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Abstract

It is studied that several constructive heuristics for solv-

ing the sequence dependent setup time flowshop problem

with the objective of minimizing makespan. Three prior-

ity rules imbedded in the heuristics are tested and a tie-

breaking strategy is examined. The experimental results on

benchmarks show that the priority rules are helpful to im-

prove the performance, especially for the instances in which

setup times are averagely smaller than the average process-

ing time. The results also show that the setup times have a

large effect on the performance of the heuristics.

keywords: Scheduling, Heuristic, Flowshop, Sequence de-

pendent setup time, Makespan

1. Introduction

In the regular permutation flowshop sequencing prob-

lem, a set of jobs J = {1, 2, . . . , n} available at time zero

needs to be processed on m machines, where n ≥ 1 and

m ≥ 1. Each job has m operations, each of which needs

an uninterrupted processing time. The processing time of

the ith operation of job j is denoted by pij , where pij ≥ 0.

The process sequence of these m operations is that the first

operation needs to be processed on the first machine, and

the second operation needs to be processed on the second

machine, etc. An operation of a job starts to be processed

only if the previous operation of the job is completed and

the requested machine is available. Each machine processes

these jobs in the same order and only one operation can be

processed at a time.

In the above problem, setup time is assumed negligible

or part of the job processing time. Though this assump-

tion simplifies the analysis and it really reflects certain ap-

plications, there are many scheduling problems requiring an

explicit treatment of setup times, i.e., setup times are depen-

dent on the processing sequence of the jobs. This problem is

called Sequence Dependent Setup Time Flowshop Problem

(SDST flowshop problem). In this problem, it is denoted by

sijk the deterministic and non-negative setup time on ma-

chine i when job k follows job j. The objective studied in

this paper is to minimize the makespan (denoted by Cmax),

i.e. the time of the last job completed on machine m, and it

can be computed in the following way:

Let π denote a permutation, which represents a job pro-

cessing order on the set J . Let π(k), k = 1, . . . , n, denote

the kth job in π, then the completion time of π(k) on ma-

chine i can be denoted by Ci,π(k) and computed by Eq. (1):

Ci,π(k) = max{Ci−1,π(k), Ci,π(k−1)+siπ(k−1)π(k)}+piπ(k)

(1)

where Ci,π(0) = C0,π(j) = 0 for all i and j. This prob-

lem can be represented as Fm|prmu, sijk|Cmax [7] and is

known to be NP-complete for any m ≥ 1 [4, 5].

In the literature, the methods on this problem can be

classified into three categories: exact methods, improve-

ment methods and constructive methods. Exact methods

are mainly integer programming methods, e.g. Stafford

and Tseng [15], or branch and bound methods, e.g. Rı́os-

Mercado and Bard [10]. These methods can only solve

small size instances, e.g. less than 9 jobs and 9 machines.

Improvement methods are mainly meta-heuristics, such as

genetic algorithms [12] and iterated greedy algorithms [13].

These methods are often time-consuming. For more infor-

mation on these two kinds of methods, the readers are refer-

enced to the comprehensive survey by Allahverdi et al [1].

In this paper, we only focus on constructive algorithms.

As for constructive algorithms on the SDST flowshop,

the work is scarce. Relatively early work is mainly on the

two-machine problem, e.g. Gupta and Darrow [5]. For

the general SDST flowshop problem, Simons proposed two

heuristics named SETUP and TOTAL [14]; Das et al pro-

posed a heuristic based on a savings index (SI) [2]; Rı́os-

Mercado and Bard modified the famous NEH [6] heuris-

tic, which was proposed for solving the regular permutation

flowshop problem, and developed the NEHT-RB heuristic

[8]; later they proposed the HYBRID heuristic [9] based

on the work of Simons [14]; recently, Tseng et al [18] pro-
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posed a penalty-based heuristic (PB) based on the work of

Das et al [2], which showed better performance than the

heuristic by Das et al when m ≥ 4. The work of Ruiz

et al [11] showed that the NEHT-RB by Rı́os-Mercado and

Bard [8] performed the best among the SETUP and TOTAL

heuristics by Simons [14], the SI heuristic by Das et al [2]

and the HYBRID heuristic by Rı́os-Mercado and Bard [9]

on four different sequence dependent Taillard-based bench-

marks. To the best of our knowledge, there is no comparison

between the NEHT-RB [8] heuristic and the PB heuristic

[18] at present.

