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ABSTRACT

In this paper, we address the problem of computing optimal transportation plans of natural gas by means of compressor
stations in pipeline networks. This non-linear (non-convex) problem takes into account two types of continuous decision
variables: mass flow rate through each arc, and gas pressure level at each node. Compressors consume fuel at rates depending
on flow and pressure, and the problem is to assign values to these variables such that the total fuel cost is minimized.
We propose a dynamic programming algorithm based on tree decomposition, which applies to a broader class of instances
than currently available techniques can solve. Through computational experiments, we demonstrate that our algorithm is
capable to solve several instances where previously suggested methods and commercially avialable solvers for non-linear
optimization fail.
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1. INTRODUCTION

Natural gas has become one of the most important energy
resources worldwide. Consequently, the volumes of gas
flowing from the fields through transmission networks to
the market have been increasing steeply during the past
decades, and in parallel, a growing interest in reducing
costs associated with pipeline gas transportation has been
observed.

In this paper, the fuel cost minimization problem (FCMP)
to transport natural gas in a general class of transmission
networks is addressed. The FCMP involves two types of
continuous decision variables: mass flow rate through each
arc, and gas pressure level at each node. The problem can
be described as follows: We need to move natural gas over
large distances from several possible sources to different
distribution centers through various devices including pipes
and compressor stations. During the transmission, energy
and pressure are lost, and the compressor stations installed
in the pipeline system are crucial for keeping the gas mov­
ing. Consequently, fuel consumption associated costs are
incurred at these stations. The problem is to determine a
transportation plan on an existing network minimizing the
total fuel cost, while meeting specified demand at the dis­
tribution centers.

1.1. Related work

An extensive literature on the FCMP has been published
over the past 30 years. This includes applications ofnumer­
ical simulations (see [10]), Dynamic Programming (DP)
(see [6], [8] and [17]), gradient techniques (see [4]). and
others. Most of these contributions are practically lim­
ited to pipelines networks with non-cyclic structures or to
sparse cyclic networks, and have obtained a considerable
success on such instances.

Several works based on successive reductions of the net­
work (see [1], [2] and [3]), and graph theory and functional
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analysis (see [12]) have been developed with the promise to
handle cyclic topologies. However, since these optimiza­
tion approaches require a certain sparse network structure,
their application is still in a development phase. The pur­
pose of the current work is to present a solution approach
that admits a more general network structure, and hence
overcome the limitations of network reduction techniques.

The remainder of this paper is organized as follows. In
Section 2, we define the problem in mathematical terms.
In Section 3, we present a contemporary solution method,
and point out a serious point of weakness. In Section 4,
the tree decomposition based algorithm to solve the FCMP
via DP is described. Our numerical results based on dif­
ferent computational experiments are shown in Section 5,
where we compare our results to those obtained by alter­
native methods when applied to several network configu­
rations. Finally, concluding remarks are given in Section
6.

2. PROBLEM DEFINITION

Let G == (V, A) be a directed graph representing a gas
transmission network, where V and A are the node and arc
sets, respectively. Let Vv+ and Vv- denote the sets of out­
and in-neighbors, respectively, of node v E V, let Vs ~ V
be the set of supply nodes, Vd ~ V the set of demand
nodes, and let A == Ac U Ap be partitioned into a set of
compressor arcs Ac and a set of pipeline arcs Ap . That is,
if (u, v) E A c then u, v E V are the network node repre­
senting the input and the output units, respectively, of some
compressor (u,v). An analogous interpretation is made for
pipeline arcs (u, v) E Ap .

Two types of decision variables are defined: Let X u v de­
note the mass flow rate at arc (u, v) E A, and let Pv denote
the gas pressure at node v E V. For each v E V, we de­
fine the parameters net mass flow rate B; and (lower and
upper, respectively) pressure bounds P!: and P:!. By con­
vention, B; > 0 if v E ~,Bv < 0 if v E Vd, and Bv == 0
otherwise. By the assumption that flow is conserved at the

244



nodes, the decision variables are subject to the constraints
LUEV

v
+ Xvu - LUEV; Xuv == Bv for all v E V. Con­

straints linking the pressure and flow variables are given
for the arc sets A c and Ap , and these are discussed next.

