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ACKNOWLEDGMENTS

First of all, my love and thanks to my parents, for all their support throughout all

the years and trials in my life.

Thanks to my dear brothers, Arturo and David, for enduring me in everyday life;

to my advisors, Slava Kalashnikov and Tim Matis, and all the other members of my

committee, for their commitment to my development; to Marycarmen and Lalo, for

life at lubbock would have been very difficult without the two of you; to Ceci, Krystel,
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ABSTRACT

Following recent changes in the legislations regarding the natural gas supply

chain, American and European firms found themselves facing numerous new

problems. Particularly, the way in which a pipeline operator interacts with the

natural gas shippers was affected. The new setting makes it more complicated for

the pipeline operator to correct imbalances in the transportation system. In this

work, we model the part of the supply chain that concerns the pipeline-shipper

interactions, focusing on the cash-out penalization that is charged by the former

when the latter creates imbalances. A series of mathematical optimization models,

both deterministic and stochastic, are created to increasingly refine the abstraction

of the system. Additionally, statistical support is provided to support the validity

and usage of the data in the models. Several problem instances were

computationally tested for each of the concepts introduced, and the evidence found

is then used to define a decision making framework that contributes to the shipping

company day to day decision process.
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2.1 Basic Gas Network Models . . . . . . . . . . . . . . . . . . . . 27

2.2 Models Focused in Optimizing the Physical Operation . . . . . 29

2.3 Models Including Stochastic Elements . . . . . . . . . . . . . . 31

2.4 Models Including Bilevel Problems . . . . . . . . . . . . . . . . 33

3. Deterministic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1 Bilevel Programming Model . . . . . . . . . . . . . . . . . . . 37

3.1.1 Deterministic Optimization Models . . . . . . . . . . . . . 38

3.1.2 Mixed Integer Bilevel Cash-Out Problem . . . . . . . . . . 38

3.1.3 Price Deviation Model Variation . . . . . . . . . . . . . . . 44

3.1.4 Price, Demand and Extraction Volume Model . . . . . . . 45

3.2 Bilevel Linear Reformulations . . . . . . . . . . . . . . . . . . 50

3.2.1 Upper Level Equivalent Problem . . . . . . . . . . . . . . . 51

3.2.2 Lower Level Approximate Equivalent Problem . . . . . . . 55

3.3 Solution Methods for the Bilevel Linear Problems . . . . . . . 63

Inexact Penalization Algorithm . . . . . . . . . . . . . . . . . 64

Direct Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.1 Proposed Numerical Solution Methodology . . . . . . . . . 67

3.4 Instance Generation for the Deterministic Problems . . . . . . 69

4. Stochastic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Time Series Forecast Analysis . . . . . . . . . . . . . . . . . . 73

4.1.1 Time Series . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.2 Forecast Modeling . . . . . . . . . . . . . . . . . . . . . . . 74

4.1.3 Numerical Predictions . . . . . . . . . . . . . . . . . . . . 75

The ARAR Algorithm . . . . . . . . . . . . . . . . . . . . . . 76

The Seasonal Holt-Winters Method . . . . . . . . . . . . . . . 77

Forecast Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Time Series Regression Analysis . . . . . . . . . . . . . . . . . 79

4.2.1 Individual Multiple Linear Regression . . . . . . . . . . . 81

4.2.2 Pooled Price to Demand Regression . . . . . . . . . . . . . 83

4.2.3 Dendrogram Grouping Method . . . . . . . . . . . . . . . 84

4.2.4 Heuristic Grouping Method . . . . . . . . . . . . . . . . . 85

4.2.5 Pooled Regressions Analysis . . . . . . . . . . . . . . . . . 88

viii



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009
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CHAPTER 1

INTRODUCTION

In 1992 in the United States, and in 1995 in the European Union, a number of

regulations were issued by the respective governmental institutions with the aim of

effectively separating the control over several processes that formed the Natural Gas

Supply Chain. The resulting market conditions are in favor of the independence of

the transportation and the commercialization processes. As a result of this

paradigm shift, and the subsequent restructuring of the market, the natural gas

industry around the world now faces several issues in need of a systemic analysis.

Particularly interesting is a problem that results from balancing the fuel volumes

over a distribution network. Such procedure is a direct concern for the Pipeline

Operating Company (POC) in charge of the pipeline, since a certain level of control

of the fuel volumes is required for the correct operation of the pipeline. Moreover,

any Natural Gas Shipping Company (NGSC) is also concerned with the balance of

the volumes because of the existence of legal impositions to avoid the creation of

imbalances by them. Naturally, the business of a NGSC is to sell natural

gas—moving it through the pipeline—to its clients: it has to fulfill contracted

demands and then market any excess of fuel to achieve a maximum profit. In order

to maximize its profits, the NGSC has to manage the volumes at every selling point,

considering both balance, and selling costs and revenues.1

The situation the POC and NGSC face regarding pipeline balance can be

modeled as a mixed integer nonlinear stochastic bilevel optimization problem, in

which the NGSC point of view is modeled as one (upper) level of the problem, while

the POC is modeled as the other (lower) level. The theoretical models and the

experimental results derived from them are intended to be a framework and

managing tool to help these actors of the natural gas supply chain. One particular

goal is aiding the NGSCs in their day-to-day volume trade planning.

In the next sections of this chapter, we will elaborate in the history and nature of

the natural gas market. Section 1.1 explains the development of natural gas as a

common fuel, and section 1.2 describes the regulations that brought about the

1Taken from the author’s [54].
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paradigm shift and caused the problematic situation we analyze. Section 1.3 details

the POC-NGSC system, its components and dynamics. Finally, section 1.4 defines

the statement of the problematic situation as we see it, along with the assumptions

needed in our analysis.

1.1 Overview of Natural Gas as a Fuel

Most of the natural gas we draw from the ground is hundreds of years old. As a

fossil fuel, it has formed (there is no conclusive theory about this) by a combination

of biological decomposition, ground pressure, and elevated temperatures. Natural

gas is found along with oil in underground wells, with varying temperature levels

determining the exact proportion of oil and gas formed. A type of natural gas,

called Biogenic Methane, is produced by microorganisms decomposing living matter,

though the economical relevance of this type of natural gas is barely emerging.[78].

The chemical composition of natural gas varies. It is not an actual chemical

compound, but a mixture of organic gases formed mainly of methane, but also

containing ethane, propane, butane, ethane, etc. (Table 1.1.)

Table 1.1. Typical Composition of Natural Gas. [78]
Methane CH4 70-90%
Ethane C2H6

Propane C3H8 0-20%
Butane C4H10

Carbon Dioxide CO2 0-8%
Oxygen O2 0-0.2%
Nitrogen N2 0-5%
Hydrogen sulfide H2S 0-5%
Rare Gases A, He, Ne, Xe traces

The density of natural gas is lower than that of air, so it dissipates in the event of

a leak. This is one advantage over other fuels, for it adds a security factor to

end-users. Another benefit is the fact that natural gas is considered a clean fuel : it

produces little to no harmful gases when burnt. At the time it is delivered to end

users, natural gas is mostly methane, already purified in a process called drying, and

which consists in the removal of most hydrocarbons other than CH4. In this state,
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as opposed to most fossils fuels, natural gas burns cleanly, that is methane

combustion leaves water vapor and CO2 as residuals:

CH4 + 2O2 → 2H2O + CO2.

Natural Gas has a Higher Heating Value of 39.3MJ/m3, and a Lower Heating

Value of 34.6MJ/m3. [9]

1.2 Natural Gas Market

Natural gas is considered the fossil fuel of the twenty-first century, as oil and

carbon were considered the fossil fuels of the 20th and 19th centuries, respectively.

In fact, natural gas is the fossil fuel with the fastest economical growing rate since

the 1970s. [99, 28]

Nowadays, natural gas is the second fuel source after oil, having 20.7% of the

world’s energy production in the year 2005. As of the year 2006, 65.7% of the

world’s natural gas is produced at the countries belonging to the OECD (Australia,

Austria, Belgium, Canada, the Czech Republic, Denmark, Finland, France,

Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, South Korea,

Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, the

Slovak Republic, Spain, Sweden, Switzerland, Turkey, the United Kingdom, and the

United States,) and the former USSR (Armenia, Azerbaijan, Belarus, Estonia,

Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan,

Turkmenistan, Ukraine and Uzbekistan); see figure 1.1 for details. The biggest

individual producer and exporter is Russia, while the United States is the world’s

largest importer, as shown in table 1.2.) [49]

Natural gas also contributes with a sizable part of electricity generation, with a

share of 19.7% in 2005 (combined with gas-works gas.) Above half of the total

natural gas world production is used as energy provider for the commercial, public

services, agriculture and residential sectors, while the other half is employed in

transportation, industry and non-energy related sectors.

According o the CIA World Factbook, an estimate using 2005 data for the world’s

production in 2007 was 2.854× 1012m3, (producing between 98.74× 1018J and
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Figure 1.1. 2005 Fuel Shares of Total Energy Supply. c�OECD/EIA, 2007. Key
World Energy statistics

112.16× 1018J. On the other hand, the estimated consumption would be of

3× 1012m3 (between 103.8× 1018J and 117.9× 1018J.) [18]

1.2.1 Early History of Natural Gas Market

The earlier Greeks had already been in contact with natural gas wells, which they

considered divine because of their apparently perpetual flames, actually a stream of

Table 1.2. Largest Producers, Importers and Producers of Natural Gas in 2006.

Rank
Role

Producer Exporter Importer
1st Russia Russia United States
2nd United States Canada Germany
3rd Canada Norway Japan
4th Iran Algeria Italy
5th Norway Netherlands Ukraine
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gas escaping from the underground deposits, burning due to either a natural or

purposeful igniting agent. While the early cultures of Europe and Asia Minor found

these occurrences of natural gas odd and even feared them, the Chinese, around 500

BC, were more practical and developed ways to transport the escaping gas to their

urban centers, effectively building the very first pipelines.

The first commercial use of natural gas happened in England around 1785. This

form of gas was produced from coal, not extracted from wells. During the 18th and

the 19th centuries, the Americans dug wells specifically intended to obtain natural

gas, which was chiefly used for illumination purposes at the time. With the

invention of the Bunsen burner (in 1885,) and the development of the first

large-scale pipelines (around 1891,) the American Natural Gas Industry started the

process of turning natural gas into one of the main sources of energy for the country.

Reliable long-distance pipelines, though, did not appear in the US until the 1920s.

By 1938, the United States Government first regulated the natural gas industry,

believing that a controlled environment was necessary for the product. This action,

known as the Natural Gas Act of 1938, was used as the main guideline for

establishing and operating the Federal Energy Regulatory Commission (FERC.) [90]

However, by the early second half of the 20th century, several administrative

problems prompted the authorities to reconsider the way they had envisioned the

market conditions for this commodity.[79, 99]

1.2.2 Reforming Regulations of the Market

Let us imagine a little town whose main source of heating is natural gas. Because

of the relatively small size of the local market there, there is no reason for more

than one company to deploy pipelines to service the town: whatever the gas needs

of this town are, they can be satisfied with a single supplier. This pipeline is

operated by what we call a Pipeline Operating Company, whose main business

activity is to transport natural gas towards and within the town. Depending on the

number of Natural Gas Shipping Companies around, we might have one of two

cases: (1) There are NGSCs wishing to gain access the town’s market and are

required to use the existing pipeline—controlled by the POC; or (2) no NGSCs are
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interested in entering the local market, thus the availability of natural gas is

completely dependent on the decision of the POC.

Case (1), from a free-market point of view, seems adequate, as it generates

competence and consequently benefits for the clients. What would happen, however,

if the same POC that operates the only pipeline in town were also one of the

competing NGSC? The main business activity of the POC may still be that of

managing the pipeline, but it can also obtain revenue from marketing gas, just like

the other NGSC. Here, it is difficult to think of fair competition, as the POC has the

ability to dictate conditions of operation of the pipeline that favor its role as NGSC.

Case (1) could then “degenerate” into case (2), with all the economic impacts that

such situation implies. By the end of the twentieth century, governments over the

world realized this situation and started to issue regulatory measures to deal with it.

Because of this tendency, competitive service and free-market approaches have

driven several changes in international regulations of natural gas in the last twenty

years. [80] From a business point of view, the natural gas industry in the world is

going from being heavily regulated into a situation where it is more “market based.”

[29, 99]

Nevertheless, the Natural Gas Act of 1938 and its subsequent modifications failed

to prevent the existence of situations like the one exposed in at the beginning of this

section. The problem was not overlooked [80], and by 1992, the FERC issued Order

636, also known as “The Restructuring Rule” [26]. This obligated the POCs to

separate their marketing and transporting operations and either sell their

shipping-related assets to existing NGSCs, or forming affiliate—yet

independent—companies under specific rules [27]. Similar situations were faced by

the European operators under Regulation (EC) 1775 [48]. Before FERC Order 636,

POCs purchased the natural gas that they transported [29], hence, they had a large

amount of influence on prices and the usage of their equipment and facilities, i.e., it

was a market in which they had the last word regarding virtually any operation.

Today, and for the most part, Natural Gas Shippers and Suppliers have more

freedom to produce and commercialize the commodity. [89, 106, 21]

The companies involved in the shipping sector had to undergo deep structural

changes in order to face the new policies. Particularly, we have witnessed a
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mandatory division of the gathering, marketing and transmission operations, forcing

the companies involved to accommodate to the new conditions. In terms of

economic landscapes, there has been a change in the paradigm where companies are

finding new business opportunities. Middle- and end-users have been granted the

benefit to choose their service providers so that they better suit their needs.

1.2.3 Impact of the Reform

Both the Restructuring Rule and Regulation (EC) 1775 have had deep impacts in

the way natural gas markets are now constituted and, according to the American

Gas Association, had also produced efficiencies in it [90]. Current supply dynamics

and issues, as well as future tendencies appear thoroughly described in [96].

In the next few sections, we give a brief overview of the conditions that constitute

this paradigm.

Pipeline Operating Companies

As it often occurs when a company is forced to change its practices in benefit of

fair competition, the POCs have turned out the most affected of all the participants

in this sector.

• Liker it was discussed before, POCs were effectively forced to cease any

marketing operation, which led to diminished earnings.

• Resulting from this, they have had to redesign their transportation prices to

cover their operating costs in ways other than marketing gas [26].

• POCs now have problems regarding the maintenance of the technically

required volumes of natural gas in their facilities [92]. This was easier to

perform when they were allowed gathering operations and unregulated control

of their pipeline.

• The construction of “hub centers” to interconnect different pipelines has been

indirectly encouraged, in order to allow for buying/selling operations from

third parties to go smoothly [29].
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• In some cases, though, reimbursement strategies had to be implemented to

alleviate the transition costs for the POCs [26].

POCs were given certain privileges to cope with these imposed restrictions, such

as proposing rates to penalizing the creation of imbalances. [90].

Natural Gas Shipping Companies

Since the regulations described above were in part devised to open the market to

shipping companies, a number of advantages were granted to them:

• NGSCs now compete in a market more independent of the influence of other

companies, and can target specific areas of such market to improve

productivity.

• New companies can now afford the logistical and economical ventures of

entering the natural gas market as NGSCs.

• Such new companies have been allowed to increase their natural gas

production, relieving some of the pressure to meet demand [29].

• Smaller companies that had already made investments in the energy market

have now a greater chance to succeed in business [48].

• Nevertheless, the new restrictions that POCs experience have hindered certain

NGSCs operations in some instances, like the availability of no-notice service.

[100]

• In the EU, the advent of Regulation (EC) 1775/2007 has made some NGSCs

nervous about a possible emergency of POCs with distributing capabilities,

which is seen as a drawback in the policy. [37]

Regulating Agencies

Governments in the world have also experienced a number of changes associated

with the new paradigms.
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• Regulating agencies had to be formed, and continuous pondering and

amendments are required to keep the regulations they are to uphold up to

date and providing useful, reasonable restrictions.

• In the US, the FERC has now direct control only over the POCs and Local

Distribution Companies. This means, among other things, that the prices

NGCSs charge do not depend directly on regulatory agencies. [79]

• In order to verify the activities of the NGSCs, new institutions have been

created to guide [31] and monitor [10] the general development of the industry.

• Courts have been called to solve legal cases because many litigations now

belong to different sectors and involve different companies [100].

• Tax reforms need to be made to allow the POC to conduct their business

without losing money. [92]

Consumers and Local Distribution Companies

• End-users and local distribution companies have now a wider range of options

to choose from when contracting a service, and are no longer subject to the

desires of a POC.

• New companies are able to enter the market and satisfy the increasing demand

for fuel and energy.

• The proposals are aimed at providing choice, fair prices, cleaner energy and

secure supply to this sector [48].

• The amount of natural gas transported by interruptible methods (such as

shipping trucks) have decreased because of the more accessible pipelines. [86]

• The efficiency of the infrastructure of the sector has reportedly increased. [26]

1.3 The Shipper-Pipeline System

As we have stated above, the main objective of this work is to obtain a theoretical

model and decision tools for the NGSCs and other actors of the natural gas supply
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chain, so that they can more easily operate in the context of an imbalanced market.

Other aspects of the supply chain, such as production, marketing, contracting,

refining, etc., are described in section 1.3.1. They are, however, not directly relevant

to the process herein analyzed and are presented only for providing a background to

the study. The models developed in the next chapters will cover the balance process

of the network (by) transporting fuel from one zone to another, as well as the

economical information needed to accurately assess the optimal solution rending the

safest, most profitable way of action of the NGSC.

We will deal here only with a single NGSC-POC system i.e. there is no more than

one NGSC involved, so that the POC does not have the option to auction

imbalances (though certain real-world system hold these as possible.)

1.3.1 Natural Gas Supply Chain

The natural gas supply chain consists of the following stages: Exploration,

Extraction, Processing, Transportation, Storage and Distribution. In practice, the

first three are typically carried on by the same company, as well as the last two.

This is not mandatory, nor is it always the case: there are firms dedicated

exclusively to processing, or to storage. Given the amount of possible economies of

scale, it is desirable to take such multiple roles. Transportation firms, however, have

been banned access to other links of the chain, either because of the importance of

their operations or because of the acceptance of “naturally monopolistic” nature of

their activities. [81]

Additionally, after the 1990s regulations, there has been an emergence of financial

markets of many kinds related to natural gas, adding a fifth link—marketing—to

the natural gas supply chain. A simple yet comprehensive description of the natural

gas supply chain and its associated processes can be found in [25].

A schematic view of the natural gas supply chain as it is described below can be

seen in figure 1.2

Exploration, Extraction, and Processing

Exploration is the processes of surveying both continental and offshore potential

sources, using seismological tools like magnetometers and gravimeters to determine
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the existence, size and viability of a Natural Gas extraction point. Computer

simulations in 2D, 3D and 4D; and data analysis tools, aid today’s geologist in this

stage. In the US, most natural gas basins are located in a corridor having Wyoming

in one end and Texas, Louisiana and Alabama in the other. [97]

Once the feasibility of digging a new well has been validated, a group of geologists

and geophysicists determine the ideal conditions for the placements of the drilling

crews and equipment, prior to the actual extraction that is made using different

kinds of equipment for both onshore and offshore extraction.

Immediately after extraction, natural gas is considered wet. This variant of

natural gas is loaded with Natural Gas Liquids (NGLs,) which are those

hydrocarbons other than methane (usually, but not uniquely, ethane, propane,

butane and pentane,) that render the gas inappropriate for usage as fuel. Wet

natural gas is transported from the well to processing facilities in what is called the

gathering system, a pipeline network of low pressure, low diameter ducts that are

typically owned by one of the companies involved in the preliminary steps of the

supply chain. Once in the processing plant, the NGLs are removed from the natural

gas in a process called drying.

Dry gas is required not just by the end-users (for reasons of quality,) but also by

POCs. Pipeline operators usually impose restrictions regarding the “quality” of the

natural gas that is injected into their ducts, demanding specific parameters of

composition, temperature and BTU content. Once introduced into the pipeline,

natural gas is mixed with the inputs of other companies, so a certain quality of gas

is necessary to safeguard the interests of all the NGSC using the same pipeline. [97]

Figure 1.2. The Natural Gas Supply Chain (compare to that in [25])
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Transportation

This stage contains the different methods through which natural gas is moved

among the several facilities that compose the supply chain. This process is usually

carried on in pipelines with the aid of compressing and storing equipment. Pipelines

are conduits used to mode natural gas from the wells to the processing plants (the

gathering system,) from the processing plants to the distribution centers (or pool

zones) across the nation (the interstate/intrastate pipeline system,) and from the

distribution centers to its consuming points (the distribution system.) Pipelines are

owned and operated by Pipeline Operating Companies, whom by the end of the

1990s are effectively prohibited from participating in most other natural gas

processes in both Europe. There are about 80 major interstate pipelines in the US,

with 20 percent of them servicing the 80% of the market supply.

Both the gathering and the distribution systems are usually owned by the

companies that primarily employ them (extraction or processing plants in the first

case; Local Distribution Companies in the second,) so these systems are not

technically considered part of the transportation chain link. In this work, we

consider a POC as the operator of an interstate pipeline. The segmentation of the

natural gas market (i.e., the creation of submarkets within localized regions,) and

the consequent formation of long-distance, intrastate pipelines, creates management

situations where even inside a country, export and import phenomena occur [45].

The pooled regression analysis shown later in the stochastic models chapter of this

work is in part a response to this market segmentation. It aims to providing tools

for identifying local markets behaving differently with respect to their

consumption/price econometrics.

Pipeline Operating Companies usually have high fixed costs, derived from the

inherent pipeline construction. Furthermore, these costs are considered sunk since

the pipeline has little to none alternative usage. Once installed, however, the

maintenance and operation costs of a pipeline are relatively low. Another

economical advantage for the POC is the fact that, except for exceptionally large

markets, a single pipeline is more than enough to satisfy the necessities of a given

location. Because of all this, (interstate) pipelines are accepted as being in a

naturally monopolistic market. [51]
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Storage

A few years ago, natural gas was used almost exclusively as heating fuel, and as

such, it was a strongly seasonal commodity stored for consumer peak seasons. With

the employment of natural gas in electricity generation, and with the regulations

like FERG Order 636 and 637, storage nowadays serves a purpose of commercial

reasons: natural gas is now a market driven commodity in need of storage that

allows for a lucrative market managing.

The general denomination for a facility where natural gas is stored for its

subsequent delivery to selling points is that of Pool Zone. Pool zone may also refer

to the temporary storage points where natural gas is kept by the processors before

being sold or shipped.

Pool zones are very important points of activity to Natural Gas Shipping

Companies, who act as intermediaries (financial-wise only, not physically) between

Processing and Local Distribution Companies. A NGSC arranges for the injection

and extraction of natural gas into/from the pipeline. It buys gas from the

processing companies and then sells it to the LDCs, accommodating volumes across

different pool zones.

An extensive study of natural gas storage policies and uses and their impact in

the natural gas market can be found in [19]. There is explained how storage is

arguably the most important factor in the flexibility of the natural gas supply chain.

Distribution

This is the final stage of the supply chain. Once the gas has been delivered into a

pool zone for its storage, it can be forwarded to the various costumers by a Local

Distributing Company. The LDCs are in charge of the delivery of the fuel to the

end-users, and can be public (governmental,) or owned by private investors. More

often than not, LDCs take ownership of the natural gas after it leaves the pool

zones, ending the involvement of any prior actor, like the NGSCs. [81].

In large communities, several LDCs can share a market, though usually LDCs

enjoy exclusivity in natural gas supply in their region, creating a monopolistic

market similar to that of the interstate pipelines. For example, Natural Gas Mexico

is the sole distributor of natural gas in the city of Monterrey, Mexico. Its

13



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

competitors offer other heating alternatives considered substitutes to natural gas,

such as LP gas. An increasing number of countries are pushing for open-access

regulations to LDCs, similar to what they already have for the POC and the

interstate pipelines.[51]

Marketing

Since the beginning of the modern reformed market, many companies find it

economically feasible to develop natural gas marketing, selling and buying

operations in a financial environment. Although not a supply chain link per se,

market operators have a large amount of influence in the actions of the other actors.

There exist physical gas markets and financial gas markets. Physical gas markets

function with physical gas contracts to deliver actual fuel from one firm to another

during a stipulated time, in either wholesale or retail formats. The volumes of gas

traded in such spot markets grew rapidly since the advent of the open-access

transportation and the liberalizing reforms. [25]

Financial gas markets are used for managing price risk and not necessarily for

physical delivery. They are highly volatile markets with financial institutions as

intermediates for the risk-transferring schemes. The most common forms of financial

markets for natural gas are forwards (single time payment future sale contracts,)

swaps (risk-based payment management,) futures (commodity supply management,)

and options (future price arrangement.)

Additionally, some POCs have developed Transportation Markets, which are

based in the purchase and sale of pipeline prerogatives among the different NGSCs

they serve. [75] The Primary Transportation Market uses Transportation Contracts,

which may be firm (they give the NGSC rights over capacity and transportation

regardless of the season) or interruptible (the POC determines the schedule of the

deliveries depending of pipeline capacity.) Hybrid versions of these two kinds of

contracts also exist.

In certain cases Secondary Transportation Markets may arise. When NGSCs (or

any other holder of transportation contract rights) are legally able to do so, they

can sell of their pipeline access to other firms: capacity is then used as a financial

object to bid for in this market. Once such transaction is completed, the contract
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holders notify the POC about this change of capacity rights. Certain POCs,

however, do not concede property rights to their client NGSCs, negating the (direct)

existence of this secondary market.[51]

1.3.2 The NGSC-POC Subsystem

Since the issuing of the Natural Gas Market regulations, a new and complex set

of relationships between the transportation managers (POCs,) and the firms in

charge of the trading, purchase and sale of the natural gas (NGSCs) were created.

This subsystem of the larger natural gas supply chain is of special interest because

of the many ways POCs and NGSCs have devised to cope with the liberalization of

the natural gas market. This section refers solely to the components of this stage of

the supply chain, to which we will refer as the NGSC-POC (sub)system: once the

natural gas has been bought from the Processing Company by the NGSC, it is

considered to have been input into the NGSC-POC system.

After leaving the processing plant, natural gas volumes will be bought by a

NGSC, who will arrange for their delivery into several pool zones. The locations of

these pool zones may span throughout a whole country, like the US, or a smaller

region. This is done by contracting the services of a POC to transport the gas

through its pipeline. The NGSC-POC contracts can vary in their duration, yet

because of the relative inflexibility of the infrastructure attending a certain point,

long-term contracts are usually made, where duration is considered an important

factor. [84, 85]

Gas can typically flow in one physical direction (upstream-downstream, or left to

right in figure 1.3.) The NGSC controls the financial flow of gas between the

Processing Companies and the LDCs at the Pool Zones. The POC controls the

physical flow according to its contracts with the NGSCs. Compare this scheme with

that in page 12 in Juris, 1998b [52].

The gas bought from the Processing Plants is injected into the pipeline and mixed

with the natural gas owned by other NGSCs that possibly use the same pipeline.

Each NGSC then arranges for the extraction of the fuel and its storage in one of

several pool zones downstream. The NGSC must specify, before the extraction

occurs, the volume that is going to be withdrawn from the pipeline at every pool
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zone, and the total extraction figures have to match (unless otherwise arranged with

the POC) the total volume injected. At the pool zone, the NGSC sells the gas to

the LDC(s) operating in the zone. These will deliver the fuel to the end-users

trough their own systems.

The gas leaves the NGSC-POC subsystem when it is sold to the LDCs, that is,

when it leaves its destination pool zone.

Operating Issues

In case that the NGSC extracts a volume of natural gas at a pool zone other than

the volume stated in its contract with the POC, an imbalance is created. Positive

imbalances occur when the NGSC has not extracted as much fuel as it has

announced (thus there is more natural gas in a certain pool zone); negative

imbalances, on the contrary, happen when the NGSC extracts more gas than that

originally stated (leaving the pool zone with a lack of fuel.) POCs allow for certain

imbalance tolerance levels, within which no balancing action is taken and the

system is considered controlled (balanced.) If one or more imbalances exist outside

the tolerance levels, we say that a System Imbalance occurs, or equivalently, that

the system is imbalanced. System imbalances have repercussions in the financial

aspect of the market: whoever caused the imbalance has to make up for it, either

compensating the gas, paying a fine, and so forth.

System imbalances also endanger the functional state of the pipeline, which

requires certain amounts of pressure to operate adequately. Achieving required

Figure 1.3. Flow of Natural Gas.
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pressure levels is more difficult when the POC has no direct control over the

volumes in the pipeline.

To remedy this, the POC uses practices known as system balancing procedures,

which have the purpose of reducing imbalances in one or all pool zones. Balancing

the system has a crucial role in the development of a competitive market, [32] since

it provides flexibility to the NGSCs options to conduct a dynamic business .

Balancing the NGSC-POC system can be done in several ways, depending on the

nature of the market and the ownership rights over the gas granted to the NGSCs.

The POC can compensate positive and negative imbalances caused by the same

NGSC in nearby zones, charging a fine to the involved parties for the operative

expenses. Another example is injecting/extracting volumes from a positive/negative

imbalanced zone into an alternate storage facility and charge purchase/sale/storage

fees to the NGSCs. Usually, POCs are allowed to determine the nature and

frequency of their balancing practice, as long as it adheres to the existent

regulations [44], which normally rule over responsibilities, fairness, frequency,

trading, costs, etc. [32]

In this work, since we are allowing a single-NGSC system and no additional

storage of resources, we will consider that the POC deals with system imbalances by

means of a Cash-Out Penalizations imposed to the NGSCs whenever they incur n

imbalances.

The Balancing Process

During a (previously arranged) number of days, the NGSC can extract natural

gas from the pipeline in each of the pool zones it attends. This operating period can

be, for example, one month, two weeks, and so on. If it is economically advisable for

it, the NGSC can create imbalances in the pool zones, as long as the volumes

remain within the limits allowed by the POC in every pool zone and in the system

in general. After the operating period is over, the POC will determine the best way

to balance the current state of the system, moving gas downstream from the points

where there are positive imbalances to the points where there are negative

imbalances. Positive imbalances cannot be physically moved upstream to
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compensate negative imbalances, so instead POC credits the NGSC with moved gas

and somehow stores the additional volume elsewhere.

At the time this final day balancing process ends, it is required that all

imbalances in every pool zone bear the same sign (i.e., all non-negative, or all

non-positive.) If the final configuration consists of negative imbalances, the POC

will charge a previously announced amount for the volume of gas that was extracted

from the pipeline, at a price per volume that may be different at each pool zone. In

this case, the POC is effectively selling gas to the NGSC. Since sales are not the

actual business of the POC, its sale price is ordinarily higher than that of the

Processing Companies: the NGSC is expected to have made good profits from the

extra gas extracted so that this situation becomes economically feasible.

On the contrary, if the final configuration includes positive imbalances, then the

POC acts as though buying the natural gas from the NGSC. Indeed, the POC

should pay less than an end-user for whatever gas it is acquiring, for it was not its

interest to buy fuel in the first place. Furthermore, since the pipeline is not allowed

to sell natural gas to end users or LDCs, the only uses it might have for the

purchased fuel are those concerned with its operating necessities (such as pumps

fueling) and balancing methods.

Exact pricing of the imbalances is a major point of interest for the players of the

supply chain: it defines the actions each participant will take when deciding upon

injection, extraction, and balancing schemes. Sophisticated mathematical models

involving specific industries are constantly being developed, for no balancing policy

as of now is considered optimal [61].

1.3.3 Concerns for the Involved Parties

In the NGSC-POC system, both involved parties have a clear—and not always

compatible —set of objectives. This difference causes the NGSC-POC system to be

modeled with tools that allow for multi-objective or multi-level treatment.

Objectives of the NGSC

The NGSC is a firm whose main goal is to be able to sell the natural gas it owns

to its clients, satisfying whatever contracts it has previously signed and then
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marketing the exceeding volumes (if such exists) with secondary customers if the

price they can afford is advantageous to the NGSC.

During the operating period, the NGSC may encounter that it can sell additional

gas—at a given day and pool zone—than that originally planned at higher prices

than those previously estimated. Creating a negative imbalance may then be

advisable as long as the high prices compensate the risk for an imbalance

penalization. The NGSC can possible compensate for this negative imbalances with

positive imbalances in other pool zones in order to keep within allowed limits. This

practice may continue during the entire operating period, eventually resulting in a

final day configuration. The NGSC knows that the POC will rearrange this

configuration (in the fashion described below) to obtain a more balanced final

configuration; the rules are known to both parties at the beginning of the operating

period. Depending on the nature of this configuration, the NGSC may be charged

or paid a certain amount of money: if the amount charged is less than the revenue

generated from the sale of the additional gas that created the imbalances in the first

place, then the actions of the NGSC are economically feasible and it would have

earned additional profits. (See table 1.3)

Creating imbalances, however, is an uncertain business, as the penalization occurs

only after the operating period ends, and by that time the prices in each pool zone

will likely have experienced changes. As the imbalances for any given day depend in

some way on the imbalances the day before, it is necessary to have the most

accurate forecast of future demands and prices in each pool zone so that good

business decisions are made. Day-to-day prediction of prices and demands can be

made considering several factors, such as the installed base of appliances, industry

operation, temperatures, etc; different extents of the forecasting time window

require equally different techniques and forecasting models[68]. Specifically, prices

tend to have unpredictable behaviors when analyzed in the short run, with some

authors using systemic analysis to determine the nature, causes and possible future

occurrences of spikes in the natural gas price time series. [35]

Hence, the NGSC has two main objectives: (1) manage the daily imbalances in

each pool zone so that it obtains the largest revenue, considering the stochastic

nature of the prices and consumption of the market; and (2) finishing the operating
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period with a final day configuration, derived from the daily imbalances, that will

force the POC to charge it a low penalization compared to the revenue that caused

the necessity of having imbalances.

Objectives for the POC

In contrast with the NGSC, the POC aims for a balanced system that will

guarantee functionality for all the NGSCs using the facilities, while reducing the

amount of money that is exchanged in its operations. Its main functions [52] are:

• Intake of the agreed volumes and qualities of gas at injection points

• Transportation through the (interstate) pipeline

• Extraction of gas of agreed volumes and quality at agreed delivery points

• Maintenance of a balance between injection/extraction

• Maintenance of a specific pressure

• Maintenance of a specific calorific value of gas

From our point of view, the most important interaction between the NGSC and

the POC happens when the latter arranges the former final day configuration and

transforms it into the final configuration. This is done with three objectives in mind:

(1) to reduce the imbalance volumes in each pool zone (by compensating positive

and negative imbalances); (2) to obtain an all-non-negative or all-non-positive

imbalance configuration; and (3) to do so in such a way that the cash-out

(payment/penalization) from/to the POC to/from the NGSC is the lowest possible.

Table 1.3. Costs and Earnings for the NGSC [57]
Penalization from the POC (positive or negative)

+ Revenue generated from contracted gas sales (positive)
+ Revenue generated by additional gas sales (positive)
+ Costs for reserving pipeline capacity (negative)
+ Costs for unmet gas contracts (negative)

= Profit for the NGSC (cost if negative)
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Table 1.4. Costs and Earnings for the POC
Revenue for moving gas downstream (positive)

+ Cost for crediting gas upstream (negative)
+ Revenue for having negative (positive)

final configuration imbalances
+ Revenue or cost for having positive (positive or negative)

final configuration imbalances
= Profit for the POC (cost if negative)

The balance period will then see the POC moving positive imbalances

downstream (charging the NGSC for this) and crediting positive imbalances

upstream (giving money to the NGSC.) If the resulting final configuration contains

negative imbalances, the POC will make further charges to the NGSC; if the final

configuration contains positive imbalances, the POC may pay or charge the NGSC.

Both the POC and the NGSC are aware at all times of the parameters that

determine the payments (figure 1.4.)

The survey of the variables involved in the pipeline operations is ultimately done

by a human manager. Expert systems [47], like the one in [102], may provide

reliable information to a pipeline manager with the objective of reducing the

inherent human inconsistency and proneness to make mistakes, which have

reportedly had large financial consequences [101].

Any positive (negative) profit for the POC is regarded as a cost (earning) for the

NGSC in tables 1.3 and1.4. The only economical activity for the POC considered

here is the balance penalization, whereas the NGSC engages in the sale of the

natural gas, thus its objectives are different and include such activities.

We must stress the fact that whatever movements of gas the POC can make

subject to the decisions the NGSC has already made and the final day configuration

resulting from it. This makes the problem of maximizing the NGSC revenue not

only a multi-objective optimization, but also a bilevel optimization problem, in

which the NGSC will make a decision knowing which course of action the POC will

take in response. The POC, however, has to contempt with the state of the system

the NGSC has left, yet, the former has certainty in its information.
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1.4 Problem Statement

It is the intention of this work to present a theoretical and numerical framework

that will allow a single NGSC to maximize its profit (minimize its costs) by solving

an optimization problem of the form

minimize f(x, y(x); P, D) (1.1)

subject to x ∈ X, (1.2)

where x is a vector containing the decision variables controlled by the NGSC, such

as the amount of gas notified to the POC to be extracted, the amount of gas

actually extracted, the imbalance created, etc; X is a set representing the physical

and financial constraints x is subject to; y = y(x) is a vector mapping of x which

represents the response of the POC to the NGSC actions (see below); P and D are

parameters regarding the price and consumption of natural gas, which may or may

not be considered stochastic in nature. The real objective function f represents the

cost the NGSC incurs, taking into consideration the penalization derived from

creating imbalances [57], the amount of gas sold, the cost of reserving network

capacity with the POC [75], and so on.

Vector y will be formed by variables that represent the possible actions of the

POC once the NGSC has made its decision, i.e., the balancing process the POC has

to undergo to reduce the total amount of imbalances in its system. This “response”

concept leads to a bilevel optimization problem in which the upper level is

described in (1.1)-(1.2), and the lower level corresponds to the minimization

problem the POC solves:

minimize g(x, y(x)) (1.3)

subject to y ∈ Y, (1.4)

where the set Y represents the constraints the POC must adhere to when balancing

the network. Function g(x, y(x)) is the objective of the POC, namely, it represents

the cash-out between the parties to be minimized.
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Conceptual Assumptions

The following assumptions are considered when trying to produce a suitable

model of the form (1.1) - (1.2), (1.3)-(1.4)

Assumption 1. There is only one NGSC company acting as the upper level

decision maker, which will be referred as the leader. Equivalently, there is only one

POC as the lower level decision maker, which will be called the follower.

Assumption 2. Both the POC and the NGSC act rationally, and their courses of

action/decision making guidelines are known to each other.

Assumption 3. The operating period is finite and predefined, known to both leader

and follower since the beginning of the process.

Assumption 4. The NGSC controls the extraction of natural gas, and consequently

the creation of imbalances, in all the pool zones and in every day in the process.

Assumption 5. The mathematical function the POC uses to penalize the NGSC

for producing imbalances in the system, g(x, y), is known to both parties and

remains unchanged through the operating period.

Assumption 6. The costs incurred by the NGSC when booking capacity in any pool

zone are significantly lower than the sale price the NGSC can obtain in that zone.

Assumption 7. The NGSC will have a contracted demand in each pool zone it

must satisfy. Not satisfying the contracted demand implies that the NGSC has to

pay for every unit of unmet demand at a higher price than any sale price that could

be obtained from selling gas an equivalent amount of gas in that zone.

Assumption 8. Any positive amount of gas remaining in a given pool zone and day

after the contracted demand has been satisfied can be sold in that zone at a price

typically higher than the regular sale price.

Assumption 9. Prices and consumptions, as seen by the NGSC, can be forecasted

with relatively good certainty, i.e., there are not foreseeable changes in trend from

the observed historical data for these figures.
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Assumption 10. Every possible loss of gas (due to leaks, usage as pumps fuel, etc;)

during the transportation process conducted by the POC is considered to be a fixed,

deterministic percentage of the volume moved.

Assumption 11. Physical movement of gas throughout the pool zones is exclusively

downstream: there is a starting pool zone (the one topologically closest to the well)

and a final pool zone (the one at the end of the network.) In order to move gas from

the starting zone to the last one, one would need to pump gas through every middle

pool zone, and this direction cannot be physically reversed.

Assumption 12. The POC acts in such a way that any action it performs seeks to

benefit both himself and the NGSC: any decision variables controlled by the POC are

controlled so that they minimize the absolute loss for either party.

Most of these assumptions underlie the models described in chapter 3; however,

specific models may need to ignore one or the other, in which case it will be

explicitly stated. Stochastic models in chapter 4 may also require additional

assumptions.

Chapter Summary

In this chapter, we have talked about the qualities of natural gas as a fuel, its

history, and its current market situation. The last twenty years have brought about

a number of changes in the natural gas industry, and such changes have had deep

repercussions in the natural gas supply chains, in both the EU and US. While the

future of the natural gas market as it looks now can merely be speculated, several

authors have proposed scenarios in which the occurrence/non-occurrence of certain

important events may deeply affect the outcome of the natural gas market

dynamics. [2]

The nature of the reforms and their impact in a particular subsystem of the

supply chain are detailed, explaining in particular the relationship between Pipeline

Operating Companies and the Natural Gas Shipping Companies. In this

NGSC-POC (sub)system, the concept of imbalance appears as both a tool for the

creation of dynamic markets, and as a problematic trait that the involved parties

have to address properly. We state our problem as that of obtaining a decision
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making tool whose purpose is to aid the NGSC to face the balancing method. This

is done using bilevel mathematical programming; the fundamental nature and

assumptions for the whole work are lastly detailed.
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CHAPTER 2

LITERATURE REVIEW

This chapter offers references to models formulated to solve different kinds of

problems found in the natural gas industry. Most of these models have resemblances

to those we develop in this work as they all, in one way or another, use networks

and time series to describe the subsystems of the natural gas supply chain.

There are many interests involved when studying natural gas. Looking at the

entire, industry-wide system, one may want to model the optimal deployment of

wells, refining facilities, local networks, interstate pipelines, etc. Once these are set,

there is a need to optimize their operation parameters: production size and cost,

pipeline throughput, pumping costs, equipment costs, etc. There is the economical

aspect of the problem: the amount of fuel that is to be sold in the spot market, in

the futures’ market, in the capacity markets, etc. Since the problem we attempt to

examine lies around the middle of the natural gas supply chain as we described it,

we will focus, in this section, on the models that specifically deal about pipeline’s

network transportation models, price and demand management, and specially,

multilevel formulation of the NGSC-POC subsystem.

Section 2.1 discusses the basic notions of natural gas network models used in the

rest of the sections; it also presents the most basic network models found in

literature. Section 2.2 deals with models that operate and optimize the network

based in physical and operating costs, and section 2.3 presents models using risk

management and forecasting tools when determining the parameters—and thus the

decisions—to be made. Finally, the most important part of this chapter, section 2.4,

displays several references to bilevel approaches to natural gas imbalance

management, which are largely used to lay the foundations of chapters 3 and 4.

2.1 Basic Gas Network Models

Perhaps the most basic model for a pipeline network in which one can still find

interesting properties is the one in Cremer, (2002) [20]. Reproduced in figure 2.1,

the simple network consists of two injection/extraction nodes, and a single-conduit

pipeline linking them.
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Figure 2.1. A Simple, Illustrative Natural Gas Pipeline Network. [20]

Injection of gas is represented with variables i1 and i2, whereas extraction is

represented with variables o1 and o2. Variable f is physical movement, or flow of

gas, from node n2 towards node n1. The authors consider the potential existence of

a flow in the opposite direction to f , but make it clear that, in such case, the reverse

flow will be insignificant when compared to flow f , which is thus named the

dominant flow.

