MISTA 2009

Lagrangian Relaxation and Cut Generation for Sequence
Dependent Setup Time Flowshop Scheduling Problems

Tatsushi Nishi* - Yuichiro Hiranaka

Abstract Lagrangian relaxation technique is successfully applied to solve sequence
dependent setup time flowshop problem to minimize the total weighted tardiness. The
relaxed problem can be decomposed into each job-level subproblem that can be ef-
fectively solved by dynamic programming. Two types of the additional constraints
for the violation of sequence dependent setup time constraints are imposed to the re-
laxed problem to strengthen the lower bound. The decomposed subproblem with the
additional constraints is also effectively solved by the novel dynamic programming.
Computational results show that the lower bound derived by the proposed method is
extremely better than that of branch and bound algorithm.

1 Introduction

The sequence dependent setup time flowshop scheduling problem to minimize total
weighted tardiness is known to be NP-hard combinatorial optimization problem. Many
industrial scheduling problems can be modeled as the sequence dependent setup time
(SDST) flowshop scheduling problems. The problem treated in this study is SDST
flowshop where there is a set of jobs to be processed on multi-stage flowshop where each
stage is composed of single machine. A job consists of a set of operations which have to
be processed sequentially for plural stages. Each operation has a fixed processing time
where preemption and splitting are not allowed. The sequence of operations is the same
for all stages. Set up time is incurred before the processing an operation depending
on the operation processed just before. The objective function to be minimized is the
total weighted tardiness.

Exact algorithms and heuristic algorithms have been studied for solving SDST
flowshop problems. A well-known heuristic is NEH algorithm for m-machine, n-job

Corresponding author to be addressed
*Tatsushi Nishi

Osaka University

E-mail: nishi@sys.es.osaka-u.ac.jp

Yuichiro Hiranaka
Osaka University
E-mail: hiranaka@inulab.sys.es.osaka-u.ac.jp

flowshop proposed by Nawaz et al. (1983). The iterated greedy search algorithm based
on the use of NEH heuristic by Ruiz and Stiitzle (2008), randomized search combined
with tabu search by Eren and Griiner (2006), and genetic algorithm of Ruiz and Stiitzle
(2006) have been reported. For exact algorithms, branch and bound with dominance
elimination criterion by Rios-Mercado and Bard (1999), a branch and cut algorithm of
Stecco et al. (2008) have been reported for the minimization of makespan. These exact
algorithms can solve the problems optimally only with the limited size of problems, e.g
within 10 jobs, and few machines for SDST flowshop. Heuristic algorithms can handle
large-sized problems. However, the solution for those algorithms often can trapped
into bad local optimum, and heuristic algorithms cannot evaluate the optimality of
solutions. Therefore it is required to derive good bounds with reasonable time.

Lagrangian relaxation (LR) is used to obtain a good lower bound that can success-
fully applied to derive a near optimal solution for single machine and parallel machine
scheduling problems by Luh et al. (1990), a practical jobshop scheduling problems of
Hoitomt et al. (1993). In the LR, the machine capacity constraints are relaxed by La-
grange multipliers to decompose the relaxed problem into job-level subproblem that
can effectively solved by dynamic programming (Chen et al. 1995). Subgradient op-
timization is used to solve Lagrangian dual problem. A critical issue to be solved for
standard LR technique for scheduling is slow convergence of lower bound computation
due to the existence of duality gaps. To strengthen the lower bound, Lagrangian re-
laxation and cut generation has been developed for flowshop problems to minimize the
weighted tardiness by Nishi et al. (2007). Cuts for the capacity constraint violation are
generated and imposed to the relaxed problem to strengthen the lower bound. This pa-
per concentrates on the Lagrangian relaxation combined with cut generation for SDST
flowshop to minimize the total weighted tardiness. The first step of the algorithm is to
decompose the original problem into individual job-level subproblem as addressed in
Nishi et al. (2007). The main difference between the study and Nishi et al. (2007) is that
the sequence dependent setup constraints are taken into account in this work. If the
problem is decomposed into job-level subproblem, the setup constraints cannot be eas-
ily handled. To consider the setup time constraints for the SDST flowshop, new types
of additional constraints are developed and imposed on the decomposed subproblem
to improve the bound.

In this paper we propose Lagrangian relaxation and cut generation for SDST flow-
shop with total weighted tardiness (SDST-WT). The original problem is decomposed
into job-level subproblems by relaxing machine capacity constraints and setup time
constraints. Valid inequalities are generated to improve the lower bound. The contri-
bution of the paper is stated as follows. We show that the SDST-WT flowshop problem
is decomposable into independent job-level subproblems when capacity constraints are
relaxed by Lagrange multipliers and some of setup time constraints are eliminated.
Two types of cuts are created to strengthen the lower bound derived by solving re-
laxed problem. Computational experiments show that the proposed method can derive
relatively small duality gap for SDST flowshop with up to 50 job and 3 machines within
2,000 seconds.