Summarizing the two last sections, the FCMP can then be
formulated as follows:

3. SOLUTION METHODS

Several solution methods have been suggested for FCMP,
including those by Rios-Mercado et al. [11] and Borraz­
Sanchez and Rios-Mercado [1], which all follow the idea
of Algorithm 1.

min L 9uv(X,P) (5)
(u,v)EAc

s.t.:

L x vu- L Xuv == B v Vv E V (6)

2.1. Compressor arc constraints

The variables that are manipulated in a compressor (u, v) E
A c in order to have the desired values of Xuv, Pu, and Pv
are according to Wu et al. [18] compressor speed Suv, vol­
umetric inlet flow rate Quv, adiabatic head Huv and adi­
abatic efficiency TJuv. As explained more detailed in e.g.
[18], these relate to (x uv, Pu, Pv) according to

u.; = a [ (;:) m - 1] V(u,v) E A c (1)

Xuv V(u,v) E A c (2)Quv == am-
Pu

H~v = ¢1 (Quv) V(u,v) E A c (3)
Suv s:

_ ¢2 (Quv) V(u,v) E Ac (4)TJuv - s:

uEVv+ uEVv-

(xuv,Pu,Pv) E Duv

x~v == Wuv (p~ - p~)

P!: <Pv ::; P;;
X uv 2:: 0

V(u,v) E Ac (7)

V(u,v) E Ap (8)

Vv E V (9)

V(u,v) E A (10)

where m E (0, 1) and a > 0 are gas specific constants, and
¢1 and ¢2 are polynomial functions (typically of degree 3).
The coefficients of¢1 and ¢2 are assessed by applying least
squares analysis to a set of selected data points. For each
(u, v) E Ac , Quv is subject to lower and upper bounds Q~v
and Q;:v' and we adopt a similar notation for bounds on the
variables Suv, Huv and TJuv.

The fuel consumption cost is given by (see [18])

V(u,v) E Ac ,

where c > 0 is a monetary constant.

The operating domain of compressor (u, v) E A c is the set
D uv C ~3 of value assignments to (x uv, »«, Pv) for which
there exist values of (Q uv, Suv, Huv , TJuv) satisfying (1)­
(4) and the bounds Qtv < o.: :s; QYw, Sav:s; s.; < S;;v'
H f:v < Huv ::; H;;v' and TJtv < TJuv < TJuv·

We assume that for all (xuv,Pu,Pv) E D uv, there is
a unique feasible (Quv, Suv, Huv, TJuv). This correspon­
dence defines the desired transformation from feasible flow
and pressure variable values (x uv, Pu, Pv) to an estimate
9uv (x, p) of the fuel cost.

2.2. Pipeline arc constraints

Following [18], the relation between pipeline flow and (suf­
ficiently high) pressure in steady state networks can be
written as x~v == Wuv (p~ - p~), where Wuv > 0 is some
constant depending on characteristics of the gas and the
pipeline (u, v) E Ap .

2.3. Mathematical model

For each node v E V, we impose lower and upper pressure
bounds P!:, and P:! ,respectively. We confine our study to
irreversible flow, and impose X uv 2:: 0 for all (u, v) E A.

Algorithm 1 SolveFCMP
Step 1: Choose initial (feasible) flow
repeat

Step 2: Optimize pressure while keeping the flow
fixed
Step 3: Optimize flow while keeping the pressure
fixed

until flow does not change

With the risk ofmissing the global optimum, flow and pres­
sure are determined separately in Steps 2 and 3, respec­
tively. As we show next, this can be accomplished by fo­
cusing on only a subset of the variables.

