
i 

 
 
 
 
 
 
 

A PARTICLE SWARM OPTIMIZATION USING RANDOM KEYS FOR FLEXIBLE 
FLOW SHOP SCHEDULING PROBLEM WITH SEQUENCE DEPENDENT SETUP 

TIMES 
 
 
 

A Thesis 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Master of Science 
Industrial Engineering 

  
 
 

by 
Vinodh Sankaran  
December 2009 

 
 

Accepted by: 
Dr. Mary E. Kurz, Committee Chair 

Dr. Maria E. Mayorga 
Dr. Rae Cho   

  



 ii

ABSTRACT 
 
 

In this research, a particle swarm optimization algorithm (PSO) using random keys is 

developed to schedule flexible flow lines with sequence dependent setup times to 

minimize makespan. The flexible flow line scheduling problem is a branch of production 

scheduling and is found in industries such as printed circuit board and automobile 

manufacturing. It is well known that this problem is NP-hard. For this reason, we 

approach the problem by implementing a particle swarm optimization (PSO), a 

metaheuristic which is inspired by the motion of a flock of birds or a school of fish 

searching for food. The proposed PSO has many features, such as the use of random keys 

for encoding the solution, “bounceback” of particles into the solution space and tuning of 

learning and weighting factors. The proposed PSO algorithm is implemented in C and 

tested on a large set of data found in the literature. Extensive computational experiments 

are facilitated through the use of high-throughput computing via Clemson’s Condor grid. 

The solution qualities are compared and evaluated with the help of lower bound 

developed by Kurz and Askin [16]. Unfortunately, we conclude that the proposed PSO 

does not perform well for the problem examined. Areas for future work are identified to 

improve the overall performance of proposed PSO. 



 iii  

DEDICATION 
 
 

I dedicate this thesis to my parents Sankaran Kutty and Vijayakumari Sankaran. 



 iv

ACKNOWLEDGMENTS 

 
I specially want to thank my advisor Dr. Mary Elizabeth Kurz for her guidance and 

support provided to me during my research work at Clemson University. She motivated 

and helped me from the first day of my research. As a result my thesis work went 

smoothly and was interesting. 

I really want to thank to Dr. Maria E. Mayorga and Dr. Byung Rae Cho for their 

abundant help and cooperation with me during my research work at Clemson University. 

Finally an honorable mention goes to my manager David Payne for his understanding and 

support in completing my thesis. I would also like to thank my friends Amit Arkashwera, 

Abinesh Rajagopal, Balaji Jayakumar, Oliver Johnson, Saravanan Kanan and Shobana 

Kumari for their moral and technical support provided during my thesis work. 

My sincere gratitude goes to my family members Sankaran Kutty, Vijayakumari 

Sankaran, KP Padmavathi, and Lavanya Sankaran for their endless love and support 

towards me during my graduate studies. 

 



 v

TABLE OF CONTENTS 

TITTLE PAGE ..................................................................................................... i 

ABSTRACT ........................................................................................................ ii 

DEDICATION ...................................................................................................iii 

ACKNOWLEDGMENTS .................................................................................. iv 

LIST OF TABLES ............................................................................................ vii 

LIST OF FIGURES ..........................................................................................viii 

CHAPTER ONE  ................................................................................................. 1 

1. INTRODUCTION ................................................................................... 1 

CHAPTER TWO ................................................................................................. 6 

2. LITERATURE REVIEW ........................................................................ 6 

2.1. Flexible Flow Line .................................................................................. 6 

2.2. Makespan Objective ................................................................................ 7 

2.3. Particle Swarm Optimization for Scheduling .......................................... 8 

          2.4. Encoding using Random Keys ................................................................ 9 

          2.5. Conclusions ............................................................................................. 9 

CHAPTER THREE ........................................................................................... 10 

3. PROPOSED PARTICLE SWARM OPTIMIZATION(PSO) ............... 10 

          3.1. Introduction ........................................................................................... 10 

3.2. PSO Background ................................................................................... 10 

3.2.1. Random Keys Representation .................................................. 13 

3.2.2. Particle Initialization (Step 0) ................................................... 15 

3.2.3. Position Update: Particle Bounce Back .................................... 15 



 vi

3.2.4. Key Features of Proposed PSO ................................................ 17 

3.3. Sample Example .................................................................................... 17 

 

CHAPTER FOUR ............................................................................................. 23 

4. EXPERIMENTAL INVESTIGATION ON PSO ................................. 23 

4.1. Generation of Experimental Data .......................................................... 23 

4.2. Stopping criteria and other parameters .................................................. 25 

4.3. Lower bound .......................................................................................... 25 

4.4. Random numbers ................................................................................... 26 

4.5. Computational experiments ................................................................... 26 

4.6. Experiment 1: Tuning of parameters ..................................................... 27 

4.7. Experiment 2: Replication of Tuned RK PSO ...................................... 30 

4.7.1. Impact of Skipping Probability on RK PSO   ........................... 32 

4.7.2. Impact of Processing Time on RK PSO   ................................. 33 

4.7.3. Impact of Number of Stages on RK PSO ................................. 34 

4.7.4. Impact of Number of Machines on RK PSO ............................ 35 

4.7.5. Impact of Number of Jobs on RK PSO .................................... 37 

      CHAPTER FIVE  .................................................................................................. 38 

5. CONCLUSION AND FUTURE WORK .............................................. 38 

APPENDICES ................................................................................................... 40 

APPENDIX A: Freidman Test Results ................................................. 40 

APPENDIX B: ANOVA Single Factor Results  ................................... 42 

REFERENCES .................................................................................................. 44 

 
 
 



 vii

LIST OF TABLES 
 

 
Table                                                                                                                               Page 
 
 3.1 Positions for an Example Particle ................................................................ 14 
 
 3.2 Sequences for an Example Particle .............................................................. 14 
 
 3.3 Example Processing Time Data ................................................................... 17 
  
 3.4 Example Setup Time Data ........................................................................... 18 
 
 3.5 Example Problem Initial Swarm Data ......................................................... 20 
 
 3.6 Example Problem Final Swarm Data ........................................................... 22 
 
 4.1 Experimental Data Setup ............................................................................. 24 
 
 4.2 Tuning of Parameters ................................................................................... 28 
  
 4.3 Final Parameter Levels and Values.............................................................. 30 
 
 4.4 Experiment Results ...................................................................................... 31 
 



 viii  

LIST OF FIGURES 
 
 

Figure                                                                                                                             Page 
 

1.1      Flexible flow line with multiple  
           Machines at each stage ................................................................................... 2 
 

 3.1 Example Swarm with Four Particles and  
                  Global Best – Two Coordinates ................................................................... 12 
 
 3.2 Graphical Representation Illustrating  
                  Bounce back of Random Keys PSO ............................................................ 16 
 
 3.3 Example Initial Swarm Position with three particles ................................... 19 
 
 3.4 Processing time for job 1 and 2 at stage 1 ................................................... 19 
 
 3.5 Total Completion time for job 1 and 2 at stage 2 ........................................ 20 
 
 3.6 Example Swarm Position  
                 (Before Bounce Back)................................................................................... 21 
 
 3.7 Example Swarm Position  
                  (After Bounce Back) .................................................................................... 22 
 
 4.1 Friedman Test Results Illustrating best  
                  Parameter settings ........................................................................................ 29 
 
 4.2 Difference in levels of Skipping Probability ............................................... 32 

 
 4.3 Difference in levels of Processing Times .................................................... 33 
 
 4.4 Difference in levels of Number of Stages .................................................... 35 

 
 4.5 Difference in levels of Number of Machines ............................................... 36 
 
 4.6 Difference in levels of Number of jobs........................................................ 37 
 
  
 
 
 

 



1 

     CHAPTER ONE 

1. INTRODUCTION 

In modern manufacturing, scheduling problems have become an interesting topic of 

research. Satisfying the daily demand of product with top quality and on-time delivery 

leads manufacturing industries to invest money and time in solving scheduling problems. 