2 Problem definition and formulation

The problem treated in this study is permutation flowshop scheduling problem with N
jobs and L stages where each stage has single machine to minimize the total weighted

tardiness. Sequence dependent setup time is incurred before the processing of the oper-
ation when different job is processed successively after an operation of job. The decision
variables and constants for the problem are as follows.

Decision variables:

cil : completion time for the operation of job i at stage [

5i1 : setup time for the operation of job i at stage [

m;; : machine allocated for job i at stage I

5. : 0-1 binary variable which takes the value 1 if the operation of job i is

processed immediately after the operation of job j

Parameters:
d; : due date of job i
w; : weight of job ¢
Dil : processing time for the operation of job ¢ at stage [
H : time horizon
N : number of jobs
L : total number of stages
M : total number of machines
Sj44 ¢ setup time incurred for the operation of job 7 immediately after
the operation of job j at stage [
M, :set of machines which can process the operation of job i at stage I.

Let job 0 be a dummy job representing the job before the first job is processed. It
is assumed that 5j,i =0ifj =1, co,l = So,l = Mg, = 5]"0 =0,dy =wo = po, = 0. To
decompose the problem into job-level subproblem, we define the decision variable for
the completion time for the operation of job j at stage I: ¢;;, and the decision variable
for the selection of setup time for job j: d;,; € {0,1} which takes the value 1 if the
operation for job i selects the setup time before the operation of job 7 just after the
operation of job j and zero otherwise. Let o(7) be the function where ¢(7) takes the
value p(7) = 1 if 7 > 0, and ¢(7) = 0 otherwise, (be the pair of job i and stage [
where the available machine which can process the operation of job i at stage [. These
functions can be written as:

(r) = 1, if 7>0
P = 0, otherwise,

Cu = {0, 1) [miy = u}.

Using the functions, the SDST flowshop scheduling problem with the objective of
the minimization of total weighted tardiness (P) can be formulated as the following
equations.

N
(P) minz wiT; (1)
i=1

s.t. T; =max{0, ¢; 1, —d;}, i=1,..,N, (2)
Cil > Si,l +p’i,l7 i = 17 "'7N7 = 17 "'7L7 (3)
Ci,l*l S Ci,l _pi,l7 = 17 "'7N7 l= 27 "'7L7 (4)

Z {p(r—cip+pig+sii—1) —o(t—cip—1)} <1,
(4,1)€Cu

Tr=1,..H, u=1..,M, (5)

N
81 :Zsj,i7l5j,i, i=1,..,N, l=1,.., L, (6)
=0
N
Zéjﬂ- =1, i=1,..,N, (7)
=0

N
Z(sj,l <]-a] = 07"'7N7 (8)
i=1

B(1—0;4) +ciy—Pijg — Sig > Cjls
j=0,.,N, i=1,.,N, l=1,... L. 9)

B is a sufficiently large constant. (1) is the objective function of the sum of the total
weighted tardiness. (2) defines tardiness penalty. (3) restricts the completion time for
each job at each stage. (4) represents the technical precedence constraints for each job
at each stage. (5) is the machine capacity constraints ensuring that each machine can
process only one operation at the same time during the processing. (6) expresses the
setup time constraints for each job at each stage. (7) ensures that each job can select
only one pre-setup time. (8) represents that the number of jobs selected for the setup
time just after the operation of job j is equal or less than 1. (9) specifies the condition
that the completion time for each job is consistent with the selection of setup time for
each job.

3 Lagrangian relaxation and dynamic programming
3.1 Lagrangian relaxation

The problem (P) is NP-hard problem in strong sense. If the constraints (5), (8) and
(9) are relaxed, the original problem (P) can be decomposed into each job-level sub-
problem that can effectively solved in polynomial time. The relaxed problem obtained
from the Lagrangian relaxation of (5) with non-negative Lagrange multiplier Arm,; ,,
the Lagrangian relaxation of (8) with non-negative Lagrange multiplier u;, and the
elimination of constraints (9) is formulated as follows.

(RP) minL(\,) (10)
s. t.

Ci,l

N L
L\ p) = Z {wiTi + Z Z Armay
i=1

I=17=ci1—pig—sii+1

N M H N
z}zzz m
§=0 u=17=1 =0

A >0, 7=1,....H, uw=1,..., M, (12)

The decomposed subproblem (SPF;) for each job i is described as follows.
(SP;) min L;(\, p) (14)

L()\,u)—mm{sz—l—Z Z)‘Tm”—'_z'ujﬂ} (15)

I=1T17=¢;,1—pPiy—Siu+1
T; = max{0, ¢; 1 — d;}, (16)
C’il>8il+pil7l:1’"'7L7 (17)

Sll—z djil=1,...,L, (18)

E:QJ:L (19)
§=0

3.2 Dynamic programming for subproblem with setup time selection

The subproblem (SP;) can be solved optimally by the dynamic programming recursion
extending the idea of algorithm provided by Chen et al. (1998). Let q; ;(u,t,d; ;) denote
the criterion value for the completion of the operation of job i on machine u at time ¢.
Let F be the set of time periods satisfying F = {¢t | ¢=0,...,H}.

gi1(u,t,05,4) =
¢ N

wili+ > deat Y b if I=1L,

T=t—p;1—8i,1+1 Jj=0
N

t
Z Azu + Z,uj(sj,i, otherwise,

r=t—p;1—s;1+1 j=0
j=0,..N,I=1,.,L,ue M;,;, teF.

where M; ; is the set of machines which can process the operation of job i at stage I.
The Property 1 and Property 2 hold.