3.1. Compressor network

In [12], it was shown that if A c == 0 then for any B E ~v

there exists a unique solution to the set of equations defined
by (6) and (8). That is, the flow assignment to Ap is unique
(and infeasible if it violates (10)).

Let V' ~ V consist of exactly one node from each of the
connected components in the directed graph (V, Ap ) , and
let GV == (VV,AV) denote the component (subgraph) to
which v E V' belongs. By applying the result in [12] to GV
for any v E V', we get that the pipeline flow is uniquely
determined once the compressor flow is given. If also Pv
is given, we can by repeated application of (8) also find Pu
for all other nodes u E V", Hence FCMP is reduced to
finding the flow on all arcs in Ac (Step 2 in Algorithm 1)
and Pv for all v E V' (Step 3).

Step 2 can be approached by identifying cycles in G with
negative net cost, as suggested in e.g. [12], and will not be
discussed further here. Step 3 can be viewed as follows:
Define the compressor network (in [12] referred to as the
reduced network) as the directed graph G' == (V', A~),
where (u, v) E A~ if and only if u, v E V' and there exists
some arc in Ac from VU to V", As in [12], we assume that
G' does not contain loops, which means that no compressor
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arc has both it start node and its end node in the same con­
nected component of (V, Ap ) . The node set of G' can al­
ternatively be associated with the subgraphs GV, as shown
in the illustration of the transition from G to G' (Fig. I).
Optimizing the pressure is now equivalent to solving

Input G =

the out-neighbors of v, and the principle applies also
if the sole neighbor oft is an out-neighbor.

(c) Parallel: If k > 1 arcs al, .. . , ak in G' connect nodes
u and v, then these are replaced by a single arc (u , v).
The associated cost parameters are defined as gYv =
",k ij \..I ' . - 1
L.£=l g a t vZ,J - , . .. , m.

The serial and parallel reductions constitute the pre­
processing procedure suggested by Koster et al. [7].

When neither of the reductions (a)-(c) can be carried out,
NDP fails. Fig. 3 shows a simple example where this oc­
curs . To overcome this weakness, we now go on to demon­
strate how such instances of (11) can be solved.

Step 2:

Fig. 2: Network reduction types

o
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4. A TREE DECOMPOSITION APPROACH TO
OPTIMIZING THE PRESSURE VALUES

Fig. 3: An instance of G' where NO P fails

Carter [3] suggested to solve (11) by discretizing [p L, p U]
and then apply a network reduction technique referred to
as Non-sequential Dynamic Programming (NDP). Assume
that there are m discretization points denoted p;" . .. ,pr;:
for each v E V ', and let gYv = g~v (p~,pn if (Pu,Pv) E

D~v and gYv = 00, otherwise. Then NDP consists of a
sequence of reductions of G' until the resulting graph is a
single node. Three reduction types (see Fig. 2) are consid­
ered:

Fig. I : Transition to compressor network

r~l iX:lr~1
: : :. : : :

St'P 3 ' ,~_

V'

Output G' = ()::()::O

where g~v (Pu ,Pv) is the cost incurred on all arcs in A c be­
tween VUand VV given that u and v are assigned pressure
values Pu and Pv, respectively. Further, D~v is the feasible
domain of (Pu ,Pv), taking (7) into account for all arcs from
VU to v-.

(a) Serial: If v E V' has exactly two incident arcs
(u ,v) and (v ,t) in G', then v, (u ,v) and (v ,t)
are replaced by a new arc (u, t), and g:!t
mink {g~~ + g~! :k = 1, . . . , m}. The same princi­

ple applies ifboth arcs incident to v enter (leave) v.

