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Synonyms

Indices

i = orders
j = product-stock tanks
s = products
k = components
l = component tanks
n = event points

Sets

I = orders
Ij = orders which can be performed in product-stock

tank j
Is = orders which order product s
J = product-stock tanks
Ji = product-stock tanks which are suitable for per-

forming order i
Js = product-stock tanks which can store product s
N = event points within the time horizon
S = products
Sj = products which can be stored in product-stock

tank j
K = components
Kl = components which can be stored in component-

stock tank l
L = component stock tanks
Lk = component-stock tanks which can store compo-

nent k

Parameters

Vmax(j) = maximum capacity of product-stock
tank j

Vmin(j) = minimum amount of product stored in
tank j if tank j is utilized
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Vinitial(j,s) = amount of product s stored in tank j
initially

Vin(l,k) = amount of component k stored in com-
ponent tank l initially

Vcomp(l) = maximum capacity of component
tank l

Recipe(s,k) = the proportion of component k to in
product s

l(i) = lifting rate of order i
Bflow = flow rate of product being produced

and transferred to product-stock tanks
Prod_srt(i) = time by which order i can start
Prod_end(i) = time by which order i is due
U1 = lower bound on the amount of product

lifted
U2 = upper bound on the amount of product

lifted
U3 = upper bound of a small-sized order
U4 = upper bound of a medium-sized order
U5 = lower bound of a large-sized order
flowmin = minimum flow rate of component

tanks
flowmax = maximum flow rate of component

tanks
H = time horizon

Variables

uv(i,j,n) = binary variables that assign the be-
ginning of order i in tank j at event
point n

y(s,j,n) = binary variables that assign product s
being stored in tank j at event point n

sv(s,j,n) = binary variables that assign product s
being produced and transferred to
tank j at event point n

xv(s,n) = 0-1 continuous variables that assign
product s being produced at event
point n

yv(k,l,n) = binary variables that assign compo-
nent k being extracted from compo-
nent-stock tank l at event point n

Ts(i,j,n) = starting time of order i in tank j at
event point n

Te(i,j,n) = finishing time of order i in tank j
while it starts at event point n

lift(i,j,n) = amount of product being lifted for
order i from tank j at event point n

Pst(s,j,n) = amount of product s in tank j at event
point n before new product is trans-
ferred from the blender

Tbs(s,j,n) = starting time of product s being pro-
duced and transferred to product-
stock tank j at event point n

Tbf(s,j,n) = finishing time of product s being pro-
duced and transferred to product-
stock tank j at event point n

Blnd(s,j,n) = amount of product s being trans-
ferred from blender to tank j at event
point n

comp(k,l,n) = amount of component k being trans-
ferred to the blender at event point n

bc(k,l,n) = amount of component k in compo-
nent tank l at event point n

cracking(k,l,n) = amount of component k being trans-
ferred from separation units to com-
ponent tank l at event point n

Introduction

Gasoline blending is a crucial step in refinery opera-
tion as gasoline can yield 60–70% of a refinery’s profit.
The process involves mixing various stocks, which are
the intermediate products from the refinery, along with
some additives, such as antioxidants and corrosion in-
hibitors, to produce blends with certain qualities [1].
In the past few decades, a substantial amount of work
has been dedicated to process operations [3,4,7,8,9].
A variety of support systems have been developed to
address planning and scheduling of blending opera-
tions. StarBlend [13], for example, which is developed
by Texaco, uses a multiperiod blending model written
in GAMS that facilitates the incorporation of future re-
quirements into current blending decisions. Glismann
and Gruhn [5,6] proposed amixed-integer linear model
(MILP), which is based on a resource-task network rep-
resentation, to solve the task of short-term scheduling
of blending processes. The recipe optimization prob-
lem is then formulated as a nonlinear program and the
results are returned to the scheduling problem, so that
an overall optimization can be achieved. A fuzzy lin-
ear formulation was applied to the blending facilities
by Djukanovic et al. [2], in order to address the prob-
lem of uncertainty of input information within the fuel
scheduling optimization. Singh et al. [14] addressed the
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 1
Graphic overview of the gasoline blending and distribution system

problem of blending optimization for in-line blending
for the case of stochastic disturbances in feedstock qual-
ities. They presented a real-time optimization method
that can provide significantly improved profitability.

The objective of this work is to propose a newmath-
ematical model that addresses the simultaneous opti-
mization of the short-term scheduling problem of gaso-
line blending and distribution as described in the fol-
lowing section.

Definition
The overall oil-refinery system is decomposed into
three parts as depicted in Fig. 1. The first part (prob-
lem 1, Fig. 1) involves the crude-oil unloading, mix-
ing and inventory control (Jia et al. [10]), the second
part (problem 2, Fig. 1) consists of the production unit
scheduling, which includes both fractionation and re-
action processes, and the third part (problem 3, Fig. 1),
which is addressed in this work, depicts the finished
product blending and shipping end of the refinery.
The gasoline blending system consists of four pieces
of equipment all linked together through various pip-

ing segments, flow meters and valves. They are com-
ponent-stock tanks, blend header, product-stock tanks
and lifting ports. Components from the component-
stock tanks are fed to the blend header according to the
recipes. Thus, different products can be produced and
then stored in their suitable product-stock tanks. The
final step is to lift those products during the specified
time periods in order to satisfy all the orders. The ob-
jective is to determine the following variables: (1) start-
ing and finishing time of orders taking place in each
product-stock tank; (2) the amount and type of product
being lifted for each order from tanks; (3) starting and
finishing times of the product being transferred from
the blender to the tanks; (4) the amount and type of
component being transferred from component tanks to
the blender, so as to process all the orders in specific
time periods.

The scheduling problem as described above is mod-
eled in the next section following a continuous-time
representation. It gives rise to an MILP formulation
that can be efficiently solved using commercially avail-
able solvers.
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Formulation

It is assumed that perfect mixing is achieved at the
blend header and that the changeover time between dif-
ferent products in the storage tanks is negligible.

Material Balance Constraints
for Product-Stock Tank j

Constraint (1a) expresses that the amount of product s
in tank j at event point n+1 (Pst(s,j,n+1)) is equal to
that at event point n adjusted by any amounts trans-
ferred from the blender (Blnd(s,j,n)) or lifted at event
point n (

P
i2Is lift(i; j; n)). Constraint (1b) states that

the amount of product s being lifted from tank j at the
last event point N should not exceed the amount of
product s stored in tank j.

Pst(s; j; n C 1) D Pst(s; j; n)C Blnd(s; j; n)

�
X
i2Is

lift(i; j; n); 8s 2 S; j 2 Js ; n 2 N; n ¤ N

(1a)

Pst(s; j; n)C Blnd(s; j; n) �
X
i2Is

lift(i; j; n) ;

8s 2 S; j 2 Js ; n D N (1b)

Capacity Constraints

Constraint (2) imposes a volume capacity limitation of
product s in tank j at event point n.

Vmin( j) 
 y(s; j; n) � Pst(s; j; n)C Blnd(s; j; n)

� Vmax( j) 
 y(s; j; n) ; 8s 2 S; j 2 Js ; n 2 N
(2)

Allocation Constraints

According to constraint (3a), uv(i,j,n) is equal to 1 if
the amount of product being lifted from tank j for or-
der i is not zero at event point n, that is, lift(i; j; n) ¤ 0;
uv(i,j,n) equals 0 otherwise. U1 and U2 correspond
to lower and upper bounds on the amount of prod-
uct lifted, respectively, and are chosen according to
the smallest order and the maximum capacities of the
tanks.

U1 
 uv(i; j; n) � lift(i; j; n) � U2 
 uv(i; j; n) ;

8i 2 I; j 2 Ji ; n 2 N (3a)

To avoid task splitting, constraints (3b)–(3d) state that
order i should be processed only once if it is a small
order and at most twice if it is a medium-sized order.
Otherwise, it can be processed at most three times. For
different problems, U3 and U4 are chosen accordingly
to define small and medium-sized orders. Constraint
(3e) expresses that for large orders which are defined as
greater than or equal to U5, the minimum order split-
ting is 25Mbbl.

X
n

X
j2J i

uv(i; j; n) D 1 ;

8
X
s

Prod_ord(i; s) � U3; i 2 I; n 2 N (3b)

X
n

X
j2J i

uv(i; j; n) � 2 ;

8
X
s

Prod_ord(i; s) � U4; i 2 I; n 2 N (3c)

X
n

X
j2J i

uv(i; j; n) � 3 ;8i 2 I; n 2 N (3d)

25 
 uv(i; j; n) � lift(i; j; n) ;

8
X
s

Prod_ord(i; s) � U5; i 2 I; j 2 Ji ; n 2 N

(3e)

Constraint (4) forces sv(s,j,n) to be equal to 1 when
Blnd(s,j,n) is not zero; otherwise sv(s,j,n) equals 0.

Vmin( j) 
 sv(s; j; n) � Blnd(s; j; n)

� Vmax( j) 
 sv(s; j; n) ; 8s 2 S; j 2 Js ; n 2 N
(4)

Demand Constraints

Constraints (5a) and (5b) state that order i can be pro-
cessed at most once in one tank during the time hori-
zon under consideration and that the amount of prod-
uct being lifted from all the product-stock tanks should
be equal to the amount ordered (

P
s Prod_ord(i; s)).

X
n

uv(i; j; n) � 1 ; 8i 2 I; j 2 Ji ; n 2 N (5a)

X
n

X
j2J i

lift(i; j; n) D
X
s

Prod_ord(i; s) ;

8s 2 S; i 2 I; n 2 N (5b)
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Sequence Constraints
Constraints (6a)–(6c) state that order i starting in tank j
at event point n+1 should start after the finishing time
of the same order processed in the same tank which has
started at event point n. Constraints (6d) and (6e) ex-
press that order i should start and finish during the spe-
cific time period based on the order requirement. These
constraints are relaxed if uv(i,j,n) is zero, which means
order i is not executed in tank j at event point n.

Ts(i; j; n C 1) � Te(i; j; n) � H 
 (1 � uv(i; j; n)) ;

8 i 2 I j; j 2 J; n 2 N; n ¤ N (6a)

Ts(i; j; n C 1) � Ts(i; j; n) ;

8i 2 I j; j 2 J; n 2 N; n ¤ N (6b)

Te(i; j; n C 1) � Te(i; j; n) ;

8i 2 I j; j 2 J; n 2 N; n ¤ N (6c)

Ts(i; j; n) � Prod_srt(i) 
 uv(i; j; n) ;

8i 2 I j; j 2 J; n 2 N (6d)

Te(i; j; n) � Prod_end(i)C H 
 (1 � uv(i; j; n)) ;
8i 2 I j; j 2 J; n 2 N (6e)

Duration Constraints
If order i is processed in tank j at event point n, that
is, uv(i; j; n) D 1, then both ends of constraint (7a) are
equal, so the duration is given by lift(i; j; n)/l(i), where
l(i) is the lifting rate of order i. If uv(i; j; n) D 0, then
the duration is zero according to constraint (7b).

lift(i; j; n) �
P

s Prod_ord(i; s) 
 (1 � uv(i; j; n))
l(i)

� Te(i; j; n) � Ts(i; j; n) �
lift(i; j; n)

l(i)
;

8i 2 I j; j 2 J; n 2 N (7a)

Te(i; j; n) � Ts(i; j; n)

�

P
s2S j

Prod_ord(i; s) 
 uv(i; j; n)

l(i)
;

8i 2 I j ; j 2 J; n 2 N (7b)

Blending Stage Consideration

The consideration of the blending stage requires the in-
corporation of the constraints described in the follow-
ing constraints.

Material Balance Constraints for the Blender

To avoid the introduction of bilinear terms in the mass-
balance equations and to keep the model linear, the
idea of component mixing used by Quesada and Gross-
mann [12] together with the assumption of constant
production recipe is used. On the basis of these assump-
tions, constraint (8) is introduced to express that the re-
quired amount of component k to produce product s at
event point n (

P
s(Recipe(s; k) 


P
j2Js Blnd(s; j; n)))

should be equal to the total amount of component k
being transferred from all the component tanks at that
event point (

P
l2Lk

comp(k; l ; n)).

X
s

(Recipe(s; k) 

X
j2Js

Blnd(s; j; n))

D
X
l2Lk

comp(k; l ; n) ; 8s 2 S; k 2 K; n 2 N

(8)

Material Balance Constraints for Component Tank l

The amount of component k in tank l at event point n+1
(bc(k,l,n+1)) is equal to that at event point n (bc(k,l,n))
adjusted by any amounts transferred from separation
units (cracking(k,l,n)) or delivered to the blender at
event point n(comp(k; l ; n)). This relation is expressed
by constraint (9a). Constraint (9b) imposes the upper
and the lower bounds on the flow rates of component k
transferred from tank l to the blender.

bc(k; l ; nC 1) D bc(k; l ; n)C cracking(k; l ; n)

� comp(k; l ; n);8k 2 Kl ; n 2 N (9a)

flowmin 
 yv(k; l ; n) � comp(k; l ; n)

� flowmax 
 yv(k; l ; n) ;
8k 2 K; l 2 Lk ; n 2 N (9b)

Allocation Constraints for Product-Stock Tank j

Constraint (10) states that product s cannot be trans-
ferred to product-stock tank j and distributed at the
same event point n.
X
s2S j

sv(s; j; n)Cuv(i; j; n) � 1; 8i 2 I j; j 2 J; n 2 N

(10)
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Gasoline Blending and Distribution Scheduling: An MILP Model, Table 1
Distribution data for an example with ten orders

Order o1 o2 o3 o4 o5 o6 o7 o8 o9 o10

Product and amount (Mbbl) N411 W43 W43 N411 W43 N411 W43 N4132 W43 N5175
Time by which an order can start (hr) 0 0 24 24 48 48 96 118 144 150.5
Due date (hr) 24 24 48 48 72 72 120 190 168 185.5
Lifting rate (Mbbl/hr) 50 50 50 50 50 50 50 8 50 5

Time horizon
(hr)

192

Product-stock
tank

pt1 pt2 pt3 pt4 pt5 pt6 pt7 pt8 pt9 pt10 pt11

Products that
can be stored

E4W4 E4W4 E4W4 W4 E4N5 E4W4 E4W4 N4N5 N4N5 N4N5 N4N5 N4N5

Initial product
and amount
(Mbbl)

E490.20 – W414.08 N587.51 W428.49 W457.59 N413.79 N412.36 N523.96 N485.11 N412.36

Maximum
capacity (Mbbl)

92 92 94 91 92 84 94 92 92 91 82

Minimum
capacity (Mbbl)

0.92 0.92 0.94 0.91 0.92 0.84 0.94 092 0.92 0.91 0.82

Allocation Constraints for Blender

According to constraint (11a), xv(s,n) equals 1 if prod-
uct s is produced and transferred to at least one tank
at event point n, whereas xv(s,n) equals 0 if product s
is not transferred to any of the tanks at event point n.
Constraint (11b) expresses that only one product can
be produced in the blender at the same event point n.

sv(s; j; n) � xv(s; n) �
X
j2Js

sv(s; j; n) ;

8s 2 S; n 2 N (11a)

X
s

xv(s; n) � 1 ; 8s 2 S; n 2 N (11b)

Sequence Constraints

Similar to constraints (6a)–(6c), constraints (12a)–
(12c) state that product s should start being transferred
to tank j at event point (n+1) after the finishing time for
the same product transferred to the same tank which
started at event point n, whereas constraints (12d) and
(12e) represent the requirement of all the transfers to

happen within the time horizon H.

Tbs(s; j; nC1) � Tbe(s; j; n)�H 
 (1� sv(s; j; n)) ;

8s 2 Sj ; j 2 J; n 2 N; n ¤ N (12a)

Tbs(s; j; n C 1) � Tbs(s; j; n) ;
8s 2 Sj; j 2 J; n 2 N; n ¤ N (12b)

Tbe(s; j; n C 1) � Tbe(s; j; n) ;

8s 2 Sj; j 2 J; n 2 N; n ¤ N (12c)

Tbs(s; j; n) � H ; 8s 2 Sj; j 2 J; n 2 N (12d)

Tbe(s; j; n) � H ; 8s 2 Sj; j 2 J; n 2 N (12e)

If the blender provides product s for more than one
product-stock tank at event point n, then the starting
and finishing times for all the tanks should be the same.

Tbs(s; j; n)C H 
 (1 � sv(s; j; n))

� Tbs(s; j0; n) � H 
 (1 � sv(s; j0; n)) ;

8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13a)
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Gasoline Blending and Distribution Scheduling: An MILPModel, Table 2
Blending data for an example with ten orders

Component A C7 C6 M C4 C5 CR AR CG

Tanks that can be
stored in

ct10 ct9 ct8 ct53,54
ct15,52

ct51 ct57,58
ct60

ct4 ct13 ct55 ct11 ct7,12,17
ct56,59

Recipe of
products

N4 0 0.0767 0 0 0.14 0.2742 0.4018 0 0.1073
N5 0 0 0.0419 0 0.0121 0.5178 0 0.0443 0.384
E4 0 0 0 0 0.2729 0 0.3897 0 0.3078
W4 0.6527 0 0 0 0.1591 0 0.1882 0 0

Amount of
component (Mbbl)
and tank that it is
and initially stored
in

26.46 ct10 67.90 ct9 59.44 ct8 7.30 ct15
5.75 ct52
3.10 ct53
28.29 ct54

0.59 ct51 0.29 ct57
8.90 ct58
1.64 ct60

19.35 ct13
27.38 ct4

13.84 ct55
25.63 ct11

4.25 ct59
53.41 ct56
49.34 ct51
34.58 ct7

Blending rate
(Mbbl/hr)

50

Tbs(s; j; n) � H 
 (1 � sv(s; j; n))

� Tbs(s; j0; n)C H 
 (1 � sv(s; j0; n)) ;

8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13b)

Tbe(s; j; n)C H 
 (1 � sv(s; j; n))

� Tbe(s; j0; n) � H 
 (1 � sv(s; j0; n)) ;
8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13c)

Tbe(s; j; n) � H 
 (1 � sv(s; j; n))

� Tbe(s; j0; n)C H 
 (1 � sv(s; j0; n)) ;

8s 2 S; j 2 Js ; j0 2 Js ; j ¤ j0; n 2 N (13d)

Constraints (14a) and (14b) express that product
transfer and distribution should be performed consec-
utively in the same product-stock tank j.

Ts(i; j; nC 1) � Tbe(s; j; n) � H 
 (1� sv(s; j; n)) ;

8i 2 I j; s 2 S j; j 2 J; n 2 N; n ¤ N (14a)

Tbs(s; j; nC 1) � Te(i; j; n)�H 
 (1� uv(i; j; n)) ;

8i 2 I j; s 2 S j; j 2 J; n 2 N; n ¤ N (14b)

According to constraint (15), two different prod-
ucts s and s0 being transferred to the same or differ-
ent product-stock tanks have to be transferred consec-
utively according to the allocation constraint for the

blender.

Tbs(s; j; nC1) � Tbe(s0; j0; n)�H
 (1� sv(s0; j0; n)) ;

8s 2 Sj ; s0 2 Sj; s ¤ s0; j 2 J; j0 2 J; n 2 N; n ¤ N
(15)

Duration Constraints

The minimum run length of 6h is imposed on the
blender by constraint (16a):

X
j2Js

Blnd(s; j; n) � 6
Bflow ; 8s 2 S; n 2 N (16a)

Constraint (16b) defines the duration of product s being
transferred to the tanks at event point n as the difference
between the finishing time (Tbe(s; j; n)) and the start-
ing time (Tbs(s; j; n)), if it takes place in tank j. Con-
straint (16c) expresses that the duration of transferring
product s from the blender to tank j corresponds to the
amount of product s being transferred divided by the
flow rate. The purpose of having an artificial variable
(arti(s; n)) is to find a feasible solution in case a larger
flow rate is required.

(Tbe(s; j; n) � Tbs(s; j; n)) � H 
 (1 � sv(s; j; n))
� duration(s; n)

� (Tbe(s; j; n)�Tbs(s; j; n))CH
 (1� sv(s; j; n)) ;

8s 2 Sj ; j 2 J; n 2 N (16b)
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Gasoline Blending and Distribution Scheduling: An MILP Model, Figure 2
Gantt chart for the example with ten orders
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 3
Gantt chart for the example with 16 orders
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Gasoline Blending and Distribution Scheduling: An MILP Model, Figure 4
Gantt chart for the example with 23 orders
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 5
Gantt chart for the example with 30 orders
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Gasoline Blending and Distribution Scheduling: An MILP Model, Figure 6
Gantt chart for the example with 37 orders
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Gasoline Blending and Distribution Scheduling: An MILPModel, Figure 7
Gantt chart for the example with 45 orders
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Gasoline Blending and Distribution Scheduling: An MILP Model, Table 3
Computational results for the blending and distribution system

Orders
Contin-
uous
variables

0-1
variables

Con-
straints

1st integer solution 2nd integer solution Optimal solution

Nodes Itera-
tions

CPU
time (s)

Objec-
tive
value

Nodes Itera-
tions

Objec-
tive
value

Nodes Itera-
tions

CPU
time (s)

10 1706 420 7130 21 1495 6.15 0 N/A N/A N/A 21 1495 6.15
16 4205 1032 18737 20 3614 29.03 0 N/A N/A N/A 20 3614 29.03

23 5974 1470 26746 40 13474 210.24 0 N/A N/A N/A 40 13474 210.24
30 9056 2232 40793 80 24906 627.13 0 N/A N/A N/A 80 24906 627.13
37 13955 3444 63308 828 177746 4081.49 4.934 1338 244258 0.793 1353 246176 5016.51
45 25454 6289 116452 361 194954 7406.48 6.645 4138 838195 5.094 4280 874051 20351.18

duration(s; n) D

P
s2S j

Blnd(s; j; n)

Bflow
� arti(s; n) ;

8s 2 Sj ; j 2 J; n 2 N (16c)

Objective Function

The objective of the scheduling problem is to minimize
the sum of artificial variables in the duration constraints
on the blender so as to determine a feasible solution
with a flow rate as close to Bflow as possible. The for-
mulation, however, is general to accommodate different
objective functions targeting the optimization of pro-
duction. However, in most realistic cases [11] the ob-
jective of this stage of refinery operation is to satisfy all
the orders without any delays.

objective D
X
s

X
n

arti(s; n) ; 8s 2 S; n 2 N (17)

Case

The case study considered here is based on realistic data
provided by Honeywell Hi-Spec Solutions. The distri-
bution problem consists of 45 orders of four different
products that are stored in 11 product-stock tanks. The
incorporation of the blending stage adds the consid-
eration of nine components and 20 component tanks.
Smaller-scale instances of the problem are constructed
to test the proposed formulation involving the consid-
eration of 10, 16, 23, 30, and 37 orders. The detailed
data for the case often orders are presented in Tables 1
and 2. GAMS/CPLEX 7.0 was used for the solution
of the resulting MILP formulation. The computational
characteristics of the models are tabulated in Table 3.

The optimal solution with zero integrality gap as well as
the first and second integer solutions are shown. Note
that since the objective corresponds to the summation
of artificial variables used to relax the flow-rate con-
straints, if a solution has a nonzero objective this in-
dicates that one of these constraints has been violated
at the cost of the objective function. For the case study
examined, however, as shown in Table 3, even the full-
scale problem involving 45 orders converged to a fea-
sible solution requiring 4280 nodes in approximately
5h CPU time which is a reasonable time for the solu-
tion of the integrated scheduling of blending and dis-
tribution problem with a time horizon of 8 days. The
resulting Gantt–charts of the six cases examined are
shown in Figs. 2–7. Compared with the commonly used
Gantt chart for scheduling purposes, the difference here
is that the number below the line corresponds to the or-
der number, whereas the number above the line corre-
sponds to the amount of product lifted from this partic-
ular tank. Note that different orders can be performed
in the same tank at the same time as shown in Figs. 3–7.

Conclusions

In this work, a continuous-time formulation was pre-
sented for the short-term scheduling of a gasoline
blending and distribution system. It was shown that the
resulting model can be solved efficiently even for real-
istic large-scale problems. The main advantage of the
proposed approach is the full utilization of the time
continuity. This results in smaller models in terms of
variables and constraints since only the real events have
to be modeled.
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C.F. Gauss (1777–1855) worked in a wide variety of
fields in both mathematics and physics including num-
ber theory, group theory, analysis, differential geom-
etry, geodesy, magnetism, astronomy, and optics. His
work has had an immense influence in many areas.

In 1788, Gauss began his education at the Gymna-
sium with the help of L. Büttner and R. Bartels, where
he learned High German and Latin. After receiving
a stipend from the Duke of Brunswick–Wolfenbüttel,
Gauss entered Brunswick Collegium Carolinum in
1792. At the academy, Gauss independently discovered
Bode’s law, the binomial theorem and the arithmetic-
geometric mean, as well as the law of quadratic reci-
procity and the prime number theorem [1,4].

Gauss left Göttingen in 1798 without a diploma,
but by this time he had made one of his most impor-
tant discoveries: the construction of a regular 17-gon by
ruler and compasses [2,3]. This was the most major ad-
vance in this field since the time of Greek mathematics
and was published in his famous work ‘Disquisitiones
Arithmeticae’ [1, Sect. VII].

On July 16, 1799, in his absence, he was awarded his
Doctor of Philosophy degree at the university in Helm-
stedt. His dissertation is a proof of the fundamental the-
orem of algebra (FTA) [2,3]. The fundamental theorem
of algebra states that

Theorem 1 Every polynomial equation of degree n has
n roots in the complex numbers.

Gauss is usually credited with the first proof of the FTA.
He is undoubtedly the first to spot the fundamental flaw
in earlier proofs, namely the fact that they were assum-
ing the existence of roots and then trying to deduce
properties of them. His proof of 1799 is topological in
nature and has some rather serious gaps. It does not
meet our present-day standards required for a rigor-
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ous proof. He published the book ‘Disquisitiones Arith-
meticae’ in the summer of 1801. There were seven sec-
tions, all but the last section, referred to above, being
devoted to number theory.

In 1814, the Swiss accountant J.R. Argand published
a proof of the FTA which may be the simplest of all the
proofs. His proof is based on d’Alembert’s idea in 1746.
Argand simplifies d’Alembert’s idea using a general the-
orem on the existence of a minimum of a continuous
function.

Two years after Argand’s proof appeared Gauss
published in 1816 a second proof of the FTA. Gauss
uses Euler’s approach but instead of operating with
roots which may not exist, Gauss operates with inde-
terminates. This proof is complete and correct. A third
proof by Gauss also in 1816 is, like the first, topological
in nature. Gauss introduced in 1831 the term ‘complex
number’.

In 1849 Gauss produced the first proof that a poly-
nomial equation of degree n with complex coefficients
has n complex roots. The proof is similar to the first
proof given by Gauss. However it adds little since it is
straightforward to deduce the result for complex coeffi-
cients from the result about polynomials with real coef-
ficients.

It is worth noting that despite Gauss’s insistence
that one could not assume the existence of roots which
were then to be proved reals he did believe, as did every-
one at that time, that there existed a whole hierarchy of
imaginary quantities of which complex numbers were
the simplest. Gauss called them a shadow of shadows.

The different proofs of the FTA are Gauss’s most
important contributions as a rigorist, that is to say,
as a representative of logical strictness in method of
proof [1]. Since this theorem has great significance in
both algebra and function theory, it influenced many
other related areas, including mathematical optimiza-
tion.

Gauss used infinite sequences and series in his
daily work, not only in mathematics but in astronomy,
geodesy, and physics. As an eleven-year-old, Gauss was
already studying Newton’s binomial theorem, which
includes the infinite geometric series as a special case.
He investigated the conditions under which an infinite
binomial series has a logical meaning. He also thought
about the theoretical formulation of the notion of lim-
iting value [3]. In an unfinished article written around

1800, ‘Fundamental concepts in the principles of series’,
he formulated the notion of the limit of a sequence in a
fashion far ahead of the times.

Gauss introduced there the notions of upper bound
and least upper bound G; he also introduced the no-
tions of lower bound and greatest lower bound g. Fur-
thermore he introduced the ‘final upper bound’ H and
the ‘final lower bound’ h. If H = h, then their common
value was called the absolute limit (limiting value) of the
sequence. His definitions nearly agree with the present-
day definitions of upper bound G, lower bound g, limit
superiorH, limit inferior h, and the condition H = h for
the existence of the limiting value [3,4].

Gauss’s great interest in astronomy, and his later
interest in geodesy, compelled him to seek a ratio-
nal method for determining the magnitude of obser-
vational errors. In turn, the theory of observational er-
rors forced him to deal with the modes of thought and
concepts of the calculus of probabilities. This work had
great significance in the development of numerous ar-
eas in both the calculus of probabilities and mathe-
matical statistics. Furthermore this theory forced re-
searchers to make clear the conditions under which the
law of the normal distribution is applicable. This law is
often called Gauss’s distribution law.

In 1823 Gauss published his great work ‘Theoria
combinationis observationum erroribus minimus ob-
noxiae’ (‘A theory for the combination of observations,
which is connected with least possible error’). It is a
systematic and generalized presentation of his earlier
theory of observational errors. Here he develops the
method of least squares [3,4] withmathematical rigor as,
in general, the most suitable way of combining observa-
tions, independent of any hypothetical law concerning
the probability of error.

The term ‘determinant’ was first introduced by
Gauss in ‘Disquisitiones Arithmeticae’ (1801) while dis-
cussing quadratic forms [3]. He used the term be-
cause the determinant determines the properties of the
quadratic form. However the concept is not the same as
that of our determinant. In the same work Gauss lays
out the coefficients of his quadratic forms in rectangu-
lar arrays. He describes matrix multiplication (which he
thinks of as composition so he has not yet reached the
concept of matrix algebra) and the inverse of a matrix
in the particular context of the arrays of coefficients of
quadratic forms.
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Gaussian elimination, which first appeared in the
text ‘Nine Chapters of the Mathematical Art’ written in
200 BC, was used by Gauss in his work which studied
the orbit of the asteroid Pallas. Using observations of
Pallas taken between 1803 and 1809, Gauss obtained a
system of six linear equations in six unknowns. Gauss
gave a systematic method for solving such equations
which is precisely Gaussian elimination on the coeffi-
cient matrix [1].

Gauss’s career was marked by distinct periods dur-
ing which he immersed himself first in astronomy, then
in geodesy, and then in physics. Yet he regarded himself
first and last as ‘entirely a mathematician’. More Gauss
was an outstanding example of the few creative thinkers
who were equally at home in both pure mathematics
and applied mathematics. Gauss was always trying to
find new applications of mathematics. He kept many
little notebooks in which he wrote down ideas and sug-
gestions as they occurred to him. Always alert to pos-
sibilities of applying mathematical theories to practical
problems, he foresaw the use of mathematics not only
in science and technology, but also in such fields as eco-
nomics, statistics, finance, and so on.

During his long and active career, Gauss published
a considerable number of books and articles in jour-
nals. But upon his death in 1855, many unpublished ar-
ticles, notes, and manuscripts were found in his desk.
When his complete ‘Collected Works’ were finally pub-
lished later, it had taken a group of German scientists
nearly seventy years to edit his writings. Even today the
name of Gauss occurs throughout mathematics and re-
lated areas over and over again. We have the Gaussian
equations in spherical trigonometry; the hypergeomet-
ric series is also called the Gaussian series; the normal
probability curve is known as the Gaussian curve; Gaus-
sian period is a period of congruent roots in the division
of the circle; addition and subtraction logarithms are
also known as Gaussian logarithm; in higher geometry
we speak of Gauss’s theorem and Gauss curvature; cer-
tain formulas for approximations are known as Gaus-
sian approximation methods.

To appreciate the genius of a man like Gauss we
must also see him in perspective, through the eyes of
his colleagues, his students, his friends, and in terms
of posterity’s verdict. No other mathematician of the
nineteenth century ever received as much acclaim and
recognition as that given to Gauss.
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Least squares optimization appears most often in pa-
rameter estimation problems involving nonlinear mod-
els. In this problem the object is to minimize the
squared distance between an observed and a fitted value
from a model with adjustable parameters. For a single
equation model the formulation becomes

min


S(�) D
nX


D1

�
y
 � f (�; x
)

�2
; (1)

where � are the adjustable model parameters, y
 is the
observed value of the the dependent variable (assumed
to contain error) at the � data point, x
 are the ob-
served values of the independent variables (assumed er-
ror free) at the � data point, and n is the total number
of data points observed.

This is a very common and well studied problem.
As a result many different solution methods exist. In
particular two of the earlier developed methods, New-
ton’s method and the Gauss–Newton approach will be
discussed and the relationship between the two will be
presented.

Newton’s Method

Newton’s method is derived based on a second order
Taylor series expansion of the objective function around
the current ‘guess’ of the solution � i:

Qi (�) D S(�i )C q>(� � �i)

C
1
2
(� � �i )>H(� � �i )

(2)

with

ql D
@S
@�l
D �2

nX

D1

e

@ f

@�l

; (3)

Hl k D
@2S
@�l@�k

D �2
nX


D1

e

@2 f

@�l@�k

C 2
nX

D1

@ f

@�l

@ f

@�k

;

(4)

where e
 = y
 � f
 and f
 = f (x
, �). In order to find
a stationary point of (2) the first order derivatives are
equated to zero:

@Qi

@�
D qi CHi (� � �i) D 0: (5)

IfH is nonsingular, then the solution of (5) for � can be
written as:

� D �i �H�1i qi : (6)

Themethod is implemented in a iterative fashion where
the value of � from (6) is used as the next ‘guess’ of the
solution. The iterations continue until a convergence
criterion is reached. Theoretically this should be based
on the first order derivatives being equal to zero. But
for practically purposes and numerical reasons the cri-
terion is most often based on the change in the param-
eter values. For example:

j�iC1 � �i j

j�i j C �1
� �2; (7)

where �1 and �2 are arbitrary small constants.

Properties of Newton’s Method

Newton’s method has the following properties [11]:
� Converges in one iteration if S(�) is quadratic, as is

the case when the model f (� , x) is linear in the pa-
rameters.

� Requires that both the first and second derivatives of
S(�) are computed.

� Inversion of the Hessian matrix of S(�) is required
at each iteration (O(n3) operation).

� The iteration is undefined when H is singular.
� H is required to be positive definite for the step to

reduce the value of the objective function.
� Outside the neighborhood of the minimum, conver-

gence is not guaranteed.
Many of these properties, especially the requirement of
second derivatives, makes this method impractical for
most physically significant problems.

Gauss–NewtonMethod

The method developed by C.F. Gauss [7] attempts to
overcome some of the drawbacks to the original New-
ton approach. A closer look at (4) shows that for small
errors (e
) the first term in the equation is approxi-
mately zero:

� 2
nX


D1

e

@2 f

@�l@�k

	 0 for e
 � 1: (8)
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Therefore the Hessian matrix Hi can be approximated
as:

Hi 	 H�i D 2
nX

D1

@ f

@�l

@ f

@�k

: (9)

A step in the solution method then takes the form:

�iC1 D �i �H�i
�1qi : (10)

This method can be viewed as linearizing the nonlinear
model, and then solving the resulting linear regression
to determine the starting point for the next iteration [4].
The Gauss–Newton method has the following proper-
ties [12]:
� Only first derivatives of S(�) need to be computed at

each iteration.
� The approximated Hessian matrix H � is intrinsi-

cally positive definite and due to the structure, in-
version is much easier.

� The approximation is exact if the errors e
 tend to
zero at the minimum.

� Outside the neighborhood of the minimum, conver-
gence is not guaranteed.

These properties offer improvements over the Newton
method especially in the computational effort required.

Comparisons Between Newton
and Gauss–NewtonMethod

Various comparisons have been made between these
two methods:
1) If the model fits the data well (i. e., all e
 are small

at the solution), then the Gauss–Newton method of-
ten requires no more iterations than the Newton
method [1].

2) If the model does not fit the data well (i. e., some e

do not tend to zero at the solution), then the Newton
method will require fewer iterations than the Gauss–
Newton, but the computation times will be similar
[6].