Scheduling problems arise in different industries including chemical, food and discrete 

parts manufacturing.  Among the many manufacturing settings, the flexible flow line is 

one of the more complicated, especially when compared to the well-researched single 

machine environment. The existence of multiple machines per stage and allowing job to 

skip stages make the flexible flow line environment more complicated than the standard 

flow line. The automobile and printed circuit board industries (Piramuthu et al. [20] and 

Agnetis et al. [1]) use flexible flow lines with an extra feature: sequence dependent setup 

times between jobs being processed on the same machine. The objective of the 

scheduling problem may vary according to industry needs. Potential objectives include 

minimizing the total weighted tardiness, total completion time or maximum completion 

time (also known as makespan). Minimizing the makespan is the objective for this 

research. Minimizing makespan in a flexible flow line with one stage and one machine in 

that stage is exactly the traditional traveling salesman problem.  Based on the reduction, 

we see that minimizing makespan on a flexible flow line with an arbitrary number of 

stages and machines with sequence dependent setup times is NP-hard.  This NP-hard 

problem is the focus of our research. 

 



 2

An example of the proposed flexible flow line is shown in Figure 1.1.  A flexible flow 

line consists of several stages in series where each stage consists of (possibly) multiple 

parallel identical machines where at least one stage should have more than one machine. 

A job should not revisit a stage which it already visited but jobs can skip stages. This 

scenario is found in manufacturing industries where a job does not require all operations. 

We consider a flexible flow line similar to that developed by Wittrock [27] for a printed 

circuit board manufacturing line. 

 

 
  

Figure 1.1: Flexible flow line with multiple machines at some stages 

 

The proposed flexible flow line uses data which are known deterministically. No 

preemption is allowed between jobs. There is no priority value for jobs. Infinite buffers 

exist between stages. Machines are available at all time without any breakdown. Travel 

time between stages is zero and once the jobs are processed at the previous stage, they are 

immediately available for the next stage. Therefore, the ready time for the next stage is 

the completion time of the current stage. One of the distinguishing factors of our research 

is the existence of non-anticipatory sequence-dependent setup times between jobs at each 

stage. After one job is processed and before the next job starts processing, some kind of 



 3

setup is done. The time required is sequence dependent. We follow the setup time 

concept described by Rios-Mercado and Bard [24] for their flow line problem. 

In order to shorten the discussion about the proposed flexible flow line we follow a 

modified version of the notation and makespan calculation introduced by Kurz and Askin 

[16]. 

n       number of jobs to be processed 

g       number of stages 

gj       last stage visited by job j 

t
ip       processing time for job i at stage t 

,
t
i js       setup time from job i to job j at stage t 

iS
 
     set of stages visited by job i 

tS        set of jobs that visit stage t = {i: t
ip >0} 

t
iC      completion time for job i at stage t 

The makespan (max g
i

i
C ) is the maximum completion time and it is the objective criterion 

in our research. The completion time of the ith job (denoted [i]) at stage t can be 

calculated using equation (1) 

                                                       

[ ] [ ] [ ] [ ] [ ] [ ]
1

1 1 ,m ax{ , }                          (1)t t t t t
i i i i i iC p C C s−

− −= + +
 

 



 4

The processing time of job 0, representing the initial state of the machines, is assumed to 

be 0 for all machines on all stages. Setup is non-anticipatory, meaning that the job to be 

setup must be available and the machine to be used must be idle. The completion times at 

stage t are the ready time at stage t+1.   

One of the most commonly applied methods to solve NP-hard problems such as this is 

the application of heuristics. Generally heuristics are divided into two groups: 

constructive methods and improvement methods (Quan-Ke et al. [21]). We focus on a 

specific type of improvement method called metaheuristics, which include techniques 

like Genetic Algorithm (GA), Simulated Annealing (SA), Tabu Search (TS), Particle 

Swarm Optimization (PSO), and Ant Colony Optimization (ACO). Particle swarm 

optimization (PSO) is a population-based search algorithm developed by Kennedy and 

Eberhart [14]. Each particle “flies” with a velocity which can be adjusted by flying 

experience. It can be applied to NP-hard scheduling problems such as ours, as detailed in 

this thesis. 

The major advantage of PSO over other metaheuristic approaches is the simplicity in 

structure.  PSO does not have mutation and evolution parameters like GA so it is easier to 

implement.  We utilize a random keys solution encoding while applying PSO to our 

problem.  We propose a novel updating strategy, called “bounceback” to ensure the 

particles remain in the feasible region. Computational experiments are facilitated through 

the use of high-throughput computing via Clemson’s condor grid. In this thesis, we 

compare PSO-generated solutions to a strong lower bound, developed by Kurz and Askin 

[16].  



 5

Our Intent with this research is to investigate how an optimization method PSO has been 

developed for real valued decision variables, can be applied to combinatorial problems. 

We utilize a solution representation (Random Keys) which has been successfully used for 

this problem in Genetic Algorithm developed by Kurz and Askin [16].The notations, 

assumptions and equations of the proposed PSO are explained in the following chapter, 

along with a brief literature review in Chapter 2. The proposed PSO is described in 

Chapter 3. The experiments and results are shown in Chapter 4. Finally Chapter 5 

concludes the research. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 



 6

 

     CHAPTER TWO 

2. LITERATURE REVIEW 

This brief literature review focuses on the following areas relevant for this thesis: general 

scheduling of flexible flow lines; literature that focuses on the makespan objective in 

flexible flow line scheduling; particle swarm optimization; and the use of the random 

keys encoding for flexible flow line problems. 

2.1. Flexible Flow Line 

We consider a flexible flow line to be an extension to the classic flow lines (with one 

machine per stage and all jobs visiting all stages) such that some stages may have 

multiple identical machines and jobs may not require processing on all stages. Salvador 

[25] considered a flexible flow line with multiple machines at several stages and with no 

buffers. They used branch and bound method to determine the optimal permutation 

schedule (in a permutation schedule, jobs enter the flow line according to one of the n! 

permutation orderings and a first-in-first-out technique is used to assign jobs to machines 

at all stages in order to calculate the makespan).  Gupta [12] applied Johnson’s Rule to a 

specialized flexible flow line with one machine in the first stage and multiple machines in 

the second stage.  A three stage flexible shop problem with setup on one machine was 

designed by Bellman et al. [4]. A dynamic program was developed to build the schedule. 

Cheng et al. [9] provides an overview of flexible flow lines. Cheng et al. [9] begins by 

describing flexible flow lines with sequence dependent setup times and flexible flow lines 

with two or multiple stages. Finally they conclude by giving suggestions to solve 



 7

complicated flexbile flow line problems.  Campbell et al. [7] designed a heuristic to 

schedule flexible flow lines with a single machine per stage by placing jobs at the end of 

current sequence considering the idle time of the machine. As an extension to Campbell’s 

single machine flexible flow line, a hybrid (multiple machines per stage, but no stage-

skipping) flow line was designed by Ding and Kittichatphayak [10]. In 1991, a hybrid 

flow shop with an arbitrary number of stages and intermediate buffer was modeled by 

Brah and Hunsucker [6]. They used branch and bound to develop the schedule.  In their 

work, they explained that a non-permutation schedule with inserted idle time can also be 

created and may be optimal for some problems. 