(b) Dangling: If v E V' has only one incident arc
(v , t), then t and (v , t) are removed, and, for all in­
neighbors u of v in G' , gYv is updated to gYv +
mink {g~~ :k = 1, ... , m}. Similar updates apply to

Problem (11) has the mathematical structure of the fre­
quency assignment problem [7], and can also be solved
by the procedure suggested in [7]. This is based on the
following concept introduced by Robertson and Seymour
[13]:

Definition 1 A tree decomposition of G' is a pair :J =

({Xi : i E I} ,T), where each X i is a subset ofV', called
a bag, and T is a tree with node set I . Thefollowing prop­
erties must be satisfied:
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Algorithm 2 DP(J, i, X, 7f)

if i is a leaf in T then

return min { L g~v(Pu,Pv) : Pv == 7fv VV E x}
PE'DXi u X (u,v)EA~

u,vEXiUX

else

return min { L g~v(Pu,Pv) + L DP(J,j,Xi U X,p) : Pv == 7fv VV E x}
pE'DXi u X (u,V)EA~ jEKi

u,vEXiUX

• UiEI Xi == V';

• for all (u, v) E A~, there is an i E I such that
{u, v} ~ Xi;

• Vi, j, k E I, if j lies on the path between i and k in T,
then Xi n x; <x;

The width ofa tree decomposition J is maxiEI IXi I - 1.

For any X ~ V', define PX as the vector with com­
ponents Pv (v E X) in any consistent order. Define
D; == {p~, ... ,p~} for all v E V', and let V x ==

{px : Pv E D; Vv E X}. For any i E I, let K i denote the
set of child nodes of i in T.

Algorithm 2 applies dynamic programming to a tree de­
composition J of G'. When bag Xi is to be processed, the
union X of all ancestor bags of Xi are input along with
a pressure vector 7f E V x . The algorithm optimizes the
value ofPv for all v E Xi by complete enumeration ofV v ,

and by taking into account optimal pressure assignments to
all nodes in all child bags of Xi. This is expressed in terms
of a recursive call in Algorithm 2. Since Xi n X may be
nonempty, we must ensure that nodes contained in this set
are not assigned new pressure values when processing Xi,
and we impose the constraint that Pv == 7fv for all v EX.

The running time of Algorithm 2 is 0 (IIlmd ) , where d is
the width of J. This means that finding a tree decomposi­
tion of small width can be crucial for the running time of
the algorithm. It is however well known [13] that finding
one with minimum width is an NP-hard problem, and it is
therefore unlikely that a tree decomposition minimizing the
running time of Algorithm 2 can be found in polynomial
time. We will rely on a heuristic approach to constructing
J with small width.

5. NUMERICAL EXPERIMENTS

To solve (11), we thus apply a two-phase procedure,
TreeDDP, where the computation of some tree decomposi­
tion J is the first phase, and where Algorithm 2 constitutes
the second. The input to this procedure is a network, which
is reduced as much as possible by the techniques described
in Fig. 2. To compute J, we apply the technique given in
[14] based on Maximum Cardinality Search [15].

5.1. Test instances

All experiments reported in this work were carried out on
the set of test instances shown in Tab. 1. Each row gives an

Tab. 1: Test instances
Size J

Ref IV'I IA~I type width III
A 3 3 4 3 1
B 3 3 5 3 1
C 4 6 1 3 3
D 4 6 2 3 4
E 4 6 3 3 5
F 4 6 4 3 4
G 4 6 5 3 4
H 4 6 6 3 3
I 4 6 7 3 4
J 5 8 4 3 6
K 5 8 8 3 4
L 9 20 4 4 9
M 9 20 5 4 8
N 18 25 2 3 25
a 18 25 4 3 18
P 18 25 9 3 22

identifier of an instance, the size in terms ofnodes and arcs
in G' after reduction, and the type of compressor used. We
consider 9 different compressor types, and all compressors
are identical within any given instance. Furthermore, the
width and the number ofbags in the tree decomposition are
given in the two last columns of Tab. 1.

5.2. Experiments

The experiments can be briefly described as follows. The
first experiment is a feasibility study where we examine the
performance of TreeDDP while varying the granularity of
the discretization. We let m E {50, 100, 1000}, and let
the pressure values be uniformly distributed between their
lower and upper bounds.