Both of these methods are similar in that they fall under
the category of gradient based approaches. In general,
a gradient method is iterative in which the step at each
iteration is defined as:

�iC1 D �i � �iRiqi ; (11)

where qi is defined earlier, �i is the steplength, and
Ri is a matrix which should be positive definite. In

the Newton method Ri is the inverse Hessian H� 1,
while Gauss–Newton uses the approximation H � � 1.
As mentioned earlier, the inverse Hessian is not always
positive definite, while the approximation is, except in
the case that the Jacobian matrix, q, is rank deficient. In
the implementation of both methods, the steplength �i
is taken as 1.

Variable Steplength

One of the obvious extensions of the method involves
a selection of the steplength other than one. At each
iteration, the search direction given by the Gauss–
Newton step is downhill due to the positive definiteness
of the approximate Hessian. But the step does not nec-
essarily result in a reduction of the objective function S,
since overshooting the minimum is possible. Therefore
a steplength � should be chosen such that at least:

S(�iC1) � S(�i ): (12)

One such method can be found in [3]. First define the
function � i(�) as:

�i (�) � S(�i � �Riqi ): (13)

The value of � i(0) is defined as S(� i). An initial value
of �o is chosen and the value of � i(�o) is calculated. If
� i(�o) is greater than� i(0), then obviously this value of
� is not acceptable. Even if the value of � is acceptable,
the following process may still offer an improvement.

The function � i(�) can be approximated by
a quadratic function which matches at � = 0, � = �0,
and the slope at � = 0. The function takes the form:

�i (�) 	 a C b�C c�2 (14)

with the coefficients defined as:

a D �i (0) D S(�i );

b D
d�i

d�

ˇ̌
ˇ̌
�D0
D �q>i Riqi ;

c D
�i (�o) � a � b�o

(�o)2
:

The object is to minimize this approximation over �.
A stationary point occurs at:

�� D
�b
2c
: (15)
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This calculation can be used in an iterative fashion un-
til an acceptable value of � is found which reduces the
objective function. Reference [3] contains a detailed im-
plementation of this iterative calculation.

Gauss–Newton Example

This example of the Gauss–Newton approach with
a variable steplength is found in [3]. This example con-
sists of a two parameter single equation model of the
form:

y D exp
�
��1x1 exp

�
�
�2

x2

�	
: (16)

The parameters, � , represent the Arrhenius constants
for a first order irreversible reaction:

A
k
! B

with x1 representing the reaction time, x2 the reaction
temperature, and y the fraction of A remaining. The
data for the example can be found in the table below.

� x1(hr) x2(K) y
1 0:10 100 0:980
2 0:20 100 0:983
3 0:30 100 0:955
4 0:40 100 0:979
5 0:50 100 0:993
6 0:05 200 0:626
7 0:10 200 0:544
8 0:15 200 0:455
9 0:20 200 0:255
10 0:25 200 0:167
11 0:02 300 0:566
12 0:04 300 0:317
13 0:06 300 0:034
14 0:08 300 0:016
15 0:10 300 0:066

The objective is to minimize the least squares func-
tion:

min


S(�) D
15X

D1

�
y � f
(�)

�2
: (17)

The gradients, q, of the objective function take the
form:

q1 D 2
15X

D1

e
 f
 exp
�
�
�2

x
2

�
x
1; (18)

q2 D �2
15X

D1

e
 f

�1x
1
x
2

exp
�
�
�2

x
2

�
; (19)

and the approximate Hessian matrix is given by:

H�l k D 2
15X

D1

@ f

@�l

@ f

@�k

; l ; k D 1; 2; (20)

where:

@ f

@�1
D f
 exp

�
�
�2

x
2

�
x
1; (21)

@ f

@�2
D f


�1x
1
x
2

exp
�
�
�2

x
2

�
: (22)

The initial guess for the parameter values is taken
as:

�1 D

�
�1;1
�1;2

�
D

�
750
1200

�
:

Using this initial guess the value of the objective func-
tion, gradients, and approximated Hessian were calcu-
lated.

S(�1) D 1:090441;

q1 D
�
�0:002230450
0:006863795

�
;

H�1 D
�

0:2689478 �0:7730614
�0:7730614 2:310325

�
� 10�5:

The search step direction �1, is calculated from �
H��11 q1. This is generally accomplished by solving the
linear system:

�H�1 �1 D q1: (23)

Many different numerical techniques exist for the solu-
tion of (23), see [5] or [13] for examples. The calcula-
tion results in:

�1 D

�
�644:9785
�512:9099

�
:
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Initially using a stepsize �0 = 1, the following values for
the parameters are:

�0 D

�
105:0215
687:0901

�
:

An objective value of S(�0) = 0.9133969 results, which is
less than S(�1). Even though this is an acceptable value,
still a different stepsize may give a better result. Using
the approximation given in (14) with the following val-
ues of the parameters for the fit:

�i(� D 0) D 1:090441;
�i(� D 1) D 0:9133969;
d�i

d�

ˇ̌
ˇ̌
�D0
D �2:081916:

The parabola has a minimum, given by (15), at
a steplength � � = 0.5464714. The resulting values of
the parameters using this steplength are:

�1 D

�
397:5376
919:7092

�
:

An objective value of S(�1) = 0.3345645 results, which
is a large improvement over S(�0). This value of the pa-
rameter set, �1, is accepted as �2, and the iterations con-
tinue. The results of the iterations can be found in the
table below.

i S(�i ) �i;1 �i;2

1 1:090411 750 1200
2 0:3345645 397:5376 919:7092
3 0:05765885 646:0847 938:5288
4 0:04038005 810:6260 965:7625
5 0:03980731 818:3628 962:1228
6 0:03980599 813:4583 960:9063

The value of the parameters and the objective func-
tion at the sixth iteration are accepted as the solution to
the problem. The final values of the gradients and the
approximate Hessian are:

q D
�
�0:218524
0:631308

�
� 10�6;

H� D
�

0:271890 �0:957336
�0:957336 3:50371

�
� 10�5:

The above calculation benefited from that fact that
the initial guess for the parameter values was relatively
close to the solution. Take now the same example, but
using the following parameter values as the starting
point of the calculation:

�1 D

�
100
2000

�
:

This is obviously a ‘worse’ starting point than the pre-
vious calculation. Using these parameter values the fol-
lowing results:

S(�1) D 5:299502;

q1 D
�
�0:0007098080
0:0002442936

�
;

H�1 D
�

0:7036033 �0:2354773
�0:2354773 0:07896382

�
� 10�7;

�1 D

�
�134608:0
�432361:0

�
;

�0 D

�
�134508:0
�430361:0

�
:

Using the value of �0, calculated with �0 = 1, it is not
possible to calculate the value of the objective func-
tion since the resulting exponentials are very large. The
value of �was repeatedly halved until a reasonable value
of the objective function was obtained. The value �0 =
2� 8 = 0.00390625 resulted in:

�0 D

�
�425:8140
311:0039

�
:

An objective value of S(�0) = 0.3366272 × 1020 results,
which is not acceptable. The stepsize needs to be ad-
justed such that the objective function decreases. This
is accomplished in the same way as outlined previously.
The parabolic approximation reaches a minimum at
� � 	 5 × 10� 25. This is too small to be practical, so
a value of �1 = �0 /4 will be used. This results in S(�1) =
5.471375. Again this is not acceptable since it is larger
than S(�1). The value of � is iterated on until an ac-
ceptable value is determined. Finally after three more
iterations, �4 = 0.0000619701, which produces:

�4 D

�
91:65955
1973:211

�
:

An objective value of S(�4) = 5.299135 results, which is
just less than the original value of 5.299502, but given
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the criterion in (12) is acceptable. �4 is accepted as �2
and the iterations continue.

The solution, in this case, is obtained after 25 itera-
tions. This illustrates the major downfall of the Gauss–
Newtonmethod, that without a ‘good’ initial guess con-
vergence to the solution is slow at best and not guaran-
teed. In fact without using a variable stepsize, the algo-
rithm would have blown up after just one iteration.

Modifications and Applications

A very large number of different variations on the ba-
sic Gauss–Newton algorithm exist. For the most part,
these variations include methods to determine the step-
size, and approaches which actually improve the accu-
racy of the approximated Hessian matrix. For examples
of different variations see [10] or [8]. Others have done
comparisons and numerical experiments with popular
variations to test their applicability to a wide range of
problems [2,15]. The algorithm has also been applied
to what is referred to as weighted least squares (WLS)
in which each term in the objective function receives
a different coefficient:

min


S(�) D
nX


D1

w

�
y
 � f (�; x
)

�2
; (24)

where w
 is the weighting for the �th data point, see
[14] and [9] for examples.
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Least Squares

� ABS Algorithms for Optimization
� Gauss, Carl Friedrich
� Generalized Total Least Squares
� Least Squares Orthogonal Polynomials
� Least Squares Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
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Introduction

The aim of cluster analysis is to establish a set of clus-
ters such that the data points in a cluster are more sim-
ilar to one another than they are to those in other clus-
ters. The clustering problem is old, can be traced back
to Aristotle, and has already been studied quite exten-
sively by 18th century naturalists such as Buffon, Cu-
vier, and Linne [19]. Since then, clustering has been
used in many disciplines, such as market research, so-
cial network analysis, and geology, thus reflecting its
broad appeal and utility as a key step in exploratory
data analysis [26]. In market research for instance, clus-
ter analysis is widely used when working with multi-
variate data from surveys and test panels. Market re-
searchers use cluster analysis methods to segment and
determine target markets, and position new products.
Cluster analysis is also used in the service of market
approaches to the establishment of business enterprise
value. Johnson [28] addresses the potential role and
utility of cluster analysis in transfer pricing practices.
Given the importance of clustering, a substantial num-
ber of books, such as [11,20,27,39], as well as review pa-
pers, such as [58] have been published on this subject.

In biology, clustering provides insights into tran-
scriptional networks, physiological responses, gene
identification, genome organization, and protein struc-
ture. Genome-wide measurement of mRNA expression
levels is an efficient way of gathering comprehensive
information on genetic functions and transcriptional
networks. However, extracting useful information from
the resulting data sets first involves organizing genes
by their pattern and/or intensity of expression in or-
der to define those that are co-regulated. Such in-
formation provides a basis for extracting regulatory
motifs for transcription factors driving the diverse ex-
pression patterns, allowing assembly of predictive tran-

scriptional networks [2]. This information also pro-
vides insights into the functions of unknown genes,
since functionally related genes are often co-regulated
[55]. Furthermore, clustered array data provides iden-
tification of distinct categories of otherwise indistin-
guishable cell types, which can have profound implica-
tions in processes such as disease progression [50]. In
sequence analysis, clustering is used to group homol-
ogous sequences into gene families. Examining char-
acteristic DNA fragments helps in the identification of
gene structures and reading frames. In protein struc-
ture prediction, clustering the ensemble of low energy
conformers is used to identify the top suggested protein
structures.

Two common similarity metrics are correlation
and Euclidean distance. The latter is often popular,
since it is intuitive, can be described by a familiar
distance function, and satisfies the triangular inequal-
ity. Clustering methods that employ asymmetric dis-
tance measures [33,41] are probably more difficult
to intuitively comprehend even though they may be
highly suited to their intended applications. The ear-
liest work on clustering emphasized visual interpre-
tations for the ease of study, resulting in methods
that utilize dendograms and color maps [5]. Other
examples of clustering algorithms include: (a) Sin-
gle-Link and Complete-Link Hierarchical Clustering
[27,49], (b) K-Means Algorithm and its family of vari-
ants, such as the K-Medians [21,34,37,60,61], (c) Re-
formulation Linearization-based Clustering [1,46],
(d) Fuzzy Clustering [3,9,44,47], (e) Quality Clus-
ter Algorithm (QTClust) [23], (f) Graph-Theoretic
Clustering [17,57,59], (g) Mixture-Resolving Cluster-
ing Method [7,26], (h) Mode Seeking Algorithms [26],
(i) Artificial Neural Networks for Clustering [4,31] such
as the Self-Organizing Map (SOM) [32] and a vari-
ant that combines the SOM with hierarchical cluster-
ing, the Self-Organizing Tree Algorithm (SOTA) [22]
(j) Information-Based Clustering [8,48,54], (k) Stochas-
tic Approaches [30,36,38]. Some of these methods, such
as the K-Means and Information Clustering, are opti-
mization-based approaches, in which the clustering is
represented as an unknown parameter vector of a cost
function. The process then seeks to obtain the best clus-
tering by minimizing this cost function. Other classes
of clustering methods such as competitive learning may
not have a straightforward cost function. For instance,
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in the SOM, cluster centers are arbitrarily chosen ini-
tially, after which random data points are selected and
placed into the nearest cluster, whose center is updated
accordingly after each selection. Clustering ceases when
the cluster centers become stationary.

Recently, Tan et al. [51,52] presents a novel op-
timization-based Mixed-Integer Nonlinear Program-
ming (MINLP) clustering algorithm, the Global
Optimal Search with Enhanced Positioning (EP_
GOS_Clust), which is robust yet intuitive. This algo-
rithm is significant in that it is able to progressively
identify and weed out outlier data points. In addition,
it involves a pre-clustering process that is rigorous and
has a clearly-defined decision criterion. This is notable
as the results of many clustering methods based on
function optimization schemes often vary depending
on the random initialization or starting heuristics. The
EP_GOS_Clust also contains a convenient method to
predict the optimal cluster number. The algorithm is
compared with several approaches commonly used in
clustering biological microarray data, namely K-meth-
ods, QTClust, SOM, and SOTA. By comparing the in-
tra-cluster and inter-cluster error sums, as well as the
strength of biological coherence based on Gene Ontol-
ogy resources and expression pattern correlation, the
EP_GOS_Clust is shown to compare favorably against
other methods. The following sections will describe this
novel clustering approach in more detail.

Formulations

Notation and Pre-Clustering

The measure of distance for a gene i, for i D 1; : : : ; n
having k features (or dimensions), for k D 1; : : : ; s is
defined as aik. Each gene is to be assigned to only one
(hard clustering) of c possible clusters, each with cen-
ter zjk, for j D 1; : : : ; c. The binary variables wij indi-
cates whether gene i falls within cluster j (wi j D 1, if
yes; wi j D 0, if no).

Pre-clustering the data is important to expedite the
computational resources required to solve the hard
clustering problem by (i) identifying genes with simi-
lar experimental responses, and (ii) removing outliers
deemed not to be significant to the clustering process.
A straightforward pre-clustering approach to provide
just the adequate amount of discriminatory character-
istics so that the genes can be pre-clustered properly is

to reduce the quantities represented in the k-dimen-
sional expression vectors into a set of representative
variables fC; o;�g. The (C) variable represents an in-
crease in expression level compared to the previous
time point, the (�) variable represents a decrease in
expression level from the previous time point, and the
(o) variable represents an expression level that does not
vary significantly across the time points. The expression
data can also be pre-clustered by creating a rank-or-
dered list of gene proximities based on Euclidean dis-
tance or correlation. Genes that demonstrate an ob-
vious level of proximity, such as a separation of only
at most 1% of the maximum inter-gene distances, are
then grouped together. The pre-clusters are the prox-
imity genes that form a complete clique, that is, there is
a link between every gene within the same pre-cluster.
With this choice, a maximal clique search can be per-
formed by using various levels of pre-clustering crite-
ria. Clearly, when the criterion is overly lenient, a large
number of pre-clusters are formed, but most of the
genes will belong tomultiple pre-clusters, and the num-
ber of maximal cliques formed is small. On the other
hand, an unnecessarily strict cut-off results in a small
number of pre-clusters, thus not accurately reflecting
the extent of relatedness between the data. In pre-clus-
tering over a range of cut-off values, we can then select
the appropriate criterion as the point where the maxi-
mum number of complete cliques is formed [53].

HardClustering byGlobal Optimization The global
optimization approach seeks to minimize the Euclidean
distances between the data points and the centers of
their assigned clusters as:

Minimize
wi j;z jk

nX
iD1

cX
jD1

sX
kD1

wi j
�
aik � z jk

�2

s.t.
cX

jD1

wi j D 1 ; 8i D 1; : : : ; n

wi j are binary variables, z jk are

continuous variables :
(Problem 1)

There are two sets of variables in the problem, wij and
zjk. While the bounds of wij are clearly 0 and 1, that of
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zjk is obtained by observing the range of aik values.

zLjk D min faikg ; 8k D 1; : : : ; s

zUjk D max faikg ; 8k D 1; : : : ; s :

The pre-clustering work suggests that some of the genes
need only be restricted to some number of known clus-
ters, since it can be determined (for instance by distance
and correlation metrics) that certain genes are exceed-
ingly dissimilar from some of the pre-clusters and thus
have virtually zero probability of being clustered there.
This restriction can be described by introducing an ad-
ditional binary parameter suiti j . A data point deemed
to belong uniquely to just one cluster will only have
suiti j D 1 for only one value of j and zero for the oth-
ers, whereas a data point restricted to a few clusters will
have suiti j D 1 for only those clusters. This reduces the
computational demands of the problem. The introduc-
tion of the suiti j parameters also obviates the need for
constraints that prevent the redundant re-indexing of
clusters. Together with the necessary first-order opti-
mality condition (i. e., the vector distance sum of all
genes within a cluster to the cluster center should be
intuitively zero), the formulation becomes:

Minimize
wi j;z jk

nX
iD1

sX
kD1

a2i k

�

nX
iD1

cX
jD1

sX
kD1

(suiti j)(aikwi jz jk )

s.t. (suiti j)

 
z jk

nX
iD1

wi j �

nX
iD1

aikwi j

!

D 0 ; 8 j;8k
cX

jD1

(suiti j)wi j D 1 ; 8i

1 �
nX

jD1

(suiti j)wi j � n � c C 1

wi j D 0 � 1 ; 8i;8 j

zLjk � z jk � zUjk ; 8 j;8k :

(Problem 2)

The first set of constraints are the necessary optimality
conditions, the second demand that each gene can be-
long to only one cluster, and the third state that there is

at least one and no more than (n � c C 1) data points
in a cluster. Note also that the

Pn
iD1

Ps
kD1 a

2
i k term in

the objective function of Problem 2 is a constant and
can be dropped, though for the sake of completeness
we will retain the term throughout the subsequent for-
mulations in the paper. Problems 1 and 2 are Mixed In-
teger Nonlinear Programming (MINLP) problems with
bilinear terms in the objective function and the first set
of constraints. To handle the nonlinearities formed by
the product of variables wij and zjk, new variables yijk
along with additional constraints [12] are defined as fol-
lows:

yi jk D wi jz jk (1)

z jk � zUjk
�
1 � wi j

�
� yi jk � z jk � zLjk

�
1 � wi j

�
(2)

zLjkwi j � yi jk � zUjkwi j; 8i;8 j;8k : (3)

The introduction of yijk and the additional constraints
reduces the formulation to an equivalent Mixed-Integer
Linear Programming (MILP) problem, but results in an
inordinately large number of variables. Thus, there is
a need for new approaches to address large datasets.

The GOS Algorithm for Clustering The introduc-
tion of the bilinear variable yijk results in a large num-
ber of variables to be considered. In a problem with
over 2000 data points, each having 24 features, to be
placed into over 380 clusters, the number of variables to
be considered numbers over 18 million. Without intro-
ducing the yijk variables will leave the problem in a non-
linear form. Mixed-integer nonlinear programming
(MINLP) problems are considered extremely difficult.
Theoretical advances and prominent algorithms for
solving MINLP problems are addressed in [12,13,15].

The MINLP clustering formulation described in
Problem 2 can be solved by a variant of the General-
ized Benders Decomposition (GBD) algorithm [14], de-
noted as the Global Optimum Search (GOS). The pri-
mal problem results from fixing the binary variables to
a particular 0-1 combination. Here, wij is fixed and zjk
is solved from the resultant linear programming (LP)
problem. In addition, the solution also includes the rel-
evant Lagrange multipliers. The master problem is es-
sentially the problem projected onto the y-space (i. e.,
that of the binary variables). To expedite the solution
of this projection, the dual representation of the mas-
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ter is used. This dual representation is in terms of the
supporting Lagrange functions of the projected prob-
lem. It is assumed that the optimal solution of the pri-
mal problem as well as its Lagrange multipliers can be
used for the determination of the support function. In
the master problem, the zjk solution from the accompa-
nying primal is taken and the master is solved for the
wij variables.

The two sequences of upper and lower bounds are
then iteratively updated until they converge in a finite
number of iterations. With each successive iteration,
a new support function is added to the list of constraints
for the master problem. Thus in a sense, the support
functions for the master problem build up with each
iteration, forming a progressively tighter envelope and
gradually pushing up the lower bound solution until it
converges with the upper bound solution.

With fixed starting values for wij, the primal prob-
lem becomes:

Minimize
z jk

nX
iD1

sX
kD1

a2i k �
nX

iD1

cX
jD1

sX
kD1

aikw�i jz jk

s.t. z jk
nX

iD1

w�i j �
nX

iD1

aikw�i j D 0 ; 8 j;8k

zLjk � z jk � zUjk ; 8 j;8k :

(Problem 3.1)

The primal problem is a Linear Programming (LP)
problem. All the other constraints drop out since they
do not involve zjk, which are the variables to be solved
in the primal problem. Besides zjk, the Lagrange multi-
pliers �m

jk for each of the constraints above is obtained.
The objective function is the upper bound solution.
These are inputted into the master problem, which be-
comes:

min
wi j;
B

�B

such that �B �

nX
iD1

sX
kD1

a2i k �
nX

iD1

cX
jD1

sX
kD1

aikwi jz�jk

C

cX
jD1

sX
kD1

�m�
jk

 
z�jk

nX
iD1

wi j

�

nX
iD1

aikwi j

!
; m D 1;M

cX
jD1

wi j D 1 ; 8i

1 �
nX

jD1

wi j � n � c C 1 ; 8 j

wi j D 0 � 1 ; 8i;8 j :
(Problem 3.2)

The master problem solves for wi j and �B , and results
in a lower bound solution (i. e., the objective function).
The master problem is a Mixed Integer Linear Pro-
gramming (MILP) problem. The wi j solutions are cy-
cled back into the primal problem and the process is
repeated until the solution converges. Thus, there is no
longer a need for the variables yi jk , which substantially
reduces the number of variables to be solved. Also, after
every solution of the master problem, where a solution
set for wi j is generated, an integer cut is added for sub-
sequent iterations to prevent redundantly considering
that particular solution set again. The cut is expressed
as:

nX

i2fnjwi jD1g

wi j �

nX

i2fnjwi jD0g

wi j � n � 1 : (4)

Determining theOptimal Number ofClusters Most
clustering algorithms do not contain screening func-
tions to determine the optimal number of clusters. Yet
this is important to evaluate the results of cluster analy-
sis in a quantitative and objective fashion. On the other
hand, while it is relatively easy to propose indices of
cluster validity, it is difficult to incorporate these mea-
sures into clustering algorithms and appoint thresholds
on which to define key decision values [18,27]. Some of
the indices used to compute cluster validity include the
Dunn’s validity index [10], the Davis–Bouldin valid-
ity index [6], the Silhouette validation technique [43],
the C index [24], the Goodman–Kruskal index [16], the
Isolation index [39], the Jaccard index [25], and the
Rand index [42]. We note that the optimal number of
clusters occurs when the inter-cluster distance is maxi-
mized and the intra-cluster distance is minimized. We
adapt the concept of a clustering balance [29], where
it has been shown to have a minimum value when
intra-cluster similarity is maximized and inter-cluster
similarity is minimized. This provides ameasure of how
optimal is a certain number of clusters used for a partic-
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ular clustering algorithm. We introduce the following:

Global Center, zok D
1
n

nX
iD1

aik ; 8k (5)

Intra-cluster error sum,

� D

nX
iD1

cX
jD1

sX
kD1

wi j


aik � z jk



2
2

(6)

Inter-cluster error sum,

� D

cX
jD1

sX
kD1



z jk � zok


2
2 :

(7)

Jung et al. [29] proposed a clustering balance parame-
ter, which is the ˛-weighted sum of the two error sums.

Clustering Balance, " D ˛�C (1 � ˛)� : (8)

We note here that the rightful ˛-ratio is 0.5. There are
two ways to come to this conclusion. We note that the
factor ˛ should balance the contributive weights of the
two error sums to the clustering balance. At extreme
cluster numbers, that is, the largest and smallest num-
ber possible, the sum of the intra-cluster and inter-clus-
ter error sums at both cluster numbers should be bal-
anced. In the minimal case, all the data points can be
placed into a single cluster, in the case of which the in-
ter-cluster error sum is zero and the intra-cluster er-
ror sum can be calculated with ease. In the maximal
case, each data point forms its own cluster, in the case
of which the intra-cluster error sum is zero and the in-
ter-cluster error sum can be easily found. Obviously the
intra-cluster error sum in the minimal case and inter-
cluster error sum in the maximal case are equal, sug-
gesting that the most appropriate weighting factor to
use is in fact 0.5. The second approach uses a clustering
gain parameter proposed by Jung et al. [29], which is
given by:

� D

cX
jD1

sX
kD1

�
nj � 1

� 

zok � z jk


2
2 : (9)

Jung et al. [29] showed the clustering gain to have
a maximum value at the optimal number of clusters,
and demonstrated that the sum total of the clustering
gain and balance parameters is a constant. This is only
shown to be only possible if the ˛-ratio is 0.5 [51]. These
derivations suggest that for any clustering algorithm in-

cluding that using the GOS algorithm, one can deduce
the optimal number of clusters by performing multiple
repetitions of the clustering process over a suitably large
range of cluster numbers and watching for the cluster-
ing gain or clustering balance turning points.

Proposed Algorithm

The GOS formulation appears to be a suitable cluster-
ing algorithm. But for it to be effective, the formulation
must be provided with a good initialization point. Also,
we want to expeditiously incorporate the approach to
predict the optimal number of clusters into a cluster-
ing algorithm. With these considerations in mind, we
propose the following GOS clustering algorithm with
enhanced data point positioning (EP_GOS_Clust).

Gene Pre-Clustering We pre-cluster the original
data by proximity studies to reduce the computational
demands by (i) identifying genes with very similar re-
sponses, and (ii) removing outliers deemed to be in-
significant to the clustering process. To provide just
adequate discriminatory characteristics, pre-clustering
can be done by reducing the expression vectors into
a set of representative variables or by pre-grouping
genes that are close to one another by correlation or
some other distance function.

Iterative Clustering We let the initial clusters be de-
fined by the genes pre-clustered previously, and find the
distance between each of the remaining genes and these
initial clusters and as a good initialization point placed
these genes into the nearest cluster. For each gene, we
allow its suitability in a limited number of clusters based
on the proximity study. In the primal problem of the
GOS algorithm, we solve for zjk. These, together with
the Lagrange multipliers, are used in the master prob-
lem to solve for wij. The primal gives an upper bound
solution and the master a lower bound. The optimal so-
lution is obtained when both bounds converge. Then,
the worst-placed gene is removed and used as a seed
for a new cluster. This gene has already been subjected
to a membership search so there is no reason for it to
belong to any one of the older clusters. The iterative
steps are repeated and the clusters build up gradually
until the optimal number is attained. Figure 1 shows
a schematic of EP_GOS_Clust.
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 1
Schematic of EP_GOS_Clust algorithm

Gene Clustering: A Novel Decomposition-Based Clustering Approach, Table 1
Comparison of cluster correlation. The shaded row contains the results for EP_GOS_Clust and the top three performers in
each column are marked with an asterisk

Correlation coefficient
Optimal Cluster Number Average Maximum Minimum Standard deviation

Clustering
Method

EP_GOS_Clust 237 0.617* 0.938* 0.264* 0.128*
KMedians 445 0.615 0.937 0.197 0.134
KCityBlk 665 0.398 0.760 -0.159 0.149
KCorr 665 0.630* 0.931 0.239* 0.119*
KMeans 775 0.614 0.959* 0.072 0.131
GOS I 295 0.590 0.933 0.202 0.148
KAvePair 452 0.567 0.909 0.156 0.141
SOTA 540 0.604 0.925 0.378* 0.122*
SOM 485 0.623* 0.968* 0.202 0.156
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 2
Intra-cluster error sum

Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 3
Inter-cluster error sum

Case Study

Experimental Data

As a study, we use experimental microarray data de-
rived from a study in the role of the Ras/protein kinase
A pathway (PKA) on glucose signaling in yeast [56].
These experiments analyzed mRNA levels in samples

extracted from cells at various times following stimula-
tion by glucose or following activation of either Ras2
or Gpa2, which are small GTPases involved in the
metabolic and transcriptional response of yeast cells
to glucose [45]. These experiments were performed in
wild type cells and cells defective in PKA activity. Clus-
tering these microarray data has proven to be a critical
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 4
Error sum difference

Gene Clustering: A Novel Decomposition-Based Clustering Approach, Figure 5
Optimal cluster number

step in using the data to develop a predictive model of
a topological map of the signaling network surrounding
the Ras/PKA pathway [35].

Levels of RNA for each of the 6237 yeast genes
in each of the RNA samples from the above exper-
iments were measured using Affymetrix microarray

chips and analyzed by the Affymetrix software.We used
the Affymetrix MicroArray Suite 5.0, which analyzes
the consensus of intensities of hybridization of an RNA
to the collection of perfect match probes for a gene on
the array, relative to the intensities of hybridization to
single mismatch probes, to further determine whether
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Gene Clustering: A Novel Decomposition-Based Clustering Approach, Table 2
Gene Ontology comparison. The table compares the � log10(P) values of the clusters, which reflect the level of annotative
richness, as well as the proportion of yeast genes that fall into biologically significant clusters. The latter is important in
‘presenting’ the maximal amount of relevant genetic information for follow-up work in areas such as motif recognition and
regulatory network studies

� log10(P) Comparison
Average Standard deviation In clusters with� log10

(P) values� 4
In clusters with
� log10(P) values� 3

Clustering
Method

EP_GOS_Clust 4.40* 0.37 32.82* 64.92*
KMedians 4.27* 0.34* 30.83* 62.23*
KCityBlk 3.69 0.49 27.53 56.68
KCorr 4.15* 0.39 32.59* 60.08*
KMeans 3.45 0.41 25.11 55.20

GOS I 3.84 0.42 28.19 57.75
KAvePair 3.77 0.48 25.18 54.43
SOTA 3.67 0.31* 30.20 58.86
SOM 3.94 0.35* 30.47 59.24

a signal for a specific RNA in a sample was reliable (P
or present), unreliably low (A or absent), or ambigu-
ous (M). Before clustering the array data, we filtered
the data to remove unreliable data. In particular, we
retained all genes for which all the time points were
present (4105 genes), all the genes for which greater
than 50% of the time points were present, and all the
genes for which the present/absent calls exhibited a bi-
ologically relevant pattern (e. g. PAAA for the four time
points in the experiment, suggesting repression of gene
expression over the course of the experiment). In all, we
retained 5652 genes.

Description of Comparative Study

The clustering algorithms to be compared are
(a) K-Means, (b) K-Medians, (c) K-Corr, where the
Pearson correlation coefficient is the distance metric,
(d) K-CityBlock, where the distance metric is the city
block distance, or the ‘Manhattan’ metric, which is akin
to the north-south or east-west walking distance in
a place like New York’s Manhattan district, (e) K-Ave-
Pair, where the cluster metric is the average pair-wise
distance between members in each cluster, (f) QTClust,
(g) SOM, (h) SOTA, (i) GOS I, where genes with up
to 7 different feature points are pre-clustered, initial
clusters are defined by uniquely-placed genes, and each
gene is placed into its nearest cluster as the initialization
point, and (j) EP_GOS_Clust, for which genes are pre-
clustered if they have 2 or less different feature points

and can be uniquely clustered. Since the K-family ap-
proaches are sensitive to the initialization point, we run
each 25 times and use only the best result.

Results and Discussion

A good clustering procedure should minimize the in-
tra-cluster error sum and maximize the inter-cluster er-
ror sum. We look also at the difference between error
sums, which is somewhat indicative of the efficacy of
a particular clustering algorithm, since methods using
intra-cluster error sum as the cost function would prob-
ably outperform methods using inter-cluster error sum
as a performance indicator. From Fig. 2, 3 and 4, we can
see that EP_GOS_Clust compares very favorably com-
pared to the other clustering algorithms. Also, as seen
from Fig. 5, EP_GOS_Clust predicts the lowest number
of optimal clusters. Together with the quality of the er-
ror sum comparisons, we infer the superior ‘economy’
of EP_GOS_Clust in producing tighter data groupings
by utilizing a lower number of clusters, as it is actu-
ally possible to achieve tight groupings by using a large
number of clusters, even with an inferior clustering al-
gorithm.

EP_GOS_Clust is also capable of uncovering
strongly correlated clusters with high levels of biolog-
ical coherence. Tables 1 and 2 shows that it performs
consistently well when compared against the signifi-
cance of cluster biological coherence uncovered by the
other clustering methods. We find our clusters to ex-
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hibit good correlation and a high level of functional co-
herence strength across all cluster sizes, which indicates
that EP_GOS_Clust shows good consistency and lack of
size-bias. Also, it can be seen that EP_GOS_Clust com-
pares very well with other clustering methods in pro-
ducing highly correlated clusters, even against methods
such as K-Corr that already explicitly uses correlation
as a metric for clustering and the correlation hunting
SOM. In addition, EP_GOS_Clust conveniently isolates
errant data points and refines the existing groupings as
the clustering progresses.
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48. Slonim N, Atwal GS, Tkačik G, Bialek W (2005) Information
Based Clustering. Proc Natl Acad Sci USA 102(51):18297–
18302

49. Sokal RR, Michener CD (1958) A Statistical Method for
Evaluating Systematic Relationships. Univ Kans Sci Bull
38:1409–1438

50. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel
A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou
CM, Lonning PE, Brown PO, Borresen-Dala AL, Botstein D
(2003) Repeated Observations of Breast Tumor Subtypes
in Independent Gene Expression Data Sets. Proc Natl Acad
Sci USA 100:8418–8423

51. Tan MP, Broach JR, Floudas CA (2007) A Novel Clustering
Approach and Prediction of Optimal Number of Clusters:
Global OptimumSearchwith Enhanced Positioning. J Glob
Optim 39:323–346

52. Tan MP, Broach JR, Floudas CA (2007) Evaluation of Nor-
malization and Pre-Clustering Issues in a Novel Clustering
Approach: Global Optimum Search with Enhanced Posi-
tioning. J Bioinform Comput Biol 5(4):895–913

53. TanMP, Broach JR, Floudas CA (2007) MicroarrayDataMin-
ing: A Novel Optimization-Based Iterative Clustering Ap-
proach to Uncover Biologically Coherent Structures. (sub-
mitted for publication)

54. Tishby N, Pereira F, Bialek W (1999) The Information Bot-
tleneck Method. In: Proceedings of the 37th Annual Aller-
ton Conference on Communication, Monticello, Septem-
ber 1999. Control and Computing, pp 368–377

55. Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein
D (2003) A Bayesian Framework for Combining Heteroge-
neous Data Sources for Gene Function Prediction (in Sac-
charomyces Cerevisiae). Proc Natl Acad Sci USA 100:8348–
8353

56. Wang Y, Pierce M, Schneper L, Guldal CG, Zhang X, Tava-
zoie S, Broach JR (2004) Ras and Gpa2Mediate One Branch
of a Redundant Glucose Signaling Pathway in Yeast. PLoS
Biol 2(5):610–622

57. Wu Z, Leahy R (1993) An Optimal Graph Theoretic Ap-
proach to Data Clustering: Theory and Its Application to
Image Segmentation. IEEE Trans Pattern RecognitMach In-
tell 15(11):1101–1113

58. Xu R, Wunsch IID (2005) Survey of Clustering Algorithms.
IEEE Trans Neural Netw 16(3):645–678

59. Zahn CT (1971) Graph Theoretical Methods for Detect-
ing and Describing Gestalt Systems. IEEE Trans Comput
C-20:68–86

60. Zhang B, Hsu M, Dayal U (1999) K-Harmonic Means –
A Data Clustering Algorithm. Hewlett-Packard Research
Laboratory Technical Report HPL-1999-124

61. Zhang B (2000) Generalized K-Harmonic Means: Boost-
ing in Unsupervised Learning. Technical Report, Hewlett-
Packard Research Laboratory

Generalizations of Interior Point
Methods for the Linear
Complementarity Problem
LAURA DI GIACOMO

Dipartimento di Statistica, Probabilità e Statistiche
Applicate, Università di Roma “La Sapienza”,
Rome, Italy

MSC2000: 90C33, 90C51, 65K10

Article Outline

Introduction
Definitions
Formulation

An Interior Point Reduction Algorithm to Solve the LCP
An Interior Point Potential Algorithm to Solve General LCPs



1146 G Generalizations of Interior Point Methods for the Linear Complementarity Problem

Methods and Applications
Models

An Interior Point Newton Method for the General LCP
Generalization of an Interior Point Reduction Algorithm
to Solve General LCPs

Cases
Conclusions
See also
References

Introduction

Some methods are reviewed to solve the resulting com-
plementarity problem and two novel algorithms are de-
scribed. The use of complementarity problems provides
more flexibility to solve optimization problems, as well
as a number of other advantages [10].