Another interesting feature of this simple network model is that it shows how

transportation costs, given certain conditions, need not be proportional to distance.

Cremer discusses the particular case when the objective function is modeled

including Ramsey monopoly terms [65].

Another simple way to present a basic formulation for natural gas networks are

transportation problems. Indeed, one could represent a natural gas supply line as a

set of nodes and arcs in a graph. Imagine that we have a source node—a natural gas

well— and a sink node—a consumer or LDC delivery point—in every node of the

equivalent to a segmented line (figure 2.2)

This is a simple, multi-node cyclic network [87]. Each node may be both a source

and a sink node, though one would likely demand: (1) that this cannot occur not at

the same time, and (2) that there are no leaks in the process. Under these

conditions, we have a typical transportation problem in the sense of Monge [76].

Furthermore, if we drop assumption (2) above i.e. we allow leaks to be considered,
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Figure 2.2. A Linear Gas Network

then we have an imbalanced transportation problem. Modeling transportation

problems with such assumptions is done, for example, in [107].

Note that the dominant flow, f1 in figure 2.2, runs from node n1 to node n3. The

inverse flow, f2, is merely financial in nature, meaning that it has no physical gas in

motion, and consequently it causes no operating costs or leaks.

2.2 Models Focused in Optimizing the Physical Operation

This section illustrates models whose main concern is the conservation of proper

operating conditions (pressure level, for the most part,) and the minimization of the

costs of such maintenance (by optimizing the number of pumps, compressors, etc.)

A complete modeling including production, transportation, markets and other

features of the natural gas supply chain is presented in Tomasgard (2007) [98]. This

model makes use of relevant data from the Norwegian firms Gassco (a state-owned

POC [36]) and Statoil (the country’s largest fuel—and overall—company. [91]) The

objective function modeled form the point of view of the POC and aims to optimize

the routing of the gas while maintaining volume, quality and pressure levels in the

pipeline within operating limits. It also uses a modified transportation model as the

one discussed in the previous section, while adds storage, spot price sales, and

future sales as features of the model.

The later model is complemented with that in Midthun et al (2008.) This

expansion shows the role of a benign (non profit-seeking) POC solving routing issues
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by marketing booking of capacity in the pipeline and selling it in both a spot market

and a futures market. Such situation is modeled as a Generalized Nash Equilibrium

[24] (in a setting more akin to our own study) in which there are several large and

small NGSCs competing for capacity in the network. Perhaps the most important

result we find in this work regards the normally employed Weymouth equations

[73]—which model the pressure in the pipelines and are commonly used by

engineers—and how can they be effectively substituted by common bounds for the

variables, allowing for faster computation times, albeit in a reduced feasible space.

Another model that includes physical aspects of the pipeline optimization is that

in Wong [108], where dynamic programming is used to solve a modified

transportation problem including special nodes that indicate the existence of

compressors. Optimal operating conditions are then decided applying dynamic

programming.

Moreover, in Wu et al [109], we find a transportation model focused on reducing

the network complexity (e.g., reducing large network trees to line graphs lake the

one in figure 2.2.) The objective function is formulated so as to minimize the

operating costs resulting from running the compressors that control flow and

pressure in the pipeline. Relaxation techniques for hard constraints are also given.

The first half of the article discusses mathematical models regarding the technical

aspects of the pipeline ( compressor’s running parameters, fuel costs, etc.); whereas

the second half presents the aforementioned network models. These are later

expanded in [77], where a method for finding a feasible initial solution is developed

so that it can be feed into the model in [109].

Rios-Mercado has studied different aspects of natural gas networks. In [12],

network routing problems are solved by finding feasible flows and then using

non-sequential dynamic programming to deliver a set of feasible pressures. An

alternate procedure to the dynamic approach is shown in [34], A Generalized

Reduced Gradient [46] is used to produce both feasible flows and pressures. Both

techniques are compared in [11], where near-optimal solutions produced are

improved using heuristic taboo search [43]: since this routing problem is done in a

non-convex solution space, guaranteeing a global optimum is not easily done. More

information about this type of models can be found in [87, 104, 13, 33].
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2.3 Models Including Stochastic Elements

This section discusses models that center predominantly in the analysis of

stochastic systems. Stochastic variables are sometimes added as external variables

to expand more traditional models instead of turning the variables of those models

into stochastic elements.

Uncertainty in temperatures is a concern for Maggioni et al [70], where stochastic

differential equations [3] are used to estimate and forecast environmental

temperatures included in the objective functions of a two-stage stochastic model.

The objective function here is the expected value of the NGSC profit and it depends

on several different variables of diverse natures.

Midthun et al [75], additionally to the capacity booking model mentioned before,

shows a stochastic modeling of an investment portfolio. Both of these models

include stochastic elements in their objective functions:

• In the capacity booking models, there are three alternative objective

functions: maximizing the flow of the pipeline, maximizing the economic value

of that flow, or maximizing the social surplus [38]. The stochastic variables

are the spot prices, modeled as a number of price scenarios.

• The portfolio optimization problem contains a scenario setting for its

stochastic modeling. Instead of modeling the variables for each scenario as

independent, it used a node formulation that allows for a reduced number of

decision variables and the omission of an explicit set of non-anticipativity

constraints, but somewhat complicates the expressions for the constraints.

The stochastic variables are again the spot prices, but the objective function

represents the production and the transportation and storage related

compressors operating costs, which is to be minimized, in a typical multistage

stochastic optimization model with recourse. [60]

Although all these models are dedicated to links of the supply chain other than

the NGSC-POC subsystem, they are relevant to this work since they show (1) a

branching scenario tree approach to the stochastic optimization problem, (2) bilevel

characteristics, and (3) the usage of multi-stage stochastic optimization with
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recourse, all of them important tools considered in the models developed in chapter

4.

Looking at the forecasting and estimation tools, Balestra and Nerlove [5] presents

an early work in estimation of natural gas demand/consumption. This works on a

rather small-scale, as demand is considered driven by the acquisition of appliances.

The paper then goes on using time series analysis through least-square estimations

to round up the forecast framework.

Gomez-Villalba and Ramos stated [39] that “it is necessary to provide (firms)

with optimization tools to manage risk derived from price uncertainty.” To this

purpose, they present a transportation and contracting model for natural gas and

electricity pricing, treating commodities prices as market-based. This model deals

with the minimization of the consumer energy supply cost. Though not completely

analogous to our problem statement (the decision maker and constraints of the

optimization models are completely different in both nature and behavior,) this

article shows an important similitude to our work: scenario trees are used, along

with an economical justification of their use, and an extensive glossary on scenario

tree-related stochastic terms is presented. The algorithm [40] used in this work to

obtain natural gas prices forecast is based in time series analysis of Brent spot

prices and an ARIMA [15] model. An important assumption regarding forecast

residuals is done here and we promptly adopt it: we need to consider that the

distribution of the price residuals in the prediction time is the same as their

distribution in the historical sample.

Other common methods to forecast Natural Gas consumption are Artificial

Neural Networks [16], and Fuzzy Neural Networks [16, 103]. Artificial Neural

Networks are attractive for NGSCs because they allow them to map nonlinear

relationships between regressors (wind speed, temperature, etc.) and the response

variable (consumption.) This is often done when the scope of the forecast is such

that no long-term relationships are considered reliable. On the other hand, Fuzzy

Neural Networks are often used when the reliability of the data inputted is poor or

too general (e.g., when we have only point-estimates of highly variable statistics.)

Recent works using Gompertz-type algorithm in the natural gas consumption of

Spain was done in [42], developing complex techniques that reportedly improved
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upon more conventional forecasting methods in the same setting, though further

work is admittedly needed to add more explicative factors hence providing deeper

analysis of the market.

2.4 Models Including Bilevel Problems

Finally, we present the models that were the inspiration of this dissertation work.

The works in this section have a closer relationship to the developments in chapters

3 and 4.

Bilevel Programming is a branch of modern Multilevel Optimization Theory

[57, 74]. The mathematical tools that constitute the bilevel programming field are

extensions of regular mathematical programming and game theory models [7].

Optimization problems with more than one decision makers are usually modeled as

equilibrium or game models, and when one of those decision makers has strategic

advantages or timing differences over its competitors, bilevel programs often arise.

The bilevel formulation of a NGSC-POC subsystem is initially done in [88]. The

NGSC becomes the upper level decision maker, whereas the POC is the lower level

decision maker. The authors address the inherent difficulty of bilevel programs [57]

by using simulated annealing [64] to solve a heuristic algorithm: a high-quality

approximation that guarantees good solutions in short time instead of optimal

solution in prohibitive running times.

This problem is later taken by Kalashnikov and Rios-Mercado [57, 74] and

reformulated, modeling the lower level as a variational inequality problem [50] and

using a parameterized version of this inequality as a penalty function for the upper

level, thus turning the original bilevel problem into a single-level problem, albeit a

complex one. The model presented in these articles is a bilevel, mixed integer

problem with a quadratic objective function and logical (e.g., if a then b ...)

constraints.

The authors in [58] claim that the problem above described can be split in two

“almost completely independent stages”: finding the lower level solution for a given

upper level decision vector, and verifying the feasibility of the obtained solution for

the upper level. An algorithm to iteratively solve this formulation is presented,

which also has the advantage to removing the lower level integer variable and
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passing it onto the upper level, which enormously eases the calculation of the

solution.

The method proposed in [58] is implemented computationally in two different

ways in [59]: an iterative inexact penalization method [71], and a direct method

based in the Nealder-Mead Simplex method [83]. The authors’ intention is to prove

the superiority of the iterative inexact penalization method over the direct one in

terms of convergence, stability and running performance.

Dempe et al [23] transform the lower level problem in [57] into a generalized

transportation problem: the upper level is split in a branch and bound-like manner,

turning the lower level into a problem with sinks and source nodes instead of pool

zones. Convergence and conditions for this transformation, as well as an algorithm

to efficiently solve this problem are provided.

While all the latter bilevel formulations deal only with penalization cash-out costs

for the NGSC imposed from the POC, [22] integrates the NGSC expected revenue

changes into the problem, modifying the upper level function to include linear

terms. This work is continued in [53], where the analysis of the changes this

modification creates in the optimal points is illustrated, and gross revenue, instead

of revenue changes, is added to the objective function.

Chapter Summary

Modeling work regarding natural gas covers a wide amount of subjects, ranging

from chemical and physical qualities that wells and refining facilities have to make,

to technical parameters the pipelines have to control, to financial and economic

tools over gas networks. This chapter resumes works regarding the models pertinent

to this dissertation work—optimization and forecasting models in the natural gas

industry—as well as alternate models that start from different assumptions and

have different objectives, but nevertheless provide insight regarding Natural Gas

Optimization frameworks.

The central matter of this chapter is section 2.4, which describes bilevel

optimization models that are used as the foundation for the contents appearing

later in this work. Those algorithms deal almost exclusively with the cash-out

penalization that the POC ultimately charges or pays to the NGSC because of the
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creation of imbalances; we intent to expand the models in that section so that they

are compatible with the assumptions and intentions stated in chapter 1.
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CHAPTER 3

DETERMINISTIC MODELS

The purpose of this chapter is to exhibit the mathematical models devised to

pursue the objectives of this research work, as well as the algorithms that will be

used to computationally solve the optimization models. Specifically, we deal now

with the deterministic approach to formulate and solve a bilevel optimization

problem with the characteristics described in section 1.4. The basic notions for this

are given in section 3.1.

Section 3.1.1 shows the process by which mathematical models has been

developed, inspired from the original source in [88]. Later, in section 3.2, theoretical

work is described to reduce the models thus obtained into linear and almost-linear

equivalent versions that are intended to ease the computational solutions. The

algorithms employed to solve this theoretical models are lastly given in section 3.3.

3.1 Bilevel Programming Model

In many decision processes, we find that the variables involved are controlled by

different entities, or decision makers, each one pursuing independent—and often

opposed—goals. The basic mathematical models developed to abstract these

situations are informally called (mathematical) “games”. A particular type of game

is one in which the decision makers (the “gamers”) have different levels of influence,

or take their decisions at different times, i.e., there is an underlying hierarchy in the

game structure. An approach often followed with these types of games is to focus in

one level of decision, and model every other level as assumptions.

Multilevel Programming, on the contrary, deals with mathematical programming

problems that consider the whole hierarchical structure. If there are only two

participants, we have a bilevel programming problem: one decision maker (dubbed

the follower, or lower level decision maker) has its choices constrained by the

decisions made by the other decision maker (dubbed the leader, or upper level

decision maker.)

Typically, we model the lower level as a regular optimization problem whose

feasible set Γ = Γ(x) is a mapping of the values that correspond to the leader’s
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decision variables, x. The follower’s constraints and objective function will

consequently change whenever they include variables controlled by the leader. By

knowing the logic used by the follower, the leader can successfully influence the

problem’s outcome to its convenience, even though it is not in complete control of

the decision.

Multilevel Programming are a well known and important field of Optimization

Theory, with applications in environmental sciences, politics, economy, databases,

network design, transportation, and logistics [57]. In this work, we attempt to apply

multilevel programming (or rather, bilevel programming) to the NGSC-POC

subsystem described in section 1.3.2, according to the guidelines given in section 1.4.

3.1.1 Deterministic Optimization Models

This section presents the deterministic models that abstract the NGSC-POC

subsystem. They will be used later as the basis for the stochastic models in chapter

4.4.

Note that, even though the solution of a stochastic formulation is the ultimate

goal of the dissertation work, the deterministic models developed are not lacking in

their own research merit, both theoretically and numerically speaking.

Each one of the deterministic models in this chapter deals with some of the

following subjects:

• the source problem used as a base

• the expansion of its objective function to include variables of interest

• the linearization of the later problem’s upper level

• the linearization of the later problem’s lower level

3.1.2 Mixed Integer Bilevel Cash-Out Problem

Let us first recapitulate our problem statement, paraphrasing the explanation

given in Kalashnikov and Ŕıos-Mercado [57]: we are concerned with one NGSC, the

leader in our bilevel problem; and one POC, the follower; in a particular problem

setting. The NGSC controls gas extraction from the pipeline each day within certain
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predetermined, finite operative period divided in equal-length intervals (which may

be days, weeks, etc.) Without loss of generality, we will from now on refer to these

intervals as days. The extraction takes place across many points, called Pool Zones.

The extractions made by the NGSC may indirectly create imbalances, which are

differences between the amount of gas the NGSC has planned/booked—at the

beginning of this process—, and the actual extracted volumes.

If the amount of natural gas extracted from the pipeline is greater than the

amount originally stated, we have a negative imbalance. Conversely, if the amount

of gas extracted from the pipeline is lower than the amount stated, we have a

positive imbalance. The NGSC controls the extraction amounts—and consequently,

the creation of imbalances —mostly independently in each pool zone and day,

subject to the constraints explained later.

Once the NGSC has finished its extracting operations, the POC will have the

chance to rearrange the final day imbalances, moving gas form positive imbalance

pool zones to negative imbalance pool zones. The goal of this process is to leave

only nonnegative or nonpositive imbalances in all pool zones, obtaining the minimal

cost/revenue from this rearrangement, as the resulting final imbalances are used to

determine the NGSC to POC (or POC to NGSC) cash-out derived from imbalance

penalization.

The notation given in tables (3.1)-(3.6) is used throughout the rest of this chapter

to represent the variables involved in the process above, with some symbols also

used in chapter 4.

Table 3.1. Sets for Problem PR1(x, s, y, u, v, z, q).
N Maximum number of days in the process; N ∈ Z++.
P Number of pool zones; P ∈ Z++.
T Set for Days; T = {1, 2, ..., N}.
J Set for Pool Zones; J = {1, 2, ..., P}.
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Table 3.2. Upper Level Parameters for Problem PR1(x, s, y, u, v, z, q).
xL

ti, x
U
ti Lower and upper bounds for the daily imbalance xti at

day t in zone i; t ∈ T, i ∈ J.
xL

t , xU
t Lower and upper bounds for the sum of the daily imbal-

ances at day t; t ∈ T.
sL

ti, s
U
ti Bounds on balance swing sti from day t− 1 to day t, in

pool zone i; t ∈ T, i ∈ J.
x0i Imbalance at the beginning of day 1 in pool zone i ∈ J.

Table 3.3. Lower Level Parameters for Problem PR1(x, s, y, u, v, z, q).
eij Percentage of gas used/lost when moving one unit of gas

from zone i to zone j; i, j ∈ J.
fij Forward haul cost for moving one unit of gas from zone

i to zone j; i, j ∈ J.
bij Backward credit given to the NGSC after moving one

unit of gas from zone i to zone j;i, j ∈ J.
ri Linear penalization coefficients in zone i; i ∈ J.
δi Quadratic penalization coefficients in zone i; i ∈ J.

Table 3.4. Upper Level Decision Variables for Problem PR1(x, s, y, u, v, z, q).
xti Imbalance at the end of day t in zone i; t ∈ T, i ∈ J.
sti Imbalance swing from day t−1 to day i in zone i; t ∈ T,

i ∈ J.

Table 3.5. Lower Level Decision Variables for Problem PR1(x, s, y, u, v, z, q).
yi Final imbalance in zone i; i ∈ J.
uij Volume of gas moved from zone i to zone j; i, j ∈ J.
vij Gas credited from zone j to zone i; i, j ∈ J.
z Total cash-out for the Natural Gas Shipping Company.

Table 3.6. Auxiliary Variable for Problem PR1(x, s, y, u, v, z, q).
q Binary variable equal to 1(0) if final imbalances yi are

all non-negative (non-positive.) In case yi = 0, i ∈ J, we
accept q = 1.
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The model proposed in [57] is given by (3.1a)-(3.1e), (3.2a)-(3.2k). It will be

labeled as PR1(x, s, y, u, v, z, q). Variable z is controlled by the lower level decision

maker but appears in the upper level’s objective function; conversely, variable x is

controlled by the upper level but appears in several constraints of the lower level.

Upper Level Model:

Minimize: h1 (x, s, z) = z (3.1a)

Subject to:

xL
ti ≤ xti ≤ xU

ti , t ∈ T, i ∈ J; (3.1b)

sL
ti ≤ sti ≤ sU

ti , t ∈ T, i ∈ J; (3.1c)

xL
t ≤

�

i∈J

xti ≤ xU
t , t ∈ T; (3.1d)

xti = xt−1,i + sti, t ∈ T, i ∈ J. (3.1e)

Constraints (3.1b) limit the size of the imbalances in every pool zone and day.

Constraints (3.1c) limit the change that imbalances in a given zone can have form

one day to another: sizable imbalances, or sizable changes thereof would disrupt the

regular operating pressure in the pipeline, thus the POC imposes all NGSC upper

and lower bounds to both variables. In the same manner, the total imbalance

throughout the whole system is bounded above and below by constraints (3.1d).

Constraints (3.1e) express the natural relationship between the imbalance variables

xti and the imbalance swing variables sti.
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Lower Level Model:

Minimize: g1 (x, y, u, v, z, q) = z2 (3.2a)

Subject to:

yj = xNi +
�

i:i<j

(1− eij)uij − vij +
�

k:k>j

vjk − ujk; j ∈ J; (3.2b)

�

j:i<j

uij +
�

k:k<i

vki ≤ max{0, xN,j}; j ∈ J; (3.2c)

uij ≤





xN,i if xN,i > 0 and xN,j < 0,

0 otherwise;
(3.2d)

vij ≤





xN,j if xN,j > 0 and xN,i < 0,

0 otherwise;
(3.2e)

min{0, xN,i} ≤ yi ≤ max{0, xN,i}; i ∈ J; (3.2f)

−M (1− q) ≤ yi ≤ Mq; i ∈ J; (3.2g)

z =
�

i∈J

[δi(yi)
2
+ − riyi]−

�

(i,j):i<j

vijbij +
�

(i,j):i<j

fij (1− eij) uij; (3.2h)

yi, z ∈ R; i ∈ J; (3.2i)

uij, vij ≥ 0; i, j ∈ J; (3.2j)

q ∈ {0, 1}. (3.2k)

Expression (3.2b) defines the relation between the final day imbalances xNi, which

are ultimately determined by the NGSC manipulation at the end of day N , and the

final imbalances yi, which are produced after the POC’s rearrangement of the

resulting xNi’s. The final imbalance at zone i, denoted by yi, is equal to whatever

imbalance was already there before the rearrangement (the first term) plus whatever

gas is moved towards there (second and fourth terms,) minus whatever gas was

moved from there (third and fifth terms.)

The expression in line (3.2c) prevents cyclical movements of gas: for any given

zone, the amount of gas moved forward or backward from there cannot be higher

than any positive imbalance initially there. Constraints (3.2d)-(3.2e) prevent any
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other type of movement (forwards or backwards) other than that carried on from a

positive imbalanced zone to a negative imbalanced zone.

Line (3.2f) prevents positive imbalances to grow bigger, and negative imbalances

to decrease further: the sign of final imbalances yi must be the same as the

corresponding final day imbalance xNi. Also, final day imbalances must all share the

same sign—this is a business requirement—; constraint (3.2g) guarantees this by

employing the auxiliary variable q.

Lastly, constraint (3.2h) defines the relationship of the variable representing the

penalization amount, z, with the final day imbalances, final imbalances, and

forward/backward moved volumes. The second term represents the amount credited

in favor of the NGSC by the POC for “moving” gas upstream, an action that is

performed only “in paper” as the network does not allow for physical upstream

movements of gas (hence no gas loss/usage.) For every unit of gas moved backwards

from zone j to zone i, the POC credits the NGSC with bij.

The third term represents the cost for the shipper to physically move gas

downstream: the POC has to use pumps to perform this operation, which causes

operating costs that are charged to the NGSC. The percentage of gas lost in this

movement, eij, is covered by the NGSC, so for every unit of gas moved forwards

from zone i to zone j, the NGSC is charged by the POC with an effective price of

fij(1− eij).

The first term,
�

i∈J [δi(yi)2
+ − riyi], where (yi)+ = min{yi, 0}, has a slightly more

complex justification: it represents a piecewise, derivable quadratic cost function

that effectively serves as a ‘purchase/sale’ price from the POC to the NGSC: if there

is a negative imbalance, the NGSC is taking extra gas in the pipeline, buying it at

the constant unit price of ri. Conversely, if there is a positive imbalance, the NGSC

is leaving gas in the pipeline, selling it to the POC at a price of (δi − ri) per square

unit bought. Terms δi are artificial parameters added to limit the amount of gas the

NGSC would likely sell to the POC: if δi > 0, there is then a stationary point (a

global minimum,) for function [δi(yi)2
+ − riyi] for pool zone i (see figure 3.1.)

Beyond this point, the earnings of the NGSC for “selling” gas to the POC decrease

until they become negative: the NGSC is leaving gas in the pipeline and paying the

POC to receive it! Consequently, there is a strong motivation for the NGSC to
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maintain any positive final imbalances day xNi’s around the stationary point—or at

least, not allowing them to grow too large—, so that the POC cannot create yi’s

larger than the intersection point of the purple line in any given pool zone.

Figure 3.1. Objective Function (3.2h)’s First Term for an Arbitrary Pool Zone.

Finally, note that the objective function of the POC in the lower level is not −z

(the negative cost for the NGSC i.e. the total cost for the POC,) as one would

naturally assume, but instead z2. This represents the willingness of the POC to

minimize both its and the NGSC’s possible losses when conducting business with

each other (assumption12.) Business-wise, it would not be advisable for a NGSC to

engage in a contract with a POC whose stated purpose is to undermine the former!

3.1.3 Price Deviation Model Variation

Problem PR1(x, s, y, u, v, z, q) describes a NGSC-POC subsystem concerned only

with pool zone imbalances and the derived penalization cash-out between the

participants. In order to make this problem closer to reality, we add sale and cost

terms for the NGSC operations, as well as variables representing the actual volumes

of gas extracted and booked in every pool zone. These changes affect solely the

upper level; the lower level parameters, decision variables, and constraints remain

for the most part unchanged.
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An early attempt to introduce sale and price considerations in the optimization

model was done by this work authors in [22, 53], where the objective function in

(3.1a) was modified to be:

h2(x, s, z) = z +
�

t

�

i

dtixti, (3.3)

where ∆ = (dti) ∈ RN×P is a price deviation matrix, i.e., the sale price for pool

zone i at day t differs from the expected price by dti. This modification would

ultimately affect revenues from gas sales, so decisions regarding the size of the

imbalance in that particular pool zone and day would be affected too. The problem

obtained by substituting (3.1a) with (3.3) is labeled as PR2(x, s, y, u, v, z, q; ∆).

PR2(x, s, y, u, v, z, q; ∆) is but a simple modification to problem PR1: it adds

nothing but a linear term on the objective function. Results regarding running time,

convergence, and comparisons between optimal values of functions h1 and h2

performed by the authors are presented in the references already given.

There are many shortcomings in the PR2(x, s, y, u, v, z, q; ∆) approach. First, it

is a deterministic model, so its decision-making ability is limited to present different

instances with different values for matrix ∆ (e.g., prices going up, down,

positive-only or negative-only deviations, etc.) Furthermore, the value of function

h2 holds little meaning to the decision maker; it does not represent any actual

amount of interest for the NGSC. Hence, we expanded from this formulation and

added actual gas volumes (instead of only imbalances,) as well as sale prices

(instead of price deviations) and consumptions.

3.1.4 Price, Demand and Extraction Volume Model

This section presents the modification to the model explained at the end of

previous section; specifically, we include now aspects of the NGSC-POC like

extraction volume, consumer price and demand.

Tables 3.8 to 3.7 show the variables and parameters introduced for this

formulation.

Variable EAti represents the amount of gas actually extracted from pool zone i at

time t, whereas variable EPti is the amount of gas announced to be extracted, or
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Table 3.7. Price and Demand Related Parameters Added to Problem PR1.
DCti Expected demand at day t in pool zone i; t ∈ T, i ∈ J.
DMti Maximum amount of gas that is possible to extract in

pool zone i at time t; t ∈ T, i ∈ J.
Πc

ti Unit price for the first DCti units of gas extracted/sold
(contracted gas) at time t in zone i; t ∈ T, i ∈ J.

Πe
ti Unit price for whatever units of gas extracted/sold be-

yond DCti at time t in pool zone i; t ∈ T, i ∈ J.
CIti Cost for undelivered contracted gas unit at time t in

pool zone i; i ∈ J.
CRti Cost for reserved gas capacity at time t in pool zone i;

t ∈ T, i ∈ J.

Table 3.8. Extraction and Booking Decision Variables Added to Problem PR1.
Upper Level Decision Variables
EAti Amount of gas extracted/sold from zone i at day t; t ∈

T, i ∈ J.
EPti Amount of gas notified to be extracted at day t in zone

i; t ∈ T, i ∈ J.

booked, by the NGSC before the whole process had begun. Using the new variables,

we can deduce a new, more illustrative definition for the imbalance variables:

xti = EPti − EAti, i ∈ J, t ∈ T. (3.4)

If EPti > EAti, we are extracting less than our stated/injected amount, creating a

positive imbalance xti in zone i at time t. On the contrary, if EPti < EAti, we are

then extracting more gas than the amount initially injected, thus creating a

negative imbalance xti.

For every day t and pool zone i, the NGSC has agreed to provide an actor

external to the NGSC-POC system with a certain volume of natural gas so that the

LDC distributes it to its own costumers. This figure is represented by parameter

DCti (assumption 7.) For every unit of gas the NGSC does not satisfies, it receives a

penalization of CIti. Also, for every unit of gas injected, EPti, the NGSC has to pay

to the POC CRti for the use of the pipeline. This covers all operative costs the POC
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might incur while dealing with the normal, daily process of pumping gas throughout

the process, but not expenses derived from final day balancing of the system.

For every unit of gas extracted and delivered by the NGSC to the (external) LDC

within the limit DCti, the NGSC earns Πc
ti. Any amount of gas extracted beyond

this (EAti −DCti, in case that EAti > DCti) will be sold by the NGSC, according

to assumption 8, to secondary customers who pay Πe
ti per unit of gas. The NGSC

cannot inject nor extract more gas than DMti in any pool zone i at any time t:

DMti is a limit of technical, logistical, financial, or any other nature.

Since the lower level variables remain unchanged, the new model, labeled as

PR3(x, s, EA, EP, y, u, v, z, q; Πc, Πe, DC), can be expressed by equations

(3.5a)-(3.5h), along with the already shown equations (3.2a)-(3.2k).

Minimize h3 (x, s, z, EA, EP ; Πc, Πe, DC) =

z −
�

t∈T

�

i∈J

[Πc
ti (min{EAti, DCti}) + Πe

ti (max{0, EAti −DCti})] (3.5a)

+
�

t∈T

�

i∈J

[CIti (max{0, DCti − EAti}) + CRtiEPti] ;

Subject to

xL
ti ≤ xti ≤ xU

ti , t ∈ T, i ∈ J; (3.5b)

sL
ti ≤ sti ≤ sU

ti , t ∈ T, i ∈ J; (3.5c)

xL
t ≤

�

i∈J

xti ≤ xU
t , t ∈ T; (3.5d)

xti = xt−1,i + sti, t ∈ T, i ∈ J; (3.5e)

xti = EPti − EAti, t ∈ T, i ∈ J; (3.5f)

0 ≤ EAti ≤ DMti, t ∈ T, i ∈ J; (3.5g)

0 ≤ EPti ≤ DMti, t ∈ T, i ∈ J; (3.5h)

where variable z is the corresponding component of the optimal solution of the lower

level problem represented by (3.2a)-(3.2k) Note that, this time, the NGSC has an

actual motivation not to leave natural gas in the pipeline (and create unnecessary

positive imbalances): from the mathematical point of view, and for a fixed EPti,
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making xNi unjustifiably larger would reduce the magnitude of EANi, preventing

the NGSC from gaining [Πc
Ni (min{EANi, DCNi}) + Πe

Ni (max{0, EANi −DCNi})].
This amount is typically larger than any revenue [δiy2

i − riyi] the NGSC could

obtain from the POC by leaving gas in the pipeline (since buying, selling, and

generally, trading gas is not a business activity for the POC, thus it is not interested

in buying and offers a low price, only as means of balancing the network.)

The NGSC is then encouraged not to leave lots of gas into to the pipeline instead

of extracting it. This was the only reason to add term δi(yi)2
+ to equation (3.2h), a

modeling one, since it had otherwise no real world meaning. Dropping this term (or

equivalently, fixing δi = 0∀i,) we obtain problem

PR3�(x, s, EA, EP, y, u, v, z, q; Πc, Πe, DC), which uses equation

z = −
�

i∈J

riyi −
�

(i,j):i<j

vijbij +
�

(i,j):i<j

fij (1− eij) uij,

instead of equation (3.2h).

We have then removed the piecewise quadratic term in line (3.6h), but one would

still want to eliminate most other nonlinearities from the problem.

To achieve this, consider first lemma 1:

Lemma 1. Let I ⊂ R. Then

arg min
z∈I

z2 = arg min
d∈I

−d≤z≤d

d

Proof. Function f(z) =
√

z is bijective over [0, +∞), which is the domain of both

f(z) = z2, and f(z) = |z|. Since |z| =
√

z2, we have:

arg min
z∈I

z2 = arg min
z∈I

|z|

The optimal point obtained by minimizing z2 is then equivalent to that obtained by

minimizing either side of expression:

|z| ≤ d; z, d ∈ I,
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which can be expressed in linear terms as −d ≤ z ≤ d.

This does away with the quadratic z2 in the lower level objective function.

Indeed, the leader needs not to use the exact value the lower level is minimizing, as

long as the optimal vector is the same. Lemma 1 delivers a way to calculate such

optimal point by putting I as the feasible set for the lower level problem, and

minimizing d instead of z2.

Another of the nonlinearities found in problem PR3 has so been removed.

The lower level corresponding to problem

PR3�(x, s, EA, EP, y, u, v, z, q; Πc, Πe, DC), considering the last lemma, can be

written as:

Minimize: g1 (y, u, v, z, d, q; x) = d (3.6a)

Subject to:

yj = xNi +
�

i:i<j

(1− eij)uij − vij +
�

k:k>j

vjk − ujk; j ∈ J; (3.6b)

�

j:i<j

uij +
�

k:k<i

vki ≤ max{0, xN,j}; j ∈ J; (3.6c)

uij ≤





xN,i if xN,i > 0 and xN,j < 0,

0 otherwise;
(3.6d)

vij ≤





xN,j if xN,j > 0 and xN,i < 0,

0 otherwise;
(3.6e)

min{0, xN,i} ≤ yi ≤ max{0, xN,i}; i ∈ J; (3.6f)

−M (1− q) ≤ yi ≤ Mq; i ∈ J; (3.6g)

z = −
�

i∈J

riyi −
�

(i,j):i<j

vijbij +
�

(i,j):i<j

fij (1− eij) uij (3.6h)

− d < z < d; (3.6i)

yi, z ∈ R, i ∈ J; (3.6j)

uij, vij ≥ 0; i, j ∈ J; (3.6k)

q ∈ {0, 1}. (3.6l)
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Problem PR3(x, s, EA, EP, y, u, v, z, q; Πc, Πe, DC) is a mixed integer, bilevel

optimization problem with non-smooth upper level objective function, lower level

logical and quadratic constraints, and a lower level quadratic function. Problem

PR3�(x, s, EA, EP, y, u, v, z, q; Πc, Πe, DC), defined by (3.5a)-(3.5h), (3.6a)-(3.6l) is

one step closer to obtaining a linear model, dropping the quadratic terms from the

lower level objective function and constraints. In the next section, we will provide

tools for solving the problems so far formulated using theoretical and computational

tools intended for linear programming.

3.2 Bilevel Linear Reformulation1

This section describes a method to remove the min and max operators in the

objective function (3.5a), replacing the upper level problem shown in section 3.1.4

with an almost linear problem, and the corresponding lower level problem with a

linear programming problem, which is an inexact equivalent problem.

Reducing the independent levels to linear problems will eventually led us to a

formulation like:

Minimize: c1x + d1y (3.7)

Subject to: A1x ≤ b1 (3.8)

and y = arg min{d2y|G2y ≤ b2 − A2x}, (3.9)

where A1, A2 and G2 are linear coefficient matrices, c1, d1, d2, b1 and b2 are linear

coefficient vectors, and variables x and y are the decision variables for the upper

and lower level, respectively. This structure is called a bilevel linear optimization

problem, and is formed by a linear upper level problem with respect to every

variable except for those controlled by the lower level problem, which form the

optimal solutions to another linear programming problem.

Reducing the upper level optimization problem to an almost linear equivalent and

the lower level to a linear optimization problem should to boost the convergence

speed of the solution methods for the models shown in this section. Solution

techniques for linear problems and bilevel linear problems are more deeply

1The contents of this section appear in the authors’ [55]
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researched and usually more effective and widely applied than those used for

nonlinear optimization, so being able to use them is of great help in this research.

3.2.1 Upper Level Equivalent Problem

Lemma 2 shows a simpler linear equivalent problem to the upper level of PR3. It

is linear in every variable but z, which is controlled by the lower level and depends

on this level’s response.

Lemma 2. Let Πc
ti − Πe

ti + CIti > 0∀t, i; and consider the single-level optimization

problem, which is linear with respect to all variables except for z:

Minimize: h4(x, z, EA,A1, A2; Πc, Πe, DC) =

z −
�

t∈T

�

i∈J

�
Πe

tiA
1
ti + (Πc

ti − Πe
ti) A2

ti

�
(3.10a)

+
�

t∈T

�

i∈J

�
CIti

�
DCti − A2

ti

�
+ CRti(xti + EAti)

�
;

Subject to:

xL
ti ≤ xti ≤ xU

ti , t ∈ T, i ∈ J; (3.10b)

sL
ti ≤ xti − xt−1,i ≤ sU

ti , t ∈ T, i ∈ J; (3.10c)

xL
t ≤

�

i∈J

xti ≤ xU
t , t ∈ T; (3.10d)

0 ≤ EAti ≤ DMti, t ∈ T, i ∈ J; (3.10e)

0 ≤ xti + EAti ≤ DMti, t ∈ T, i ∈ J; (3.10f)

A1
ti ≤ EAti, t ∈ T, i ∈ J; (3.10g)

0 ≤ A2
ti ≤ DCti, t ∈ T, i ∈ J; (3.10h)

0 ≤ A2
ti ≤ A1

ti, t ∈ T, i ∈ J; (3.10i)

where variable z is the corresponding component of the solution to the lower level

problem (3.6a)-(3.6l).
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1. Let (x∗, z∗, s∗, EA∗, EP ∗) be an optimal solution to problem (3.5a)-(3.5h),

where z∗ solves problem (3.6a)-(3.6l). Then there exist A1, A2 such that

(x∗, z∗, EA∗, A1∗, A2∗) is an optimal solution to problem (3.10a)-(3.10i).

2. Let (x∗∗, z∗∗, EA∗∗, A1∗∗, A2∗∗) be an optimal solution to problem

(3.10a)-(3.10i), where z∗ solves problem (3.6a)-(3.6l). Then there exist

s∗∗, EP ∗∗ such that (x∗∗, s∗∗, z∗∗, EA∗∗, EP ∗∗) is an optimal solution to

problem (3.5a)-(3.5h).

Proof. (a) Let vector (x∗, z∗, s∗, EA∗, EP ∗) be feasible solution to problem

(3.5a)-(3.5h). Constraints (3.10b),(3.10d), and (3.10e) are trivially satisfied by

x∗, EA∗. Putting together (3.5c) and (3.5e), we have that (3.10c) also holds.

Similarly, (3.5f) and (3.5h) imply that x∗, EA∗ satisfy (3.10f).

Define now the auxiliary variables A1, A2 as follows:

A2∗
ti = min{EA∗

ti, DCti}, (3.11)

A1∗
ti = max{0, EA∗

ti −DCti} + A2∗
ti = max{0, EA∗

ti −DCti} + min{EA∗
ti, DCti}.

(3.12)

If EA∗
ti ≥ DCti, then A1∗

ti = (EA∗
ti −DCti) + DCti = EA∗

ti. Otherwise, if

EA∗
ti ≤ DCti, then A1∗

ti = 0 + EA∗
ti = EA∗

ti. Therefore, A1∗ = EA and constraint

(3.10g) is satisfied by A1∗. Moreover, since DCti ≥ 0∀t, i, line (3.5g) and the

definition of A1∗, A2∗ make the latter satisfy (3.10h), (3.10i). Thus, vector

(x∗, z∗, EA∗, A1∗, A2∗) is feasible for (3.10a)-(3.10i).

Let us next demonstrate the equivalence of the correspondent objective functions.

By the definition of A1∗, A2∗, the first double sum in (3.5a) can be rewritten as:

�

t∈T

�

i∈J

�
(Πc

ti)A
2∗ + Πe

ti(A
1∗ − A2∗)

�
=

�

t∈T

�

i∈J

�
Πe

tiA
1∗ + (Πc

ti − Πe
ti)A

2∗� .

Also, since

max{0, DCti − EA∗
ti} = −min{0, EA∗

ti, DCti} = DC −min{DCti, EAti}, (3.13)
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and because of (3.5f), the second double sum in (3.5a) can be expressed as:

�

t∈T

�

i∈J

�
CIti(DCti − A2∗

ti ) + CRti(x
∗
ti + EA∗

ti)
�

Hence both functions (3.5a) and (3.10a) take the same value at their corresponding

feasible solutions (x∗, s∗, z∗, EA∗, EP ∗) and (x∗, z∗, EA∗, A1∗, A2∗).

(b) Consider now a feasible optimal solution (x∗∗, z∗∗, EA∗∗, A1∗∗, A2∗∗) to

problem (3.10a)-(3.10i). Constraints (3.5b),(3.5d), and (3.5g) are trivially satisfied

since they are identical to (3.10b), (3.10d) and (3.10e), respectively.

Defining s∗∗ti = x∗∗ti − x∗∗t−1,i and EP ∗∗ = x∗∗ + EA∗∗, and making use of (3.10c),

(3.10f), constraints (3.5c), (3.5e),(3.5f), and (3.5h) are readily satisfied by variables

x∗∗, s∗∗, EA∗∗, EP ∗∗. Thus the vector (x∗∗, s∗∗, z∗∗, EA∗∗, EP ∗∗) is feasible for

problem (3.5a)-(3.5h).

Now, we will prove that the objective functions (3.5a) and (3.10a) have the same

values at their corresponding feasible solutions.

The coefficients for variables A1∗∗
ti in (3.10a) are −Πe

ti, which are all nonpositive.

Therefore, in a minimization process, variables A1∗∗
ti will take their maximum

possible value in order to minimize the objective function. Since the growth of

variable A1∗∗ is only constrained by EA∗∗, then at the optimal point, we will have

A1∗∗ = EA∗∗ = max{0, EA∗∗ −DC} + min{EA
∗∗, DC}. (3.14)

Similarly, the coefficients of variables A2∗∗
ti in (3.10a) are Πe

ti − Πe
ti + CIti, which are

positive by the lemma’s assumptions. The variables A2∗∗
ti will take then their

maximum allowed values, which are given by constraints (3.10h) and (3.10i) and by

(3.14), as

A2∗∗
ti = min{DCti, A

1∗∗
ti } = min{DCti, EA∗∗

ti }. (3.15)
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Using both (3.14) and (3.15), we can rewrite the first double sum of the objective

function (3.10a) using (3.14) and (3.15) as:

�

t∈T

�

i∈J

[Πe
ti (max{0, EA∗∗ −DC} + min{EA∗∗, DC}) +

+ (Πc
ti − Πe

ti) min{DCti, EA∗∗
ti }] =

=
�

t∈T

�

i∈J

[Πe
ti max{0, EA∗∗ −DC} + Πc

ti min{DCti, EA∗∗
ti }] ;

which corresponds to the first double sum of the nonlinear problem objective

function (3.5a).

As for the second double sum in (3.10a), it can be expressed (using (3.13), (3.15),

and the definition of EP ∗∗) as:

�

t∈T

�

i∈J

[CIti (max{0, DCti − EA∗∗
ti }) + CRtiEP ∗∗

ti ]

Using the last two equalities, we can show that both objective functions have

equal values at the corresponding feasible solutions (x∗∗, s∗∗, z∗∗, EA∗∗, EP ∗∗) and

(x∗∗, z∗∗, EA∗∗, A1∗∗, A2∗∗).

(c) Let ((x∗, s∗, z∗∗, EA∗, EP ∗)) be an optimal solution for problem (3.5a)-(3.5h)

with an optimal value of h3(x∗, s∗∗, z∗∗, EA∗∗, EP ∗∗; Πc, Πe, DC) = h∗∗3 . If the

feasible solution (x∗, z∗, EA∗, A1∗, A2∗) constructed as in part (a) is not optimal for

problem (3.10a)-(3.10i), then there exists a feasible vector (x∗∗, z∗∗, EA∗∗, A1∗∗, A2∗∗)

such that h4(x∗∗, s∗∗, z∗∗, EA∗∗, EP ∗∗; Πc, Πe, DC) = h∗∗4 < h∗3. Then by (b), the

feasible solution (x∗∗, s∗∗, z∗∗, EA∗∗, EP ∗∗) to (3.5a)-(3.5h), where

EP ∗∗ = x∗∗ + EA∗∗, has the objective function value h∗∗3 = h∗∗4 < h∗3, which is a

contradiction. Therefore, for any optimal solution to the nonlinear problem, we can

construct an optimal solution to the linear problem such that their objective

functions optimal values are equal. The same argument can be used for the converse

statement. This verifies both assertions of the lemma.

The upper level problem described in the preceding lemma uses the same amount

of variables than problem PR3�, because it drops 2NP variables (s, EP ,) and adds
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the artificial variables A1, A2. The number of constrains, though, is increased, since

the additional artificial variables need more constraints to relate them to the other

variables in the problem.