For a comparison ofTreeDDP to a generic global optimiza­
tion tool, we submit in the second set of experiments (11)
to BARON [16]. The algorithm of BARON is a variant
of branch-and-bound where a convex program is solved
in each node of the search tree. We use version 8.1.5 of
BARON with version 5.51 of MINOS [9] to solve the con­
vex subproblems.

In the third set of experiments, we applied MINOS to com­
pute local optima to problem (11) for 1000 randomly gen­
erated starting points.

The TreeDDP procedure was coded in C++ under Linux
Red Hat, and all experiments were run on a 2.4 GHz In-
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Tab. 2: Performance of TreeDDP Tab. 3: Performance of BARON
m == 50 m == 100 m == 1000 Ref Its #nodes Obj LB

Ref CPU(s) Obj CPU(s) Obj CPU(s) Obj A 551 131 0.75 0.75
A 0.0 1.12 0.0 0.77 0.8 0.75 B 1148 342 2.62 2.62
B 0.0 2.63 0.0 2.62 2.2 2.62 C 21521 7462 9.02 4.45
C 1.0 10.29 15.9 9.34 245.8 8.79 D 445 38 7.35 7.28
D 0.1 7.45 11.3 7.34 421.8 7.34 E 17059 7023 5.30 4.02
E 1.4 9.66 21.9 6.36 836.1 5.29 F 26765 7480 3.94 2.71
F 1.8 6.87 29.5 5.69 1845.2 4.12 G 5231 1283 2.27
G 0.6 9.43 9.5 6.30 1322.5 6.30 H 2109 204 5.19 5.04
H 0.7 6.34 12.7 5.93 712.8 5.09 I 3267 324 2.73
I 0.6 2.83 9.5 2.82 412.2 2.77 J 27832 2299 5.15 5.10
J 0.8 6.07 13.4 5.59 2201.3 5.27 K 14968 3344 20.86
K 0.6 9.4 35.67 1052.7 35.67 L 740 451 65.94 43.81
L 3.1 68.89 49.9 61.83 3424.1 61.73 M 2438 765 31.12
M 2.5 89.68 39.5 74.80 3092.4 60.74 N 1830 839 34.28
N 2.1 60.71 34.4 52.46 3554.1 46.00 a 1124 168 15.74
a 2.6 127.31 41.5 44.51 3623.1 32.62 P 978 655 17.43
P 1.4 35.25 23.1 37.67 3417.2 26.54

tel(R) processor with 2 GByte RAM. Experiments with
BARON and MINOS were conducted by formulating the
model in GAMS [5].

5.3. Results

Table 2 shows the results achieved by TreeDDP while vary­
ing m. Instance references are given in the first column,
and computation times (CPU-seconds) and objective func­
tion values for the respective values of m are given in
columns 2-7. The only case where TreeDDP failed to find
a feasible solution was for m == 50 in instance K. We ob­
serve that as m increases, better solutions are found (min­
imum cost decreases) in all instances, except from a cost
increase from m == 50 to m == 100 in instance P. Never­
theless, a finer discretization also implies, as expected, that
the computational requirements increase, and the running
time slightly exceeds one CPU-hour in one instance (0).

Table 3 shows the performance of BARON when applied
to the test instances. A time limit of 3600 CPU-seconds is
imposed, and the relative optimality tolerance is set to 0.01.
That is, any feasible solution is considered to be optimal if
the gap between the objective function value and its lower
bound is below one percent of the objective function value.
Columns 2-5 contain the number of iterations in BARON,
the maximum number of open nodes the search tree ever
had, the objective function value of the best feasible solu­
tion found (if any), and the lower bound on the minimum
cost.

