 1800 0.25417 48590.5
32| 1800 0.25423 49283
33| 1800 0.25424 49272.5
34| 1800 0.25435 50466.5
35| 1800 0.25424 49293
36| 1800 0.25425 49528
37| 1800 0.25429 49960
38| 1800 0.25429 49837
39| 1800 0.2542 48937
40| 1800 0.25422 49120
41| 1800 0.25431 50065.5
42| 1800 0.25433 50347
43| 1800 0.25425 49480.5
44| 1800 0.2542 48872
45| 1800 0.25427 49645.5
46| 1800 0.25422 49089
47| 1800 0.2543 50008
48| 1800 0.25416 48561
49| 1800 0.25435 50503.5
50| 1800 0.25424 49324
51| 1800 0.25426 49578.5
52| 1800 0.25438 50746
53| 1800 0.25423 49203.5
54| 1800 0.25421 49085.5
Grand Median 0.25426
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APPENDIX B

ANOVA SINGLE FACTOR
1. Skipping Probability

SUMMARY

Groups Count Sum Average Variance

Skipping Prob 180 360 2 0.670391

opt 2 average 180 35.224831956930.011833

ANOVA

Source of VariationSS df MS F P-value F crit
Between Groups 292.997 1 292.997 858.WV@3E-976.706193
Within Groups 122.118358 0.341112

Total 415.115859

2.Processing Times

SUMMARY

Groups Count Jum Average Variance

Proc. Times 180 360 2 1.005587

opt 2 average 180 35.224831956930.011833

ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 292.996976 292.997 575.961 1.53E-B706193
Within Groups 182.1181(®68 0.50871

Total 475.11508 359

3.Number of Stages

SUMMARY

Groups Count Jum Average Variance
Num of Stages 180 360 2 0.670391
opt 2 average 180 35.224831956930.011833
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ANOVA

Source of Variation SS df MS F P-value F crit
Between Groups 292.997 1 292.997 858.B¥@IE-976.706193
Within Groups 122.1181 358 0.341112

Total 415.1151 359

4 Number of Machines

SUMMARY
Groups Count Sum Average Variance
mach factor - new 180 540 3 2.011173

opt 2 average 180 35.22483956930.011833

ANOVA
Source of VariationSS df MS F P-value F crit
Between Groups 707.7721 707.7721699.72323.14E-866.706193

Within Groups 362.118358 1.011503

Total 1069.89 359

5. Number of Jobs

SUMMARY
Groups Count Sum Average Variance
Num of Jobs 180 270 1.5 0.251397

opt 2 average 180 35.22483956930.011833

ANOVA
Source of VariationSS df MS F P-value F crit
Between Groups 153.10%24 153.10941163.3141.6E-1146.706193

Within Groups 47.1181 358 0.131615

Total 200.227359
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