It is also worth to notice that both sets of variables s, EP are removed because of

their merely explicative nature: variables s are completely determined by

parameters x0 and the variable x, whereas variables EP are determined by the sum

of variables x and EA.

3.2.2 Lower Level Approximate Equivalent Problem

The lower level problem of problem PR3 has three nonlinearities that need to be

removed:

1. The objective function is quadratic, reflecting the objective of the POC not to

maximize the cash-out it obtains, but rather to minimize the absolute value of

the cash-out to benefit both parties. The equation for z, in line (3.6h),

contains also a piecewise quadratic term.

2. Several constraints include maximum and minimum operators that can only

be considered linear in certain solution procedures that use variable x as a

parameter while solving the lower level problem (unlike, for example, the

Inexact Penalization Algorithm described in section 3.3.)

3. Variable q in the lower level problem is binary, though being unique, setting it

as a parameter and solving two problems instead of 1 can effectively remove

this nonlinearity.

We have already removed the quadratic terms listed in item 1 by adding the

artificial variable d and noting the lack of modeling usefulness of variable δ. The

remaining nonlinearities will be removed applying different techniques to obtain a

lower level linear equivalent problem as we did with the upper level problem.

The variable q requires a rather complicated way to be removed from this level

without loss of operability. Strictly speaking, we can fix q to either value and then

solve two problems instead of one problem in the lower level, but with the added

benefit of having only continuous variables in the lower level, which is something

one would desire. While the prospect of this is already advantageous, there is still
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one problem to consider: a direct algorithm would solve the lower level as many

times as the upper level objective function is evaluated. This poses a great risk in

the computational aspects of the problem, for the more complex the lower level is,

the longer time the upper level will require to evaluate its outcome and finish its

own optimization. The Inexact Penalization Algorithm proposed below would also

have its own set of issues when having to solve two lower level problems instead of

one in each function evaluation.

Instead of just fixing the value of variable q, we will give the control thereof to the

upper level. This has a downside, as the actual decision over q is not in the hands of

the NGSC, but in those of the POC. However, under lenient conditions, we can

guarantee that the solutions of both problems are equal.

If the NGSC controls its final day imbalances so that it is impossible for the POC

to have either yi < 0 or yi > 0 for all i ∈ J, then the solution of the problem will

remain equal no matter what level is in control of variable q. On the contrary, if the

sum of all final day imbalances xNii ∈ J, in control of the NGSC, is small enough,

then the POC has an actual choice of setting q to either allowed value. In this case,

however, the difference between the solutions with q in the upper level and q in the

lower level is considerably small, so this can be considered a good approximation,

especially when additional terms—likely having a larger order—of interest are

added to the upper level objective function. More on the manipulation of variable q,

and the conditions for the equivalence of the problems with q in a different level,

can be found in [23].

Finally, we address the existence of maximum and minimum operators in the

constraints of problem PR3�. If the lower level is solved as an optimization problem

parameterized by x, then this problem is linear, as the value of the expression

max{xN1, 0} is just a comparison between parameters. There is nothing nonlinear in

comparing two parameters before solving the problem.

However, when using a different methods to solve the bilevel problem, like the

Inexact Penalization Algorithm in section 3.3, is becomes evident that not every

algorithm will have the upper level variables fixed when solving the lower level. It is

then useful to formulate a fully linear version of the problem, considering the

changes to the lower level already stated above.
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The lower level problem can be reduced to an inexact linear formulation by

adding 2N new variables, which render the constraints containing max and min

operator linear. The downside (besides the fact that the new problem can be

feasible even if the original is not,) is that the objective function is no longer

equivalent to the penalization (i.e., the explicit interest for the POC). Also, this

method is only inexactly equivalent, though the structure of the problem makes it

easy to estimate a proper penalization constant M, for the magnitude of the

original objective function can be readily estimated and the penalization parameter

assigned accordingly.
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Lemma 3. For a given vector xN of final day imbalances, consider the linear

programming problem:

Minimize: g4(y, u, v, z, d, ξ, ζ; x, q) = d + M
�

i∈J

(ξi + ζi) (3.16a)

Subject to:

yj = xNi +
�

i:i<j

(1− eij)uij − vij +
�

k:k>j

vjk − ujk; j ∈ J; (3.16b)

uij ≤ ξi, i, j ∈ J, i < j; (3.16c)

uij ≤ ζj, i, j ∈ J, i < j; (3.16d)

vij ≤ ξj, i, j ∈ J, i < j; (3.16e)

vij ≤ ζi, i, j ∈ J, i < j; (3.16f)

− ζi ≤ yi ≤ ξi, i ∈ J; (3.16g)

ξi ≥ xNi, i ∈ J ; (3.16h)

ξi ≥ 0, i ∈ J ; (3.16i)

ζj ≥ −xNi, j ∈ J ; (3.16j)

ζj ≥ 0, j ∈ J. (3.16k)

−M (1− q) ≤ yi ≤ Mq; i ∈ J; (3.16l)

z = −
�

i∈J

riyi −
�

(i,j):i<j

vijbij +
�

(i,j):i<j

fij (1− eij) uij (3.16m)

− d < z < d (3.16n)

yi, z ∈ R, i ∈ J; (3.16o)

uij, vij ≥ 0; i, j ∈ J; (3.16p)

where M is a large enough scalar.

1. Let (y∗, u∗, v∗, z∗, d∗, q; x) solve the original problem (3.6a)-(3.6l), with q∗ fixed.

Then there exists (ξ∗, ζ∗) such that (y∗, u∗, v∗, z∗, d∗, ξ∗, ζ∗; x, q∗) is an optimal

solution to (3.16a)-(3.16p).

58



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

2. Let (y∗∗, u∗∗, v∗∗, z∗∗, d∗∗, ξ∗∗, ζ∗∗; x, q) solve the linear problem (3.16a)-(3.16p).

Then (y∗∗, u∗∗, v∗∗, z∗∗, d∗∗, q) is an optimal solution to problem (3.6a)-(3.6l),

when q is fixed.

Proof. (a) Let (y∗, u∗, v∗, z∗, d∗, q∗; x) solve the original problem (3.6a)-(3.6l). If we

define ξ∗i = max{xNi, 0}, ζ∗i = max{−xNi, 0}, i ∈ J, then it is clear that ξ∗ and ζ∗

satisfy (3.16h)-(3.16k). Variables y∗, u∗, v∗, q∗, z∗, d∗ will trivially satisfy the

constraints (3.6b), (3.2g)-(3.2j). If (3.6d), (3.6e) hold true for u∗, v∗, then the later

variables will also fulfill (3.16c), (3.16e) and, as y∗, u∗, v∗ satisfy (3.6b) and (3.6f),

then (3.16d), (3.16f) are also valid for these u∗, v∗.

With ξ∗, ζ∗ defined as above, constraint (3.6f) can be rewritten as (3.16g),

therefore, as y∗ satisfies the first, it will also yield the later. The vector

(y∗, u∗, v∗, z∗, d∗, ξ∗, ζ∗) is then feasible for problem (3.16a)-(3.16p).

In view of lemma 1, the objective value of the linear problem coincides with

g4(y
∗, u∗, v∗, z∗, d∗, ξ∗, ζ∗; x, q∗) =

= g3(y
∗, u∗, v∗, z∗, d∗, z∗, q∗; x) + M

�

i∈J

(max{xNi, 0} + max{−xNi, 0}) (3.17)

(b) Consider now an optimal solution (y∗∗, u∗∗, v∗∗, z∗∗, d∗∗, ξ∗∗, ζ∗∗; x, q) to

problem (3.16a)-(3.16p). If M is large enough, a minimization process will force the

variables ξ∗∗, ζ∗∗ to take their minimum values in order to minimize their impact to

the objective function. Thus, we will have

ξ∗∗i = max{xNi, 0}, ζ∗∗i = max{−xNi, 0}; i, j ∈ P. (3.18)

The variables ξi represent the amount of gas that can be drawn from zone i,

whereas variables ζj represent the amount of gas that can be deposited into zone j.

If ξ∗∗i ,
�
ζ∗∗j

�
are 0, then u∗∗ij

�
v∗∗ij

�
will be equal to 0 because of (3.16c)-(3.16f). Hence,

u∗, v∗ will then satisfy (3.6d), (3.6e).

With ξ∗∗, ζ∗∗ defined in (3.18), constraint (3.16g) can be rewritten as (3.6f).

Therefore, if the former is true for y∗∗, the later will also hold.
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Let us now prove that u∗∗, v∗∗ satisfy (3.6c). If xNi ≥ 0, for any i ∈ J, then

expression (3.16g) becomes

−ζ∗∗i = 0 ≤ yi ≤ xNi = ξ∗∗i . (3.19)

Constraint (3.6b) can be transformed as follows:

�

j:j>i

uij +
�

k:k<i

vki = xNi +
�

j:j<i

(1− eji)uji +
�

k:k>i

vik − yi; i ∈ J. (3.20)

By (3.16d), (3.16f), the sums in the right hand side of the equation become 0, which

yields: �

j:j>i

uij +
�

k:k<i

vki = xNi − yi ≤ xNi = ξ∗∗i (3.21)

Now, on the contrary, suppose xNi ≤ 0 for an arbitrary i ∈ J. In this case, the

left-hand sums in (3.20), when combined with (3.16c), (3.16e), become zero:

�

j:j>i

uij +
�

k:k<i

vki = 0 = ξ∗∗i (3.22)

Lines (3.21), (3.22) show that constraint (3.6c) is satisfied, hence the values

y∗∗, u∗∗, v∗∗, q, z∗∗, d∗∗ are feasible for problem (3.6a)-(3.6l).

The objective value of the nonlinear problem is related to that of the linear

problem as:

g3(y
∗∗, u∗∗, v∗∗, z∗∗, d∗∗, z∗∗, q; x) =

= g4(y
∗∗, u∗∗, v∗∗, z∗∗, d∗∗, ξ∗∗, ζ∗∗; x, q)−

−M
�

i∈J

(max{xNi, 0} + max{−xNi, 0}) (3.23)

(c) We have shown that, for any feasible solution for either problem, one can find

a corresponding feasible solution for the other problem with an explicit relationship

between both problems’ function values. It should also be clear that, if a vector

solves one problem, so does its counterpart to the other problem, given the
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consideration for q. Indeed, let

κ = M
�

i

(max{xNi, 0} + max{−xNi, 0});

then if the nonlinear problem has an optimal solution with an objective function

value σ∗ strictly less than ((τ ∗)− κ), where τ ∗ is the optimal solution of the linear

problem, then by part (a) of this proof, the linear problem has a feasible solution

with objective function value σ∗ + κ < τ ∗, which contradicts the optimality of τ ∗.

The same argument can be easily applied to the converse statement in 2.

This verifies both assertions 1 and 2 of the lemma and ends the proof.

We have now reduced problem PR3 from its original of a bilevel mixed integer

problem with quadratic and logical constraints and objective functions, to an

approximate inexact equivalent bilevel linear problem, in the sense that the

modified problem has the form:

minimize c1x + d1y

Subject to A1x ≤ b1

and y = arg min{d2y|G2y ≤ b2 − A2x},

where A1, A2 and G2 are linear coefficient matrices, c1, d1, d2, b1 and b2 are linear

coefficient vectors, and variables x and y are the decision variables for the upper

and lower level, respectively. We call it inexact because of its necessity of having

appropriately selected parameters to guarantee the equivalence of the optimal

solution.

This is very important because of the existence of linear tools for solving either

level that can be employed, instead of relying on dedicated nonlinear methods.

The complete formulation of the obtained model, labeled

PR5(x, z, EA, A1, A2, y, u, v, ξ, ζ; q, Πc, Πe, DC), is shown next, with q fixed to either

1 or 0, Πc
ti − Πe

ti + CIti > 0∀t, i, and M a scalar large enough:

PR5(x, z, EA, A1, A2, y, u, v, ξ, ζ; q, Πc, Πe, DC):
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Upper Level:

Minimize: h5(x, z, EA, A1, A2; q, Πc, Πe, DC) =

z −
�

t∈T

�

i∈J

�
Πe

tiA
1
ti + (Πc

ti − Πe
ti) A2

ti

�
(3.24a)

+
�

t∈T

�

i∈J

�
CIti

�
DCti − A2

ti

�
+ CRti(xti + EAti)

�
;

Subject to:

xL
ti ≤ xti ≤ xU

ti , t ∈ T, i ∈ J; (3.24b)

sL
ti ≤ xti − xt−1,i ≤ sU

ti , t ∈ T, i ∈ J; (3.24c)

xL
t ≤

�

i∈J

xti ≤ xU
t , t ∈ T; (3.24d)

0 ≤ EAti ≤ DMti, t ∈ T, i ∈ J; (3.24e)

0 ≤ xti + EAti ≤ DMti, t ∈ T, i ∈ J; (3.24f)

A1
ti ≤ EAti, t ∈ T, i ∈ J; (3.24g)

0 ≤ A2
ti ≤ DCti, t ∈ T, i ∈ J; (3.24h)

0 ≤ A2
ti ≤ A1

ti, t ∈ T, i ∈ J; (3.24i)
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Lower Level:

Minimize: g5(y, u, v, z, d, z, ξ, ζ; x, q) = d + M
�

i∈J

(ξi + ζi) (3.25a)

Subject to:

yj = xNi +
�

i:i<j

(1− eij)uij − vij +
�

k:k>j

vjk − ujk, j ∈ J; (3.25b)

uij ≤ ξi, i, j ∈ J, i < j; (3.25c)

uij ≤ ζj, i, j ∈ J, i < j; (3.25d)

vij ≤ ξj, i, j ∈ J, i < j; (3.25e)

vij ≤ ζi, i, j ∈ J, i < j; (3.25f)

− ζi ≤ yi ≤ ξi, i ∈ J; (3.25g)

ξi ≥ xNi, i ∈ J ; (3.25h)

ξi ≥ 0, i ∈ J ; (3.25i)

ζj ≥ −xNi, j ∈ J ; (3.25j)

ζj ≥ 0, j ∈ J. (3.25k)

−M (1− q) ≤ yi ≤ Mq, i ∈ J; (3.25l)

z = −
�

i∈J

riyi −
�

(i,j):i<j

vijbij +
�

(i,j):i<j

fij (1− eij) uij (3.25m)

− d < z < d; (3.25n)

yi, z ∈ R, i ∈ J; (3.25o)

uij, vij ≥ 0; i, j ∈ J; (3.25p)

We conclude this section with table 3.9, which summarizes the most important

specifics in each of the problems we have herein formulated.

3.3 Solution Methods for the Bilevel Linear Problems

This section presents two algorithms, originally formulated in [58], whose purpose

is to solve problem PR1(x, s, y, u, v, z, q) (or rather, to provide an approximation to

its solution.) An expansion to these algorithms will be provided so that they can be

used to solve PR5(x, z, EA, A1, A2, y, u, v, ξ, ζ; q, Πc, Πe, DC). Both algorithms
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Table 3.9. Comparison of the Different Deterministic Models.
Problem

Feature PR1 PR3 PR3� PR5
Upper Level Objec-
tive Function:

Linear Nonlinear Nonlinear Linear

Lower Level Objec-
tive Function:

Quadratic Quadratic Linear Linear

Upper Level Linear
Constraints:

5NP + 2N 10NP + 2N 10NP + 2N 13NP + 2N

Upper Level Non-
linear Constraints:

0 0 0 0

Lower Level Linear
Constraints:

P 2 + 2P P 2 + 2P P 2 + 2P + 3 3P 2 + 5P + 3

Lower Level Non-
linear Constraints:

P 2 + 2P + 1 P 2 + 2P + 1 P 2 + 2P 0

Upper Level Real
Variables:

2NP + 1 5NP + 1 5NP + 1 5NP + 1

Upper Level Integer
Variables:

0 0 0 0

Lower Level Real
Variables:

P 2 + 1 P 2 + 1 P 2 + 1 P 2 + 2P + 2

Lower Level Integer
Variables:

1 1 1 0

Times the problem
is solved:

1 1 1 2

Exact Solution Yes Yes Yes No

assume that the upper level has control of variable q, along with the corresponding

integrality constraint q ∈ {0, 1}, as stated in section 3.2, thus the approximation

remarks.

Inexact Penalization Algorithm

The Inexact Penalization Algorithm (IPA) models the lower level of the problem

as a Variational Inequality [50]. This is then added as a penalization term to the

upper level, thus reducing the problem to a single-level problem with a minimization

problem as a part of its objective function.

Consider problem PR5, and let x = (x, z, EA, A1, A2) ∈ R4NP+1,

y = (y, u, v, z, ξ, ζ) ∈ RP 2+2P+1. These vectors comprise the decision variables for
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both the upper and lower levels the problem. Consider also the sets:

Ωu(q) = {x ∈ R4NP+1 : (3.24b)− (3.24i) hold}, (3.26)

Ωl(x, q) = {y ∈ RP 2+2P : (3.25a)− (3.25l), (3.25o)− (3.25p) hold}, (3.27)

each representing a subspace of the feasible space for both levels of problem PR5.

Note that the lower level feasible sets omits information regarding variables

z and d, since the Inexact Penalization Algorithm incorporates them into the

solution process. Also note that the sets Ωu, Ωl both depend on the value that

variable q takes (the first directly, the second indirectly,) so there will be two

feasible upper level sets and consequently, two problems to be solved.

In order to apply the IPA, the upper level objective function remains intact, but

the algorithm requires defining function

F (y) =
�

i∈J

riyi +
�

(i,j):i<j

bijvij −
�

(i,j):i<j

fij(1− eij)uij. (3.28)

Function F (y) is equal to the negative of variable z as the latter appears in

equation (3.25m.) It is used in the variational inequality

�−F (y)∇F (y), ŷ − y� ≥, for all ŷ ∈ Ωl(x, q). (3.29)

According to Kalashnikov and Ŕıos-Mercado [59], the solution to the variational

inequality (3.29), parameterized by the gap function

G(x,y, q) = max
(ŷ)∈Ωl(x)

�−F (y)∇F (y), ŷ − y� − 1

α
�ŷ − y�2, (3.30)

coincides with the solution of the lower level of problem PR5. Function G(x,y, q) is

nonnegative over its domain, and G(x,y, q) = 0 only if y is the optimal solution to

the lower level problem of problem PR5.

Using functions F (y) and G(x,y, q), we can formulate problem

PR5(x, s, EA, EP,A1, A2, y, u, v, z; q, Πc, Πe, DC) as the single-level optimization
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problem

PR5i(β) : min
x∈Ωu(q)
y∈Ωl(x,q)

q=β

−F (y) + µG(x,y, q).) (3.31)

Problem PR5i(β) is solved for both β = 0, 1, and the best solution from the

NGSC point of view will be taken as the approximation to problem’s PR5 optimal

solution.

Direct Algorithms

Besides the Inexact Penalization Algorithm, we will also consider a Direct

Method (DM.) This technique will minimize function

h5(x, s, z, EA, EP,A1, A2, q, ω), subject to the constraints given for the upper level;

however, every time the upper level objective function is evaluated, the numerical

solver will calculate the value of the function as the optimal response of the lower

level to the current iteration’s values for x, q, z, complying with the lower level

constraints. Algorithms 1 and 2 describe this process more thoroughly.

Algorithm 1. Upper Level Direct Algorithm

• Load the corresponding parameters and form the appropriate constraint

matrices and vectors.

• For each value of q ∈ {0, 1}, do:

– Solve problem (3.24a)-(3.24i) using the function linprog and
�

i rixNi

as the objective function. If this problem is unfeasible, end and report the

unfeasibility. Otherwise, label the resulting preliminary optimal point as

x̂.

– Solve problem (3.24a)-(3.24i) using function fmincon, with x̂ as the

starting point required by the algorithm. At every function evaluation

performed by the optimization function, the value of z will be evaluated as

dictated by algorithm A2 below, using the currently proposed upper level

variables as parameters for the lower level problem. The resulting upper

level optimal vector will be labeled X∗, and the optimal value, Z∗
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– Solve the lower level problem using linprog and X∗ as parameters and

retrieve the lower level optimal point Y∗.

– Report the optimal vectors and values for both levels.

Algorithm 2. Lower Level Direct Algorithm

• Use the vector X passed by the upper level optimization as a parameter to

form the appropriate constraint matrices and vectors.

• Use function linprog to solve problem (3.25a)-(3.25p). If the problem is

feasible, report the value of z (and not that of the objective function

g5(y, u, v, z, q, d, b, c) = d + M
�

t,i (ξti + ζti)) to the upper level as the result of

the algorithm; otherwise, report a big number M, which is increased at every

function evaluation by a fixed amount (e. g. M ← M + m).

3.3.1 Proposed Numerical Solution Methodology

Problem PR5 will be solved using both the Inexact Penalization Algorithm and

the Direct Method, coded in Matlab R�. Matlab, a high-level computer language and

software specialized in mathematical programs, provides a good amount of built-in

specialized functions and mathematical oriented programming capabilities.

Primarily, we will make use of functions fmincon, a constrained nonlinear

minimization function which uses either an active-set algorithm or an interior point

algorithm to provide a solution to a nonlinear constrained problem; and function

linprog, which uses either a Linear Interior Point Solver (for large scale problems,)

or the Dantzig’s Linear Programming Simplex (for medium scale problems.) Both

functions are included in the Matlab add-in called Optimization Toolbox TM. [94]

There are, however, two drawbacks when working with Matlab’s Optimization

Toolbox functions, especially fmincon: it was designed to work with continuous,

continuously differentiable functions, and (related to this) fmincon it has been

observed to be very sensitive to the initial point feed the solver.

We plan to study the effectiveness of Matlab’s solvers focusing in the following

points:

• Procuring a good starting point to Matlab’s minimization functions in the

upper level.
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• Procuring a good starting point to Matlab’s minimization functions in the

lower level.

• Using a heuristic approach to solve functions G in the IPA.

The first item involves obtaining values for each xti (which will automatically

generate values for s) that will lead to a good, feasible point in the variables’

domain. Viable options to consider include: setting all x initial values equal to zero,

or set equal to the lower bound, or to the upper bounds, or simply chose a vector of

zeros as the starting search point. We attempt to analyze the running times and the

convergence (i.e., quality of the obtained optimal value) for several starting point

options for problem PR5.

The second and third items have very similar implementations. For the second

item, we plan to take advantage of the lower level’s particular structure once the

upper level variables have been determined (something that happens every iteration

in the solution algorithm.) Once the values for x are set, the lower level can be seen

as a generalized transportation model, and a feasible solution can be proposed using

algorithm 3:

Algorithm 3. Lower Level Feasible Point Algorithm:

1. Determine if the problem is solved or unfeasible (all final imbalances are

nonnegative or nonpositive.) If it is, go to 9, if not, go to 2.

2. Set yi = xNi ∀i.

3. Select a pool zone among the positive imbalances, i∗.

4. Select a zone among the negative imbalances, j∗.

5. Calculate the gas transported as gt = min{yi∗ ,−yj∗}.

6. Set variable uij = gt (vij = gt if j < i)

7. Subtract gt from yi∗ and add it to yj∗ (reduce gt by the correct amount

eij if i < j before the addition.)
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8. Determine if the problem is solved or unfeasible (all final imbalances are

nonnegative or nonpositive.) If it is, go to 9, if not, go to 3.

9. Report the final imbalances yi, the transportation volumes uij, vti, and calculate

function F (y, u, v)

Algorithm 3 will eventually provide a feasible point (if there is such) for the lower

level problem. It can be calculated quickly and easily enough to be inserted in the

argument minimization function of fmincon and obtain a good, nearest-to-zero

value of function F (y, u, v). This in turn can is used as a starting point for a

numerical minimization of function G, instead of using, for example, the last day

imbalances xNi as starting points for variables yi, and zeros for variables uij, vij.

As we have said, the third item can be achieved in similarly. Judging by

computational economy, one can elect to generate several feasible points yk, and

solve (in an iterative process) the variational inequality (3.29), considering the set of

the generated solutions as the whole solution space, instead of using another

minimization procedure for function G5. The obtained point will likely be a good,

feasible approximation to the lower level problem, providing (this is to be analyzed)

shorter running times.

Once the set of different solution method variations have been defined, we will

run several problem instances, using the figures from the Energy Information

Administration [28] monthly data for residential natural gas consumption and prices

to form matrices DC, Πc, Πe, and the problem generating framework discussed in

the next section. Once the data from the experimentation has been obtained,

results for each method will be evaluated in order to determine the best options

among the many given in this chapter.

3.4 Instance Generation for the Deterministic Problems

The pseudocode in algorithm 4 describes the computer routine used in the

generation of instances to test problem PR5’s performance.

Algorithm 4. Deterministic Problem Instance Generation

• Set the number of days/periods N and pool zones/states P .
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• Randomly select from the proper data matrices a list of states. Select then the

amount of information from those matrices to be considered historical. Form

with this data matrices Πc, DC, and calculate suitable values for Πe

• Enter the maximum and minimum parameter reference for initial imbalances

PM1, Pm1. Calculate the initial imbalance vector IIV parameter as random

independent uniform numbers between PM1, Pm1.

• Enter the maximum and minimum parameter reference for final imbalances

PM2, Pm2. Calculate a feasible final imbalance vector FIV as random

independent uniform numbers between PM2, Pm2.

• Calculate a feasible imbalances matrix FIM for the remaining days as uniform

as uniformly distributed intervals between the correspondent entries of IIV

and FIV , with average interval length for pool zone i of (FIVi − IIVi)/P .

• Calculate the maximum and minimum imbalance matrix as the feasible

imbalance matrix FIM plus a fixed reference parameter and plus a uniformly

distributed random vector.

• Calculate the maximum and minimum daily imbalance sum as the feasible

daily imbalance sum (from matrix FIM) plus a fixed reference parameter and

plus a uniformly distributed random vector.

• Obtain feasible maximum and minimum imbalance swings from matrix FIM

and set the maximum and minimum imbalance swing figures to form the

correspondent matrices.

• Calculate the lower level forward and backward matrices f, b, e as 1 plus the

triangular upper part of an inverse Poisson randomly generated matrix of

suitable λ parameter.

• Enter a linear cost vector for the lower level objective function.

The algorithm will generate a batch of problems of any size and with several

variations to the parameters. Even with the same reference parameters, the

algorithm can generates very different problems due to the various instances where
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randomness is employed. Generating the parameters needed for only one level of the

problem, we can obtain suitable instances for testing the individual levels of the

problem as it is done in chapter 5.

Chapter Summary

In order to obtain a solution to the natural gas optimization model described in

chapter 1, we present in this section a bilevel optimization model originally

developed by Ŕıos-Mercado et al [88]. Since the original formulation did not

include, from our point of view, important elements of the NGSC-POC subsystem,

such as the sales and prices the NGSC is concerned with, we went on to expand the

original model, until we obtained a more elaborate and refined bilevel model.

Theoretical work was applied to reduce thus obtained model into an inexact

bilevel linear approximation. The process from the original problem PR1 to the

latest PR5 is described in sections 3.1, and 3.2, along with a table that summarizes

the main characteristics of the formulations developed previously to problem PR5.

Finally, the numerical algorithms and solution techniques intended to be used to

solve computationally problem PR5 are shown in section 3.3.

The deterministic model PR5 developed here is intended to be a tool for:

• Providing a starting point to model a stochastic model of the same problem,

so that unknown parameters like prices and demands for the operative period

can be estimated and acted upon, planning the operations of the NGSC based

on stochastic versions of variables x, EA, etc; and

• Being used as an analysis model to evaluate the solution techniques before

formulation the more complex stochastic bilevel models.
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CHAPTER 4

STOCHASTIC MODELS

The purpose of this chapter is to expound an expansion of problem PR5, given in

the last chapter, by adding stochastic programming elements to the deterministic

formulation. The final model in section 4.4 is a multi-stage stochastic model with

recourse, with variables x and EA and the parameters Πe, Πc and DC vary

according an underlying ternary tree.

We first describe, in section 4.1, the time series analysis and forecast techniques

used to obtain an estimation of price and consumption parameters Πc and DC.

Section 4.2 provides regression analysis between the data in matrices Πc and DC, as

well as a method to identify which pool zones can be clustered in sub-markets by

means of their demand and price time series. The construction of the scenario tree

used in the stochastic models that defines the ways the forecasting of prices and

demands will be done is shown in section 4.3.

The data obtained will be used to formulate a bilevel stochastic model. This

model is expected to better reflect the possibilities for the NGSC and serve as a

better decision tool for the upper level decision maker.

4.1 Time Series Forecast Analysis

We have stated before that the deterministic models would use the American

Government EIA database of residential monthly prices and consumptions for each

state of the American Union, as well as the District of Columbia and the country

taken as a whole, which will be called states too from here onwards. Each month’s

entry in the EIA’s database will be considered here as the data corresponding to one

day or period (it may indeed represent any other time unit; we call them days only

for personal choice.)

The EIA’s database contains monthly data for the 52 states from January 1989 to

October 2007.

In order to formulate a stochastic version of problem PR5, we need to define the

nature of the stochastic parameters that will be in use. The times series used as

parameters in the deterministic variant of the model will no longer appear as such
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in the stochastic version. Instead, they will be the arguments of the forecasting

techniques in this section. The values forecasted are actually estimations of random

variables, hence their stochastic nature.

4.1.1 Time Series

Let us begin by describing the Time Series notation we will use throughout this

work.

Definition 1. A time series S = {st}T
t=1, si ∈ R∀i is an ordered set of T real values

indexed by t, called the time parameter. [15] The value st of the series for a given

value of t is called the t-th observation of the series, and the series length is the

number of observations, equal to T when the series’ first observation occurs at time

1.

In this work, we may refer to series S as simply {si} when no ambiguity can arise

from the starting or ending observation of the series.

Another useful note we make when talking about time series is the fact that we

may refer to certain matrices and vectors as time series and vice-versa. Thus, time

series S = {st}T
t=1 can also be shown as vector S = (s1, s2, ..., si, ..., sT).

Equivalently, we may refer to column j of matrix A = (aij) ∈ RI,J as the time

series {aij}J
i=1, and vice-versa.

4.1.2 Forecast Modeling

From the point of view of the NGSC, knowledge about future prices and demand

faced is needed in order to form the parameter matrices Dc, and Πc, since this data

is not available at day 0 in the upper level decision process. In most cases, the

NGSC does not have certainty over those parameters. It does have, though, the

capacity to perform mathematical forecasts, predictions of the future prices based in

the observed data.

Because of this, it is desirable to provide our stochastic models with means of

obtaining these forecasts.

Definition 2. Let S = {st}T
t=1 be a time series of length T ∈ Z++. The forecast

operator φκ
γ is such that φκ

γS is the time series resulting from forecasting the first
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κ ∈ Z++ values of the 0.5 + γ percentile of the prediction band of the historical time

series S. The operator can be applied successively, so that

ψκn,...,κ1
γn,...,γ1

S = φκn
γn
◦ φκn−1

γn−1
◦ ... ◦ φκ1

γ1
S.

If we define the vectors �κ = (κ1, κ2, ..., κn, )�γ = (γ1, γ2, ..., γn), the cumulative form

of operator φκ
γ, Φ�κ

γ̄, is such that

Φ �κ1
�γ1

S =
�
φk1

γ1
S, φk2

γ2
◦ φk1

γ1
S, ..., φkn

γn
◦ ... ◦ φk1

γ1
S
�

=
�
ψk1

γ1
S, ψk2,k1

γ2,γ2
S, ..., ψkn...k1

γn...γ1
S
�
. (4.1)

A quick note on the nature of operators ψκn,...,κ1
γn,...,γ1

S and Φκ̄1
γ̄1

S: the first will produce

κn predictions, using the last κ1 + κ2 + ...κn−1 as historic. The second operator will

produce κ1 + κ2 + ...κn predictions, chained together in a logical manner.

Definition 3. The κ-step, γ prediction from time h, denoted by φ̄κ
γ{St}h

1 , is the last

(κ-th) observation of the time series φκ
γ{St}h

1 . In case γ = 0 and h coincide with the

final observation of series S, we will put simply φ̄κS and call it the κ-th step

prediction of time series S.

Operator φ, as well as its successive and cumulative versions, do not make any

reference to the method used to produce the forecast. This may even be an

extension of the rows of a certain historical vector representing the time series. As a

result, the forecasts operators serve formal modeling purposes only, and not

calculations. This latter process will be explained in section 4.1.3

4.1.3 Numerical Predictions

In this section, we present the numerical analysis that will be performed to obtain

predictions from the data found in the EIA databases for Natural Gas residential

prices and consumptions.

First, we show the two forecast algorithms, as described in [15], that will be used

to obtain forecasts φκ
0S from a certain time series i.e. the mean expected figures

from a time series. Based in the residuals from the predictions, we then produce

prediction bands φκ
αS.
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The ARAR Algorithm

The first step in the ARAR forecasting algorithm is the memory shortening of the

series. This basically consists in determining which of the next three alternatives

better describe the time series we are using, S, and iteratively modifying series S

until case 3 is satisfied.

1. S̃t = St − ζ̂(τ̂)St−τ̂ (St is long-memory),

2. S̃t = St − ζ̂1St−1 − ζ̂2St−2 (St is moderately long-memory),

3. St is short-memory.

The process to decide whether St belongs to case 1, 2 or 3 depends on the values

of ζ̂ and τ̂ in the expression:

(ζ̂ , τ̂) = arg min
τ=1,...,15;ζ>0

(ERR(ζ, τ))

ERR(ζ, τ) =

�n
t=τ+1 [St − ζSt−τ ]

2

�n
t=τ+1 S2

t

(4.2)

Once those values are calculated, they are evaluated (see the reference) and S is

classified as either long, medium-long, or short memory. In case the time series S

turns out to belong to cases 1 or 2, we apply again the parameter fitting in 4.2 until

we have that St belong to case 3—this process, reportedly, does not usually takes

more than 3 attempts.

Let {Ct} be the memory shortened series obtained above, and let C̄ be its sample

mean ((
�

t=1:T Ct)/T.) Construct the new series {Zt} = {Ct} − C̄, and fit an

autoregressive process:

Zt = Ct − C̄t = η1Zt−1 + ηl1Zt−l1 + ηl2Zt−l2 + ηl3Zt−l3 + zt, (4.3)

where zt is distributed as white noise with mean 0 and variance σ2. The lags l1, l2,

and l3 are calculated by solving the Yule-Walker equations on η, η1, η2, and η3 [14].

Finally, the h predictions φ̄1S, φ̄2S, ..., φ̄hS are calculated by the ARAR method

with

φ̄hS = −
1+l3�

j=1

�
ξjφ̄

h−jS
�
+ η�η S̄, h ≥ 1, (4.4)
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where η� is the transpose of the parameter vector η.

In expression (4.4), coefficients ξj are calculated using the coefficients ηi and ζj

found in steps 1 and 2. [15]

The process described before calculates the h-step mean prediction, namely φ̄h
0S.

In order to calculate the prediction bands φ̄h
αS, we need first to have the h-step

MSE estimate:

MSE[(Sn+h − φ̄h
0{St}n

1 )2] =
h−1�

j=1

τ 2
j σ2,

τ0 = 1;
n�

j=0

τjξn−j = 0, n = 1, 2, ...;

(4.5)

where σ2 is the sample variance of series {St}n
1 . The bands are thereafter calculated

assuming a normal distribution for the forecasts with mean φ̄h
0S and variance equal

to the mean square error for that observation and step.

The Seasonal Holt-Winters Method

The Seasonal Holt-Winters (SHW) algorithm assumes that a seasonal period d is

given for the time series {St}, and uses it to calculate series of values that

parameterizes the whole time series.

The predictions will be based in the calculations of series of coefficients âi, b̂i, and

ĉi, for i = 1, 2, ...,T, produced by equations

âd+1 = Sd+1, (4.6)

b̂d+1 = (Sd+1 − S1)/d, (4.7)

ĉd+i = ci = Si − (S1 + b̂d+1(i− 1)), i = 1, 2, ..., d + 1. (4.8)

We then form the h-step predictor from observation n as

φ̄h{St}n
1 = ân + b̂nh + ĉn+h, h = 1, 2, ... (4.9)
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For T,T + 1, ..., coefficients âi, b̂i, and ĉi are calculated with the recursions:

ân+1 = a(Sn+1 − ĉn+1−d) + (1− a)(ân + b̂n, )

b̂n+1 = b(ân+1 − ân) + (1− b)b̂n,

ĉn+1 = c(Sn+1 − ân+1) + (1− c)ĉn+1−d,

with initial conditions

âd+1 = Sd+1,

b̂d+1 = (Sd+1 − S1)/d,

ĉi = Si − (S1 + b̂d+1(i− 1)), i = 1, 2, ..., d + 1.

The parameters a,b, and c may either be set arbitrarily, or calculated in such a

way that the MSE of the one-step predictors for {St}n
t=d+2 is minimized i.e.

n�

t=d+2

�
[St − Pt−1St]

2

n− d− 3
→ min

a,b,c
(4.10)

The MSEs for the h-step predictors need to be found in order to calculate the

prediction bands for the forecasting. For every h required, we will take a sample of

the h-step prediction of series {St}, calculate the sample mean (µh) and sample

variance σ̂2
h of these predictions, and use the sample standard deviations and the

normal distribution N(µ̄h, σ2
h) to calculate the desired α-prediction bands.

Forecast Analysis

The usage of either algorithm described above requires the data series to have

certain properties, thus we need to validate and report some assumptions regarding

the data we are using.

We have stated that the 0.5 + γ prediction bands φh
γS of series S are calculated

using the MSEs σ̂ as estimators of the series errors sample standard deviations: the

h-step γ prediction band is calculated as φ̄h
0S + σ̂zγ, were z0.5+γ is the inverse

standard normal value for the probability 0.5 + γ. This requires the assumption

that the h-step errors are distributed N(0, σ̂2
h). We will need to calculate the sample
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means µ̄h and MSEs σ̂h, validate that µ̂h = 0 through a hypothesis test, and provide

proofs (through normal probability plots) that the errors are normally distributed.

We must note, however, than assuming normality is commonplace in time series

analysis: the software ITSM2000 v7.0 [15] makes this assumption automatically

when prompted to plot prediction bands.

Autocorrelation is another important parameter characterizing a time series: a

high (near-1) autocorrelation at lag h, indicates that the series involved is

separating itself from a white noise process (which is basically an iid random time

series,) and is correlated with the values h observations before and after it.

Definition 4. Let S be a time series, h ∈ Z+. The autocorrelation function ρ

of series S at lag h is calculated as

ρS(h) =
Cov(St, Sh+t)

Cov(St, St)
, (4.11)

where Cov(St1 , St2) is the covariance of series {St}n−(t2−t1)
t=1 and {St}n

t=t2), seen as

random variables.

While autocorrelation is good to have among time series values, it is not when

analyzing the series’ forecast residuals.

We need to prove that our time series have near-1 levels of autocorrelation.

Likewise, proofs of low autocorrelation for the h-step residuals are needed to

validate the forecast process.

4.2 Time Series Regression Analysis1

Besides forecasting, another aspect of the time series analysis in our work is the

study of the price and consumption relation in a given state or pool zone. The

existence of an explicit relationship between a price time series and the

corresponding demand time series for a given state will greatly help in reducing the

information needed and have a leaner modeling. Section 4.3 describes how the

regression analysis here relates to our stochastic bilevel problem via the scenario

tree.

1The contents of this section appear in the authors’ [56]
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Furthermore, from an economic standpoint, it is convenient to have an expression

for price in terms of the demand (output) a firm or group of firms deliver to a

particular market. This makes the consumption faced by the NGSC (or any other

firm, for the matter) the decision variable, and not the price. Dealing with the

demand instead of with the price is good since the former is usually analytically and

computationally easier to work with. The Inverse Demand Function (IDF) is a

generalized “Price Function”, but for the most part is accepted simply as the price

corresponding to a certain consumption (this is especially true for markets with low

price elasticity.)

Depending of the type and scope of the analysis, the inverse demand function can

be modeled differently, based in assumptions regarding continuity, differentiability,

range, etc. In its simplest form, a IDF is a non-increasing function on demand,

which means that lower values for the demand yield high values for the IDF and

conversely. Negative coefficients and negative exponents are then usually included in

an IDF expression. [93]

We will make use of a multiple linear regression model to fit the price time series

to their respective demand time series. The model is based in the facts that (1) the

amplitude of the price time series increases with time; (2) the cumulative average of

the price series also increases with time; and (3) demand time series present the

same seasonality than the price time series. Research has been profusely done

linking natural gas price and demand/consumption. The models reviewed often

show:

• A focus in estimating the demand-price elasticity (as well as other econometric

data,) and consequently

• Usage of logarithmic expressions for the parameters the models linking price

and demand/consumption, something that eases the elasticity analysis [41]

and econometrically representing a steady growth market.

These characteristics appear in [8, 4, 66, 63, 110, 6]; however, despite this, we

have found that models with pragmatic objectives such as demand estimation do

not necessarily rely on logarithmic transformations of the regression variables.
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Instead, we have found linear expressions [1, 67] (such as the one employed by the

EIA,) and discrete-exponential analysis [105].

The method described in the next section is called Individual Multiple Linear

Regression (IMLR,) since a particular set of parameters is calculated for each

individual state involved in the regression. Next section will discuss a pooled

regression method developed to form clusters of states with similar regression

parameters. These clusters will form the state sets used in the optimization

problems described in section 4.4.

4.2.1 Individual Multiple Linear Regression

Let P be the total number of states; T = {1, 2, ...,m}, m ∈ Z+, the number of

observations per time series—months, in this case—; I = {1, 2, ..., P} the set of

states (up to a maximum of 52); t ∈ T, the (discrete) time parameter; {Di,t}, the

time series corresponding to the natural gas demand in state i ∈ I at time t ∈ T;

and {Πi,t}, the time series corresponding to the price of natural gas in state i at time

t. When no confusion may occur, we will assume {Πi} = {Πi}m
t=1; t ∈ T, for i ∈ I.

Consider figure 4.1. It shows the monthly consumption and price of natural gas in

the state of Missouri, from January 1989 to October 2007. The shapes of the series

are important because demonstrate the reasons why we have developed the models

below.

(a) Consumption (b) Price

Figure 4.1. Missouri Monthly Prices and Consumption. Source: Energy Information
Administration.

The regression model created will fit a curve estimate for {Πi} with both t and

{Di} as independent variables. It will be formed first by a quadratic polynomial in t
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(including the intercept,) such as

a0 + a1t + a2t
2. (4.12)

The amplitude of the price series’ wave will be determined by a polynomial with

the consumption variable multiplied by an expression like the one in (4.12):

D−1
ti

�
a3 + a4t + a5t

2
�
. (4.13)

Merging 4.12 and 4.13, we obtain the IMLR model that estimates the price TS’s

{Πi} as a function of demand:

Π̂ti = ai
0 + ai

1t + ai
2t

2 + D−1
i,t

�
ai

3 + ai
4t + ai

5t
2
�

+ e∗i , ∀t ∈ T,∀i ∈ I, (4.14)

where e∗i ∼ N(µ∗i , σ
∗
i ).

This expression determines a matrix of parameters estimates A ∈ RP×6. The

usual regression analysis (residuals independence, randomness, and normality;

parameter significance; and the like) will be provided in the stochastic models’

results chapter to support our regression models.

We have modeled the natural gas residential consumption/price scenario with a

general formula that represents the main aspects of the market behavior.