[Property 1.] The solution of (SP;) with the fixed completion time as the earliest
completion time 7 (¢,1) for the operation of job i at stage I (I =1,..., L) satisfying

T(i,1) = pii+ S0t if 1=1
) maX{T(iJ — 1) +pi,l7 Pbi + So7i,l}, otherwise.

is optimal when &y ; = 1 is the optimal solution for SF;.

[Proof of Property 1.] It is clear that the objective function of the total weighted
tardiness is regular and 7 (4, 1) is the earliest completion time for job i. Therefore
Property 1 holds.

[Property 2.] The following inequality is a valid inequality for (P):

B(l — (Sj)i) + Ci’l 2 H(Zv.]v l)7
i,j=1,...,N,i#j 1l=1,...,L. (20)

where

T'(5,0) + pig + S i 1=1,

H(i, 5, 1) = { max{H (i, 5,0 — 1) + p; 1, T'(§,1) + piy + Sji1}, otherwise.

i1+ min Sp; if I=1
Pil k=0.1....N k,i,0»)

max{7"(i,l — 1) +piy, pis + kié}[}in N Sk,i,1}, otherwise.

IR EREE)

T'(i,1) =

[Proof of Property 2.] H(i,j,l) is the earliest completion time for job ¢ when
the operation for job i is processed after the operation of job i at stage [for
i,j = 1,..., N. (20) is obtained by modifying c;; into minc;; in (9). This reveals
that (20) is the relaxation of constraint (9). (20) is a valid inequality for (P).
Therefore Property 2 holds.

In order to utilize the properties for dynamic programming recursion, the function h; ;
is defined. h; ;(u,t,{0;;}) is the criterion value for the completion of operation at time
t for job i on machine u at stage I when 0;; is given. h; ;(u,t,{d;;}) is obtained by
fixing earliest completion time for job i if §g; = 1, and it is obtained satisfying (20)
when 6;; = 1, j # 0. The dynamic programming recursion for solving subproblem
(SP;) is described as follows.

hig(u,t,{054}) =
400, if (5071' = 1) AN (t #* T(Z, l)),
oo, f (G O)A(Sj: = 1) A (< (i, 5,1),

L
too, if t< H— Z ik

k=Il+1
¢ii(u,t,{d;4}), otherwise,
j=0,.,N, I=1,...,L,ue M, teF. (21)

Jia(u,t,{85,:}) =
{hi,l(% t,{d;:}), if =1,

hii(u,t,{0;:}) + min g;;41(v,t+p;41,{d;:}), otherwise,
vEM 141

j=0,....,N,i=1,...,.Liue M;,;, teF. (22)
+00, ift < Ppils
gi(u,t,{6;:}) = min f; ;(u,x,{d;;}), otherwise. (23)
t<a<H"" '

fii(u,t,6;;) is the optimal criterion value of the state (u,t,{d;;}) for the operation of
job i on machine u at stage [. The optimal state f(u'*, ", {6;*1}) at stage [for job i is
obtained by the forward recursion.

I« 1% 1% .
Lol = 1 (ut, {05 24
(u {9:1) arg@ftﬁH,ueHAﬂ?,l,{éj,M}f“l(u {95}) (24)

l l 1 .
(u'™, ", {(5{2}) = arg min fia(u,t,{05:}). (25)
t=D*4p; <t<H, ueM; 1, {5j,z‘}:{5§-fi_l)*}

The recursion is repeated until all of stages from stage 1 to stage L for each job 7. Since
the number of all combinations for {d;;} is N for each job j due to Z;\f:o 05, =1 and
d;,: € {0,1}, the computational complexity for solving subproblem (SP;) is O(NMH).

The Lagangian dual problem (DP) is formulated as

(DP) maxQ(,) (26)
N

M H N
st Quw) =Y minLiAp) = D> Aru— D, (27)
— :

The subgradient optimization is used to derive near-optimal Lagrange multipliers. « is
the step size parameter.

UB - LB
)\7-7u = max{(),)‘TVU —+ OLM—thT,u}, (28)
Zu:l ZT:I h"'7u
UB - LB
2=
N *

where hrqy = Z(“)egu{@(T_Cf,l+pi,l+5f,l_1)_90(7'_0%_1)}_17 h;' = Zu:l j,i_l’
{eii}s {sii}s {05} is the solution derived by solving subproblem SP;.