2.2. Makespan Objective 

Santos et al. [26] developed an algorithm to schedule a flexible flow line built on the idea 

of a permutation schedule to minimize the makespan. The optimal solution is evaluated 

with the use of a lower bound on the optimal makespan. Lee et al. [17] modeled a flexible 

flow line with sequence dependent setup times in which the buffers between stages were 

limited.  They used a genetic algorithm to minimize the makespan. Bianco et al. [5] 

considered the flexible flow line with sequence dependent setup times, release dates and 

the requirement that jobs do not wait between stages (known as the “no-wait” 

requirement), to minimize makespan. They utilized branch and bound to minimize the 

makespan.  Kurz and Askin [16] attacked the flexible flow line with sequence dependent 

setup times and minimized the makespan using heuristic and genetic algorithm 

approaches. They also developed and evaluated a strong lower bound on the makespan 

for flexible flow lines with sequence dependent setup times.  



 8

2.3. Particle Swarm Optimization for Scheduling 

Particle swarm optimization (PSO) was introduced by Kennedy and Eberhart [14]. In 

recent years PSO has been implemented for combinatorial optimization problems like 

flow shop and job shop scheduling. Zhingnang et al. [29] consider the problem of 

minimizing the makespan in job shop scheduling. They provide a procedure for 

application of PSO for scheduling problems. As an extension to their work in 2008 they 

implemented the PSO for the job shop with makespan objective. They also compared the 

performance of PSO with the genetic algorithm (GA) and concluded with research 

motivation on mathematical validation of particle swarm theory. The proposed PSO 

worked effectively better than the genetic algorithm (GA) in their job shop scheduling 

problem.  The job shop scheduling problem is sufficiently different that we cannot apply 

their PSO to our problem.  Quan Ke et al. [21] proposed a PSO algorithm for the no-wait 

flow line scheduling problem with makespan objective and evaluated it by comparing to 

the heuristic developed by Rajendran [22] for the no-wait flexible flow shop. Cho-Tang 

and Ching-Jong [8] proposed a particle swarm optimization algorithm for hybrid flow 

line scheduling with multiprocessor tasks (tasks that can be processed by more than one 

machine simultaneously). No PSO for minimizing makespan in flexible flow lines with 

sequence dependent setup times is known in the open literature. 

 

 

 

 



 9

2.4. Encoding Using Random Keys 

In 1994 Bean [3] proposed a new method to encode scheduling problem solutions using 

random numbers. He proposed an algorithm called random keys genetic algorithm which 

has been applied to many scheduling problems. Kurz and Askin [16] attacked the flexible 

flow line with sequence dependent setup times scheduling problem, to minimize 

makespan, with an adaptation of the random keys genetic algorithm. This research uses 

the same solution representation followed by Kurz and Askin [16]. No PSO 

implementation for scheduling problems in the open literature has used the random keys 

encoding. 

2.5. Conclusion 

From the literature review which we carried out throughout our research work we found 

that many journal articles have been written about scheduling flexible flow lines but 

many of them are restricted to special cases like no-wait or permutation schedules. There 

does not seem to be work focused on minimizing makespan in the flexible flow line with 

sequence dependent setup times using a random keys encoding in particle swarm 

optimization. This motivated the work in this thesis. 

 



 10

CHAPTER THREE 

3. PROPOSED PARTICLE SWARM OPTIMIZATION 

3.1. Introduction 

In this section, a particle swarm optimization (PSO) algorithm for the flexible flowline 

scheduling problem is developed.  We begin the chapter with the background and brief 

description of PSO followed by the proposed PSO. The main feature of our proposed 

PSO is the use of a random keys representation for sorting. In order to maintain feasible 

solutions, the random keys representation in a PSO requires one of two adaptations; this 

is evaluated in Chapter 4. Finally we conclude this chapter with an example illustrating 

random key PSO. 

3.2. PSO Background 

PSO was developed by Kennedy and Eberhart [14] in 1995. The motivating biological 

metaphor is the motion of flock of birds or fish searching for food.  It is one of the swarm 

intelligence and optimization techniques that operate in real number spaces.  The 

algorithm operates on a “swarm” of “particles”, which represent potential solutions, and 

searches for an optimal solution by updating the velocities and positions of particles.  The 

objective function value is used to determine the quality of the particle. Each particle has 

its own velocity used to update its position.  A particle is composed of four pieces of 

information: position, velocity, current objective function value and position at which the 

particle has achieved its best-ever objective function value (called Pi for particle i, 

representing the personal best ever experienced).  The swarm is composed of a set of 

particles and the position at which a particle achieved the best-ever objective function 



 11

value ever held by any particle in the swarm (called Pg representing the global best). Each 

particle i’s velocity is updated using Pi and Pg.  The details of the particle and velocity 

updates are provided below. 

This description of PSO is based on Kennedy and Eberhart [13] and Eberhart and Shi 

[11].  Let 1 2 3( , , ....... )t t t t t
i i i i iDY y y y y= , t

ijy ∈ϒ ∀ j, be particle i's position in D-dimensional 

space at iteration t. S is the number of particles in a swarm.  Let t
iV  be the velocity of 

particle i denoted as 1 2 3( , , ....... )t t t t t
i i i i iDV v v v v= , 

t
ijv ∈ϒ ∀ j at iteration t.  Each coordinate’s 

personal best position is 1 2 3( , , ....... )t t t t t
i i i i iDP p p p p= , 

t
ijp ∈ϒ ∀ j at iteration t. The global 

best particle is 1 2 3( , , ....... )t t t t t
g g g g gDP p p p p= ,  t

gjp ∈ϒ ∀ j at iteration t.  All particles modify 

their position on a coordinate-by-coordinate basis with the help of velocities as shown in 

the following equation:                     

                              
1

                                                                                                            (2)t t t
iD iD iDY Y V+ = +  

Each element of the velocity vector is updated using a weighted combination of three 

factors: the current velocity; the difference between the current position and the particle’s 

personal best position; and the difference between the current position and the swarm’s 

global best position.  The weight on the difference between the current position and the 

particle’s personal best position is composed of a random number r1, between (0, 1), and 

a tunable learning factor, c1.  The weight on the difference between the current position 

and the swarm’s global best position is composed of a random number r2, between (0, 1), 

and a tunable learning factor, c2.  Equation (3) illustrates the velocity updating equation, 

in which w is the weight on the current velocity. We discuss the tuning of these 



 12

parameters in Chapter 4. Eberhart and Shi [11] introduced the weighting parameter w to 

the velocity equation to balance local and global search. 

            
1 1 2 2

1 ( ) ( )                  (3)t t t t t t
iD iD iD iD gD iDV wV c r P Y c r P Y−= + − + −

 

Chao-Tang and Ching-Jong [8] describe the velocity update’s intent as the adjustment of 

the searching direction of particles in D-dimensional space.  One consideration in the 

generic PSO is that velocities may increase (or decrease) without bound, leading to 

particles making large steps in the solution space. Kennedy [15] used a constant Vmax to 

limit the range of velocity, requiring that ( )max max,t
ijv V V∈ − . Figure 3.1 illustrates the idea 

of a swarm with 4 particles for a problem in which D=2. 

 

Figure 3.1: Example Swarm with Four Particles and Global Best – Two Coordinates 

 

 

 

Solution 
Space 

Best 
Particle 

Co-ord 1 

Co-ord 2 

Updated 
Particle 
Position  

Updated Particle 
Velocity based on 
swarm and 
historical best 



 13

A generic description of the PSO algorithm is as follows: 

Step 0: Initialize each particle position and velocity randomly.  Go to Step 3. 

Step 1: Update each particle’s velocity according to Equation (3) 

Step 2: Update each particle’s position according to Equation (2) 

Step 3: Evaluate the objective function for each particle. 

Step 4: Update the personal best particle for each coordinate. 

Step 5: Update the swarm’s global best particle. 

Step 6: If the stopping conditions are met, return the global best particle.  

Otherwise, go to Step 1. 

Steps 0, 2 and 3 require further description based on our application of PSO to the FFL 

problem.  First, we describe the solution representation, which impacts Steps 0 and 3.  

Then we describe how we initialize the particles (position and velocities) for Step 0.  Two 

alternatives for updating velocities are then discussed.  We conclude this chapter with an 

example problem. 