The existence of a general solution procedure for
the linear complementarity problem (LCP) permits the
incorporation of this algorithm recursively in an opti-
mization algorithm and so avoids the use of active set
strategies to handle inequality constraints and the use
of second-order information on the objective function.
This is often beneficial in the presence of nonconvex
functions [10].

There exist many traditional approaches to solve the
LCP. An algorithm was formulated early for the solu-
tion of LCPs [5,6]. Later, it was shown that if a LCP has
a solution, then there exists a linear program, which,
for a suitable objective function, will have an optimal
solution that is also a solution to the LCP [2]. This
was further generalized [7,8,9] so that for certain classes
of LCPs the problem could be specified and solved as
a linear program. A characterization of LCP was for-
mulated [11] showing the equivalence of its solution to
a solution of an appropriate parametric linear program
with one scalar parameter.

A number of interior point algorithms to solve
the LCPs have been presented, such as an interior
point potential reduction algorithm [4] with P-matri-
ces, positive semidefinite matrices and skew-symmetric
matrices, an interior point algorithm which uses the
affine scaling algorithm, to solve nonconvex (indefi-
nite or negative definite) quadratic programming prob-
lems [14]. A fully polynomial-time approximation al-
gorithm for computing a solution of the LCP with
row-sufficient matrices can also be formulated [15].
This algorithm is a fully polynomial-time approxima-

tion scheme for finding an �-approximate stationary
point of the general LCP.

Here we shall briefly describe some particular meth-
ods and indicate two extensions of these algorithms
which apply to more general matrices.

Definitions

In this section some definitions will be given and they
will be used in the next sections [3].

Definition 1 Given M, an n � n matrix, and q, an n-
dimensional vector. Let N be the index set of the
variables, i. e., N D 1; 2; : : : ; n; the formulation of the
LCP, LCP(q,M), is then as follows:

Mx C q � 0 ; (1)

x � 0 ; (2)

xT (Mx C q) D 0 : (3)

Definition 2 A matrix M 2 Rn�n is said to be
a P-matrix (P0-matrix) if all its principal minors are
positive (nonnegative). The class of such matrices is de-
noted P (P0).

Definition 3 A square matrix is called a Z-matrix if
its off-diagonal entries are all nonpositive. A Z-matrix
which is also a P-matrix (P0-matrix) is called a K-ma-
trix (K0-matrix).

Definition 4 AmatrixM 2 Rn�n is said to be column-
sufficient if it satisfies the implication

[zi(Mz)i � 0 for all i]! [zi(Mz)i D 0 for all i] :

(4)

The matrix M is called row-sufficient if its transpose is
column -sufficient. If M is both column-sufficient and
row-sufficient, then it is called sufficient.

Definition 5 A square matrix M is a skew-symmetric
matrix if its transpose is also its negative:

AT D �A : (5)

Definition 6 If M is a positive definite matrix, then
there exists a vector z such that

Mz > 0 ; z > 0 (6)
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Definition 7 If M is a positive semidefinite matrix,
then there exists a vector z such that

Mz � 0 ; z > 0 : (7)

Definition 8 A potential function is

P(x;˝) D n log(cTx)�
nX

jD1

log x j; x 2 int(�˝) (8)

where int(�˝ ) indicates the interior of the set �˝ which
is the set of all feasible solutions of the dual.

Formulation

The aim of this section is to describe two modern im-
plementations with interior point methods. In the first
subsection an interior reduction algorithm to solve the
LCP is presented, with particular matrix classes, [4],
while in the following subsection an interior point po-
tential algorithm to solve the general LCP is presented.

An Interior Point Reduction Algorithm
to Solve the LCP

There exist many interior point algorithms to solve
LCPs. A particularly interesting approach is an interior
point potential reduction algorithm for the LCP [4].
The complementarity problem is viewed as a minimiza-
tion problem, where the objective function is the prod-
uct of the solution vector x and the slack vector of the
inequalities y.

The objective of the algorithm formulated is to find
an �-complementarity solution in time bounded by
a polynomial in the input size. This algorithm is formu-
lated to solve LCP(q,M) which will have a solution, such
as when the matrixM is a P-matrix. It is then extended
to matrices M which are only positive semidefinite and
to skew-symmetric matrices.

Consider a LCP, that is, given a rational matrix
M 2 Rn�n and a rational vector q 2 Rn , find vectors
x; y 2 Rn such that

y D Mx C q ; (9)

x; y � 0 ; (10)

xT y D 0 ; (11)

which can be regarded as a quadratic programming
problem

Minimize xT y (12)

subject to y D Mx C q (13)

x; y � 0 : (14)

Given the problem Eqs. (12)–(14) the aim is to find
a point with xT y < � for a given � > 0.

The algorithm proceeds by iteratively reducing the
potential function:

f (x; y) D � ln(xT y) �
X
j

ln(x j y j) : (15)

Apply a linear scaling transformation to make the coor-
dinates of the current point all equal to 1 and then take
a gradient step in the transformed space using the gra-
dient of the transformed potential function. The step
size can be determined either by the algorithm or by
line search to minimize the value of the potential func-
tion. Finally transform the solution point back to the
original space.

Consider the potential function Eq. (15) under scal-
ing of x and y, given any feasible interior point (x0,y0)
if the matrices X and Y are diagonal matrices with the
elements on the diagonal given by the values of (x0,y0).

Define a linear transformation of the space by

x̄ D X�1x; ȳ D Y�1 y : (16)

and let W D XY , wj D (x0j )
T (y0j ) so that (w D w1;

w2; � � � ;wn) and M D Y�1MX: Consider the trans-
formed problem as follows:

Minimize x̄TW ȳ (17)

subject to ȳ D M̄x̄ C q̄ (18)

x̄; ȳ � 0 : (19)

Feasible solutions of the original problem are mapped
into feasible solutions of the transformed problem:

ȳ D Y�1(Mx C q) D M̄x̄ C q̄ : (20)
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Assume that the current point is indeed (e,e) and the
potential function has the form

f (x; y) D � ln(xTWy) �
nX

jD1

ln(x jwj y j) : (21)

The gradient of f is given by

rx f (x; y) D
�

xTWy
Wy � X�1e ; (22)

ry f (x; y) D
�

xTWy
Wx � Y�1e ; (23)

and indicate by g the gradient vector evaluated at the
current point (e,e).

Denote by (�x; �y) the projection of r f (e; e) on
the linear space˝ defined by�y D M�x.

Thus we define the following problem:

Minimize k�x � gk2 C k�y � gk2 (24)

subject to �y D M�x : (25)

It follows that [4]

�x D (I CMTM)�1(I CMT )g ; (26)

�y D M(I CMTM)�1(I CMT )g : (27)

It is possible determine the reduction � f in the value
of f in moving from x D y D e to a point of the form
x̃ D e � t�x, ỹ D e � t�y, where t > 0. It is desired
to choose t so as to achieve a reduction of at least n– k for
some k > 0, at every iteration. Since this is shown to be
possible, [4], the result follows if the matrix is positive
definite, positive semidefinite or skew-symmetric.

An Interior Point Potential Algorithm
to Solve General LCPs

In this subsection a “condition-based” iteration com-
plexity will be formulated regarding the solution of var-
ious LCPs. This parameter will characterize the degree
of difficulty of the problem when a potential reduction
algorithm is used. The condition number derived will
of course depend on the data of the problem (M,q).

Consider the primal–dual potential function of
a LCP as stated in Eqs: (9)–(11), for any interior feasible

point, (x; y) 2 F, and � > 0, which may be represented
so:

� (x; y) D �nC�(x; y) D (nC�) ln(xT y)�
nX
jD1

ln(x j y j):

(28)

Suppose the iterations have started from an inte-
rior feasible point (x0,y0), with � (x0; y0) D � 0 a se-
quence of interior feasible points can be generated
fxk ; ykg, (k D 0; 1; : : :) terminating at a point such that
(xk)T (yk) � �. Such a point is found when

� (xk ; yk) � � ln(�)C n ln(n) (29)

since by the arithmetic–geometric inequality
n ln((xk)T(yk)) �

Pn
jD1 ln(x j y j) � n ln(n) � 0.

The fact that � (xT y) � � 0 implies that xT y �
� 0/� and therefore the boundedness of f(x; y) 2 F j
xT y � � 0/�g guarantees the boundedness of f(x; y) 2
int(F) j xT y � � 0g, where int() indicates the relative
interior of its argument.

To obtain a reduction in the potential function the
scaled gradient projection method may be used. The
gradient vectors of the potential function with respect
to x and y are

r�x D (
n C �
xT y

)y � X�1e ; (30)

r�y D (
nC �
xT y

)x � Y�1e : (31)

At the kth iteration the following linear program is
solved, subject to an ellipsoid constraint:

Minimize Z D rT�xk dx Cr
T�yk dy (32)

subject to dy D Mdx (33)

1 > ˛2 � k(Xk)�1dxk2 C k(Xk)�1dxk2 : (34)

Denote by (dT
x ; dT

y )T the minimal solution of Eqs. (32)–
(34) and let

pk D

 
pkx
pky

!
D

 nC�
(xk )T (yk )X

k(yk CMT) � e
nC�

(xk )T (yk )Y
k(xk � ) � e

!
(35)

 D
�
(Yk)2 CM(Xk)2MT

��1 �
Yk � MXk

�

�

�
Xk yk �

�
(xk)T (yk)
nC �

�
e
�

(36)
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then there results
�
(Xk)�1dx
(Yk)�1dy

�
D ˛

pk

kpkk
: (37)

By the concavity of the log function and certain elemen-
tary results it can be shown [17] that

� (xk C dx ; yk C dy) � � (xk; yk) �

� ˛kpkk C
˛2

2

�
nC �C

1
(1 � ˛)

�
: (38)

Letting

˛ D min
�
jjpk jj

nC �C 2
;

1
n C �C 2

	
�

1
2

(39)

results in

� (xk C dx ; yk C dy) � � (xk; yk) �

�min
�

jjpk jj2

(2nC �C 2)
;

1
2(nC �C 2)

	
: (40)

The expression for kpkk is indicated by (35) and can be
considered the potential reduction at the kth iteration
of the objective function. For any x,y let

g(x; y) D
n C �
xT y

Xy � e (41)

H(x; y) D 2I�(XMT�Y)(Y2CMX2MT )�1(MX�Y)
(42)

which is a positive semidefinite matrix. Thus

kpkk D gT (xk; yk)H(xk ; yk)g(xk; yk) (43)

which may also be indicated as kg(x; y)k2H D gT (x; y)
H(x; y)g(x; y).

Define a condition number for the LCP(q,M) as

�(M; q; �) D inffjjg(x; y)jj2H j x
T y

> �;� (x; y) � � 0; (x; y) 2 int(F)g : (44)

The condition number �(M,q,�) represents the degree
of difficulty for the potential reduction algorithm in
solving the LCP(q,M). The larger the condition num-
ber that results, the easier can the problem be solved.
The condition number for LCPs provides a criterion to
subdivide given instances of LCP(q,M) into classes and

those that can be solved in polynomial time may be in-
dicated.

Corollary 1 An instance of a LCP(q,M) is solvable in
polynomial time if �(M; q; �) > 0 and 1/�(M; q; �) is
bounded above by a polynomial in ln(1/�) and n.

This corollary is slightly different to corollary 1 in [16].
Further the following definitions are important:

CX
(M; q) D f j xT y � qT < 0; x �  > 0;

y CMT > 0 for some (x; y) 2 int(F)g (45)

Definition 9 Let G be a set of LCP(q,M) such that the
following conditions are satisfied:

G D f(M; q) j int(F) 6D ;;
CX

(M; q) D ;g : (46)

Lemma 1 Let
PC(M; q) be empty for a LCP(q,M).

Then for � � n C
p
2n, �(M; q; �) � 1.

Lemma 2 Let f j xT y � qT > 0; x �  > 0; y C
MT > 0 for some (x; y) 2 int(F)g be empty for
a LCP(q,M). Then for 0 < � � n �

p
(2n), there results

�(M; q; �) � 1.

With these properties it can be shown that for many
classes of matrices �(M; q; �) > 0 or that the conditions
indicated in the lemmas are satisfied, so the LCP is solv-
able in polynomial time.

Further, the potential reduction algorithm will
solve, under general conditions, the LCP(q,M) whenM
is a P-matrix and when M is a row-sufficient matrix.
Thus,

Theorem 1 Let � (x0; y) � O(n ln(n)) and M be
a P-matrix. Then the potential reduction algorithm ter-
minates at xT y < � in O(n2 maxfj � j/�(n); 1g ln(1/�))
iterations and each iteration uses at most O(n3) arith-
metic operations.

The bound indicates that the algorithm is a polynomial-
time algorithm if j � j/�(n) is bounded above by a poly-
nomial in ln(1/�) and n.

Theorem 2 Let � > 0 and be fixed. For a row-sufficient
matrix M and f(x; y) 2 F j � (x; y) � � 0g bounded,
then �(M; q; �) > 0.

Since for the LCP(q,M) defined by this class of matri-
ces the condition number is bounded away from zero,
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the potential reduction algorithm will solve this class of
problems.

Methods and Applications

Depending on the algorithm proposed, any penalty
function algorithm or any linear programming algo-
rithm will ensure, given the conditions imposed on the
problem, a polynomial-time solution is achieved.

Often computationally, the most efficient method is
the Newton method with a penalty or a barrier param-
eter. However, the actual method of solution is left to
the interested reader, who can refer to the original con-
tributions, since too many problem -dependent factors
are involved.

Models

The aim of this section is to treat the methods described
in “Formulation” under some more general conditions.

An Interior Point Newton Method
for the General LCP

This algorithm finds a Karush–Kuhn-Tucker point
for a nonmonotone LCP with a primal interior point
method using Newton’s method with a convex barrier
function, under some mild assumptions.

Consider a bounded LCP:

Mu C q � v D 0 (47)

u; v � 0 (48)

uTv D 0 (49)

and suppose that the LCP solution set S D fu; vjMuC
q � v D 0; u; v � 0; uTv D 0g is bounded above by
a vector (mT

1 ;mT
2 )T 2 R2n . Define two diagonal posi-

tive matrices

D1 > Diag(2m1) (50)

D2 > Diag(2m2) (51)

to obtain the following LCP

y D D�12 v D D�12 (MuC q)
D (D�12 MD1)x C D�12 q (52)

1
2
e � x; y � 0 (53)

xT y D 0 (54)

which without loss of generality will be indicated as

Mx C q � y D 0 (55)

x; y � 0 (56)

xT y D 0 : (57)

Assume that there exists an approximate interior point
solution, as is usual with interior point methods, with
variables 0 < xi ; yi � �; � < n�2 8i D 1; 2; : : : ; n
and consider the following barrier function for the
optimization problem for the LCP (55)–(57).

Minimize  (x; y; �) D xT y � �
nX

iD1

ln(xi yi ) (58)

subject to Mx � yC q D 0 (59)

x; y <
1
2
e (60)

x; y > 0 (61)

where e 2 Rn is the vector of unit elements and ˇ > 0
is an arbitrary small parameter.

To convert the optimization problem (58)–(61) into
a convex programming problem, consider as a barrier
parameter, which is successively reduced, then the gra-
dient of this function is:

(rx (x; y))i D
xi y2i � (ˇ � �)yi

xi yi C ˇ
; (62)

(rx (x; y))i D
x2i yi � (ˇ � �)xi

xi yi C ˇ
: (63)

It is easy to show that if the barrier parameter at any
iteration k will satisfy the following inequality

� >
(xi yi C ˇ)2

y2i C ˇ
; (64)

then the Hessian matrix of the function (58) is positive
denite for the conditions imposed. Thus the optimiza-
tion problem (58)–(61) is a convex programming prob-
lem and it may be solved by one of the methods above,
which is also suitable to a further generalization [1].
Here it will be solved as a convex quadratic program-
ming [12]. Rewrite the optimization problem (58)–(61)
as:

Min  (x; y; �) D xT y ��
nX

iD1

ln(xi yi C ˇ) ; (65)
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subject to

0
BBBBB@

M �I
I 0
0 I
�I 0
0 �I

1
CCCCCA

�
x
y

�
C b � 0 : (66)

Where bT D (qT ; 0; 0; 12 e
T ; 12 e

T).
Indicate the constraint matrix as the matrix A of di-

mension 5n � 2n. Also, idicate with zT D (xT ; yT ) 2
R2n .

The algorithm considered is a primal method with
a log barrier function. It will follow a central path and
will take small steps [12] and it can be shown that from
an approximate global minimum, an exact global mini-
mum can be simply derived [12].

Let˘ denote the feasible region of Eq. (66) and de-
note the interior of this feasible region by int(˘ ), i. e.,
Az > b by relaxing as is usual in the Interior point al-
gorithms, the equality constraints.

Make the following assumptions:
� rank(A) D 2n,
� ˘ is compact,
� int(˘ ) 6D ;.
� xi yi > " 8i D 1; 2; : : : ; n.
Define the potential function

h(z; �) D  (x; y; �) � �
mX
iD1

ln(aTi z � bi ) : (67)

The following lemmas are straight forward adaptations
of the original results.

Lemma 3 For any fixed choice of � > 0, that meets
the condition (64), the function (67) is strictly convex on
int(˘ ).

Lemma 4 For any fixed choice of � > 0, that meets the
condition (64), the function (67) has a unique minimum.

Let �(�) be the minimum of h(z; �) for a fixed �. As
�! 0 there must be an accumulation point by com-
pactness. This point must be an approximate global
minimum.

Lemma 5 Let ẑ be an accumulation point of �(�). As
�! 0 then ẑ is an approximate global minimum for
problem (65)–(66).

Generalization of an Interior Point Reduction
Algorithm to Solve General LCPs

The condition number for LCPs provides a criterion
to subdivide given instances of LCP(q,M) into classes.
These results will now be extended.

Consider a LCP(q,M) Eqs. (9)–(11) with a nonsin-
gular coefficient matrix M, for which, moreover, (I–
M) is nonsingular and the solution set of LCP(q,M) is
bounded from above. This LCP can be indicated so:

Mu C q � v D 0 ; (68)

u; v � 0 ; (69)

uTv D 0 ; (70)

where u; v; q 2 Rn . Suppose that the LCP solution set
S D fu; vj Mu C q � v D 0; u; v � 0; uTv D 0g is
bounded above by a vector (mT

1 ;mT
2 )T 2 R2n .

Apply the transformation defined by Eqs. (50) and
(51), so that there results

y D D�12 v D D�12 (MuC q)

D (D�12 MD1)x C D�12 q ; (71)

1
2
e � x; y � 0 ; (72)

xT y D 0 ; (73)

which will be indicated as

Mx C q � y D 0 ; (74)

x; y � 0 ; (75)

xT y D 0 : (76)

For the potential reduction algorithm to solve general
LCPs, it is required that x > 0 and y > 0.

Lemma 6 For a nonsingular M the matrices
M̂ D D1MD2, (I � M̂), (I � XYM̂) and (�Y C M̂X)
are all nonsingular.

Corollary 2 Under the conditions of Lemma 3
(Y CMX) is nonsingular.

The following additional lemma is also required.
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Lemma 7 For all LCP(q,M) with nonsingular ma-
trices M and (I–M) transformed to the form given
by Eqs. (71)–(73) so that for any feasible solution
(x; y) 2 int(F) so that 0 < X < I; 0 < Y < I, there re-
sults g(x; y) D nC�

xT y Xy � e 6D 0.

Theorem 3 For all LCP(q,M) with nonsingular ma-
trices M and (I–M) transformed to the form given
by Eqs. (71)–(73) so that for any feasible solution
(x; y) 2 int(F) there results 0 < X < I; 0 < Y < I, the
condition number for the LCP �(M; q; �) > 0 for some
� > 0.

For notational simplicity assume that the transformed
matrix M̂ is indicated by M without loss of gener-
ality. �(M; q; �) D 0 if kg(x; y)k2H D 0. Assume that
kg(x; y)k2H D 0 and expand it in terms of its factors.

2g(x; y)T g(x; y) � g(x; y)T

[(XMT � Y)(Y2 CMX2MT )�1(MX � Y)]
� g(x; y) D 0 (77)

It is easy to show that this will never happen under the
conditions of the theorem. Hence, for any matrix that
satisfies the assumed conditions the condition number
is strictly positive and so a solution to the LCP may be
obtained straightforwardly by this method. This pro-
vides a partial characterization and extension of the ma-
trix class G defined in [16].

Cases

Algorithms should be tested extensively for their com-
putational efficiency on a wide series of cases, so that
suitable comparisons can be made.

One hundred and forty random instances of LCPs
were solved for four different sizes (30, 50, 100, 250),
with three types of matrices: positive semidefinite, neg-
ative semidefinite and indefinite. In Table 1 the num-
ber of problems solved for each type of matrix with
the parametric LCP algorithm [11] and with an interior
point algorithm with the Newtonmethod are indicated.

The instances with positive (semi)definite matri-
ces are easy to solve in fact. The instances with nega-
tive (semi)definite and indefinite classes are considered
hard to solve, but both algorithms have no trouble with
these classes, except that the first seems to be more hap-

Generalizations of Interior Point Methods for the Linear
Complementarity Problem, Table 1
Results for 140 linear complementarity problems (LCPs) of
different matrix classes and sizes

Type PSD NSD INDF
Size PLCP IPNM PLCP IPNM PLCP IPNM
30 6 6 12 12 28 28
50 3 3 3 3 26(3) 29

100 6 6 6 6 16 16
250 5 5 7(4) 11 15 15

Total 20 20 28(32) 32 85(88) 88

PSD positive semidefinite matrix, NSD negative
semidefinite matrix, INDF indefinite matrix, PLCP
parametric LCP algorithm, IPMN interior point algo-
rithm with the Newton method.

Generalizations of Interior Point Methods for the Linear
Complementarity Problem, Table 2
Timing results for 140 LCPs of different matrix classes and
sizes (seconds)

Type PSD NSD INDF
Size PLCP IPNM PLCP IPNM PLCP IPNM
30 0.06 0.04 0.08 0.06 0.07 0.07

50 0.28 0.18 0.38 0.32 0.33 0.32
100 3.47 1.42 7.00 3.37 5.18 2.78
250 109.37 22.56 121.51 95.12 111.99 87.45

hazard, rather than being subject to numerical difficul-
ties.

Both routines seem to be only slightly affected by the
type of matrix, but the interior point algorithm with the
Newton method is more efficient, as confirmed in Ta-
ble 2, where the average time for solving the instances
is given in seconds.

Conclusions

Interior point methods to solve the LCP are now well
established and allow polynomial solutions to be ob-
tained for such problems with suitable matrix classes.
Moreover these routines can be used as a subroutine in
general iterative optimization problems.

Evidently research is being actively conducted to
generalize the applicable matrix classes for which solu-
tions can be obtained in polynomial time and space.
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Introduction

The generalized assignment problem (GAP) seeks the
minimum cost assignment of n tasks to m agents such
that each task is assigned to precisely one agent subject
to capacity restrictions on the agents.

The formulation of the problem is:

min
mX
iD1

nX
jD1

ci jxi j (1)

subject to
nX

jD1

ai jxi j � bi i D 1; : : : ;m (2)

mX
iD1

xi j D 1 j D 1; : : : ; n (3)

xi j 2 f0; 1g i D 1; : : : ;m;

j D 1; : : : ; n
(4)

where ci j is the cost of assigning task j to agent i, ai j is
the capacity used when task j is assigned to agent i,
and bi is the available capacity of agent i. Binary vari-
able xi j equals 1 if task j is assigned to agent i, and 0



1154 G Generalized Assignment Problem

otherwise. Constraints 3 are usually referred to as the
semi-assignment constraints.

The formulation above was first studied by Srini-
vasan and Thompson [80] to solve a transportation
problem. The term generalized assignment problem for
this setting was introduced by Ross and Soland [74].
This model is a generalization of previously proposed
model by DeMaio and Roveda [17] where the capacity
absorption is agent independent (i. e., ai j D aj; 8i).

The classical assignment problem, which provides
a one to one pairing of agents and tasks, can be solved
in polynomial time [47]. However, in GAP, an agent
may be assigned to multiple tasks ensuring each task
is performed exactly once, and the problem is NP-
hard [28]. Even the GAP with agent-independent re-
quirements is anNP-hard problem [23,53].

The GAP has a wide spectrum of application areas
ranging from scheduling (see [19,84]) and computer
networking (see [5]) to lot sizing (see [31]) and facility
location (see [7,30,74,75]). Nowakovski et al. [64] study
the ROSAT space telescope scheduling where the prob-
lem is formulated as a GAP and heuristic methods are
proposed. Multiperiod single-source problem (MPSSP)
is reformulated as a GAP by Freling et al. [25]. Janak
et al. [38] reformulate the NSF panel-assignment prob-
lem as a multiresource preference-constrained GAP.
Other applications of GAP include lump sum capi-
tal rationing, loading in flexible manufacturing sys-
tems (see [45]), p-median location (see [7,75]), max-
imal covering location (see [42]), cell formation in
group technology (see [79]), refueling nuclear reac-
tors (see [31]), R & D planning (see [92]), and routing
(see [22]). A summary of applications and assignment
model components can be found in [76].

Extensions

Multiple-Resource Generalized Assignment Problem

Proposed by Gavish and Pirkul [29], multi-resource
generalized assignment problem (MRGAP) is a special
case of the multi-resource weighted assignment model
that is previously studied by Ross and Zoltners [76].
In MRGAP a set of tasks has to be assigned to a set
of agents in a way that permits assignment of multi-
ple tasks to an agent subject to a set of resource con-
straints. This problem differs from the GAP in that,
an agent consumes a variety of resources in perform-

ing the tasks assigned to it. Although most of the prob-
lems can be modeled as GAP, multiple resource con-
straints are frequently required in the effective model-
ing of real life problems. MRGAP may be encountered
in large models dealing with processor and database lo-
cation in distributed computer systems, trucking indus-
try, telecommunication network design, cargo loading
on ships, warehouse design and work load planning in
job shops.

Gavish and Pirkul [29] introduce and compare var-
ious Lagrangian relaxations of the problem and suggest
heuristic solution procedures. They design an exact al-
gorithm by incorporating one of these heuristics along
with a branch-and-bound procedure.

Mazzola and Wilcox [58] modify Gavish and Pirkul
heuristic and develop a hybrid heuristic for MRGAP.
Their algorithm defines a three phase heuristic which
first constructs a feasible solution and then systemat-
ically tries to improve the solution. As an enhanced
version of MRGAP, Janak et al. [38] study the NSF
panel-assignment problem. In this setting, each task
(i. e., proposal) has a specific number of agents (i. e., re-
viewers) assigned to it and each agent has a lower and
upper bound on the number of tasks that can be done.
The objective is to optimize the sum of a set of prefer-
ence criteria for each agent on each task while ensuring
that each agent is assigned to approximately the same
number of tasks.

Multilevel Generalized Assignment Problem

The Multilevel Generalized Assignment Problem
(MGAP) is first introduced by Glover et al. [31] to
provide a model for the allocation of tasks in a manu-
facturing environment. MGAP differs from the classical
GAP in that, agents can perform tasks at different effi-
ciency levels, implying both different costs and different
resource requirements. Each task must be assigned to
one and only one agent at a level and each agent has
limited amount of single resource. Important manufac-
turing problems, such as lot sizing, can be formulated
as MGAP.

Laguna et al. [46] use a neighborhood structure
for defining moves based on ejection chains and de-
velop a Tabu Search (TS) algorithm for this problem.
French and Wilson [26] develop two heuristic solu-
tion methods for MGAP from the solution methods
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for GAP. Procedures for deriving an upper bound on
the solution of the problem are also described. Ce-
selli and Righini [11] present a branch-and-price al-
gorithm based on decomposition of the MGAP into
a master problem and a pricing sub-problem, where
the former is a set-partitioning problem and the latter
is a multiple-choice knapsack problem. This algorithm
is the first exact method proposed in the literature for
the MGAP. To provide a flexible assignment tool to
the decision maker, Hajri-Gabouj [37] develops a fuzzy
genetic multi-objective optimization algorithm to solve
a nonlinear MGAP.

Dynamic Generalized Assignment Problem

In The GapModel, the sequence in which the agent per-
forms the tasks is not considered. This sequence is es-
sential when each task is performed to meet a demand
and earliness or tardiness incurs additional cost. Dy-
namic generalized assignment problem (DGAP) is sug-
gested to track customer demand while assigning tasks
to agents. Kogan et al. [44], for the first time, add the
impact of time to the GAP model assuming that each
task has a due date. They formulate the continuous-
time optimal control model of the problem and derive
analytical properties of the optimal behavior of such
a dynamic system. Based on those properties, an effi-
cient time-decomposition procedure is developed.

Kogan et al. [43] extend the DGAP to cope with
stochastic environment and multiple agent-task rela-
tionships. They prove that this stochastic, continuous-
time generalized assignment problem is strongly
NP-hard and reduce the model to a number of classi-
cal deterministic assignment problems stated at discrete
time points. A pseudo-polynomial time combinatorial
algorithm is developed to approximate the solution.
The well-known application of such a generalization is
found in the stochastic environment of the flow shop
scheduling of parallel workstations and flexible man-
ufacturing cells as well as dynamic inventory manage-
ment.

Bottleneck Generalized Assignment Problem

Bottleneck generalized assignment problem (BGAP),
is the min-max version of the well-known (min-sum)
generalized assignment problem. In the BGAP, the
maximum penalty incurred by assigning each task

to an agent is minimized. Min-sum objective func-
tions are commonly used in private sector applications,
while min-max objective function can be applied to
the public sector. BGAP has several important applica-
tions in scheduling and allocation problems. Mazzola
and Neebe [57] propose two min-max formulations
for the GAP: the Task BGAP and the Agent BGAP.
Martello and Toth [56] present an exact branch-and-
bound algorithm as well as approximate algorithms
for BGAP. They introduce relaxations and produce,
as sub-problems, min-max versions of the multiple-
choice knapsack problem which can be solved in poly-
nomial time.

Generalized Assignment Problem
with Special Ordered Set

GAP is further generalized to include cases where items
may be shared by a pair of adjacent knapsacks. This
problem is called the generalized assignment prob-
lem with special ordered sets of type 2 (GAPS2). In
other words, GAPS2 is the problem of allocating tasks
to time-periods, where each task must be assigned to
a time-period, or shared between two consecutive time-
periods. Farias et al. [15] introduce this problem which
can also be applied to production scheduling. They
study the polyhedral structure of the convex hull of the
feasible space, develop three families of facet-defining
valid inequalities, and show that these inequalities cut
off all infeasible vertices of the LP relaxation. A branch-
and-cut procedure is described and facet-defining valid
inequalities are used as cuts. Wilson [86] modifies and
extends a heuristic algorithm developed previously for
the GAP problem to solve GAPS2. He argues that, any
feasible solution to GAP is a feasible solution to GAPS2,
hence a heuristic algorithm for GAP can also be used as
a heuristic algorithm to GAPS2. A solution produced by
a GAP heuristic will be close to GAPS2 optimality if it is
close to the LP relaxation bound of GAP. The heuristic
uses a series of moves starting from an infeasible, but in
some senses optimal solution and then attempts to re-
store feasibility with minimal degradation to the objec-
tive function value. An existing upper bound for GAP
is also generalized to be used for GAPS2.

French and Wilson [27] develop an LP-based
heuristic procedure to solve GAPS2. They modify
a heuristic for GAP to be used for GAPS2 and show
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that, while Wilson [86] heuristic is straightforward for
large instances of the problem, and Farias et al. [15]
solve smaller instances of the problem by an exact
method, their heuristic solves fairly large instances of
the problem rapidly and with a consistently high degree
of solution quality.

Stochastic Generalized Assignment Problem

In GAP, stochasticity may arise because the actual
amount of resource needed to process the tasks by
the different agents may not be known in advance
or the presence or absence of individual tasks may
be uncertain. In such cases, there is a set of poten-
tial tasks in which, each task may or may not re-
quire to be processed. Dyer and Frieze [20], analyze the
generalized assignment problem under the assumption
that all coefficients are drawn uniformly and indepen-
dently from [0; 1] interval. Romeijn and Piersma [72]
analyze a probabilistic version of GAP as the num-
ber of tasks goes to infinity while the number of ma-
chines remains fixed. Their model is different from
Dyer and Frieze [20] since it doesn’t have the ad-
ditional assumptions that the cost and resource re-
quirement parameters are independent of each other
and among machines. They first derive a tight condi-
tion on the probabilistic model of the parameters un-
der which, the corresponding instances of the GAP
are feasible with probability one. Next, under an addi-
tional sufficient condition, the optimal solution value
of the GAP is characterized through a limiting value.
It is shown that the optimal solution value, normal-
ized by dividing by the number of tasks, converges
with probability one to this limiting value. Toktas et
al. [82], consider the uncertain capacities situation and
derive two alternative approaches to utilize determinis-
tic solution strategies while addressing capacity uncer-
tainty. Albareda-Sambola et al. [1] assume that a ran-
dom subset of the tasks would require to be actually
processed. Tasks are interpreted as customers that may
or may not require a service. They construct a convex
approximation of the objective function and present
three versions of an exact algorithm to solve this prob-
lem based on branch-and-bound techniques, optimal-
ity cuts, and a special purpose lower bound. An assign-
ment of tasks can be modified once the actual demands
are known. Different penalties are paid for reassigning

tasks and for leaving unprocessed tasks with positive
demand.

Bi-Objective Generalized Assignment Problem

Zhang and Ong [91] consider the GAP from a multi-
objective point of view, and propose an LP-based
heuristic to solve the bi-objective generalized assign-
ment problem (BiGAP). In BiGAP, each assignment
has two attributes that are to be considered. For exam-
ple, in production planning, these attributes may be the
cost and the time caused by assigning jobs to machines.

Generalized Multi-Assignment Problem

Proposed by Park Et Al. [66], the generalized multi-
assignment problem (GMAP) consists of tasks that may
be required to be duplicated at several agents. In other
words, each task is assigned to r j agents instead of one.
Park et al. [66] develop a Lagrangian dual ascent algo-
rithm for the GMAP that is combined with the subgra-
dient search and used as a lower bounding scheme for
the branch-and-bound procedure.

Methods

Determining whether an instance of a GAP has a fea-
sible solution is an NP-complete problem. Hence,
unless P D NP, GAP admits no polynomial-time
approximation algorithm with fixed worst-case perfor-
mance ratio. Nevertheless there are numerous approxi-
mation algorithms for GAP in the literature which actu-
ally address a different setting where the available agent
capacities are not fixed and the weighted sum of cost
and available agent capacities is minimized. For some
of these algorithms, a feasible solution is required as an
input. For details, see [14,24,65,78]. Excluding this set-
ting for GAP, the solution approaches proposed in the
literature are either exact algorithms or heuristics. For
expository surveys on the algorithms, see [10,54,60].