4 Cut generation
4.1 Cuts for sequence dependent setup time constraint violation

It is extremely difficult to obtain a good lower bound for solving Lagrangian dual (DP)
because the consistency violation constraints (9) for the selection of setup time with
the precedence relationship of completion times are eliminated for the problem (RP)
as explained in section 3. Cuts are added to the (RP) to strengthen the lower bound.
Let N be the set of jobs except dummy job 0. The cuts for the violation of constraints
are as follows:

3(z,5) such that for i, j € N

(i +6i; SV AGpi+ 0k, <1, k=0,...,N) (30)
3(z,7) such that for i, j € N

(056 + 035 <1)A(cin —pi1 — Si1 = ¢, if 65, =1)

A(ej1 —pjn — 81 = ¢i1, if 65 =1) (31)

The main idea for the cut generation is states as follows. (30) represents the additional
constraint that can eliminate the inconsistency for the selection of setup time between
the solution of subproblem for job ¢ and job j. (31) is the additional constraint that
can reduce the capacity constraint violation from the selection of setup time due to
the characteristic of zero idle time for the first stage in the SDST flowshop problem.
More specifically, (30) ensures that the solution with d;; = d; ; = 1 is not satisfied
and the setup time cannot be selected two or more than two jobs for job k at a time,
that is clearly a valid cut because all feasible solution for the original problem satisfy
(30). (31) represents the constraint that the completion for the operation of job i (j)
is equal to the starting time for the operation of job j (i) at stage 1 if job i (j) selects
the setup time for job j (i). For flowshop problems, idle time at stage 1 is always

zero for regular objective function. (31) restricts that the completion time for job j is
equal to the starting time for job ¢ minus setup time for job i if the setup time for
the operation of job ¢ immediately after the operation of job j is selected at stage 1,
and vice visa. The lower bound can be strengthened if the cuts (30), (31) are added to
(RP) because the feasible region for (RP) is reduced.

4.2 Cut generation method

Both of (30) and (31) are related to a pair of job ¢ and job j. The cut (30) and (31) are
generated at the same time for each pair of two jobs. To generate the cuts, an appro-
priate pair of two jobs (i, 7) must be selected. In this study, the following algorithm is
executed for the cut generation. The main idea is that the pair of cut is selected so that
the expected difference of setup time AS;; = [S;;1 —mingean {4} Sk,i,1| is maximized.
This is an empirical rule derived from our preliminary experiments. The optimality of
solution derived by the LR highly depends on the selection of setup time for each job.
Therefore it is expected to expedite search by the selection of large expected difference
of setup time.

[Cut generation algorithm)]

Step 1. C = ¢.

Step 2. Fix the solution for an optimal solution to provide the best lower bound
obtained by solving each job-level subproblem.

Step 3. Enumerate a pair of jobs (i,) (¢, j € N) that satisfies §;; =1 A ¢;,1 —pi1 —
sj.1 # ¢j1. Let € denote the set of the pairs (¢,5) (¢, j € N).

Step 4. For each element in £, calculate AS;; = |S;; 1 — min Skl ;5=

{keW\{31H}

1, then ASJ'J‘ = ASJ'J‘ + ASZ'J'.

Step 5. Select a pair of (i, j) which provides the largest AS; ; from £. The cut for the
pair of (4,) is generated and go to Step 6. If £ = ¢, all of the pairs in N'\C are set
to £ and go to Step 7.

Step 6. C = CU {3, j}. Delete the pair of jobs which includes at least one of job i and
job j from &£ and return to Step 5.

Step 7. Select a pair of (4,) randomly from &’. The cut for the selected pair is gen-
erated. If £ = ¢, the algorithm is finished.

Step 8. Delete all of the pair of jobs which includes at least one of job ¢ and job j
from &’ and return to Step 7.

Both of cuts (30) and (31) for a pair of two jobs are generated simultaneously. The
number of generated cuts for (30) and (31) is restricted so that two or more than two
cuts for each pair of job (i,7) is not generated to reduce the total computing time.
However, it is ensured that at least a cut for (30) and (31) is generated for every job.

Example. Consider an example of SDST flowshop with 3 jobs and 2 stages. Each
stage has single machine. Fig. 1(a) shows a tentative result obtained by solving (DP).
Assume the solution d21 = 1, 612 = 1, §1,3 = 1 when the setup time for job 1 is
So,1,1 = So,1,2 =95, S2,1,1 = S2,2,2 =2, S3,1,1 = 53,1,2 = 4, the setup time for job 2
is 807271 = 50’272 =2, 51’271 = 517272 =1, 53’271 = 837272 = 5, and the setup time for
jOb 3 is 50’371 = 507372 = 77 51’372 = 51’372 = 3, 527371 = 527372 = 4. The candidate
of cuts is € = {(1,2), (2,1), (1,3)}. For each candidate, AS;; is computed. ASs 1 =
ASy 1+ AS12 =|52,1,1 — S3,1,1] + |S1,2,1 — So,2,1] =3, AS13 =151,31 — 5231/ =1.