Consumption is more or less resilient with respect to time, always reaching similar

heights and lows, whereas prices raise nonlinearly [62]. Though population grows,

advances of technology helps reducing the impact of the number of consumers in the

consumption. Raising prices also help in diminishing a marked growth [82, 30]. The

increase of prices is usually described as exponential, which is understandable.

However, in a limited period of analysis (as it is ours,) we can instead consider a

quadratic mean growth rate represented by equation (). This kind of accelerated

growth was not seen before the Natural Gas Act took place, bringing about the

changes described in chapter 1. [69]
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4.2.2 Pooled Price to Demand Regression

The regression fits described in the preceding section are used in the optimization

model for three purposes: (1) reducing the number of time series involved in a given

problem instance, thus (2) reducing the number of forecasts performed while in the

stochastic solution of the problem, and (3) apply the concept of IDF to our

problem, characterizing the prices as functions of the consumption.

During the analysis, the question of whether we could use the same regression

function for number larger than one was posed. Such action would reduce even

further the amount of data used in the problem and would open the chance for us to

characterize state classes, groups, or clusters. In this way we can define optimization

processes and/or economical market analysis in the formed clusters of states with

similarly behaved sets of parameters.

We propose to split the P price-consumption pairs of time series into groups, with

the members of each group sharing a common set of regression parameters. The

pooled data from the groups would then be regressed at the same time, creating

pooled regressions.

More interestingly, the existence of a common regression function among a

number of states or pool zones will also validate the assumptions in section 4.3,

justifying a common behavior among different time series corresponding to several

pool zones when prices and demands all go higher or lower than the mean estimates

for the pool zones involved.

Let I = {I1, I2, ..., IK}, be a partition of the state-set I, and consider the model:

Π̂i,t = ak
0 + ak

i t + ak
2t

2 + D−1
i,t

�
ak

3 + ak
4t + ak

5t
2
�

+ e∗∗k ,

∀t ∈ T,∀i ∈ Ik, k = 1, 2, ..., K,
(4.15)

where e∗∗i ∼ N(µ∗∗i , σ∗∗i ).

Note that this model—called Pooled Multiple Linear Regression (PMLR)

model—has K sets of regressions for every parameter except for the intercept

ai
0—which is allowed to be different for each state—whereas (4.14) has P . On the

other hand, it is expected and understandable that grouping the time series into a

single regression will reduce the goodness/significance of the regression. There

83



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

might also be the possibility that some series cannot be “reasonably” matched with

none of the others.

The objectives while forming partition I are:

a) Select an appropriate number of groups q to partition the set I. A number of

classes between 10% and 20% of the total number of states is be deemed

acceptable in an a priori estimation.

b) Find a partition with high values for the R2 statistics in each of the regressions

performed in each group (the higher the value is demanded to be, the most

likely the number of groups q will be increased.)

c) Maximize the mean R2 value among the K regressions (finding the global

maximum mean value of R2 for a given size K of the partition is a

computationally intensive task and will not be attempted.)

4.2.3 Dendrogram Grouping Method

Dendrograms are planted binary trees formed so that every node represents either

a vector (in this case, some IMLR parameter vector ai,) or a group comprising all

the vectors in the nodes that branch from the original node. The leaves of the

dendrogram (i. e. those nodes not having other nodes branching from them) are

exclusively formed by the parameters vectors resulting from a previously performed

IMLR using model 4.14. Two nodes branch from the same node if they are

considered closest among themselves than with any other node (either a leave or

another node.)

The term “closest” is interpreted according to one of three criteria, called a

“linkage function” [95]:

• Closest Neighbor: Two nodes ν1 and ν2 are considered the closest by the

Closest Neighbor criterion if the smallest Euclidean distance

minv1∈ν1,v2∈ν2 d(v1, v2), is the smallest among all pairs of nodes.

• Farthest Neighbor: Two nodes ν1 and ν2 are considered the closest by the

Closest Neighbor criterion if the largest Euclidean distance

maxv1∈ν1,v2∈ν2 d(v1, v2), is the smallest among all pairs of nodes.
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• Average Distance Two nodes ν1 and ν2 are considered the closest by the

Average Distance criterion if the average Euclidean distance
�

v1∈ν1

�
v2∈ν2

d(v1, v2), is the smallest among all pairs of nodes.

After the dendrogram is formed, it is “cut” from the root down forming

(sub-)dendrograms with the branches that resulted from the cut; the height of the

cut is determined according to one of several choices (number of sub-dendrograms

produced, maximum allowed membership for the sub-dendrogram, etc.) The vectors

forming each leave that belongs to a given sub-dendrogram will pool their regression

data together and form one group for the regression.

This grouping method will be called the Dendrogram Grouping Method (DGM.)

In our problem, we will form a dendrogram using the parameter vectors

ai = (ai
0, a

i
1, ..., a

i
5) obtained from the IMLR in section 4.2.1 as observations (leaves,)

using the three linkage functions described above, and a dendrogram cut method of

maximum allowed number of clusters (groups) to define the groups that will pool in

their regression data to perform the Pooled Multiple Linear Regression. The

resulting pooled regressions will be called, respectively, Closest Neighbor

Dendrogram Regression (CNDR,) Farthest Neighbor Dendrogram Regression

(FNDR,) and Average Distance Dendrogram Regression (ADDR.)

4.2.4 Heuristic Grouping Method

The Heuristic Grouping Method (HGM) is intended to deliver a high mean R2

value for a given size of the partition of the state set I. It based on the

consideration that a state should be a member of a group i only if, once pooling its

data with each of the groups, i has a higher R2 value than any other group.

Besides the parameters and sets described in section 4.2.1—P,T, K, I, etc.—, we

use here the parameters mgroups, the initial (minimum) number of classes allowed;

Mgroups, the maximum groups allowed; Rmin ∈ (0, 1), the minimum desired value of

R2 for the regressions in each class Ik; as well as λ, the number of attempts to make

the partition. The algorithm is given in two parts: algorithm 5 is the algorithm that

forms the groups, whereas algorithm 6 repeats algorithm 5 to obtain several

solutions and picks the best of them.

Algorithm 5. Heuristic Grouping Algorithm
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1. Set the values for the parameters: Activeset = I; Assignset = (a1, a2, ..., aP );

ai = 0 ∀i ∈ I; K = mgroups; I = {I1, I2, ..., IK}, with Ik = ∅ for

k = 1, 2, ..., K.

2. Randomly pick K different values (states) from among the entries of Activeset

and store them in the ordered set Initset = {ι1, ..., ιK}. These are the group

leaders.

3. Assign each group leader ιk to its corresponding group in Initset:

Ik ← Ik ∪ ιk, k = 1, 2, ..., K.

4. Delete the leaders from Activeset,

Activeset ← Activeset\Initset.

5. Assignsetιk ← k, k = 1, 2, ...K

6. Randomly pick a new member from Activeset, and store it in θ.

7. For k = 1, 2, ..., K, estimate Π̂i,t from the regressors Di,t; ∀i ∈ {Ik ∪ θ}, t ∈ T ,

according to model (4.15). Calculate the values of R2 for each regression and

store them in their respective entry in the ordered set ρ = {ρ1, ρ2, ..., ρK}.

8. If (max{ρ1, ..., ρK} < β) ∧ (K < Mgroups), create a new group:

(a) K ← K + 1.

(b) I = I ∪ IK.

(c) ς = K.

Otherwise, make ς = γ � ργ = max{ρ1, ..., ρK}.

9. Assign the new state to its selected set ς:

Iς ← Iς ∪ θ.
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10. Remove the chosen state θ from the possible new candidates in Activeset:

Activeset ← Activeset\θ.

11. Record the assignment:

Assignsetθ ← ς.

and clear θ

12. If Activeset �= ∅, go to step 6, else

13. Perform the regressions for all members of I according to model (4.15), and

calculate the mean of the c regressions.

Algorithm 5 will calculate a good partition I. One would like, though, to repeat

this process several times to come up with a possibly better partition, one having

the highest mean R2 value we are able to find.

Algorithm 6. Iterative Heuristic Grouping

1. Set the pertinent parameters values.

2. Set l = 1, ER = 01×λ.

3. Use Algorithm 5 to create a Partition Il and its correspondent mean R2 value,

and store the latter in ERl.

4. If l < lambda, go to step 3, else:

5. Select the partition Il such that ERl = min{ER1, ER2, ..., ERλ}.

Algorithm 6 iterates several times the steps in algorithm 1 in order to create

different partition, each of which is expected to have different number of classes c.

Here, the criterion for choosing the best of such partitions is made using solely R2.

Decisions can also be made based in regression significance, parameter significance,

etc.

Example. Let us say that we have 5 states, S1, S2, ..., S5, S6, with a threshold

for R2 values of Rmin = 0.85 and a maximum allowed group number of Mgroups = 4.
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Algorithm 5 will randomly select, say, states S2, S3, S4, to form three initial groups

{S2}, {S3}, {S5}. It will then randomly choose a fourth state from among the

remaining ones (e.g. S1,) pool its consumption and price time series with those of

each formed group and form temporary groups {S2, S1}, {S3, S1}, {S5, S1}. A

multiple linear regression on each pair is done, and we will then come up with R2

values for each group of 0.86, 0.75, and 0.64. Thus we select group 1 for state 1

(since it has the highest R2 value above or chosen threshold 0.85,) and repeat the

process for the remaining states.

Again, we randomly pick a state, S6, pool consumption and price data and form

temporary groups {S2, S1, S6}, {S3, S6}, {S5, S6}. They deliver R2 values of 0.43,

0.72 and 0.84. Since there are no values above 0.85, we open a new group and have

S6 assigned to it. Finally, we pick the last unassigned state S4, pool and perform

the pooled regression. The groups {S2, S1, S4}, {S3, S4}, {S5, S4}, {S6, S4} deliver

each a R2 value of 0.73, 0.32, 0.80, and 0.79, respectively. Again, there are no values

above the threshold, but this time we have no more extra groups allowed, so we pick

the group with the highest R2 value, regardless of the threshold, and have the final

list from algorithm 5 as {S2, S1}, {S3}, {S5, S4}, {S6}.

4.2.5 Pooled Regressions Analysis

Both pooled regression grouping methods, DGM and the HGM have their own

advantages and disadvantages, which will be evaluated in turn. Aspects of each

method that need to be studied include:

• Replicability: there is little use for an algorithm that cannot provide the same

response for every instance run on. The DGM delivers the exact same

grouping for a given set of regression parameters’ vector, but the HGM may

provide random groups, whose similarity needs to be evaluated.

• Homogeneity: while is natural to expect some single-state or two-state groups,

a good grouping algorithm is desired to deliver several groups of similar size,

and not one or two groups containing over 20 states, and the rest of the sates

ending up isolated (though this can be the actual situation, nevertheless.)
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• Running time: an algorithm is always desirable to have the shortest running

time when computationally implemented.

• Statistical Significance: it is not desirable for a grouping method to ignore

statistical evidence and forcefully put a state in a group whose common

regression parameter vectors do not hold statistical significance for that state.

4.2.6 Clustering Similitude

In order to compare the similitude of two partitions, we define here a suitable

evaluation method.

Let I = {I1, I2, ..., IK},J = {J1, J2, ..., JL}, be two arbitrary partitions of the state

set, I as described in section 4.2.2; and let Ii = {I i
1, I

i
2, ..., I

i
ki}, i = 1, ..., K, and

Jj = {J j
1 , J

j
2 , ..., J

j
lj}, j = 1, ..., L be their respective partition sets.

Define then function

aI,J(Ii) =





1 if ki = 1 and lj = 1 for m ∈ Ii and m ∈ Jj,

0 otherwise
Ii ∈ I;

Function aI,J identifies whether a group Ii contains a single state in partition I

and if that state is also single-grouped in partition J . If it is so, then the state in

group Ii has been found incompatible with other states twice, by whatever methods

formed partitions I,J.

If a state is not individually forming a group, then we need to seek if it shares its

group with another state in two partitions. For every pair of states, we will evaluate

if they share a group in a given partition using function

bJ(m, n) =





1 if m, n ∈ Jj for any j;

0 otherwise
m, n ∈ I.

In the case that function a has a value of 1, we say that we have a (one-state)

coincidence. Equivalently, if function b returns a 1, we say that we have a

(two-state) coincidence
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To measure the number of two-state coincidences that the states in a group in one

partition have in another partition, we will use function

C2(Ii, I,J; q) = aI,J(Ii) + (1− aI,J(Ii))

��
m∈Ii

�
n∈Ii,n�=m [qbJ(m, n) + (1− q)]

2

�
,

for Ii ∈ I, q = {1, 0}.

If the parameter q is 1, then function C2 counts the number of two-state

coincidences that state couples in group Ii have when comparing them with the

groups they belong to in partition J. If q = 0, then we are simply counting the total

number of possible coincidences the states in group Ii ∈ I. Note that function C2 is

not necessarily symmetric; C2(Ii, I,J, q) is not necessarily the same as C2(Ii,J, I, q).

To determine the similitude of two partitions, we will use an expression that,

roughly speaking, counts the number of coincidences found in two partitions and

divides it by the number of total possible coincidences, given the sizes of each

partition. While there are arguably many ways to measure the similitude between

partitions with a different number of families, this method was chosen because of its

normality: it will always return a 1 when both partitions are equal, and will always

return a 0 when there are no coincidences between two partitions.

The similitude function used, Sim : I2 × I2 → [0, 1] is defined as:

Sim(I,J) =

�
Ii∈I C2(Ii, I,J, 1) +

�
Jj∈J C2(Jj,J, I, 1)

�
Ii∈I C2(Ii, I,J, 0) +

�
Jj∈J C2(Jj,J, I, 0)

. (4.16)

Chapter 6 provides data for each of the items above. Based in the evidence

encountered, we expect to provide an enhanced grouping method, refining some

characteristics of either algorithm e.g. randomly sampling the observations included

in the process of forming the heuristic groups to reduce calculation time; using the

DGM as a template or base to form the initial assignment of the HGM, which is

done randomly in algorithm 5; or using the groups obtained in every run of

algorithm 5 in algorithm 6 as the template for the starting assignment of the next

run of algorithm 5.
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4.3 Scenario Tree Generation

This section explains the nature of the scenario tree that the stochastic

formulation is based upon. Grossly speaking, a scenario tree in a stochastic

programming setting explains the form in which the variation of the stochastic

parameters occurs, and the timing when information is being updated and new

decisions are taken.

Definition 5. Let A = {K,A} be a planted tree such that every path

K = {k1, ..., ks, ..., kS} ⊂ K from the root node k1 to any leaf node kS has exactly S

nodes. Then:

• The tree A is said to have S stages;

• All the nodes within a distance of µ to the root are said to belong to, or to be

in, stage µ + 1; the set of nodes in stage s is identified as Ks.

• Any path K is called a scenario of the tree, and we say that K passes through

nodes k1, ..., ks, ..., kS when K = k1, ..., ks, ..., kS;

• If ν is the number of leaves in tree A, then A is said to have ν scenarios.

• A node ki is said to be the predecessor of node kj if and only if ki and kj share

an arc and i < j. Function a : K\k0 → K, where k0 is the root node, maps

node a(k) into its predecessor.

In figure 4.2 we can see a three-staged scenario tree, which has nine scenarios.

Scenario 1 passes through nodes 1, 2, and 5; scenario 2, through nodes 1,2, and 6,

and so on. Each node represents a given number of periods, which is identical for

every node in a particular stage but not necessarily for nodes in different stages. For

example, if the operative period is one calendar month, we can talk of a week as a

stage, so that the nodes for the first stage (i.e. the root) contains the possible

outcome of a certain random variable each day of the first week; the nodes in the

second stage represent the possible outcomes of that random variable each day

during the second week, etc. Every scenario passes through the root, and only one

scenario passes through each leaf, so that for every scenario K, the set K ∪Ks is the

uniquely-determined characteristic leaf through which K passes.

91



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

Figure 4.2. A 3-Staged, Ternary Scenario Tree.

Each scenario represents a possible outcome of a series of random variables across

the operative period. The latter the periods, the more uncertainty we have; this is

why the first stages have fewer nodes than the latter stages. The probability for

each scenario to occur is equal to the probability for its characteristic leaf to occur.

A tree like that in definition 5, along with a certain set of probabilities for each

scenario, is called a scenario tree:

Definition 6. Let A = {K,A} be a planted tree such that for every path

K = {k1, ..., ks, ..., kS} ⊂ K from the root node k1 to any leaf node kS has exactly S

nodes. Let p : K → [0, 1] be a function such that:

•
�

i:ki∈Ks p(ki) = 1∀s;

•
�

i,j:a(ki)=a(kj)
= p(a(kj.)

Then A, p is called a scenario tree, and each scenario K has a probability of

occurrence of p(k), where k = K ∩KS is the characteristic leaf of scenario K. The

nodes in K are called event nodes.
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Each node has a probability of occurrence equal to the sum of the probabilities of

each scenario passing through it: since the root belongs to every scenario, its

probability of occurrence is 1; on the contrary, since only one scenario passes

through each leaf, a leaf’s probability and that of the scenario passing through it are

equal.

While definition 6 represents the conditions for a probability function p to be

allowed to form a scenario tree, it says nothing regarding the way in which that

function is defined. The way used in this work to define function p depends in the

scenario tree forecast formation method described in the next section.

4.3.1 Scenario Tree Underlying the Bilevel Problem

This section explains the way in which the scenario tree concept is applied to the

bilevel optimization problem we discussed in chapter 3, paving the way for the

definition of the stochastic model related to problem PR5.

The parameters that may vary in the NGSC-POC subsystem are only those

related to price and consumption. If they are instead fixed, the there is no

stochasticity and the problem is deterministic, with PR5 abstracting it. For each of

those time series (one for each of variables Πc
ti, and DCti,) and for each of the P

pool zones, there is a scenario tree. All these trees have equal number of stages and

nodes in each stage. The stochastic formulation replaces the need for the

non-contractual term corresponding to prices Πe with other ways to manage these

extra sales, thus the lack of consideration for those time series in this chapter.

The scenario tree, as shown in figure 4.2, consists of several event nodes [75], each

of which contains N periods and also each branches out to other nodes. The data

correspondent to those trees is based in actual, historical time series (one per tree,)

which are used to make forecast that will render the information of every node. The

first stage will use only actual information in its forecasts, while the second through

the last stages will use information derived from all past stages to obtain forecasted

information.

For every node-stage, the data corresponding to prices/consumptions for any of

the scenarios passing through said stage are calculated as certain α prediction

percentile based on a forecast made with the corresponding data up to the last node
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in the tree. The percentile is calculated as a function of the sample error σ of the

time series n-th step prediction. Thus, the mean expected forecast corresponds to

an α of 0.5, or equivalently, a 0 σ forecast error band from the forecasted values.

The possible outcome of prices higher (lower) than the mean forecast corresponds to

α taking a value higher (lower) than 0.5, or equivalently, to a forecast error band of

aσ, where a is a positive (negative) number whose exact relationship with α

depends on the distribution the n-th step forecast error has for a specific time series.

In this paper, we are considering that a normal distribution is acceptable; the

software ITSM2000 uses the assumption that the forecast errors are normally

distributed with a standard forecast error equal to the sample forecasted error. [14]

Information Reduction

The tendency to show high, mean, or low forecasts for either prices or

consumptions is considered to be consistent in every node; that is, if the first day of

one node showed prices in the α forecast percentile, the second through the last day

of that node will also show such high prices. Note that, in a ternary scenario tree,

every stage will have three nodes branching from each node in the previous stage,

and those nodes correspond to the high/low/mean cases we have talked about.

In the first period of every node, however, the possible outcome (high, mean or

low prices/consumptions) can change across every state and pool zones. Recalling

figure 4.2, the first node has mean forecast based only in historical, factual

information. Nodes 2 to 4 in the second stage, though, have both factual

information, and the information forecasted in node 1, interpreted as historic; node

2 corresponds to higher-than-mean forecasts upon the data; node 3, to mean

forecasts; and node 4, lower-than-mean forecasts. The process is evidently iterative.

Nodes 5 though 7 have information that is both actual and forecasted as historic,

and are each a higher-than-average, average, and lower-than-average forecast based

upon that information. The same goes for every other node.

Consider the time series for the monthly consumption of natural gas in the state

of Alaska, USA, from January 1989 to September 2005 (200 observations,) shown in

figure 4.3(a). This is a rather well-behaved time series with noticeable 12-period

seasonality. The expected 12-step forecasts using the Seasonal Holt-Winters (SHW)
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method is shown next in figure 4.3(b), cropped to the last observations and with the

forecasted values in red for better visibility. These forecasted data corresponds to

the first node of the scenario tree (figure 4.2.)

For each of nodes 2, 3, and 4, we obtain 12 new observations by taking the

historical time series used in the forecast at node 1, adding the forecast obtained in

that node as new historical observations, and then forecasting the 0.25, 0.5, and

0.75 percentiles, for example, corresponding to a low, mean and high predictions,

and calculated by obtaining the n-th prediction error parameters for an assumed

normal distribution. The resulting three time series can be seen in figure 4.3(c),

sharing the blue section among them. We have now a three-leaf scenario tree,

formed by the nodes 1,2,3, and 4, and underlying the time series shown.

For nodes 5-13, we make this process iterative, by assuming the three time series

shown in figure 4.3(c) (formed by a historical part, a mean forecast, and three

percentiles, one for each series,) as historical and branching out at their endpoints

as done with nodes 2-4. In this way, we end up with nine time series and the

corresponding nine-leaved scenario tree in figure 4.2 underlying the series in figure

4.4. All of the series in this figure share the initial observation, whereas only groups

of three share the second section.

If we have two parameters (price and consumption) and P pool zones or states,

then there are 2P different scenario trees like the one showed before underlying a

stochastic problem. In a one-staged setting, there are only 2P node combinations

possible, which is reasonable. However, if we have more than one stage, the number

of node combinations grows exponentially. For example, with a 2 stage, P pool zone

(a) Alaska’s historical consump-
tion

(b) Alaska’s Average Forecasted
Consumption

(c) Alaska Consumptions 0.25,
0.5 and 0.75 Prediction Per-
centiles

Figure 4.3. Scenario Generation Through Forecasting.
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Figure 4.4. Nine Partially Overlapping Time Series Resulting From a 3-Staged Sce-
nario Tree.

problem, the first stage would have 32P
= 9P nodes, while the second would have

9P 9P

= 92P 2
. The general formula for the number of nodes for a S staged problem

with P pool zones is
�S

s=1 9sP s
! The number of variables the stochastic problem

needs to use for each of the nodes is enormous, since we require several scalars for

each day in each node.

In order to reduce the number of variables in each problem, we will use the next

two assumptions:

Assumption 13. There exists a relationship between the demands and the prices of

any given pool zone in any given node; that is, in every node, both prices and

demands will behave consistently regarding their high, mean or low price/demand

outcomes.

Assumption 14. The high/mean/low outcome for either prices or demands is

common across all pool zones.

The first item is guaranteed by the obtaining of a regression formula relating price

and consumption for each zone. A preliminary analysis of the EIA time series
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proposed for use shows that when demand rises (in winter months,) prices decreases

accordingly (which is a fairly common behavior for most goods except for a few, e.g.,

Giffen goods [17].) The existence of a regression function like the one in section 4.2.1

makes the existence of this relationship precise enough to validate this assumption.

The second assumption is verified by the obtaining of a pooled regression like the

one developed in section 4.2.2. The specific form of the regression function

guarantees not only that the same relationship between price and consumption

holds for every pool zone, but also that this relationship is the same at equal times:

if demands go higher than the forecasts in one zone, the existence of a pooled

regression function like the one proposed guarantees that all other pool zones will

have increasing consumptions, and that the prices will increase or decrease in the

same way.

These two assumptions allow us to use a single scenario tree for all the pool zones

and both parameters in the model, reducing the total number of nodes to only
�S

s=1 3s−1.

Probabilities of the Scenario Tree

For a ternary tree to be considered as a scenario tree, we need to pair its graph

with a suitable function that assigns a probability to each node of the tree. This

section shows the way in which such probabilities are assigned and the image of the

probability function is formed.

Each node in the tree is then assigned a probability of occurrence, represented by

the evaluation of a certain probability function p. This probability function p must

of course comply with definition 6, but the form in which is formed responds

exclusively to the ternary tree we employ.

The idea behind the assignment of probabilities is that those nodes product of

mean forecast information have a greater probability of occurrence than nodes

product of high or low outcomes. For the first stage, being single-node, the

probability for this node is 1. For the second stage, the probability of each of the

tree branching nodes n2, n3, n4 is, respectively, βh, βm, and βl, for the high, mean

and low outcomes. Though the values βh, βm, and βl could be assigned arbitrarily,

we will make them so that these postulates are held:
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• The mean forecast probability of occurrence βm is larger than either of the

other two probabilities. We must consider this as we defineβh, βl.

• The high forecast probability βh is greater or equal to 1 minus the percentile

for high values, βh ≥ 1− αh. If αh corresponds to the 0.75 percentile, then we

want βh to be somewhere around 0.3. If we want a more explicit method, we

can use the sample forecast error band and use a normal (or possibly, a

lognormal) probabilities table to determine the exact right tail probability

that contains the percentile.

• In a similar manner, we want the lower probability βl to be higher than the

low outcome percentile band αl e.g. for an αl of 0.2, we can set βl to 0.3 or

0.25. Again, we can use a normal table to determine a better assignment of

probabilities to a given percentile αh.

Assigning a probability to a node n is always done multiplying the probability of

the predecessor p(a(n)) times the corresponding βh, βm, or βl, depending on n

being a high, mean or low outcome node.

Therefore, the probability for a node in stage s has then the form

�

i=1:s

γi, γi ∈ {βh, βm, βl}∀i

.

For example, the probability of occurrence of a scenario containing only higher

than mean forecast nodes in a S staged scenario tree will be (βh)S; in a similar

manner, the probability for a scenario with only mean forecast nodes will be (βm)S,

and so on.

The entire image of function p as described in definition 6 is formed by applying

this criterion to the entire scenario tree.

4.4 Stochastic Optimization Models

This section displays the final mathematical optimization model in this

dissertation work. The stochastic optimization modeling shown here is strongly

based in the models found in section 3.1.1, using parameters obtained as noted in
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section 4.1, and build upon a scenario tree like the one described in section 4.3. It

can be described as a multistage bilevel linear stochastic optimization problem with

recourse, which means that there are several information update times (multistage,)

it has two levels, both of them linear (except for the lower level decision variables in

the upper level,) it has stochastic variables and parameters, and some of those

stochastic variables influence the decisions made at the beginning of the process

(recourse.)

4.4.1 Stochastic Optimization Notes

A Stochastic Optimization Problem is a problem in which certain parameters

(constraint bounds or objective coefficients) are random variables whose distribution

may or may not be known. At least one variable is affected by this parameter

variation, so that the optimal value of said variable is different for different

realizations of the random parameter. The decision maker is therefore forced to

consider this variation in its model, decide the most advantageous way of action

against uncertainty.[60]

In our case, all stochasticity is limited to the parameters Dc and Πc in the upper

level objective function (which is the reason why we specifically state their value

when naming problem PR5(q, Dc, Πc, Πe; x, EA, A1, A2, y, u, v, z, d, ξ, ζ).) All other

parameters in the model are deterministic; either because they have been previously

agreed as fixed by both levels, or because their nature is not subject to randomness.

The stochastic optimization problem described in section relies on the following

assumptions, additional to those stated in section 1.4

Assumption 15. The operative process can be divided into equal-length stages:

every node in every stage is therefore equal.

Assumption 16. The required demand, and the forecasted price for each node can

be forecasted using any of the two methods in section 4.1.3; they are the only

random parameters in the model.

Assumption 17. At the beginning of every stage, demands/prices will be forecasted

as any of the three percentile choices as described in section 4.3.1.
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Assumption 18. All pool zones behave similarly regarding their high/mean/low

demand and prices outcomes. Further, demands and prices for a given pool zone

also behave according to a functional relationship obtained through regression.

Assumption 19. There is enough certainty in the first forecast to guarantee that

the mean forecast demand and prices for the first stage are acceptable; there is then

only one node at the root of the scenario tree.

Assumption 20. The n-th step forecast error can be considered to be normally

distributed for every pool zone, every node, and both parameters analyzed.

Assumption 21. The NGSC can draw more gas than the demand faced for a given

node, but this amount cannot be marketed by the NGSC.

Most of these assumptions have already been explained. Assumption 21, however

contradicts assumption 8, prohibiting the NGSC to sell gas beyond its contractual

obligations. This serves a modeling purpose, since allowing this term to be

profitable for the NGSC would disrupt the first stage/second stage framework of the

stochastic formulation.

4.4.2 Notation

The models presented below make use of the notation shown in tables 4.1 to 4.6;

the parameters for the upper level differ slightly to those used in the deterministic

problem, but for the most part the problem is the same. Some symbols are also

different from the deterministic counterpart, because of the need to differentiate

certain features only present in the stochastic problem.
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Table 4.1. Sets Used in Chapter 4.
N Number of time periods at each node in the process;

N ∈ Z++.
P Number of pool zones; P ∈ Z++.
K Number of event nodes in the process; K ∈ Z++.
S Number of stages in the process; S ∈ Z++.
T Set for time periods in any given node; T = {1, 2, ..., N}.
J Set for Pool Zones; J = {1, 2, ..., P}.
K Set for event nodes; K = {1, 2, ..., K}.
Ki Set for nodes in stage i, i=1,...,S.

Table 4.2. Upper Level Parameters Used in Chapter 4.
xL

kti, x
U
kti Lower and upper bounds for the daily imbalances on day

t at node k, in pool zone i; i ∈ J, t ∈ T, k ∈ K.
xL

kt, x
U
kt Lower and upper bounds for the sum of the daily imbal-

ances on day t at node k; t ∈ T, k ∈ K.
swL

kti, sw
U
kti Bounds on balance swing before day t at node k’s start,

in pool zone i; t ∈ T, i ∈ J, k ∈ K.
x0i Imbalance at the beginning of day 1 at node 1, in pool

zone i; i ∈ J.
Dkti Expected demand on day t, at node k, in pool zone i;

t ∈ T, i ∈ J, k ∈ K.
Πkti Unit price for each unit of gas extracted/sold (con-

tracted gas) at time t at node k in zone i; t ∈ T, i ∈ J,
k ∈ K.

CIkti, CRkti Recourse cost and booking capacity cost per gas unit on
day t at node k, in pool zone i; t ∈ T, i ∈ J.

pk Probability of node k to occur in any scenario; k ∈ K.

Table 4.3. Lower Level Used in Chapter 4.
eij Amount of gas lost when moving one unit from pool

zone i to pool zone j; i, j ∈ J, i < j.
fij, bij Forward haul cost and backward credit for moving one

unit of gas from pool zone i to pool zone j; i, j ∈ J,
i < j.

ri Cash-out penalization coefficients in pool zone i; i ∈ J.
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Table 4.4. Upper Level Decision Variables Used in Chapter 4.
xkti Imbalance on day t at node k, pool zone i; t ∈ T, i ∈ J,

k ∈ K.
swkti Imbalance swing for day t’s start in node k, in pool zone

i; t ∈ T, i ∈ J, k ∈ K.
EAkti Amount of gas actually extracted on day t at node k, in

pool zone i; t ∈ T, i ∈ J, k ∈ K.
EPkti Amount of gas planned to be extracted (i.e. booked

pipeline capacity) on day t at node k, in pool zone i;
t ∈ T, i ∈ J, k ∈ K.

xaktj Amount of gas actually extracted and sold during day t
at node k, in pool zone i; t ∈ T, i ∈ J, k ∈ K.

xdktj Amount of demand Dkti not met during day t at node
k, in pool zone i; t ∈ T, i ∈ J, k ∈ K.

Table 4.5. Lower Level Decision Variables Used in Chapter 4.
yi Final imbalance in pool zone i, i ∈ J.
uij Volume of gas moved from pool zone i to pool zone j,

i, j ∈ J, i < j.
vij Gas credited from pool zone j to pool zone i; i, j ∈ J,

i < j.
z Total cash-out for the Natural Gas Shipping Company.

Table 4.6. Artificial Variables Used in Chapter 4.
q Binary variable equal to 1(0) if final imbalances yi are

all non-negative (non-positive.) In the special case when
yi = 0; i ∈ J we accept q = 1.

Notice that we require a larger number of sets in this model, and all of them are

characterized by bold typeface. Also, there is now only one demand and one price

parameter matrices, since we no longer allow an out-of-contract gas sale.

Nodes are numbered, so that the parameter pk is the image of function p when

evaluated in node nk, that is, pk := p(nk).

Imbalance swing variables and bounds change from s to sw; imbalances, extracted

amounts and booked/planned amounts are still represented by EA,EP . Variables

xa and xd are used exclusively in this formulation, and they have no direct
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counterpart or meaning in the deterministic problem, although their nature is

similar to that of auxiliary variables A1 and A2.

Since costs CI and CR are deterministic, they are equal for every node at a given

stage s, that is, CRkti = CRk�ti, k, k� ∈ Kl, l = 1, ..., S. The same occurs with

variable EP , as explained by line (4.17h).

Because of the ternary nature of the tree, the parameters K and S are related by

expression

K =
S−1�

i=0

3i.

As a final remark, we will use the node imbalance matrix xk, which is defined by

fixing one node k and taking all the days and pool zones in it to form an imbalance

matrix, that is, xk = (xkti)
N,P
t=1,i=1 when modeling the lower level in order to simplify

the notation.

4.4.3 Stochastic Models2

Equations (4.17a)-(4.17i) describe the upper level part of a bilevel problem, which

is stochastic and based in a ternary scenario tree such as that in figure 4.2. This

particular stochastic formulation is node-based instead of scenario based [75]; this

means that we will use one set of variables for each node, and not one for each

scenario. Proper variable identification through the predecessor function a will

considerably reduce the number of variables used (as compared to a scenario

formulation,) as well as removing the need to include non-anticipativity constraints.

[60]

Much like we did in the deterministic formulation, the original model is only for

descriptive purposes. The actual model, shown later, will be a linear, modified

version of this one that has no redundant variables and eliminates nonlinearities

through a variable replacement.

2The contents of this section appear in the authors’ [54]
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Minimize: h6(x, sw,EA, EP, xd, z; q) =

�

k∈K

pk

�
�

t∈T

�

i∈J

(CIktixdkti − Πkti min{EAkti, Dkti} + CRktiEPkti)

�

(4.17a)

+
�

k∈KS

pkz

Subject to:

xL
kti ≤ xkti ≤ xU

kti, k ∈ K, t ∈ T, i ∈ J; (4.17b)

swL
kti ≤ swkti ≤ swU

kti, k ∈ K, t ∈ T, i ∈ J; (4.17c)

xL
kt ≤

�

i∈J

xkti ≤ xU
kt, k ∈ K, t ∈ T; (4.17d)

xkti =





xa(k,)N,i + swkti if t = 1

xk,t−1,i + swkti if t �= 1
, k ∈ K, t ∈ T, i ∈ J; (4.17e)

xkti = EPkti − EAkti, k ∈ K, t ∈ T, i ∈ J; (4.17f)

xdkti = max{0, Dkti − EAkti}; k ∈ K, t ∈ T, i ∈ J; (4.17g)

EPkti = EPk�ti; k, k� ∈ KS, t ∈ T, i ∈ J. (4.17h)

EAkti, xdkti ≥ 0; k ∈ K, t ∈ T, i ∈ J; (4.17i)

where variable z is controlled by the lower level in response to each upper level

scenario in the exact same manner as in problem PR5. Problems like (4.17a)-(4.17i)

are known as multi-staged stochastic optimization problems with recourse. The term

“multi-staged” refers to the existence of more than 1 stage: variables corresponding

to the first stage can’t be changed in the future, so whatever decision they represent

is fixed and unchanged as the process develops. In our case, the main first

stage-variables of the problem are the booked volumes EP : once notified to the

POC before the beginning of the operative period, these amounts cannot be altered

by the NGSC. It has to conform to them throughout the whole operative period.

On the contrary, the variables in the latter stages are the recourse variables, that

is, those variables whose value can be changed in the future in response to the
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different scenarios faced. Extraction volumes EA, and their derived imbalance

volumes and sold volumes, x and xa, are recourse variables since the NGSC will

decide upon them once the time arrives.

Recourse variables are thus named because they can “change the course” or

impact of the first stage variables in the optimum. If the chosen EP turns out to be

unsuitable for the NGSC (too low or too high in a particular zone and day) then the

NGSC can decide upon EA accordingly to minimize the costs derived from the

miscalculation.

In the objective function, the term h6(x, s, EA, EP, xd; y, u, v, z, q) is a function

depending on variables from both levels. It represents negative revenues for the

NGSC. The term Πkti min{EAkti, Dkti} is the revenue from the gas extracted and

sold in every pool zone and time period, at every node, while CIktixdkti is the cost

for the unmet demand, which can be interpreted either as a penalization cost from

the clients, or the cost for the purchase of just enough supply from a third party to

satisfy the contracted demands.

The term CRktiEPkti represents the cost the NGSC incurs when booking capacity

in the pipeline at time t, node k and pool zone i; this term is particularly important

for the non-triviality of the solutions: if it were free to allocate capacity for the

NGSC, the later would respond by maximizing variables EP and selling all possible

gas at prices Π.

Notice that if we have more than one stage, then
�

k∈K pk > 1. This means that

the first term in the objective function is not an expected value over the nodes but

rather over the scenarios. The non-anticipativity constraints (which prevent

decision being taken based upon information not already obtained) have here been

implicitly stated by using the node formulation instead of a scenario formulation. If

we separate the scenarios in each stage and assign them their corresponding

probabilities, then the first node would have a probability of occurring of 1, since all

scenarios pass through it, and so on.

Line (4.17g) defines the unsatisfied demand variables, and constraint (4.17h)

represent the first-stage nature of variable EP , in the sense that every node in a

given stage must share the same values for that variable. All other constraints have

similar meaning than their deterministic counterparts.

105



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

In the computational solution of the stochastic bilevel problem, we work not with

the model above, but the almost linear equivalent given by lemma 4. As explained

in the previous chapter, the computational solution of a linear problem is

considerably faster than that of a nonlinear problem, so having a (almost) linear

equivalent version of a problem will greatly aid us in our purpose of solving the

stochastic model given above.

Lemma 4. Consider the following optimization problem, which is linear with

respect to every term except for variable z, which is controlled by lower level in

response to this upper level:

Minimize: h7(x, EA, xa, z; Π, D, q) =

�

k∈K

pk

�
�

t∈T

�

i∈J

CIkti (Dkti − xakti)− Πktixakti + CRkti (xkti + EAkti)

�

(4.18a)

+
�

k∈KS

pkz

Subject to:

xL
kti ≤ xkti ≤ xU

kti; k ∈ K, t ∈ T, i ∈ J; (4.18b)

xL
kt ≤

�

i∈J

xkti ≤ xU
kt; k ∈ K, t ∈ T; (4.18c)

swL
k1i ≤ xk1i − xa(k,)N,i ≤ swU

k1i; k ∈ K, i ∈ J; (4.18d)

swL
kti ≤ xkti − xk,t−1,i ≤ swU

kti; t = 2, ..., N, k ∈ K, i ∈ J; (4.18e)

xakti ≤ Dkti; k ∈ K, t ∈ T, i ∈ J; (4.18f)

xakti ≤ EAkti; k ∈ K, t ∈ T, i ∈ J; (4.18g)

xkti + EAkti = xk�ti + EAk�ti; k, k� ∈ KS, t ∈ T, i ∈ J. (4.18h)

EAkti, xakti ≥ 0; k ∈ K, t ∈ T, i ∈ J; (4.18i)

1. Let (x∗, sw∗, EA∗, EP ∗, xd∗, z∗) be an optimal solution to (4.17a)-(4.17i).

Then, there exists xa∗ such that (x∗, EA∗, xa∗, z∗) is an optimal solution for

(4.18a)-(4.18i) with the same optimal objective value.
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2. Let (x∗∗, EA∗∗, xa∗∗, z∗∗) be an optimal solution of (4.18a)-(4.18i). Then there

exist sw∗∗, EP ∗∗, xd∗∗ such that (x∗∗, sw∗∗, EA∗∗, EP ∗∗, xd∗∗, z∗∗) solves

(4.17a)-(4.17i) with the same objective function value.

Proof. (a) Let (x∗, sw∗, EA∗, EP ∗, xd∗) be an optimal solution to (4.17a)-(4.17i). If

x∗ satisfies (4.17b) and (4.17d), then (4.18b) and (4.18c) are trivially true for this

x∗. Next, because (4.17f) and (4.17h) are valid for (x∗, EA∗, EP ∗), then (4.18h)

clearly holds for (x∗, EA∗). Further, if (x∗, sw∗) satisfies (4.17e), (4.17c), then

(4.18d) and (4.18e) are evidently true for x∗.

Now, define xa∗kti = min{Dkti, EA∗
kti}, k ∈ K, t ∈ T, i ∈ J, and notice that xa∗

yields (4.18f), (4.18g) and (4.18i). Combining this and (4.17g) into the upper level

objective function of the original problem, we come to the equality:

h6(x
∗, sw∗, EA∗, EP ∗, xd∗) = h7(x

∗∗, EA∗∗, xa∗∗). (4.19)

(b) Let (x∗∗, EA∗∗, xa∗∗, z∗∗) be an optimal solution of (4.18a)-(4.18i). If x∗∗
satisfies (4.18b) and (4.18c), then it is easy to see that (4.17b) and (4.17d) also

holds for x∗∗. Next, if (4.18h) is valid for (x∗∗, EA∗∗), then we can define

EP ∗∗ = EA∗∗ + x∗∗ so that (x∗∗, EA∗∗, EP ∗∗) satisfies (4.17f), (4.17h).

Furthermore, if (4.18d), (4.18e), are true for (x∗∗), we can define sw∗∗ as

sw∗∗
k1i = x∗∗k1i − x∗∗a(k)Ni, k ∈ K, i ∈ J, and

sw∗∗
kti = x∗∗kti − x∗∗k,t−1,i, t = 2, ..., N, k ∈ K, i ∈ J.

(4.20)

Then, sw∗∗ will satisfy (4.17e), (4.17c).

Now take xa∗∗ and consider the coefficient of objective function h7 for xakti in

(4.18a), that is, −CIkti − Πkti. Since no variable other than EA∗∗—together with

the parameter value D—limits the growth of xa∗∗, then we can state that, in the

minimization process, the variable xakti will naturally achieve the maximum value

allowed by constraints (4.18f) and (4.18g), which is the minimum of EAkti and Dkti.