In the literature, the NEH heuristic [6] was considered as

the best constructive algorithm for solving the regular per-

mutation flowshop problem [11]. In our previous work [3],

this heuristic is improved by developing a more effective

priority rule and a tie-breaking strategy. Since the NEHT-

RB heuristic [8] is based on the NEH heuristic, it is worthy

examining the effectiveness of these methods on the NEHT-

RB heuristic.

The remainder of this paper is organized as follows. In

Section 2, the NEHT-RB heuristic [8] is briefly illustrated

and compared with the PB heuristic [18]. In Section 3, three

priority rules are analyzed, and a tie-breaking strategy is ex-

amined in Section 4, which are aimed to improve the NEHT-

RB heuristic [8]. Then the paper is concluded in Section 5.

2 NEHT-RB Heuristic

As aforementioned, the NEHT-RB heuristic [8] extends

the NEH heuristic [6] to handle setup times. The NEH

heuristic was originally proposed for the regular permuta-

tion flowshop problem and its time complexity is O(mn2)
by using a speed-up method [16]. The speed-up method

can also be used in the NEHT-RB heuristic, and so the time

complexity of NEHT-RB is also O(mn2). The NEHT-RB

heuristic can be presented as follows:

(1) sort the n jobs by decreasing sums of processing

times on the m machines (setup times are not considered);

(2) take the first two jobs and schedule them in order to

minimize the partial makespan as if there were only two

jobs (setup times are considered);

(3) for the kth job, k = 3, . . . , n, insert it into the

place, among k possible ones, which minimizes the partial

makespan (setup times are considered).

It is easy to see that the NEHT-RB heuristic consists of

two phases: firstly, the jobs are sorted by descending sums

of their processing times (setup times are not considered);

secondly, a job sequence is constructed by evaluating the

partial schedules originating from the initial order of the

previous phase. In our implementation, the heap sort algo-

rithm is used in the first phase. While in the second phase, a

job is always inserted into the first position where the mini-

mum makespan is achieved.

As previously stated, the NEHT-RB was shown the best

among several constructive algorithms on a set of Taillard-

based benchmarks [11]. However, there is no performance

comparison with the PB heuristic proposed by Tseng et al

[18] at present. In this section, a comparison is made be-

tween these two heuristics on the above benchmarks.

In order to describe the benchmarks, we firstly introduce

the Taillard benchmarks [17]: the set of Taillard bench-

marks includes 120 instances and is divided into 12 groups,

each with 10 instances, according to different numbers of

jobs and machines; the smallest instances have 20 jobs and

5 machines while the largest instances have 500 jobs and

20 machines; the processing times of all the operations

are generated uniformly from [1, 99]. The SDST Taillard-

based benchmarks are generated by adding sequence depen-

dent setup times to the above Taillard benchmarks, where

the maximum possible setup time is 10%, 50%, 100% and

125% of the maximum possible processing time, respec-

tively, i.e. the setup times are generated uniformly from [1,

9], [1, 49], [1, 99] and [1, 124] respectively. Thus there

are total of 480 instances divided into four groups, which

are denoted by SDST10, SDST50, SDST100 and SDST125

respectively. The benchmarks can be downloaded from

http://www.upv.es/gio/rruiz.

The comparison was done on a PC with an Intel Core 2

Duo CPU (2.66GHz) and 1.96G main memory. The results

are shown in Table 1 in terms of average relative percentage

deviation (RPD). The RPDs are calculated by Eq. (2).