(1,2) is selected because ASs 1 is the maximum. C = {1,2} and € = ¢ because the
element including 1 or 2 is excluded from €. € = AM\C = ¢ then the algorithm is
finished. An example of results with cut (1,2) is shown in Fig. 1(b).

machine - setup times
Ml
T T
M2 -
job2
time
(a) Tentative solution of Lagrangian dual (DP)
machine
Ml job2 [job!
job3
M2

time
(b) Results after the imposition of the cut for (jobl, job 2)

Fig. 1 Example of cut generation for SDST flowshop

4.3 Dynamic programming with cut generation

The dynamic programming recursion for the relaxed problem with the additional con-
straints on any two jobs is explained in this section. To solve the subproblem with cut
on the operations for two jobs i, j € C, the recursion for the operation of job i at stage
l is as follows.

fiaut, {or ;) =
i 7t7 Ok i + i j 7tla Ok j)
fia(ut, {0r:}) B M fia(u,t', {or 51)

if (l =].) A ((5]‘71' = 61”' = O)7

i (u,t, {0k) + min (ut —pig — i1, {0k i),
fz,l({ k,z}) (50 \Vk’,k’;ﬁk}f]’l(Pi il { k ,]})

if (I=1)A(6;;=1)A(d,; =0),
FiaCu,t, {0k 1) + Fia(ut +pj0 + 550, {0k 1),

if ((=1)A (05 =0)A (65 =1),
Jialu,t, {0k :}), ifl#1

+o0, otherwise,

k' =0,..,N, l=1,...,L, u€ M;,, t €F. (32)

fi/’l(u,t, {0k,s}) is the optimal criteria value for job ¢ and job j which is the sum of

the optimal cost for the state (u,t,{dy;}) of job ¢ and the optimal cost for the state

(u,t,{dk,;}) of job j under the constraint between the operation of job ¢ and job j at
stage [. There are three cases if the stage | = 1. The first recursion implies that the
optimal cost is calculated by selecting the minimum cost if (6;; = 0) A (6;,; = 0). The
second recursion implies that job ¢ selects the setup time that requires immediately
after the processing of the operation of job j. The third recursion implies that job j
selects the setup time that requires immediately after the processing of the operation
of job i. The cut (30) is realized by setting fz-/’l(u, t,{0k,i}) = 00 if (§;; =1)A(6;; =1)
or (0g; = 1) A (dg,; = 1). The cut (31) is realized by the second and third recursions
in (32). The optimal state with the constraints can be obtained by forward recursion
by (24) and (25) in the same manner.

The optimal criteria value for the operation of job j at stage [is calculated as
follows.

Fialu,t, {6 ;}) =
1 7t, Ok, i i 3 7t/7 Okt i)

fia(u,t, {0k ;}) +t/ea{(sﬁl\gkgk/;ﬁk}f“l(u {0k,i})
if(I=1)A (51’,]’ =0 = 0),

fia(ut, {0k ;1) + {%Cilglki{lk/#k} fia(ut =pji—sj1. {0k i}),
if (l = 1) A (5i,j = 1) A ((5]‘71' = 0)7

FiaQust, {0k 51) + fia(u, t 4+ pig + 8.0, {0k i})s
if (1 =1)A(di,; =0)A (65, =1),

Fia(u, t,{0g 1), fl1#1,

400, otherwise,

kk'=0,.,N,1=1,..,L, ue M, t€ F. (33)

The recursion for the operation of job j at stage [can be computed in the same way as
(32). The computing time for solving subproblem for job ¢ and job j with additional
constraints is O(N?MH). It is possible to construct the same type of cuts for any n
jobs. The computing time is O(N" M H). The cuts up to any 3 jobs, any 4 jobs are
applied for our numerical experiments.

5 Overall algorithm of Lagrangian relaxation and cut generation

The proposed algorithm is explained in this section. To explain the algorithm, the
ordinary Lagrangian relaxation (LR) based on job-based decomposition is explained
as follows.

[LR algorithm]

Step 1. Set the Lagrange multipliers (e.g Aru =0, p; = 0).

Step 2. Solve the subproblem (SP;) by the dynamic programming recursion of (22)
and compute a lower bound LB.

Step 3. Construct a feasible solution by NEH algorithm combined with local search
and compute an upper bound UB.

Step 4. If GAP=UB — LB is less than 1 or the lower bound is not updated for a fixed
time, the algorithm is finished.

Step 5. Update the Lagrange multipliers by (28) and (29). Then return to Step 2.