This means that in the optimal solution of (4.18a)-(4.18i) one has

xa = min{Dkti, EAkti}. Defining xd∗∗kti = Dkti − xa∗∗kti, k ∈ K, t ∈ T, i ∈ J, yields xd∗∗

satisfying (4.17g) and (4.17i). Therefore, if we substitute xa∗∗ = D − xd∗∗ into the
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objective function of the nonlinear problem, (4.18a) we obtain:

h6(x
∗∗, sw∗∗, EA∗∗, EP ∗∗, xd∗∗, z∗∗) = h7(x

∗∗, EA∗∗, xa∗∗, z∗∗) (4.21)

(c) We have proved so far that, starting from an optimal solution of one problem,

a feasible solution for the other problem can be constructed such that their

corresponding objective function values will be equal. Hence, it is readily seen that

any optimal solution for one problem will give a correspondent optimal solution for

the other problem with the same optimal value. Indeed, if any problem had an

optimal solution with the objective function value κ∗ strictly less than the optimal

value of the other problem, τ ∗, then, by either (4.19) or (4.21), this latter problem

would also have a feasible solution with the objective function value κ∗ < τ ∗, thus

denying the optimality of the value τ ∗ and bringing us to a contradiction. This

establishes both assertions of the lemma and implies the equivalence of problems

(4.17a)-(4.17i) and (4.18a)-(4.18i)

Once we have defined the upper level almost linear stochastic problem we will

solve, we need only to state the lower level problem; since there are no randomly

varying parameters in this lower level, the model is conceptually the same as in the

deterministic model (once linearized as described in lemma 3) developed, with some

differences in the symbols used. For the sake of completeness, the Bilevel Stochastic

Lower Level Model is re-stated here in lines (4.22a)-(4.22p). The bilevel problem

formed when putting lines (4.22a)-(4.22p) together with the upper level problem

(4.18a)-(4.18i) is labeled SPR2.
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Minimize: g7(y, u, v, z, d, ξ, ζ; xkN , q) = d + M
�

i∈J

(ξi + ζi) (4.22a)

Subject to:

yj = xkNi +
�

i:i<j

[(1− eij)uij − vij] +
�

k:k>j

[vjk − ujk] , j ∈ J; (4.22b)

uij ≤ ξi; i, j ∈ J, i < j; (4.22c)

uij ≤ ζj; i, j ∈ J, i < j; (4.22d)

vij ≤ ξj; i, j ∈ J, i < j; (4.22e)

vij ≤ ζi; i, j ∈ J, i < j; (4.22f)

− ζi ≤ yi ≤ ξi; i ∈ J; (4.22g)

ξi ≥ xkNi; i ∈ J ; (4.22h)

ξi ≥ 0, i ∈ J ; (4.22i)

ζj ≥ −xkNi; j ∈ J ; (4.22j)

ζj ≥ 0; j ∈ J. (4.22k)

−M (1− q) ≤ yi ≤ Mq; i ∈ J; (4.22l)

z = −
�

i∈J

riyi −
�

(i,j):i<j

vijbij +
�

(i,j):i<j

fij (1− eij) uij (4.22m)

− d < z < d; (4.22n)

yi, z ∈ R; i ∈ J; (4.22o)

uij, vij ≥ 0; i, j ∈ J; (4.22p)

The hierarchical problem described by the equations (4.18a)-(4.18i),

(4.22a)-(4.22p), which we will call SPR2 is a stochastic bilevel linear problem with

recourse, and it can be solved, once reduced to the general form shown in (3.7),

using general bilevel linear programming techniques.
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4.4.4 Problem Comparison

We finish this section with table 4.7, which compares the originally formulated

stochastic problem (4.17a)-(4.17i), (4.22a)-(4.22p), labeled SPR1, the stochastic

bilevel linear model SPR2, and the bilevel linear deterministic model, PR5.

Table 4.7. Comparison of the Different Stochastic and Deterministic Models Using
the Notation Given in Tables 4.1-4.6.

Problem
Feature SPR1 SPR2 PR5

Upper Level Objec-
tive Function:

Nonlinear Linear Linear

Lower Level Objec-
tive Function:

Linear Linear Linear

Upper Level Linear
Constraints:

(9P + 2)NK +
(K − S)NP

(8P + 2)NK +
(K − S)NP

13SNP + 2SN

Upper Level Non-
linear Constraints:

KNP 0 0

Lower Level Linear
Constraints:

3P 2 + 5P + 3 3P 2 + 5P + 3 3P 2 + 5P + 3

Lower Level Non-
linear Constraints:

0 0 0

Upper Level Real
Variables:

5KNP + 1 3KNP + 1 5SNP + 1

Upper Level Integer
Variables:

0 0 0

Lower Level Real
Variables:

P 2 + 2P + 2 P 2 + 2P + 2 P 2 + 2P + 2

Lower Level Integer
Variables:

0 0 0

Times the problem
is solved:

2 2 2

Approximate Solu-
tion?

Yes Yes Yes

4.5 Solution Methods for the Stochastic Bilevel Problem

The bilevel problem (4.18a)-(4.18i), (4.22a)-(4.22p), though conceptually different

than the deterministic variant PR5, relies on constraint matrices and objective

function vectors that have a very similar structure than those of PR5 Therefore, all

of the algorithms and methods described in section 3.3, such as the Inexact

Penalization Algorithm, the Direct Algorithm, and the Lower Level Feasible Point

Algorithm can be applied with little to no modification to problem SPR2.
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It easy to see that, though having the same number of days in the operative

period and the same number of pool zones, the stochastic problem SPR2 has an

exponentially increasing number of decision variables and their respective

constraints, as we can see with the inclusion of the parameter K in the accounting

of the variables for the stochastic problems. The number of event nodes K, as

shown before, is an exponential function of the number of stages, S. It will be then

considerably more difficult (and computationally slower) to solve a stochastic

problem than a deterministic problem with a similar number of days and pool zones

(which .

The generation of problem instances to solve and test the stochastic problem and

its solution methods is similar to that explained for the deterministic variants in

algorithm 4, with little changes to accommodate the differences found in the

stochastic formulation.

Chapter Summary

This chapter described the theoretical tools, models and assumption required to

reformulate the deterministic optimization problems described in chapter 3 as

stochastic optimization problem.

We first describe the forecast methods, assumption and algorithms needed to

make use of the time series of natural gas consumption and prices as parameters in

the stochastic models. The time series are also used in a regression analysis to

produce a functional relationship between consumption and price, as well as a

pooled regression that guarantees similar behavior across pool zones. The series are

expected to satisfy the statistical analyses proposed and be usable as valid

parameters.

The stochastic optimization models here apply the notion of a scenario tree,

which is adapted here to our needs, specifying the desired qualities of a ternary

scenario tree and the exact way in which this structure serves as the basis of the

parameter scheme used.

Finally, we present the stochastic models expanded from the deterministic

optimization problems from the last chapter. First, an explicative model is

produced, upon which theoretical manipulations are done to obtain a simpler
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problem that is more tractable, computationally speaking, in a manner similar to

that performed in the deterministic analogous situation. The model thus obtained is

paired with the lower level model already obtained in the last chapter and the

variable and problem structure is compared to the deterministic problem PR5. The

same solution techniques are deemed acceptable for use with the new formulations

(with some obvious modifications to the matrices and objective functions,) and the

problem generation is also observed to be similar enough as to employ the same

basic notions of the algorithm used to produce the deterministic instances, once it

has been modified to account for the parameter’s stochasticity.
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CHAPTER 5

DETERMINISTIC MODELS: NUMERICAL RESULTS

This chapter presents the numerical analysis and computing results obtained from

the models proposed in chapter 3. Numerical results corresponding to the individual

level’s solutions are given in sections 5.1 and 5.2, whereas the complete bilevel

problem solution reports are shown in section 5.3.

The experiments here reported test the deterministic models in chapter 3, and are

focused in the three objectives:

• Verify the equivalence of the upper level (almost) linear problem with the

correspondent nonlinear version, as well as the performance of the solution

methods for each formulation.

• Verify the equivalence of the lower level linear problem with the correspondent

nonlinear version, as well as the performance of the solution methods for each

formulation.

• Verify the equivalence of the bilevel linear problem PR5 with the bilevel

nonlinear problem PR3�, as well as the performance of the solution methods

for each formulation.

The first two objectives are important because of the usage of lemmas 2 and 3 in

the solution of our bilevel problem. Both linearization lemmas rely on the fact that

the artificial variables will converge towards certain values in the optimal solution.

Sections 5.2 and 5.1 detail experimental numerical solutions for each problem,

focusing on how the numerical methods provide the values for these variables.

Additionally, the lower level must also prove that, for an arbitrary feasible

problem, a solution point delivered complies with the complementarity of the

artificial variables ξ, ζ. If these variables are not complementary, then the lower

level inexact linear formulation proposed by problem PR5 is not guaranteed to be

equivalent to the nonlinear formulation in PR3�; this is also covered in section 5.2

Finally, section 5.3 presents the comparison of the direct solutions of the bilevel

linear approximation PR5, and the solutions delivered by the Inexact Penalization
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Method. The running times and comparisons of these experiments are provided, as

well as a discussion of the findings.

All instances in this chapter were solved in an Intel R� CoreTM 2 Quad processor

running at 2.66MHz, with 4GB of RAM. The optimization software used is

Matlab R�R2008b. We employed baseline Matlab functions and the Optimization

ToolboxTM, a set of functions specifically designed by the authors of the software to

carry on optimization processes.

5.1 Upper Level Model Comparison

The purpose of this section is to compare the equivalence of the upper level

(almost) linear formulation with its correspondent nonlinear formulation, as it is

theoretically demonstrated by lemma 2. The running times that each of the methods

requires obtaining a solution for the tested problem instances are also studied.

For the assertion proved by the lemma to be correct, the artificial variables A1, A2

must have an optimal value equal to their respective maximum limit, which is

A1∗∗ = EA∗∗ = max{0, EA∗∗ −DC} + min{EA
∗∗, DC}

for A1, and

A2∗∗
ti = min{DCti, A

1∗∗
ti } = min{DCti, EA∗∗

ti }

for variable A2.

Variable A1
ti, represents the amount of fuel that can be sold either within or outside

of the contracted amount, at the opportunity price of Πe
ti. Since the coefficient of

this variable is nonpositive, a minimization process will likely increase this variable

to the maximum value allowed by the constraints, that is, the value of EAti.

On the other hand, variable A2
ti, if the hypothesis of the lemma

(Πc
ti − Πe

ti + CIti > 0∀t, i,) is valid, should be equal to the minimum between EAti

and DCti, that is, the the maximum amount of fuel that can be extracted and sold

at a contracted price of Πc
ti.
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5.1.1 Nature of the Upper Level Solution

In order to illustrate the way the results are obtained when experimenting with

the upper level model of PR3�, we will first consider one problem instance, labeled

D001. We solved this instance using the same formulation in equations

(3.5a)-(3.5h), except for the fact that we will eliminate z (or equivalently, fix z = 0)

from the objective function in 3.5a: indeed, we are not interested right now in the

lower level, only in the behavior of the upper level formulations. The solver used is

function fmincon , a constrained nonlinear Matlab function that uses as input a

custom-built objective function, custom-built nonlinear inequalities and equalities

constraints function, and linear inequalities, equalities and bounds matrices and

vectors, as well as a starting point. For this particular model, the nonlinear

constraint function is null, and the starting point used is a vector of zeros. [94]

The results of solving problem instance D001 using the modified model PR3� are

shown in tables 5.1 to 5.3. It was verified that EP = EA + x. The obtained optimal

solution value is 4,032,907.26, and the running time required to reach to this

solution is 29.28 seconds.

Table 5.1. D001, PR3�: Optimal Results for Variable x.
Imbalances x

Pool Zone
1 2 3 4

143.00 124.00 -66.00 -154.00
122.00 94.00 -28.00 -167.00
116.00 83.00 -40.00 -129.00
105.00 78.00 -26.00 -147.00
98.00 57.00 -32.00 -140.00
106.89 49.00 -60.89 -102.00
91.00 40.00 -25.00 -118.00
85.00 30.00 -21.00 -104.00
80.00 25.00 -39.00 -66.00
75.00 17.00 -51.00 -28.00
77.00 13.00 -71.00 -1.00
88.00 4.00 -33.00 -31.00
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Table 5.2. D001, PR3�: Optimal Results for Variable EA.
Actual Extraction EA

Pool Zone
1 2 3 4

4,346.52 2,129.98 2,223.07 1,302.31
10,210.99 4,297.11 2,705.65 3,538.10
18,589.74 9,671.01 7,574.22 7,557.05
44,736.06 21,214.34 15,890.02 16,315.79
31,128.28 16,576.47 16,613.82 10,818.28
36,998.44 16,245.11 13,508.08 14,430.91
27,871.52 12,798.88 12,645.34 8,382.01
12,863.95 7,636.79 6,355.33 3,166.47
9,234.81 3,528.76 3,083.37 2,101.94
5,290.27 2,311.15 2,289.73 1,971.44
3,511.54 2,228.42 2,089.02 1,450.43
2,611.46 1,699.75 1,654.01 1,257.55

Table 5.3. D001, PR3�: Optimal Results for Variable EP .
Notified/Booked Extraction EP

Pool Zone
1 2 3 4

4,489.52 2,253.98 2,157.07 1,148.31
10,332.99 4,391.11 2,677.65 3,371.10
18,705.74 9,754.01 7,534.22 7,428.05
44,841.06 21,292.34 15,864.02 16,168.79
31,226.28 16,633.47 16,581.82 10,678.28
37,105.33 16,294.11 13,447.19 14,328.91
27,962.52 12,838.88 12,620.34 8,264.01
12,948.95 7,666.79 6,334.33 3,062.47
9,314.81 3,553.76 3,044.37 2,035.94
5,365.27 2,328.15 2,238.73 1,943.44
3,588.54 2,241.42 2,018.02 1,449.43
2,699.46 1,703.75 1,621.01 1,226.55

Let us solve again instance D001, this time using the upper level model of

problem PR5 (sans the z in the objective function.) We obtain the results of tables

5.4 to 5.6.
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The figures in the tables allow us to corroborate the equivalence of both solutions

and to compare the running times when solving the linear formulation PR5 with

those obtained using formulation PR3�.

Model PR5 is solved using Matlab Optimization Toolbox function linprog ,

which takes all of its arguments (objective functions, constraints, right-hand sides,

and bounds) in the form of regular matrices and vectors and uses them in a linear

programming routine. [94]

Table 5.4. D001, PR5: Optimal Results for Variable x.
Imbalances x

Pool Zone
1 2 3 4

143.00 124.00 -66.00 -154.00
122.00 94.00 -28.00 -167.00
116.00 83.00 -40.00 -129.00
105.00 78.00 -26.00 -147.00
98.00 57.00 -32.00 -140.00
89.00 49.00 -43.00 -102.00
91.00 40.00 -25.00 -118.00
85.00 30.00 -21.00 -104.00
80.00 25.00 -39.00 -66.00
75.00 17.00 -51.00 -28.00
77.00 13.00 -71.00 -1.00
88.00 4.00 -33.00 -31.00

The optimal imbalance matrices for both formulations are identical.

The values of artificial variable A1 have reportedly grown to their maximum

allowed values as we can see from their correspondence with the figures for variable

EA. The implicit values for EP for the linear approach are thus also equal to those

of the nonlinear approach.

The reported optimal solution value for the linear approach is 4,032,940.14,

slightly higher than that of the nonlinear case at 4,032,907.26. Nevertheless, and

given the large amount of sizable parameters, we cannot discard rounding errors

when considering these optimal values. Therefore, we accept both methods as

equally correct for this problem instance in spite of this minimal discrepancy.
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Table 5.5. D001, PR5: Optimal Results for Variable x.
Artificial Variable A1

Pool Zone
1 2 3 4

4,346.52 2,129.98 2,223.07 1,302.31
10,210.99 4,297.11 2,705.65 3,538.10
18,589.74 9,671.01 7,574.22 7,557.05
44,736.06 21,214.34 15,890.02 16,315.79
31,128.28 16,576.47 16,613.82 10,818.28
37,016.33 16,245.11 13,508.08 14,430.91
27,871.52 12,798.88 12,645.34 8,382.01
12,863.95 7,636.79 6,355.33 4,120.28
9,234.81 3,528.76 3,083.37 2,101.94
5,290.27 2,311.15 2,289.73 1,971.44
3,511.54 2,228.42 2,089.02 1,450.43
2,611.46 1,699.75 1,654.01 1,257.55

One remarkable difference, though, lies in the running times for both approaches.

The linear formulations takes only 0.35 seconds to be solved; this is significantly

faster the running time for the nonlinear approach by 28.23 seconds, i.e., almost 81

times.

This first example provides us with encouraging evidence: the linear approach

appears as not only theoretically correct (by lemma 2,) but also numerically sound.

Besides this, its running time is undeniable better than that of the nonlinear

approach.

5.1.2 Upper Level Solution Reports

It we report the results obtained after running 25 problem instances of various

sizes. The obtained solutions and the running times required are shown, and a

comparison thereof is carried on.

Each problem instance was generated using the problem generating algorithm 4,

considering only the parameters involving the upper level. All instances were solved

without considering variable z in the upper level objective function in either PR3�

or PR5 formulation.
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Table 5.6. D001, PR5: Optimal Results for Variable x.
Artificial Variable A2

Pool Zone
1 2 3 4

2,852.21 1,306.35 1,256.86 979.19
6,446.13 2,642.26 1,865.89 2,383.37
14,318.77 5,853.01 4,301.26 5,280.05
28,478.38 12,024.79 11,263.38 10,803.12
20,107.89 10,163.31 10,890.39 7,727.44
21,807.01 10,551.89 9,546.70 8,534.39
17,987.35 8,724.58 8,222.52 6,133.70
7,712.52 4,421.02 4,426.64 2,800.81
5,205.29 2,415.92 2,087.77 1,442.69
3,054.24 1,578.12 1,545.21 1,133.37
2,453.76 1,587.48 1,282.76 921.37
2,611.46 1,277.23 1,148.76 946.71

We created 10 problem instances with 12 days and 4 pool zones, 10 problem

instances with 8 days and also 8 pool zones, and 5 larger problem instances with 30

days and 10 pool zones. All the results are presented in tables 5.7 to 5.9. Larger

values for the optimal solutions are considered better, as are smaller values for the

running times. The column labeled “Quotient” under the Running Time heading is

obtained by dividing the running time for the nonlinear case by the running time for

the linear case. A high figure indicates a better performance of model PR5.

In table 5.7, we see that small problem instances show not too different results in

terms of objective function values. Furthermore, in every case in which the optimal

solution values for both methods differed more than 0.01, the linear approach

presented a better result.

Running times have noticeable differences between each approach. The linear

approach obtains its results 80 to almost 300 times faster than the nonlinear

approach. These results are consistently below 0.4 seconds while the instance solved

the fastest by the nonlinear method is just below 30 seconds. The evidence from

this batch of small 12-day, 4-pool zone cases strongly supports the usage of the

linear approach over the nonlinear one.
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Table 5.7. Optimal Solutions and Running Times for Instances D001 to D010.
Solution Running Time

Nonlinear Linear Nonlinear Linear Quotient
D001 4,032,907.26 4,032,940.14 29.28s 0.35s 80.8
D002 5,572,261.09 5,572,280.98 86.74s 0.32s 271.06
D003 10,104,306.08 10,104,306.08 60.28s 0.34s 177.29
D004 3,994,161.24 3,994,161.24 34.61s 0.33s 104.87
D005 9,419,304.01 9,419,304.01 58.83s 0.33s 178.27
D006 1,370,306.84 1,370,307.11 30.80s 0.33s 93.33
D007 9,510,283.50 9,510,283.50 107.59s 0.37s 290.78
D008 6,166,486.24 6,166,486.23 44.59s 0.34s 131.14
D009 3,703,127.55 3,703,127.55 44.19s 0.33s 133.90
D010 5,641,775.34 5,641,775.34 48.16s 0.32s 150.50

Table 5.8 presents analogous figures for the two methods than those in table 5.7.

The optimal values for both formulations are much the same, this time with only 2

concrete coincidences (with a 0.01 tolerance for the comparison.) All the other cases

have results for the linear approach better than those of the nonlinear approach.

The running times reported are also in favor of the linear approach. The gaps

between corresponding times are now larger; the average nonlinear time is around

120 seconds, whereas the linear times are all under 0.4 seconds.

Table 5.8. Optimal Solutions and Running Times for Instances D051 to D060.
Solution Running Time

Nonlinear Linear Nonlinear Linear Quotient
D051 5,694,350.86 5,694,358.17 127.61s 0.39s 327.20
D052 4,662,195.21 4,662,195.21 85.31s 0.35s 243.74
D053 6,718,600.79 6,718,600.79 76.80s 0.37s 207.56
D054 3,779,139.68 3,779,139.69 117.19s 0.33s 355.12
D055 6,661,749.65 6,661,749.64 114.14s 0.34s 335.70
D056 9,315,454.03 9,315,470.33 193.58s 0.34s 569.35
D057 13,811,198.14 13,811,212.21 206.44s 0.36s 5.73.44
D058 3,694,646.69 3,694,646.69 61.56s 0.36s 171.00
D059 8,922,689.75 8,922,817.48 113.01s 0.33s 342.45
D060 6,874,756.03 6,874,756.03 113.89s 0.37s 307.81
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Lastly, table 5.9 shows an apparent shortcoming the nonlinear approach has when

dealing with large problem instances. The nonlinear formulation failed to deliver a

solution in under 3 hours for any of the five 30-day, 10-pool zone instances. Instance

D101 took around 3.8 hours and, after running out of its 3× 105 allowed function

evaluations, still could not match the solution offered by the linear approach in

under 1 second.

Table 5.9. Optimal Solutions and Running Times for Instances D101 to D105.
Solution Running Time

Nonlinear Linear Nonlinear Linear Quotient
D101 24,165,142.15 33520637.03 13,862.65s 0.54s 25,000+
D102 NA 200,124,718.21 10,800s+ 0.61 NA
D103 NA 39,477,570.18 10,800s+ 0.28 NA
D104 NA 17,642,276.71 10,800s+ 0.27 NA
D105 NA 28,050,008.62 10,800s+ 0.23 NA

Judging from the results observed in past experiments, we decided to stop the

solution process of the nonlinear formulation of instances D102-D105 in case they

exceeded 3 hours of running time, which occurred in every case. The solutions of

the linear approach never took longer than one second to be obtained, not even

when dealing with the 12,000-decision variable instances. Also, based on the

evidence from the past instances, contained in tables 5.7 and 5.8, we have no reason

to believe that the linear approach did not deliver correct solutions; this is, if the

nonlinear approach had been tested with unlimited time and resources, we consider

that it would have reached the same result.

For comparison purposes, we accept that the linear approach is better at solving

our optimization problem, providing fast results to the upper level of problem PR5,

which has been proved equivalent to the upper level model of problem PR3� both

theoretically and practically. We will therefore consider the upper level formulation

PR5 and not the upper level formulation of PR3� as the chosen method for solving

the bilevel problem formed when adding up the lower level and variable z to the

upper level objective function.

In a final note, we recall that Matlab function fmincon is, according to The

MatWorks, not particularly suited to solve non-differentiable problems [94]. It is,
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though, the only built-in way to solve an optimization problem with nonlinear

constraints and/or nonlinear objective function in the software. The results herein

presented prove that fmincon , while able to effectively solve the nonlinear model

problem instances (and in reasonable time for the smaller ones,) behaves poorly

once the number of variables is increased.

5.2 Lower Level Solution Methods Comparison

Much like the upper level in the past section, the lower level of the deterministic

problem can be solved using either the original formulation PR3�, the linear

equivalent formulation PR5 proposed in lemma 3. This lemma relies on variables

ξ, ζ attaining their maximum allowed values in order to have problem PR5 being

equivalent to problem PR3�. As mentioned above, it is important that variables ξ, ζ

are complementary in the optimal solution point of problem PR5, otherwise, the

equivalence of both formulations is not guaranteed.

For the purpose of comparing the solution methods’ speed and the equivalence of

the obtained optimums, we have generated 26 problem instances using the

methodology given in chapter 3, this time using only the steps concerning the lower

level parameters and using the initial vector x0i as though it was the final day

vector xNi required by the lower level models.

5.2.1 Nature of the Lower Level Solution

Consider table 5.10; it summarizes the numerical results for a single sample

problem instance solution, C001 from problem PR3�, solved by the nonlinear

constrained optimization function fmincon. The objective function and the logistic

constraints were passed as an explicit function to the solver fmincon , whereas the

remaining problem information (namely, the linear constraints and bounds) was

passed as regular vectors and matrices.

While simple, problem instance C001 permits us to examine the structure of the

lower level solutions with clarity. The values of xNi are entered as parameters, but

y, u and v are the decision variables obtained of once the model is solved. We can

see that yi always coincides with xNi in sign, which is a requirement. Also, each yi is

in all cases nonnegative, which is in accordance with the value of q = 1.
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Table 5.10. Results for Instances C001, q=1, Nonlinear Optimization Function.
Final Day Imbalances

xNi 190.00 67.00 124.00 8.00
Final Imbalances

yi 181.58 67.00 124.00 -0.00
Forward Haul

uij

0.00 -0.00 0.00 8.42
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

Backward Credit

vij

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

Running Time: 1.164,59s
z -43,281.47

Matrices u and v are strictly upper triangular, with every entry in or below the

main diagonal being zero. The fact that there is only one entry in u and none in v

in the optimal solution means that the natural gas is being moved downstream

(forward) the pipeline form one single pool zone to another single pool zone. The

volume moved is just enough to cover the negative 8 imbalance plus the proper loss

dictated by parameter eij. For any given instance, the upper triangular parts of

matrices u, v are, by definition, complementary, that is, uijvij = 0, i < j.
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Now, let us compare this latter solution to the one provided by Matlab function

linprog when applied to formulation PR5. This requires the addition of the

decision variables vectors ξ and ζ to the already shown decision variables. The

results for this case are displayed in table 5.11.

Table 5.11. Results for Instance C001, q=1, Linear Optimization Function.
Final Day Imbalances

xNi 190.00 67.00 124.00 8.00
Final Imbalances

yi 181.58 67.00 124.00 -0.00
Forward Haul

uij

0.00 -0.00 0.00 8.42
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

Backward Credit

vij

0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00

Positive Imbalances
ξi 190.00 67.00 124.00 0.00

Negative Imbalances
ξi 0.00 0.00 0.00 8.00

Running Time: 0.27498s
z -43,281.48

As we compare the optimal solution values of both problems, we find them to be

identical, save for a minimal difference of 0.01 in the values of z, which is really

innocuous. Variables ξ and ζ are indeed complementary, and they accurately

identify the positive and negative parts (respectively) of the final day imbalances

inputted.

The running times, however, are clearly lower than those of the nonlinear case.

Indeed, formulation PR5 was solved more than four times faster than formulation

PR3�. Although 0.9 seconds may seem like a meager gain, we remind the reader

that this is just a very small instance; as we increase the number of pool zones P ,
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the number of variables increases quadratically, and the running time is also

expected to be increased.

5.2.2 Lower Level Solution Reports

This section summarizes the results for the problem instances designed for this

lower level model, all of them produced in the same way as instance C001 described

above. The instances tested are broken down in three batches, according to problem

size. Instances labeled C001-C010 are small, 4-pool zone problem instances;

instances C040-C050 have 9 pool zones; and C101-C105 are large, 16-pool zone

problems instances.

Tables 5.12 to 5.14 condense the results for the problem instances C001 to C010.

The optimal solution reached by either method, and the running time required, are

shown for each case. The quotients for the running times were again calculated, like

it was done with the upper level experiments.

For the first batch of problems (table 5.12), both problems reached the same

objective value for the same value of q, notwithstanding minor differences attributed

to rounding errors and different tolerance bounds. The largest discrepancy is less

than 6 units, which is deemed tolerable given that the general order of the optimal

solution is of tens of thousands.

Regarding running times, we see that, with two exceptions, they are all around

four times faster for the linear approach than for the nonlinear approach. Instances

C004 and C008 are actually trivial problems because their final day imbalances xNi

are either all nonnegative or all nonpositive. In these cases, both methods behave

similarly, with the nonlinear approach being somewhat faster. Its figures,

nevertheless, have the same order than those of the linear approach.

Instances C040 to C050, reported in table 5.13, exhibit the same type of

correspondence between both methods optimal solutions than the past batch of

experiments. The largest discrepancy is around 11 units, that is, less than 0.004

percent of the solution’s value. This case also happens to be the problem instance

with the largest ratio between both methods running times.

Reporting zeros is, from the point of view of the lower level, the best solution one

could obtain in every problem, something not always possible. In the case of

125



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

Table 5.12. Optimal Solutions and Running Times for Instances C001 to C010.
Solution Running Time

Nonlinear Linear Nonlinear Linear Quotient
C001 -4,3281.47 -4,3281.48 1.164,59s 0.274,98s 4.235,1
C002 -7,305.00 -7,305.00 1.179,46s 0.278,22s 4.239,3
C003 -12,659.97 -12,661.52 1.131,60s 0.294,21s 3.846,2
C004 -69,736.00 -69,736.00 0.055,05s 0.063,57s 0.086,5
C005 -8,681.80 -8,681.81 1.165,17s 0.293,71s 3.967,0
C006 -10,920.78 -10,926.14 1.158,38s 0.266,79s 4.341,9
C007 3,263.24 3,263.24 1.146,96s 0.294,01s 3.901,0
C008 25,704.00 25,704.00 0.056,33s 0.070,22s 0.080,2
C009 0.00 0.00 1.179,89s 0.252,72s 4.668,7
C010 -8,666.29 -8,666.29 1.150,36s 0.287,39s 4.002,7

problem instances C040 to C050, we have that five out of eleven instances were able

to reach this global optimal, which is the minimum value the squared variable z2

can take. Among the 4-pool zone instances, only C009 reported z = 0. We interpret

this as having a larger number of pool zones being related to having a larger number

of possible choices to set the y, u, v values so that the utmost result is global

optimal. Less pool zones imply less choices and a smaller chance to reach the ideal 0

value of the objective function.

With respecting to running times, the nonlinear approach presents figures ranging

from 1.75 to around 6.5 seconds, whereas the times for the linear approach are

consistently around 0.3 seconds. The quotients calculated vary from 5.68 to 22.68,

that is, the linear solution method is between 5 and 22 times faster than the

nonlinear one.

Table 5.14 displays the reports for the five 16-pool zone instances tested.

Unfortunately, the nonlinear approach failed in every case to reach an optimal

solution within the allowed number of function evaluations, which is 100 times the

number of decision variables in every instance (100P 2.) In not a single case,

fmincon was able to deliver even a feasible, non-optimal solution to the instances,

though this is largely because of how fmincon internally works and not necessarily

due to a shortcoming of the formulation. On the contrary, the linear approach was

able to reportedly solve every problem.
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Table 5.13. Optimal Solutions and Running Times for Instances C040 to C050.
Solution Running Time

Nonlinear Linear Nonlinear Linear Quotient
C040 0.00 0.00 1.747,73s 0.307.42s 5.685,1
C041 0.00 0.03 1.854,75s 0.271,80s 6.823,9
C042 0.00 -0.06 2.034,59s 0.288,74s 7.046,4
C043 0.00 0.00 1.836,68s 0.279,58s 6.563,4
C044 -5,444.28 -5,444.33 3.877,85s 0.334,43s 11.590,5
C045 0.00 0.00 1.734,01s 0.287,72s 6.026,7
C046 -247.46 -247.77 3.19795s 0.282,42s 11.323,3
C047 0.00 0.00 1.893,81s 0.282,96s 6.692,8
C048 6,502.00 6,504.70 3.297,57s 0.291,53s 11.311,2
C049 4,134.00 4,135.77 6.419,14s 0.285,48s 22.586,4
C050 3,245.35 3,254.86 6.224,63s 0.275,01s 22.634,1

The running times for the linear method are all lower than 0.6 seconds. The

nonlinear approach, however, ran out of function evaluations at around 470 seconds

in each case, not being able to report feasible solutions even after taking up to one

thousand times longer than the linear approach.

We decided not to increase the number of function evaluations for fmincon to

give it a chance to solve instances C101 to C105 because it was already clear that

the linear approach is considerably faster. Also, the structure of the solutions, the

evidence from the past problems, and the optimality reports from the optimizer

linprog , all give us no reasons to believe the reported solutions by the linear

approach in table 5.14 are not optimal. Therefore, a comparison against the values

of the nonlinear approach like the one done for the former instances is not considered

to be required, given the circumstances. Analogously, we believe that statistical

tests to corroborate the greater efficiency of the linear approach are not needed.

For informative purposes, we tested a single 50-pool zone problem instance under

the linear PR5 formulation. The running time it took the linear method to solve

this large nontrivial problem instance is just around 100 seconds.

Considering the evidence mentioned above, we conclude that the linear equivalent

model that constitutes the lower level of problem PR5 is remarkably efficient when

compared to solving the nonlinear lower level problem PR3�, providing the same
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Table 5.14. Optimal Solutions and Running Times for Instances C101 to C105.
Solution Running Time

Nonlinear Linear Nonlinear Linear Quotient
C101 MFE! 1,448.83 490.374,85s 0.488,25s 1,004.35
C102 MFE! -0.02 466.047,57s 0.519,76s 896.75
C103 MFE! -2,816.30 468.588,69s 0.516,28s 907.62
C104 MFE! -4,893.51 482.433,72s 0.578,57s 833.83
C105 MFE! -504.47 442.033,08s 0.485,81s 909.88

quality of results in mere fractions of the running time required by the latter.

Hence, there should be no major issues if we use the formulation PR5 when solving

the complete bilevel linear problem formed by putting together both levels so far

analyzed in this chapter.

5.3 Results for the Bilevel Model

This section presents the most important results concerning the deterministic

models proposed in chapter 3, namely, the solution of the bilevel optimization

problem, labeled PR5, using both methods presented in section 3.3: the Direct

Method (DM,) and the Inexact Penalization Algorithm (IPA.) The latter was

developed in [23, 59] to deal with the original formulation PR1.

We have corroborated, based on the evidence from sections 5.1 and 5.2 in this

chapter, that formulation PR5 provides an accurate and more efficient (from the

optimization point of view) way to obtain an optimal solution to formulation PR3�.

Therefore, we will use PR5 here as the working model for both bilevel methods, DM

and IPA.

The structure of the solution is exactly the same as the merging of the solution

structures for both the upper and lower levels presented in the immediately

preceding sections, with matrices x, A1 and A2 in the upper level solution, and

matrices/vectors y, u, v, z, d, ξ and ζ in the lower levels.

5.3.1 Numerical Implementation Highlights

The algorithms sketched in section 3.3 are applied here. However, in subsection

3.3.1, we talked about three proposed focus point when implementing the bilevel
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solution process of model PR5: providing good starting point for both levels’

optimizers, and a fast, possibly heuristic way to solve function G in the

implementation of the IPA.

The upper level starting point can be readily provided by applying the

methodology used in section 5.1 of this chapter referring to the model PR5. By

dropping the term z from PR5 upper level objective function (3.24a), and the entire

lower level model, we obtain a plain linear programming problem that, even in large

instances with 30 days and 10 pool zones, can be solved in less than one second.

Comparing the magnitudes of z and the upper level objective function (3.24a), it

becomes evident that this simplified upper level problem not only provides a good

point to start a nonlinear search, but also one that is speedily obtained, analytically

justifiable, and usable in both the DM and the IPA approaches.

Upper Level Starting Point Selection

Remember that solving PR5 in a bilevel setting (as opposed to solving only the

upper level linear problem explained in 5.1), we are obligated to solve the upper

level problem using a nonlinear minimization fmincon instead of linprog . This is

the reason why we need a starting point in this level now but not necessarily so in

section 5.1: fmincon compulsorily needs a starting point, preferably as near as the

expected optimal as possible to avoid convergence issues.

Tables 5.15 and 5.16 summarize the results for ten problems instances, each with

4 pool zones and 4 days, comparing the running times for four starting search points

for fmincon applied to the upper level:

• using the result from an individual upper level minimization, like it was done

in section 5.1, as starting search point (IND)

• setting the starting point equal to the decision variables’ lower bounds (LB)

• setting the starting point equal to the decision variables’ upper bounds (UB)

• using a vector of zeros as the starting point (ZERO.)
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Table 5.15. Running Times for Four Upper Level Starting Point Methods, DM Ap-
proach.

Instance IND LB UB ZERO
A021 15.61s 77.53s 2.66s 4.07s
A022 149.37s 38.37s 117.62s 116.03s
A023 119.96s 119.85s 5.07s 5.03s
A024 143.64s 135.47s 154.42s 153.06s
A025 121.74s 121.65s 50.74s 49.66s
A026 100.12s 88.82s 33.01s 32.79s
A027 103.85s 146.03s 67.37s 66.81s
A028 119.51s 122.36s 29.59s 29.24s
A029 57.96s 78.73s 8.71s 8.62s
A030 86.43s 75.27s 15.65s 15.40s

Using the DM, we obtained similar results for both the IND and LB methods,

with no significant statistical difference between them when tested using the Wilcox

Signed Rank Test [72] at 0.1 significance. The UB and ZERO methods are, on the

contrary, statistically different, but a quick analysis suggest that, while the ZERO

times are better, they are so only in very small amounts, so that both methods can

indeed be considered equally good and also statistically better than methods IND

and LB.

The same occurs with the IPA regarding IND and LB; at 0.1 significance, the

Wilcox Signed Rank test indicates equal goodness for both methods. No statistical

tests are needed to see that the UB and ZERO starting point approaches are worse

than the first two in this solution method.

Regarding the DM optimal values obtained, there is not considerable difference

among the starting point choices, for all of them deliver similar optimal values (with

two exceptions for the LB method, which had to be rerun to obtain the final

figures.) At 0.1 significance, the Wilcox signed rank test supports the UB as better,

then the IND, and lastly the LB. Nonetheless, at 0.05 significance, we cannot assert

that there is any difference between the methods: are all considered equally good,

save for the LB apparent tendency to reach degenerated solutions.

In the case of the IPA, however, considerable different findings were obtained.

Both the IND and the LB methods are equally good solving the experimenting
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Table 5.16. Running Times for Four Upper Level Starting Point Methods, IPA Ap-
proach.

Instance IND LB UB ZERO
A021 21.35s 44.89s 1,052.05s 995.34s
A022 39.82s 28.01s 1,056.58s 879.23s
A023 36.58s 47.80s 1,053.51s 980.27s
A024 41.52s 36.79s 1,051.95s 1275.08s
A025 87.83s 0.50s 857.70s 560.12s
A026 30.63s 0.52s 888.29s 879.75s
A027 78.56s 64.46s 1,048.42s 795.01s
A028 70.09s 358.93s 904.60s 1016.96s
A029 53.73s 129.87s 898.85s 657.44s
A030 114.47s 0.47s 859.91s 940.37s

instances, and their values approach well those of the IND, again according to

0.1-significance Wilcox signed rank tests. The UB and ZERO approaches, on the

contrary, both failed to provide good solutions, often falling in degenerate, bad local

optima that rendered their results unusable.

Considering this facts, we decided that, if one or the other method is to be used,

the DM may use any of the LB or ZERO approach, with the IND providing

similarly qualified results but a little more slowly (here, we have an average absolute

difference of around 55 seconds between the IND and the LB and ZERO

approaches.) The IPA, on the contrary, should be paired with either the LB or the

IND starting point choices, avoiding the other two which apparently pose

convergence issues.

If one single choice of starting point is required for both methods, the IND is the

best decision in both convergence and speed. Besides, we speculate that the IND

approach, given its more refined procuring, is better suited when facing settings not

resembling the ones presented here. Consequently, even though there are better

choices when judging individually, we will support the usage of the IND upper level

starting point selection method in the comparison done below between the IPA and

DM bilevel solution techniques.
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Lower Level Numerical Solution

Obtaining a good starting point for the lower level is not an issue for the DM: the

lower level problem is solved linearly by linprog and does not require a starting

point-obtaining routine. The IPA, on the contrary, uses function (3.30) to represent

the lower level, and this function is not linear (in spite of the linearity of the lower

level it uses as a base.)

The first proposal is using the values derived from applying algorithm 3, which

iteratively tries to obtain solutions for the lower level and then reports a good one,

which is then fed to fmincon . The second method is simply using a vector of zeros

as a starting point for all of the lower levels’ decision variables. Still a third

alternative could be to use the same value as the fixed y in function

refgapfunc5, but this was disregarded for its potential for causing of convergence

problems.

Simultaneously, we propose the option of not using a nonlinear minimization with

fmincon at all, but rather use algorithm 3 to propose several solution vectors and

use them as though they were the whole feasible space of G In this manner,

minimizing G can be done by merely selecting an appropriate vector among those

proposed. This removes the need for using fmincon , substituting it for a rather

fast, yet possible inaccurate method.

The shortcomings of thus using 3 are (1) the fact that we hardly cover the whole

space of solutions, particularly in problems with many pool zones, and (2) that

there is no way to determine if the proposed solution is at least a local optimum

(from the generalized transportation problem point of view.)

Table 5.17 presents the optimal solutions found for problem instances A031 to

A040, created to test the lower level solution techniques proposed. The three

methods are: the heuristic plus fmincon approach (H+,) the zero vector approach

(ZERO,) and the heuristic only approach (H.)

The running times corresponding to these tests are given in table 5.18

It is clear that the solutions for both the H+ and H methods are similarly good,

with the later delivering values a little better in a shorter time. Using a zeroes vector

is by far the worst approach. It seems to have a tendency for getting trapped in bad

solutions, in spite of having running times similar to those of the H+ approach.
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Table 5.17. Optimal Solutions for Three Lower Level Solution Methods, IPA Ap-
proach.

Instance H+ ZERO H
A031 16,407.3832 13,459.382,3 16,793.043,1
A032 1,108.8059 41.869,0 1,355.794,8
A033 14,405.1517 2,818.818,7 14,057.771,1
A034 15,511.4222 2,749.335,5 16,127.569,9
A035 15,608.0004 1,5681.139,2 15,429.667,0
A036 4,971.5174 6,020.584,9 5318.153,6
A037 2,952.0746 59.4561 2,749.033,2
A038 8,331.4528 8,167.000,0 8,798.300,8
A039 1,7416.6706 3,711.255,7 16,868.033,5
A040 11,309.6357 10,814.726,5 11,398.959,9

Table 5.18. Running Times for Three Lower Level Solution Methods Using, Approach.
Instance H+ ZERO H
A031 137.94s 2,068.59s 10.70s
A032 25.37s 13.65s 1.60s
A033 211.79s 24.31s 2.26s
A034 225.89s 16.61s 32.48s
A035 61.97s 197.75s 2.82s
A036 54.11s 412.25s 2.02s
A037 96.78s 77.59s 13.44s
A038 107.31s 281.89s 12.66s
A039 146.62s 26.16s 3.15s
A040 223.69s 346.44s 6.08s

Judging from running times only, the H approach is the best option. However,

this method is only a heuristic, and not an actual minimization algorithm, with all

the shortcomings this can imply for untested cases. Still, for instances with a small

number of pool zones, it should be safe to endorse the usage of this method.

Otherwise, the H+ approach has similarly good results and can be recommended

whenever running times are not a concern.
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5.3.2 Structure of the Bilevel Solution

Using the upper level starting point IND and G function solution method H+, we

now solve the bilevel optimization problem PR5. For documentary purposes, at the

same time we evaluate the effectiveness of both the DM and the IPA approaches

when working with two different upper level functions, z and the expression in

(3.24a), tough it is only the latter the one that matters in the system. This

important as the IPA approach was developed in the sources with function z in

mind as the only term in the upper level objective function, whereas the DM

method here is applied only after linearization techniques were performed to

improve upon its effectiveness.

For the first problem only, and for each type of upper level objective function and

value of variable q, we present: the final day imbalances xN,i, the final day

extraction amounts Ea
Ni, the final imbalances yi, and the corresponding objective

function values, z or h5. This is all reported in tables 5.19 to 5.22.