3.2.1. Random Keys Representation 

PSO operates in ϒD and so cannot be directly applied to a permutation representation of a 

combinatorial optimization problem such as the traveling salesman problem or the 

problem of interest, flexible flow line scheduling.  We represent solutions for the flexible 

flow shop with random keys in the same manner as Kurz and Askin [16]. In Random 

Keys PSO for FFL, each potential solution is represented by a particle with D equal to the 

number of jobs in the problem instance.  For example, the particle Y1 = (1.32, 1.22, 0.55, 

0.35, 1.74, 0.65) is for a problem with 6 jobs.  Each of the particle positions [0, )t
ijy M∈ , 



 14

where M is the number of machines in stage 1, serve as machine assignment and sort 

keys to decode the solution, following Bean [3] and Kurz and Askin [16]. The integer 

part is the machine number to which the job is assigned and fractional part serves as the 

sort key to sort the jobs assigned to each machine. 

Let us consider a problem with only a single stage and two machines. The positions for 

the six jobs are shown in Table 3.1. The particles tells us that in this solution, machine 0 

has jobs 4,3 and 6, in that order and machine 1 has jobs 2, 1 and 5 in that order shown in 

Table 3.2. With this sequence and with job processing time and sequence-dependent 

setup times, we can determine when each job completes processing on the machines for 

each schedule.  

Table 3.1: Positions for an Example Particle 

Job  1  2  3  4  5  6  

Position  1.32  1.22  0.55  0.35  1.74  0.65  

Random Keys and Particle Representation  

 

Table 3.2: Sequences for an Example Particle 

Machine 0  4  3  6  
 

Machine 1  2  1  5  
 

Job Sequence  



 15

As described in Chapter 2, the makespan for a flexible flow line is computed using these 

sequences on stage 1 and the Best Completion Time algorithm.  This computation of 

makespan ( t
iC ) comprises Step 3. 

3.2.2. Particle Initialization (Step 0) 

Recall that S is the number of particles in a swarm.  Position j of particle i is initialized 

randomly [0, )t
ijy M∈ , as described in the previous section.  Kennedy et al. [15] 

introduced the constant Vmax to limit the range of velocity. We must also limit the velocity 

because of the limited range of values that the positions can take on.  Consider a problem 

with two machines in the first stage, in which each position must be in the range [0, 2).  If 

the velocity in some coordinate is greater than 2, it is obvious that any position update 

will result in an infeasible solution.  We introduce two potential mechanisms to deal with 

the issue of positions being outside the range of allowable values in the position update 

step, but first, we focus on setting a value for Vmax for the purposes of initializing the 

particle velocities.  We set Vmax as 0.5 in this research so that jobs change machines 

approximately in 50% of position updates.  We initialize and maintain the velocity j of 

particle i at iteration t as ( )max max,t
ijV V V∈ − . 

3.2.3. Position Update: Particle Bounceback 

As described in the previous section, some velocity values may force a particle out of the 

range of allowable values for the position.  For example, if [0,2)t
ijy ∈ , 

23 1.95y = and 23 0.2v = , the new value 23 2.15y =  will be found.  We propose two 

potential solutions.  First, we can fix the value of t
ijy  to a value close to its upper bound, 



 16

if it is too big, or at 0 if it is too small.  Alternatively, we can ricochet the particle off the 

boundary back into the solution space.  We call the ricochet “bounceback” and indicate 

the fixing of the position to near the boundary by the phrase “no bounceback”.  This is an 

innovative feature in the proposed PSO.  Figure 3.2 shows the difference in potential 

positions in the case of bouncing back and not bouncing back.   

 

 

Figure 3.2: Graphical Representation Illustrating Bounce back of Random Keys PSO 

We first update the positions according to Equation(2).  Then we consider the potential 

for violation of the range of position values.  

We implement the “no bounceback” option according to the following decision rules: 

If ,                                                  (4)t t
ij ijy M y M ε≥ = −  

If 0, 0                                                           (5)t t
ij ijy y< =

 

 

 

       M 

       M        0 

Solution Space 

Job1 Key 

Job2 Key 

Edge 

Location if Do 
Not Bounce Back 

Location if Do 
Bounce Back 



 17

We implement the “bounceback” option according to the following decision rules: 

If , 2                                               (6)t t t
ij ij ijy M y M y≥ = −  

If 0,                                                        (7)t t t
ij ij ijy y y< = −

 

 

3.2.4. Key Features of the Proposed PSO 

The proposed PSO provides a contribution to the literature due to its use of the random 

keys representation, developed originally for use in genetic algorithms, and in its 

development of the “bounceback” mechanism to ensure that the particles remain feasible. 

 

3.3. Sample Example 

For the sake of clarity, we illustrate an example of our Random Keys PSO for a flexible 

flow shop problem with 2 jobs and 3 machines on stage 1 and 1 machine on stage 2. All 

time units used in our example are seconds. Let 
t
ip  be the processing time of job i on 

stage t shown in Table 3.3 and ,
t
i js  be the setup time from job i to job j on stage t.  

Table 3.3: Example Processing Time Data 

 

 

 

 

 

Stage t Job i 
t
ip  

1 
1 3 

2 6 

2 
1 1 

2 7 



 18

 

We assume that no setup is required for the first job on each machine. The input data for 

the example problem is shown in Table 3.4. The PSO parameters are set as c1= c2=w=1 

and Vmax = 3.0. 

Table 3.4: Example Setup Time Data 

Stage t
 

,
t
i js  To job j 

1 

From job i 1 2 

1 - 4 

2 2 - 

2 

From job i 1 2 

1 - 8 

2 5 - 

 

Consider a 3 particle swarm, illustrated in Figure 3.3 and Table 3.5.  The randomly 

generated positions and velocities of all three particles are shown in Table 3.5.  Since the 

number of machines is 3, the positions are randomly selected such that [0,3)ijy ∈ . The 

initial velocities are randomly generated as shown in Table 3.5. Now with the help of 

particle locations we can compute the makespan for each particle.  



 19

 

Figure 3.3: Example Initial Swarm Position with three particles 

Consider the first particle.  At stage 1, machine 0 has Job 1 and machine 2 has job 2. Job 

1 will complete stage 1 at 3 and job 2 completes stage 1 at 6, as shown in Figure 3.4.  Job 

1 arrives at stage 2 at time 3, and then completes at time 4.  Once job 2 arrives at stage 2, 

at time 6, the setup between jobs 1 and 2 can begin.   

 

                                                                     
1
1p                                                                                                                              

         

 

 

 

 

Figure 3.4: Processing time for job 1 and 2 at stage 1 

       3 

0 

Solution 
Space 

 

Job2 Key 

Job1 Key        0        3 

2 

3 

1 

(0.01, 2.98) 

(1.48, 1.56) 

(2.48, 2.22) 

6 

3 

Particles 

M/C 0 

M/C 2 

1 

2 

Stage 1 



 20

Setup completes at time 14 (=6+8) and then job 2 completes at time 19, as shown in 

Figure 3.5. Following the same procedure, the makespans of particle 2 and particle 3 are 

determined and shown in Table 3.5. 

 

                                                                                                      
2
1,2s

                             
 

 

 

    Figure 3.5: Total Completion time for job 1 and 2 at stage 2 

Table 3.5: Example Problem Initial Swarm Data 

Particle i 

Locations Velocities Makespan 

t
iC  Job 1 yi1 Job 2 yi2 Job 1 vi1 Job 2 vi2 

1 0.01 2.98 0.19 0.80 19 

2 1.48 1.56 -0.06 0.38 28 

3 2.48 2.22 -0.52 0.09 17 

 

Since this is the initialization step, i iP Y i= ∀  and 3gP Y= . Next, we update all velocities.  