The proposed algorithm consists of the following steps. There are two types of
Lagrange multipliers p; and Ar . To solve the Lagrangian dual problem efficiently,

Lagrange multiplier is independently optimized. The overall algorithm of the proposed
method consists of the following steps.

[Proposed algorithm]

Step 1. Construction of a feasible solution by [NEH algorithm combined with
local search]. Set an initial Lagrange multipliers.

Step 2. Execute [LR algorithm] with a fixed u; as the solution with the best lower
bound. Only A7 is optimized by the subgradient method. The dynamic program-
ming recursions of (32), (33) are used to solve the subproblem with cuts in the LR
algorithm.

Step 3. Execute [LR algorithm] with fixed Ar as the solution with the best lower
bound. Only p; is optimized by the subgradient method. The dynamic program-
ming recursions of (32), (33) are used to solve the subproblem with cuts in the LR
algorithm.

Step 4. If GAP=UB — LB is less than 1, or the lower bound has not been updated
for predetermined number of times, the algorithm is finished. Otherwise return to
Step 2.

Step 5. Set the Lagrange multipliers with the best lower bound.

Step 6. Execute [Cut generation algorithm].

Step 7. Execute [LR algorithm] with fixed p; as the solution with the best lower
bound. Only Ar . is optimized by the subgradient method. The dynamic program-
ming recursions of (32), (33) are used to solve the subproblem with cuts in the LR
algorithm.

Step 8. Execute [LR algorithm] with fixed Ar as the solution with the best lower
bound. Only pu; is optimized by the subgradient method. The dynamic program-
ming recursions of (32), (33) are used to solve the subproblem with cuts in the LR
algorithm.

Step 9. If GAP=UB — LB is less than 1, or the lower bound has not been updated
for predetermined number of times, the algorithm is finished. Otherwise return to
Step 7.

In the proposed algorithm, NEH algorithm combined with local search[1] is used to
derive an upper bound only in the first step. The algorithm to derive an upper bound
consists of the following steps.

[NEH algorithm combined with local search)]

Step 1. Let S’ be the sequence of jobs are sorted according to the earliest starting
time in ascending order.

Step 2. k:=1, S=8', UB = +co.

Step 3. Select 5 jobs from S. R is the set of the selected 5 jobs.

Step 4. k' :=1, v :=1, UB' := 4o0.

Step 5. Select a job j randomly from R. The selected job is inserted into the k' th
position in S’. A feasible schedule is obtained by dispatching the set of jobs S’ in
forward. Based on the schedule, an upper bound UB" is calculated.

Step 6. If UB” < UB’, then UB’ = UB" and ' = k’. Delete job j from &', k' :=
k' 4+ 1. If ¥ <|S’| 4+ 1 then return to Step 5.

Step 7. If k¥’ > |S’| 41, then job j is inserted in the 7'th position in S’. R = R\j and
return to Step 4. If R =¢ and UB' <UB, then UB=UB', 8§ =8", k:=k+ 1. If
k is more than predetermined value, the algorithm is finished. Otherwise return to
Step 3.

6 Computational experiments

Computational experiments are executed for the SDST flowshop with total weighted
tardiness (SDST-WT) and the SDST flowshop with total weighted flowtime (SDST-
WEFT) problems. The flowshop with total weighted flowtime can be realized easily by
setting the due date for all jobs zero. The parameters for the problem instances are
shown in Table 1. The number of jobs N is selected from N = {5, 10, 20, 30, 40,50},
the number of stages L = 3. Ten instance problems are created for each case. Setup
time S ;; for each instance is selected from uniform distribution on [1, 9] on the
condition that S;;1 = Sj;2 = --- = 5, . The processing time is generated from
uniform distribution on [1, 20]. The convergence condition for [LR algorithm)] is that
LB and UB is less than 1.00 or the lower bound has not been updated 50 times, and
the convergence condition for [Proposed algorithm] at Step 4 and Step 9 is that
the difference between LB and UB is less than 1.00 or the lower bound has not been
updated 2 times. The condition The Intel Pentium D 3.4GHz with 1GB memory is
used for computation.

The effects of cut generation are investigated for SDST-W'T problems. The lower
bound derived by the proposed method with no cuts (LB with no cut), the proposed
method with cut (30) (LB with cutl), the proposed method with cut (31) (LB with
cut2), the proposed method with cut (30) and (31) (LB with cutl4cut2) are summa-
rized in Table 2. The results of computation time are summarized in Table 3.The results
demonstrate that LB with cut2 is more better than LB with cutl for all problems and
cutl+cut2 is more effective because the total CPU time for cutl+cut2 is almost the
same as that of cut2. The performance of cutl is not effective for large-sized problems.
This is because cutl is very weak for large-sized problems when the feasible region
for relaxed problem is too large. From these results, it is demonstrated that LR with
cutl4cut2 is more effective than LR with no cuts without significantly increasing the
total computation time.