Exact Algorithms

The optimal solution to the GAP is obtained using
an implicit enumerative procedure either via branch-
and-bound scheme or branch-and-price scheme in the
literature. Branch-and-bound method consists of an
upper bounding procedure, a lower bounding proce-
dure, a branching strategy, and a searching strategy. It
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is known that good bounding procedures are crucial
steps in branch-and-bound method. Branch-and-price
proceeds similar to branch-and-bound but obtains the
bounds by solving the LP-relaxations of the subprob-
lems by column generation. For more details on the
valid inequalities and facets for the GAP that are used
in the solution procedures, see [16,32,33,40,55,67].

The first branch-and-bound algorithm for the GAP
is proposed by Ross and Soland [74]. Considering
a minimization problem, they obtain the lower bounds
by relaxing the capacity constraints. Martello and
Toth [53] propose removing the semi-assignment con-
straints where the problem decomposes into a se-
ries of knapsack problems. Due to the quality of the
bounds obtained, this algorithm is frequently used in
the literature for benchmarking purposes. Chalmet and
Gelders [12] introduce the Lagrangian relaxation of the
semi-assignment constraints. Fisher et al. [23] use this
technique with multipliers set by a heuristic adjustment
method to obtain the lower bounds in the branch-and-
bound procedure. Tighter bounds resulted from this
method, significantly reduce the solution time. Guig-
nard and Rosenwein [34] design a branch-and-bound
algorithm with an enhanced Lagrangian dual ascent
procedure that solves a Lagrangian dual at each enu-
meration node and adds a surrogate constraint to the
Lagrangian relaxed model. This algorithm effectively
solves generalized assignment problems with up to 500
variables. Drexl [19] presents a hybrid branch-and-
bound/dynamic programming algorithm where the up-
per bounds are obtained via an efficient Monte Carlo
type heuristic. Numerous lower bounds are proposed
and their benchmark results are presented. Nauss [62]
proposes a branch-and-bound algorithm where lin-
ear programming cuts, Lagrangian relaxation, and sub-
gradient optimization are used to derive good lower
bounds; feasible-solution generators with the heuristic
proposed by Ronen [73] are used to derive good up-
per bounds. Nauss [63] uses similar branch-and-bound
techniques to solve the elastic generalized assignment
problem (EGAP) as well.

The first branch-and-price algorithm for the gen-
eralized assignment problem is proposed by Savels-
bergh [77]. A combination of the algorithms proposed
by Martello and Toth [53] and Jörnsten and Nas-
berg [39] is used to calculate the upper bound and the
pricing problem is proved to be a knapsack problem.

Barnhart et al. [6] reformulate the GAP by applying
Dantzig-Wolfe decomposition to obtain a tighter LP re-
laxation. In order to solve the LP relaxation of the re-
formulated problem, pricing is done by solving a se-
ries of knapsack problems. Pigatti et al. [67] propose
a branch-and-cut-and-price algorithm with a stabiliza-
tion mechanism to speed up the pricing convergence.
Ceselli and Righini [11] present a branch-and-price al-
gorithm for multilevel generalized assignment problem
that is based on decomposition and a pricing subprob-
lem that is a multiple-choice knapsack problem.

Heuristics

Large instances of the GAP are computationally in-
tractable due to the NP-hardness of the problem.
This calls for heuristic approaches whose benefits are
twofold; they can be used as stand-alone algorithms to
obtain good solutions within reasonable time and they
can be used to obtain the upper bounds in exact so-
lution methods such as the branch-and-bound proce-
dure. Although the variety among the heuristics is high,
they mostly fall into one of the following two categories:
greedy heuristics and meta-heuristics.

Klastorin [41] proposes a two phase heuristic algo-
rithm for solving the GAP. In phase one, the algorithm
employs a modified subgradient algorithm to search for
the optimal dual solution and in phase two, a branch-
and-bound approach is used to search the neighbor-
hood of the solution obtained in phase one.

Cattrysse et al. [9] use column generation tech-
niques to obtain upper and lower bounds. In their
method, a column represents a feasible assignment of
a subset of tasks to a single agent. Themaster problem is
formulated as a set partitioning problem. New columns
are added to the master problem by solving a knapsack
problem for each agent. LP relaxation of the set parti-
tioning problem is solved by a dual ascent procedure.

Martello and Toth [54] present a greedy heuristic
that assigns the jobs to machines based on a desirability
factor. This factor is defined as the difference between
the largest and second largest weight factors. The algo-
rithm iteratively considers, among the unassigned jobs,
the one having the highest desirability factor (or regret
factor) and assigns it to its maximum profit agent. This
iterative process establishes an initial solution which
would be improved in the next step of the algorithm
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by simple interchange arguments. This heuristic can be
used in a problem size reduction procedure by fixing
variables to one or to zero.

Relaxation heuristics are developed by Lorena and
Narciso [49] for maximization version of GAP. Feasible
solutions are obtained by a subgradient search in a La-
grangian or surrogate relaxation. Six different heuristics
are derived particularizing relaxation, the step size in
the subgradient search and the method used to obtain
the feasible solution. In a Lagrangian heuristic for GAP,
Haddadi [35] introduces a substitution variable in the
model which is defined as the multiplication of the orig-
inal variables by their corresponding constraint coef-
ficients. The constraints defining these new variables
are then dualized in the Lagrangian relaxation of the
problem and the resulted relaxation is decomposed into
two subproblems: the knapsack problem and the trans-
portation problem. Narciso and Lorena [61] use relax-
ation multipliers with efficient constructive heuristics
to find good feasible solutions.

A breadth-first branch-and-bound algorithm is de-
scribed by Haddadi and Ouzia [36] in which a standard
subgradient approach is used in each node of the de-
cision tree to solve the Lagrangian dual and to obtain
an upper bound. The main contribution in this study is
a new heuristic that is applied to exploit the solution of
the relaxed problem by solving a GAP of smaller size.

Romeijn and Romero Morales [70] study the opti-
mal value function from a probabilistic point of view
and develop a class of greedy algorithms. A family of
weight functions is designed to measure desirability of
assigning each job to a machine which is used by the
greedy algorithms. They derive conditions under which
their algorithm is asymptotically optimal in a proba-
bilistic sense.

Meta-heuristics are widely used to solve GAP in the
literature. They are either adapted by themselves for
GAP or are used in combination with other heuristics
and meta-heuristics.

Variable depth search heuristic (VDSH) is a gen-
eralization of local search in which the size of the
neighborhood adaptively changes to traverse a larger
search space. VDSH is a two phase algorithm. In the
first phase, an initial solution is developed and a lower
bound is obtained. In the second phase, a nested itera-
tive refinement process is applied to improve the qual-
ity of the solution. VDSH is introduced by Amini and

Racer [2] to solve the GAP. In their method, the im-
provement phase consists of a two level nested loop.
The major iteration creates an action set correspond-
ing to each neighborhood structure alternative. Possible
neighborhood structures for GAP are: reassign (shift)
a task from one agent to another, swap the assignment
of two tasks, and permute the assignment of a subset
of the tasks. Then, a subsequence of operations that
achieves the highest saving is obtained through per-
forming someminor iterations. A new solution is estab-
lished based on that and another major operation starts.

Amini and Racer [3] develop a hybrid heuristic
(HH) around the two well known heuristics: VDSH
(see [2,69]) and Heuristic GAP (HGAP) (see [54]). Pre-
vious studies show that HGAP dominates VDSH in
terms of solution time, while VDSH obtains solutions
of better quality within reasonable time. A computa-
tional comparison is conducted with the leading alter-
native heuristic approaches. Another hybrid approach
is by Lourenço and Serra [52] where a MAX-MIN Ant
System (MMAS) (see [81]) is applied with GRASP for
the GAP.

Yagiura et al. [90] propose a variable depth search
(VDS) method for GAP. Their method alternates be-
tween shift and swap moves to explore the solution
space. The main aspect of their method is that, in-
feasible solutions are allowed to be considered. How-
ever in some of the problem instances, the feasible
space is small or contains many small separate regions
and the efficiency of the algorithm is affected. In an-
other study, Yagiura et al. [89] improve VDS by incor-
porating branching search processes to construct the
neighborhoods. They show that appropriate choices of
branching strategies can improve the performance of
VDS. Lin et al. [48] make further observations on the
VDSH method through a series of computational ex-
periments. They consider six greedy strategies for gen-
erating the initial feasible solution and designed several
simplified strategies for the improvement phase of the
method.

Osman [68] develops a hybrid heuristic which com-
bines simulated annealing and tabu search. This algo-
rithm takes advantage of the non-monotonic oscillation
strategy of tabu search as well as the simulated anneal-
ing philosophy.

Yagiura et al. [87] propose a tabu search algorithm
for GAP which utilizes an ejection chain approach. An
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ejection chain is an embedded neighborhood construc-
tion that compounds simple moves to create more com-
plex and powerful moves. The chain considered in their
study is a sequence of shift moves in which every two
successive moves share a common agent. Searching into
the infeasible region is allowed incurring a penalty pro-
portional to the degree of infeasibility. An adaptive ad-
justment mechanism is incorporated for determining
appropriate values of the parameters to control their
influence on the problem. Yagiura et al. [88] improve
their previous method by adding a path relinking ap-
proach which is a mechanism for generating new so-
lutions by combining two or more reference solutions.
The main difference of this method with the previous
one is the way it generates starting solutions for ejection
chains. It is shown that, by this simple change in the al-
gorithm, the improvement in its performance is drastic.

Asahiro et al. [4] develop two parallel heuristic
algorithms based on the ejection chain local search
(EC) presented by Yagiura et al. [87]. One is a simple
parallelization called multi-start parallel EC (MPEC)
and the other one is cooperative parallel EC (CPEC).
In MPEC, each search process independently explores
search space while in CPEC search processes share par-
tial information to cooperate with each other. They
show that their proposed algorithms outperform EC by
Yagiura [87].

Diaz and Fernandez [18], devise a flexible tabu
search algorithm for GAP. Allowing the search to ex-
plore infeasible region and adaptively modification of
the objective function are the sources of flexibility. The
modification of the objective function is caused by the
dynamic adjustment of the weight of the penalty in-
curred for violating feasibility. The main difference of
this method with the tabu search method of Yagiura
et al. [87,88] in exploring the infeasible region is that,
in this method, no solution is qualitatively preferred to
others in terms of its structure.

Chu and Beasley [13] develop a genetic algo-
rithm for GAP that incorporates a fitness-unfitness
pair evaluation function as a representation scheme.
This algorithm uses a heuristic to improve the cost
and feasibility. Feltl and Raidl [21] add new features
to this algorithm including two alternative initializa-
tion heuristics, a modified selection and replacement
scheme for handling infeasible solutions more appro-
priately and a heuristic mutation operator.

Wilson [85] proposes another algorithm for GAP
which is operating in a dual sense. Instead of genetically
improving a set of feasible solutions as in a regular GA,
this algorithm tries to genetically restore feasibility to
a set of near optimal ones. The method starts with po-
tentially optimal but infeasible solutions and then im-
proves feasibility while keeping optimality. When the
feasible solution is obtained, the algorithm uses local
search procedures to improve the solution.

Lorena et al. [50] propose a constructive genetic
algorithm (CGA) for GAP. In CGA, unlike classical
GA, problems are modeled as bi-objective optimiza-
tion problems, which consider the evaluation of two
fitness functions. The evolution process is conducted
to attain the two objectives conserving schemata that
survive to an adaptive threshold test. The CGA al-
gorithm has some new features compared to GA in-
cluding population formation by schemata, recombina-
tion among schemata, dynamic population, mutation
in structure and the possibility of using heuristics in
schemata and/or structure representation.

Lourenço and Serra [51] present two metaheuris-
tic algorithms for GAP. One is a MIN-MAX ant sys-
tem which is combined with local search and tabu
search heuristics. The other one is a greedy random-
ized adaptive search heuristic (GRASP) studied with
several neighborhoods. Both of these algorithms con-
sist of three main steps: (i) constructing a solution by
either a greedy randomized or an ant system approach,
(ii) improving these initial solutions by applying local
search and a tabu search, (iii) updating the parameters.
These three steps are repeated until a stopping criterion
is verified.

Monfared and Etemadi [59] use a neural network
based approach for solving the GAP. They investi-
gate four different methods to structure the energy
function of the neural network: exterior penalty func-
tion, augmented Lagrangian, dual Lagrangian and in-
terior penalty function. They show that augmented La-
grangian can produce superior results with respect to
feasibility and integrality while maintaining feasibility
and stability measures.

Problem generators and benchmark instances play
an important role in comparing/developing new meth-
ods. Romeijn and Romero Morales [71] propose a new
stochastic model for the GAP which can be used to ana-
lyze the random generators in the literature. They com-
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pare the random generators by Ross and Soland [74],
Martello and Toth [53], Trick [83], Chalmet and
Gelders [12], Racer and Amini [69] and conclude these
random generators are not adequate because they tend
to generate easier problem instances when the number
of machines increases. Cario et al. [8] compare GAP
instances generated under two correlation-induction
strategies. Using two exact and four heuristic algo-
rithms from the literature, they show how solutions are
affected by the correlation between costs and the re-
source requirements.

Conclusions

This review presents the applications, extensions, and
solution methods for the generalized assignment prob-
lem. As the GAP receives more attention, it will bemore
likely to see large sets of classical benchmark instances
and comparative results on solution approaches.
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The generalized Benders decomposition, GBD, [7] is
a powerful theoretical and algorithmic approach for
addressing mixed integer nonlinear optimization prob-
lems, as well as problems that require exploitation of
their inherent mathematical structure via decomposi-
tion principles. A comprehensive analysis of the Gen-
eralized Benders Decomposition approach along with
a variety of other approaches for mixed integer non-
linear optimization problems and their applications are
presented in [3].

Formulation

[7] generalized the approach proposed by [1], for ex-
ploiting the structure of mathematical programming
problems stated as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X � Rn

y 2 f0; 1g ;

under the following conditions:
C1) X is a nonempty, convex set and the functions

f : Rn � Rq ! R;

g : Rn � Rq ! Rp

are convex for each fixed y 2 Y = {0, 1}q, while the
functions h: Rn × Rl ! Rm are linear for each fixed
y 2 Y = {0, 1}q.

C2) The set

Zy D

8<
:z 2 Rp :

h(x; y) D 0;
g(x; y) � 0

for some x 2 X

9=
;

is closed for each fixed y 2 Y.
C3) For each fixed y 2 Y \ V, where

V D

8<
:y :

h(x; y) D 0;
g(x; y) � 0;

for some x 2 X

9=
;

one of the following two conditions holds:
i) the resulting problem has a finite solution and has

an optimal multiplier vector for the equalities and
inequalities.

ii) the resulting problem is unbounded, that is, its
objective function value goes to �1.

It should be noted that the above stated formulation is,
in fact, a subclass of the problems for which the GBD
of [7] can be applied. This is due to the specification
of y 2 {0, 1}, while [7] investigated the more general
case of Y � Rq, and defined the vector of y variables
as ‘complicating’ variables in the sense that if we fix y,
then:
a) the problem may be decomposed into a number

of independent problems, each involving a different
subvector of x; or

b) the problem takes a well known special structure for
which efficient algorithms are available; or

c) the problem becomes convex in x even though it is
nonconvex in the joint x-y domain, that is, it creates
special structure.
Case a) may lead to parallel computations of the

independent subproblems. Case b) allows the use of
special-purpose algorithms (e. g., generalized network
algorithms), while case c) invokes special structure
from the convexity point of view that can be useful for
the decomposition of nonconvex optimization prob-
lems. (e. g., [4]).

In the sequel, we concentrate on Y = {0, 1}q due to
our interest in (MINLP; cf. also � Mixed integer non-
linear programming) models. Note also that the analy-
sis includes the equality constraints h(x, y) = 0 which
are not treated explicitly in [7].

Condition C2) is not stringent and it is satisfied if
one of the following holds (in addition to C1), C3)):
i) x is bounded and closed and h(x, y), g(x, y) are con-

tinuous on x for each fixed y 2 Y.
ii) there exists a point zy such that the set

˚
x 2 X : h(x; y) D 0; g(x; y) � zy

�

is bounded and nonempty.
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Note though that mere continuity of h(x, y), g(x, y) on
X for each fixed y 2 Y does not imply that condition
C2) is satisfied. For instance, if X = [1,1] and h(x, y)
= x + y, g(x, y) = �1/x, then zy = (�1, 0) which is not
closed since for x!1, g(x, y)!�1.

Note that the set V represents the values of y for
which the resulting problem is feasible with respect to
x. In others words, V denotes the values of y for which
there exists a feasible x 2 X for h(x, y) = 0, g(x, y) � 0.
Then the intersection of y and V, Y \ V, represents the
projection of the feasible region of the original problem
onto the y-space.

Condition C3) is satisfied if a first order constraint
qualification holds for the resulting problem after fixing
y 2 Y \ V.

The basic idea in generalized Benders decomposi-
tion, GBD, is the generation, at each iteration, of an up-
per bound and a lower bound on the sought solution
of the MINLP model. The upper bound results from
the primal problem, while the lower bound results form
the master problem. The primal problem corresponds
to the original problem with fixed y-variables (i. e., it is
in the x-space only) and its solution provides informa-
tion about the upper bound and the Lagrange multi-
pliers associated with the equality and inequality con-
straints. The master problem is derived via nonlinear
duality theory, makes use of the Lagrange multipliers
obtained in the primal problem, and its solution pro-
vides information about the lower bound, as well as
the next set of fixed y-variables to be used subsequently
in the primal problem. As the iterations proceed, it is
shown that the sequence of updated upper bounds is
nonincreasing, the sequence of lower bounds is non-
decreasing, and that the sequences converge in a finite
number of iterations.

Theoretical Development

This Section presents the theoretical development of
the generalized Benders decomposition, GBD. The pri-
mal problem is analyzed first for the feasible and infea-
sible cases. Subsequently, the theoretical analysis for the
derivation of the master problem is presented.

The Primal Problem

The primal problem results from fixing the y variables
to a particular 0–1 combination, which we denote as yk

where k stands for the iteration counter. The formula-
tion of the primal problem P(yk), at iteration k is:

P(yk)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
x

f (x; yk)

s.t. h(x; yk) D 0
g(x; yk) � 0
x 2 X � Rn :

Note that due to conditions C1) and C3i), the solu-
tion of the primal problem P(yk) is its global solution.

We will distinguish the two cases ‘feasible primal’
and ‘infeasible primal’, and describe the analysis for
each case separately.
� Feasible primal.

If the primal problem at iteration k is feasible, then
its solution provides information on xk, f (xk, yk)
which is the upper bound, and the optimal multi-
plier vectors �k, �k for the equality and inequal-
ity constraints. Subsequently, using this information
we can formulate the Lagrange function as

L(x; y; �k ; �k) D f (x; y)

C �k>h(x; y)C �k>g(x; y):

� Infeasible primal.
If the primal is detected by the NLP solver to be in-
feasible, then we consider its constraints

h(x; yk) D 0;

g(x; yk) � 0;

x 2 X � Rn ;

where the set X, for instance, consists of lower and
upper bounds on the x variables. To identify a feasi-
ble point we can minimize an l1 or l1 sum of con-
straint violations. An l1-minimization problem can
be formulated as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x2X

pX
iD1

˛i

s.t. h(x; yk) D 0
gi (x; yk) � ˛i ; i D 1; : : : ; p;
˛i � 0; i D 1; : : : ; p;

Note that if
Pp

iD1 ˛i = 0, then a feasible point has
been determined.
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Also note that by defining as

˛C D max (0; ˛)

and

gCi (x; y
k) D max

�
0; gi (x; yk)

�
;

the l1-minimization problem is stated as:
8̂
<̂
ˆ̂:
min
x2X

PX
iD1

gCi

s.t. h(x; yk) D 0:

An l1-minimization problem can be stated simi-
larly as:
8<
:
min
x2X

max
1;:::;p

gCi (x; y
k)

s.t. h(x; yk) D 0:

Alternative feasibility minimization approaches aim
at keeping feasibility in any constraint residual once
it has been established. An l1-minimization in these
approaches takes the form:
8̂
ˆ̂<
ˆ̂̂:

min
x2X

X
i2I0

gCi (x; y
k)

s.t. h(x; yk) D 0
gi (x; yk) � 0; i 2 I;

where I is the set of feasible constraints and I0 is the
set of infeasible constraints. Other methods seek fea-
sibility of the constraints one at a time while main-
taining feasibility for inequalities indexed by i 2 I.
This feasibility problem is formulated as:
8̂
ˆ̂<
ˆ̂̂:

min
x2X

X
i2I0

wi gCi (x; y
k)

s.t. h(x; yk) D 0
gi (x; yk) � 0; i 2 I;

and it is solved at any one time.
To include all mentioned possibilities [2] formu-
lated a general feasibility problem (FP) defined as:

(FP)

8̂
ˆ̂<
ˆ̂̂:

min
x2X

X
i2I0

wi gCi (x; y
k)

s.t. h(x; yk) D 0
gi (x; yk) � 0; i 2 I:

The weights wi are nonnegative and not all are zero.
Note that with wi = 1, i 2 I0, we obtain the l1-
minimization. Also in the l1-minimization, there
exist nonnegative weights at the solution such that
X

wi D 1

and wi = 0 if gi(x, yk) does not attain the maximum
value.
Note that infeasibility in the primal problem is de-
tected when a solution of (FP) is obtained for which
its objective value is greater than zero.
The solution of the feasibility problem (FP) pro-
vides information on the Lagrange multipliers for
the equality and inequality constraints which are de-
noted as �

k
, �k respectively. Then, the Lagrange

function resulting from on infeasible primal prob-
lem at iteration k can be defined as:

Lk(x; y; �
k
; �k) D �

k>
h(x; y)C �k>g(x; y):

It should be noted that two different types of La-
grange functions are defined depending on whether
the primal problem is feasible or infeasible. Also, the
upper bound is obtained only from the feasible pri-
mal problem.

The Master Problem

The derivation of the master problem in the GBD
makes use of nonlinear duality theory, and is charac-
terized by the following three key ideas:
i) projection onto the y-space;
ii) dual representation of V; and
iii) dual representation of the projection of the original

problem on the y-space.
In the sequel, the theoretical analysis involved in these
three key ideas is presented.

Projection Onto the y-Space

The original problem can be written as:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
y

inf
x

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X
y 2 Y D f0; 1gq ;

(1)
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where the min operator has been written separately for
y and x. Note that it is infimum with respect to x since
for given y the inner problem may be unbounded. Let
us define �(y) as:

�(y) D

8̂
ˆ̂̂<
ˆ̂̂̂
:

inf
x

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X:

(2)

Note that �(y) is parametric in the y variables and there-
fore, from its definition corresponds to the optimal
value of the original problem for fixed y (i. e., the pri-
mal problem P(yk) for y = yk).

Let us also define the set V as:

V D

8<
:y :

h(x; y) D 0;
g(x; y) � 0

for some x 2 X

9=
; : (3)

Then, problem (1) can be written as:

8<
:
min
y

�(y)

s.t. y 2 Y \ V;
(4)

where �(y) and V are defined by (2) and (3) respec-
tively.

Problem (4) is the projection of the original prob-
lem onto the y-space. Note also that in (3) y 2 Y \ V
since the projection needs to satisfy the feasibility con-
siderations.

Having defined the projection problem onto the y-
space, we can now state the theoretical result of [7].

Theorem 1 (Projection)
i) If (x�, y�) is optimal in the original problem, then y�

is optimal in (4).
ii) If the original problem is infeasible or has unbounded

solution, then the same is true for (4) and vice versa.

Note that the difficulty in the original problem is due to
the fact that �(y) and V are known only implicitly via
(2) and (3).

To overcome the aforementioned difficulty we have
to introduce the dual representation of V and �(y).

Dual of V

The dual representation of V will be invoked in terms
of the intersection of a collection of regions that contain
it, and it is described in the following theorem, due to
[7].

Theorem 2 (Dual of V) Assuming conditions C1) and
C2), a point y 2 Y belongs also to the set V if and only if
it satisfies the (finite) system:

0 � inf L(x; y; �; �); 8�;� 2 �;

� D

(
� 2 Rm ; � 2 Rp : � � 0;

pX
iD1

�i : D 1

)
(5)

Note that (5) is an infinite system because it has to be
satisfied for all �;� 2 �. The dual representation of the
set V needs to be invoked so as to generate a collection
of regions that contain it (i. e., system (5) and system
(5) corresponds to the set of constraints that have to be
incorporated for the case of infeasible primal problems.

Note that if the primal is infeasible and we make use
of the l1-minimization of the type:

8̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂:

min
x

X
i2I

˛i

s.t. h(x; yk) D 0
gi (x; yk) � ˛i ; i 2 I;
x 2 X;

(6)

then the set � results from a straightforward applica-
tion of the KKT gradient conditions to problem (6) with
respect to ˛i.

Having introduced the dual representation of the set
V, which corresponds to infeasible primal problems, we
can now invoke the dual representation of �(y).

Dual Representation of N(y)

The dual representation of �(y) will be in terms of the
pointwise infimum of a collection of functions that sup-
port it, and it is described in the following theorem, due
to [7].
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Theorem 3 (Dual of �(y))

vy D

8̂
ˆ̂̂<
ˆ̂̂̂
:

inf
x

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X

D sup
	;
�0

inf
x2X

L(x; y; �; �);

8y 2 Y \ V;

L(x; y; �; �)

D f (x; y)C �>h(x; y)C �>g(x; y):

(7)

The equality of �(y) and its dual is due to having the
strong duality theorem satisfied because of conditions
C1), C2) and C3).

Substituting (7) for �(y) and (5) for y 2 Y \ V into
problem (4), (which is equivalent to (1)), we obtain:

8̂
<
:̂
min
y2Y

sup
	;
�0

inf
x2X

L(x; y; �; �)

s.t. 0 � inf
x2X

L(x; y; �; �):

Using the definition of supremum as the lowest upper
bound and introducing a scalar �B we obtain:

(M)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y;
B

�B

s.t. �B � inf
x2X

L(x; y; �; �);

8�;8� � 0;
0 � inf

x2X
L(x; y; �; �);

8
�
�;�

�
2 �;

where

L(x; y; �; �) D f (x; y)

C �>h(x; y)C �>g(x; y);

L(x; y; �; �) D �
>
h(x; y)C �>g(x; y);

which is called the master problem.
If we assume that the optimum solution of �(y) in

(2) is bounded for all y 2 Y \ V, then we can replace
the infimum with a minimum. Subsequently, the mas-

ter problem will be as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y;
B

�B

s.t. �B � min
x2X

L(x; y; �; �);

8�;� � 0;
0 � min

x2X
L(x; y; �; �);

8
�
�;�

�
2 �;

where L(x, y, �, �) and L(x; y; �; �) are defined as be-
fore.

Note that the master problem involves, an infinite
number of constraints and hence we would need to
consider a relaxation of the master (e. g., by dropping
a number of constraints) which will represent a lower
bound on the original problem. Note also that the mas-
ter problem features an outer optimization problem
with respect to y 2 Y and inner optimization problems
with respect to x which are in fact parametric in y. It is
this outer-inner nature that makes the solution of even
a relaxed master problem difficult.

The inner minimization problems

min
x2X

L(x; y; �; �); 8�; 8� � 0;

min
x2X

L(x; y; �; �); 8
�
�;�

�
2 �;

are functions of y and can be interpreted as support
functions of �(y). (�(y) is a support function of �(y)
at point yo if and only if �(y) = �(y) and �(y)� �(y),
8y 6D yo.) If the support functions are linear in y, then
the master problem approximates �(y) by tangent hy-
perplanes and we can conclude that �(y) is convex in y.
Note that �(y) can be convex in y even though the orig-
inal problem is nonconvex in the joint x-y space (see
[5]).

In the sequel, we will define the aforementioned
minimization problems in terms of the notion of sup-
port functions, that is:

�(y;�;�) D min
x2X

L(x; y; �; �);

8�; 8� � 0;

�(y;�;�) D min
x2X

L(x; y; �; �);

8
�
�;�

�
2 �:
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Algorithmic Development

In the previous Section we discussed the primal and
master problem for the GBD.We have the primal prob-
lem being a (linear or) nonlinear programming, NLP,
problem that can be solved via available local NLP
solvers (e. g., MINOS 5.3). The master problem, how-
ever, consists of outer and inner optimization prob-
lems, and approaches towards attaining its solution are
discussed in the following.

How to Solve the Master Problem

The master problem has as constraints the two inner
optimization problems (i. e., for the case of feasible pri-
mal and infeasible primal problems) which however
need to be considered for all � and all � � 0 (i.e fea-
sible primal) and all (�;�) 2 � (i. e., infeasible). This
implies that the master problem has a very large num-
ber of constraints.

The most natural approach for solving the master
problem is relaxation [7]. The basic idea in the relax-
ation approach consists of the following:
i) ignore all but a few of the constraints that cor-

respond to the inner optimization problems (e. g.,
consider the inner optimization problems for spe-
cific or fixed multipliers (�1, �1) or (�

1
; �1));

ii) solve the relaxed master problem and check
whether the resulting solution satisfies all of the ig-
nored constraints. If not, then generate and add to
the relaxed master problem one or more of the vio-
lated constraints and solve the new relaxed master
problem again;

iii) continue until a relaxed master problem satisfies all
of the ignored constraints, which implies that an
optimal solution at the master problem has been
obtained or until a termination criterion indicates
that a solution of acceptable accuracy has been
found.

General Algorithmic Statement of GBD

Assuming that the problem has a finite optimal value,
[7] stated the general algorithm for GBD listed below.

Note that a feasible initial primal is needed in Step 1.
However, this does not restrict the GBD since it is pos-
sible to start with an infeasible primal problem. In this
case, after detecting that the primal is infeasible, Step 3b
is applied in which a support function � is employed.

Note that Step 1 could be altered, that is instead of
solving the primal problemwe could solve a continuous
relaxation of the original problem in which the y vari-
ables are treated as continuous bounded by zero and
one:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. h(x; y) D 0
g(x; y) � 0
x 2 X
0 � y � 1:

(8)

If the solution of (8) is integral, then we terminate. If
there exist fractional values of the y variables, then these
can be rounded to the closest integer values and sub-
sequently these can be used as the starting y1 vector
with the possibility of the resulting primal problem be-
ing feasible or infeasible.

Note also that in Step 1, Step 3a and Step 3b a rather
important assumption is made, that is we can find the
support functions � and � for the given values of the
multiplier vectors (�,�) and (�;�). The determination
of these support functions can not be achieved in gen-
eral since these are parametric functions of y and result
from the solution of the inner optimization problems.

Their determination in the general case requires
a global optimization approach as the one proposed by
[5,6]. There exist however, a number of special cases for
which the support functions can be obtained explicitly
as functions of the y variables. We will discuss these
special cases in the next Section. If however, it is not
possible to obtain explicitly expressions of the support
functions in terms of the y variables, then assumptions
need to be introduced for their calculation. These as-
sumptions, as well as the resulting variants of GBD will
be discussed in the next Section. The point to note here
is that the validity of lower bounds with these variants
of GBD will be limited by the imposed assumptions.

Note that the relaxed master problem (see Step 2) in
the first iteration will have as a constraint one support
function that corresponds to feasible primal and will be
of the form:

8<
:

min
y2Y;
B

�B

s.t. �B � �(y;�1; �1):
(9)
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1 Let an initial point y1 2 Y \ V (i.e., by fix-
ing y = y1, we have a feasible primal). Solve
the resulting primal problem P(y1) and ob-
tain an optimal primal solution x1 and opti-
mal multipliers; vectors �1; �1. Assume that
you can find, somehow, the support func-
tion �(y;�1; �1) for the obtained multipliers
�1; �1. Set the counters k = 1 for feasible and
l = 1 for infeasible and the current upper
bound UBD = v(y1). Select the convergence
tolerance � � 0.

2 Solve the relaxed master problem:

(RM)

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

min
y2Y;�B

�B

s.t. �B � �(y;�k ; �k);
k = 1; : : : ;K;

0 � �(y : �l
; �l );

l = 1; : : : ; �:

Let (ŷ; �̂B) be an optimal solution of the
above relaxed master problem. �̂B is a lower
bound on the original problem, that is the
current lower bound is LBD = �̂B . If UBD �
LBD � �, then terminate.

3 Solve the primal problem for y = ŷ, that is the
problem P(ŷ). Then we distinguish two cases:
feasible and infeasible primal:

3a Feasible Primal P(ŷ).
The primal has v(ŷ) finite with an opti-
mal solution x̂ and optimal multiplier vec-
tors �̂; �̂. Update the upper bound UBD =
minfUBD; v(ŷ)g. If UBD � LBD � �, then
terminate. Otherwise, set k = k + 1, �k = �̂,
and �k = �̂. Return to Step 2, assuming we
can somehow determine the support func-
tion �(y;�k+1; �k+1).

3b Infeasible Primal P(ŷ).
The primal does not have a feasible solution
for y = ŷ. Solve a feasibility problem (e.g.,
then l1-minimization) to determine the mul-
tiplier vectors �̂; �̂ of the feasibility problem.
Set l = l + 1; �

l
= �̂, and �l = �̂. Return to

Step 2, assuming we can somehow determine
the support function �(y;�

l+1
; �l+1).

In the second iteration, if the primal is feasible and
(�2, �2) are its optimal multiplier vectors, then the re-

laxed master problem will feature two constraints and
will be of the form:

8̂
<̂
ˆ̂:

min
y2Y;
B

�B

s.t. �B � �(y;�1; �1)
�B � �(y;�2; �2):

(10)

Note that in this case the relaxed master problem
(10), will have a solution that is greater or equal to the
solution of (9). This is due to having the additional con-
straint. Therefore, we can see that the sequence of lower
bounds that is created from the solution of the relaxed
master problems is nondecreasing. A similar argument
holds true in the case of having infeasible primal in the
second iteration.

Note that since the upper bounds are produced by
fixing the y variables to different 0–1 combinations,
there is no reason for the upper bounds to satisfy any
monotonicity property. If we consider however the up-
dated upper bounds (i. e., UBD = mink �(yk)), then the
sequence for the updated upper bounds is monotoni-
cally nonincreasing since by their definition we always
keep the best (least) upper bound.

The termination criterion for GBD is based on the
difference between the updated upper bound and the
current lower bound. If this difference is less than or
equal to a prespecified tolerance " � 0 then we termi-
nate. Note though that if we introduce in the relaxed
master integer cuts that exclude the previously found
0–1 combinations then the termination criterion can be
met by having found an infeasible master problem (i. e.,
there is no 0–1 combination that makes it feasible).

Finite Convergence of GBD

[7] proved finite convergence of the GBD algorithm
which is as follows:

Theorem 4 (Finite convergence) If C1), C2) and C3)
hold and Y is a discrete set, then the GBD algorithm ter-
minates in a finite number of iterations for any given � >
0 and even for � = 0.

Variants of GBD

In the previous Section we discussed the general algo-
rithmic statement of GBd and pointed out a key as-
sumption made with respect to the calculation of the
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support functions �(y;�,�) and �(y;�;�) from the fea-
sible and infeasible primal problems respectively. In
this section, we will discuss a number of variants of
GBD that result from addressing the calculation of the
aforementioned support functions either rigorously for
special cases or making assumptions that may not pro-
vide valid lower bounds in the general case.

Variant 1 of GBD: V1-GBD

This variant of GBD is based on the following assump-
tion that was denoted by [7] as Property (P):

Theorem 5 (Property (P)) For every � and � � 0, the
infimum of L(x, y, �, �) with respect to x 2 X (i. e., the
support �(y;�, �)) can be taken independently of y so
that the support function �(y;�, �) can be obtained ex-
plicitly with little or no more effort than is required to
evaluate it at a single value of y. Similarly, the support
function �(y;�;�), (�;�) 2 � can be obtained explic-
itly.