RPD = (CPB
max − CNEHT−RB

max )/CNEHT−RB
max × 100%

(2)

where CPB
max denotes the makespan obtained by the PB

heuristic, and CNEHT−RB
max denotes the makespan obtained

by the NEHT-RB heuristic.

From Table 1, it can be seen that the PB heuristic

performs worse than the NEHT-RB on the SDST10 and

SDST50 benchmarks for the average RPDs for all instances

are 4.75 and 2.06 respectively, while it performs better on

the SDST100 and SDST125 benchmarks and the average

RPDs for all instances are −1.26 and −2.30 respectively.

This shows that the PB heuristic performs better on the in-

stances with large setup times. This is in accordance with

the claim of its authors [18]. According to Gupta and Dar-

row [5], setup times of many real-world instances are nar-

row, just like the SDST10 and SDST50 benchmarks. So

it is meaningful to improve the performance of NEHT-RB,

especially on the SDST10 and SDST50 benchmarks.

When the CPU time is considered, the NEHT-RB needs

much less CPU time for its time complexity is O(mn2),
while the PB needs much more CPU time for its time com-

plexity is O(mn3) [18]. We list the CPU times on SDST10

benchmarks in Table 2 in seconds, and the CPU times on

SDST50, SDST100 and SDST125 are omitted for they are

very similar to those listed in this table.
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Table 1. RPD comparison between NEHT­RB
and PB heuristic

SDST10 SDST50 SDST100 SDST125

20|5 3.86 2.49 -2.73 -1.51

20|10 4.17 1.06 0.48 0.48

20|20 5.15 3.50 2.04 1.84

50|5 3.21 1.21 -2.64 -4.16

50|10 4.14 3.26 -0.06 -1.69

50|20 6.05 3.68 1.49 -0.41

100|5 2.22 -0.70 -4.50 -6.52

100|10 4.55 1.84 -1.87 -3.00

100|20 5.76 2.84 -0.14 -1.15

200|10 3.10 0.14 -3.83 -5.10

200|20 7.00 3.25 -0.66 -2.07

500|20 7.78 2.19 -2.75 -4.34

all 4.75 2.06 -1.26 -2.30

3 Priority Rule

In the first phase of the original NEHT-RB heuristic, the

priority rule consists in sorting the n jobs by decreasing

sums of processing times on the m machines. This prior-

ity rule is the same as that in the NEH heuristic [6]. In the

literature, it has been shown that a better priority rule can

be obtained by considering the standard deviations of the

jobs’ processing times at the same time for the NEH heuris-

tic [3], so an improved performance is to be expected for

the NEHT-RB heuristic if these standard deviations are in-

cluded in this procedure. Also, the setup times should be

considered in the priority rule. In this section, we examine

the NEHT-RB heuristic, modified by using different prior-

ity rules. In order to construct the priority rules examined

in this work, the following measures need to be defined:

The average processing time of job j is defined as Eq.

(3):

Avgj =
1

m

m
∑

i=1

pij (3)

The standard deviation of processing times of job j is

defined as Eq. (4):

Stdj =

[

1

m − 1

m
∑

i=1

(pij − Avgj)
2

]1/2

(4)

Obviously, m > 1 is required here.

The average setup time of job j, where the setup times in

all cases are considered, is defined as Eq. (5):

STj =
1

2(n − 1)m

n
∑

k=1,k 6=j

m
∑

r=1

(srjk + srkj) (5)

Table 2. CPU times (in seconds) needed by

NEHT­RB and PB heuristic on SDST10

NEHT-RB PB

20|5 0.0 0.0

20|10 0.0 0.0

20|20 0.0 0.0

50|5 0.0 0.0

50|10 0.0 0.0

50|20 0.0 0.0

100|5 0.0 0.1

100|10 0.0 0.1

100|20 0.1 0.2

200|10 0.1 0.7

200|20 0.3 1.5

500|20 1.7 23.9

all 0.2 2.2

Then the priority rules tested are as follows:

1. AvgStd

This rule consists in sorting the jobs by decreasing

Avgj + Stdj . It implies that the larger average pro-

cessing time (standard deviation of processing times)

a job has, the higher priority it should have;

2. AvgStd+ST

This rule consists in sorting the jobs by decreasing

Avgj +Stdj +STj . When compared with the AvgStd

rule, it implies that the larger average setup time a job

has, the higher priority it should have. This is based

on such a hypothesis: if a job with larger average setup

time were scheduled at a later stage, it would disturb

the partial schedule more strongly, and this would not

help find a better solution;

3. AvgStd−ST

This priority rule consists in sorting the jobs by de-

creasing Avgj +Stdj−STj . When compared with the

AvgStd priority rule, it implies that the larger average

setup time a job has, the lower priority it should have.

This is based on such a hypothesis: if a job with larger

average setup time were scheduled at a later stage, it

would have more choice to find a good position, and

this would help find a better solution.

The second and the third priority rules are in conflict on

the usage of the average setup time in a certain sense. The

aim of including these two rules is to examine how the av-

erage setup time can affect the performance. The original

NEHT-RB heuristic modified by using these three priority

rules can form three different heuristics. The experimen-

tal results for these heuristics in terms of average RPD on
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SDST10, SDST50, SDST100 and SDST125 are listed in

Table 3, where the RPDs are computed similar to Eq. (2).

Table 3. RPD comparison among the three pri­

ority rules on benchmarks

AvgStd AvgStd+ST AvgStd−ST

SDST10 -0.17 -0.20 -0.14

SDST50 -0.17 -0.13 -0.27

SDST100 -0.11 -0.34 -0.26

SDST125 0.06 0.10 0.00

From this table, it can be seen that the average perfor-

mance of these three heuristics is better than that of the

original NEHT-RB heuristic on the SDST10, SDST50 and

SDST100 benchmarks, while they are slightly worse than

or equal to that of the NEHT-RB heuristic on the SDST125

benchmarks. Further, there is no one heuristic performing

better than the others on all the benchmarks. Note that the

priority rules used in the second and the third heuristics are

in conflict in a certain sense, and both heuristics perform

better than the first one on average. This shows that the

setup times have an obvious effect on the performance of

the heuristics. However, it is not very clear yet how to use

the setup times to construct a much more efficient heuristic.

4 Tie-breaking Strategy

In the NEH heuristic [6], there may be ties when insert-

ing a job into a partial schedule when solving the regular

flowshop problem, i.e., several generated partial schedules

having the same minimum makespan. In order to break

these ties and find a more appropriate position for the in-

serting job, a tie-breaking strategy was proposed [3], the

idea behind which is to choose the place more likely to

balance the utilization of each machine. In the NEHT-RB

heuristic for solving the SDST flowshop problem, the same

problem arises. In this section, we extend the tie-breaking

strategy proposed in our former work [3] by considering

setup times and apply the modified strategy into the SDST

flowshop problem to examine whether it works.

In order to choose a position by using the strategy, it

should be computed the earliest possible completion time

and the latest possible start time on machine i for job π(k).
The earliest possible completion time Ci,π(k) can be com-

puted by Eq. (1), while the latest possible start time Si,π(k)

can be computed by Eq. (6):

Si,π(k) = min{Si+1,π(k), Si,π(k+1)−siπ(k)π(k+1)}−piπ(k)

(6)

where Sm,π(n) = Cm,π(n)−pmπ(n), Si,π(n) = Si+1,π(n)−
pi,π(n) for i = 1, . . . , m − 1 and Sm+1,π(k) is a very large

Figure 1. An example for Ci,π(k) and Si,π(k)

number for k = 2, . . . , n − 1.

Then a partial schedule needs to be scheduled in this

way: the jobs prior to the insertion place (including the in-

serting job itself if it is not the last job in the partial se-

quence) are scheduled as early as possible and the jobs suc-

ceeding the insertion place are scheduled as late as possible.