Table 5.19. Instance A001: N=8, P=4, Objective Function z, q = 1

IPA DM
Zone 1 2 3 4 1 2 3 4
xNi -20.98 70 -29.02 150 0 70 100 0
Ea

i 25.7 20.80 29.02 115.3 963.45 915.76 931.36 963.17
yi 0 70 0 100 0 70 100 0

z -1,060 Time 600.6s z -1,160 Time 0.6s

Table 5.20. Instance A001: N=8, P=4, Objective Function z, q = 0

IPA DM
Zone 1 2 3 4 1 2 3 4
xNi -127.86 -105.44 98.73 134.32 -145.88 -97.63 92.58 149.97
Ea

Ni 1043.14 449.99 1758.28 786.44 965.27 915.24 877.85 815.27
yi -0.25 0 0 0 -0.46 -0.61 0 0

z -664.46.47 Time 15.77s z -669.91 Time 65.44s
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Table 5.21. Instance A001: N=8, P=4, Objective Function h5, q = 1

IPA DM
Zone 1 2 3 4 1 2 3 4
xNi -0.01 69.89 0.06 0.07 -71.52 50 -8.19 29.71
Ea

Ni 3000 2930.11 2999.94 2999.93 3000 2950 3000 2970.29
yi 0 69.89 0.06 0.07 0 0 0 0

h5 -1,275,547 Time 30.6s h5 -1,286,188 Time 226.8s

Table 5.22. Instance A001: N=8, P=4, Objective Function h5, q = 0

IPA DM
Zone 1 2 3 4 1 2 3 4
xNi -19.97 -4.77 -19.78 36.30 -123.60 43.04 -49.77 -39.63
Ea

Ni 2666.21 2671.03 2975.30 2937.59 3000 2956.96 3000 3000
yi -3.45 -4.77 0 0 -80.56 0 -49.77 -39.63

h5 -1,116,394 Time 145s h5 -1,286,878 Time 144s

Solution times for instance A001 do not favor either approach: the DM worked

faster in one case, and was practically tied in another, while the IPA proved to be

remarkably faster in the other two instances. As for the objective functions’ optimal

values, the DM provided slightly better results than the IPA in the four tables. We

obtained better optimal values with the DM, two of them are found faster than a

similar but suboptimal solution was encountered by the IPA.

5.3.3 Deterministic Bilevel Problem Solution Reports1

Table 5.23 exhibits the results obtained for a batch of 5 problem instances,

labeled A005-A009, each having 9 pool zones and 20 days.

We present a comparison of the optimal solution found by each approach, the

status of the procured solution, and the running time needed to get to the reported

optima. The optimal value of the binary variable q is also displayed.

The figures listed under objective functions z and h5 are obtained independently

for each problem, i.e., the second and third column of table 5.23, in the rows

1The results in this section appear in the author’s [55]
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corresponding to problem A005, represent values for two different runs of a single

problem instance, each independently minimizing a different objective function.

The solution status codes used in the tables are: OPT : a local optimal solution

was found; MFE : the maximum number of function evaluations reached, a feasible

point is returned; MFE! : the maximum number of function evaluations reached, but

no feasible point is returned.

In cases where the upper level objective function is z, the IPA attained a better

solution than the DM in four of the five problem instances. This took, however, a

larger amount of time to reach a solution in four of the instances, with problem

instances A008 and A009 being the ones less efficiently solved (more than five hours

of running time for value merely 6% better than the one obtained by the DM.)

As for when the upper level objective function is h5, i.e., the objective function in

(3.3), the IPA failed to deliver a feasible solution for problem A009 after running

out of function evaluations; this even took longer than what the DM needed to

provide an optimal point. Regarding the other instances, the optimal values were

similarly good in both approaches, with problem A007 giving the IPA the greatest

advantage in the objective function value, besting the DM optimal value by 7%.

When it comes to running times, in every instance with h5, the DM performed

considerably better, delivering all of the results between one hour and one hour and

a half, whereas the IPA took between one and a half hours to four and a half.

The status of the solutions was also very different between both methods. While

the IPA reported reaching an optimal point found in all nine cases, the DM only

reported reaching 6 optimal values; the remaining three, while not recognized by the

optimizer as local optima, proved to be feasible and good suboptimal solutions. All

these were cases had h5 as the objective function.

It is worthwhile to notice that, while IPA was developed with the usage of z in

mind, the DM was modeled explicitly for dealing with functions h5 (and/or h3.)

Also, notice the case z of problem A005; though the IPA’s optimal value is three

times more negative than the DM’s, the analysis of the optimal vectors indicate that

they are similar; the large difference between the values of z can be explained by the

magnitude of the parameters used in that function, which are accordingly large.
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We conclude this section referencing to the outcome of a large-sized instance,

A500, experimented upon with both the DM and the IPA methods, just as the

smaller instances before. The problem instance consists of 30 days and 10 pool

zones, with the rest of the parameters obtained using the problem instance

generating algorithm 4. The results are rather large to be presented in a table, so

we only sketch them out here.

The problem reportedly had an optimal solution with q = 0, 7 negative final day

imbalances and 3 positive ones when solved by the MD approach. The lower level is

feasible for this arrangement and eliminates the 3 positive figures in the final

imbalances configuration. There are in total 3 backward volume moves

(corresponding to variable v) and no forward volume moves (variable u.) The lower

level minimization objective function (z) has an optimal solution value of 8,896.71,

whereas the upper level optimal value is 16,313,885.26. Running time was 4974.47,

around 1.4 hours. A manual local search was carried on, and it indicates that this is

indeed a local optimum.

On the other hand, we were unfortunately not able to solve instance A500 using

the IPA approach. After 10 hours of running time, the IPA failed to deliver a

feasible solution to the problem (even when substituting the H+ approach for the H

lower level solution approach in section 5.2) and was thus stopped.

Further tests using the DM method and the LB, UB and ZERO starting search

point options support the fact that the solution originally reported (obtained with

the IND approach,) was not only a local optimum, but also a good one: one of the

starting point options (LB) reported a worse local optimum, while the other two

(UB, ZERO,) delivered the same solution point as the one obtained with the IND

option. Of all these three starting point options, only the LB required a similar

running time than the IND at 4,915.17s (against the 4,974.47s from the IND,)

whereas the other two required more than 5,300 seconds.

Chapter Summary

This chapter presents several results concerning the solutions obtained after

numerically experimenting on the models formulated in chapter 3. Numerous
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aspects and sub-problems of these models were tested and the outcomes and

conclusions thereof are given in their respective sections.

Individual optimizations were first performed with the models corresponding to

both levels of the bilevel models developed. These tests prove that, for both cases,

the linearization lemmas theoretically demonstrated are not only correct, but also

helpful in the process of procuring a numerical solution to the problems. The linear

models were solved considerably faster than the nonlinear models, and their

solutions are reportedly equivalent. Large instances, however, could not be solved by

the nonlinear approach described here, though the linear approach worked properly.

Based on this, we decided to use formulation PR5 when solving the bilevel

problem.

The results obtained by solving the complete bilevel problem are detailed next;

they refer to model PR5 and to either the DM or the IPA numerical solution

methods described in section 3.3. First, we addressed the points highlighted in

section 3.3.1 regarding obtaining starting points and lower level solution for the IPA

approach. We report statistical evidence that favors some of the options against the

others and concluded about their possible usage in actual bilevel tests.

The final set of tests are concerned with comparison between the IPA and DM

solution methods, performed according to the methodology built throughout the

chapter and the considering two different upper level objective functions. Evidence

is in favor of the DM approach, which takes advantage of the linearity of both

problems, unlike the more refined but nonlinearly solved IPA method, which is

unable to solve the largest instance tested. The DM reached similarly good solutions

in only a fraction of the time the IPA required in most of the instances tested.

Once the test were carried on, we support the decision of implementing the

stochastic version of model PR5 (described in section 4.4.1) using the DM

approach, and the upper level starting point options IND or LB.
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Table 5.23. Results for Problems A005-A009.

A005
Method DM IPA
O. F. z h5 z h5

Optimal Value -376.63 -13,467,608 -961.72 -14,164,572
Solution Status OPT MFE OPT OPT

Running Time 1,937.4s 4,962s 5,510.95s 7,635.01s
q = 1

A006
Method DM IPA
O. F. z h5 z h5

Optimal Value 60.55 -5,696,531 56.20 -5,534,923
Solution Status OPT MFE OPT OPT

Running Time 590.15s 3,737.4s 2,662.73s 16,530.21s
q = 0

A007
Method DM IPA
O. F. z h5 z h5

Optimal Value 0 -35,240,591 0 -37,885,387
Solution Status OPT MFE OPT OPT

Running Time 360s 4,842.79s 3,791.03s 7,805.36s
q = 1

A008
Method DM IPA
O. F. z h5 z h5

Optimal Value -1,578 -13,466,564 -1,673.78 -13,234,066
Solution Status OPT MFE OPT OPT

Running Time 56.04s 4,279.12s 2,404.67s 7,533.16s
q = 1

A009
Method DM IPA
O. F. z h5 z h5

Optimal Value 3,452.97 -13,651,190 3,211.33 NA
Solution Status OPT OPT OPT MFE!

Running Time 57.10s 3,590.4s 20,844.21s 5,638.95s
q = 0
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CHAPTER 6

STOCHASTIC MODELS: NUMERICAL RESULTS

This chapter presents the experimenting results concerning the various tools,

methods and algorithms needed to create the multi-level stochastic optimization

problem with recourse SPR2. The aforementioned methods were described and

theoretically studied in chapter 4.

The chapter is divided in three sections. Section 6.1 presents the commonplace

test for the time series forecasting procedures, as well as a comparison of the two

forecasting methods proposed. Section 6.2 shows our efforts for developing a

regression analysis in the price and consumption time series. This is done with the

intention of reducing the information needed for any given stochastic problem

instance. The most important part of the chapter is section 6.3, which shows the

numerical experiments devised to solve stochastic model SPR2.

6.1 Time Series Analysis and Forecasting

The time series used in this work were obtained from the Energy Information

Administration database for residential monthly prices and consumptions per state

of the US. The series are each composed of 227 observations corresponding to the

months from January 1989 to October 2007.

Unlike most of the tools studied in this and the past chapters, the results in this

section are completely dependent of the data selected. Depending on the figures

used in, one could or could not come by the same results as those shown here. The

analysis in this and the next sections justifies the usage of the particular set of data

used in section 6.3; other problem instances should validate their data accordingly.

First, let us introduce the general shape of the time series used in this chapter.

Figure 6.1 shows two randomly selected time series, one for consumption and

another one for prices of the monthly residential gas figures pertaining to the state

of Missouri. Notice that the consumption time series presents a more or less steady

behavior, with relatively equal peaks and nadirs, and a definite 12-lag period that

represents the seasonal increase(decrease) of gas consumption during the

winter(summer) periods. Contrarily, the price time series depicted, while sharing
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the same 12-lag seasonality has a clear growing trend of the mean prices, described

by some authors even as exponential.

While each state has distinct consumption/price figures, they all seem to

approximately adhere to the behavior patterned above. Such features are the

reasons that prompted us to develop the models in section 4.2.1.

(a) Consumption (b) Price

Figure 6.1. Monthly Consumption and Price of Natural Gas in the State of Missouri,
from January 1989 to October 2007. Source: Energy Information Administration.

6.1.1 Correlation Analysis

We begin showing a correlation analysis for a sample of the time series used.

Consider again figures 4.1: they clearly describe autocorrelated observations with

their respective 12-lag predecessors. Therefore, can expect a waving behavior in the

correlogram, and a large peak in the 12 mark of the periodogram for a given

consumption series.

The monthly consumption for the state of Nevada is portrayed in figure 6.2,

whereas figure 6.3 shows the corresponding autocorrelation (correlogram) and

partial autocorrelation graphs. We can also see in the correlogram a noticeable

seasonality at lags 12, 24,..., etc. Furthermore, the maximum absolute values in this

figure have a slow decrease over the lags, hinting at a non-stationarity of the series.
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Figure 6.2. Nevada Monthly Gas Consumption

Figure 6.3. Autocorrelation and Partial Autocorrelation of the Nevada Time Series

Figure 6.4 illustrates the periodogram of this consumption series. The peak

around frequency 2π/12 ≈ 0.52 is dominant, which is easily explained by the waving

behavior in figure 6.2. There are small harmonics around 1.1 and 1.65

(corresponding to lags 24 and 36,) though they are not significant when compared

with the main frequency.

This analysis suggests [15] not using an ARMA process to model the series,

considering the strong non-stationarity of the series original form; there are then

three possible alternatives: (1) fitting an ARMA process (and probably obtaining a

relatively large number of parameters and a very problematic model,) (2) transform

the series (using variance stabilizing and differencing transformation) up until the

point where we have a stationary process and then fit the ARMA model, or (3) use

a technique that is adequate to forecast seasonal series.
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Figure 6.4. Periodogram of the Nevada Time Series

Let us now analyze the price time series for the randomly selected state of

selected state of Connecticut. They appear in figure 6.5.

Figure 6.5. Connecticut Monthly Gas Price

What is seen in figures 6.6 and 6.7 does not differ much from the already shown

consumption analyses. Despite the increase of the cumulative mean, periodicity

remains at 12 lags with minor 24 and 36 harmonics.

Due to space constraints we will not show all 52 states series’ plots, correlograms

and periodograms. We have, nevertheless, verified that the same assertions remain

true for the large majority, with only a handful of states showing ill-behaved time

series (mostly for the price figures.)

Let us turn now our attention to some numerical calculations for some series’

autocorrelation. A high, near-1 autocorrelation value at lag h, indicates that the
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Figure 6.6. Autocorrelation and Partial Autocorrelation of the Connecticut Time
Series

Figure 6.7. Periodogram of the Connecticut Time Series

series involved is separating itself from a white noise process (which is basically an

iid random time series,) and is correlated with the observations h periods before or

after it. Tables 6.1 and 6.2 show the values of the sample autocorrelation function

at lags 1− 14 for the time series of prices and consumptions, respectively, for the

country average and the randomly selected states of Michigan, Pennsylvania, and

Vermont.

Table 6.1. Autocorrelation of the Price Series
Autocorrelation

lag 1 2 3 4 5 6 7 8 9 10 11 12 13
US 0.97 0.90 0.83 0.76 0.70 0.67 0.67 0.68 0.72 0.76 0.79 0.79 0.76
MI 0.96 0.88 0.78 0.70 0.63 0.60 0.60 0.63 0.69 0.75 0.80 0.82 0.78
PA 0.95 0.86 0.74 0.63 0.56 0.52 0.52 0.56 0.62 0.70 0.77 0.79 0.76
VT 0.96 0.88 0.79 0.71 0.66 0.63 0.62 0.64 0.67 0.71 0.74 0.75 0.71
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Table 6.2. Autocorrelation of the Consumption Series.
Autocorrelation

lag 1 2 3 4 5 6 7 8 9 10 11 12 13
US 0.97 0.90 0.83 0.76 0.70 0.67 0.67 0.68 0.72 0.76 0.79 0.79 0.76
MI 0.96 0.88 0.78 0.70 0.63 0.60 0.60 0.63 0.69 0.75 0.80 0.82 0.78
PA 0.95 0.86 0.74 0.63 0.56 0.52 0.52 0.56 0.62 0.70 0.77 0.79 0.76
VT 0.84 0.47 0.0014 -0.43 -0.73 -0.83 -0.73 -0.44 -0.01 0.44 0.78 0.91 0.78

6.1.2 Forecast Analysis

This set of analyses refers to the forecasting techniques described in 4.1.2, namely,

the ARAR algorithm and the Seasonal Holt Winters (SHW) Algorithm. Both of

them are considered adequate alternatives to deal with highly seasonal time series

like the ones used here.

We decided to utilize these two methods because traditional techniques for

removing seasonality like polynomial fitting and series differencing failed to deliver

good stationary series upon which we could use more commonplace forecasting

techniques like the ARMA or Holt-Winters approaches.

Figures 6.8 to 6.10 show the results obtained after applying both the ARAR and

SHW forecasting methods to the states of Alabama, Missouri (for prices), and Texas

(for consumption.) All of them show reasonable forecasting abilities.

(a) Alabama Price ARAR (b) Alabama Price SHW

Figure 6.8. Alabama Price Forecasts.

We have no concerns regarding the predictions of the consumptions, as both

methods seem to deliver good forecast of the demand and similarly tight prediction

bands. On the contrary, the price time series are trickier because of their more
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(a) Missouri Price ARAR (b) Missouri Price SHW

Figure 6.9. Missouri Price Forecasts.

(a) Texas Consumption ARAR (b) Texas Consumption SHW

Figure 6.10. Texas Consumption Forecasts

erratic behavior and the increasing trend. In the case of the state of Alabama, the

ARAR method gives a better approximation, while the SHW method

underestimated the series in almost all of the observations. On the contrary, the

SHW follows the series peaks well, but misses the nadirs in the Mississippi series,

whereas the ARAR method follows the wave but ’equalizes it,’ delivering a gentler

curving.

Similar results occur for the majority of the time series analyzed, with sometimes

poor, sometimes good price forecasts for both methods, yet highly proper

consumption forecasts also for both methods.

Besides whatever accuracy it may have, the SHW provides faster computations; if

considering, for example, a rolling horizon optimization with multiple forecasts
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instances, this could be important point in favor of the SHW forecasts.

Nevertheless, and since this alternative is not considered in this work, we will only

take the speed of the SHW algorithm lightly in favor of it, but no further

comparison will be performed.

In conclusion, the consumption time series are easily forecasted by both the

ARAR and the SHW methods, but the price time series are less accurately

predicted. Therefore, no advantage can be given so far to any forecasting method.

Prediction Bands and Normality of Errors

In order to obtain the prediction bands required to form the scenario trees in

chapter 4, we need first to find the distribution of the h-step prediction errors

(residuals) for every state and type of data. Proving the normality of the forecast

residuals (at least an approximate normality) would greatly help in the calculus of

the bands. As we have experienced with the time series analysis software ITSM2000

v7.0, normality is usually assumed when calculating prediction bands.

Figures 6.11 to 6.14 show the consumption and price normality plots for the 1-,

3-, and 8-step predictions for the states of New York and Mississippi using both the

ARAR and the SHW forecasting algorithms.

The plots in tables 6.11 do not seem to have high normality: there are significant

departures from the line in all the series in the bottom-left part, with top-right tails

also separating themselves, though a little more smoothly.

On the contrary, the SHW table 6.12 have less-pronounced departures from the

normal line at the top-right tails (slightly more noticeable in the 1-step graph,) and

also arguably less pronounced tails at the bottom-left part.
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(a) 1-step Predictions (b) 3-step Predictions (c) 8-step Predictions

Figure 6.11. Normal Plots for the State of New York’s Consumption Using the ARAR
Algorithm.

(a) 1-step Predictions (b) 3-step Predictions (c) 8-step Predictions

Figure 6.12. Normal Plots for the State of Mississippi’s Consumption Using the SHW
Algorithm.

The normal probability plots of the price time series residuals, as seen in tables

6.13 and 6.14, present arguably better shapes. While the lower tails are still steeply

decreasing, the upper tails are much better behaved in the case of the ARAR

method (except for the 1-step case,) and even more so with the SHW method,

where no significant departures from normality apparently exists in the upper tails.

We tried using a using logarithmic transformation of the data thus fitting a

log-normal distribution. Experimentation failed to provide us with any noticeably

improvement of normality.

Besides justifying a good forecast technique selection, the normality of the

forecasts residuals is important because we assume it when calculating the

prediction bands, using the mean forecast error/residuals to form the sample

error/variance of the method.
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(a) 1-step Predictions (b) 3-step Predictions (c) 8-step Predictions

Figure 6.13. Normal Plots for the State of New York’s Prices Using the ARAR
Algorithm.

(a) 1-step Predictions (b) 3-step Predictions (c) 8-step Predictions

Figure 6.14. Normal Plots for the State of Mississippi’s Prices Using the SHW Algo-
rithm.

The prediction bands will be used, as explained in sections 4.1.3 and 4.3.1, are

used to generate the branching data of the scenario tree for the stochastic

optimization problem in chapter 4. Inaccurate normality results imply that the

scenarios shown may not be completely correspondent with reality.

Still, considering the rather accurate consumption forecasts and fair price

forecasts, we see that the predictions for consumption and prices, added to the not

so bad normality of the residuals, guarantee that even if inaccurate, the forecasts

bands would be no more different (from the scenario generation point of view) than

those calculated using another, more fitting forecast model.

Hence, we accept as proficient both forecast methods and will make use of them

when generating the underlying scenario tree as described in section 4.3. The

Seasonal Holt-Winters method is (so far) a little better than the ARAR method,
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providing faster and more normal residuals. This advantage, nonetheless, is in no

way meaningful enough to discard the usage of the ARAR forecasting technique.

Forecast Residuals Autocorrelation

We finish this section presenting the autocorrelation analysis for the forecast

residuals for both the ARAR and the SHW methods. We expect the residuals to be

as random and lowly autocorrelated as possible.

Figures 6.15 and 6.16 exemplify the correlograms for the autocorrelation and

partial autocorrelation for the 1-step forecast residuals applying the SHW method

to the state of Iowa’s monthly consumption, and for the 4-step residuals applying

the ARAR method to the state of North Carolina. While not perfectly independent,

the autocorrelation is not all that different from a white noise process, with only a

few values outside the 0.95 error bands in either correlogram. There is a small, yet

noticeable seasonality, but overall the randomness of the residuals is not questioned.

Figure 6.15. 1-Step SHW Residuals Correlograms for Iowa’s Consumption.
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Figure 6.16. 4-Step ARAR Residuals Correlograms for North Carolina’s Consump-
tion.

As for the price time series, figure 6.17 displays how the application of the ARAR

algorithm produces a very good, non-correlated set of residuals at a 1-lag.

Unfortunately, the seasonal Holt-Winters delivered, for the 4-step prediction of the

state of North Dakota (figure 6.18,) a rather problematic set of residuals. There is

no reason to doubt of the randomness of the Oregon data, but not so much for the

North Dakota series. While the latter does not shows considerable issues, it

definitely gives us reasons to doubt of the residuals’ randomness.

Figure 6.17. 1-Step ARAR Residuals Correlogram for Oregon’s Prices.
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Figure 6.18. 4-Step SHW Residuals Correlogram for North Dakota’s Prices.

The correlograms for other prediction steps, states, and both methods are similar

to the ones above. The ARAR method provides less randomness than the SHW,

but even in the worst cases (from analysis performed for up to 12-step predictions,)

the SHW shows no worse randomness than the cases above.

Based on the evidence procured in the analyses presented in this section, as well

as the corresponding ones for the series but not explicitly presented, we have no

reason to incline ourselves towards either method. But seem to be fair, with small

issues that may or may not be overcome by using the other method. Furthermore,

and more importantly, the shortcomings encountered do not appear to render the

methods unsuitable for our purposes.

6.2 Regression Analysis1

.

This section introduces the regression analysis performed as means to reduce the

information needed in the stochastic optimization problem. Our purposes are to (1)

find an explicit regression function between the price and the consumption in every

state, so that only one time series (and one forecast operation) per pair is needed in

an optimization problem; and (2) use such regression formula to determine which

states have similar parameters thus grouping them into clusters.

1Some of the results in this section have appeared in the authors’ [56]
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6.2.1 Individual Multiple Regression Analysis

The Individual Multiple Linear Regression (IMLR) formula:

Π̂ti = ai
0 + ai

1t + ai
2t

2 + D−1
i,t

�
ai

3 + ai
4t + ai

5t
2
�

+ e∗i , ∀t ∈ T,∀i ∈ I, (6.1)

was applied to the historic monthly residential price and consumption figures

from the Energy Information Administration [28], obtaining 52 sets of regression

parameters. The coefficients of determination R2 for this data came up between

0.74 in California and 0.94 in Arkansas, with a sample mean of 0.9 and a sample

standard deviation of 0.05. The coefficients for the regressions were nearly all

significant for the a0, a1 and a3 parameters; only 20 for the a4 and 13 for the a5. No

significance was given in any case to the a2 coefficient. These results were all

obtained using a 0.95 confidence regression test.

All regressions appeared as significant, with every corresponding p-value under

0.001.

Figure 6.19 shows the regression fits for two randomly selected states, Illinois and

Nebraska. Lines in green approximate quite well the original time series (in blue.)

(a) Illinois IMLR fit (b) Nebraska IMLR fit

Figure 6.19. IMLRF for Two States.

The normal plots for the residuals are presented in figure 6.20. As we can see, we

do not have a high normality in the regressions for Illinois and Nebraska, but still

the majority of the observations fall around the line. The scatter plots, not

presented here, show that, while there are continuous portions of the residual series

above and below the 0 mark, certain randomness is maintained overall.

154



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

(a) Illinois IMLR normal plot (b) Nebraska IMLR normal plot

Figure 6.20. IMLR Fits for Two States.

While the regressions residuals are not very random or normal, these

shortcomings are not all that serious for the objectives of this work. Moreover, the

fits are quite good in the majority of the cases, with some exceptions where either

the consumption or the price time series behave particularly erratic.

6.2.2 Dendrogram Pooled Multiple Linear Regression

This section displays the results obtained when using the Dendrogram Grouping

Method in section 4.2.3 to cluster the states and then applying regression using the

data pooled from the whole cluster.

Figure 6.21 contains colored maps illustrating Matlab’s Dendrogram Clustering

function applied to the data obtained above in section 4.2.1. They summarize the

clusters formed for the Closest Neighbor Dendrogram Regression (CNDR,) Farthest

Neighbor Dendrogram Regression (FNDR,) and Average Distance Dendrogram

Regression (ADDR) (all of which are explained in chapter 4.) All three partitions

were obtained defining the number of groups to be exactly 14 (or equivalently,

selecting the point at which the dendrogram is cut so that it forms 14

sub-dendrograms.)

Grouping the states as in subfigure 6.21(a) delivers a very large group (of 38

states!) which would doubtfully deliver a good pooled regression fit. The R2 for this

group, though, is 0.789. Still, the p-values for all pooled regressions are below 0.01.

Figure 6.22 shows the second group and some of the members of the fifth group of

this partition, since they are the only groups with more than 1 member. All other

pooled regressions are trivially equivalent to the individual cases.
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(a) CNDR Clustering. (b) FNDR Clustering. (c) ADDR Clustering.

Figure 6.21. Dendrogram Clustering Using Different Linkage Functions.

The average group-R2 for this method is 0.86, with a sample standard deviation of

0.07. The average state R2, however, is only 0.74, with a standard deviation of 0.22.

Note that requiring a number of groups different from 14 will deliver differently

results. For example, selecting 20 groups we obtain a large group of 19 states, three

groups of 5 states, another three of 2 states, and the rest with one state.

(a) Second Group Fit (b) Fifth Group, 5-State Sample Fit

Figure 6.22. Dendrogram pooled fits using CNDR, two sample groups.

The FNDR approach delivers a more balanced partition. We have one group for

each size among 11, 10, 9, 8; and lesser 1- or 2-State groups. Figure 6.23 shows the

fits for the four largest groups for this case.

The average group-R2 for this method is 0.84, with a standard deviation of 0.08;

but the average state-R2 is 0.74 mean. The state-R2 standard deviation is 0.27,

larger than in the CNDR.
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(a) First Group 3-State Sample. (b) Second Group 3-State Sample.

(c) Seventh Group 3-State Sample. (d) Ninth Group 3-State Sample.

Figure 6.23. Dendrogram pooled fits using the FNDR, four sample groups.

Lastly, we have the ADDR clustering method. This produces a very similar

solution than that of the FNDR, with 3 large groups of 8, 10 and 20 states, and the

rest of the groups produced having less than 4 members.

The average group-R2 value for this method is 0.85, with a group-R2 standard

deviation of 0.6. Of all the groups, this one appears slightly better regarding the

individual states R2 values, with an average state-R2 of 0.76 and standard deviation

of 0.22.

An attempt was done to normalize the coefficients (i.e., dividing

aj
i/ maxj{aj

i}, i = 0, ...5; j = 1 : 52) before applying the linkage method. The results

are not exhibited because they appear to have no major difference with those
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(a) Fifth Group 3-State Sam-
ple.

(b) Sixth Group 3-State Sam-
ple.

(c) Eight Group 3-State Sam-
ple.

Figure 6.24. Dendrogram pooled fits using the ADDR, three sample groups.

already obtained for the non-standardized linkage above: while the groups are not

identical, they do not present a different distribution of the group sizes.

6.2.3 Heuristic Pooled Multiple Linear Regression

In figure 6.25 we can see the colored maps obtained after applying the Heuristic

Clustering (algorithm 6) using λ = 2, 5 and 10. We allowed a maximum number of

groups Mclasses = 14, and a new group threshold β = 0.85. The resulting

regression sets will be labeled as λiHR, where λ, stands for the number of iterations

in algorithm 6.

(a) λ = 2 (b) λ = 5 (c) λ = 10

Figure 6.25. Heuristic Grouping Method using different iterations λ in A2.

We can note from 6.25 that the heuristic method is not outwardly prone to

repeatability, at least not when applied to the data chosen. Indeed, different runs

with the same input deliver largely different partitions. We expect, however, that

this will change if we somehow select the initial random vector in a logical manner,

instead of selecting it randomly.
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The partitions described by the maps above show groups that are more

homogeneous in size than those seen the dendrogram approach. Though usually a

large group still exists, the remaining states cluster in mid-sized groups, while five

to ten states remain in single- or double-membership groups.

Because of this, we have chosen to show here three randomly selected groups and

three or less states of that group to exemplify the fits for the three partitions.

Figures 6.26-6.28 the plots for the Heuristic Grouping Method with λ = 2, 5 and 10.

Each figure shows a set of graphs pertaining to a particular group—groups are not

necessarily presented in their totality due to their size—, with the original price

time series and the grouped fit obtained portrayed.

(a) 7th Group (b) 11th Group (c) 12 Group

Figure 6.26. Heuristic Pooled Regression Fits for Three Random Groups and the Fist
3 States of Those Groups, λ = 2.

(a) 2nd Group (b) 6th Group (c) 10th Group

Figure 6.27. Heuristic Pooled Regression Fits for Three Random Groups and the Fist
3 States of Those Groups, λ = 5.

As we can see, there are cases in which the pooled fits are rather good, whereas

other cases show a marked lack of proper approximation. We may very well face the
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(a) 2nd Group (b) 4th Group (c) 13th Group

Figure 6.28. Heuristic Pooled Regression Fits for Three Random Groups and the Fist
3 States of Those Groups, λ = 10.

situation that several time series cannot be reasonably matched in partitions with

less than a certain number of states: the heuristic method would then be forced to

find the best partition possible, even if this delivers results not quite good.

6.2.4 Grouping Methods Remarks

Let us now compare the advantages and disadvantages for each method, as well as

proposed means to correct and improve on them.

Dendrogram Grouping Method

Advantages

• Fast. The clustering method for the various examples presented here required

only between 0.33 and 0.5 seconds.

• Replicable. Using the same data and the same linkage method, the resulting

partition is always the same.

Disadvantages

• Unbalanced. There are usually many single state groups, whereas the rest of

the states are hedged in a few large groups. Defining different partition sizes

may deal away with some of the larger groups; additional ways to determine

the goodness/homogeneity of a given grouping has to be defined and

implemented.
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• Statistically Ignoring. States may share a group even if their regression

coefficients ai
j are not equally significant in their respective regression analysis.

Modifying the regression model (for example, applying logarithm

transformations) until we find a model with nearly all sets of parameters

significant would certainly contribute to improve the statistical meaning of the

dendrogram clusters, as long as it does not affect regression significance.

Heuristic Grouping Method

Advantages

• It delivers a way to guarantee a minimum value for the R2 coefficient of

determination in every group, as long as we are willing to admit a certain

number of groups.

• It can give more importance to individual regression R2’s than it does to

pooled regressions R2’s, or vice-versa.

• All the states’ regression coefficients estimates ai
k in a given group have the

same statistical significance.

Disadvantages

• Slow. It takes a single iteration of algorithm 5 about 3 minutes to complete.

By sampling the regression observations (for example, randomly taking a half

of the prices and consumptions for each state) we expect that the pooling

speed is improved without sacrificing statistical significance.

• Random. Even a high number of iterations cannot guarantee similar

partitions. The selection of a good seed partition (instead of relying on

randomly chosen group leaders every time) should contribute to reduce the

randomness.

6.2.5 Heuristic Method with Random Sampling

This section describes one of the proposed ideas for improving the running times

required by the heuristic algorithm. We hypothesize that, when forming the groups,

161



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

selecting just a sample of the observation (both those belonging to the states

already in the group, and those belonging to the new candidate state ) will reduce

the time needed perform the pooled regression and to calculate the (sample)

determination coefficient for the possible new group. The determination coefficient

corresponding to the full range of observations will be calculated and reported once

all the groups are determined, and the effectiveness of this sampling proposal will be

done based in this number and in the observed fit graphs.

Table 6.3 shows the results of 20 runs of the heuristic algorithm 5, each run

corresponding to one row in the table. We considered three sample sizes: all the

observations (1-sample), half the observations (0.5-sample) and one-tenth of the

observations (0.1-sample.) For the 1-sample case, the average group-R2 is given in

the first column. For the 0.5-sample and the 0.1 sample cases, we report both the

average sampled group-R2 (i.e., the value of R2 obtained from the sample and based

upon which the groups were formed) and the average full range-R2 (the one

calculated only after each group was completely determined.)

The running times corresponding to variables each of the 60 runs, 20 per sample

size, are given in table 6.4. As we can see, the column corresponding to the

0.5-sample has running times lower yet still similar to those corresponding to the

1-sample. On the contrary, the 0.1-sample greatly reduces the time it takes for each

run of the heuristic algorithm, almost to half the time required by the 1-sample in

some instances.

Although the improvement in times is good, and the values for R2 are also similar

for all the methods, the fact is that the fits for the sampled regressions largely vary

in their goodness. Figure 6.29 shows the 1-sample (in green,) 0.5-sample (in red,)

and 0.1 sample (in cyan) regression fits for the randomly selected states of

Minnesota and North Carolina. While the approximation of all three fits in the

North Carolina series is very good, the 0.1-sample is poor in the case of Minnesota.

In both cases, the 0.5 sample performs well but not considerably so. However,

looking at the times for the 0.5-sample heuristic clustering, we conclude that there

is no reason why should we sacrifice the accurateness of the 1-sample for such a

meager save in running time.
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Table 6.3. Sampled Heuristic Regression R2 Values.

1-Sample 0.5-Sample 0.1-Sample
R2 R2 Sample R2 R2 Sample R2

0.8929 0.8883 0.8924 0.8911 0.9132
0.8882 0.8870 0.8929 0.8905 0.9169
0.8915 0.8858 0.8894 0.8879 0.9061
0.8907 0.8937 0.8965 0.8853 0.9197
0.8838 0.8922 0.8954 0.8942 0.9166
0.8926 0.8845 0.8847 0.8873 0.9118
0.8824 0.8859 0.8922 0.8848 0.9171
0.8928 0.8949 0.9004 0.8843 0.9118
0.8864 0.8854 0.8908 0.8849 0.9126
0.8803 0.8906 0.8924 0.8906 0.9227
0.8826 0.8904 0.8929 0.8894 0.9294
0.8827 0.8924 0.8979 0.8826 0.9042
0.8906 0.8947 0.8997 0.8626 0.8990
0.8836 0.8913 0.8962 0.8775 0.9118
0.8862 0.8919 0.9002 0.8832 0.9211
0.8899 0.8862 0.8922 0.8810 0.9112
0.8748 0.8844 0.8891 0.8884 0.9194
0.8865 0.8894 0.8933 0.8851 0.9153
0.8871 0.8954 0.9032 0.8893 0.9204
0.8888 0.8968 0.8997 0.8832 0.9079

Judging from the evidence presented in this section, we conclude that sampled

regression is not a good resource for reducing the times required by the heuristic

method. Maybe if the series included were better behaved and more similar to each

other, the accurateness of the sample regression would be increased enough to be

justified by the running time savings.

6.2.6 Dendrogram and Heuristic Method Combination

This section round up the regression analysis part of this work discussing the idea

of merging both methods, the Dendrogram Grouping Method, and the Heuristic

Grouping Method. This is made attempting to benefit from the speed and
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Table 6.4. Sampled Heuristic Regression Running Times.

1-Sample 0.5-Sample 0.1-Sample
6.3894 5.7585 3.9058
6.5560 5.9869 3.9531
6.1558 5.3123 3.9382
6.5839 5.5920 4.3128
6.5048 5.4861 4.0752
6.5597 5.8046 3.9957
6.4806 5.4373 3.8577
5.9848 5.5187 3.7808
6.4239 5.5724 4.0592
6.3148 5.8141 3.9694
6.2539 5.4147 4.1343
6.1767 5.2691 4.5270
6.5269 5.4437 3.9792
6.3780 5.7587 3.7899
6.1298 5.8282 4.2254
6.3939 5.5937 3.6094
6.3923 5.4617 4.2027
6.4591 5.5808 4.4910
6.3414 5.4348 3.9557
6.3831 5.1930 4.3500

predictability of the DGM, forming an initial partition, and the ability of the HGM

to provide a statistically significant and a more homogeneous partition.

We first form a DGM partition using the ACDC method and demanding 15

groups, which we have observed delivers fairly homogeneous groups; then, we

randomly select a state from each group formed and use it as a group leader for the

heuristic method.

We will make 10 runs of the HGM with full information (1-sample) and five

attempts each (that is, λ = 5,) allowing only 5 extra groups (to a possible maximum

of 20 groups) and using a R2 threshold equal to the minimum group-R2 value

obtained by the dendrogram regression.

Table 6.5 shows the values for the Sim function in line 4.16, for each of the 10

partitions produced and also for the dendrogram seed-partition.
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(a) Minnesota Sampled Fits (b) North Carolina

Figure 6.29. Sampled Regression Fits for Two States.

Table 6.5. Dendrogram-Heuristic Groupings

Heuristic Groups
Group HC1 HC2 HC3 HC4 HC5 HC6 HC7 HC8 HC9 HC10
ADDC 0.22 0.24 0.22 0.22 0.30 0.23 0.24 0.22 0.21 0.22
HC1 0.30 0.36 0.33 0.33 0.36 0.39 0.40 0.35 0.47
HC2 0.41 0.45 0.44 0.34 0.33 0.36 0.46 0.30
HC3 0.49 0.47 0.52 0.51 0.51 0.31 0.50
HC4 0.42 0.36 0.39 0.44 0.29 0.42
HC5 0.52 0.45 0.39 0.32 0.40
HC6 0.47 0.39 0.29 0.37
HC7 0.63 0.42 0.45
HC8 0.56 0.46
HC9 0.43

To have an idea of the meaningfulness of the values of function Sim, tables 6.6

and 6.7 condense the partitions HC7 and HC8, which have the highest similitude

function value in table 6.5. In each table, a state has been boldfaced if it shares a

group with at least another state in the other table, or if it appears alone in both

tables. In total, 38 states appear reasonably matched in both partitions, with some

groups like the Missouri–Indiana–Virginia–Maryland, or the larger

Arkansas–Alabama–(...)–Nevada, being identical in both tables.

All the heuristic groups delivered higher similitude values when compared among

themselves than when compared with the ADDC partition. This is encouraging, as
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Table 6.6. HC7 Partition

Illinois , Ohio, Rode Island, Delaware, Mississippi, Oregon
New York
Texas
Michigan, West Virginia, Nebraska, Utah, Connecticut
New Jersey, New Mexico
Vermont, DC, New Hampshire
North Carolina, Oklahoma, Iowa, Kansas, Colorado
Georgia
Arkansas, Alabama, Florida, Minnesota, Tennessee, Kentucky,
Washington, Wisconsin, Louisiana, Arizona, Nevada
Pennsylvania
California, South Carolina
Massachusetts, South Dakota, North Dakota, Wyoming, Montana
Missouri, Indiana, Virginia, Maryland
United States, Idaho, Maine
Alaska, Hawaii

Table 6.7. HC8 Partition

Illinois
Ohio, Oregon, DC, New Hampshire
New York
Texas, New Mexico
Michigan, Rode Island, South Dakota, Wyoming, Idaho
New Jersey, South Carolina
Vermont, Maine
North Carolina, Iowa, Colorado
Georgia
Arkansas, Tennessee, Florida, Kentucky, Kansas, Nevada, Wisconsin,
Washington, Minnesota, Louisiana, Arizona, Alabama, Oklahoma
Pennsylvania
California, Alaska, Hawaii, Montana, North Dakota, Utah
Massachusetts, West Virginia, Connecticut, Nebraska
Missouri, Virginia, Maryland, Indiana
United States, Delaware, Mississippi
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it means that the heuristic method is actually modifying in a useful manner what

was initially made by the dendrogram method. The similitude values, while may

not seem overly attractive at a first glance, are clearly good when compared to those

in table 6.8, which was performed using a random vector instead of the ADDC

seed-partition for each run of the heuristic algorithm (but otherwise the same

running parameters.) Whereas the combined method has an average similitude

value of 0.63, using only the heuristic method with randomly chosen group leaders

delivers an average similitude value of 0.44. A Wilcox signed rank test at 0.001

significance rejects the null hypothesis of equality of the means in favor of a larger

mean similitude value for the partitions created using the combined method.

Table 6.8. Random Start Heuristic Groupings

Heuristic Groups
Group HC12 HC13 HC14 HC15 HC16 HC17 HC18 HC19 HC20
HC11 0.21 0.27 0.36 0.38 0.35 0.44 0.29 0.30 0.31
HC12 0.27 0.15 0.36 0.28 0.24 0.28 0.22 0.34
HC13 0.22 0.32 0.31 0.22 0.21 0.44 0.37
HC14 0.32 0.21 0.27 0.32 0.32 0.22
HC15 0.35 0.30 0.33 0.43 0.23
HC16 0.29 0.30 0.31 0.24
HC17 0.27 0.31 0.38
HC18 0.25 0.27
HC19 0.40

As for the R2 values, while the combined approach indeed improved the average

group R2 value of the seed-partition created with the DGM, these R2 are not

significantly different from those obtained with using only the heuristic method.

Both the combined and the heuristic approaches deliver group-R2s of around 0.9,

with very little variance and similar maximum and minimum group-R2 for both

cases.

From the evidence here, we conclude that using a somehow balanced DGM

partition as a starting point, we can improve the statistical significance of the

regression and, in general, the homogeneity of the groups formed by the HGM.

While the combined approach does not significantly improves R2 values obtained
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using only the HGM, there is statistical evidence that the similitude is improved

upon the DGM seed-partition after applying the combined method.

6.3 Stochastic Bilevel Optimization Results2

Concluding this chapter is exposition of the numerical results corresponding to

the stochastic bilevel optimization model in section 4.4.3. The model SPR2 is an

expansion over the deterministic formulation developed in chapter 3. This

optimization problem is solved using the entire information and evidence obtained

in this and the preceding chapter.

In sections 5.1 and 5.2, we already proved (theoretically) that the bilevel linear

reformulation of problem PR3�, which was called PR5, is indeed equivalent to the

problem, and that it provides solutions considerably faster than using nonlinear

solving methods. We thus decided in favor of model PR5, which has (almost) linear

problems in both levels. For the exact same reasons, we will prefer SPR2 over

SPR1 when working the bilevel stochastic setting.

Section 5.3 described two computational solution techniques for the bilevel

deterministic problem, indicating that the direct approach, once applied to a bilevel

linear problem, had solutions at least as good as the Inexact Penalization Approach

given in the references. The running times for the direct method, however, were

considerably faster when dealing with large problems. Since the stochastic model

(4.18a)-(4.18i), (4.22a)-(4.22p) is similar in structure to problem PR5, the direct

approach is chosen for solving the stochastic bilevel problem instances.

In the forecasting part of this chapter (section 6.1,) we concluded that neither the

Seasonal Holt-Winters nor the ARAR methods is significantly better than the other

when applied to the data we are using, so both methods can be applied to our ends.

For no more reason than the slightly faster computation times, we will use the

Seasonal Holt-Winter method to produce the forecasts needed in this section.