[7] identified the following two important classes of
problems where Property (P) holds:
� Class 1: f , h, g are linearly separable in x and y.
� Class 2: Variable factor programming.

In class-1 problems, we have

f (x; y) D f1(x)C f2(y);

h(x; y) Dh1(x)C h2(y);

g(x; y) Dg1(x)C g2(y):

In class-2 problems, we have

f (x; y) D�
X
i

f i(xi)yi ;

g(x; y) j D
X
i

xiyi � c:

In [8] problems, we have

f (x; y) D
X
k

X
i

f i(xi(k))yi C
X
i

gi (yi);

g(x; y) j D�
X
i

xi(k)yi � L(k):

In the sequel, we will discuss the v1-GBD for class-
1 problems since this by itself defines an interest-
ing mathematical structure for which other algorithms
(e. g., outer approximation) has been developed.

V1-GBD Under Separability

Under the separability assumption, the support func-
tions �(y;�k, �k) and �(y;�

l
; �l ) can be obtained as ex-

plicit functions of y since:

�(y;�k; �k) D min
x2X

L(x; y; �k�k)

Dmin
x2X
f f (x; y))C �k>h(x; y)C �k>g(x; y)g

Dmin
x2X
f f1(x)C f2(y)

C �k>(h1(x)C h2(y))C �k>(g1(x)C g2(y))g

D f2(y)C �k>h2(y)C �k>g2(x)

Cmin
x2X

[ f1(x)C �k>h1(x)C �k>g1(x)]:

Note that due to separability we end up with an ex-
plicit function of y and a problem only in x that can be
solved independently.

Similarly, the support function �(y;�
l
; �l ) is

�(y;�
l
; �l ) D min

x2X
L(x; y; �

l
; �l )

Dmin
x2X
f�

l>
h(x; y)C �l>g(x; y)g

Dmin
x2X
f�

l>
(h1(x; y)C h2(x; y))

C �l> �g1(x; y)C g2(x; y)
�
g

D�
l>
h2(y)C �l>g2(y)

Cmin
x2X

h
�
l>
h1(x)C �l>g1(x)

i
:

Note that to solve the independent problems in x,
we need to know the multiplier vectors (�k, �k) and
(�

l
; �l ) from feasible and infeasible primal problems

respectively.
Under the separability assumption, the primal

problem for fixed y = yk takes the form

8̂
<̂
ˆ̂:

min
x2X

f1(x)C f2(yk)

s.t. h1(x) D �h2(yk)
g1(x) � �g2(yk):

Now, we can state the algorithmic procedure for the v1-
GBD under the separability assumption.

Note that if in addition to the separability of x and
y, we assume that y participates linearly (i. e., conditions
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1 Let an initial point y1 2 Y\V. Solve the pri-
mal P(y1) and obtain an optimal solution x1,
and multiplier vectors �1, �1. Set the counters
k = 1, l = 1, and UBD = v(y1). Select the con-
vergence tolerance � � 0.

2 Solve the relaxed master problem8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y;
B

�B

s.t. �B � f2(y) + �k>h2(y)
+�k>g2(y) + Lk

1 ;

k = 1; : : : ;K;

0 � �B�
l>
h2y + �l>g2(y) + Ll

1;

l = 1; : : : ; �;

where

Lk
1 = min

x2X f f1(x) + �k>h1(x) + �k>g1(x)g,

Lk
1 = min

x2X f f1(x) + �
l>
h1(x) + �l>g1(x)g

are solutions of the above stated independent
problems.
Let (ŷ; �̂B) be an optional solution. �̂B is a
lower bound, that is LBD = �̂B . If UBD �
LBD � �, then terminate.

3 As in GBD.

Algorithm for v1-GBD

for outer approximation algorithm), then we have

f2(y) D c>y;

h2(y) D Ay;

g2(y) D By;

in which case the relaxed master problem of Step 2
of v1-GBD will be a linear 0–1 programming problem
with an additional scalar �B, which can be solved with
available solvers (e. g., CPLEX, ZOOM, SCICONIC).

If the y variables participate separably but in a non-
linear way, then the relaxed master problem is of 0–1
nonlinear programming type.

Note that due to the strong duality theorem we do
not need to solve the problems for Lk

1 , L
l
1 since their op-

timum solutions are identical to the ones of the corre-
sponding feasible and infeasible primal problems with
respect to x respectively.

Variant 2 of GBD: V2-GBD

This variant of GBD is based on the assumption that we
can use the optimal solution xk of the primal problem
P(yk) along with the multiplier vectors for the determi-
nation of the support function �(y;�k, �k).

Similarly, we assume that we can use the optimal
solution of the feasibility problem (if the primal is in-
feasible) for the determination of the support function
�(y;�k ; �k).

The aforementioned assumption fixes the x vec-
tor to the optimal value obtained from its correspond-
ing primal problem, and therefore eliminates the inner
optimization problems that define the support func-
tions. It should be noted that fixing x to the solution of
the corresponding primal problem may not necessarily
produce valid support functions in the sense that there
would be no theoretical guarantee for obtaining lower
bounds can be claimed in general.

The v2-GBD algorithm can be stated as follows:

1 Let an initial point y1 2 Y \ V.
Solve the primal problem P(y1) and obtain an
optimal solution x1 and multiplier vectors �1,
�1. Set the counters k = 1, l = 1, and UBD =
v(y1). Select the convergence tolerance � � 0.

2 Solve the relaxed master problem:8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y2Y�B

�B

s.t. �B � L(xk ; y; �k ; �k);
k = 1; : : : ;K;

0 � L(xl ; y; �
l
; �l );

l = 1; : : : ; �;

L(xk ; y; �k ; �k)
= f (xk ; y) + �k>h(xk ; y) + �k>g(xk ; y),

L(xl ; y; �
l
; �k)

= �
k>

h(xl ; y) + �k>g(xl ; y)

are the Lagrange functions evaluated at the op-
timal solution xk of the primal problem.
Let (ŷ; �̂B) be an optimal solution. �̂B is a
lower bound, that is LBD = �̂B . If UBD �
LBD � �; then terminate.

3 As in GBD.

Algorithm for v2-GBD
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Note that since y 2 Y = {0� 1 }, the master problem
is a 0–1 programming problem with one scalar vari-
able �B. If the y variables participate linearly, then it
is a 0–1 linear problem which can be solved with stan-
dard branch and bound algorithms. In such a case, we
can introduce integer cuts of the form:
X
i2B

yi �
X
i2NB

yi � jBj � 1;

where B = {i: yi = 1}, NB = {i: yi = 0}, |B| is the cardinal-
ity of B, which eliminate the already found 0–1 com-
binations. If we employ such a scheme, then an alter-
native termination criterion is that of having infeasible
relaxed master problems. This of course implies that all
0–1 combinations have been considered.

It is of considerable interest to identify the condi-
tions which if satisfied make the assumption in v2-GBD
a valid one. The assumption in a somewhat different re-
stated form is that:

�(y;�k; �k ) D min
x2X

L(x; y; �k ; �k )

� L(xk ; y; �k; �k ); k D 1; : : : ;K;

�(y;�
l
; �l ) D min

x2X
L(x; y; �

l
; �l )

� L(xl ; y; �
l
; �l ); l D 1; : : : ; �;

that is, we assume that the Lagrange function evalu-
ated at the solution of the corresponding primal are
valid underestimators of the inner optimization prob-
lems with respect to x 2 X.

Due to condition C1) the Lagrange functions L(x, y,
�k, �k), L(x; y; �

l
; �l ) are convex in x for each fixed y

since they are linear combinations of convex functions
ix x.

L(x, y, �k, �k), L(xl ; y; �
l
; �l ) represent local lin-

earizations around the points xk and xk of the support
functions �(y;�k, �k), �(y;�

l
; �l ) respectively. There-

fore, the aforementioned assumption is valid if the pro-
jected problem �(y) is convex in y. If however, the pro-
jected problem �(y) is convex in y. If however, the pro-
jected problem �(y) is nonconvex, then the assump-
tion does not hold, and the algorithm may terminate at
a local (not global) solution or even at a nonstationary
point.

Note that in the above analysis we did not assume
that Y = {0, 1}l, and hence the argument is applicable
even when the y-variables are continuous.

It is also very interesting to examine the validity of
the assumption made in v2-GBD under the conditions
of separability of x and y and linearity in y (i. e., OA
conditions). In this case we have:

f (x; y) D c>yC f1(x);

h(x; y) D AyC h1(x);
g(x; y) D ByC g1(x):

Then, the support function for feasible primal becomes

�(y;�k ; �k) D c>yC �k>(Ay)

C �k>(By)Cmin
x2X

f1(x)C �k>h1(x)C �k>g1(x);

which is linear in y and hence convex in y. Note also
that since we fix x = xk, the minx 2 X is in fact an eval-
uation at xk. Similarly the case for �(y;�

k
; �k ) can be

analyzed.
Therefore, the assumption in v2-GBD holds true if

separability and linearity hold which covers also the
case of linear 0–1 y variables. This way under condi-
tions C1), C2), C3) the v2-GBD determined the global
solution for separability in x and y and linearity in y
problems.

Variant 3 of GBD: V3-GBD

This variant was proposed in [4] and denoted as global
optimum search, GOS, and was applied to continuous
as well as 0–1 set Y. It uses the same assumption as the
one in v2-GBD but in addition assumes that:
i) f(x, y), g(x, y) are convex functions in y for every

fixed x; and
ii) h(x, y) are linear functions in y for every x.
This additional assumption was made so as to create
special structure not only in the primal but also in the
relaxed master problem. The type of special structure in
the relaxed master problem has to do with its convexity
characteristics.

The basic idea in GOS is to select the x and y vari-
ables in a such a way that the primal and the relaxed
master problem of the v2-GBD satisfy the appropriate
convexity requirements and hence attain their respec-
tive global solutions.

We will discuss v3-GBD first under the separability
of x and y and then for the general case.
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V3-GBD Under Separability

Under the separability assumption we have:

f (x; y) D f1(x)C f2(y);

h(x; y) D h1(x)C h2(y);

g(x; y) D g1(x)C g2(y):

The additional assumption that makes v3-GBD dif-
ferent from v2-GBD implies that
i) f2(y), g2(y) are convex in y; and
ii) h2(y) are linear in y.
Then, the relaxed master problem will be:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
y;
B

�B

s.t. �B � f2(y)C �k>h2(y)C �k>g2(y)
C
�
f1(xk)C �k>h1(xk)C �k>g1(xk)

�
;

k D 1; : : : ;K;

0 � �
l>
h2(y)C �l>g2(y)

C
h
�
l>
h1(xl )C �l>g1(xl )

i
;

l D 1; : : : ; L:

Note that the additional assumption makes the
problem convex in y if y represent continuous variables.
If y 2 Y = {0, 1}, and the y-variables participate linearly
(i. e., f2, g2 are linear in y), then the relaxed master is
convex. Therefore, this case represents an improvement
over v3-GBD, and application of v3-GBD will result in
valid support functions, which implies that the global
optimum of the original problem will be obtained.

V3-GBDWithout Separability

The global optimum search, GOS, aimed at exploiting
and invoking special structure for nonconvex nonsepa-
rable problems
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min f (x; y)
s.t. h(x; y) D 0

g(x; y) � 0
x 2 X � Rn

y 2 Y � Rq;

under the conditions C1), C2), C3) and the additional
condition:
i) f(x, y), g(x, y) are convex functions in y for every

fixed x;

ii) h(x, y) are linear functions in y for every x.
Hence both the primal and the relaxed problems attain
their respective global solutions.

Note that since x and y are not separable, then the
GOS cannot provide theoretically valid functions in the
general case, but only if the �(y) is convex (see the Sec-
tion v2-GBD).

The global optimization approach (GOP) of [5,6]
overcomes this fundamental difficulty and guarantees
�-global optimality for several classes of nonconvex
problems.

GBD in Continuous and Discrete-Continuous
Optimization

We mentioned in the Section Formulation that the
original problem represents a sub-class of the prob-
lems for which the generalized Benders decomposition,
GBD, can be applied. This is because we considered
the y 2 Y set to consist of 0–1 variables, while [7] pro-
posed an analysis for Y being a continuous, discrete or
continuous-discrete set.

The main objective in this section is to present the
modifications needed to carry on the analysis for con-
tinuous Y and discrete-continuous Y set.

The analysis presented for the primal problem re-
mains the same. The analysis though for the Master
problem changes only in the dual representation of the
projection of the original problem (i. e., v(y)) on the y-
space. In fact, Theorem 3 is satisfied if in addition to the
two conditions mentioned in C3) we have that:
iii) for each fixed y, v(y) is finite, h(x, y), g(x, y) and

f(x, y) are continuous on X, X is closed and the
"-optimal solution of the primal problem P(y) is
nonempty and bounded for some " � 0.
Hence, Theorem 3 has as assumptions: C1) and C3),

which now has i), ii) and iii). The algorithmic proce-
dure remains the same, while the theorem for the fi-
nite convergence becomes finite "-convergence and re-
quires additional conditions, which are described in the
following theorem:

Theorem 6 (Finite "-convergence) Let
i) Y be a nonempty subset of V;
ii) X be a nonempty convex set;
iii) f , g be convex on X for each fixed y 2 Y;
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iv) h be linear on X for each fixed y 2 Y;
v) f , g, h be continuous on X × Y;
vi) the set of optimal multiplier vectors for the primal

problem be nonempty for all y 2 Y, and uniformly
bounded in some neighborhood of each such point.

Then, for any given � > 0 the GBD terminates in a finite
number of iterations.

Assumption i) (i. e., Y � V) eliminates the possibility
of Step 3b, and there are many applications in which Y
� V holds (e. g., variable factor programming). If how-
ever, Y6�V, then we may need to solve step 3b infinitely
many successive times. In such a case, to preserve fi-
nite �-convergence, we can modify the procedure so as
to finitely truncate any excessively long sequence of suc-
cessive executions of Step 3b and return to Step 3a with
by equal to the extrapolated limit point which is assumed
to belong to Y \ V. If we do not make the assumption
Y�V, then the key property to seek is that V has a rep-
resentation in terms of a finite collection of constraints
because if this is the case then Step 3b can occur at most
a finite number of times. Note that if in addition to C1),
we have that X represents bounds on the x-variables or
X is given by linear constraints, and h, g satisfy the sep-
arability condition, then V can be represented in terms
of a finite collection of constraints.

Assumption vi) requires that for all y 2 Y there ex-
ist optimal multiplier vectors and that these multiplier
vectors do not go to infinity, that is they are uniformly
bounded in some neighborhood of each such point. [7]
provided the following condition to check the uniform
boundedness:

If X is a nonempty, compact, convex set and there
exists a point x 2 X such that

h(x; y) D 0;

g(x; y) < 0;

then the set of optimal multiplier vectors is uniformly
bounded in some open neighborhood of y.
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In the context of economics and optimization, a funda-
mental role is nowadays recognized to generalized con-
cavity which has been widely studied starting from the
pioneering work of K. Arrow and A.C. Enthoven [1].

The study of generalized concavity of a vector val-
ued function is not so deep as in the scalar case; never-
theless some classes with related properties have been
suggested in order to obtain sufficient optimality con-
ditions and the connectedness of the set of all efficient
points.

In this order of ideas, since there are different ways
in generalizing to the multi-objective case the defi-
nitions of generalized concave functions given in the
scalar case, we introduce the following classes of gen-
eralized concave vector valued functions, referring to
bibliography for further deepenings.

Let X be a convex subset of the n-dimensional space
Rn and let F be a vector function from X to Rs. Assume
that Rs is partially ordered by the convex closed cone
U with vertex at the origin 0 2 U and with nonempty
interior (i. e. intU 6D;). Set U0 = U \ {0}.

Definition 1 The function F is said to beU-concave if:

F(x1 C �(x2 � x1))

2 F(x1)C �(F(x2) � F(x1))CU;

for all � 2 (0, 1) and all x1, x2 2 S.

Definition 2 The function F is said to be U-
quasiconcave if:

x1; x2 2 S; F(x2) 2 F(x1)CU

imply

F(x1 C �(x2 � x1)) 2 F(x1)C U

for all � 2 (0, 1).

Definition 3 The function F is said to be U0-
quasiconcave if:

x1; x2 2 S; F(x2) 2 F(x1)CU0

imply

F(x1 C �(x2 � x1)) 2 F(x1)C U0

for all � 2 (0, 1).

Definition 4 The function F is said to be intU-
quasiconcave if:

x1; x2 2 S; F(x2) 2 F(x1)C intU

imply

F(x1 C �(x2 � x1)) 2 F(x1)C intU

for all � 2 (0, 1).

In [12], D.T. Luc suggests another class of quasiconcave
functions which results less general than the one given
in Definition 2, but which plays an important role in
establishing the connectedness of the set of all efficient
points.

Definition 5 The function F is said to be Luc U-
quasiconcave if:

y 2 Rs ; x1; x2 2 S; F(x1); F(x2) 2 yC U

imply

F(x1 C �(x2 � x1)) 2 yC U

for all � 2 (0, 1).
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In the scalar case, that is, when s = 1 and U = R+, Defi-
nitions 1, 2 and 5, 3 and 4 reduce to the ordinary defini-
tions of concavity, quasiconcavity and semistrictly qua-
siconcavity, respectively.

Inclusion relationships among the previous classes
of functions are given in the following Theorem:

Theorem 6
i) if F is U-concave, then F is Luc U-quasiconcave;
ii) if F is Luc U-quasiconcave, then F is U-

quasiconcave;
iii) if F is U-concave and U is a pointed cone, then F is

intU-quasiconcave;
iv) if F is U-concave and U is a pointed cone, then F is

U0-quasiconcave.

Proof i
i) Assume that F(x1), F(x2) 2 y + U; it follows (1 �

�)F(x1) 2 (1� �)y + U and �F(x2) 2 �y+U, so that
(1� �)F(x1) + �F(x2) 2 (1� �)y + �y +U = y + U.

ii) It is sufficient to choose y = F(x1).
iii) Assume that F(x2) 2 F(x1) + intU, that is, F(x2) �

F(x1) 2 intU. Since F is U-concave we have F(x1 +
�(x2 � x1)) 2 F(x1) + �(F(x2) � F(x1)) + U. The
thesis follows taking into account that for a pointed
cone the property intU + U = intU holds.

iv) The proof is similar to the one given in iii). �

Remark 7 When U is the Paretian cone U = Rs
C, com-

ponentwise generalized concavity implies generalized
concavity. For instance:
� if any component of F is quasiconcave then F is U-

quasiconcave;
� if any component of F is strongly quasiconcave then

F is either intU-quasiconcave or U0-quasiconcave;
� if any component of F is upper semicontinuous

and semistrictly quasiconcave then F is either intU-
quasiconcave or U0-quasiconcave.

It can be proven that F is Rs
C-concave (Luc Rs

C-
quasiconcave) if and only if all its components are con-
cave (quasiconcave); such a property does not hold for
the other given classes of generalized concave func-
tions, so that the inclusion relationships stated in i) and
ii) of Theorem 6 are strict.

In the particular case of a continuous bicrite-
ria function (s = 2, U = R2

C), the class of Luc U-
quasiconcave functions collapses to the class of U-
quasiconcave functions [8].

Remark 8 The following examples point out that
the classes of intU-quasiconcave and U0-quasiconcave
functions are not comparable.

Consider the function F: R! R3, F(x) = (x, x2�x,
�x2+x) and the Paretian cone U = R3

C. F is intU-
quasiconcave since there do not exist x, y 2 R such
that F(y) > F(x); on the other hand, F is not U0-
quasiconcave since F(1) = (1, 0, 0) 2 F(0) + R3

C \ {0},
but F(1/2) 62 F(0) + R3

C \ {0}.
Consider now the function F: R ! R2, F(x) = (x,

f (x)) with f (x) = 0 if x � 1, f (x) = x � 1 if x > 1 and the
Paretian cone U = R2

C. It is easy to verify that F is U0-
quasiconcave, but F is not U-quasiconcave since F(2) =
(2, 1) 2 F(0) + intR2

C, and F(1) = (1, 0) 62 F(0) + intR2
C.

Remark 9 In the scalar case an upper semicontinu-
ous and semistrictly quasiconcave function is also qua-
siconcave; this property is lost for a vector valued func-
tion as is shown in the following example, so that the
two classes are not comparable: consider the function F:
R!R2 defined as F(x) = (x sin 1/x,�x sin 1/x) if x 6D 0;
F(x) = 0 if x = 0. F is continuous and U0-quasiconcave
but it is not U-quasiconcave at x = 0.

Remark 10 As is known, in the scalar case there exists
a characterization of quasiconcave functions in the dif-
ferentiable case; unfortunately such a characterization
cannot be extended in the vector case (for further de-
veloping see [7]).

Consider a differentiable vector valued function F. As
for the quasiconcave case, there are different ways to
extend the concept of pseudoconcavity introduced by
O.L. Mangasarian [14]. With the aim to state some suf-
ficient optimality conditions, we introduce the follow-
ing two classes of functions, where JF(x) denotes the Ja-
cobian matrix of F evaluated at x.

Definition 11 F is said to be U-weakly pseudoconcave
if:

x1; x2 2 S; F(x2) 2 F(x1)C U0

imply

JF (x1)d 2 U0; d D
x2 � x1
kx2 � x1k

:

Definition 12 F is said to be U-pseudoconcave if:

x1; x2 2 S; F(x2) 2 F(x1)C U0
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imply

JF(x1)d 2 intU; d D
x2 � x1
kx2 � x1k

:

When s = 1 andU = R+, Definitions 11, 12 reduce to the
ordinary definition of a pseudoconcave function.

Obviously, a function which is U-pseudoconcave
is U-weakly quasiconcave too; a linear function is U-
concave and U-weakly pseudoconcave with respect to
every cone U with vertex at the origin 0 2 U but it is
notU-pseudoconcave. As a consequence the class ofU-
pseudoconcave functions is properly contained in the
class of U-weakly pseudoconcave functions.

Remark 13 When U is the Paretian cone U = Rs
C, we

have:
� if any component of F is pseudoconcave then F is

Rs
C-weakly pseudoconcave;

� if any component of F is strictly pseudoconcave
then F is either Rs

C-weakly pseudoconcave or Rs
C-

pseudoconcave.

Efficiency

Consider the following vector optimization problem:

(P) U �max F(x); x 2 S � X;

where X is an open set of Rn, F: X! Rs, and U 2 Rs is
a nontrivial cone with vertex at the origin 0 2 U, intU
6D ;.

A point x0 2 S is said to be:
� weakly efficient if F(x) 62 F(x0) + intU, for all x 2 S;
� efficient if F(x) 62 F(x0) + U0, for all x 2 S;
� strictly efficient if F(x) 62 F(x0) + U, for all x 2 S, x 6D

x0.
If the previous conditions are verified in I \ S, where
I is a suitable neighborhood of x0, then x0 is said to be
a local weakly efficient point a local efficient point and
a local strictly efficient point, respectively.

In the scalar case (s = 1, U = R+), the definitions
of a (local) weakly efficient point and an (local) efficient
point reduce to the ordinary definition of a (local) max-
imum point, while a (local) strictly efficient point re-
duces to the ordinary definition of a (local) strict maxi-
mum point. Obviously (local) strictly efficiency implies
(local) efficiency and (local) efficiency implies (local)
weakly efficiency.

The concept of efficiency was originally introduced
by V. Pareto in the early 1900s when he used the pos-
itive orthant Rs

C to generate the order; therefore when
U = Rs

C efficient points are often called Pareto points.
As in the scalar case, vector generalized concavity

plays an important role in investigating relationships
between local and global optima. Following [14], the
assumption of convexity of the feasible region can be
weakened requiring that S is star-shaped at the point
x0.

A set S � X is said to be star-shaped at x0 2 S if for
every x 2 S it results:

[x; x0] D ftx C (1 � t)x0 : t 2 [0; 1]g � S:

Since optimality results involve a feasible point, from
now on we will consider generalized concavity at
a point x0; this means that all the given definitions hold
with x1 = x0. The following theorem shows that, under
suitable assumption of generalized concavity, local effi-
ciency implies global efficiency.

Theorem 14 Let us consider problem (P) where S is
a star-shaped set at x0.
i) if x0 is a local weakly efficient point and F is intU-

quasiconcave at x0, then x0 is a weakly efficient point
for (P);

ii) if x0 is a local efficient point and F is U0-
quasiconcave at x0, then x0 is an efficient point for
(P);

iii) if x0 is a strict local efficient point and F is U-
quasiconcave at x0, then x0 is a strictly efficient point
for (P);

iv) if x0 is a local efficient point and F is U-
pseudoconcave at x0, then x0 is an efficient point for
(P).

Proof i) Assume that there exists x� 2 S such that
F(x�) 2 F(x0) + intU. Since F is intU-quasiconcave at
x0, we have F(x0 + �(x� � x0)) 2 F(x0) + intU for all �
2 (0, 1) and such a relation implies, choosing � small
enough, the non local weakly efficiency of x0.

ii), iii) follow with similar arguments.
iv) Assume that there exists x� 2 S such that F(x�) 2

F(x0) + U0. Since F is U-pseudoconcave at x0, we have
JF(x0)d 2 intU, d = (x� � x0)/kx� � x0k, that is

lim
t!0C

F(x0 C td) � F(x0)
t

2 intU
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and this implies the existence of a suitable � > 0 such
that F(x0 + td) � F(x0) 2 intU for all t 2 (0, �).

Set t = �kx� � x0k; we have F(x0+�(x��x0))2 F(x0)
+ intU for all � 2 (0, �/kx� � x0k) and this contradicts
the local efficiency of x0. �
Corollary 15 Let us consider problem (P) where S is
locally star shaped at x0.
i) If U is a pointed cone and F is U-concave at x0, then

a local efficient point x0 is an efficient point too.
ii) If F is linear, then a local efficient point x0 is an effi-

cient point too.

Optimality Conditions

Now we point out the role played by vector general-
ized concavity in stating sufficient optimality condi-
tions. With this aim consider the necessary optimality
conditions stated in the following Theorem:

Theorem 16 Let us consider problem (P) where F is dif-
ferentiable at x0.
i) If x0 is a local interior efficient point for (P), then

9˛ 2 U� n f0g : ˛> JFx0 D 0; (1)

where U� denotes the positive polar cone of U.
ii) If x0 is a local efficient point for (P) then

JFx0 (v) … intU; 8v 2 T(S; x0); v ¤ 0: (2)

Here, T(S, x0) is the Bouligand tangent cone, defined as:

T(S; x0) D

8<
:v :

9f˛ng � R; fxng � S;
˛n !1; xn ! x0;
˛n(xn � x0)! v

9=
; :

The following theorem points out the different roles
played by weakly pseudoconcavity and pseudoconcav-
ity:

Theorem 17 Let us consider problem (P) where S is
a star shaped set and F is differentiable at x0.
i) if (1) holds and F is U-pseudoconcave at x0, then x0

is an efficient point for (P);
ii) if (1) holds with ˛ 2 intU� and F is U-weakly pseu-

doconcave at x0, then x0 is an efficient point for (P);
iii) if (2) holds and F is U-pseudoconcave at x0, then x0

is an efficient point for (P);
iv) if JFx0 (v) 62U

0, for all v 2 T(S, x0) and F is U-weakly
pseudoconcave at x0, then x0 is an efficient point for
(P).

Proof i) Assume that there exists x� 2 S such that
F(x�) 2 F(x0) + U0. Since F is U-pseudoconcave at x0,
we have JFx0 (d) 2 intU, d = (x� � x0)/kx� � x0k, so that
˛|(JFx0 (d)) > 0 and this contradicts (1).

ii) Assume that there exists x� 2 S such that F(x�)
2 F(x0) + U0. Since F isU-weakly pseudoconcave at x0,
we have JFx0 (d) 2 U0, d = (x� � x0)/kx� � x0k, so that
˛|(JFx0 (d)) > 0 and this contradicts (1).

iii), iv) follow immediately. �
When F is a linear vector valued function, Theorem
17ii) can be specified by means of the following theo-
rem:

Theorem 18 Consider problem (P) where F is linear
and U is a pointed cone.

An interior point x0 is an efficient point for (P) if and
only if there is ˛ 2 intU� such that ˛|JFx0 = 0.

F. John Generalized Conditions

Now we stress the role of vector generalized concavity
in stating the sufficiency of F. John condition.

With this aim consider the vector problem (P) in the
following form:

(P)

(
U �max F(x);

x 2 S D fx 2 X : G(x) 2 Vg ;

where X � Rn is an open set, F: X ! Rs, G: X ! Rm

are differentiable functions and U � Rs, V � Rm are
closed, pointed, convex cones with vertices at the origin
and nonempty interiors.

Denote with U�, V� the positive polar cones of U
and V , respectively, and let x0 be a feasible point such
that G(x0) = 0.

The following F. John necessary optimality condi-
tions hold:

Theorem 19 If x0 is a local efficient point for (P), then

9(˛F ; ˛G) ¤ 0; ˛F 2 U�; ˛G 2 V� :

˛>F JFx0 C ˛
>
G JGx0

D 0:
(3)

The following theorem points out the role of gener-
alized concavity in stating sufficient optimality condi-
tions:

Theorem 20 Let us consider the vector optimization
problem (P) where S is a star shaped set at x0 and F, G
are differentiable at x0.
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i) if F is U-weakly pseudoconcave at x0, G is V-
quasiconcave at x0, and (3) holds with ˛F 2 intU�,
then x0 is an efficient point for (P).

ii) if F is U-pseudoconcave at x0, G is V-quasiconcave
at x0, and (3) holds with ˛F 2 U� \ {0}, then x0 is an
efficient point for (P).

Proof i) Suppose that there exists x� 2 S such that
F(x�) 2 F(x0) + U0. Since F is U-weakly pseudocon-
cave at x0 and G is V-quasiconcave at x0 we have, re-
spectively, JFx0 (x

� � x0) 2 U0, JGx0
(x� � x0) 2 V and

thus ˛>F JFx0 (x
� � x0) > 0, ˛>G JGx0

(x� � x0)� 0 since ˛F
2 intU� and ˛G 2 V�. Consequently ˛>F JFx0 (x

� � x0)
+ ˛>G JGx0

(x� � x0) > 0 and this contradicts (3).
ii) similar to the one given in i). �

Connectedness of the Efficient Points Sets

A vector maximization problem normally has a contin-
uum of optimal alternatives and it may be necessary to
select one or several of these which are best with respect
to some additional auxiliary criterion, so that a desir-
able property is connectedness since it provides a pos-
sibility of continuous moving from one efficient point
to any other along optimal alternatives only. Consider
problem (P) where F = (f 1, . . . , f s) is a continuous func-
tion and U is the Paretian cone; denote with S(a) the
upper level set associated to the point a 2 Rs, that is
S(a) = {x 2 S: F(x) 2 a + U}. The following fundamen-
tal result was given by A.R. Warburton [16].

Theorem 21
i) if f 1, . . . , f s are quasiconcave functions on the closed

convex set S and S(a) is compact for each a 2 f 1(S) ×
� � � × f s(S), then the set of all weakly Pareto points is
nonempty and connected;

ii) if f 1, . . . , f s are strongly quasiconcave functions on
the closed convex set S and S(a) is compact for each a
2 f 1(S) × � � � × f s(S), then the set of all Pareto points
is nonempty and connected.

Obviously the compactness of sets S(a) is verified when
S is a compact set; in this last case for a bicriteria
and three criteria, Theorem 21ii) holds, requiring the
weaker assumption of semistrictly quasiconcavity in-
stead of strongly quasiconcavity [9,15].

In [12], Luc extends Theorem 21i) with respect to
a pointed closed convex cone requiring that F is U-
continuous.

F is said to beU-continuous at x 2 S if for any neigh-
borhood H of F(x), there exists a neighborhood I of x
such that F(y) 2 H � U for all y 2 I \ S.

Theorem 22 Assume that F is a U-continuous Luc U-
quasiconcave function on S and the set of all weakly ef-
ficient points of S(a) is compact for each a 2 Rs. Then
the set of all weakly efficient points is nonempty and con-
nected.

See also

� Invexity and its Applications
� Isotonic Regression Problems
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Introduction

Generalized Disjunctive Programming (GDP) [13] is
an extension of disjunctive programming [1,2] that
provides an alternate way of modeling mixed-integer

linear programming (MILP) andmixed-integer nonlin-
ear programming (MINLP) problems. The general for-
mulation of a (GDP) is as follows:

minZ D
X
k2K

ck C f (x)

s:t: r(x) � 0

_
j2Jk

2
4

Yjk

g jk (x) � 0
ck D � jk

3
5 k 2 K (GDP)

˝(Y) D True

x 2 Rn ; c 2 Rm ; Y 2 ftrue; f al segm

where Yjk are the Boolean variables that decide whether
a given term j in a disjunction k 2 K is true or false, and
x are the continuous variables. The objective function
involves the term f (x) for the continuous variables and
the charges ck that depend on the discrete choices in
each disjunction k 2 K. The constraints r(x) � 0 must
hold regardless of the discrete choices, and g jk (x) � 0
are conditional constraints that must hold when Yjk is
true in the j-th term of the k-th disjunction. The cost
variables ck correspond to the fixed charges, and their
value equals to � jk if the Boolean variable Yjk is true.
˝(Y) = True are logical relations for the Boolean vari-
ables expressed as propositional logic. An important
particular case is the one where the functions f (x), r(x)
and gjk(x) are all linear. For the nonlinear case it is
assumed for the derivation of basic methods that the
functions are convex, although in practical applications
these often correspond to nonconvex functions.

Mixed-Integer Programming Reformulations

Problem (GDP) can be reformulated as the following
“big-M”MINLP problem,

minZ D
X
k2K

X
j2Jk

� jk y jk C f (x)

s:t: r(x) � 0
g jk (x) � Mjk (1 � y jk ) ; j 2 Jk ; k 2 K (BM)X
j2Jk

y jk D 1; k 2 K

Ay � a
0 � x � xU ; y jk 2 f0; 1g; j 2 Jk ; k 2 K

where the Boolean variables are replaced by binary
variables yjk, the disjunctions are replaced by “Big-M”
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constraints which involve a parameter Mjk and bi-
nary variables yjk. The propositional logic statements
˝(Y) = True are replaced by the linear constraints
Ay � a as described by Williams [19]. Here we assume
that x is a non-negative variable with finite upper bound
xU . An important issue in model (BM) is how to specify
a valid value for the Big-M parameter Mjk. If the value
is too small, then feasible points may be cut off. IfMjk is
too large, then the continuous relaxation might be too
loose yielding weak lower bounds. Therefore, finding
the smallest valid value for Mjk is the desired selection.
For linear constraints one can use the upper and lower
bound of the variable x to calculate the maximum value
of each constraint, which then can be used to calculate
a valid value of Mjk. For nonlinear constraints one can
in principle maximize each constraint over the feasible
region, which is a non-trivial calculation. It is also im-
portant to note that if the binary variables yjk are spec-
ified as continuous, 0 � y jk � 1, and the functions
f (x), r(x) and gjk(x) are assumed to be convex, the relax-
ation of problem (BM) reduces to a convex NLP prob-
lem, that provides a valid lower bound to the solution
of problem (GDP).