In 9 out of 16 instances, BARON was able to find a feasible
solution, and in 4 instances (A, B, D and J) it was able to
prove optimality within the given tolerance. In instances C,
E, F, Hand L, the relative optimality gap ranged from 2.9%
(H) to 50.1% (C), whereas in the remaining instances, no
feasible solution was found before the time limit expired.
By comparing the last column in Tab. 2 to the lower bounds
in Tab. 3, we also observe that the relative optimality gap
of TreeDDP in one instance (G) is as large as 64.0%. In
the instances where BARON found a feasible solution, the
largest gap is 49.4% (instance C).

Tab. 4: TreeDDP vs. other optimizers

Minimum cost TreeDDP vs

Ref BARON MINOS TreeDDP BARON MINOS

A 0.75 0.75 0.75 0.0 0.0
B 2.62 2.62 2.62 0.0 0.0
C 9.02 10.97 8.79 2.5 19.9
D 7.35 7.34 7.34 0.1 0.0
E 5.30 5.63 5.29 0.2 6.0
F 3.94 4.74 4.12 -4.6 13.1
G 6.30
H 5.19 5.31 5.09 1.9 4.1
I 2.77
J 5.15 5.69 5.27 -2.3 7.4
K 35.67
L 65.94 69.16 61.73 6.4 10.7
M 61.58 60.74 1.4
N 46.00
a 32.71 32.62 0.3
P 26.54

In Tab. 4, we compare our results (when m == 1000) to
the best results obtained by MINOS applied to 1000 ran­
domly generated initial solutions. For an overview, we
also include the results from BARON. Columns 2-4 contain
the best objective function values obtained by each solver.
Whenever applicable, we give in the two last columns the
relative cost reduction in percentages when TreeDDP is ap­
plied in place of BARON and MINOS, respectively. The
numerical values in Column 5 show that neither BARON
nor TreeDDP outperforms the other when both are able to
compute feasible solutions. We observe that also MINOS
failed to find a feasible solution in 5 of the instances, and
that it in most instances produced solutions that are ofpoor
quality compared to the TreeDDP and BARON solutions.

6. CONCLUDING REMARKS

In this paper, we have studied a model (FCMP) for mini­
mizing compressor fuel cost in transmission networks for
natural gas. An arc in the network model corresponds to ei­
ther a pipe or a compressor, and the decision variables are
arc flow and node pressure. In addition to flow conserva-
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tion constraints, the model contains non-linear constraints
relating pipeline flow to inlet and outlet pressure, as well
as non-convex constraints defining the operation domain of
the compressors.

Following a general algorithmic idea, which has been
suggested and supported experimentally in several recent
works, we consider a procedure where each iteration con­
sists of a flow improvement step and a pressure optimiza­
tion step. Alternating between flow and pressure, one set of
decision variables is kept fixed in each step. Still in agree­
ment with previously suggested methods, the non-convex
subproblem of optimizing pressure is approximated by a
combinatorial one. This is accomplished by discretization
of the pressure variables. The contribution of this paper is
a method for solving the discrete version of the problem in
instances where previously suggested methods fail.

Unlike methods based on successive network reductions,
our method does not make any assumptions concerning the
sparsity of the network. By constructing a tree decompo­
sition of the network, and apply dynamic programming to
it, we are able to solve the discrete version of the pressure
optimization problem without enumerating the whole solu­
tion space.

We have tested our solution method on a set of imaginary
instances, and compared the results to those obtained by
applying both a global and a local optimizer to the contin­
uous version of the problem. The experiments indicate that
a method guaranteeing the global optimum in reasonable
time seems unrealistic even for small instances. Further,
discretizing the pressure variables and applying dynamic
programming to a tree decomposition gives better results
than local optimization, with multiple initial solutions, of
the continuous version.

REFERENCES

[1] C. Borraz-Sanchez, R.Z. Rios-Mercado, "Improving
the operation of pipeline systems on cyclic structures
by tabu search", Computers & Chemical Engineering,
Vol. 33, No.1, pp. 58-64, 2009.

[2] C. Borraz-Sanchez, R.Z. Rios-Mercado, "A Non­
sequential Dynamic Programming Approach for Nat­
ural Gas Network Optimization", WSEAS Transac­
tions on Systems, Vol. 3, No.4, pp. 1384-1389,2004.