The regression analysis performed in section 6.2 validates the usage of a given

state’s consumption time series to represent, by means of a regression formula, that

state price time series. Furthermore, the pooled regression analysis justifies the

formation of clusters or groups of states within which the same regression

2The results in this section have appeared in the authors’ [54]
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relationship can be applied. These two facts permits us to use a single ternary

scenario tree as the one described in section 4.3 for a given stochastic problem

instance, instead of an exponential combination of trees. Because of its fairly

straightforward and computationally cheap implementation, and the obvious

improvements in group homogeneity and results repeatability, the combined

Dendrogram-Heuristic clustering method was chosen to produce partitions of the

state set.

Based in the specifics above, we generated a batch of 20 problem instances,

labeled BXXX, using a modified version of the problem generating algorithm in

section 3.4 that uses SHW predictions to characterize a scenario tree as shown in

4.3.1, built inside groups generated by the combined Dendrogram-Heuristic

clustering method. The time series data used is again drawn from the official figures

of the American Energy Information Administration.

6.3.1 Nature of the Solution Structure

The optimization will report:

• one expected value calculated over all scenarios

• one SN × P matrix for the variable EP

• one running time

• the optimal value of q

• K blocks of solution variables (one per scenario.) Each one of these blocks

consists of

– Three N × P matrices, one for each of the upper level decision variables

x, s, EA

– one P -sized vector for the final imbalances y, and

– two P × P matrices for the backward/forward moves of gas u, v.

Scenarios that share one or more nodes will have equal values for x and EA in those

nodes (i.e. all scenarios share the first N × P values of x and EA, one third of the

scenarios share the first 2N × P values of x and EA, and so on.)
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Table 6.9 gives the decision variables x and EA for the problem instance B001,

which has 12 days divided in 3 stages, and 4 pool zones. The final imbalances yi for

scenario 1 (correspondent to an all-decreasing consumption forecast and the

corresponding regressed prices) match the final day imbalances xkNi, delivering a

final value revenue for the NGSC of 4, 390, 721.13. Running time was 245.77s, and

the optimal value for q is 1.

Table 6.9. Optimal Values of Variables x, EA for Scenario 1 of Problem B001

x EA
133 -46 -67 181 1,070.32 968.27 1,201.77 767.22
109 -43 -58 157 1,330.72 1,471.92 1,454.22 1,096.95
89 -33 -55.89 134 2,560.86 1,986.79 2,435.16 2,678.91
87 -33 -23.98 107 6,237.95 2,378.29 5,511.81 5,693.08

94.04 -16.05 -3.98 106.55 10,257.52 2,541.01 7,004.89 7,982.71
94.10 -1.29 21.71 84.73 9,349.71 1,944.97 5,966.54 7,387.38
98.99 15.91 56.16 79.22 6,730.28 1,875.78 4,605.23 5,863.75
94.80 39.96 90.15 62.91 4,301.35 1,270.21 2,777.24 3,610.51
97.48 61.11 116.12 55.69 2,568.65 863.31 2,025.76 1,879.41
111.49 83.97 137.52 55.01 1,964.41 609.81 1,538.82 1,373.32
123.88 94.66 147.61 57.66 1,839.48 474.52 1,348.99 1,325.32
118 98 147 64 1,832.54 572.38 1,293.27 1,306.49

6.3.2 Solution Reports

This section summarizes the results for the nine problem instances tested. The

figures in table 6.3.2 are, for each problem: the optimal value for the upper level

(ULOV), the mean optimal lower level value (mLLOV), the running time for the

problem (RT), and the optimal value for the variable q.

Running times are varied, even among similarly sized problems. Overall, half of

the 20 instances tested delivered results in less than 1000s. Problem B002 was

exceptionally fast to solve at less than one minute, whereas the largest instance

tested took nearly two and a half hours to be solved.

Besides the stochastic problem solutions, another interesting features to look at is

the comparison of the Stochastic Solution (SS) shown above, the Perfect

Information Solution (PIS, obtained when knowing beforehand the values of the
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Table 6.10. Solution reports for problems B001-B020.
Instance N P S ULOV mLLOV RT q

B001 12 4 3 891,190.48 29.01 245.77s 1
B002 8 5 2 4,449,570.40 -60 21.45s 0
B003 12 5 3 8,413,667.18 68.34 929.99s 1
B004 12 5 3 7,943,942.17 -53.73 3, 319.53s 0
B005 12 5 3 1,306,501.04 -7.86 421.23s 0
B006 12 5 3 510,335.27 -2.13 120.43s 0
B007 12 5 3 2,123,587.05 -87.48 281.89s 0
B008 12 5 3 2,753,643.38 0 650.31s 0
B009 12 5 3 1,853,811.99 -6 398.76s 0
B010 12 5 3 3,973,184.60 47.30 706.78s 1
B011 28 4 4 2,663,283.93 -56.74 7, 893.23s 0
B012 8 5 2 3,298,333.98 0.00 2,321.69s 0
B013 8 5 2 3,417,055.13 0.00 2,078.14s 0
B014 8 5 2 2,477,883.48 0.00 1,891.12s 0
B015 8 5 2 3,667,407.35 -2.04 701.21s 0
B016 10 7 2 4,742,822.11 -49.00 5,002.13s 0
B017 10 7 2 2,862,635.34 38.00 2,548.44s 1
B018 10 7 2 1,901,243.90 0.00 4,518.93s 1
B019 10 7 2 2,413,298.05 37.34 4,950.69s 0
B020 10 7 2 3,437,553.53 10.00 4,735.71s 1

parameters previously considered stochastic,) and the Expected Value Solution

(EVS,) obtained using the expected values of the stochastic parameters in a

single-staged optimization problem.

Both the PIS and the EVS are procured by solving a SPR2 problem with a single

scenario, which is more or less similar to the deterministic problem PR5. The PIS is

the best possible solution: it can only be attained by having a perfect forecast

method; the EVS is the result of solving a very simply designed stochastic problem

using only mean predictions. The results for these values are summarized in table

6.11. Notice the considerably low revenues predicted by the EVS.

The values in columns three and four, SS and EVS, are just the apparent solution

obtained by these approaches. This is not the value that the NGSC would obtain if

it uses either the SS or the EVS optimal points to plan its production. The values
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Table 6.11. Revenues Attained by the PSI, the SS and the EVS

Instance PIS SS EVS
B001 892,046.450 891,190.480 321,597.810
B002 4,809,743.730 4,495,704.000 4,447,902.350
B003 7,565,976.720 8,413,667.180 299,320.010
B004 7,314,748.100 7,943,942.170 277,613.600
B005 1,450,506.940 1,306,501.040 64,176.150
B006 687,882.410 510,335.270 33,709.760
B007 4,009,499.020 2,123,587.050 75,496.910
B008 4,753,643.380 4,464,049.990 107,444.870
B009 3,660,097.860 1,853,811.990 69,717.000
B010 3,973,184.600 5,732,921.020 148,418.230
B011 2,860,385.920 2,663,283.930 10,941.390
B012 3,339,391.970 3,298,333.980 594,800.360
B013 3,456,927.710 3,417,055.130 613,688.100
B014 2,346,027.840 2,477,883.480 404,106.510
B015 3,770,818.280 3,667,407.350 729,237.780
B016 5,544,639.960 4,742,822.110 1,009,750.530
B017 3,498,196.160 2,862,635.340 484,217.120
B018 3,620,877.780 1,901,243.900 364,856.310
B019 4,007,071.210 2,413,298.050 438,157.220
B020 2,714,532.160 3,437,553.530 484,318.740

for the Stochastic Solution Implementation (SSI) and the Expected Value Solution

Implementation (EVSI), shown in table 6.12, represent the actual gain from the

usage of the SS or EVS solutions.

The PIS optimal value is the highest that can be achieved in table 6.12, as

opposed to table 6.11 in which the SS or EVS values can underestimate or

overestimate the PIS value. That is, the implementation values SSI and EVSI can

only be as high as the PIS value, and the closest they are to it, the better the

former solutions are considered.

To compare the PIS and the SS and EVS solutions, we also introduce the relative

error ratios, SSRE and the EVSRE. Shown in the fourth and fifth columns, these

relative errors are calculated as the difference between the PIS value and the SS
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Table 6.12. Revenues from the Implementation of the Obtained Solutions

Instance PIS SSI SSRE EVSI EVSRE
B001 892,046.450 690,430.120 0.226 225,820.630 0.747
B002 4,809,743.730 3,941,490.700 0.181 4,193,267.120 0.128
B003 7,565,976.720 6,775,471.650 0.104 243,360.910 0.968
B004 7,314,748.100 6,679,739.870 0.087 254,197.160 0.965
B005 1,450,506.940 1,191,949.530 0.178 23,320.520 0.984
B006 687,882.410 440,987.770 0.359 8,356.560 0.988
B007 4,009,499.020 2,836,230.010 0.293 71,259.130 0.982
B008 4,753,643.380 3,439,549.720 0.276 103,326.530 0.978
B009 3,660,097.860 2,563,110.730 0.300 56,860.690 0.984
B010 3,973,184.600 3,636,830.260 0.085 142,463.870 0.964
B011 2,860,385.920 1,281,300.450 0.552 20,145.870 0.993
B012 3,339,391.970 3,248,556.140 0.027 410,164.810 0.877
B013 3,456,927.710 2,350,283.110 0.320 430,266.640 0.876
B014 2,346,027.840 1,885,270.860 0.196 223,830.330 0.905
B015 3,770,818.280 2,995,647.930 0.206 504,094.130 0.866
B016 5,544,639.960 3,928,716.040 0.291 466,874.490 0.916
B017 3,498,196.160 378,844.380 0.892 22,034.310 0.994
B018 3,620,877.780 3,190,119.320 0.119 394,682.310 0.891
B019 4,007,071.210 2,860,895.910 0.286 460,516.230 0.885
B020 2,714,532.160 2,355,637.710 0.132 297,257.550 0.890

(EVS) value, divided by the PIS value, that is,

SSRE =
(PIS− SSI)

PIS
, EVSRE =

(PIS− EVSI|)
PIS)

,

for each one of the 20 instances. A ratio near 0 means that the approximation of the

PIS value by the SSI (EVSI) is good; on the contrary, a ratio near 1 implies that the

SSI (EVSI) are considerably poor when implemented in a given situation.

Of the 20 SSREs, only two are above 0.5 (the SSI solution is less than half that of

the PIS,) with the highest relative error at 0.89 in problem B017. Only one of the

EVSREs values displayed is below 0.75. The only instance in which the EVSI

provides a good approximation of the PIS value is B002, and even in this case the

figure is very similar to that obtained by the SSI. Results employing the ARAR
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forecasting method instead of the Seasonal Holt-Winters method deliver similar

results, heavily underestimating the PIS value.

It becomes readily apparent that the solving the problem forecasting only the

mean predictions heavily underestimates the possible future gains, and, since the

solution vector is obtained optimizing under this underrated gains scenario, the

implementation also ends up being lacking, at least for this data and model

selection. Comparing the relative errors for the EVS and the SS, it safe to state that

the usage of a stochastic framework considerably improves over the simpler

approach of solving a deterministic-like variant obtained by solely forecasting the

mean predictions.

Chapter Summary

This chapter reports the numerical results pertaining to the three main parts of

this work that employ stochastic variables, namely, time series forecasting, time

series regression analysis, and stochastic optimization.

The time series for monthly prices and consumptions per state in the US were

tested with two different forecasting methods. No conclusive evidence was found

favoring one or the other, but the Seasonal Holt-Winters algorithm was found to a

certain extent faster and with more normal residuals.

Using regression analysis and dendrogram theory, we created two grouping

methods that cluster the states showing similar regression parameters into sets that

behave likewise, each one based in different concepts and exhibiting equally different

strengths and weaknesses. Obtaining a good pooled regression function is of great

aid in reducing the amount of information needed while forming the scenario trees

for the stochastic problems. It ultimately leads to less variables in the upper level

and less evaluations of the lower level in the solution of the bilevel optimization

problem. The combination of the clustering methods later proposed, permits us to

gain homogeneity in the partition, significance of the regressions and, to a certain

extent, repeatability of the results.

Lastly, we solved twenty instances of the bilevel stochastic optimization problem

with recourse, which has been already linearized in chapter 4. Except for a reduced

number of cases, the stochastic formulation delivered fairly good approximations of

174



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

the Perfect Information Solution values, with only two of the twenty instances

presenting Stochastic Solution Relative Errors below half the PIS value. On the

contrary, the EVS appear as overwhelmingly surpassed by our stochastic model,

with only one instance providing a relative error below 0.85. Indeed simply

forecasting the expected values for each stochastic parameter has a considerable lack

of accuracy and robustness. The better the approximation, the better the solution

tools this chapter described would be when used as decision tools for NGSC in their

daily operations.
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CHAPTER 7

CONCLUDING REMARKS

Culminating this dissertation work, the current chapter collects the conclusions,

discussions, and general highlights drawn from all the other chapters of the

document. Sections 7.1 summarizes the most important points in the introductory

chapters 1 and 2, and how these impact the research we herein present. Sections 7.2

shows the major specifics regarding the deterministic mathematical optimization

models in chapter 3. It also discusses the results obtained after experimentation in

chapters 5 concerning this deterministic cases. In turn, section 7.3 does the same for

the stochastic models, summing up the theoretical exposition of chapter 4 and the

experimental findings attained in chapter 6.

7.1 Background

Natural gas markets were affected by laws and regulations around the world,

which had the intention of fostering a new type of economic dynamics for the fuel.

Natural gas has a rapidly developing industry, in virtue of its availability, clean

burning, and potential for both energy production and household usage. While

many new scenarios were born form the FERC resolutions 636 and 637, and the

European Union Regulation (EC) 1775, the most important concern for us in this

work is the study of the new set of relationships between the Pipeline Operating

Companies (POCs) and the Natural Gas Shipping Companies (NGSCs.)

Because of the functional prohibition from acting as NGSCs that the POCs now

face, they are essentially relegated to act as mere transporters of gas, but never as

marketers. Only NGSCs independent form the POCs can buy and sell gas from the

wells and to the public. While generally thought as beneficial for all sectors, this

new market setting proved to be more complicated for the POCs, who have to find

additional means to guarantee the operative balance of their lines, which are

forcefully opened to a number of NGSCs in the area.

In this work, we study a situation with only one NGSC and one POC interacting

with the usage and balance of a pipeline. The NGSC injects and extracts natural

gas into the system based on a prearranged contract, but is allowed for a certain
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imbalance tolerance. To discourage the NGSC from creating large imbalances in the

system, the POC imposes the former with a cash-out penalization. The NGSC then

has to decide how whether such penalization is a good tradeoff compared to the

profits gained from the gas over-extracted, or not.

We thus propose a bilevel optimization scheme to model this situation. In this

model, the NGSC is the leader or upper level decision maker, and the POC is the

follower or lower level decision maker. The NGSC controls a set of variables that

represent planned and actual extraction amounts, imbalances created, etc. It

controls these variables so as to sell the largest possible amount of gas each day

without incurring in large penalizations. The POC controls variables regarding the

rearrangement of the imbalances in all pool zones. The goal of the POC in the lower

level is to obtain a reconfigured system with a small total imbalance, in which the

cash-out to/from the NGSC is minimal.

We have not reportedly encountered a bilevel model of this specific subsystem of

the natural gas supply chain, save for those created within our own research group.

Most natural gas network models apparently focus in the operation of the pipelines,

trying to find and control the parameters that govern the network to obtain

operations with minimal costs. Other network models applied to natural gas more

akin to the ones developed here, consider the system with considerably different

assumptions, like a different number of NGSC in the same problem, or the

possibility of selling gas at a futures’ market.

Beyond providing a deterministic model, we went on and formulated a bilevel

stochastic problem for our NGSC-POC subsystem. The price and demand faced are

now randomly distributed and we make use of real world data to estimate, forecast

and regress the figures we need. Models in the literature regarding natural gas

price/consumption we have found are usually dedicated to econometric analysis of

the market, many of them with the ultimate purpose of assessing, for example, the

elasticity of a given price/consumption setting. More practical purposes, such as

forecasting future behaviors, present models with different characteristics, like a

considerable different regression formula, or the inclusion of extraneous

considerations, like the number of appliances, or the seasonal temperature changes.

178



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

The problem statement given in section 1.4 clearly shows the type of model we

are developing, and the most general assumptions required for it to be an adequate

abstraction.

7.2 Deterministic Models’ Remarks

Chapter 3 shows the theoretical work performed to develop a deterministic model

that represents the setting explained above.

We begin with a nonlinear-mixed integer bilevel optimization problem, originally

formulated in the work by Ŕıos-Mercado, Secomandi and Buraparte [88]. This

model, while the first to abstract the NGSC-POC subsystem in such way, has many

shortcomings, as it does not consider important interests for the parties involved.

Throughout the chapter, we display the expansion and reformulation of this

original model, adding new terms and constraints to improve its meaningfulness,

accordance with the real world situation, and usability for the NGSCs. This new

features, however, had the unavoidable consequences of adding up complexity to the

models. Lemmas 2 and 3 explain two models that, as it is theoretically

demonstrated, have equivalent solution vectors to each model in the modified upper

level model and are considerably simpler. Applying these lemmas in a bilevel setting

we obtained problem PR5, which is a bilevel linear stochastic problem. The

linearization lemmas rely on artificial variables that increase the number of

constraints, but that also considerably decrease the complexity of the problem,

allowing us to solve the independent level with the efficient tools of numerical linear

optimization.

In order to computationally implement and solve the deterministic models

formulated, we state two solution techniques developed in [59], adapting them to

the new models here created. Other aspects of the bilevel optimization are

described, such as the problem generation procedure, the choice of starting points,

and the like. Means to address/correct/implement these are lastly proposed.

In chapter 5, we observed evidence that strongly supports the usage of

linearization lemmas and the models therein exposed when working numerically.

Both linear problems, when optimized individually, provided accurate solutions
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equaling the optimal values of their correspondent nonlinear formulations, in just

fractions of the times required by the latter.

After analyzing our options to solve specific parts of the complete problem and

concluding about their employment, we compare the bilevel optimization problem,

pitting the Direct Method and the Inexact Penalization Method, each with two

different upper level objective functions.

The results show that, for small to medium-sized problems, both methods provide

similar solutions, with the Direct Method having considerably shorter running

times. This is arguably because of the greater advantage this method takes of the

linearizations performed. For larger problems, the IPA often failed to obtain a good

feasible solution in reasonable times.

The chapter concludes in favor of the bilevel linear models and the direct solution

methods, with further comments on the smaller details arising in the deterministic

bilevel solution process.

7.3 Stochastic Models’ Remarks

There are three main sections in chapter 4, each one presenting varied aspects of

the stochastic models studied. Also, each section has a counterpart in chapter 6, in

which the experiments regarding the former chapter are detailed.

Both chapters have their opening parts concerned with the time series formed by

data from the Energy Information Administration and the forecast models used on

them. The well-known ARAR and Seasonal Holt-Winters (SHW) prediction

methods, taken from [15], are summarized for their later use.

After the proper numerical analysis is carried on, both the ARAR and the SHW

forecast procedures showed strengths and weaknesses. While their predictions seem

equally good when compared to the figures they estimate, the residual analysis

shows less-than-desirable normality and log-normality, as well as some lack

randomness. Because of the intended use of the residuals in the scenario tree

generations, and the quality of the predictions, the shortcomings of the forecast

methods are not deemed serious enough and the ARAR and SHW techniques are

accepted.
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Still looking at the parameters’ time series, we developed a price/consumption

regression model in the hopes of reducing the amount of information needed in a

given stochastic problem, needing only to use one time series and then regress the

other. All 52 individual regression models are satisfactory and statistically

significant.

The regression analysis is taken forth with the inclusion of pooled regression

analysis. Using two different methods created here, we classified the states in a

number of groups or clusters that define a partition of the state set. In each element

of the partition, the states contained are expected to share a single regression

formula and therefore present a rather similar behavior. The first of the clustering

methods (Dendrogram Grouping) we developed is based in the similitude of the

individual multiple linear regression parameter vectors. This method is fast, but it

may deliver very unbalanced partitions, and the formed groups do not necessarily

have similar statistical significance.

The second of the two clustering methods (Heuristic Grouping) is based in a

greedy formation of groups that attempts to maximize the groups’ pooled R2 value.

This method is slower but it can guarantee a minimum R2 value and has the same

statistical significance for every member in a given group.

Combining the clustering techniques, we managed to improve on statistical

meaning and homogeneity (provided by the heuristic grouping method) and on

replicability (to some degree, given by the dendrogram approach.) The experiments

tested showed that the partitions obtained using the heuristic grouping are more

similar among each other when the partition’s group leaders are selected based in a

dendrogram grouping, than when the heuristic grouping is formed after a random

selection of group leaders. While replicability is improved, the R2s values (which are

already high enough) are not apparently increased.

The bilevel linear model, already proved advantageous in the deterministic case, is

slightly modified to obtain stochastic formulations of the bilevel problem. There is

first an explicative stochastic problem, which is latter modified (much like its

deterministic analog, and using similar lemmas,) to obtain a bilevel linear stochastic

optimization problem with recourse, which is numerically optimized in a setting

similar to that of model PR5.
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Results for the stochastic case were obtained after testing 20 instances. Besides

the Stochastic Solution (SS), we also calculated the Perfect Information Solution

(PIS, the best possible revenue, only attainable with flawless forecasts,) and the

Expected Value Solution (EVS, a simple minded solution considering only the

centermost scenario for each tree.) The revenue obtained for implementing the SS

and the EVS, as well as their relative error values when compared with the perfect

information solution are also given. Of all the instances, only two saw the stochastic

implementation value below half of the PIS; on the contrary, the relative errors of

the EVS implementation are, with a single exception, above 0.74. The SS is

therefore deemed better than the alternative EVS, which lacks heavily in usefulness.

All stochastic instances were generated using the procedure previously stated,

with SHW forecast performed on states belonging to groups defined by the

dendrogram/heuristic combinations.

7.4 Final Notes and Future Research

While the work here expounded, from our point of view, a sizable improvement

over the sources inspiring this work, much needs to be done before the models can

be considered complete. Some research opportunities discovered during the

continuous experimentation in this area include:

• Analyze a NGSC-POC cash-out setting in which there are more than one

NGSC acting in a single pipeline; or

• Considering the case in which imbalance creation is discouraged not by

cash-out penalization, but through volume auctioning among several NGSCs

or other ways.

• Include gas sales for the NGSC other than those for spot prices.

• Expand the deterministic and stochastic models to include further terms of

interest to either the NGSC or the POC in the objective functions/constraints

of the optimization problem.

• Study the possible existence of linear equivalent models for each expansion

proposed, in view of the clear computational advantages these have.
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• Propose alternative analytical/heuristic solution methodologies for the bilevel

optimization

• Code the entire framework in a computer language other than Matlab, to

estimate the convenience of the latter compared, for example, with lower level

languages.

• Considering the usage of other types of times series data, with characteristics

different to those employed, and evaluating the suitability of the regression

and forecasts models herein proposed, or the implementation/development of

new approaches.

• Apply transformations to the time series data to obtain better

autocorrelations, residual normality, independence, and randomness in both

the regression and the forecasting models.

• Introduce GRASP/Taboo search procedures into the Heuristic Grouping

Method to fine-tune the construction of the state set partition and possibly

increasing repeatability, while decreasing the running times.

• Implement a rolling horizon approach to the stochastic problem to better

reflect the dynamics of the decision process.

With these focus points, we expect that a continued further development of the

research detailed in this work can eventually position it as a valid, accurate, and

useful framework in the day-to-day decision making process of the parties involved

in the NGSC-POC subsystem of the natural gas supply chain.
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[87] Ŕıos-Mercado, R. Z., Kim, S., and Boyd, E. A. Efficient operation of
natural gas transmission systems: A network-based heuristic for cyclic
structures. Computers and Operations Research 33, 8 (2006), 2323–2351.

191



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009
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APPENDIX A

MATLAB CODE

This appendix presents the most important pieces of Matlab code, including

scripts and functions, that were developed during the course of this research.

Because of the large amount of derivative portions of code, we have selected only

the most important functions to be shown here. Small functions, self-indicative

functions, as well as processes not innovated in this work (but independently

implemented by us, e.g. the forecasting algorithms) are not shown for the sake of

brevity.

A.1 Deterministic Optimization

This section reports the linear and nonlinear function coded to obtain the

solutions to each level. The bilevel solution for each problem is easily obtained by

adding the lower level minimization function to function argument in function

fmincon, which would replace linprog in the linear functions.

A.1.1 Problem Generation

This code shows the Matlab script that generates a text output suitable to be

saved as a .m file and be run later as a problem instance.

Most optimization parameters are contained in the O data structure, whereas

those parameters corresponding to the prices and demands contained in the F data

structure.

When expanding this algorithm to the stochastic case, all new information is

stored in the structure F, whose members appear considerably different than those

shown here.

The problem instances for the individual levels are obtained by only asking for

the parameters involved in those levels.

%This script will generate a problem of the type AXXX.

display(blanks (4) ’);

display(’global cascade staircase ’);

display(’warning off all’);

display(’clear O’)

display(blanks (2) ’);
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days = 2; %enter the number of days

display ([’O.N = ’,num2str(days ,’%2.0f’),’;’,’ %number of total days in the

process ’]);

states = 8; %enter the number of pool zones

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

display ([’O.P = ’,num2str(states ,’%2.0f’),’;’,’ %number of states to be used’]);

display(blanks (2) ’);

%enter the minimum and maximum reference parameters for initial imbalances

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

mrpii = -100;

Mrpii =120;

%this will calculate the randomly generated initial vector

initial = mrpii + rand(1,states).*(Mrpii -mrpii);

%dispay the initial imbalance

display(’O.X0 = ...’);

printmat(initial ’,10,’%10.0f’); %printmat is simply a function that formats a matrix

so that it can be understood in an .m file

%enter the minimum and maximum reference paramter for the last day feasible

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

% imbalances

mrpfi = -50;

Mrpfi = 150;

%this will calculate the randomly generated final vector

final = mrpfi + rand(1,states).*(Mrpfi -mrpfi);

step = 2*(final -initial)/days;

%feasible vector for the deterministic case

xfeas = repmat(1,days ,states);

xfeas (1,:)= initial + rand(1,states).*step;

for i=2: days

xfeas(i,:) = xfeas(i-1,:)+rand(1,states).*step;

end

display(blanks (2) ’);

%set the parameters for thightness of the daily upper/lower bounds

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

dbparam1 =20;

dbparam2 =15;

dub = xfeas + dbparam1 + dbparam2 *(rand(size(xfeas)));

dlb = xfeas - dbparam1 - dbparam2 *(rand(size(xfeas)));

display(’O.UB =...’);

printmat(dub ,3,’%10.0f’);

display(blanks (1) ’);

display(’O.LB =...’);

printmat(dlb ,3,’%10.0f’);

% calculate the total sum for the feasible vector

xfeasum = sum(xfeas ’) ’;

%set the parameters for the tightness of the total daily upper/lower bounds

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

tbparam1 =50;

tbparam2 =74;
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tub = xfeasum + tbparam1 + tbparam2 *(rand(size(xfeasum)));

tlb = xfeasum - tbparam1 - tbparam2 *(rand(size(xfeasum)));

display(blanks (2) ’);

display(’O.TUB =...’);

printmat(tub ,15,’%10.0f’);

display(blanks (1) ’);

display(’O.TLB =...’);

printmat(tlb ,15,’%10.0f’);

%set the tolerance parameter for the swing bounds , lowerswing must be negative

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

upperswing =10;

lowerswing = -30;

sfeas = repmat(1,days ,states);

sfeas (1,:)= xfeas (1,:)-initial;

for i=2: days

sfeas(i,:) = xfeas(i,:)-xfeas(i-1,:);

end

usb = repmat(max(max(sfeas)),days ,states)+upperswing;

lsb = repmat(min(min(sfeas)),days ,states)+lowerswing;

display(blanks (2) ’);

display(’O.LSB =...’);

printmat(lsb ,3,’%10.0f’);

display(blanks (1) ’);

display(’O.USB =...’);

printmat(usb ,3,’%10.0f’);

display(blanks (1) ’);

display(’O.M = 1000000; ’);

display(’O.try = ...’);

printmat(xfeas ,4,’%10.2f’);

display(’clear i F’);

display(blanks (2) ’);

%This will select the random states for the problem

selected = selectrand ((1:52) , states);

%Enter the maximum amount of historic data

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

lasthist= [180];

display ([’F.SD=’,num2str(lasthist ,’%10.0f’),’;’]);

display ([’states = [ ’,num2str(selected ,’%10.0f’),’];’]);

display(blanks (2) ’);

Matrix;

display(blanks (1) ’);

display(’F.DC = ...’);

printmat(ResD(lasthist +1: lasthist + days , selected) , states , ’%15.2f’);

display(’F.PC = ...’);

printmat(Res(lasthist +1: lasthist + days , selected), states , ’%15.2f’);

display(’F.CI = ...’);

pencosts = Res(lasthist +1: lasthist + days , selected) .* (3* rand(days , states));

printmat(pencosts , states , ’%10.2f’);

display(’F.CR= ...’);
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printmat( Res(lasthist +1: lasthist + days , selected) .* (rand(days , states)), states

, ’%15.2f’);

display ([’F.PE = ...’ ]);

printmat( (0.6+0.1* rand(days ,states)).*( Res(lasthist +1: lasthist + days , selected)+

pencosts ) , states , ’%15.2f’);

display(’F.DM = ...’);

printmat( (1.3+0.5* rand(days ,states)).*ResD(lasthist +1: lasthist + days , selected)

,states , ’%15.2f’ )

display(blanks (1) ’);

%lower level matrices

display(’O.E = ...’);

printmat(leaks(states),6,’%10.4f’); %function leaks forms a strictly upper

triangular matrix based in the inverse poisson distribution

display(’O.E = sparse(O.E);’);

display(’O.F = ...’);

printmat(triu(poissinv(rand(states),repmat( 12 ,states ,states))+1,1) ,5,’%10.4f’)

;

display(’O.F = sparse(O.F);’);

display(’O.B = ...’);

printmat(triu(poissinv(rand(states),repmat( 10 ,states ,states))+1,1) ,5,’%10.4f’)

;

display(’O.B = sparse(O.B);’);

display(blanks (2) ’);

%Some calculations are more straightforward with F, B, and E being lines rather than

matrices:

display(’O.Fl = matrix_to_line_(O.F,O.P);

display(’O.Bl = matrix_to_line_(O.B,O.P);’);

display(’O.El = matrix_to_line_(O.E, O.P);’);

display(blanks (2)’);

%enter the linear cost coefficient parameters for the lower level

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

rsmin =15;

rsmax = 25;

rs = rsmin + rand(1,states).*(rsmax -rsmin);

display ([’O.R =[’, num2str(rs ,’%12.0f’),’]; %The linear cost coeffcient for gas

sold/bought);’]);

display(blanks (1) ’);

display(’O.A = 0.5;’);

display(’O.M = 1000000; ’);

display(blanks (2) ’);

%Cascade is a 1’s and 0’s matrix in the shape of many series of stairs cascading

each time from a lower height .’);

display(’cascade=sparse ([eye(O.P-1);zeros(1,O.P-1)]);

display(’staircase=sparse ([0;1; zeros(O.P-2,1)]);

% Staricase is a 1’s and 0’s matrix in the shape of one staricase of steps each time

shorter .’);

display(’for i=1:O.P-2’);

display(’ cascade=sparse ([ [eye(O.P-1-i);zeros (1+i,O.P-1-i)] , cascade ]);’);
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display(’ staircase=sparse ([staircase ,[ zeros(i+1);ones(1,i+1);zeros(O.P-2-i,i+1)

]]);’);

display(’end’);

display(blanks (2) ’);

display(’clear Res ResD states i’);

display(blanks (5) ’);

clear all

A.1.2 Upper Level Nonlinear Minimization

Function MD NONLINEAR UPPER performs a nonlinear minimization of the upper

level in model PR3�. It uses subfunctions minimize Z and ulof as arguments for

the nonlinear minimizer fmincon.

function [point , value , time] = MD_NONLINEAR_UPPER(O,F)

%function MD_NONLINEAR_UPPER (O,F) takes the optimization data structures ’O’ and ’F’

and solves the problem therein described using a direct nonlinear minimization

method. It reports the optimal pints and values for both values of the binary

desicion variable ’q’.

tic %start the timer

[point ,value]= minimize_Z_(O,F); %Calling (sub)function minimize_Z_ to solve

the problem in ’O, F.’

time = toc; %Stops the timer

display(’************************************************ ’);

display(’************************************************ ’);

display(’************************************************ ’);

display(’Time (s) = ’);

display(num2str(time ,’%11.2f’));

beep;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [point , value] = minimize_Z_(O,F)

%function ’minimiza_Z ’ takes the data in the structures ’O, F’ and solves the problem

by calling a straightforward nonlinear minimzation routine

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraints for Z

% these constraints are to be used in the minimization of variables x,

z, A1 , A2

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% constraints xL <x<xU are included in the bounds

%cns sL <s<sU:

AQ=[]; %AQ represent the linear inequalities matrix for the upper level

function

AQ=[ diagonalize ([ ones(1,O.P);-ones(1,O.P)], O.N), zeros (2*O.N,3*O.N*O.P

)]; %equivale a XLt <= sum(xti) <= XUt ,

AeQ = [...
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zeros(O.P, 4*O.P*O.N );... %the x_1 part of constraint x_1 = x_0 +

s_1

-eye(O.P*(O.N-1)), zeros(O.P*(O.N-1), 3*O.P*O.N + O.P)... %the x_i

part of x_i + s_i

];

AeQ = AeQ + [speye(O.P*O.N),-speye(O.P*O.N), zeros(O.P*O.N, 2*O.P*O.N)];

%the s_i part of x_i = x_i -1 + s_i

AeQ = [AeQ ;...

eye(O.P*O.N), zeros(O.P*O.N), eye(O.P*O.N),-eye(O.P*O.N)... %

constraint x = EP - EA

];

BQ=[]; %BQ represents the linear inequality

constrains right hand side for the upper level function

for i=1:O.N

BQ=[BQ ,O.TUB(i),-O.TLB(i)];

end

BeQ = [...

O.X0 ’,...

zeros(1,O.P*(O.N-1)) ,...

zeros(1,O.P*O.N)];

UQ=[ reshape(O.UB ’,1,O.P*O.N),reshape(O.USB ’,1,O.P*O.N),reshape(F.DM ’,1,O.

N*O.P), reshape(F.DM ’,1,O.N*O.P) ]; %upper bounds of the decision

variables

LQ=[ reshape(O.LB ’,1,O.P*O.N),reshape(O.LSB ’,1,O.P*O.N),zeros (1,2*O.N*O.P)

]; %lower bounds of the decision variables

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% End of Constraints for Z

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

display(’************************************************ ’);

display(’************************************************ ’);

display(’************************************************ ’);

display(’Optimization Results: ’);

display(’************************************************ ’);

%fmincon is optimized over the named subfunction ulof (...)

[point ,value] = fmincon(@(x)(ulof(x,O,F)),zeros (1,4*O.N*O.P), AQ ,BQ , AeQ ,BeQ , LQ , UQ

,[], optimset(’TolCon ’ ,0.001, ’Display ’, ’off’));

if all(AQ*point ’<= BQ ’+0.001)*all(AeQ*point ’<= BeQ ’+0.001) && all(AeQ*point ’>=

BeQ ’ -0.001)*all(point >=LQ -0.001)*all(point <=UQ +0.001)

display(blanks (3) ’)

display(’X = ’)

display( num2str(reshape(point (1:O.P*O.N),O.P,O.N)’,’%11.2f’));

display(’E^A = ’)

display( num2str(reshape(point (2*O.P*O.N+1:3*O.P*O.N),O.P,O.N)’,’%11.2f’));

display(’E^P = ’)

display( num2str(reshape(point (3*O.P*O.N+1:4*O.P*O.N),O.P,O.N)’,’%11.2f’));

display(’Profit = ’)

display( num2str(-value ,’%11.2f’))

else

display(blanks (3) ’)
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display(’Solution Reported not feasible!’)

end

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function ret = ulof(X,O,F)

ea = X(2*O.P*O.N+1:3*O.P*O.N);

ep = X(3*O.P*O.N+1:4*O.P*O.N);

ret = -reshape(F.PC ’,1,O.P*O.N)*min(ea , reshape(F.DC ’,1,O.P*O.N)) ’...

-reshape(F.PE ’,1,O.P*O.N)*max(0,ea - reshape(F.DC ’,1,O.P*O.N)) ’...

+reshape(F.CI ’,1,O.P*O.N)*max(0,reshape(F.DC ’,1,O.P*O.N) - ea) ’...

+reshape(F.CR ’,1,O.P*O.N)*ep ’;

A.1.3 Upper Level Linear Optimization

The upper level optimization can also be achieved linearly using function

MD LINEAR UPPER, which uses its own version of the subfunction minimize Z .

function [point , value , time] = MD_LINEAR_UPPER(O,F)

%function MD_LINEAR_UPPER (O,F) takes the optimization data structures ’O, F’ and

solves the problem therein described b using a direct linear minimization method.

It reports the optimal pints and values for both values of the binary desicion

variable ’q’.

tic %start the timer

[point ,value]= minimize_Z_(O,F); %Calling function minimize_Z_ to solve the

problem in ’O’ with the binary var. q=1.

time = toc; %Stops the timer

display(’************************************************** ’);

display(’************************************************** ’);

display(’************************************************** ’);

display(’Time (s) = ’);

display(num2str(time ,’%11.2f’));

beep;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [point , value] = minimize_Z_(O,F)

%function ’minimiza_Z ’ takes the data in the structure ’O’ and the value of the

binary desicion variable ’q’ and solves the problem by calling a stright -forward

minimzation routine

global penalizer record

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraints for Z

% these constraints are to be used in the minimization of variables x,

z, A1 , A2 %

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% constraints xL <x<xU are included in the bounds

%cns sL <s<sU:
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AQ=[]; %AQ represent the linear inequalities matrix for the upper level

function

for i=1:O.N-1

new =[];

new=sparse ([zeros(O.P,O.P*(i-1)),-eye(O.P),eye(O.P),zeros(O.P,O.P*(O.

N-i-1)),zeros(O.P,2*O.N*O.P)]); %Equivale a xti -1 + xti <= sti

AQ=[AQ;new;-new];

end

AQ=[AQ;[ diagonalize ([ ones(1,O.P);-ones(1,O.P)], O.N), zeros (2*O.N,2*O.N

*O.P)];... %equivale a XLt <= sum(xti) <= XUt ,

zeros(O.N*O.P,O.N*O.P),-eye(O.N*O.P),eye(O.N*O.P) ;... %equivale

a -A1+ A2 <=0

eye(O.N*O.P), eye(O.N*O.P), zeros(O.N*O.P,O.N*O.P);...

%equivale a x_ti + A1_ti <= 0

-eye(O.N*O.P), -eye(O.N*O.P), zeros(O.N*O.P,O.N*O.P)];

%equivale a -x_ti - A1_ti <=0

BQ=[]; %BQ represents the linear inequality

constrains right hand side for the upper level function

for i=1:O.N-1

BQ=[BQ ,O.USB(i+1,:) ,-O.LSB(i+1,:)];

end

for i=1:O.N

BQ=[BQ ,O.TUB(i),-O.TLB(i)];

end

BQ=[BQ ,zeros(1,O.N*O.P), reshape(F.DM’, 1, O.N*O.P), repmat(0,1,O.N*O

.P)];

UQ=[min(O.USB(1,:)+O.X0’,O.UB(1,:))]; %UQ contains the

Upper bounds for the upper level function

for(i=2:O.N)

UQ=[UQ ,O.UB(i,:)];

end

UQ=[UQ ,reshape(F.DM ’,1,O.N*O.P), reshape(F.DC ’,1,O.N*O.P) ];

LQ=[]; %LQ contains the Lower bounds for function ’Q=-F+M*G

’.

LQ=[max(O.LSB(1,:)+O.X0’,O.LB(1,:))];

for(i=2:O.N)

LQ=[LQ , O.LB(i,:)];

end

LQ=[LQ , zeros (1,2*O.N*O.P)];

Of = [reshape(F.CR ’,1,O.N*O.P) , -reshape(F.PE ’,1,O.N*O.P) + reshape(

F.CR ’,1,O.N*O.P),reshape(F.PE ’ - F.PC ’ - F.CI ’,1,O.N*O.P)];

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% End of Constraints for Z

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

display(’*************************************************** ’);

display(’*************************************************** ’);

display(’*************************************************** ’);

display(’Upper level Optimization Results: ’);

display(’*************************************************** ’);
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%We minimize function the problem using lingprog (...):

[point ,value] = linprog(Of, AQ, BQ , [],[], LQ , UQ ,[], optimset(’TolCon ’ ,1));

if all(AQ*point <= BQ ’+0.001)*all(point ’>=LQ -0.001)*all(point ’<=UQ +0.001)

display(’X = ’)

display( num2str(reshape(point (1:O.P*O.N),O.P,O.N)’,’%11.2f’));

display(’E^A = ’)

display( num2str(reshape(point(O.P*O.N+1:2*O.P*O.N),O.P,O.N)’,’%11.2f’));

display(’E^P = ’)

display( num2str(reshape(point(O.P*O.N+1:2*O.P*O.N),O.P,O.N) ’+reshape(point (1:O.P

*O.N),O.P,O.N)’,’%11.2f’));

display(’A^2 = ’)

display( num2str(reshape(point (2*O.P*O.N+1:3*O.P*O.N),O.P,O.N)’,’%11.2f’));

display(’Profit = ’)

display( num2str(-value -reshape(F.CI ’.*F.DC ’,1,O.N*O.P)*ones(1,O.N*O.P)’ ,’%11.2

f’))

else

display(blanks (3) ’)

display(’Solution Reported not feasible!’)

end

A.1.4 Lower Level Nonlinear Minimization

The lower level minimization, carried on using function fmincon, is shown next,

in the body of function experimenting minimize D nonlin( O, q), using the

subfunctions objective and nonlinear, which contain the objective function and

the nonlinear constraints, respectively.

function value = experimenting_minimize_D_nonlin( O, q)

%Function experimenting_minimize_D_nonlin (O,q) minimzes the lower level in the data

structure ’O’, for the specified value of variable ’q’ using the nonlinear

optimizer ’fmincon ’, and the subfunctions ’objective ()’ and ’nonlinear ()’ to

represent the lower level nonlinear obejective function and constraints .

tic;

global cascade staircase

xN=O.xN ’;

%check first if the problem is already solved

if all(( 2*q-1 )*xN >= -0.001)

display(blanks (5) ’);

display(’Easy !!!!!!!!!! ’);

value=-O.R*xN ’;

experimental_buildyuvzd(O.P, [xN, zeros(1,O.P^2-O.P)]’,value); %this is simply a

formatted report of the variables

display(’Time (s) = ’);

display(num2str(toc ,’%11.5f’));

beep;

return

end
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%check too if the problem is unfeasible

if all(( 2*q-1 )*xN <=0.001)

display(blanks (5) ’);

display(’Unfeasible !!!!!!!!! ’);

display(’Time (s) = ’);

display(num2str(toc ,’%11.5f’));

beep;

return

end

%we thus begin forming the restriction matrices for the lower level problem

%the string of variables passed to the optimizer will be formed by

%y,u,v,z

%cns_y=xuv

% [eye(O.P),cascade -( staircase .* repmat (1-O.El ,O.P ,1)),-cascade+staircase ,repmat (0,O.P

,1) ];

%cns_uv <x

%[zeros(O.P), cascade , staircase ,zeros(O.P ,1)]

%cns_u <x, v<x wil be put in the nonlinear terms

% constraints x<y<x will be out in the bounds

% constraints -M(1-q)<y<Mq will be put in the bounds.