The performance of duality gap for the proposed method with two types of cuts is
demonstrated for SDST-WT and SDST-WFT problems. Average computational results
of ten cases are summarized in Tables 4, 5. The performance of average duality gap
for the proposed method for SDST-WT, SDST-WFT is within 14% for all problems.
Especially for SDST-WFT, duality gap is within 12% in worst cases although the total
computation time is within 2000 second for all cases. The results demonstrate that
the proposed method can derive near-optimal solution for SDST-WT, SDST-WFT
problems.

In order to compare the performance between the other methodologies, the per-
formance of lower bound for three types of methods are compared for the proposed
method (LRCUT), branch and bound for solving integer programming problem by
CPLEX10.1 (CPLEX) with maximum 3,600 seconds of computation time, and branch
and bound method (B&B) with maximum 3,600 seconds of computation time. For
B&B, the branching is executed by enumerating the sequence of operations and cal-
culating the starting time of operations in forward. The lower bound for each node is
computed by

LBpgp = Z w; max{0, c{f —d;} + Z w; max{0, Cif,TLee—di} (34)
i€ENfiz 1€ENfree

where Ny, is the fixed job sequence, and Ny, is the unfixed job sequence in the
f

branching tree. ciiLI is the earliest completion time at the last stage L considering

Table 1 Parameters for the instance problems

Number of jobs: N 5, 10, 20, 30, 40, 50
Number of stages: L 3
Due date: d; for SDST-WT [0, 2N]
Due date: d; for SDST-WFT 0
Weight: w; [1, 10]
Processing time: p; ; [1, 20]
Setup time: S; ;1 [1, 9]

Table 2 Effects of cut generation to the performance of lower bound

N LB without cut LB with cutl LB with cut2 LB with cutl+cut2

10 3857.8 3870.4 3901.4 3901.9
20 9060.4 9067.2 9193.0 9193.6
30 21280.1 21285.3 21387.5 21385.8
40 31138 31138 31174.2 31173.7
50 45984 45984 46015.5 46015.5

Table 3 Effects of cut generation to the total computation time [sec.]

N Time without cut Time with cutl Time with cut2 Time with cutl+cut2

10 9.95 12.54 12.69 12.60
20 88.49 100.3 109.2 109.2
30 296.21 327.69 338.9 339.1
40 633.14 633.14 648.1 644.3
50 1164.24 1286.47 1301.4 1301.5

precedence constraints and setup time in the fixed sequence Ny, c{f;e is the earliest
completion time at the last stage L for the job in the last sequence in Ny;.qq. If the
computation time for CPLEX and B&B is larger than 3600 sec., the NEH algorithm
combined with local search is executed to derive a feasible solution.

If the number of jobs N is 5 or 10, the lower bound for CPLEX or B&B is better
than that of the proposed method. However, if the number of jobs is increased, the
lower bound derived by CPLEX or B&B is extremely smaller than that of the pro-
posed method. This is because computational complexity is significantly increased if
the number of jobs is increased. It is extremely difficult for CPLEX or B&B to obtain
a good lower bound in realistic computation time. The proposed method can gener-
ate good lower bound even for 50 job problem in reasonable computation time. It is
demonstrated that the lower bound of the proposed method is better than that of the
conventional methods.

7 Concluding remarks

In this paper, we have proposed a Lagrangian relaxation and cut generation for se-
quence dependent setup time flowshop problem with the total weighted tardiness. The
original problem has been decomposed into job-level subproblems by the Lagrangian
relaxation of capacity constraints and the removal of sequence dependent setup time
constraints. The additional constraints on the relaxed problem have been imposed to
strengthen the lower bound. Computational experiments have demonstrated the effec-
tiveness of the lower bound of the proposed method compared with that of the CPLEX