[3] R.G. Carter, "Pipeline optimization: Dynamic pro­
gramming after 30 years", In Proceedings ofthe PSIG
Meeting, pp. 1-19, Denver, USA, October 1998.

[4] l-l.J. Flores-Villarreal, R. Z. Rios-Mercado, "Efficient
operation ofnatural gas pipeline networks: Computa­
tional finding of high quality solutions", In Proceed­
ings of the International Applied Business Research
Conference, Paper 352, pp. 1-7. Acapulco, Mexico,
March 2003.

[5] GAMS Development Corporation, "GAMS: The
Solver Manuals. Washington, DC, USA, 2008.

[6] B.1. Gilmour, C.A. Luongo, D.W. Schroeder, "Opti­
mization in natural gas transmission networks: A tool
to improve operational efficiency", Technical Report,
Stoner Associates Inc., presented at The Third Meet­
ing on SIAM Optimization, Boston, USA, April 1989.

[7] A.M.C.A. Koster, S.P.M. van Hoesel, A.W.l. Kolen,
"Optimal solutions for frequency assignment prob­
lems via tree decomposition", Lecture Notes in Com­
puter Science, Vol. 1665, pp. 338-350,1999.

[8] H.S. Lall, P.B. Percell, "A dynamic programming
based gas pipeline optimizer", In A. Bensoussan, 1. L.
Lions (eds.): Analysis and Optimization ofSystems,
pp. 123-132, Springer, Berlin, Germany, 1990.

[9] B.A. Murtaugh, M.A. Saunders, "MINOS 5.1 User's
Guide", Technical Report SOL-83-20R, Systems Op­
timization Laboratory, Stanford University, Stanford,
California, 1983.

[10] A.1. Osiadacz, "Simulation and Analysis of Gas Net­
works", Gulf Publishing Company, Houston, USA,
1987.

[11] R.Z. Rios-Mercado, S. Kim, E.A. Boyd, "Efficient
operation of natural gas transmission systems: A
network-based heuristic for cyclic structures", Com­
puters & Operations Research, Vol. 33, No.8, pp.
2323-2351,2006.

[12] R.Z. Rios-Mercado, S. Wu, L.R. Scott, E.A. Boyd, "A
reduction technique for natural gas transmission net­
work optimization problems", Annals of Operations
Research, Vol. 117, No. 1-4, pp. 217-234,2002.

[13] N. Robertson, P.D. Seymour, "Graph minors II. Algo­
rithmic aspects of treewidth", Journal ofAlgorithms,
Vol. 7, pp. 309-322,1986.

[14] S. Subbarayan, "An Empirical Comparison of CSP
Decomposition Methods", In: B.Hnich, K.Stergiou
(Eds.): Proceedings of the CP 2007 Doctoral Pro­
gramme, pp. 163-168, Providence RI, USA, Septem­
ber 23-27, 2007.

[15] R.E. Tarjan, M. Yannakakis, "Simple linear-time al­
gorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acyclic hyper­
graphs", SIAM Journal of Computing, Vol. 13, pp.
566-579, 1984.

[16] M. Tawarmalani, N. V. Sahinidis, "Global optimiza­
tion of mixed-integer nonlinear programs: A theo­
retical and computational study", Mathematical Pro­
gramming, Vol. 99, No.3, pp. 563-591,2004.

[17] P.J. Wong, R.E. Larson, "Optimization of natural gas
pipeline systems via dynamic programming", IEEE
Transactions on Automatic Control, Vol. 13, No.5,
pp. 475-481,1968.

[18] S. Wu, R.Z. Rios-Mercado, E.A. Boyd, L.R. Scott,
"Model relaxations for the fuel cost minimization
of steady-state gas pipeline networks", Mathematical
and Computer Modeling, Vol. 31, No. 2-3, pp. 197­
220,2000.

249