Then the following measures can be computed for job π(k):

Eπ(k) =
1

m

m
∑

i=1

pi,π(k)

Giπ(k)
(7)

Dπ(k) =
m

∑

i=1

[

pi,π(k)

Giπ(k)
− Eπ(k)

]2

(8)

where Giπ(k) = Si,π(k+1) − siπ(k)π(k+1) − Ci,π(k−1) −
siπ(k−1)π(k) indicates the gap for scheduling the ith opera-

tion of job π(k).
Note that there exist exceptions: let Si,π(k+1) be equal

to the latest possible completion time of job π(k) on ma-

chine i if π(k) is the last job in the partial sequence, and let

siπ(k)π(k+1) be zero in this case; let Ci,π(0) be equal to the

earliest possible start time of job π(1) on machine i, and let

si01 be zero; if Giπ(k) is zero, then pi,π(k) must be zero, and

so let pi,π(x)/Giπ(k) be zero in this case.

Then the choice of the insertion place in the third step

of the original NEHT-RB [8] can be changed as: when in-

serting a job into a partial sequence, the place minimizing

the makespan is firstly chosen; if there exist ties, the place k
minimizing Dπ(k) is chosen; and if there still exist ties, then

any of them is acceptable. Since the Ci,π(k) and the Si,π(k)

for all possible k can be computed in O(nm) by using the

speed-up method of Taillard [16], the modified NEHT-RB

heuristic can be implemented in O(mn2).
Fig. 1 shows an example. In this example, we suppose

the inserting job is π(3), and then the C1,π(2) and the S1,π(4)

are shown. The C2,π(2) and the S2,π(4) are similar to the

above. Then the Eπ(3) and the Dπ(3) can be computed ac-

cording to Eq. (7) and Eq. (8).

Then we apply this tie-breaking strategy into the three

heuristics tested in Section 3 and the original NEHT-RB

heuristic to study its influence. In Table 4, average RPDs

for the four groups are reported, where the RPDs are com-

puted similar to Eq. (2), and the Avg column indicates the

results of the original NEHT-RB heuristic only modified by

using the tie-breaking strategy.
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Table 4. RPD comparison for the tie­breaking

strategy

Avg AvgStd AvgStd+ST AvgStd−ST

SDST10 -0.02 -0.11 -0.20 -0.19

SDST50 0.01 -0.13 -0.12 -0.21

SDST100 -0.04 -0.21 -0.25 -0.15

SDST125 0.13 -0.01 0.06 -0.01

From this table, it can be seen that the tie-breaking strat-

egy generally does not work on the original NEHT-RB

heuristic, e.g., the average RPDs on SDST10 and SDST100

benchmarks are only −0.02 and −0.04 respectively, and

those on SDST50 and SDST125 benchmarks are even 0.01
and 0.13 respectively. When comparing the results with

those in Section 3, it can also be found that the tie-breaking

strategy does not work on the three modified heuristics.

This may be for that the ties are relatively rare, and the setup

times for a certain job are different for different positions.

All these show that the SDST flowshop problem is harder

to solve than the regular flowshop problem.

5 Conclusion

In this work, three priority rules for the original NEHT-

RB heuristic [8] are studied. The results show that these

rules are helpful, especially on the instances with small

setup times. When the setup times are averagely larger than

the processing times, these rules fail. In this case, the PB

heuristic by Tseng et al [18] performs better. According to

Gupta and Darrow [5], setup times of many real-world in-

stances are narrow, and so it is meaningful to improve the

performance of the NEHT-RB by using the proposed prior-

ity rules. The results also show that the setup times have an

obvious effect on the heuristics, but how to take advantage

of them more efficiently needs to be studied further.

A tie-breaking strategy is also examined in this work.

The strategy is extended from our previous work [3]. How-

ever, for the original NEHT-RB heuristic and its three vari-

ants, the extended strategy generally does not work. This

also shows the hardness of solving the discussed problem.
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