For particle 1, assume that r1= r2=0.5, c1= c2=w=1 and Vmax = 3.0. Using Equation (3), the 

velocity of particle 1 for job 1 is calculated by v11 = 0.19 + (2.48-0.01) = 2.66, and the 

velocity of particle 1 for job 2 is calculated as v12= 0.8 + (2.22-2.98) =0.04. Similarly, 

particle 2 and 3 velocities are determined and summarized in Table 3.5.  

3 4 6 14 19 

1 1-2 2 

Stage 2 



 21

Now, we update all particle locations. Using Equation (2) for particle 1, job 1, we find y11 

= 0.01 + 2.66 = 2.67. Similarly, y12 = 2.98 + 0.04 = 3.02.  Since [0,3)ijy ∈  we have the 

situation that the particle y12 is going beyond the solution space as illustrated in Figure 

3.6.  

 

 

 

 

 

 

 

 

 

Figure 3.6: Example Swarm Position (Before Bounce Back) 

If we do not utilize “bounceback”, the new value of y12 will be set as 2.99, if we are using 

2 decimals. If we utilize “bounceback”, Equation (6) provides the new value of y12 as 

2.98. Now the particle key is inside the solution space. Figure 3.7 shows the bounce back 

of particles into solution space. 

 

 

 

 

3 

       3        0 

(2.67, 3.02) 

Job2 Key 

Job1 Key 

(2.42, 2.18) 

(196, 2.31) 

1 

2 

3 

Solution 
Space 



 22

 

 

 

 

 

 

 

 

 

Figure 3.7: Example Swarm Position (After Bounce Back) 

The makespans of all three particles are determined and shown in Table 3.6. Now particle 

2 has the lowest makespan of 17. 

             Table 3.6: Example Problem Final Swarm Data 

Particle i 
Locations Velocities Bounce 

Back 

Makespan 

maxC  Job 1 yi1 Job 2 yi2 Job 1 vi1 Job 2 vi2 

1 2.67 2.98 2.66 0.04 Yes 28 

2 2.42 2.18 0.94 0.62 No 17 

3 1.96 2.31 -0.52 0.09 No 25 

 

 

(2.67, 3.02) 

3 

       0        3 

Job2 Key 

Job1 Key 

(2.42, 2.18) 

(196, 2.31) 

(2.67, 2.98) 

1 

1 

2 

3 
Solution 
Space 



 23

CHAPTER FOUR 

4. EXPERIMENT AND RESULTS 
 

In this chapter we elaborate about the experimental data setup for Random Keys PSO, 

tuning of learning and weighting factors, implementation of Random Keys PSO and 

finally discuss the results of our Random Keys PSO. 

 

4.1. Generation of Experiment Test Data 
 

Kurz and Askin [16] generated a large data set for the flexible flow line with sequence 

setup times. We used their experimental data for our flexible flow shop problem. Data 

required for our flexible flow shop with sequence dependent setup times consists of the 

range of processing times, number of jobs to be processed, number of stages with data 

explaining how many machines exist at each particular stage, processing times, ready 

times and sequence dependent setup times. The processing times are from one of two 

levels: uniformly distributed in the range of [50-70] or [20-100]. The distinguishing 

factor in our flexible flow line problem is the sequence dependent setup times. Our setup 

times are asymmetric; Kurz and Askin [16] generated them using the characteristics of 

setup time developed by Rios-Mercado and Bard [23]. The setup time matrices satisfy the 

triangle inequality and the setup times are uniformly distributed with the range of [12-

24].  It is assumed that the largest number of machines in a stage should be less than the 

number of jobs to be processed at that stage. All jobs are assumed to be available for 

scheduling at time 0; at subsequent stages, the completion times at stage t are the ready 

times at stage t+1. In the proposed flexible flow line a job should not revisit a stage 



 24

which is already visited and jobs can skip some stages. Following Leon and 

Ramamoorthy [18], the probability of a job skipping a stage was fixed to be 0, 0.05 or 

0.04.  

Based upon the above discussion, we see that the experimental data depends up on the 

factors and levels described in Table 4.1.  There are 3x2x3x5x2=180 test scenarios. For 

each scenario, Kurz and Askin [16] provide ten data sets. Therefore there are 1800 input 

data files. We subjected each of these 1800 input files to the Random Keys PSO multiple 

times. 

Table 4.1: Experimental Data Setup 

Factor Levels Values 

Skipping Probability 
1 
2 
3 

0.00 
0.05 
0.40 

Processing Times 
1 
2 

Unif(50-70) 
Unif(20-100) 

Number of Stages 
1 
2 
3 

2 
4 
8 

Number of Machines 

1 
2 
3 
4 
5 

1 
2 
10 

Unif(1,4) 
Unif(1,10) 

Number of Jobs 
1 
2 

30 
100 

 



 25

 

4.2. Stopping Criteria and Other Parameters 

In each replication, Random Keys PSO will run for 500 iterations or until the lower 

bound is achieved. Solutions are evaluated by their deviation from the lower bound. Each 

swarm has a population size of 100 particles. Vmax is set at 0.5. 

 

4.3. Lower Bound 

Kurz and Askin [16] developed a strong lower bound for flexible flow line with sequence 

dependent setup times. Two lower bounds are actually computed for each of the input 

files; the higher of each is used as the lower bound for the input file.  LB1 assumes that 

every job must be processed at every stage while LB2 is developed with the assumptions 

that every stage must process all of its jobs and we should also include the time for the 

first job to get to each stage and leave it as well. The solutions of our Random Keys PSO 

are evaluated with the help of their derivation from the lower bound. 

 

 

 

 

 

 

 

 

( ) ( )1

0,...,1,...,
max min                                               (8)

i

t t
i ij

j ni n
t S

LB p s
==

∈

  
= + 

  
∑

( ) ( )
( )

( )

[ ] ( ) ( )

1 0,...,

2 0,..., 0,...,
1 1

1,...,
1 1 1

0,..., 0,...,
1 1 1

min

min min min min
max

1
min min min min

t

t t

t

t t

t t
i ij gt j n

i S
i ij i ijtj n j ni S i S t

t g
m t t

i ij i ijt j n j ni S i Skk

p s

p s p s
mLB

p s p s
m

τ τ τ τ

τ τ

τ τ τ τ

τ τ

− =
∈

= =∈ ∈= = +
=

− − −

= =∈ ∈= = =

+
+ + + + +

=

 
+ − + 

 

∑
∑ ∑

∑ ∑

   (9)

 
 
  
 
 
 
  

∑



 26

 

Following Kurz and Askin [16] we used the best lower bound for each test scenario. The 

solutions are compared and evaluated by the “Loss” where loss is the percentage 

deviation above the lower bound for the makespan and it is used as the key performance 

measure in our research. Loss is computed as shown in Equation (10) where Cmax is the 

makespan determined by Random Keys PSO and LB is the lower bound. A loss of 0 

indicates that the optimal solution is found.    

                                                      

 

4.4. Random Numbers 

The random numbers are generated using the Mersenne Twister random number 

generator. It is a pseudorandom number generator developed by Matsumoto and 

Nishimura [19]. Their algorithm generates random number uniformly in the range of [0, 

232 − 1] for 32 bit integers, with a period of 219937-1.  This pseudorandom number 

generator allows the coder to ensure that non-overlapping but reproducible 

pseudorandom number streams are used. 

 

4.5. Computational Environment 

The proposed Random Keys PSO is developed using C-language and compiled with 

Microsoft Visual Studio 2005. Computational experiments are facilitated through the use 

of high-throughput computing via Clemson’s Condor grid. The quality of this research 

heavily depends on computing throughput. It is not uncommon to find problems that 



 27

require weeks or months of computation to solve. As described by Basney et al. [2], high-

throughput computing (HTC) refers to environments in which large amounts of 

computing capacity are available over long periods of time. The initial set of 1800*54 

runs used for Experiment 1 took less than one calendar day, using over 1500 CPU hours.  