The MINLP hull reformulation of problem (GDP)
is based on the following proposition by Lee and Gross-
mann [11]:

Proposition 1 The convex hull of each disjunction k 2
K in problem (GDP),

_
j2Jk

2
4

Yjk

g jk (x) � 0
c D � jk

3
5 (Dk)

0 � x � xU ; c � 0

where g jk (x) � 0 are convex inequalities, is a convex set
and is given by,

x D
X
j2Jk

� jk ; c D
X
j2J

y jk� jk

0 � � jk � y jk xUjk ; j 2 JkX
j2Jk

y jk D 1; 0 � y jk � 1; j 2 Jk (CHk)

y jk g jk (� jk/y jk ) � 0; j 2 Jk
x; c; � jk � 0; j 2 Jk

The proof is based on an extension of the work by
Stubbs and Mehrotra [16]. In (CHk), vjk are disaggre-

gated variables that are assigned to each term of the
disjunction fk 2 Kg, and yjk can be regarded as the
weight factors that determine the feasibility of the dis-
junctive term. Note that when yjk is 1, then the j’th term
in the k’th disjunction is enforced and the other terms
are ignored. The constraints y jk g jk (v jk /y jk ) are con-
vex if gjk(x) is convex as discussed in Hiriart-Urruty
and Lemaréchal [8]. Formal proofs can be found in [15]
and [16].Note that the convex hull (CHk) reduces to the
result by Balas [2] if the constraints are linear. Based
on the convex hull relaxation (CHk), Lee and Gross-
mann [11] proposed the following MINLP hull refor-
mulation of (GDP):

minZ D
X
k2K

X
j2Jk

� jk y jk C f (x)

s:t: r(x) � 0

x D
X
j2Jk

� jk ;
X
j2Jk

y jk D 1 ; k 2 K (HR)

0 � � jk � y jk xUjk ; j 2 Jk ; k 2 K

yjk g jk (� jk/y jk ) � 0; j 2 Jk ; k 2 K

Ay � a

0 � x; � jk � xU ; y jk D 0:1; j 2 Jk ; k 2 K :

The relaxation of problem (HR) where 0 � y jk � 1,
reduces to a convex NLP problem that yields a valid
lower bound to the optimal solution of problem (GDP).
Also, this relaxation, which can also be regarded as
a generalization of the disjunctive problem studied by
Ceria and Soares [4], can be interepreted as one where
the convex hulls of each of the disjunctions are intere-
sected.

The following proposition holds for problems (PR)
and (BM) as proved by Grossmann and Lee [7].

Proposition 2 LetZR
HR be the optimal value of prob-

lem (HR) where the binary variables are relaxed as 0 �
y jk � 1, and let ZR

BM be the optimal value of prob-
lem (BM) where the binary variables are relaxed as 0 �
y jk � 1. Then, ZR

BM � ZR
HR.

Hence, problem (HR) has the useful property that the
lower bound of its relaxation is greater than or equal to
the lower bound predicted from the relaxation of prob-
lem (BM). In some problems this translates into a sig-
nificantly tighter formulations [13,14]). The trade-off,
however, is that in the reformulation (HR) the number
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of constraints and variables is larger than the one in the
reformulation (BM).

It is also important to point out that for
the computer implementation of the constraint
y jk g jk (� jk /y jk ) � 0 in problem (HR), an approxi-
mation is required for the nonlinear functions, gjk(x)
in order to avoid the division by zero when y jk D 0.
Furman et al. [5] have proposed the following approxi-
mation, which has the interesting feature that it is exact
for y jk D 0 and y jk D 1,

((1 � ")y jk C ")(g jk(� jk/((1 � ")y jk C ")))

� "g jk (0)(1 � y jk ) � 0 :

Furthermore, it can be shown that this inequality is
convex for any value of ". Note also that this expression
reduces to the original one as "! 0.

Solution Algorithms for GDP

The most direct way of solving problem (GDP) is by
reformulating it as an MINLP (or MILP for the linear
case). In both cases the big-M and hull reformulation
are the two extreme choices. The latter generally yields
tighter relaxations, but involves solving a larger prob-
lem. For the linear case LP-based branch and cut meth-
ods can be used [10], including special cutting plane
techniques [14]. For the nonlinear case, MINLP meth-
ods such as branch and bound, outer-approximation,
Generalized Benders, extended cutting plane or hybrid
methods can be used [6].

Logic-based method for solving linear problems
(GDP) include the branch and bound method by Beau-
mont [3], which branches on the constraints of the
disjunctions. Raman and Grossmann [13] developed
a branch and bound method which solves GDP prob-
lem in hybrid form, by exploiting the tight relax-
ation of the disjunctions and the tightness of the well-
behaved mixed-integer constraints. For the nonlinear
case a disjunctive branch and bound method based on
the hull relaxation has been proposed by Lee and Gross-
mann [11] that is coupled with logic inference tech-
niques [9]. Also, for the special case of two-term dis-
junctions in (GDP), which typically arise in process net-
work problems, Türkay and Grossmann [17] have pro-
posed outer-approximation and Generalized Benders
Decomposition algorithms. Some of these algorithms
have been implemented in LOGMIP, a computer code

based on GAMS [18]. Finally, for the nonconvex case
a disjunctive branch and bound method coupled with
a spatial branch and bound search has been reported
in [12].
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Problem

Consider two matrices A 2 Rn�m and B 2 Rk�m , each
row being a point in one of two classes in the feature
space. The generalized eigenvalue proximal support vec-
tor machine (GEPSVM) consists in finding two hyper-
planes each one being closer to one set of points and
farther from another set of points. Let x0w � � D 0 be
a hyperplane in Rm . In order to satisfy the previous
condition for all points in A, the hyperplane can be ob-
tained by solving the following optimization problem:

min
w;�¤0

kAw � e�k2

kBw � e�k2
: (1)

The hyperplane for B can be obtained by minimiz-
ing the inverse of the objective function in (1). Now, let

G D [A � e]0[A � e];

H D [B � e]0[B � e]
(2)

and

z D [w0 �]0 : (3)

Then (1) becomes

min
z2Rm

z0Gz
z0Hz

: (4)

The expression in (4) is the Raleigh quotient of the
generalized eigenvalue problem Gz D �Hz. When H
is positive definite, the stationary points are obtained
at and only at the eigenvectors of (4), where the value
of the objective function is given by the eigenvalues.
The Raleigh quotient is bounded, and it ranges over
the interval determined by minimum and maximum
eigenvalues [4].H is positive definite under the assump-
tion that the columns of [B � e] are linearly indepen-
dent. The reciprocal of the objective function in (4) has
the same eigenvectors and reciprocal eigenvalues. Let
zmin D [w01 �1]0 and zmax D [w02 �2]0 be the eigen-
vectors related to the eigenvalues of the smallest and
largest modulo, respectively. Then x0w1 � �1 D 0 is the
closest hyperplane to the set of points in A and the fur-
thest from those in B and x0w2 � �2 D 0 is the clos-
est hyperplane to the set of points in B and the fur-
thest from those in A. GEPSVM finds application in
many supervised learning problems [3]. For example,
a bank prefers to classify customer loan requests as
“good” or “bad” depending on their ability to pay back
the loan. The Internal Revenue Service tries to discover
tax evaders starting from the characteristics of known
evaders. As another example, a built-in system in a car
could detect if a walking pedestrian is going to cross the
street. More applications can be found in biology and
medicine. The tissues that are prone to cancer can be
detected with high accuracy, or new DNA sequences or
proteins can be tracked down to their origins. Given its
amino acid sequence, finding out how a protein folds
provides important information about its expression
level. An unlabeled point x is associated to the class yi
related to the closest hyperplane Pi. Therefore, a point
x is classified using its distance for the corresponding
hyperplane:

yi D argminiD1;2fdist(x; Pi )g ; (5)

where

dist(x; Pi ) D
jx0wi � �i j

kwik
: (6)
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Kernel Formulation

To obtain greater separability between classes, nonlin-
ear embedding of data to a higher-dimensional space
is required. This nonlinear mapping can be done im-
plicitly by kernel functions, which represent the inner
product of the elements in a nonlinear space. Kernel
functions can be described as follows:

K(xi ; x j) D h�(xi) � �(x j); �(xi) � �(x j)i ; (7)

where �(x) is the embedding function.
Using kernels, we can express the problem in terms

of inner products between elements, and therefore the
computationally expensive calculation of the feature, in
the embedded space, is avoided. Some commonly used
kernel functions are

Linear K(xi ; x j) D x0i � x j

Polynomial K(xi ; x j) D (x0i � x j C 1)d

Gaussian K(xi ; x j) D exp
�
�
k xi � x j k

2

�

�
:

Using the kernel function, each element of the ker-
nel matrix is

K(A; B)i; j D K(Ai ; Bj) : (8)

Let

C D
�

A
B

�
:

Then problem (1) becomes

min
u;�¤0

kK(A;C)u � e�k2

kK(B;C)u � e�k2
: (9)

A point x is classified using its distance for the corre-
sponding hyperplane in the feature space:

yi D argminiD1;2fdist(x; Pi )g ; (10)

where

dist(x; Pi ) D
jK(x;C)ui � �i j

kuik
: (11)

The associated eigenvalue problem has matrices of or-
der nC k C 1 and rank at most m. This means a regu-
larization technique is needed since the problem can be
singular.

Algorithm

Let G and H be as defined in (2). Note that even if A
and B are full rank, matrices G and H are always rank-
deficient. The reason is that G and H are matrices of
order mC 1, and their rank can be at most m. The
added complexity due to the singularity of the matrices
means that special care must be given to the solution of
the generalized eigenvalue problem. Indeed, if the null
spaces of G and H have a nontrivial intersection, i. e.,
Ker(A)

T
Ker(B) ¤ 0, then the problem is ill posed and

a regularization technique is needed to solve the eigen-
value problem. Mangasarian et al. [2] proposes to use
Tikhonov regularization applied to a twofold problem:

min
w;�¤0

kAw � e�k2 C ıkzk2

kBw � e�k2
(12)

and

min
w;�¤0

kBw � e�k2 C ıkzk2

kAw � e�k2
; (13)

where ı is the regularization parameter and the new
problems are still convex. The minimum eigenvalues-
eigenvectors of these problems are approximations of
the minimum and maximum eigenvalues-eigenvectors
of (4). The solutions (wi ; �i); i D 1; 2 to (12) and (13)
represent the two hyperplanes approximating the two
classes of training points. The same regularization tech-
nique can be applied to the nonlinear formulation.

Another Algorithm

It is possible to solve the problem without regulariza-
tion. In practice, if ˇG � ˛H is nonsingular for every ˛
and ˇ, it is possible to transform the problem into an-
other problem that is nonsingular and that has the same
eigenvectors of the initial one. We start with the follow-
ing theorem whose proof can be found in [5], p. 288.

Theorem 1 Consider the generalized eigenvalue prob-
lem Gx D �Hx and the transformed G�x D �H�x de-
fined by

G� D �1G � ı1H; H� D �2H � ı2G (14)

for each choice of scalars �1, �2, ı1, and ı2 such that the
2 � 2matrix

˝ D

�
�2 ı1
ı2 �1

�
(15)
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is nonsingular. Then the problem G�x D �H�x has the
same eigenvectors of the problem Gx D �Hx. An associ-
ated eigenvalue �� of the transformed problem is related
to an eigenvalue � of the original problem by

� D
�2�
� C ı1

�1 C ı2��
:

In the linear case, Theorem 1 can be applied. By setting
�1 D �2 D 1 and ı̂1 D �ı1; ı̂2 D �ı2, the regularized
problem becomes

min
w;�¤0

kAw � e�k2 C ı̂1kBw � e�k2

kBw � e�k2 C ı̂2kAw � e�k2
: (16)

If ı̂1and ı̂2 are nonnegative, ˝ is nondegenerate. The
spectrum is now shifted and inverted so that the mini-
mum eigenvalue of the original problem becomes the
maximum of the regularized one, and the maximum
becomes the minimum eigenvalue. Choosing the eigen-
vectors related to the new minimum and maximum
eigenvalue, we obtain the same solution of the original
problem.

This regularization works for the linear case if we
suppose that in each class of the training set there is
a number of linearly independent rows that is at least
equal to the number of the features. This is often the
case and, if the number of points in the training set is
much greater than the number of features, Ker(G) and
Ker(H) have both dimension 1. In this case, the proba-
bility of a nontrivial intersection is zero.

In the nonlinear case the situation is different. Guar-
racino et al. [1] propose to generate the two proximal
surfaces

K(x;C)u1 � �1 D 0; K(x;C)u2 � �2 D 0 (17)

by solving the following problem

min
u;�¤0

kK(A;C)u � e�k2 C ıkK̃Bu � e�k2

kK(B;C)u � e�k2 C ıkK̃Au � e�k2
; (18)

where K̃A and K̃B are diagonal matrices with the diag-
onal entries from the matrices K(A,C) and K(B,C). The
perturbation theory of eigenvalue problems [6] pro-
vides an estimation of the distance between the original
and the regularized eigenvectors. If we call z an eigen-
vector of the initial problem and z(ı) the corresponding
one in the regularized problem, then jz � z(ı)j D O(ı),
which means their closeness is in the order of ı.
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engineering design, chemical engineering, location-
allocation, inventory control, production planning,
and scheduling etc. These applications are extensively
surveyed in Floudas and Pardalos [11] and Floudas [9].
Biegler and Grossmann [3] provided a retrospective
on optimization techniques that have been applied
in process systems engineering. They indicated that
design and synthesis problems have been dominated
by nonlinear programming (NLP) and mixed-integer
nonlinear programming (MINLP) models. Although
MINLP programs appear in many chemical engineer-
ing problems, they are often nonconvex and no direct
optimization method is available to guarantee global
optimality [21]. With the increasing reliance on math-
ematical programming based approaches in chemical
engineering problems, the need for finding global opti-
mum is paramount.

The developed methods for GGP problems with
continuous and discrete variables can be divided into
two approaches.
(i) Stochastic methods: The stochastic methods in-

volve random elements in their search and rely on
a statistical argument to prove their convergence.
For instance, Salcedo et al. [23] proposed an im-
proved random search algorithm for solving non-
linear optimization problems. Cardoso et al. [5]
solved nonconvex nonlinear integer programming
problems with simulated annealing. Yiu et al. [30]
developed a hybrid descent approach based on
a simulated annealing algorithm and a gradient-
based method to solve multidimensional noncon-
vex continuous optimization problems. Hussain
and Al-Sultan [15] proposed a hybrid algorithm
for nonconvex function minimization by utilizing
the genetic technique to generate search directions.
These stochastic methods mentioned above can
not guarantee to find the global optimum. There-
fore, the quality of the solution is not ensured.
Moreover, the probability of finding the global so-
lution decreases when the problem size increases.

(ii) Deterministic methods: Mathematical methods
that generate convex underestimators for twice
differentiable constrained nonconvex optimization
problems are of primary importance in determin-
istic global optimization [9]. The ˛ BB global op-
timization algorithm [1,2,9] is a power approach
for constructing such convex underestimators for

nonconvex functions [10]. In a general survey of
optimization techniques ([3,13,14]), many deter-
ministic methods for convex MINLP problems
have been reviewed. The methods include Branch
and Bound (BB) ([17,24]), Generalized Benders
Decomposition (GBD) [12],Outer-Approximation
(OA) ([6,7,22]), Extended Cutting Plane Method
(ECP) [28], and Generalized Disjunctive Program-
ming (GDP) [16]. One possible approach to cir-
cumvent the nonconvex objective function or the
nonconvex constraints in MINLP models is trans-
formation. Floudas ([8,9]), Floudas and Parda-
los [11] and Maranas and Floudas [20] proposed
exponential transformation methods to treat GGP
problems with continuous and discrete variables.
The core concept of their methods is to convert
the problem into a new problem where both the
constraints and the objective are decomposed into
the difference of two convex functions. By uti-
lizing exponential variable transformations, each
signomial term z D x˛1 x

ˇ
2 , where x1 and x2 are

positive, can be transferred into an exponential
term z0 D e˛ ln x1Cˇ ln x2 . However, the exponential
transformation technique can only be applied to
strictly positive variables and is thus unable to deal
with nonconvex GGP problems with continuous
and discrete free variables.

Although positive variables are adopted frequently to
represent engineering and scientific systems, it is also
common to introduce free variables to model the sys-
tem behavior, such as stresses, temperatures, electrical
currents, velocities and accelerations, etc. In general,
the values accepted by themachines are under a discrete
space. For instance, a controller can only increase tem-
perature from a fixed initial point to a set of fixed points
at a fixed interval. Consequently, deriving a global op-
timum for the GGP problem with continuous and dis-
crete free variables is essential for real applications. Li
and Tsai [18] proposed a technique for treating free
continuous variables in GGP problems. Pörn et al. [21]
introduced different convexification strategies for
MINLP problems with both polynomial and nega-
tive binomial terms in the constraints. They suggested
a simple translation, xC � D ex , to treat a free variable
x. However, inserting the transformed result into the
original signomial term will bring additional signomial
terms and therefore increasing the computation bur-
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den. This study proposes a method for solving a GGP
problem with continuous and discrete free variables to
obtain a global optimal solution. The GGP problem is
first transformed into another one containing only pos-
itive variables. Then the transformed problem is refor-
mulated as a convex mixed-integer program. A global
optimum of the GGP problemwith continuous and dis-
crete free variables can finally be found within the tol-
erable error. Furthermore, this study develops several
convexification strategies for signomial terms so that
the efficiency of the optimization approach can be en-
hanced. The right choice of transformation for convex-
ification of nonconvex signomial terms might signifi-
cantly decrease the solution time [4]. By employing the
proposed rules, certain classes of signomial terms can
be determined as convex terms and do not require any
transformation. Moreover, some nonconvex signomial
terms with specific features can be transformed into
convex terms in accordance with the proposed rules by
replacing some variables, thereby making the resulting
problem a computationally efficient model.

Formulation

The mathematical formulation of a GGP problem with
continuous and discrete free variables is expressed as
follows:

GGP:
Minimize f (X;Y)
subject to gt(X;Y) � 0 t D 1; : : : ; T,

X D (x1; : : : ; xp; xpC1 : : : ; xn);
xi � xi � xi ,
Y D (y1; : : : ; yq ; yqC1 : : : ; ym);
y
j
� y j � y j ,

where xi 2 <C for 1 � i � p; xi are bounded
free variables for p C 1 � i � n; y j are positive inte-
ger/discrete variables for 1 � j � q; y j are bounded
free variables for qC 1 � j � m; f (X;Y) and gt(X;Y)
are mixed-integer signomial functions, xi and xi are
lower and upper bounds of the continuous variable
xi , and y

j
and y j are lower and upper bounds of the

integer/ discrete variable y j , respectively.

Methods

Treating Free Variables. Li and Tsai [18] proposed
a technique for treating free continuous variables in

GGP problems. By integrating Li and Tsai method with
the approach of dealing with free discrete variables de-
scribed below, a GGP problem with continuous and
discrete free variables can be equivalently transform
into a mixed-integer GGP program with positive vari-
ables. The following illustrates how to convert free dis-
crete variables into non-positive discrete variables.

Let: y j D yCj � y�j ; yCj ; y
�
j � 0;

for j D qC 1; � � � ;m :

And a nonlinear term yˇ j
j is expressed as

yˇ j
j D (yCj )

ˇ j C (�1)ˇ j (y�j )
ˇ j ;

ˇ j 2 integer, for j D qC 1; : : : ;m:

If yCj > 0 and y�j D 0, then y j is positive. Otherwise,
if y�j > 0 and yCj D 0, then y j is negative. To prohibit
from yielding positive values for yCj and y�j simultane-
ously, we have the following remark.

Remark 1 A free discrete variable y j can be expressed
as y j D yCj � y�j ; y

C
j ; y
�
j � 0, and yCj and y�j will not

be positive concurrently by the following inequalities.

(i) � y�j � y j � M� j � y�j ;

(ii) M(� j � 1)C yCj � y j � yCj :

M is a sufficiently large positive number and � j 2 f0; 1g:
By means of changing variables, the GGP problem

with free variables can be equivalently solved with an-
other one having non-negative variables. The next is to
deal with discrete variables containing zero, consider
the following propositions:

Proposition 1 [21] For positive discrete variables y j 2˚
dj1; dj2; � � � ; djm j

�
where dj;iC1> dji > 0 for i D

1; 2; � � � ;mj � 1, a product term y˛11 y˛22 � � � y˛mm where
˛1; ˛2; � � � ; ˛m are real constants can be transformed
into a function e˛1z1C���C˛mzm where z j D ln dj1 CPmj�1

iD1 uji (ln dj;iC1 � ln dj1);
Pmj�1

iD1 uji � 1 for u ji 2

f0; 1g.

Proof Let y j D ez j and z j D ln y j , expressing y j as
y j D dj1 C

Pmj�1
iD1 uji (dj;iC1 � dj1);

Pmj�1
iD1 uji � 1;

where uji 2 f0; 1g.
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We then have y˛11 y˛22 � � � y˛mm D e˛1z1C���C˛mzm and
z j D ln dj1 C

Pm j�1
iD1 uji(ln dj;iC1 � ln dj1);

Pm j�1
iD1 uji

� 1, for uji 2 f0; 1g. �

Because some variables y j in Proposition 1 may have
zero value, Proposition 1 needs to be modified as the
following proposition:

Proposition 2 For positive discrete variables y j 2˚
dj1; dj2; � � � ; djm j

�
where dj;iC1> dji > 0 for i D

1; 2; � � � ;mj � 1, 1 � j � q, and non-negative
discrete variables y j 2

˚
0; dj1; dj2; � � � ; djm j

�
where

dj;iC1 > dji > 0 for i D 1; 2; � � � ;mj � 1; qC 1 � j �
m, a product term s D y˛11 y˛22 � � � y

˛q
q y˛qC1

qC1 � � � y
˛m
m can

be expressed as

(i) 0 � s � s̄

 m jX
iD1

uji

!
; for qC 1 � j � m;

(ii) s̄

0
@

mX
jDqC1

m jX
iD1

uji�(m � q)

1
AC e˛1z1C���C˛mzm � s

� s̄

0
@(m � q) �

mX
jDqC1

m jX
iD1

uji

1
ACL(e˛1z1C���C˛mzm );

where y j D dj1C
Pmj�1

iD1 uji (dj;iC1�dj1); z j D ln dj1CPmj�1
iD1 uji(ln dj;iC1 � ln dj1);

Pmj�1
iD1 uji � 1; uji 2

f0; 1g, for 1 � j � q, and y j D
Pmj

iD1 ujid ji ; z j DPmj
iD1 uji (ln dji );

Pmj
iD1 uji � 1; uji 2 f0; 1g for qC1 �

j � m; L(e˛1z1C���C˛mzm ) is a piecewisely linearized ex-
pression of e˛1z1C���C˛mzm , and s̄ is the upper bound of s.

Proof If there is y j D 0 for some j (q C 1 � j � m),
then

Pmj
iD1 uji D 0 and s D 0 by (i).

If y j > 0 for all j D qC 1; � � � ;m, then
Pmj

iD1 uji D

1 for j D q C 1; � � � ;m. Therefore we havePm
jDqC1

Pmj
iD1 uji � (m � q) D 0 if all variables in

the signomial term are not zero, and this implies s D
e˛1z1C���C˛mzm according to (ii). �

Remark 2 For a non-negative discrete variable y, y 2
fd1; d2; � � � ; dmg ; 0 � d1 < d2 < � � � < dm , the expo-
nential term y˛ where ˛ is a real constant can be repre-
sented as

y˛ D d˛1 C
m�1X
iD1

ui (d˛iC1�d
˛
1 ) where

m�1X
iD1

ui � 1;

ui 2 f0; 1g:

According to the above discussions, free discrete vari-
ables in GGP can be converted into positive discrete
variables. In addition, Li and Tsai method [18] can deal
with the free continuous variables. Consequently, the
GGP program with continuous and discrete free vari-
ables can be transformed into a GGP programwith only
positive variables. In order to obtain a global optimum
of the transformed GGP program, it is required to be
converted into a convex mixed-integer problem which
is solvable by the conventional convex mixed-integer
techniques to derive a globally optimal solution.

Convexification Strategies. Convexification strate-
gies for signomial terms are important techniques for
global optimization problems. Sun et al. [25] proposed
a convexification method for a class of global optimiza-
tion problems with monotone functions under some
restrictive conditions. Wu et al. [29] developed a more
general convexification and concavification transfor-
mation for solving a general global optimization prob-
lem with certain monotone properties. With different
convexification approaches, an MINLP problem can be
reformulated into another convex mixed-integer pro-
gram solvable to obtain an approximately global op-
timum. Björk et al. [4] proposed a global optimiza-
tion technique based on convexifying signomial terms.
They discussed that the right choice of transforma-
tion for convexifying nonconvex signomial terms has
a clear impact on the efficiency of the optimization
approach. Tsai et al. [26] also suggested convexifica-
tion techniques for the signomial terms with three vari-
ables. This study presents generalized convexification
techniques and rules to transform a nonconvex GGP
program with continuous and discrete variables into
a convex mixed-integer program. Consider the follow-
ing propositions:

Lemma 1 For a twice-differentiable function f (X) D

c
nQ

iD1
x˛ii ; X D (x1; x2; � � � ; xn) ; c; xi ; ˛i 2 <; 8i; l et

Hi (X) be the ith principal minor of a Hessian matrix
H(X) of f (X). The determinant of Hi(X) can be ex-
pressed as detHi(x) D

(�c)i
 

iQ
j2J i

˛ j x
i˛ j�2
j

!0
B@

nQ
j…J i

J i¤˚

xi˛ j
j

1
CA
 
1 �

P
j2J i

˛ j

!
:

Remark 3 If c � 0, xi � 0 and ˛i � 0 (for all i), then
detHi(x) � 0.
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Remark 4 If c < 0; xi � 0; ˛i � 0 (for all i), and,
1 �

Pn
iD1 ˛ j � 0, then detHi(x) � 0.

Proposition 3 A twice-differentiable function f (X) D

c
nQ

iD1
x˛ii is convex for c; xi � 0, ˛i � 0; i D 1; 2; � � � ; n.

Proof By Lemma 1 and Remark 3, detHi(x) D

(�c)i
 

iQ
j2J i

˛ j x
i˛ j�2
j

!0
B@

nQ
j…J i

J i¤˚

xi˛ j
j

1
CA
 
1 �

P
j2J i

˛ j

!

� 0 for i D 1; 2; � � � ; n, when c; xi � 0; ˛i � 0; i D
1; 2; � � � ; n. Since detHi(x) � 0 for all i, Hi (X) is posi-
tive semi-definite and f (X) is convex. �

Proposition 4 A twice-differentiable function f (X) D

c
nQ

iD1
x˛ii is convex for c < 0; xi ; ˛i � 0 (for i D

1; 2; � � � ; n), and 1 �
nP

iD1
˛i � 0.

Proof By Lemma 1 and Remark 4, detHi(x) D

(�c)i
 

iQ
j2J i

˛ j x
i˛ j�2
j

!0
B@

nQ
j…J i

J i¤˚

xi˛ j
j

1
CA
 
1 �

P
j2J i

˛ j

!

� 0 for i D 1; 2; � � � ; n, when c < 0; xi ; ˛i � 0, and
1�

Pn
iD1 ˛i � 0. Since detHi (x) � 0 for all i, Hi(X) is

positive semi-definite and f (X) is convex. �

For a given signomial term s, if s can be converted into
a set of convex terms satisfying Proposition 3 and 4,
then the whole solution process is more computation-
ally efficient. Under this condition, s does not necessi-
tate the exponential transformation. For instance, s D
x�11 x�22 x�13 with x1; x2; x3 � 0 is a convex term requir-
breaking no transformation by Proposition 3, and s D
�x0:21 x0:72 with x1; x2 � 0 is also a convex term by
Proposition 4.

Remark 5 A product term z D u f (x) is equivalent to
the following linear inequalities:

(i) M(u � 1)C f (x) � z � M(1 � u)C f (x);

(ii) � Mu � z � Mu;

where u 2 f0; 1g, z is an unrestricted in sign variable,
and M D max f (x) is a large constant.

Remark 6 The product term u1u2 � � �um where ui 2

f0; 1g for i D 1; 2; � � � ;m can be replaced by a variable
u expressed as

(i) 0 � u � ui ; for i D 1; 2; � � � ;m;

(ii) u �
mX
iD1

ui � mC 1:

Following the above discussions, herein we take a sig-
nomial term with three variables for instance to de-
scribe the strategy of convexification. The strategy can
also be extended to convexity a signomial term contain-
ing n variables.

Consider a signomial term cx˛1 x
ˇ
2 x

�
3 composed of

three positive variables, the term cx˛1 x
ˇ
2 x

�
3 can be con-

vexified by the following rules:

Rule 1 If c> 0; ˛; ˇ; � < 0, then cx˛1 x
ˇ
2 x

�
3 is already

a convex term by Proposition 3.

Rule 2 If c> 0; ˛; ˇ < 0, and � > 0, then let
cx˛1 x

ˇ
2 x

�
3 D cx˛1 x

ˇ
2 z
��
1 where z1 D x�13 . The term

cx˛1 x
ˇ
2 z
��
1 is convex by Rule 1.

Rule 3 If c> 0; ˛ < 0, and ˇ; � > 0, then let
cx˛1 x

ˇ
2 x

�
3 D cx˛1 z

�ˇ
1 z��2 where z1 D x�12 ; z2 D x�13 .

The term cx˛1 z
�ˇ
1 z��2 is convex by Rule 1.

Rule 4 If c> 0 and ˛; ˇ; � > 0, then let cx˛1 x
ˇ
2 x

�
3 D

ce˛ ln x1Cˇ ln x2C� ln x3 .

Rule 5 If c < 0, ˛; ˇ; � � 0, and ˛C ˇ C � � 1, then
cx˛1 x

ˇ
2 x

�
3 is already a convex term by Proposition 4.

Rule 6 If c < 0; ˛; ˇ > 0; ˛ C ˇ < 1, then let
cx˛1 x

ˇ
2 x

�
3 D cx˛1 x

ˇ
2 z

1�˛�ˇ
1 where z1 D x� /(1�˛�ˇ )3 . The

term cx˛1 x
ˇ
2 z

1�˛�ˇ
1 is convex by Rule 5.

Rule 7 If c < 0; 0 < ˛ < 1, then let cx˛1 x
ˇ
2 x

�
3 D

cx˛1 z
(1�˛)/2
1 z(1�˛)/22 where z1 D x2ˇ /(1�˛)2 and z2 D

x2� /(1�˛)3 . The term cx˛1 z
(1�˛)/2
1 z(1�˛)/22 is convex by

Rule 5.

Rule 8 If c < 0 and “˛; ˇ; � < 0 or ˛; ˇ; � � 1”, then
let cx˛1 x

ˇ
2 x

�
3 D cz

1
3
1 z

1
3
2 z

1
3
3 where z1 D x3˛1 ; z2 D x3ˇ2 ,

and z3 D x3�3 . The term cz
1
3
1 z

1
3
2 z

1
3
3 is convex by Rule 5.
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Rule 9 If ˛; ˇ > 0; x1 2 Z; x3 D 1 and ˛ C ˇ > 1,
then let cx˛1 x

ˇ
2 D c

�
d˛11 C

Pm1�1
iD1 u1i(d˛1;iC1 � d˛11)

�
xˇ2

for i 2 f1; 2; � � � ;m1 � 1g . By Remark 5, the prod-
uct term u1i xˇ2 can be transformed into linear inequal-
ities.

By applying the proposed rules, we can determine cer-
tain classes of signomial terms are convex and do
not necessitate any transformation. Besides, we can
transform a nonconvex signomial term into a convex
term accordance with the proposed rules by replac-
ing some variables, thereby decreasing the number of
concave functions requiring to be estimated and mak-
ing the resulting problem a computationally efficient
model.

In order to be a valid transformation in the global
optimization procedure, the transformation should be
selected such that the signomial terms are not only con-
vexified but also underestimated [4,21,27]). If the trans-
formations are appropriately selected, the correspond-
ing approximate signomial term will underestimate the
original convexified signomial term by applying piece-
wise linear approximations to the inverse transforma-
tion functions. We examine the proposed rules can sat-
isfy the underestimating condition as follows:

In Rule 2, let ẑ1 be the approximate transforma-
tion variable obtained from piecewise linear function
of z1 D x�13 . The inverse transformation z1 D
x�13 (x3> 0) is convex and z1 will be overestimated
(ẑ1> z1). When inserting the approximate variable in
the signomial term, we find the underestimating prop-
erty cx˛1 x

ˇ
2 ẑ
��
1 � cx˛1 x

ˇ
2 z
��
1 is fulfilled since c> 0 and

z1 has a negative power in the convexified term. Sim-
ilarly, Rules 3 and 4 meet the underestimating condi-
tion.

In Rule 6, let ẑ1 be the approximate transfor-
mation variable obtained from piecewise linear func-
tion of z1 D x� /(1�˛�ˇ )3 . The inverse transforma-
tion z1 D x� /(1�˛�ˇ )3 (x3> 0; �

1�˛�ˇ > 1 or �
1�˛�ˇ �

0) is convex and z1 will be overestimated (ẑ1> z1).
When inserting the approximate variable in the sig-
nomial term, we find the underestimating property
cx˛1 x

ˇ
2 ẑ

1�˛�ˇ
1 � cx˛1 x

ˇ
2 z

1�˛�ˇ
1 is fulfilled since c < 0

and z1 has a positive power in the convexified term.
Similarly, Rules 7 and 8 satisfy the underestimating
property.

From above discussions, we observe the proposed
rules not only convexity but underestimate the convex-
ified signomial term. Consequently, utilizing the trans-
formations in the global optimization of a GGP prob-
lems, the feasible region of the convexified problem
overestimates the feasible region of the original non-
convex problem.

Case Studies

Case1Minimize x31x1:52 x33 C x5:52 x3 C x51

subject to

3x1 C 2x2 � x3 � 7;

� 5 � x1 � 2; 0 � x2 � 4; �5 � x3 � �1;

x1; x2 2 Z ; x3 2 <:

This problem is a nonconvex GGP program with
continuous and discrete free variables. Current expo-
nential transformation methods [8,9,11,20]) developed
for solving mixed-integer GGP problems can not be
adopted to treat this kind of problems. By employing
the proposed method, we first utilize a straightforward
substitution for the free variables to make the GGP
problem with only non-negative variables. By Li and
Tsai [18], let the free continuous variable x3 D �x�3 ,
x�3 � 0.

The free discrete variable can be transformed by Re-
mark 1, x1 D xC1 �x�1 ; x

C
1 ; x�1 � 0. The original prob-

lem becomes as follows:

Minimize � (xC1 )
3x1:52 (x�3 )

3 C (x�1 )
3x1:52 (x�3 )

3�

x5:52 x�3 C (xC1 )5 � (x�1 )
5

subject to 3xC1 � 3x�1 C 2x2 C x�3 � 7;

0 � xC1 � 2; 0 � x�1 � 5:0 � x2 � 4;

1 � x�3 � 5; xC1 ; x
�
1 ; x2 2 Z; x�3 2 <:

Then, we use the proposed convexification rules to
transform all signomial terms into convex terms as fol-
lows:

(i) z1 D (xC1 )3x1:52 (x�3 )
3 and z2 D (x�1 )

3x1:52 (x�3 )
3

are transformed by Rule 4 and Proposition 2.