Table 4 Computational results for SDST-WT

N UB LB Time(s) DGAP(%) JBLECUT (o] UBLRCUT [%)
CPLEX CPLEX

5 LRCUT 1279.6 12562 2.1 2.09 98.17 98.17

5 CPLEX 1279.6 1279.6 0.33 0

5 B&B 1279.6 1279.6 0.17 0

10 LRCUT 4243.6 3930.1 18.68 7.87 93.92 92.61

10 CPLEX 4243.6 4184.7 11114 1.11

10 B&B 4243.6 42436 7.11 0

20 LRCUT 10491.3 9244.3 154.33 13.49 287.08 136.42

20 CPLEX - 3220.1 3600 -

20 B&B 10477.7 67765 3600 54.53

30 LRCUT 24251.2 21456.1 480.9 13.1 575.49 256.77

30 CPLEX - 37283 3600 -

30 B&B 24200.6 8356.2 3600 190.32

40 LRCUT 35196.1 31203.3 908.02 12.97 878.67 486.30

40 CPLEX - 3551.2 3600 -

40 B&B 352028 64165 3600 472.58

50 LRCUT 51984.6 46016.7 1782.97 13.19 1530.27 1048.03

50 CPLEX - 3007.1 3600

50 B&B 51913.4 4390.8 3600 1138.81

Table 5 Computational results for SDST-WFT

N UB LB Time(s) DGAP(%) JBLECUL (%] UBLRCUT (o]
CPLEX CPLEX

5 LRCUT 1583.1 1553.4 1.41 1.9 98.12 98.12

5 CPLEX 1583.1 1583.1 0.34 0

5 B&B 1583.1 1583.1 0.18 0

10 LRCUT 4719.5 4429.1 19.38 6.43 95.23 93.85

10 CPLEX 4727.9 4651.1 1149.1 1.25

10 B&B 4719.5 4719.5 7.19 0

20 LRCUT 13403.9 12109.3 163.67 10.68 212.35 129.67

20 CPLEX - 5702.6 3600 -

20 B&B 13439.6 9338.7 3600 43.2

30 LRCUT 26641.8 23951.6 435.89 11.37 314.67 189.06

30 CPLEX - 7611.6 3600 -

30 B&B 26445.5 12668.8 3600 108.59

40 LRCUT 44060.8 39501.3 984.01 11.73 400.73 269.76

40 CPLEX - 9857.4 3600 -

40 B&B 44120.2 14642.9 3600 202.13

50 LRCUT 69755.6 63190.2 1803.24 10.48 510.44 393.88

50 CPLEX 12379.6 3600

50 B&B 68941.6 16042.9 3600 330.41

and the standard branch and bound algorithm. Future work is to eliminate duality gap
for large-sized problems by the consideration of cuts with reasonable computation time.

References

1. R. Ruiz, T. Stiitzle, “An iterated greedy heuristic for the sequence dependent setup times
flowshop scheduling problem with makespan and weighted tardiness objectives”, Furopean
Journal of Operational Research, vol. 187, pp. 1143-1159, 2008.

2. T. Eren, E. Gliner, “A bicriteria flowshop scheduling problem with setup times”, Applied
Mathematics and Computation, vol. 183, pp. 1292-1300, 2006.

3. R. Ruiz, C. Maroto, J. Alcaraz, “Solving the flowshop scheduling problem with sequence
dependent setup times using advances metaheuristics”, Furopean Journal of Operational
Research, vol. 165, pp. 34-54, 2005.

10.

11.

12.

13.

14.

M. Nawaz, E.E. Enscore Jr., I. Ham, “A heuristic algorithm for the m-Machine n-Job
Flow-shop Sequencing Problem”, OMEGA, vol. 11, no. 1, pp. 91-95, 1983.

. X. Luo, F. Chu, “A branch and bound algorithm of the single machine schedule with

sequence dependent setup times for minimizing total tardiness”, Applied Mathematics
and Computation, vol. 183, pp. 575-588, 2006.

. P.L. Rocha, M.G. Ravetti, G.R. Mateus, P.M. Pardalos, “Exact algorithms for a scheduling

problem with unrelated parallel machines and sequence and machine-dependent setup
times”, Computers and Operations Research, vol. 35, pp. 1250-1264, 2008.

. T. Ibaraki and Y. Nakamura, “A dynamic programming method for single machine

scheduling”, FEuropean Journal of Operational Research, vol. 38, no. 7, pp. 1066—-1079,
1993

. J. Hoitomt, P. B. Luh, and K. R. Pattipati, “A practical approach to job-shop scheduling

problems,”, IEEE Transactions on Robotics and Automation, vol. 9, pp. 1-13, 1993

. P.B. Luh, D.J. Hoitomt, E. Max, and K.R. Pattipati, “Scheduling generation and recon-

figuration for parallel machines,” IEEE Transactions on Robotics and Automation, vol. 6,
no. 6, pp. 687-696, 1990.

T. Nishi, Y. Hiranaka, M. Inuiguchi, “A successive Lagrangian relaxation method for
solving flowshop scheduling problems with total weighted tardiness,” in Proc. 8rd Annual
Conference on Automation Science and Engineering, pp. 875—880, 2007.

H. Chen, C. Chu and J.M. Proth, “A more efficient Lagrangian relaxation approach to
job-shop scheduling problems,” IEEE Int. Conf. Robotics and Automation, pp. 495-501,
1995.

H. Chen, C. Chu and J.M. Proth, “An improvement of the Lagrangian relaxation approach
for job shop scheduling: A dynamic programming method,” IEEE Trans. Robot. Automat,
vol. 13, no. 5, pp. 786795, 1998.

G. Stecco, J.F. Cordeau, E. Moretti, “A branch-and-cut algorithm for a production
scheduling problem with sequence-dependent and time-dependent setup times,” Comput-
ers and Operations Research, vol. 35, pp. 2635-2655, 2008.

R.Z. Rios—Mercado, J.F. Bard, “A branch-and-bound algorithm for permutation flow shops
with sequence-dependent setup times,” IIFE Transactions, vol. 31, pp. 721-731, 1999.