%cns_z=yuv

%[O.R, -O.Fl .* (1-O.El), O.Bl , 1]

%the inequalities matrix and rhs will then be fomed by:

AQ=[...

[zeros(O.P), cascade , staircase ,zeros(O.P,1)]

];

%whereas its right -hand side becomes :% cns z<d

BQ=[...

max(0,xN)

];

%The equalities matrix wil be formed by:

AeQ =[...

[eye(O.P),cascade -( staircase .* repmat(1-O.El,O.P,1)),-cascade+staircase ,repmat(0,O

.P,1)];

[O.R, -O.Fl .* (1-O.El), O.Bl, 1]

];

%whereas its right -hand side becomes:

BeQ=[xN ,0, ...

];

%The lower bounds are:

LB=[...

max(-O.M*repmat ((1-q),1,O.P),min(0,xN)) ,... %y>-M*(1-q)

repmat(0,1,O.P^2-O.P) ,... %u>0,v>0

-inf

];

%And the upper bounds are:

UB = [...

min(O.M*repmat(q,1,O.P),max(0,xN)) ,... %y<Mq

repmat(inf , 1,O.P^2-O.P) ,... %u,v \in R

204



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

repmat(inf , 1, 1) %z,d \in R

];

%so , the minimization function would be:

[ point ,value] = fmincon(@(y)objective(y), zeros(1,O.P^2+1) , AQ ,BQ , AeQ , BeQ , LB , UB ,

@(y)nonlinear(y,xN ,O.P));

experimental_buildyuvzd(O.P, point ’, point(end)) %again , just a formatted report of

the results

display(’Time (s) = ’);

display(num2str(toc ,’%11.5f’));

beep;

% %%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%

function ret = objective(x)

ret = x(end)^2;

% %%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%

function [ineq , eq] = nonlinear(y,x, P)

k=1;

vector = zeros(1,P^2-P);

for i=2:P

for j=1:i-1

if x(j) >= 0 && x(i) <= 0

vector(k) = y(P+k) - x(j);

else

vector(k) = y(P+k);

end

k=k+1;

end

end

for i=2:P

for j=1:i-1

if x(i) >= 0 && x(j) <= 0

vector(k) = y(P+k) - x(i);

else

vector(k) = y(P+k);

end

k=k+1;

end

end

ineq = vector;

eq = [];

A.1.5 Lower Level Linear Minimization

The lower level minimization, performed linearly though the usage of Matlab

function linprog is shown in function experimenting minimize D ll( O, q) next:
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function [poitn , value] = experimenting_minimize_D_ll( O, q)

%Function experimenting_minimize_D_ll (O,q) minimzes the lower level in the data

structure ’O’, for the specified value of variable ’q’ using the linear optimizer

’linprog ’

tic;

global cascade staircase

xN=O.xN ’;

%check if the problem is already solved

if all(( 2*q-1 )*xN >= -0.001)

display(blanks (5) ’);

display(’Easy !!!!!!!!!! ’);

value=-O.R*xN ’;

experimental_buildyuvzd(O.P, [xN , zeros(1,O.P^2-O.P)]’,value); %this is simply

a formatted report of the results

display(’Time (s) = ’);

display(num2str(toc ,’%11.5f’));

beep;

return

end

%check too if the problem is unfeasible

if all(( 2*q-1 )*xN <=0.001)

display(blanks (5) ’);

display(’Unfeasible !!!!!!!!! ’);

display(’Time (s) = ’);

display(num2str(toc ,’%11.5f’));

beep;

return

end

%we now form the restriction matrices for the lower level problem

%the string of variables passed to the optimizer will be formed by

%y,u,v,z,d,xi ,zeta.

%cns_y=xuv

% [eye(O.P),cascade -( staircase .* repmat (1-O.El ,O.P ,1)),-cascade+staircase ,repmat (0,O.P

,1) ,repmat (0,O.P ,1) ,repmat (0,O.P ,2*O.P)];

%cns_u <xi

%[repmat (0,(O.P^2-O.P)/2,O.P),eye ((O.P^2-O.P)/2) ,repmat (0,(O.P^2-O.P)/2) ,repmat (0,(O.

P^2-O.P)/2 ,1),repmat (0,(O.P^2-O.P)/2 ,1) ,-cascade ’,repmat (0,(O.P^2-O.P)/2,O.P)];

%cns_u <zeta

%[repmat (0,(O.P^2-O.P)/2,O.P),eye ((O.P^2-O.P)/2) ,repmat (0,(O.P^2-O.P)/2) ,repmat (0,(O.

P^2-O.P)/2 ,1),repmat (0,(O.P^2-O.P)/2 ,1),repmat (0,(O.P^2-O.P)/2,O.P),-staircase ’];

%cns_v <xi

%[repmat (0,(O.P^2-O.P)/2,O.P),repmat (0,(O.P^2-O.P)/2) ,eye ((O.P^2-O.P)/2) ,repmat (0,(O.

P^2-O.P)/2 ,1),repmat (0,(O.P^2-O.P)/2 ,1) ,-staircase ’,repmat (0,(O.P^2-O.P)/2,O.P)];

%cns_v <zeta

%[repmat (0,(O.P^2-O.P)/2,O.P),repmat (0,(O.P^2-O.P)/2) ,eye ((O.P^2-O.P)/2) ,repmat (0,(O.

P^2-O.P)/2 ,1),repmat (0,(O.P^2-O.P)/2 ,1),repmat (0,(O.P^2-O.P)/2,O.P),-cascade ’];

%cns_y <xi := y-xi <0

%[eye(O.P),repmat (0,O.P,(O.P^2-O.P)/2) ,repmat (0,O.P,(O.P^2-O.P)/2) ,repmat (0,O.P ,1) ,

repmat (0,O.P ,1) ,-eye(O.P),repmat (0,O.P)];
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%cns_zeta <y := -y-zeta <0

%[-eye(O.P),repmat (0,O.P,(O.P^2-O.P)/2) ,repmat (0,O.P,(O.P^2-O.P)/2) ,repmat (0,O.P ,1) ,

repmat (0,O.P ,1) ,repmat (0,O.P),-eye(O.P)];

% constraints -M(1-q)<y<Mq will be put in the bounds.

%cns_z=yuv

%[O.R, -O.Fl .* (1-O.El), O.Bl , 1,0, repmat (0,1 ,2*O.P)]

%cns -d<z := -z-d<0

%[repmat (0,1,O.P^2) , -1,-1, repmat (0 ,1,2*O.P)]

%cns z<d

%[repmat (0,1,O.P^2) , 1,-1, repmat (0,1 ,2*O.P)]

% constraints xi >XN , xi >0, zeta >-xN , zeta >0, u>0, v>0 will be put in the bounds

%the inequalities matrix and rhs will then be fomed by:

AQ=[...

[repmat (0,(O.P^2-O.P)/2,O.P),eye((O.P^2-O.P)/2),repmat (0,(O.P^2-O.P)/2),repmat

(0,(O.P^2-O.P)/2,1),repmat (0,(O.P^2-O.P)/2,1) ,-cascade ’,repmat (0,(O.P^2-O.P)

/2,O.P)];...%cns_u <xi

[repmat (0,(O.P^2-O.P)/2,O.P),eye((O.P^2-O.P)/2).*diag(1-O.El),repmat (0,(O.P^2-O.P

)/2),repmat (0,(O.P^2-O.P)/2,1),repmat (0,(O.P^2-O.P)/2,1),repmat (0,(O.P^2-O.P)

/2,O.P),-staircase ’]; ... %cns_u <zeta

[repmat (0,(O.P^2-O.P)/2,O.P),repmat (0,(O.P^2-O.P)/2),eye((O.P^2-O.P)/2),repmat

(0,(O.P^2-O.P)/2,1),repmat (0,(O.P^2-O.P)/2,1) ,-staircase ’,repmat (0,(O.P^2-O.P

)/2,O.P)];...%cns_v <xi

[repmat (0,(O.P^2-O.P)/2,O.P),repmat (0,(O.P^2-O.P)/2),eye((O.P^2-O.P)/2),repmat

(0,(O.P^2-O.P)/2,1),repmat (0,(O.P^2-O.P)/2,1),repmat (0,(O.P^2-O.P)/2,O.P),-

cascade ’];...%cns_v <zeta

[eye(O.P),repmat(0,O.P,(O.P^2-O.P)/2),repmat(0,O.P,(O.P^2-O.P)/2),repmat(0,O.P,1)

,repmat(0,O.P,1) ,-eye(O.P),repmat(0,O.P)];...%cns_y <xi := y-xi <0

[-eye(O.P),repmat(0,O.P,(O.P^2-O.P)/2),repmat(0,O.P,(O.P^2-O.P)/2),repmat(0,O.P

,1),repmat(0,O.P,1),repmat(0,O.P),-eye(O.P)];...%cns_zeta <y := -y-zeta <0

[repmat(0,1,O.P^2), -1,-1,repmat (0,1,2*O.P)] ;...%cns -d<z := -z-d<0

[repmat(0,1,O.P^2), 1,-1,repmat (0,1,2*O.P)]; ...%cns z<d

[repmat (0,2*O.P,O.P^2+2) , -eye(O.P*2)] %xi >=xN , zeta >=-xN

];

%whereas its right -hand side becomes :% cns z<d

BQ=[ repmat (0,1,4*(O.P^2-O.P)/2+2*O.P+2 ), ...

-xN,xN...

];

%The equalities matrix wil be formed by:

AeQ =[...

[eye(O.P),cascade -( staircase .* repmat(1-O.El,O.P,1)),-cascade+staircase ,repmat(0,O

.P,1),repmat(0,O.P,1),repmat(0,O.P,2*O.P)];... %cns_y=xuv

[O.R, -O.Fl .* (1-O.El), O.Bl , 1,0,repmat (0,1,2*O.P)];...%cns_z=yuv

];

%whereas its right -hand side becomes :% cns z<d

BeQ=[xN ,0, ...

];

%The lower bounds are:

LB=[...

-O.M*repmat ((1-q),1,O.P) ,... %y>-M*(1-q)
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repmat(0,1,O.P^2-O.P) ,... %u>0,v>0

-inf , -inf ,... %z,d \in R

repmat (0,1,2*O.P)... % xi >0,zeta >0

];

%And the upper bounds are:

UB = [...

O.M*repmat(q,1,O.P) ,... %y<Mq

repmat(inf , 1,O.P^2-O.P) ,... %u,v \in R

repmat(inf , 1, 2) ,... %z,d \in R

repmat(inf , 1, 2*O.P)... %xi , zeta \in R

];

%The objective function vector is:

Of= [repmat(0,1,O.P^2) ,0 ,1 ,10000000* repmat (1,1,2*O.P)];

%so , the minimization function would be:

[ point ,value] = linprog(Of , AQ, BQ, AeQ , BeQ , LB , UB ,UB);

%check if the artificial variables are indeed complementary

if (point(O.P^2+3:O.P^2+2+O.P)’*point(O.P^2+3+O.P:end) >= -0.001 )&& (point(O.P^2+3:O

.P^2+2+O.P)’*point(O.P^2+3+O.P:end) <= 0.001 )

experimental_buildyuvzdxzeta(O.P,point)

else

display(blanks (2));

display(’Unable to obtain complementarity vectors xi , zeta !!!!!!!! ’);

end

display(’Time (s) = ’);

display(num2str(toc ,’%11.5f’));

beep;

A.2 Stochastic Optimization

This section presents the most important functions concerning the stochastic

optimization models solved. While the solver is very similar to that of the

deterministic case, the functions and scripts that deal with the upper level

stochastic parameters are considerably different.

A.2.1 Scenario Tree Generation

Function scenariotreestoch(Mat, F, met) calculates an array of structures

that represent the prices or demands forecast in the scenario tree structure, as well

as a vector of probabilities for each scenario faced. It will be used in the scripts

defining the problem instances to produce the remaining parts of the structure F not

created by the problem generator algorithm.

function [ret , probs1 ]= scenariotreestoch(Mat , F,met)
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%Function scenariotreestoch (Mat ,F,met) takes data matrix ’Mat ’, the optimization data

structure ’F’ and the method - specifier ’met ’, and returns an array of scenario

tree forecasts structures ’ret ’, and a vector ’probs1 ’.

%check if the forecasting method is given in integer or character format

if ~ischar(met)

if met == 1

met = ’ARAR’;

else

met = ’HW’;

end

end

%define the probability vector for each branch of the tree.

probs1=F.p;

for i=1 :F.stages -2

probs =[];

for j=1: length(probs1)

probs=[probs ,F.p*probs1(j)];

end

probs1=probs;

end

%the next nested ’for ’ loops will build an array of stuctures , one per state , whose

memebers are forecasts matrices , performed using the first matrix , and whose

columns corresponds to the data for each scenario of the scenario tree.

ret= [];

for istate = 1: length(Mat(1,:))

WS = Mat(1:F.SD,istate);

for istage= 1:F.stages

endpos = length(WS(1,:));

WS1 =[];

for ipos = 1: endpos

WS1=[WS1 ,point_adv(WS(:,ipos),F,istage ,met)];

end

%the following if statement makes the tree single rooted; for

%several routes , single out the ELSE argument

if istage == 1

WS = WS1(:,2);

else

WS=WS1;

end

end

ret(istate).mat=WS(F.SD+1:end ,:);

end

% %%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%

function ret1 = point_adv(S, F, stage ,met) %this functions performs ternary

frocecasts and the corresponding extension of the source matrix.

ret2= forecast_ARHW2(S, 1, F.SD+(stage -1)*F.stagelength ,F.stagelength ,12,met ,F.band

,0);
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ret1=[ repmat(S,1,3);ret2];

A.2.2 Stochastic Optimization

Function MD Stoch(O,F,q) takes the optimization structures O,F and solves the

stochastic problem they define, obtaining the expected value solution of this

problem. It calls a lower level solution function minimize D prev similar to that of

the deterministic analogue, slightly modified to include the several leaves’ final day

imbalances and their probabilities.

function [point , value , time] = MD_Stoch(O,F,q)

%function MD_Stoch takes the optimization data structures ’O, F’ and solves the

%problem therein described by using a direct minimization method in a

% multistage stochastic optimization problem with recourse variables .

%It reports the optimal pints and values for both values of the binary

%desicion variable ’q’.

global penalizer record

tic %start the timer

switch q

case 1

[point ,value]= minimize_Z_ (1,O,F); %Calling function minimize_Z_

to solve the problem in ’O’ with the binary var. q=1.

case 0

[point ,value]= minimize_Z_ (0,O,F); %Calling function minimize_Z_ to

solve the problem in ’O’ with the binary variable q=0.

case 2

[point1 ,value1 ]= minimize_Z_ (1,O,F); %Calling function minimize_Z_

to solve the problem in ’O’ with the binary var. q=1.

[point0 ,value0 ]= minimize_Z_ (0,O,F); %Calling function minimize_Z_ to

solve the problem in ’O’ with the binary variable q=0.

if value1 <= value0

point = point1;

value = value1;

q=1;

else

point = point0;

value=value0;

q=0;

end

end

time = toc; %Stops the timer

display(’******************************************************* ’);

display(’******************************************************* ’);

display(’******************************************************* ’);

display(’Penalization = ’);

display(num2str(penalizer ,’%11.2f’));

% display(’Record = ’);
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% display(num2str(record , ’%11.2f’));

display(’Time (s) = ’);

display(num2str(time ,’%11.2f’));

beep;

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [sol , final_value] = minimize_Z_(q,O,F)

%function ’minimiza_Z ’ takes the data in the structure ’O’ and the value of

%the binary desicion variable ’q’ and solves the problem by calling a

%straight -forward minimzation routine

global penalizer record

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Constraints for Z

% these constraints are to be used in the minimization of variables x,

Ea , xp%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% constraints xL <x<xU are included in the bounds

%In -node imbalance swing bounds inequality matrix M2

M2=[];

for k=1:O.K

M1=[];

for n=2:O.Np

M1=[M1;[ repmat(0,O.P,(n-2)*O.P),[-eye(O.P),eye(O.P)],repmat(0,O.P

,(O.Np -n)*O.P)]];

end

M2=blkdiag(M2,M1);

end

%M2=[M2 , repmat (0, length(M2(: ,1)) ,2*O.Np*O.K*O.P)];

%cross -node imbalance swing bounds inequality matrix

if O.St >1

M3=[];

for k=1:O.K-1

M3=blkdiag(M3 ,[ eye(O.P),repmat(0,O.P,(O.Np -1)*O.P)]);

end

M3 = [repmat(0,length(M3(:,1)),O.Np*O.P),M3];

M4 = [];

for k=1:O.Ka

M4=blkdiag(M4, [repmat (0,3*O.P,(O.Np -1)*O.P),[-eye(O.P);-eye(O.P)

;-eye(O.P)] ]);

end

M4=sparse ([[M4,repmat (0,3*O.Ka*O.P,(O.K-O.Ka)*O.Np*O.P)]]);

M5=M3+M4;

else

M5=[];

end

%total imbalance limits
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M6=sparse ([]);

for k=(1:O.K*O.Np)

M6=blkdiag(M6,sparse(repmat(1,1,O.P)));

end

%initial imbalance swing bounds

M7=[[eye(O.P);-eye(O.P)],zeros (2*O.P,(O.K-1)*O.Np*O.P+(O.Np -1)*O.P)];

%recourse variable to extraction constraints

M8 = [ zeros(O.P*O.Np*O.K),-speye(O.P*O.Np*O.K),speye(O.P*O.Np*O.K) ];

%equal stage booking equalities

M9 = sparse ([]);

for i=1:O.St

M9 = blkdiag(M9, [speye(O.Np*O.P*(3^(i-1) -1)),zeros(O.Np*O.P*(3^(i-1)

-1),O.Np*O.P) ] + [zeros(O.Np*O.P*(3^(i-1) -1),O.Np*O.P),-speye(O.

Np*O.P*(3^(i-1) -1)) ] );

end

M10 = [M9,M9 ,zeros(size(M9))];

AQ = [[[M7;M5;-M5;M2;-M2;M6;-M6],zeros (2*O.Np*O.P*O.K+2*O.Np*O.K,2*O.Np*O

.P*O.K)];M8];

AeQ = [M10];

clear M1 M2 M3 M4 M5 M6 M7 M8 M10

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Right -hand sides

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%in -node imbalance swing inequiality right -hand -side

N1=[];

N2=[];

for k=1:O.St

%A= reshape(WU( (k -1)*O.Np +2:k*O.Np ,: )’,O.P*(O.Np -1) ,1 )’ ;

N1=[N1 ,repmat(reshape(O.UWB( (k-1)*O.Np+2:k*O.Np ,: )’,O.P*(O.Np -1) ,1

)’ ,1,3^(k-1) )] ;

N2=[N2 ,repmat(reshape(O.LWB( (k-1)*O.Np+2:k*O.Np ,: )’,O.P*(O.Np -1) ,1

)’ ,1,3^(k-1) )] ;

end

N3=[N1 ,-N2];

%cross -node imbalance swing inequaity right -hand side

if O.St >1

N4=[];

N5=[];

for k=2:O.St

%A= reshape(WU( (k -1)*O.Np +2:k*O.Np ,: )’,O.P*(O.Np -1) ,1 )’ ;

N4=[N4 ,repmat(reshape(O.UWB( (k-1)*O.Np+1,: )’,O.P,1 )’ ,1,3^(

k-1) )] ;

N5=[N5 ,repmat(reshape(O.LWB( (k-1)*O.Np+1,: )’,O.P,1 )’ ,1,3^(

k-1) )] ;

end

N6=[N4 ,-N5];

else
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N6=[];

end

%total imbalance right hand side

N7=[];

N8=[];

for k=1:O.St

%A = WTU ((k -1)*O.Np +1:k*O.Np);

N7=[N7 ,repmat( O.TUB((k-1)*O.Np+1:k*O.Np)’,1, 3^(k-1) ) ];

N8=[N8 ,repmat( O.TLB((k-1)*O.Np+1:k*O.Np)’,1, 3^(k-1) ) ];

end

N9=[N7 ,-N8];

%initial imbalance swing right hand side

N10=[O.UWB(1,:)+O.X0 ’,-O.LWB(1,:)-O.X0 ’];

%Recourse to extraction right hand side

% hyerarchy of the indexes is P,Np ,K

N11 =[];

for i=1:O.St %counter for stages

for j = 1:3^(i-1) %counter for nodes in the stage

for k=1:O.Np %counter for days in the node/stage

for l=1:O.P %counter for zones

N11 = [N11 ,F.DCT(l).mat(O.Np*(i-1)+k,1+ (j-1) *3^(O.St -i)

)];

end

end

end

end

BQ=[N10 ,N6,N3,N9 , zeros(1,O.Np*O.P*O.K)];

BeQ = zeros(1,length(M9(:,1)));

clear N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 M9

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Bounds

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Imbalance upper and lower bounds

U1=turnNP2KNpP(O.UB,O);

L1=turnNP2KNpP(O.LB,O);

% Extraction upper and lower bounds

U2=inf*ones(1,O.K*O.Np*O.P);

L2=zeros(1,O.K*O.Np*O.P);

%recourse upper and lower bounds

U3 = max (0.001 , N11);

L3 = zeros(1,O.K*O.Np*O.P);

UQ = [U1 ,U2,U3];

LQ = [L1 ,L2,L3];

clear U1 U2 U3 L1 L2 L3

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Objective function linear part

213



Tecnológico de Monterrey, Gerardo A. Pérez Valdés, December 2009

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%sale prices

Of1 = [];

for i=1:O.St %counter for stages

for j = 1:3^(i-1) %counter for nodes in the stage

for k=1:O.Np %counter for days in the node/stage

for l=1:O.P %counter for zones

Of1 = [Of1 ,F.PCT(l).mat(O.Np*(i-1)+k,1+ (j-1) *3^(O.St -i)

)];

end

end

end

end

%Recourse costs

Of2 = turnNP2KNpP(F.CI ,O);

%booking costs

Of3 = turnNP2KNpP(F.CR ,O);

% probabilities of each scenario

pmat =[];

for i=1:O.St

new =[];

wide = 3^(O.St -i);

times = 3^(i-1);

for j=1: times

new = [new ,repmat( sum(F.pt( 1+(j-1)*wide:j*wide )) , O.Np ,wide)

];

end

pmat = [pmat;new];

end

Of4 =[];

for i=1:O.St %counter for stages

for j = 1:3^(i-1) %counter for nodes in the stage

for k=1:O.Np %counter for days in the node/stage

for l=1:O.P %counter for zones

Of4 = [Of4 ,pmat(O.Np*(i-1)+k,1+ (j-1) *3^(O.St -i) )];

end

end

end

end

Of = repmat(Of4 ,1,3).*[Of3 , Of3 , -Of2 -Of1 ];

clear Of1 Of3 Of4

% %%%%%%%%%%%%%%%%%%%%%%%

% End of Constraints for Z

% %%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%

% Begining point routine

% we will use the matrices to solve a more constrained

problem
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% in order to provide the solver with a feasible starting

point ,

% the following is also shown in function ’

trick_minimize_D_ll_ ’

% %%%%%%%%%%%%%%%%%%%%%%%

%here , we solve a linear version of the upper level problem , such that

xN <=0, or xN >=0, thus the lower level is trivial

%this porvides us with a starting point for the double level

optimization forecoming

display(’**************************************************** ’);

display(’**************************************************** ’);

display(’**************************************************** ’);

disp(blanks (3) ’);

display(’Starting point optiomization results:’);

disp(blanks (1) ’);

[starting_point ,upper_bound , flaglinear] = linprog( Of , AQ ,BQ ,AeQ

,BeQ ,LQ , UQ);

if flaglinear <0

error(’ Problem is unfeasible ’);

else

display(’ Starting Point Obtained: Upper Problem is feasible ’)

end

disp(blanks (1) ’);

% %%%%%%%%%%%%%%%%%%%%%%%%%

% End of Starting Point Routine

% %%%%%%%%%%%%%%%%%%%%%%%%%

penalizer = 100;

record= [];

display(’********************************************** ’);

display(’********************************************** ’);

display(’********************************************** ’);

display(’Upper level Optimization Results: ’);

disp(blanks (1) ’);

%First , we minimize function ’minmize_D_ll_ ’, obtain the value for ’x’

[point1 ,ul_value] = fmincon(@(x)(minimize_D_prev_(x,q,O,F.pt)+Of*x’), starting_point

’, AQ, BQ, AeQ ,BeQ , LQ, UQ ,[], optimset(’TolCon ’ ,1));

%here , we retrieve the lower level values not delivered by fmincon

sol = minimize_D_prev_rep(point1 ,q,O,F);

final_value = ul_value + Of2*N11 ’;

clear Of2 N11

report_stoch(sol ,final_value ,O,F,’all’);

%the reported point is formed by the optimal ’x’ and the optimal ’yuv ’ vectors found

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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A.3 Time Series Analysis

This section presents the time computer functions that involve the use and

calculations of time series regression analysis.

Dendrogram Grouping Method

The dendrogram grouping method first obtains the IMLR regressions for all

states and then forms groups using the statistics toolbox function linkage. The

pooled regression is performed with the data from the states of all groups.

function [full , G, D] = AlgorithmDdg(DM , PM , Min_g , Max_g , linkmet , normalize)

%function AlgorithmDdg (DM , PM , Min_g , Max_g , linkmet , normalize) returns an

%array of structures with length(States) structures , that is the grouped

% regression parameters for the States in the list States. Perform the

% additional cluster formation using linakge function

% %form the simple regression matrix of coefficents ’single ’ --- nearest

% distance ’complete ’ --- furthest distance ’average ’ --- unweighted

% average distance (UPGMA) (also known as group average) ’weighted ’ ---

% weighted average distance (WPGMA) ’centroid ’ --- unweighted center of

% mass distance (UPGMC) (*) ’median ’ --- weighted center of mass

% distance (WPGMC) (*) ’ward ’ --- inner squared distance (min variance

% algorithm ) (*)

%first let us count the number of arguments

if nargin <=4

error(’Not enough parameters; enter a demand matrix , a price matrix , a minimum

number of groups , a maximum allowed number of groups , a linkage method , and (

optional) whether or not normalize the ressults ’)

end

if nargin <=5

normalize = 0;

end

%create the list of names for every state.

fullnames = char(’United States ’, ’Alabama ’, ’Alaska ’, ’Arkansas ’, ’Arizona ’, ’

California ’, ’Colorado ’, ’Connecticut ’, ’Delaware ’, ’DC’, ’Florida ’, ’Georgia ’, ’

Hawaii ’, ’Idaho’, ’Illinois ’, ’Inidiana ’, ’Iowa’, ’Kansas ’, ’Kentucky ’, ’Loisiana

’, ’Maine’, ’Maryland ’, ’Massachusets ’, ’Michigan ’, ’Minesota ’, ’Mississippi ’, ’

Missouri ’, ’Montana ’, ’Nebraska ’, ’Nevada ’, ’New Hampshire ’, ’New Jersey ’, ’New

Mexico ’, ’New York’, ’North Carolina ’, ’North Dakota ’, ’Ohio’, ’Oklahoma ’, ’

Oregon ’, ’Pensilvania ’, ’Rode Island ’, ’South Carolina ’, ’South Dakota ’, ’

Tennesse ’, ’Texas’, ’Utah’, ’Vermont ’ , ’Virginia ’, ’Washington ’, ’West Virginia ’

, ’Wisconsin ’, ’Wyoming ’);

%Set the general parameters

G.groups=Min_g;

G.states=length(DM(1,:));

G.assign = zeros(1,G.states);

G.span=length(DM(:,1));

% obtain the IMLR regression data
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tic;

tind = (1: length(DM(:,1)))’;

for i = 1 :length(DM(1,:))

full(i).number = i;

full(i).state = fullnames(i,:);

full(i).price = PM(:,i);

full(i).demand = DM(:,i);

[b,bint ,r,rint ,stats]= regress(full(i).price , [ones(tind(end) ,1),tind , tind .^2,(

full(i).demand).^-1,( (full(i).demand).^-1).*tind ,(tind .^2) .*( full(i).demand)

.^-1]);

full(i).sr_b = b;

full(i).sr_sign =(~(~ all (bint ’ < 0) ’.*~all (bint ’ > 0) ’).*~ all(abs(bint ’)

<0.001)’ )’;

full(i).sr_bint = bint;

full(i).sr_R = stats (1);

full(i).sr_F = stats (2);

full(i).sr_p = stats (3);

full(i).sr_err = stats (4);

full(i).sr_r = r;

full(i).sr_pest = [ones(tind(end) ,1),tind , tind .^2,( full(i).demand).^-1,( (full(

i).demand).^-1).*tind ,(tind .^2) .*( full(i).demand).^ -1]*b;

end

clear DM PM

%form the parameter matrices

bmatrix = zeros(G.states ,6);

for i=1:G.states

bmatrix(i,:) = full(i).sr_b ’;

end

if normalize ==1

bmatrix = bmatrix ./ repmat(max(bmatrix), length(bmatrix (:,1)), 1);

end

%form the clusters

Art1=clusterdata(bmatrix ,’linkage ’,linkmet ,’maxclust ’,Max_g);

G.dr_groups= max(Art1);

for i=1:G.dr_groups

D(i).x = [];

D(i).y=[];

D(i).size = sum( Art1 == i);

D(i).list = [];

D(i).members =[];

end

% initialize and form the pooled regression data

for i= 1:G.states

ind = Art1(i);

full(i).dr_group = Art1(i);

%for j=1:D(ind).size

D(ind).x = [D(ind).x;full(i).demand ];

D(ind).y = [D(ind).y;full(i).price ];

D(ind).list = [ D(ind).list ,i];
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D(ind).members = [D(ind).members;full(i).state ];

%end

end

%perform the grouped regression and store that data in the group structures

%D

for i=1: G.dr_groups

tind =(1: length(D(i).x))’;

unique =[];

for ki=1: D(i).size

unique = blkdiag(unique ,ones(G.span ,1));

end

[b1 ,bint1 ,r1 ,rint1 ,stats1] = regress(D(i).y, [unique ,tind , tind .^2,(D(i).x)

.^-1,( (D(i).x).^-1).*tind ,(tind .^2) .*(D(i).x).^-1]);

%Update the group ’s R value and variables

D(i).b =b1;

D(i).bint = bint1;

D(i).r = r1;

D(i).R=stats1 (1);

D(i).F=stats1 (2);

D(i).p=stats1 (3);

D(i).err=stats1 (4);

D(i).sign = (~(~ all (bint1 ’ < 0) ’.*~all (bint1 ’ > 0) ’).*~ all(abs(bint1 ’) <0.001)’

)’;

tind1 =(1: length(D(i).y))’;

D(i).pest = [unique ,tind1 , tind1 .^2,(D(i).x).^-1,( (D(i).x).^-1).*tind1 ,( tind1

.^2) .*(D(i).x).^ -1]*D(i).b;

end

%Assign their respective values to the groups

for i=1 : G.groups

tind1 =(1: length(D(i).y))’;

unique =[];

for ki=1: D(i).size

unique = blkdiag(unique ,ones(G.span ,1));

end

pest2 = [unique ,tind1 , tind1 .^2,(D(i).x).^-1,( (D(i).x).^-1).*tind1 ,( tind1 .^2)

.*(D(i).x).^-1];

if isempty(pest2)

display(’ERROR ’);

end

for j=1: length(D(i).list)

ind = D(i).list(j);

full(ind).dr_b = [D(i).b(j); D(i).b(end -4: end)];

full(ind).dr_bint = D(i).bint;

full(ind).dr_r = D(i).r;

full(ind).dr_R = D(i).R;

full(ind).dr_F=D(i).F;

full(ind).dr_p = D(i).p;

full(ind).dr_err = D(i).err;

full(ind).dr_sign = D(i).sign;
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full(ind).dr_pest = pest2( (j-1)*G.span +1 : j*(G.span) ,:)*D(i).b;

end

end

for i=1:G.states

G.assign(i) = full(i).dr_group;

end

%record the running time

G.dr_time=toc;

beep;

Heuristic Grouping Algorithm

The heuristic grouping algorithm presented here first calculates regression data

for each state, and then groups the states according to the schematics in algorithms

5 and 6.

function [full , G1, C1] = Algorithm_Heur(DM , PM , Min_g , Max_g , Threshold , Weight ,

Iter , start_vector , sample_size)

%function Algorithm (DM , PM , Min_g , Max_g , Threshold ,Weight , Iter , start_vector ,

sample_size ) returns an array of

% structures with length(States) structures , that is the grouped regression

% parameters for the States in the list States. start_vector is a vector with n group

leaders

%First , we create the list of names for every state.

fullnames = char(’United States ’, ’Alabama ’, ’Alaska ’, ’Arkansas ’, ’Arizona ’, ’

California ’, ’Colorado ’, ’Connecticut ’, ’Delaware ’, ’DC’, ’Florida ’, ’Georgia ’, ’

Hawaii ’, ’Idaho’, ’Illinois ’, ’Inidiana ’, ’Iowa’, ’Kansas ’, ’Kentucky ’, ’Loisiana

’, ’Maine’, ’Maryland ’, ’Massachusets ’, ’Michigan ’, ’Minesota ’, ’Mississippi ’, ’

Missouri ’, ’Montana ’, ’Nebraska ’, ’Nevada ’, ’New Hampshire ’, ’New Jersey ’, ’New

Mexico ’, ’New York’, ’North Carolina ’, ’North Dakota ’, ’Ohio’, ’Oklahoma ’, ’

Oregon ’, ’Pensilvania ’, ’Rode Island ’, ’South Carolina ’, ’South Dakota ’, ’

Tennesse ’, ’Texas’, ’Utah’, ’Vermont ’ , ’Virginia ’, ’Washington ’, ’West Virginia ’

, ’Wisconsin ’, ’Wyoming ’);

%the next if blocks will check the arguments of the function and assign defaults if

needed.

if nargin <=4

display(’Not enough input parameters. Enter at least a Demand Matrix , a Price

MAtrix , a minimum number of gropus , a maximum nonber of groups allowed , and a

threshold.’)

return

end

if nargin <= 5

Weight = 0.5;

display(’Using the default weight , 0.5!’);

end

if nargin <= 6

Iter = 5;

display(’Using the default number of iterations , 5!’);
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end

if nargin <=7

start_vector = [];

end

if nargin <=8

sample_size = length(DM(:,1));

end

if ~isempty(start_vector) && length(start_vector) ~= Min_g

error(’The start vector must match the starting minimum number of groups!’)

end

if sample_size > 0 && sample_size <=1

sample_size = ceil(sample_size*length(DM(:,1)));

end

if sample_size > length(DM(:,1)) || sample_size == 0

display(’Sample size is larger than data , reseting ....! ’);

sample_size = length(DM(:,1));

end

if all(size(DM) ~=size(PM))

error(’Price and Demand Matrices are not of the same dimensios!’)

end

% initialize the definitions of the ’G’ report structure

G.groups=Min_g;

G.states=length(DM(1,:));

G.assign = zeros(1,G.states);

G.span=length(DM(:,1));

% obtain the IMLR data

tic;

tind = (1: length(DM(:,1)))’;

for i = 1 :length(DM(1,:))

full(i).number = i;

full(i).state = fullnames(i,:);

full(i).price = PM(:,i);

full(i).demand = DM(:,i);

[b,bint ,r,rint ,stats]= regress(full(i).price , [ones(tind(end) ,1),tind , tind .^2,(

full(i).demand).^-1,( (full(i).demand).^-1).*tind ,(tind .^2) .*( full(i).demand)

.^-1]);

full(i).sr_b = b;

full(i).sr_sign =(~(~ all (bint ’ < 0) ’.*~all (bint ’ > 0) ’).*~ all(abs(bint ’)

<0.001)’ )’;

full(i).sr_bint = bint;

full(i).sr_R = stats (1);

full(i).sr_F = stats (2);

full(i).sr_p = stats (3);

full(i).sr_err = stats (4);

full(i).sr_r = r;

full(i).sr_pest = [ones(tind(end) ,1),tind , tind .^2,( full(i).demand).^-1,( (full(

i).demand).^-1).*tind ,(tind .^2) .*( full(i).demand).^ -1]*b;

end

clear DM PM
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%record the IMLR time

G.sr_time= toc;

tic;

%begin the group regression

%select the initial groups

act =(1:G.states);

%begin iterations

best_iter_R=-inf;

for k=1: Iter %main iteration that repeats the heuristic process time and again

%begin the group regression

%select the initial groups

act =(1:G.states); %all states are initially active

clear C

G.groups=Min_g;

G.assign = zeros(1,G.states);

G.avrR = 0;

%chose the iniital group leaders , either accroding to the argument provided , or

according to a random vector

if isempty(start_vector)

start_vector = selectrand (1:52 , Min_g);

end

%assign the leaders ’ data to the groups

for i = 1:Min_g

a=start_vector(i);

G.assign(a) = i;

C(i).x=[full(a).demand ];

C(i).y=[full(a).price];

C(i).list=[a];

C(i).members = full(a).state;

C(i).size = 1;

C(i).R=full(a).sr_R;

C(i).b=full(a).sr_b;

C(i).bint=full(a).sr_bint;

C(i).r=full(a).sr_r;

C(i).F=full(a).sr_F;

C(i).p=full(a).sr_p;

C(i).err=full(a).sr_err;

C(i).sign=full(a).sr_sign;

C(i).pest=full(a).sr_pest;

end

act(start_vector) = [];

%Pick a new group member and enlist it into some group , one at the time

while length(act) >0

%select a new group member

a= ceil(length(act)*rand (1));

%chose which group will have the least R^2 if the new member is enlisted into

it

best_r=-inf; %the best R value so far

R= repmat(0,1,G.groups); %the value for the group regression
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R_indiv = repmat(0,1,G.groups); %the value for the new individual entering

a group

for i=1:G.groups

tind=repmat ((1: length(full(act(a)).demand))’, C(i).size+1, 1);

unique =[];

for ki=1: C(i).size+1

unique = blkdiag(unique ,ones(G.span ,1));

end

regressor = [unique ,tind , tind .^2,([C(i).x;full(act(a)).demand ]).^-1,( ([

C(i).x;full(act(a)).demand ]).^-1).*tind ,(tind .^2) .*([C(i).x;full(act(

a)).demand ]).^-1];

independent = [C(i).y;full(act(a)).price];

sample = sort(selectrand (1: length(independent), sample_size *(C(i).size +1)

));

[b,bint ,r,rint ,stats] = regress(independent(sample), regressor(sample , :)

);

R(i)= stats (1);

tind1 =(1: length(full(act(a)).demand)) ’;

pest2 = [unique ,tind , tind .^2 ,([C(i).x;full(act(a)).demand ]).^-1,( ([C(i

).x;full(act(a)).demand ]).^-1).*tind ,(tind .^2) .*([C(i).x;full(act(a))

.demand ]).^ -1];

pest2 = pest2(end -length(tind1)+1:end ,:)*b;

R_indiv(i)= 1 - sum( ( full(act(a)).price - pest2 ).^2 ) /

sum((full(act(a)).price - mean(full(act(a)).price)).^2) ;

% plot ([ independent , regressor*b]) % uncomment if you want plots

%A weight of 0 means that only group -R^2 are considered , whereas a Weight

value of 1 means that only individual -R^2 are considered to evaluate

the groups

if (1 - Weight)*R(i) + Weight * R_indiv(i) > best_r

cind = i;

best_r = (1 - Weight)*R(i) + Weight * R_indiv(i);

b1=b;

bint1=bint;

r1=r;

stats1=stats;

end

regressor = [];

independent =[];

end

% determine if the R^2 is bad enough to have its own group

if(best_r <Threshold) && (G.groups <Max_g)

G.groups = G.groups +1;

cind = G.groups;

C(cind).x=[full(act(a)).demand ];

C(cind).y=[full(act(a)).price ];

C(cind).R=full(act(a)).sr_R;

C(cind).list = [act(a)];

C(cind).size = 1;

C(cind).members = full(act(a)).state;
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C(cind).b = full(act(a)).sr_b;

C(cind).bint = full(act(a)).sr_bint;

C(cind).r = full(act(a)).sr_r;

C(cind).F=full(act(a)).sr_F;

C(cind).p = full(act(a)).sr_p;

C(cind).err = full(act(a)).sr_err;

C(cind).sign = full(act(a)).sr_sign;

tind1 =(1: length(C(cind).y)) ’;

unique =[];

for ki=1: C(cind).size

unique = blkdiag(unique ,ones(G.span ,1));

end

C(cind).pest = [unique ,tind1 , tind1 .^2,(C(cind).x).^-1,( (C(cind).x)

.^-1).*tind1 ,( tind1 .^2) .*(C(cind).x).^ -1]*C(cind).b;

else

%Update the group ’s R value and variables

C(cind).x=[C(cind).x; full(act(a)).demand ];

C(cind).y=[C(cind).y; full(act(a)).price ];

C(cind).R=best_r;

C(cind).size = C(cind).size +1;

C(cind).list = [C(cind).list ,act(a)];

C(cind).members = [C(cind).members;full(act(a)).state ];

C(cind).b =b1;

C(cind).bint = bint1;

C(cind).r = r1;

C(cind).R=stats1 (1);

C(cind).F=stats1 (2);

C(cind).p=stats1 (3);

C(cind).err=stats1 (4);

C(cind).sign = (~(~ all (bint1 ’ < 0) ’.*~all (bint1 ’ > 0) ’).*~ all(abs(

bint1 ’) <0.001)’ ) ’;

tind1=repmat ((1: length(full(act(a)).demand))’, C(cind).size , 1);

unique =[];

for ki=1: C(cind).size

unique = blkdiag(unique ,ones(G.span ,1));

end

C(cind).pest = [unique ,tind1 , tind1 .^2,(C(cind).x).^-1,( (C(cind).x)

.^-1).*tind1 ,( tind1 .^2) .*(C(cind).x).^ -1]*C(cind).b;

end

plot([C(cind).y,C(cind).pest]);

%Assign the group to the state

full(act(a)).hr_group = cind;

%Make the assignments and updeta the list

G.assign(act(a))=cind;

act(a)=[];

end

%determine the best iteration ;

cum_R = 0;

for(i=1:G.groups)
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cum_R = cum_R + C(i).R;

end

if cum_R > best_iter_R

best_iter_R = cum_R;

C1=C;

G1=G;

G1.avrR = best_iter_R/G1.groups;

end

end

%Assign the latest values to the states.

for i=1 : G1.groups

for j=1: length(C1(i).list)

ind = C1(i).list(j);

full(ind).hr_b = [C1(i).b(j); C1(i).b(end -4: end)];

full(ind).hr_bint = C1(i).bint;

full(ind).hr_r = C1(i).r;

full(ind).hr_R = C1(i).R;

full(ind).hr_group = i;

full(ind).hr_F=C1(i).F;

full(ind).hr_p = C1(i).p;

full(ind).hr_err = C1(i).err;

full(ind).hr_sign = C1(i).sign;

tind1=repmat ((1: length(full(ind).demand))’, C1(i).size , 1);

unique=ones(G.span ,1);

for ki=1: C1(i).size -1

unique = blkdiag(unique ,ones(G.span ,1));

end

pest2 = [unique ,tind1 , tind1 .^2,(C1(i).x).^-1,( (C1(i).x).^-1).*tind1 ,(

tind1 .^2) .*(C1(i).x).^-1];

if length(pest2)==0

display(’ERROR ’);

end

full(ind).hr_pest = pest2( (j-1)*G.span +1 : j*(G.span) ,:)*C1(i).b;

end

end

%measure the heuristic time

G1.hr_time=toc;

tic;
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