(ii) � x5:52 x�3 is convexified as � x5:52 x�3 D �(u21C
25:5u22 C 35:5u23 C 45:5u24)x�3 D �z3 � 25:5z4
� 35:5z5 � 45:5z6 by Rule 9.
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(iii) (xC1 )
5 and � (x�1 )

5 are treated directly as
(xC1 )

5 D uC11 C 25uC12;�(x
�
1 )

5 D �u�11
� 25u�12 � 35u�13 � 45u�14 � 55u�15 by Remark 2.

Subsequently, the transformed program is presented as
a convex mixed-integer program below:

Minimize

� z1 C z2 � z3 � 25:5z4 � 35:5z5 � 45:5z6 C z7 � z8
subject to

3xC1 � 3x�1 C 2x2 C x�3 � 7;

� x�1 � x1 � 5�1 � x�1 ;

5(�1 � 1)C xC1 � x1 � xC1 ;

xC1 D uC11 C 2uC12; yC1 D uC12 � ln 2;

x�1 D u�11 C 2u�12 C 3u�13 C 4u�14 C 5u�15;
y�1 D u�12 � ln 2C u�13 � ln 3C u�14 � ln 4C u�15 � ln 5;

uC11 C uC12 � 1; u�11 C u�12 C u�13 C u�14 C u�15 � 1;

x2 D u21 C 2u22 C 3u23 C 4u24;

y2 D u22 � ln 2C u23 � ln 3C u24 � ln 4;

u21 C u22 C u23 C u24 � 1;

y�3 D L(ln x�3 );
0 � z1 � z̄(uC11 C uC12);

0 � z1 � z̄(u21 C u22 C u23 C u24);

z̄(uC11 C uC12 C u21 C u22 C u23 C u24 � 2)

C e3y
C

1 C1:5y2C3y�3 � z1;

z1 � z̄ (2 � (uC11 C uC12 C u21 C u22 C u23 C u24))

C L(e3y
C

1 C1:5y2C3y�3 );

0 � z2 � z̄(u�11 C u�12 C u�13 C u�14 C u�15);

0 � z2 � z̄(u21 C u22 C u23 C u24);

z̄(u�11 C u�12 C u�13 C u�14 C u�15 C u21 C u22 C u23
C u24 � 2)C e3y

�

1 C1:5y2C3y�3 � z2;
z2 � z̄(2 � (u�11 C u�12 C u�13 C u�14 C u�15 C u21
C u22 C u23 C u24))C L(e3y

�

1 C1:5y2C3y�3 );

5(u�211)C x�3 � z3 � x�3 ; 0 � z3 � 5u21;

5(u�221)C x�3 � z4 � x�3 ; 0 � z4 � 5u22;

5(u�231)C x�3 � z5 � x�3 ; 0 � z5 � 5u23;

5(u�241)C x�3 � z6 � x�3 ; 0 � z6 � 5u24;
z7 D uC11 C 25uC12;

z8 D u�11 C 25u�12 C 35u�13 C 45u�14 C 55u�15;

(0; 0; 0; 1; 0; 0; 0) � (xC1 ; x
�
1 ; x2; x

�
3 ; y

C
1 ; y
�
1 ; y2; y

�
3 )

� (2; 5; 4; 5; ln 2; ln 5; ln 4; ln 5);

where ui j; uCi j ; u
�
i j; �1 2 f0; 1g; and z̄ D 125;000:

Solving the original problem without any variable
transformation and convexification by LINGO [19],
a local optimum obtained is (x1; x2; x3) D (�5; 0;�5)
and the objective value is –3125. However, solving
the above transformed convex mixed-integer program
within the tolerable error 0.001, the globally optimal so-
lution obtained is (x1; x2; x3) D (�2; 4;�3:266) and
the objective value found is –4491.16.

Case2Minimize x0:51 x2 C 3 ln x1 subject to

� x1 C x2 � 5
x0:51 y � x2 � 6;

x1 2 f0:1; 0:5; 0:7; 1:2g;�6 � x2 � 4; y 2 f0; 1g:

This problem contains a discrete variable, a free
continuous variable and a binary variable which can-
not be treated by the exponential-based methods. The
nonlinear terms x0:51 x2, 3 ln x1 and x0:51 y are noncon-
vex functions. By Remarks 2, 5 and 6, the problem can
be equivalently transformed into a linear mixed-integer
programming problem as follows.

Minimize
0:10:5x2 C (0:50:5 � 0:10:5)s1 C (0:70:5 � 0:10:5)s2C

(1:20:5 � 0:10:5)s3 C 3(ln 0:1C (ln 0:5 � ln 0:1)u1C

(ln 0:7 � ln 0:1)u2 C (ln 1:2 � ln 0:1)u3)

subject to

� x1 C x2 � 5; x1 D 0:1C (0:5 � 0:1)u1C

(0:7 � 0:1)u2 C (1:2 � 0:1)u3;
u1 C u2 C u3 � 1; 0:10:5yC (0:50:5 � 0:10:5)z1C

(0:70:5 � 0:10:5)z2 C (1:20:5 � 0:10:5)z3 � x2 � 6;

0 � zi ; zi � ui ; zi � y; zi � ui C y � 1;

i D 1; 2; 3; �6ui � si � 6ui ; 6(ui � 1)C

x2 � si � 6(1 � ui )C x2; i D 1; 2; 3;

s1; s2; s3 are unrestricted in sign variables;
u1; u2; u3 2 f0; 1g;�6 � x2 � 4:

The transformed program can be solved to locate
the globally optimal solution (x1; x2; y) D (0:1;�6; 0).
The objective value is –8.805.
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Conclusions

This paper proposes a generalized method to solve
the globally optimal solutions of GGP problems with
continuous and discrete free variables. The techniques
of dealing with free variables aim to change variables
and to convert the logical relationship among the vari-
ables in a product term into a set of linear inequalities,
which can be merged conveniently into the GGP mod-
els. Compared with current GGP methods, the pro-
posed method is capable of dealing with free variables
of a GGP problem and is guaranteed to converge to
a global optimum. In addition, several computationally
efficient convexification rules for signomial terms are
presented to enhance the efficiency of the optimization
approach.
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The study of multivalued generalized monotone opera-
tors is a recent(as of 1999) subject. The first to introduce
such a notion seem to have been L.G. Mitjuschin and
W.M. Polterovich [16] who defined multivalued quasi-
monotone operators in demand theory. The same con-
cept was also defined by A. Hassouni [10] and D.T. Luc
[14]. Later, Luc [15] and J.P. Penot and P.H. Quang [20]
proceeded to define new kinds of generalized mono-
tonicity for multivalued operators. Alarge part of this
effort has been devoted to the definition of appropriate
concepts so that generalized convex nonsmooth func-
tions are characterized by the generalized monotonicity
of their subdifferentials [18].

As it stands today, the theory is not at the stage of
development of the corresponding theory for single val-
ued operators (see� Generalized monotone single val-
ued maps). More concepts have to be introduced and
probably some of the already existing ones have to be

modified so that a nice correspondence such as the one
exhibited in the first theorem of � Generalized mono-
tone single valued maps can be established, without im-
posing any additional assumptions. This concerns both
generalized monotonicity of multivalued operators and
generalized convexity of nonsmooth functions, as some
notions of generalized convexity involve subdifferen-
tials.

This article presents various definitions of gen-
eralized monotonicity for multivalued operators and
generalized convexity for nonsmooth functions. Also,
various characterizations of generalized convexity of
a function through the corresponding generalized
monotonicity of the subdifferential are surveyed. Some
characterizations have a ‘mixed’ form, i. e., they involve
both the function and its subdifferential.

The next section contains the definition of the sub-
differential for lower semicontinuous functions, along
with the necessary notation. Then the less known cor-
respondence between the convexity of a function and
the monotonicity of its subdifferential is presented. In
the main part of the article, this correspondence is ex-
tended to cover the various cases of generalized convex-
ity and generalized monotonicity.

The Subdifferential

There is a host of nonequivalent subdifferentials for
nonconvex functions. The interested reader may find
a thorough exposition of the various concepts in [19].
The most common, the Clarke–Rockafellar subdiffer-
ential, is the one that will be used here, although many
of the results hold also for a large number of other
subdifferentials; see for instance [1,18,19]. Generalized
monotonicity of bifunctions is used in [13] to char-
acterize generalized convex functions through various
generalized derivatives.

In this article, X denotes a Banach space, X� its dual,
and f : X ! R [ { +1} a lower semicontinuous (lsc)
function with nonempty domain dom(f ) = {x 2 X: f (x)
6D +1}. The function f is called radially continuous if
its restriction to line segments is continuous. The value
of a functional x� 2 X� at a point x 2 X will be denoted
by hx�, xi. Given x, y 2X, (x, y) is the open line segment
{tx+ (1�t)y: t 2 (0, 1)}. The line segments [x, y], [x, y)
and (x, y] aredefined analogously.
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The Clarke–Rockafellar generalized derivative of f at
x0 2 dom(f ) in the direction d 2 X is given by

f "(x0; d)

D sup
">0

lim sup
x! f x0
t&0

inf
d02B"(d)

f (x C td0) � f (x)
t

:

Here, t & 0 is used to denote the fact that t > 0 and t
! 0, and x! f xo means that both x! xo and f (x)!
f (xo).

The (Clarke–Rockafellar) subdifferential of f at x0 2
dom(f ) is defined by

@ f (x0)

D
n
x� 2 X� : hx�; di � f "(x0; d); 8d 2 X

o
;

while for x0 2 X \ dom(f ), @ f (x0) = ;.
Even for x0 2 dom(f ), the subdifferential @f (x0) may

be empty. Whenever the function f is locally Lipschitz,
one has @f (x0) 6D ;, for all x0 2 dom(f ). In this case f "

coincides with the Clarke generalized derivative:

f o(x0; d) D lim sup
x!x0
t&0

f (x C td) � f (x)
t

:

In case f is convex, @f coincides with the classical
Fenchel–Moreau subdifferential

@ f (x0)
D fx� 2 X� : hx�; di � f (x0 C d) � f (x0)g :

TheMonotone Case

Let T: X! 2X� be a multivalued operator with domain

D(T) D fx 2 X : T(x) ¤ ;g :

The operator T is called:
� monotone, if for all x, y 2 X and

x� 2 T(x); y� 2 T(y)

one has

hy� � x�; y � xi � 0; (1)

� strictly monotone, if for all x 6D y the above inequality
is strict.

It is well known that the subdifferential of a convex
function is amonotone operator. However, the fact that
convex functions are characterized by the monotonic-
ity of their Clarke–Rockafellar subdifferentials is a rel-
atively recent result. In addition, there exists a ‘mixed’
characterization of convexity, involving both the func-
tion and its subdifferential:

Theorem 1 Let f be lsc. The following are equivalent:
i) The function f is convex.
ii) For all x, y 2 dom(f ) and all x� 2 @f (x) one has:

hx�; y � xi � f (y) � f (x): (2)

iii) The subdifferential @ f is a monotone operator.

The implication i))ii) follows from the equality of the
Clarke–Rockafellar and the Fenchel–Moreau subdiffer-
ential for convex functions. The implication ii))iii) is
shown in every textbook on monotone operators. Fi-
nally, the implication iii))i) is shown in [4].

An analogous theorem holds for strictly convex
functions (see � Generalized monotone single valued
maps for definitions of the various kinds of convexity
and generalized convexity):

Theorem 2 Let f be lsc. Consider the following asser-
tions:
i) The function f is strictly convex.
ii) For all distinct x, y 2 dom(f ) and

x� 2 @ f (x);

one has

hx�; y � xi < f (y)� f (x):

iii) The subdifferential @ f is a strictly monotone opera-
tor.

Then i))ii))iii). If, in addition, @f (x) 6D ; for all x 2
dom(f ), then iii))i).

For the proof, see [8].

The Quasimonotone Case

The concepts of quasimonotone, semistrictly quasi-
monotone and strictly quasimonotone maps are direct
generalizations of the corresponding concepts for sin-
gle valued maps (see � Generalized monotone single
valued maps and [9,12]). A multivalued operator T: X
! 2X� is called:
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� quasimonotone [14], if for all x, y 2 X and all x� 2
T(x), y� 2 T(y), the following implication holds:

hx�; y � xi > 0 ) hy�; y � xi � 0;

� semistrictly quasimonotone [5], if it is quasimono-
tone and for any distinct

x; y 2 D(T)

one has the implication:

9x� 2 T(x) : hx�; y � xi > 0

)9z 2
�
x C y
2

; y
�
; 9z� 2 T(z) :

hz�; y � xi > 0;

(3)

� strictly quasimonotone [5], if it is quasimonotone
and for any distinct x, y 2 D(T), there exists z 2 (x,
y) and z� 2 T(z)such that hz�, y�xi 6D 0.

It can be shown [5] that relation (3) is equivalentto the
following: if hx�, y� xi > 0 for some x� 2 T(x), then the
set of all z 2 (x, y) for which there exists z� 2 T(z) such
that hz�, y� xi > 0, is dense in [x, y].

In the single valued case, whenever T is a gradi-
ent, its quasimonotonicity, semistrict quasimonotonic-
ity and strict quasimonotonicity is equivalent to qua-
siconvexity, semistrict quasiconvexity and strict quasi-
convexity of the underlying function, respectively (see
� Generalized monotone single valued maps for the
corresponding definitions, and [3] for properties of
such functions). Analogous results hold formultivalued
operators which are subdifferentials. The next theorem
gives two equivalent characterizations of quasiconvex-
ity: one ‘mixed’, andone through the quasimonotonic-
ity of the subdifferential.

Theorem 3 Let f be lsc. The following are equivalent:
i) The function f is quasiconvex.
ii) For all x, y 2 dom(f ), the following implication holds:

9x� 2 @ f (x) : hx�; y � xi > 0

) 8z 2 [x; y] : f (z) � f (y):
(4)

iii) The operator @f is quasimonotone.

The equivalence i),iii) is shown in [14, Thm. 3.2],
while the equivalence i),ii) is shown in [1, Thm. 2.1].
In [1] it is also shown that, in case f is radially contin-
uous, implication (4) is equivalent to the following im-
plication:

9x� 2 @ f (x) : hx�; y � xi > 0 ) f (x) � f (y):

A ‘mixed’ characterization exists also for semistrictly
quasiconvex functions [5], but a continuity assumption
stronger than lower semicontinuity is needed:

Theorem 4 Let f be lsc. If f is semistrictly quasiconvex,
then for all x, y 2 dom(f ) one has:

9x� 2 @ f (x) : hx�; y � xi > 0
) 8z 2 [x; y) : f (z) < f (y):

(5)

The converse also holds if in addition f is radially con-
tinuous.

Radial continuity is an often used, weak continuity as-
sumption. In fact, it is not as weak as it seems. Since X is
a Banach space, it can be shown that a lsc quasiconvex
function which is radially continuous is also continuous
[8].

Characterization of strict or semistrict quasiconvex-
ity via the generalized monotonicity of the subdifferen-
tial requires an even stronger continuity assumption:

Theorem 5 A locally Lipschitz function f is strictly
(respectively semistrictly) quasiconvex, if and only if its
subdifferential is strictly (respectively semistrictly) quasi-
monotone.

For the proof, see [5].

The Pseudomonotone Case

The definition of pseudomonotonicity for multivalued
operators was given by J.C. Yao [21] and generalizes
the corresponding definition for single valued opera-
tors (see � Generalized monotone single valued maps
and [11]). An operator

T : X ! 2X
�

is called pseudomonotone if for all x, y 2 X one has:

9x� 2 T(x) : hx�; y � xi � 0

) 8y� 2 T(y) : hy�; y � xi � 0:

Equivalently, an operator T is pseudomonotone if and
only if the following implication holds:

9x� 2 T(x) : hx�; y � xi > 0
) 8y� 2 T(y) : hy�; y � xi > 0:

(6)

Obviously, a pseudomonotone operator T is quasi-
monotone. If in addition the domain D(T) is con-
vex, then relation (6) implies that T is also semistrictly
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quasimonotone. Also, it is clear that a monotone oper-
atoris pseudomonotone.

An operator T : X ! 2X� is called strictly pseu-
domonotone [21], if for all distinct x, y 2 X one has:

9x� 2 T(x) : hx�; y � xi � 0

) 8y� 2 T(y) : hy�; y � xi > 0:

It is clear that a strictly pseudomonotone operator is
pseudomonotone, and that a strictly monotone oper-
ator is strictly pseudomonotone. Finally, it can easily
be shown [8] that a strictly pseudomonotone operator
with convex domain is strictly quasimonotone.

In summary, between the various concepts of gen-
eralized monotonicity, the following implications hold
(some of which assume convexity of the domain):

qm
*

m ) pm ) sstr:qm
* * *

str:m ) str:pm ) str:qm

Here, ‘str.’ and ‘sstr.’ stands for ‘strictly’ and
‘semistrictly’, respectively, and ‘m’, ‘pm’ and ‘qm’ for
‘monotone’, ‘pseudomonotone’ and ‘quasimonotone’,
respectively. These implications are exactly the same as
those holding for singlevalued operators (see � Gener-
alized monotone single valued maps).

In contrast to quasiconvex functions and their vari-
ants, pseudoconvex functions have to be redefined in
the nonsmooth case. The reason is that the usual defini-
tion of pseudoconvexity makes explicit reference to the
derivative of the function (however, there exists a defi-
nition which does not mention the derivative explicitly
[17]; see also [3] for details).

A function f is called pseudoconvex, if for all x, y 2
dom(f ) the following implication holds:

9x� 2 @ f (x) : hx�; y � xi � 0

) 8z 2 [x; y) : f (z) � f (y):
(7)

Note that the above definition, expresses a ‘mixed’
property in the spirit of relation (4); actually, (7) is
stronger than (4), and hence any pseudoconvex func-
tion is quasiconvex. In particular, a pseudoconvex func-
tion f has a convex domain. If in addition f is radially
continuous, then it is semistrictly quasiconvex [8].

The definition of pseudoconvexity given here differs
slightly from the definition introduced in [20]. There,
a function f is called pseudoconvex if it satisfies the im-
plication

9x� 2 @ f (x) : hx�; y � xi � 0 ) f (x) � f (y): (8)

A pseudoconvex function (as defined by relation (7))
obviously satisfies (8). The converse is not always true;
however, if f is radially continuous, or if its domain is
convex, then (8) implies that f is quasiconvex (see [20]
and [6], respectively). It follows immediately that f sat-
isfies (7), i. e., it is pseudoconvex.

The following theorem connects pseudoconvexity
of a function to pseudomonotonicity of its subdifferen-
tial (see [8] and [20] for the proof of the first and the
second assertion, respectively):

Theorem 6 If f is pseudoconvex, then @f is pseu-
domonotone.Conversely, if @f is pseudomonotone and f
is radially continuous, then f is pseudoconvex.

A function f is called strictly pseudoconvex [8] if for all
x, y 2 dom(f ) one has:

9x� 2 @ f (x) : hx�; y � xi � 0

) 8z 2 [x; y) : f (z) < f (y):
(9)

For radially continuous functions, relation (9) is equiv-
alent to

9x� 2 @ f (x) : hx�; y � xi � 0 ) f (x) < f (y): (10)

Indeed, if relation (10) holds, then f is pseudoconvex,
hence it is semistrictly quasiconvex. Consequently, if
hx�, y� xi � 0 for some

x� 2 @ f (x);

then f (x)< f (y) implies that f (z)< f (y) for all z 2 [x, y),
i. e. (9) holds.

We have the following connection to strict pseu-
domonotonicity:

Theorem 7 If f is strictly pseudoconvex, then @f is
strictly pseudomonotone. Conversely, if @f is strictly
pseudomonotone and its values are nonempty on
dom(f ), then f is strictly pseudoconvex.

For the proof of the first assertion, see [20]; the second
assertion is shown in [8].
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As a corollary of the last theorem, it can be shown
[8] that a locally Lipschitz, strictly pseudoconvex func-
tion f is strictly quasiconvex. Hence, between the vari-
ous kinds of generalized convexity, the following impli-
cations hold (some implications need extra continuity
assumptions): qcx

*

cx ) pcx ) sstr:qcx
* * *

str:cx ) str:pcx ) str:qcx

Here, ‘cx’, ‘pcx’ and ‘qcx’ stands for ‘convex’, ‘pseu-
doconvex’ and ‘quasiconvex’, respectively. Thus, the
same implications hold as those fordifferentiable func-
tions (see the corresponding diagram in � Generalized
monotone single valued maps). In addition, each type
of generalized convex function is characterized by the
corresponding generalized monotonicity of the subd-
ifferential, exactly as in the case of differentiable func-
tions (the first theorem in � Generalized monotone
single valued maps).

See also

� Fejér Monotonicity in Convex Optimization
� Generalized Monotone Single Valued Maps
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Set-valued Optimization
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In the analysis and solution of complementarity prob-
lems and variational inequalities, it is commonly as-
sumed that the defining map is monotone. This is not
surprising since in the special case of an underlying
optimization problem usually convexity is assumed,
and convexity of the objective function corresponds to
monotonicity of its gradient.

For several decades much effort has been devoted
to generalizing convexity in various ways, often with
the view of nonconvex optimization inmind [1]. On the
other hand, only recently a systematic study of general-
izations of monotonicity has emerged. Since the arti-
cle [14] in 1990 about two hundred publications have
appeared. They deal with either concepts and charac-
terizations of generalized monotonicity or with uses in
variational inequalities and related models [23].

In this survey characterizations of generalized
monotonicity for different subclasses of maps are pre-
sented. The need for such criteria is obvious, given that
the defining inequalities are often hard to verify.

The article is organized as follows. The next sec-
tion provides a brief review of some basic generalized
monotonicity concepts and their relationships. This is
followed by a presentation of criteria for generalized-
monotonicity in case of differentiable, affine and non-
differentiable (locally Lipschitz) maps in the subsequent
sections.

This article on concepts and characterizations of
generalized monotone maps in the single valued case is
complemented by one on multi valuedmaps. In a third
article in this volume the use of generalized monotonic-
ity in variational inequalities and more general models

is surveyed. For amore detailed survey of applications
see [11].

Seven Kinds of (Generalized)Monotonicity

Seven basic kinds of convex/generalized convex func-
tions are [1]:
� convex (cx), strictly convex (str.cx);
� pseudoconvex (pcx), strictly pseudoconvex

(str.pcx);
� quasiconvex (qcx), semistrictly quasiconvex

(sstr.qcx) and strictly quasiconvex (str.qcx).
Strongly convex and strongly pseudoconvex functions
[1] are not considered here.

These functions are related to each other as follows:

qcx
*

cx ) pcx ) sstr:qcx
* * *

str:cx ) str:pcx ) str:qcx

For the sake of completeness, the related definitions
are presentedbelow.

Consider f : C! R where C � Rn is convex.
� f is convex (cx) if for all x, y 2 C and t 2 (0, 1),

f
�
tx C (1 � t)y

�
� t f (x)C (1 � t) f (y); (1)

� f is strictly convex (str.cx) if (1) is a strict inequality
for x 6D y.

� f is quasiconvex (qcx) if for all x, y 2 C such that f (x)
� f (y), t 2 (0, 1),

f
�
tx C (1 � t)y

�
� f (y); (2)

� f is strictly quasiconvex (str.qcx) if (2) is a strict in-
equality for x 6D y;

� f is semistrictly quasiconvex (sstr.qcx) if for all x, y 2
C such that f (x) < f (y) the inequality (2) is strict.

For the remaining two types of generalized convex
functions one assumes differentiability of f on the open
convex set C �Rn, although more general definitions
are available [1]:
� f is pseudoconvex (pcx) if for all x, y 2 C

(y � x)>r f (x) � 0 ) f (y) � f (x); (3)

� f is strictly pseudoconvex (str.pcx) if for all x, y 2 C,
x 6D y thesecond inequality in (3) is strict.
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Different kinds of generalized convexity preserve differ-
ent properties of convex functions. E.g., the characteris-
tic of a pseudoconvex function is that a stationary point
is a global minimum. Furthermore, for a semistrictly
quasiconvex function a local is a global minimum and
for a quasiconvex function the lower level sets are con-
vex. The qualifier ‘strictly’ indicates that a global mini-
mum is unique. In contrast to convex functions, inflec-
tion points are admissible for all types of generalized
convex functions.

Note that in [1] the terminology of quasiconvex and
pseudoconvex functions was harmonized, resulting in
renaming former ‘strongly quasiconvex’ functions as
strictly quasiconvex and ‘strictly quasiconvex’ functions
as semistrictly quasiconvex.

It is well known that a differentiable convex func-
tion is characterized by a monotone gradient. Corre-
spondingly, a strictly convex function is characterized
by a strictly monotone gradient. Accordingly, gener-
alized monotonicity concepts have been introduced in
such a way that incase of a gradient map F = rf gener-
alized monotonicity of F corresponds to some kind of
generalized convexity ofthe underlying function f . The
definitions of (generalized) monotone maps are listed
below.

Consider F : C! Rn where C � Rn.
� F ismonotone (m) on C if for all x, y 2 C

(y � x)>
�
F(y)� F(x)

�
� 0; (4)

� F is strictly monotone (str.m) on C if for all x, y 2 C,
x 6D y

(y � x)>
�
F(y)� F(x)

�
> 0; (5)

� F is pseudomonotone (pm) on C if for all x, y 2 C,

(y � x)>F(x) � 0 ) (y � x)>F(y) � 0; (6)

which is equivalent to

(y � x)>F(x) > 0 ) (y � x)>F(y) > 0;

� F is strictly pseudomonotone (str.pm) on C if for all
x, y 2 C, x 6D y,

(y � x)>F(x) � 0 ) (y � x)>F(y) > 0; (7)

� F is quasimonotone (qm) if for all x, y 2 C,

(y � x)>F(x) > 0 ) (y � x)>F(y) � 0; (8)

� F is strictly quasimonotone (str.qm) on C if F is
quasimonotone on C and for all x, y 2 C, x 6D y there
exists z = tx + (1�t)y, t 2 (0, 1), such that

(y � x)>F(z) ¤ 0; (9)

� F is semistrictly quasimonotone (sstr.qm) on C if F is
quasimonotone on C and for x, y 2 C, x 6D y,

(y � x)>F(x) > 0 ) (y � x)>F(z) > 0 (10)

for some z = tx + (1 � t)y, t 2 (0, 1/2).
If F is continuous, quasimonotonicity does not have
to be required explicitly for strictly/semistrictly quasi-
monotone maps since it is implied by (9), (10), respec-
tively. In terms of references for the concepts above, see
[13] for pseudomonotone maps, [14] for quasimono-
tone and strictly pseudomonotone maps and [9] for
strictly quasimonotone and semistrictly quasimono-
tone maps.

The following diagram was derived in [9,13,14] for
general maps which are not necessarily gradient maps:

qm
*

m ) pm ) sstr:qm
* * *

str:m ) str:pm ) str:qm

Now consider the special case of a gradient map F
= r f , where f is differentiable on the open convex set
C � Rn. In analogy to monotone maps it can be shown
[9,13,14]:

Theorem 1 The map F = rf is quasimonotone (re-
spectively, semistrictly quasimonotone, strictly quasi-
monotone, pseudomonotone, strictly pseudomonotone)
if and only if the function f is quasiconvex (respectively,
semistrictly quasiconvex, strictly quasiconvex, pseudo-
convex, strictly pseudoconvex).

Note that in the case of semistrictly quasiconvex func-
tions Theorem 1 provides the first successful character-
ization in terms of the gradient. Before, the existence of
such a characterization was doubted [17].

There are several studies where similar results are
obtained for nondifferentiable functions in which the
gradient is replaced by the subdifferential (see, e. g.,
� Generalized monotone multivalued maps).
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Given the geometric properties of generalized con-
vex functions mentioned above [1], it is not difficult to
derive the geometric properties describing generalized
monotonicity of gradient maps; e. g. [2,3,15].

New generalized monotone maps can be con-
structed from existing ones. As an example from [20],
consider z = Ax + b, where A is an m × n matrix and
b 2 Rm. Let D � Rm and C = {x 2 Rn:Ax + b 2 D}.
Then the map F(x) = A|G (Ax + b) is quasimono-
tone (pseudomonotone) on C if G is quasimonotone
(pseudomonotone) on D. Moreover, F is strictly pseu-
domonotone on C if G is strictly pseudomonotone on
D and A hasfull rank.

The Differentiable Case

In this section it is assumed that F:C! Rn is differen-
tiable and C�Rn is an open convex set. Let JF (x) be the
Jacobian of F. First order characterizations of general-
ized monotone maps have been established in [15]. In
case of gradient maps they extend classical second order
characterizations of generalized convex functions.

Let x 2 C, v 2 Rn, v 6D 0 and consider the following
conditions:
A) v|F(x) = 0 implies v|JF(x)v� 0;
A+) v|F(x) = 0 implies v|JF(x)v> 0;
B) v|F(x) = v|JF(x)v = 0 and the condition v>F(x C

btv) > 0 for somebt < 0 implies that there exists
et > 0 such that x Cetv 2 C, v>F(x C tv) � 0 for
all 0 � t �et;

C) v|F(x) = v|JF(x) v = 0 implies that there existset >
0 such that x Cetv 2 Cv>F(x C tv) � 0 for all
0 � t �et.

The following can be shown:

Theorem 2 Let F: C! Rn be differentiable on the open
convex set C � Rn.
i) F is quasimonotone if and only if A) and B) hold for

all x 2 C and v 2 Rn;
ii) F is pseudomonotone if and only if A) and C) hold

for all x 2 C and v 2 Rn;
iii) F is strictly pseudomonotone if A+) holds for all x 2

C and v 2 Rn.

More recently, it was shown in [4] that for continuously
differentiable maps v|F(x) = 0 in B) and C) can be re-
placed by the less restrictive assumption F(x) = 0, and
i) and ii) are still true. An immediate consequence of

this stronger characterization is that for a nonvanish-
ing map on an open convex set there is no difference
between quasimonotonicity and pseudomonotonicity.
Both are characterized by condition A). However, this
is no longer true in closed convex sets (see [10, Example
3.1]).

The Affine Case

In this section we focus on the special case of affine
maps. Let F(x) = Mx + q where M is an n × n matrix
and q 2 Rn. Consider F on an open convex set C � Rn.
For general differentiable maps we have F = rf if and
only if JF(x) is symmetric for all x. Hence for an affine
map F(x) = Mx + q we have F = rf if and only if M is
symmetric. In this case f (x) = (x|Mx)/2 + q|x. There-
fore first order characterizations of generalized mono-
tone affine maps correspond to second order character-
izations of generalized convex quadratic functions.

For affine maps conditions B) and C) are always sat-
isfied. Hence, specializing Theorem 2 we have

Theorem 3 The map F(x) = Mx + q is quasimonotone
on an open convex set C � Rn if and only if F is pseu-
domonotone on C if and only if for all x 2 C and v 2
Rn

v>(Mx C q) D 0 ) v>Mv � 0:

As a result, quasimonotonicity in a neighborhood of
a point x such that Mx C q D 0 implies monotonic-
ity on Rn.

As mentioned earlier, one can construct new gener-
alized monotone maps with the help of a given one as
follows. Given the linear map G(z) = Mz, if G is quasi-
monotone (pseudomonotone) on the nonnegative or-
thant Rm

C, then the map F(x) = (A|MA)x is quasimono-
tone (pseudomonotone) on Rn

C, for any nonnegative m
× nmatrix A.

Recently a matrix-theoretic characterization of gen-
eralized monotone affine maps was obtained [6]. The
departure point for its derivation is Theorem 3. The fol-
lowing notation is needed to describe the results.

For the affine map F(x) =Mx+ q one considers

B D
1
2
(M CM>); P D

1
2
M>B�M;

where B† is the Moore–Penrose pseudo-inverse of B,
n+, n� and n0 is the number of positive, negative and
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zero eigenvalues of B, respectively,

r D dim (ker(M)) ;

f (x) D(Mx C q)>B�(Mx C q);

S Dfx 2 Rn : f (x) � 0g ;

T D
˚
x 2 Rn : x>Px � 0

�
;

C � Rn is convex with C 6D ;.
One has [6]:

Theorem 4 F is quasimonotone on C (and pseu-
domonotone on (C)) if and only if one of the following
conditions holds:
i) n� = 0, i. e., B is positive semidefinite and F ismono-

tone on Rn;
ii1) n� = 1, r = n0 + 1, �q 62M (int C), q 2 B (Rn)�M

(Rn), P is positive semidefinite, S isa closed convex
set and C � S;

ii2) n� = 1, r = n0, �q 62M(int C), q 2 B(Rn) = M(Rn),
T = T+ [ (�T+) where T+ is a closed convex cone,
int T+ 6D ;, and for x such that Mx D q either
C � �x C TC or C � �x � TC.

Hence the maximal domain of quasimonotonicity is:
� Rn in case i);
� S in case ii1), and
� �x C TC or �x � TC in case ii2).

From Theorem 4 a characterization of quasimono-
tone (pseudomonotone)affine maps on convex cones
can be derived, and further specialized to the nonnega-
tive orthant [6].

It should be noted that in the special case M| = M,
case ii1) does not occur and Theorem 4 reduces to clas-
sical characterizations of generalized convex quadratic
functions [7,18,19,21,22]; see also [1]. Case ii1) does not
occur either if M is nonsingular. Hence it arises only if
M is not symmetric and singular.

Theorem 4 characterizes pseudomonotone affine
maps on open convex sets. However in applications,
e. g. in complementarity problems and variational in-
equalities, pseudomonotonicity on closed and convex
sets is needed. Such characterizations have very recently
been derived in [5] with an approach different from the
one in [6]. It involves an extension of Martos’ concept
of positive subdefinite matrices [18] to the nonsymmet-
ric case. Among others, [5] generalizes previous results
on pseudomonotone matrices for linear complemen-
tarity problems, e. g. [8].

The Nondifferentiable Case

Finally, characterizations of certain nondifferentiable
generalizedmonotone maps [16] are presented in this
section.

Let F: C! Rn be locally Lipschitz where C � Rn is
open convex. The criteria below make use of the gener-
alized Jacobian in the senseof Clarke. Given x 2 C, let
L(x) be the set of all limits DF(xi) where xi! x, F is dif-
ferentiable at xi 2 C and DF (xi) is the Jacobian. Define
@F(x) to be the convex hull of L(x). Finally, for x 2 C
and v 2 Rn set

DCF(x; v) D sup
˚
v>Av : A 2 @F(x)

�
;

D�F(x; v) D inf
˚
v>Av : A 2 @F(x)

�
:

In generalization of Theorem 2i) one has:

Theorem 5 The locally Lipschitz map F is quasimono-
tone on C if and only if for all x 2 C, v 2 Rn

A0) v|F(x) = 0 implies D+F(x;v)� 0, and
B0) v|F(x) = 0, 0 2 {v|Av: A 2 @F(x)} and v>F(x C

btv) > 0 for somebt < 0 imply that there existset > 0
such that v| F(x + tv) � 0 for all t 2 [0;et].

In light of [4], a stronger sufficient condition can be ob-
tained which however is no longer necessary [16], in
contrast to the differentiable case.

Theorem 6 The map F is quasimonotone on C if for all
x 2 C, v 2 Rn, v 6D 0
A00) v|F(x) = 0 implies D�F(x;v)� 0, and
B00) F(x) = 0, D�(x;v) = 0 and v>F(x Cbtv) > 0 for

somebt < 0 imply that there existset > 0 such that
v| F(x + tv) � 0 for all t 2 [0;et].

In analogy to the differentiable case (see Theorem
2), corresponding characterizations can be obtained
for pseudomonotone maps, replacing B0), B00) by
a stronger condition. Furthermore, criteria for strict
pseudomonotonicity are derived in [16].

Very recently, generalized monotonicity criteria for
locally Lipschitz maps have been extended to the class
of general continuous maps [12]. In this study Clarke’s
generalized Jacobian is replaced by an ‘approximate Ja-
cobian’.

Conclusion

In this survey we have presented various character-
izations of generalized monotone maps. Details are
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shown mainly for quasimonotone and pseudomono-
tone maps. In retrospect, it becomes clear how the main
characterization in the differentiable case (Theorem 2)
specializes in the affine case (Theorems 3, 4) and how
it can be extended in the nondifferentiable case (Theo-
rem 5).

See also

� Fejér Monotonicity Inconvex Optimization
� Generalized Monotone Multivalued Maps
� Generalized Monotonicity: Applications to

Variational Inequalities and Equilibrium Problems
� Set-valued Optimization
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This article on generalized monotone maps focuses on
some of their uses in variational inequalities and equi-
librium problems. Definitions and properties of var-
ious types of generalized monotone maps are found
in � Generalized monotone single valued maps and
� Generalized monotone multivalued maps. These ar-
ticles form the background of the present survey.

Variational inequalities appear in various forms and
arise in a wide range of problems in the natural and
social sciences, for example [22]. The simplest varia-
tional inequality problem (VIP) is the following: Given
a nonempty closed convex subset K of Rn and a map F:
K! Rn, find an element x0 2 K such that

(F(x0))> (x � x0) � 0 for all x 2 K: (1)

The prime example of a variational inequality stems
from a minimization problem. Given a differentiable
function f : K ! R, if x0 2 K minimizes f , then x0 is
a solution of the VIP (1) with F = r f .