 

4.6. Experiment 1: Tuning of Parameters 

The learning and weighting parameters play a major role in determining the velocity and 

position of the particles in the solution space.  In order to evaluate the performance of 

Random Keys PSO, an experiment was conducted by tuning the learning and weighting 

factors in Equation (3). The initial population was generated randomly. The initial 

velocities are determined using Equation (3). 

 

Following Kennedy et al [15], the learning parameters evaluated are c1∈ {1, 1.5, 2} and 

c2∈ {1, 1.5, 2}. Following Chao-tang and Ching-Jong [8], the weighting factors evaluated 

are w∈ {0.8, 1, 1.2}. One of the distinguishing characteristics of our Random Keys PSO 

is the proposed “bounce back” of particles into the solution space so we consider the PSO 

with and without bounceback to be tuned as well.  We set the factor b to be either “Yes” 

(we use bounceback) or “No”. These tunable Random Keys PSO parameters have the 

different levels summarized in Table 4.2. In Total there are 3x3x3x2=54 settings 

considered in our experiments. Since there are 1800 input problem data files, we consider 

1800x54=97200 test scenarios with our Random Keys PSO.  

 



 28

Table 4.2: Tuning of Parameters 

 

Each of 54 settings of Random Keys PSO were tested for five replications; this low level 

of replications was used for the tuning experiment since tuning experiments should be 

smaller than the final experiment. Each of the 97200*5 makespans generated by this 

experiment was transformed into loss values using the lower bound.  The range of loss 

values is found be between 1.5% and 95% above the lower bound. Since the number of 

replications is low, a non-parametric test was conducted in order to find the best 

Parameter  Levels  Values 

c1 

1      
 
2 

3 

1 
 

1.5 

2 

c2 

1      
 
2 

3 

1 
 

1.5 

2 

w 

1 
 
2 

3 

0.8 
 
1 

1.2 

b 

1  

2 

No 

Yes 

Number of Settings 3*3*3*2=54 



 29

parameter setting for the Random Keys PSO. The average of the 5 replications for each 

of the 54 setting and 1800 file combinations were used as input into the test. 

 

Figure 4.1: Friedman Test Results  

The Friedman test was executed using MINITAB 15 and the results are shown in Figure 

4.1 and Appendix A. The 54 settings are considered as the treatments. The treatment with 

lowest sum of ranks was the best treatment and taken as best parameter settings for 

Random Keys PSO.  

 

The results shown in Appendix A were analyzed.  Unfortunately, we cannot conclude 

that there is any significant difference between the settings.  It was observed that the 

setting c1=2, c2=2, w=2, b=2, appears to yield the lowest makespan when compared to the 

other parameter settings. Therefore, these final parameter values are selected for use in 

Experiment 2 and are shown in Table 4.3. 

 



 30

Table 4.3: Final Parameter Levels and Values 

Parameter Level Values 

c1 
2 1.5 

c2 
2 1.5 

w 
2 1 

b 2 Yes 

 

4.7. Experiment 2: Replication of Tuned RK PSO 

With the final parameter values (c1, c2, w, b) = (1.5, 1.5, 1, yes), Random Keys PSO is 

applied to the same 1800 data set for 50 replications. In each replication Random Keys 

PSO will run for 500 iterations or until the lower bound is achieved. Computational 

experiments are facilitated through the use of high-throughput computing via Clemson’s 

Condor grid. The 1800*50 runs took less than one calendar day, using over 1400 CPU 

hours.  

The results are compared with the Genetic Algorithm (GA) developed by Kurz and Askin 

[16] for flexible flow line. It is found that GA works better than the Random Keys PSO 

even though the values sometimes appears to be far from the lower bound followed by 

Kurz and Askin [16]. The makespans of Random Keys PSO are compared and evaluated 

with the help of the loss figure of merit. The average loss over the 50 replications for 

each of the 1800 test scenarios is calculated. Here, we assume that the sample size allows 

us to use the Central Limit Theorem and the averages are assumed to be normally 

distributed.  A single factor ANOVA test is done to demonstrate at 99% confidence level 



 31

whether there is any significant difference between each of the factors or not. The p-value 

from the ANOVA test is compared with α-value. Single factor ANOVA for all five factors 

are shown in Appendix B. 

Table 4.4: Experimental Results 

 
Factor 

 
Levels 

 
Minimum 

 
 

Average 

 
 

Maximum 

 
Single 
Factor 
p-value 

 
Does level 

matter? 
(conclusion) 

Skipping 
Probability 

1 0.03 0.09 0.27 

<0.01 Yes 2 0.08 0.21 0.47 

3 0.12 0.29 0.55 

Processing 
Times 

1 0.04 0.19 0.55 
<0.01 Yes 

2 0.03 0.20 0.48 

Number of 
Stages 

1 0.03 0.19 0.50 

<0.01 Yes 2 0.04 0.19 0.49 

3 0.04 0.20 0.55 

Number of 
Machines 

1 0.04 0.17 0.31 

<0.01 Yes 

2 0.05 0.19 0.41 

3 0.12 0.28 0.55 

4 0.03 0.17 0.33 

5 0.04 0.18 0.32 

Number of Jobs 

1 0.03 0.17 0.50 
<0.01 Yes 

2 0.06 0.22 0.55 



 32

4.7.1. Impact of skipping probability on RK PSO 

From Table 4.4, we see that the levels of the Skipping Probability factor are significant.  

From Figure 4.2 it is found that when all jobs visit all stages (level 1 of the Skipping 

Probability factor), Random Keys PSO performs significantly better with the average loss 

of makespan between 0.03 to 0.27.   

 

 

Figure 4.2: Difference in levels of Skipping Probability 

We conjecture that the more “flexible” the flow line (as in a semiconductor industry in 

which all jobs do not undergo the same operations), the less appropriate PSO may be as a 

scheduling algorithm. In the proposed PSO with random keys encoding, a job that does 

not visit stage 1 will still have a key but the algorithm will spend time trying to find a 

good coordinate for that job.  The PSO may make a lot of moves in the swarm space that 

don’t actually move the job in the schedule in the solution space. 

 

 



 33

4.7.2. Impact of Processing Time on RK PSO 

From Table 4.4, we see that the levels of the Processing Time factor are significant.  

Figure 4.3 indicates that level 1 has a better performance than level 2.  The processing 

times are uniformly distributed with the same mean (60) but the level 1 range is 50 - 70 

while the level 2 range is 20 - 100.  Consider how makespan can be impacted by 

reversing the order of two jobs when at both ends of the processing time ranges.  When 

the job processing times range from 50 to 70, the difference in makespan could be only as 

much as 20 time units, assuming one of these two jobs define the makespan.  When the 

job processing times range from 20 to 100 but all other factors are identical, the 

difference in makespan could be much as 80 time units.  We find that RK PSO performs 

better when the range of processing times is smaller, possibly because the order of jobs 

impacts makespan less in this case.  We conjecture that this observation may hold true for 

any algorithm used to solve this problem. 

 
 

Figure 4.3: Difference in levels of Processing Times 
 

 

     1                                     2 



 34

4.7.3. Impact of Number of Stages on RK PSO 

From Table 4.4, we see that the levels of the Number of Stages factor are significant.  

Figure 4.4 indicates that level 1 has a better performance than levels 2 or 3.  Recall that 

level 1 corresponds to 2 stages, level 2 to 4 stages and level 3 to 8 stages.  In general, the 

order induced by the stage 1 schedule persists strongly throughout the later stages due to 

the algorithm used to assign jobs to machines in later stages.  The more stages the 

problem has, the less appropriate the initial order may be on later stages.  This is insight 

can be understood by considering a regular flowline.  Johnson’s Rule tells us an optimal 

permutation schedule can be created for a 2 stage problem, and that a three stage problem 

can be solved optimally in some situations.  Scheduling literature also tells us that in a 

regular flow line, the first two stages and the last two stages should have the same order 

of jobs, even if these orders are not the same.  We can use this knowledge to conjecture 

that in a two stage flexible flow line problem, even with sequence dependent setup times, 

the order induced by the first stage may be reasonable for the second stage.  However, the 

sequence induced by the first stage may be very poor for the later stages in an eight stage 

problem.  A more detailed solution representation may allow a better solution for the 

problems with more stages, but with a concurrent increase in running time.   



 35

 
 

Figure 4.4: Difference in levels of Number of Stages 

 
4.7.4. Impact of Number of Machines on RK PSO 

From Table 4.4, we see that the levels of the Number of Machines are significant.  Recall 

that level 1 corresponds to exactly 1 machine per stage, level 2 to exactly 2 machines per 

stage, level 3 to exactly 10 machines per stage.  Levels 4 and 5 correspond to the cases of 

between 1 and 4 machines per stage (level 4) and between 1 and 10 machines per stage 

(level 5).  From Table 4.4 and Figure 4.5 Random Keys PSO performs best when the 

number of machines is exactly 1 per stage.  When the number of machines is exactly 10 

per stage, random keys PSO performs very poorly, with the average loss increasing to 

0.12 to 0.55.  

 



 36

 
 

Figure 4.5: Difference in levels of Number of Machines 
 

The insights from the previous factor are applicable to this case as well: in the level 1 

cases, the permutation induced by the stage 1 order is preserved in later stages.  On the 

other hand, when the number of machines per stage is exactly 10, the solution space is 

much larger and the solution representation cannot allow the changes that may be 

necessary in later stages. We believe this is also related to the interplay between the 

number of machines and the stopping criteria.  Since the search space is so much larger 

when the number of machines is higher, the Random Keys PSO needs more time to find a 

good particle location; the current design is flawed since the number of iterations and 

particles is fixed regardless of the size of the solution space. 

 

 

 

 

 



 37

4.7.5. Impact of Number of Jobs on RK PSO 

From Table 4.4, we see that the levels of the Number of Jobs are significant.  As the 

number of jobs increases, makespan increases proportionally.  Random keys are used to 

sort the jobs to suitable machines so increasing the number of jobs will leads the Random 

Keys PSO to take more time to search for the best particle in solution space.   

 

Figure 4.6: Difference in levels of Number of jobs 

Figure 4.6 illustrates how the average loss increases when the number of jobs increases. 

We believe this performance is also directly related to the interplay between the number 

of jobs and the stopping criteria.  Since the search space is so much larger when the 

number of jobs is higher, the Random Keys PSO needs more time to find a good particle 

location; the current design is flawed since the number of iterations and particles is fixed. 



 38

CHAPTER FIVE 

5. CONLUSION AND FUTURE WORK 

This research focused on one metaheuristic approach called Particle Swarm Optimization 

applied to find the makespan minimizing schedule in a flexible flow line with sequence-

dependent setup times. PSO for scheduling problems is the vast area where there is an 

unlimited opportunity for researchers. The proposed PSO has been adapted for use in 

permutation problems in a novel fashion. The proposed PSO features the “bounceback” 

mechanism, using Random Keys as a solution representation and tuning of learning and 

weighting parameters. The experimental data come from Kurz and Askin [16]. There are 

180 test scenarios with 10 files of each type. The Random Keys PSO is evaluated based 

on its performance on the 1800 data files. The computational experiments are facilitated 

through Clemson’s high throughput machine via Clemson Condor grid. The results are 

compared with the lower bound developed by Kurz and Askin [16]. 

We find that the proposed PSO does not perform well in general to minimize makespan 

in a flexible flow line with sequence-dependent setup times.  The makespan deviates 

from the lower bound more as the number of machines, jobs and stages increases.  These 

problem characteristics increase the search space significantly, requiring the particles to 

explore more space before finding a good location. From the results it is also evident that 

Random Keys PSO performs significantly better when the all jobs visit all the stages.  

 

 

 



 39

We use this experience to provide the following suggestions for future research: 

• The solution representation should allow for corrections to the ordering in later 

stages, perhaps by allowing the entire schedule’s machine assignment and job 

ordering to be explicitly represented. 

• The stopping criteria must consider the size of the solution space, which is a 

function of the number of stages, the number of machines at each stage and the 

number of jobs. 

Using these insights, the performance of Random Keys PSO (and other heuristics and 

metaheuristics) can be improved.   

 
 

 

 

 

 

 



 40

APPENDIX A 

 FRIEDMAN TEST AND RESULTS 
 

Friedman Test: C versus  B blocked by A 
S =42.19 DF = 53 P=0.857 

S =42.24 DF = 53 
P= 0.855 

(adjusted for ties) 

B N Est Median Sum of Ranks Results 

1 1800 0.25432 50213 
Lowest 
Rank 48322.5 

2 1800 0.25424 49285.5 Treatment  28 
3 1800 0.25416 48488 Experiment 2222 
4 1800 0.25428 49771.5 
5 1800 0.25425 49451 
6 1800 0.25427 49644 
7 1800 0.25431 50185 
8 1800 0.25434 50361.5 
9 1800 0.25427 49662 

10 1800 0.25434 50481 
11 1800 0.2542 48923 Parameter Values Levels 
12 1800 0.25423 49241 c1 1.5 2 
13 1800 0.2542 48888.5 c2 1.5 2 
14 1800 0.25424 49343.5 w 1 2 
15 1800 0.25434 50457 b TRUE 2 
16 1800 0.25425 49453.5 
17 1800 0.25416 48454.5 
18 1800 0.25426 49561 
19 1800 0.25427 49690.5 
20 1800 0.25426 49480.5 
21 1800 0.25427 49571.5 
22 1800 0.25429 49895.5 
23 1800 0.25426 49507.5 
24 1800 0.25425 49466.5 
25 1800 0.2543 49988 
26 1800 0.25422 49086.5 
27 1800 0.25428 49751 



 41

28 1800 0.25415 48322.5 
29 1800 0.2542 48839 
30 1800 0.25423 49215.5 
31 1800 0.25417 48590.5 
32 1800 0.25423 49283 
33 1800 0.25424 49272.5 
34 1800 0.25435 50466.5 
35 1800 0.25424 49293 
36 1800 0.25425 49528 
37 1800 0.25429 49960 
38 1800 0.25429 49837 
39 1800 0.2542 48937 
40 1800 0.25422 49120 
41 1800 0.25431 50065.5 
42 1800 0.25433 50347 
43 1800 0.25425 49480.5 
44 1800 0.2542 48872 
45 1800 0.25427 49645.5 
46 1800 0.25422 49089 
47 1800 0.2543 50008 
48 1800 0.25416 48561 
49 1800 0.25435 50503.5 
50 1800 0.25424 49324 
51 1800 0.25426 49578.5 
52 1800 0.25438 50746 
53 1800 0.25423 49203.5 
54 1800 0.25421 49085.5 

Grand Median  0.25426 
 

 

 

 

 

 



 42

APPENDIX B 

ANOVA SINGLE FACTOR 
 

 

 

 

 
2.Processing Times      

SUMMARY 
      

Groups Count Sum Average Variance 
  

Proc. Times 180 360 2 1.005587 
  

opt 2 average 180 35.22483 0.195693 0.011833 
  

 
ANOVA       
Source of Variation SS df MS F P-value F crit 
Between Groups 292.996976 1 292.997 575.961 1.53E-76 6.706193 
Within Groups 182.118105 358 0.50871 

   
Total 475.11508 359 

    
 
3.Number of Stages      

       
SUMMARY 

      
Groups Count Sum Average Variance 

  
Num of Stages 180 360 2 0.670391 

  
opt 2 average 180 35.22483 0.195693 0.011833 

  
       
 
 
 
 
 
 

      

1. Skipping Probability 
     

 
SUMMARY       
Groups Count Sum Average Variance 

  
Skipping Prob 180 360 2 0.670391 

  
opt 2 average 180 35.22483 0.195693 0.011833 

  
       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 
Between Groups 292.997 1 292.997 858.9465 3.81E-97 6.706193 
Within Groups 122.1181 358 0.341112 

   
Total 415.1151 359 

    



 43

 
ANOVA 

      
Source of Variation SS df MS F P-value F crit 
Between Groups 292.997 1 292.997 858.9465 3.81E-97 6.706193 
Within Groups 122.1181 358 0.341112 

   
       
Total 415.1151 359 

    
 
4.Number of Machines 

     
       
SUMMARY 

      
Groups Count Sum Average Variance 

  
mach factor - new 180 540 3 2.011173 

  
opt 2 average 180 35.22483 0.195693 0.011833 

  
 
 
ANOVA 

      

Source of Variation SS df MS F P-value F crit 
Between Groups 707.7721 1 707.7721 699.7232 3.14E-86 6.706193 
Within Groups 362.1181 358 1.011503 

   
       
Total 1069.89 359 

    
 
5. Number of Jobs 

     
       
SUMMARY 

      
Groups Count Sum Average Variance 

  
Num of Jobs 180 270 1.5 0.251397 

  
opt 2 average 180 35.22483 0.195693 0.011833 

  
       
       
ANOVA 

      
Source of Variation SS df MS F P-value F crit 
Between Groups 153.1094 1 153.1094 1163.314 1.6E-114 6.706193 
Within Groups 47.1181 358 0.131615 

   
       
Total 200.2275 359 

    
 

 

 



 44

REFERENCES 

1. Agnetis, A., Pacifici, A., Rossi, F., Lucertini, M., Nicoletti, S., Nicolo, F., Oriolo, 

G., Pacciarelli, D., and Pesaro, E. “Scheduling of flexible flow lines in an 

automobile assembly plant”. European Journal of Operational Research, 1997, 

28, 348-362. 

2. Basney, J., Livny, M., and Tannenbaum, T. “High Throughput Computing with 

Condor”. HPCU News, 1997, Vol. 1(2). 

3. Bean J.C. “Genetic algorithms and random keys for sequencing and 

optimization”. ORSA Journal on Computing, 1994, 6,154-160. 

4. Bellman, R., A.O. Esogbue, and I. Nabeshima. “Mathematical Aspects of 

scheduling and Applications”.  Pergamon Press, 1982, New York. 

5.  Bianco, L., P.Dell’ Olmo, and S.Giordani.  “Flowshop No-wait scheduling with 

sequence dependent setup times and Release dates”. INFORM, 1999, 37, 1, 3-19. 

6. Brah, S.A., and Hunsucker, J.L. “Branch and bound algorithm for the flow shop with 

multiple processors”.  European Journal of Operational Research, 1991, 51, 88-99. 

7. Campbell, H.G., Dudek, R.A., and Smith, M.L. “A heuristic algorithm for the n 

job, m machine sequencing problem”.  Management Science, 1970, 16(10), B630-

B637. 

8. Chao-Tang, T., and Ching-Jong, L. “A particle swarm optimization algorithm for 

hybrid flow-shop scheduling with multiprocessor tasks”. International Journal of 

Production Research, 2008, 46:17, 4655-4670. 



 45

9. Cheng, T.C Edwin, Jatinder N. D. Gupta, and Guoquing Wang. “A Review of 

flowshop scheduling research with setup times”.  Production and operations 

management, 2009, Vol.9, 262-282. 

10. Ding, F-Y., and Kittichatphayak, D. “Heuristic for scheduling flexible flow lines”. 

Computers and Industrial Engineering, 1994, 26(1), 27-34. 

11. Eberhart, R.C., and Shi, Y. “Comparing inertia weights and constriction factors in 

particle swarm optimization”. Proceedings of Congress on Evolutionary 

Computing, 2000, pp. 84-88. 

12. Gupta, J.N.D. “A flowshop scheduling problem with two operations per job”. 

International journal of production research, 1997, 35(8), 2309-2325. 

13. Kennedy, J and Eberhart, R.C. “A discrete binary version of the particle swarm 

algorithm, in proceedings of the World Multiconference on Sytemics, Cybernetics 

and Informatics”, 1997, pp. 4104-4109. 

14. Kennedy, J and Eberhart, R.C. “Particle swarm optimization”. Proceedings of 

IEEE International Conference on Neural Networks, 1995, pp. 1942-1948. 

15. Kennedy, J., Eberhart, R.C and Shi, Y. “Swarm Intelligence”. Morgan Kaufmann: 

CA, 2001. 

16. Kurz, Mary E. and Ronald G. Askin. “Scheduling flexible flow lines with 

sequence-dependent setup times”.  European Journal of Operational Research, 

2004,159, 66-82. 



 46

17. Lee, I., Sikora, R., and Shaw, M.J. “A genetic algorithm –based approach to 

flexible flow-line scheduling with variable lot sizes”.  IEEE transactions on 

system, Man, and Cybernetics-Part B: Cybernetics, 1997, 27(1), 36-54. 

18. Leon, V.J., and Ramamoorthy, B. “An adaptable problem-spaced-based search 

method for flexible flow line scheduling”. IIE Transactions1997, 29, 115-125. 

19. Matsumoto, M., and Nishimura, T. "Mersenne twister: a 623-dimensionally 

equidistributed uniform pseudo-random number generator". ACM Transactions 

on Modeling and Computer Simulation, 1998, Vol.8, 3-30. 

20. Piramuthu, S., Raman, N., Shaw, M.J. “Learning-based scheduling in a flexible 

manufacturing flow line”. IEEE Transactions on Engineering Management, 1994, 

41(2), 172-182. 

21.  Quan-Ke, P., M.Fatih Tasgetiren., and Yun-Chia Liang.  “A discrete particle 

swarm optimization algorithm for the no-wait flowshop scheduling problem”. 

Computers & Operations Research, 2008, 35, 2807-2839. 

22.  Rajendran C. “A no-wait flowshop scheduling heuristic to minimize makespan”. 

Journal of the Operational Research Society, 1994, 45:472 

23. Rios-Mercado, R.Z., and Bard, J.F.  “A branch- and- bound algorithm for 

permutation flow shops with sequence- dependent setup times”. IIE Transactions, 

1999, 31, 721-731. 

24. Rios-Mercado, R.Z., and Bard, J.F.  “Computational experience with a branch-

and-cut algorithm for flowshop scheduling with setups”. Computers and 

Operations Research, 1998, 25(5), 351-366. 



 47

25. Salvador, M.S. “A solution to a special case of flow shop scheduling problems”. 

In: Elmaghraby, S.E (Ed.), Symposium on the theory of scheduling and Its 

application. Springer-Verlag, 1973, pp.83-91. 

26. Santos, D.L., Hunsucker, J.L, and Deal D.E.  “FLOWMULT: Permutation 

sequences for flow shops with multiple processors”. Journal of Information and 

Optimization Sciences, 1995, 16(2), 351-366. 

27. Wittrock, R. “An adaptable scheduling algorithm for flexible flow lines”. 

Operations Research, 1988, 36(3), 445-453. 

28. Zhigang, L., Gu, X., and Jiao, B. “A similar particle swarm optimization 

algorithm for permutation flowshop scheduling to minimize makespan”.  Applied 

Mathematics and Computation, 2006, 175, 773-785. 

29. Zhigang, L., Gu, X., and Jiao, B. “A similar particle swarm optimization 

algorithm for job-shop scheduling to minimize makespan”. Applied Mathematics 

and Computation, 2006, 183, 1008-1017. 

 
 