As shown by G.J. Hartman and G. Stampacchia
[17], (1) has a solution if K is compact and F is
continuous. This result found many applications and
holds also, with the same assumptions, in infinite-
dimensional Banach spaces (cf. [26, Prop. 77.8]). How-
ever, in infinite-dimensional problems this form of the
theorem is not useful. The reason for this is that in
almost all interesting applications the assumptions of
(strong) compactness of the set K and of continuity of
the operator F are too strong to be met. A decisive step
forward was made by F. Browder who relaxed both as-
sumptions, at the cost of imposing another assumption,
namely monotonicity [7]. Specifically, letX be a real Ba-
nach space with dual X�, and K a nonempty, weakly
compact and convex subset of X. Given an operator T:
K ! X�, consider the following VIP: find x0 2 K such
that

hTx0; x � x0i � 0 for all x 2 K; (2)

where h�, �i is the duality pairing between X� and X. As
shown by Browder, the VIP (2) has a solution if T is
hemicontinuous and monotone. We recall that an op-
erator T is called hemicontinuous if its restriction to line
segments is continuous when X� is equipped with the
w�-topology. The operator is called monotone if for all
x, y 2 K one has

hTy � Tx; y � xi � 0:

It is interesting to note that in the standard ex-
ample of a variational inequality problem where X =
Rn and T is the gradient of a function f : K ! R the
operator T is monotone if and only if f is convex.
This shows that monotonicity is a natural assumption
for VIP. But it also shows that it may be too rigid
in many applications. This led to the consideration of
variational inequality problems and their extensions
with generalized monotone operators. The first to con-
sider generalized monotonicity in connection with vari-
ational inequalities was H. Brezis [5]. Then S. Kara-
mardian [19], coming from convex and generalized
convex optimization [1], began a tradition of intro-
ducing concepts of generalized monotonicity which,
unlike the one of Brezis, preserve the connection be-
tween monotonicity and convexity. They ensure that
in case of a gradient map, the gradient is general-
ized monotone (for instance, pseudomonotone, strictly
pseudomonotone, quasimonotone, strictly quasimono-
tone, semistrictly quasimonotone) if the underlying
function is generalized convex (i. e., respectively, pseu-
doconvex, strictly pseudoconvex, quasiconvex, strictly
quasiconvex, semistrictly quasiconvex [1]). For defini-
tions and properties of these concepts see � General-
ized monotone single valued maps and � Generalized
monotone multivalued maps for single- and multival-
ued generalized monotone maps, respectively.

In the next section, results on the existence of solu-
tions for the variational inequality problem with gen-
eralized monotone operators are presented. A general-
ization of these results to vector valued variational in-
equality problems is given in the third section. Finally,
the last section surveys results on the existence of solu-
tions for equilibrium problems, both in the scalar and
in the vector case. To begin, consider the following no-
tation and definitions.

Let X be a real Banach space. Given x, y 2 X, ]x, y[
and [x, y] denote the open line segment and the closed
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line segment joining x and y, respectively; the segments
]x, y], and [x, y[ are defined analogously. A multivalued
operator T: K ! 2X� \{;} is called upper hemicontinu-
ous if for all x, y 2 K, the restriction of T to [x, y] is
upper semicontinuous with respect to the w�-topology
on X�.

For any nonempty subset D of X, a point x0 2 X is
called an inner point of D [14,25] if for all u 2 X� the
following implication holds:

hx; ui � hx0; ui ; 8x 2 D

) hx; ui D hx0; ui ; 8x 2 D:

The set of inner points of D is denoted by inn D. The
concept of an inner point is a generalization of the con-
cept of a relative algebraic interior point. Indeed, in case
X is finite dimensional, the two concepts coincide. In
the general case, any relative algebraic interior point
is an inner point; in case of a closed convex set, inner
points have the following properties [14,25]:

Theorem 1 Let K 6D ; be a closed and convex subset of
X. Then one has:
i) inn K � K;
ii) if K is separable, then inn K 6D ;;
iii) if x1 2 K, x0 2 inn K, then

]x1; x0] � inn K;

in particular, inn K is convex.

There are many important examples of closed convex
subsets K which contain inner points, without contain-
ing any relative algebraic interior points [14].

Scalar Variational Inequalities

LetX be a real Banach space, andK a nonempty, closed,
convex subset of X. Let further T: K ! 2X� \ {;} be
a multivalued operator with nonempty values. The VIP
for such an operator is the following: find x0 2 K such
that

8x 2 K 9x� 2 Tx0 : hx�; x � x0i � 0: (3)

This problem is closely related to the so-called dual
variational inequality problem (DVIP), which is the fol-
lowing: find x0 2 K such that

8x 2 K 8x� 2 Tx : hx�; x � x0i � 0: (4)

Indeed, it is well known that, if x0 is a solution of DVIP,
then it is also a solution of VIP, provided that T is up-
per hemicontinuous [20]. For this reason, most proofs
of existence of a solution for VIP establish first the ex-
istence of a solution of DVIP.

R.W. Cottle and J.C. Yao [8] were the first to
show an existence result for a solution of a VIP with
a single valued pseudomonotone operator, hereby ex-
tending Karamardian’s result [19] for complementarity
problems in finite-dimensional spaces. Later, Yao [24]
generalized this result to multi valued pseudomono-
tone operators; I.V. Konnov [20] generalized it further
to include semistrictly quasimonotone operators; see
� Generalized monotone multivalued maps. The most
general result in this direction with no assumptions (ex-
cept coercivity) was derived for properly quasimono-
tone operators [12]. The operator T is called properly
quasimonotone if for all x1, . . . , xn 2 K and all y 2 co{x1,
. . . , xn} there exists i 2 {1, . . . , n} such that hx�, y �
xii � 0 for all x� 2 Txi. The name of this property is
justified by the fact that a lower semicontinuous func-
tion f : K ! R is quasiconvex if and only if its Clarke-
Rockafellar subdifferential is properly quasimonotone
[12]. For such operators, the following theorem holds
[11]:

Theorem 2 Let T: K ! 2X�\{;} be a properly quasi-
monotone operator. Suppose that K is weakly compact,
or alternatively that the following coercivity condition
holds: there exists a weakly compact subset W of K and
x0 2W such that

8x 2 KnW 9x�0 2 Tx0 :
˝
x�0 ; x0 � x

˛
< 0: (5)

Then the DVIP (4) has a solution. Consequently, if T is
upper hemicontinuous, then the VIP (3) also has a solu-
tion.

A semistrictly quasimonotone operator (or, a fortiori,
a pseudomonotone operator) is properly quasimono-
tone [11]. Thus, the above result generalizes the corre-
sponding results in [20] and [24].

For the still more general case of a quasimonotone
operator, even for single valued operators, one needs
a mild assumption on the domain [14]. For multivalued
operators one needs still stronger assumptions [9]:

Theorem 3 Let T: K ! 2X�\ {;} be a quasimonotone
operator. Suppose that:
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a) K is weakly compact, or alternatively that coercivity
condition (5) holds;

b) inn K 6D ;;
c) T has compact values.
d) T is upper hemicontinuous.
Then the VIP (3) has a solution.

Vector Variational Inequalities

The VIP has been generalized in various ways. One
of these generalizations proposed by F. Giannessi [13]
suggests to consider the variational inequality in a mul-
tidimensional space rather than the real number field.
This is the so-called vector variational inequality prob-
lem (VVIP). The VVIP is closely related, just as its
scalar counterpart, to the least element problem and the
complementarity problem [23].

In the VVIP, apart from the Banach space X and its
closed, convex subset K, one considers a Banach space
Y and the space L(X, Y) of all continuous linear oper-
ators from X to Y . The space Y is ordered by a cone C.
In this case, the expression ‘the element x 2 Y is non-
negative’ can have two different meanings: either x 2 C
or x 62 �int C. It further increases the applicability, es-
pecially to economics, without much additional effort if
one allows this cone to ‘move’; thus, instead of a cone
one considers a multivalued mapping C: K ! 2Y such
that for each x 2 K, C(x) is a closed convex cone with
nonempty interior. Let further T: K ! 2L(X, Y) \ {;} be
a multivalued operator. The VVIP is the following: find
x0 2 K such that

8y 2 K 9A 2 Tx0 :

A(y � x0) … � intC(x0):
(6)

In the scalar case Y = R, C(x) = R+ one has L(X,
Y) = X�, and VVIP becomes VIP. In the general case,
monotonicity and generalized monotonicity have to be
newly defined. The operator T is called:
� monotone if for all x, y 2 K one has:

8A 2 Tx 8B 2 Ty :

(B � A)(y � x) 2 C(x);

� pseudomonotone if for all x, y 2 K the following im-
plication holds:

9A 2 Tx : A(y � x) … � intC(x)

) 8B 2 Ty : B(y � x) … � intC(x);

� quasimonotone if for all x, y 2 K the following im-
plication holds:

9A 2 Tx : A(y � x) … �C(x)

) 8B 2 Ty : B(y � x) … � intC(x):

We now recall some topological notions. The strong
operator topology (SOT) on L(X, Y) is the weakest
topology such that for each x 2 X, the function L(X, Y)
3 A! Ax 2 Y is continuous. An operator A 2 L(X, Y)
is called completely continuous if it maps weakly con-
vergent sequences into strongly convergent sequences.
Examples of completely continuous operators are com-
pact operators. The following result proved in [10] gen-
eralizes many existence results in the literature as well
as Theorem 3:

Theorem 4 Suppose that the following assumptions
hold:
i) the operator T is upper hemicontinuous with respect

to the SOT topology;
ii) the graph of the multifunction

x ! Y n (� intC(x))

is sequentially closed in X × Y in the (weak) ×
(strong) topology;

iii) K is weakly compact;
iv) for each x 2 K, Tx consists of completely continuous

operators;
v) T is pseudomonotone, or
v’) T is quasimonotone, its values are norm compact

and inn K 6D ;.
Then the VVIP (6) has a solution.

As in the scalar case, the assumption ‘K is compact’ may
be replaced by a coercivity condition.

Equilibrium Problems

The remainder of this article deals with problems more
general than VIP. Given a nonempty setK and a bifunc-
tion f : K × K! R, the equilibrium problem (EP) [4,6]
for f is the following: find x0 2 K such that

f (x0; y) � 0 for all y 2 K: (7)

A great variety of problems can be formulated as
an EP including problems of optimization, saddle point
theory, game theory, fixed point theory and VIP [4]. For
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instance, if K is a nonempty closed, convex subset of
a Banach space X and T: K! 2X� \ {;} is a multivalued
operator with weakly compact values, let f be defined as

f (x; y) D max fhx�; y � xi : x� 2 Txg : (8)

It is easy to see that x0 2 K is a solution of the EP
(7) if and only if it is a solution of the VIP (2). Because
of this correspondence, one is led to define concepts of
generalized monotonicity for bifunctions. A bifunction
f is called:
� monotone [4] if for all x, y 2 K one has:

f (x; y)C f (y; x) � 0;

� pseudomonotone [3] if for all x, y 2 K the following
implication holds:

f (x; y) � 0 ) f (y; x) � 0;

� quasimonotone [3] if for all x, y 2 K the following
implication holds:

f (x; y) > 0 ) f (y; x) � 0:

It is easy to see that amulti valued operator ismono-
tone (respectively, pseudomonotone, quasimonotone)
if and only if the bifunction defined by relation (8)
is monotone (respectively, pseudomonotone, quasi-
monotone). Equilibrium problems with generalized
monotone bifunctions in the above sense were consid-
ered in [3]. There the following result was proved:

Theorem 5 Let X be a real topological Hausdorff vector
space and K � X be nonempty, convex and closed. Let
further f : K × K! R be a bifunction such that f (x, x)�
0 for all x 2 K. Consider the following assumptions:
i) f (�, y) is hemicontinuous (i. e., continuous on every

line segment in K) for all y 2 K;
ii) f (x, �) is semistrictly quasiconvex [1] and lower semi-

continuous for all x 2 K;
iii) there exists a compact subset B � X and y0 2 B \ K

such that f (x, y0) < 0 for all x 2 K\ B (coercivity);
iv) for all x 2 K, if f (x, y) = 0 and f (x, y1) > 0, then f (x,

z) > 0 for all z 2 ]y, y1[;
v) the algebraic interior of K is nonempty.
If f is pseudomonotone and assumptions (i–iii) hold,
then the EP (7) has a solution. Likewise, if f is quasi-
monotone and all assumptions i)–v) hold, then (7) has
a solution.

The above theorem generalizes older results by Brezis,
L. Nirenberg and Stampacchia [6] and is related to
more recent results with monotone bifunctions by E.
Blum and W. Oettli [4].

Just like vector variational inequalities, vector equi-
librium problems have also been considered where the
bifunction takes values in a locally convex vector space
ordered by a cone [2]. As shown by Oettli [21] for
the pseudomonotone case, vector equilibrium prob-
lems can also be treated by considering two real valued
bifunctions, rather than one vector valued one. Oettli’s
approach can even be applied to the quasimonotone
case [15]. For this, let X be a real Hausdorff topological
vector space, K � X be nonempty and convex, and f , g:
K × K! R be two bifunctions. The bifunction f is said
to be pseudomonotone with respect to the bifunction g
[21] if for all (x, y) 2 K × K the following implication
holds:

f (x; y) � 0 ) g(y; x) � 0:

The bifunctions f , g are said to be a quasimonotone
pair [15] if for all (x, y) 2 K × K the following implica-
tion holds:

f (x; y) > 0 ) g(y; x) � 0:

If f = g, then the above definitions reduce to those of
pseudomonotone and quasimonotone bifunctions, re-
spectively.

The following rather technical, but very useful result
was proved in [21] for the pseudomonotone case and in
[15] for the quasimonotone case:

Theorem 6 Consider the following assumptions:
i) f (x, x) � 0 for all x 2 K;
ii) the set �(y) = {x 2 K: g(y, x) � 0} is closed in K for

all y 2 K;
iii) for all x, y, z 2 K, if f (x, y) < 0 and f (x, z) � 0, then

f (x, u) < 0 for all u 2 ]y, z[;
iv) there exist a compact subset D of K and y� 2 D such

that for all x 2 K\D one has f (x, y�) < 0;
v) the set {u 2 [x, z]: g(u, y) � 0} is closed for all x, z 2

K;
vi) the relative algebraic interior of K is nonempty.
Suppose that f is pseudomonotone with respect to g and
assumptions i)–iv) hold, or that the bifunctions f , g are
a quasimonotone pair and all assumptions i)–vi) hold.
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Then at least one of the following problems has a solution
x0 2 K:

f (x0; y) � 0 for all y 2 K;

g(y; x0) � 0 for all y 2 K:

By choosing the bifunctions f and g appropriately, a va-
riety of results can be produced. For instance, let X and
K be as before, and let Z be a real Hausdorff locally con-
vex space. Finally, let C� Z be a proper, convex, closed
cone with nonempty interior int C. Define the relations
�, <, — and 6< on Z by

x � y , y � x 2 C;

x < y , y � x 2 intC;

x — y , y � x … C;

x 6< y , y � x … intC:

Given a bifunction H:K × K! Z, consider the vec-
tor equilibrium problem (VEP): find x0 2 K such that

H(x0; y) 6< 0 for all y 2 K: (9)

Theorem 6 can now be applied to show the exis-
tence of a solution for VEP. This is done as follows.
Since the cone C has a nonempty interior by assump-
tion, the dual cone C� has a w�-compact base B. (Recall
that a (closed) base B of a cone W is a convex subset
ofW such that 0 62 B and W = [t�0tB.) Define the real
valued bifunctions f and g on K as follows:

f (x; y) D max
�2B

�
�
H(x; y)

�
;

g(x; y) D min
�2B

�
�
H(x; y)

�
:

Applying Theorem 6 to these bifunctions, one ar-
rives at the following result [15]:

Theorem 7 Suppose that the bifunction H satisfies the
following assumptions, for all x, y, z in K:
i) H(x, x) 6< 0;
ii) the set {x 2 K: H(y, x) 6> 0} is closed in K;
iii) if H(x, y) < 0 and H(x, z) � 0, then H(x, u) < 0 for

all u 2 ]y, z[;
iv) the sets {u2 ]x, z[: H(u, y) 6> 0} and {u 2 ]x, z[: H(u,

y) 6< 0} are closed;
v) there exist a compact subset D of K and y� 2 D such

that for all x 2 K\D we have H(x, y�) < 0 (coerciv-
ity);

vi) H(x, y) > 0) H(y, x) � 0 (quasimonotonicity of
H);

vii) if H(u, y) < 0 for some u 2 ]x, y[, then H(u, x) > 0.
Then the VEP (9) has a solution.

The above result considerably strengthens a corre-
sponding result in [2].

As another example for using Theorem 6, consider
the Banach spaces X, Y , the multivalued operator T and
the cone-valued map C as in the previous section on
VVIP. For each x 2 K, choose a w�-compact base B(x)
of the dual cone C�(x). Now define the bifunctions f
and g as follows:

f (x; y) D max
�2B(x)
A2Tx

�
�
A(y � x)

�
;

g(x; y) D min
�2B(y)
A2Tx

�
�
A(y � x)

�
:

Then, applying Theorem 6, one can show Theorem
4 as a corollary, for a set K with nonempty relative alge-
braic interior. Other variants of Theorem 4 can also be
deduced [15].

In conclusion, this article demonstrates that gener-
alized monotonicity rather than monotonicity is suf-
ficient to establish the existence of solutions for VIP,
VVIP, EP and VEP. A more extensive survey can be
found in [16].

Finally, the reader interested in recent results on the
relevance of generalized monotone VIP for the general
economic equilibrium is referred to [18].
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A network is composed of two types of entities: arcs and
nodes. The nodes represent locations or terminals, and
the arcs represent one-way links connecting pairs of
nodes. The arc (i, j) links node i to node j and the flow is
from i to j. The structure of a network can be displayed
by a drawing, as illustrated in Fig. 1. The structure of
a network may also be represented by a node-arc inci-
dence matrix A, where Aik is 1 if arc k is directed away
from node i, Aik is �1 if arc k is directed toward node
i, and Aik is 0 otherwise. Any matrix A in which each
column has exactly two nonzero entries, a + 1 and a �
1, is called a node-arc incidence matrix. The minimum
cost network flow problem is a linear program, say

min
x

˚
c0x : Ax D b; l � x � u

�
;

whereA is a node-arc incidence matrix. The generalized
network problem, as its name implies, is a generaliza-

1

2

3

4

Generalized Networks, Figure 1
Example network with nodes 1, 2, 3, 4 and arcs (1, 2), (1, 3),
(2, 3), (2, 4), (3, 2), (3, 4)

tion of the minimum cost network flow problem, also
referred to as the pure network problem.

Let f denote the flow in arc (i, j) in a pure network.
A characteristic of this model is that the f units which
depart node i must arrive at node j. Many real applica-
tions violate this assumption. In a pipeline distribution
network, liquid or gas will be lost due to leakage. In
a network carrying a perishable commodity, a certain
percentage of the commodity will be lost as it moves
along the arcs. For these cases, flowmay be lost as it tra-
verses certain arcs. However, if an arc represents hold-
ing money in a savings account over a period of time,
the value at the end of the period will equal the initial
investment plus the interest earned. An arc in a gener-
alized network permits flow to increase, decrease, or re-
main the same as it traverses the arc. This is illustrated
in Fig. 2 for the arc (i, j). Each end of the arc has a con-
stant (multiplier) associated with it, which determines
the gain or loss during traversal. For the pure network
arc, the +1 and �1 correspond to the coefficients in the
node-arc incidence matrix.

Generalized networkmodels are also used to change
units in a flow model. The arcs illustrated in Fig. 3 con-
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Generalized Networks, Figure 2
Different types of generalized network arcs

Generalized Networks, Figure 3
Generalized network arcs to convert currency

Generalized Networks, Figure 4
Sample generalized network

vert fromUS dollars to pound sterling, and from pound
sterling to French francs. That is, dollars which depart
New York are converted to pounds when they arrive
at London. Pounds leaving London are converted to
francs when they arrive at Paris. This is also useful to
convert from machine-hours to units of finished parts
or pallets to truck loads.

In its most general form, the generalized network
problem is a linear programwith the special feature that
each column of the constraint matrix has at most two
nonzero entries. Let G be an m×n matrix with full row
rank having this feature. Let c, l, and u be n-component
vectors, and r an m-component vector. Let Y = {x: Gx
= r, l � x � u}, and assume that Y 6D ;. The general-
ized network problem is to find an n-component vector
ex, such that cex D minx fcx : Gx D r; l � x � ug. For
the generalized network model illustrated in Fig. 4, G
is

nodesnarcs 1 2 3 4 5
1 1 1 0 0 0
2 �2 0 �1 0:5 0
3 0 �1 �1 0 2
4 0 0 0 1 �1

For each arc, an arbitrary orientation has been as-
signed so that an arc is defined by the following tuple:
(from node, to node, from-node multiplier, to-node
multiplier, cost, lower bound, upper bound).

Some authors and computer codes require that the
from-node multiplier be 1. The above model can be
converted to this form via the variable substitution
xk D akxk for k = 1, . . . , n, where ak is the from-node
multiplier for arc k. However, this restriction causes
some difficulty if the generalized network solver is ever
adapted to solve the integer generalized network model.
The code developed by J.L. Kennington and R.A. Mo-
hamed [8] (RAMSES) allows for arbitrary multipliers
on both ends of each arc. Other authors assume that
the lower bounds are all zero. The above model can
be converted to this form via the variable substitution
xk D xk � lk for k = 1, . . . , n, where lk is the lower
bound for arc k.

Many of the computer codes that have been devel-
oped for the generalized network problem are special-
izations of the primal simplex algorithm. These special-
izations exploit the graphical structure of the basis and
solve systems of equations on a graph rather than with
standard matrix operations. Let B be a nonsingular m ×
m submatrix ofG, and N be the submatrix composed of
the remaining n � m columns of G. By imposing sim-
ilar partitions on c, x, and u, the generalized network
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problem is represented as

8̂
ˆ̂̂<
ˆ̂̂̂
:

min cBxB C cNxN

s.t. BxB C NxN D r;
l B � xB � uB;

l N � xN � uN :

Any solution (xB, xN) in which xNi 2 {l
N
i , u

N
i } and x

B

= B�1(r � NxN) is called a basic solution with respect
to the basis B. A feasible solution that is also basic is
called a basic feasible solution BFS. Each iteration of the
primal simplex algorithm corresponds to moving from
one BFS to another BFS so that the objective function
value never increases, proceeding until an optimum is
reached.

The dual variables associated with a BFS are given
by  = cBB�1 and the reduced costs are given by � = c �
 G. The optimality conditions for a given primal-dual
pair are

8̂
<̂
ˆ̂:

� j > 0 ) x j D l j;
� j D 0 ) l j � x j � uj;

� j < 0 ) x j D uj;

for each j. Using this notation, an iteration of the primal
simplex algorithm is as in the table above.

By re-ordering the rows and columns of B, it can be
displayed in block diagonal form as follows:

B D

0
BB@
B1

: : :

Bp

1
CCA :

For example, the basis

B D

0
BBBBBBBBBBBBBBB@

1 2 0 0 0 0 0 0 0 0
�1 0 1 1 �2 0 0 0 0 0
0 0 0 0 0 1 2 2 0 0
0 0 0 0 0 0 4 0 �1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 �1 0
0 0 �1 0 0 0 0 0 0 0
0 0 0 �2 0 0 0 0 0 0
0 �2 0 0 1 0 0 0 0 3

1
CCCCCCCCCCCCCCCA

can be displayed as B equals

1 2
�1 1 1 �2

2 1 3
�1

�2
1

1
�1
�1 4

2 2 1
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Generalized Networks, Figure 5
A display of the basis B

with p = 2 and row order 1, 2, 10, 8, 9, 5, 6, 7, 4, and 3.
A display of the graph corresponding to B is illustrated
in Fig. 5. The direction of the arcs was selected arbitrar-
ily.

A connected network having exactly one cycle (such
as the upper component in Fig. 5) is called a one-tree.
An arc which is incident to a single node (such as the arc
corresponding to the last column of B) is called a root
arc. A connected network on k nodes having k � 1 reg-
ular arcs and one root arc is called a rooted tree (such
as the lower component in Fig. 5). It has been known
from at least the 1960s that the connected components
of a generalized network are either one-trees or rooted
trees ([5,7]). This structure can be exploited in solving
the systems B = cB and By =N�q needed in the simplex
algorithm, the details of which appear in [6].

In software implementations of the primal simplex
algorithm, the basis of a generalized network is main-
tained using a special data structure. Using the rooted

Generalized Networks, Table 1
Label for the basis illustrated in Fig. 5

Node Pred Thrd Card Last
Node

1 10 2 1 1
2 1 8 3 9
3 3 4 4 6
4 3 7 2 7
5 10 1 1 5
6 3 3 1 6
7 4 6 1 7
8 2 9 1 8
9 2 10 1 9
10 2 5 2 5

tree illustrated in Fig. 5, one may imagine a line around
the contours of the tree as illustrated in Fig. 6a, which
is known as a depth-first search. For this example, the
nodes in this search are ordered 3, 4, 7, 4, 3, 6, 3. An
order called pre-order is obtained by eliminating all du-
plicate occurrences (i. e. 3, 4, 7, 6). The label which gives
the next node in the pre-order is called the thread.

Three additional labels are generally used to main-
tain the basis. The predecessor of node v, denoted p(v)
is the first node encountered on the path from v to the
root. For root nodes, we adopt the convention p(v) =
v. If the arc linking v and p(v) were deleted, then there
would be two trees, one containing v and the other ex-
cluding v. The tree containing v is said to be rooted at
v. The cardinality of v is defined to be the number of
nodes in the tree rooted at v. The last node of v is de-
fined to be the last node in the tree rooted at v when the
nodes are taken in thread (pre-order) order.

The data structure used to represent a rooted tree
is extended for the one-tree in an obvious way. The
cycle in the one-tree plays the role of the root node.
The predecessor label of the nodes in the cycle point
to the next node in the cycle. That is, beginning with
any node in the cycle, say v, the sequence v, p(v),
p(p(v)), . . . identifies all nodes in the cycle. The conven-
tion adopted for the thread is that traversal around the
cycle using the thread is in the opposite direction to that
using the predecessor. The pre-order for a one-tree is
illustrated in Fig. 6b and the four labels for the basis
illustrated in Fig. 5 are given in Table 1. Using these
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Generalized Networks, Table 2
Survey of generalized network codes, where A stands for As-
sembly and F for FORTRAN

Code Lang Authors
NETG F F. Glover,
1973 D. Klingman,

J. Stutz
- F W. Langley

1973
- F D. Adolphson,

1981 L. Heum
GENNET F G. Brown,

1984 R. McBride
GWHIZNET A J. Tomlin

1984
GRNET F M. Engquist
1985 M. Chang

LPNETG F J. Mulvey,
1985 S. Zenios
- F I. Ali,

1986 A. Charles,
T. Song

GRNET-K F M. Chang,
(parallel) M. Engquist,
1987 M. Finkel,

R. Meyer
PGRNET F R. Clark,
(parallel) R. Meyer,
1987 M. Chang

GNO/PC C W. Nulty,
1988 M. Trick

GRNET-A A M. Chang,
1988 M. Cheng,

C. Chen
GENFLO F M. Ramamurti
1989

GRNET2 F R. Clark,
(serial) R. Meyer,
1989 M. Chang

TPGRNET F R. Clark,
(parallel) R. Meyer
1989

NETPD F N. Curet
1994

RAMSES C J. Kennington,
1997 R. Mohamed

Generalized Networks, Figure 6
Depth-first search illustrated

labels and the ideas presented in [2], all operations of
the primal simplex algorithm can be performed directly
on the basis forest composed of rooted trees and one-
trees.

Since the generalized network problem is a specially
structured linear program, any of the LP algorithms can
be used to solve the network problem. By utilizing the
structure of the network, however, any of the LP algo-
rithms can be specialized to reduce the solution time.
A specialization of the dual simplex algorithm may be
found in [8] and a primal-dual procedure may be found
in [4]. The relaxation method of Bertsekas has also been
extended for the generalized network case (see [3]). The
interior point algorithm (see [9]) could also be special-
ized for this problem.

The first specialized software for the generalized
network problem was developed in the early 1970’s.
A partial list of codes which have been developed may
be found in Table 2. An extensive list of applications of
the generalized network model may be found in [1] and
in [10].
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The complementarity problem and its generalizations
are now established as an important class of applied
mathematical problems. For these problems, there ex-
ists a body of theoretical results, algorithms for com-
puting solutions and many applications from engineer-
ing to economics and from theoretical physics to com-
puter science. A recent survey, [6], describes some of
this progress, including applications in some major in-
dustrial research laboratories in the United States. Cov-
ered there are models for elasto-hydrodynamic lubrica-
tion of bearings (automotive industry) and spatial price
equilibrium (telecommunications firm). The applica-
tion of complementarity allowed engineers and ana-
lysts to comprehend and solve a new range of problems
which had been out of reach. It is now well documented
that other approaches do not adequately model these
application problems while complementarity handles
them.

Two main generalizations of the nonlinear comple-
mentarity problem were made:
� Generalization of the ordering to that of a cone (see

[3]).
� Generalization to several functions per index (see

[1], and [7]).



Generalized Outer Approximation G 1215

The first of these generalizations was applied to
solve an elasto-hydrodynamic lubrication problem in
[5], while the second was applied in [7] to solve a more
complex mixed lubrication problem. These particular
problems were studied in the past without complemen-
tarity models, but it is now recognized that the earlier
attempts were incomplete, and failed to comprehend
the main features of the physical situation.

In recent years, the second generalized complemen-
tarity problem above has been reconsidered and a re-
lated problem, the generalized order complementar-
ity problem has been studied. It was known for some
time that under certain conditions on the functions in-
volved, there exists a solution to the linear generalized
complementarity problem. See [1]. Recently, more ex-
tensive results have been obtained. For example, B.P.
Szanc [8] developed a theory and algorithms for non-
linear functions of the class P, thereby extending the
work of G.J. Habetler and M.M. Kostreva [2]. Results
for the infinite-dimensional version of the generalized
order complementarity problem are presented in [4].

The nonlinear complementarity problem is as fol-
lows: Given f : Rn ! Rn, find x 2 Rn satisfying x � 0,
f (x)� 0, and x| f (x) = 0. The most general set of condi-
tions known for existence and uniqueness of solutions
for this problem (even removing the requirement for
continuity of f ) are in [2].

Considering the generalized complementarity with
cone ordering, let K be a pointed, solid cone in Rn and
let

K� D
˚
y 2 Rn : x>y � 0 for all x 2 K

�
;

and let f : Rn ! Rn. The generalized complementarity
problem (f , K) is to find x 2 Rn satisfying x 2 K, f (x) 2
K�, and x| f (x) = 0.

Finally, the generalization with multiple functions
per index is as follows: f ij:Rn!R, find x 2Rn satisfying
xj � 0, f ij(x) � 0, i 2 Ij, j = 1, . . . , n, xj �

Q
f ij(x) = 0, i 2

Ij, j = 1, . . . , n. Here the product of the variable xj with
the product of functions (|Ij| of them), plays the role of
the complementarity condition.
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This article deals with the solution ofmixed integer non-
linear programming (MINLP) problems of the form

(P)

8̂
<̂
ˆ̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0
x 2 X; y 2 Y integer:

Throughout the following general assumptions are
made:
A1) f and g are twice continuously differentiable and

convex functions;
A2) X and Y are nonempty compact convex (polyhe-

dral) sets; and
A3) a constraint qualification holds at the solution of

every NLP subproblem obtained by fixing the in-
teger variables y.

MINLP problems arise in a range of engineering appli-
cations (see, e. g., [8] and [10] and references therein).

A class of methods for MINLP problems is dis-
cussed, which provide an alternative to nonlinear
branch and bound (cf. � MINLP: Branch and bound
methods) [3]. These algorithms are based on the con-
cept of defining an MILP master problem. Relaxations
of such a master problem are then used in constructing
algorithms for solving the MINLP problem.

The methods presented here are a generalization of
outer approximation proposed by M.A. Duran and I.E.
Grossmann [4] (see also [14]) and of LP/NLP based
branch and bound of I. Quesada and Grossmann [13].

The next section presents the reformulation of (P)
as an MILP master program. Based on this reformula-
tion two algorithms are presented in the following sec-
tions which solve a finite sequence of NLP subproblems
and MILP or MIQP master problems, respectively. The
final section shows how the re-solution of these master
problems can be avoided by updating their branch and
bound trees.

Outer Approximation of (P)

In this section the MINLP model problem (P) is refor-
mulated as an MILP problem using outer approxima-
tion. The reformulation employs projection onto the
integer variables and linearization of the resulting NLP
subproblems by means of supporting hyperplanes. The
convexity assumption allows an MILP formulation to
be given where all supporting hyperplanes are collected
in a single MILP.

In order to improve the readability of the material,
the reformulation is first done under the simplifying as-
sumption that all integer assignments y 2 Y are feasi-
ble. Next a rigorous treatment of infeasible subprob-
lems is outlined, correcting an inaccuracy in [4] and
[14], which could cause the algorithm to cycle. Finally,
the two parts are combined and the correctly reformu-
lated MILP master program is presented.

The reformulation presented in the next section af-
fords new insight into Outer Approximation. It can be
seen, for example, that it suffices to add the lineariza-
tions of strongly active constraints to the master pro-
gram. This is very important since it reduces the size of
the MILP master program relaxations that are solved in
the outer approximation algorithms.

When All y 2 Y Are Feasible

In this subsection the simplifying assumption is made
that all y 2 Y are feasible. The first step in reformulating
(P) is to define the NLP subproblem

NLP(y j)

8̂
<̂
ˆ̂:

min
x

f (x; y j)

s.t. g(x; y j) � 0
x 2 X

in which the integer variables are fixed at the value y
= yj. By defining v(yj) as the optimal value of the sub-
problem NLP(yj) it is possible to express (P) in terms of
a projection on to the y variables, that is

min
y j2Y

(v(y j)): (1)

The assumption that all y 2 Y are feasible implies that
all subproblems are feasible. Let xj denote an optimal
solution of NLP(yj) for yj 2 Y (existence of xj follows by
the compactness of X). Because a constraint qualifica-
tion holds at the solution of every subproblem NLP(yj)
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for every yj 2 Y , it follows that (1) has the same optimal
value as the problem

min
y j2Y

(u(y j)); (2)

where u(yj) is the optimal value of the following LP
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x

f j C (r f j)>
 
x � x j

0

!

s.t. 0 � g j C [r g j]>
 
x � x j

0

!

x 2 X:

(3)

In fact, it suffices to include those linearizations of con-
straints about (xj, yj) which are strongly active at the so-
lution of the corresponding subproblem. Here f j = f (xj,
yj) and r f j = r f (xj, yj), etc.

It is convenient to introduce a dummy variable � 2
R into (3), giving rise to the equivalent problem

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
x;�

�

s.t. � � f j C (r f j)>
 
x � x j

0

!

0 � g j C [r g j]>
 
x � x j

0

!

x 2 X:

The convexity assumption A1) implies that (xi, yi) is
feasible in the inner optimization problem above for all
yi 2 Y , where xi is an optimal solution to NLP(yj). Thus
an equivalent MILP problem

(MY )

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;y;�

�

s.t. � � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8y j 2 Y
x 2 X; y 2 Y integer

is obtained. That is, (MY) has one set of linearizations of
the objective and constraint functions per integer point
yj 2 Y .

Infeasible Subproblems

Usually, not all y 2 Y give rise to feasible subproblems.
Defining the sets

T D
˚
j : x j optimal solution toNLP(y j)

�
;

V D fy 2 Y : 9x 2 X with g(x; y) � 0g :

Then V is the set of all integer assignments y that give
rise to feasible NLP subproblems and T is the set of
indices of these integer variables. Then (P) can be ex-
pressed as a projection on to the integer variables

min
y j2V

(v(y j)):

In this projection the setV replaces Y in (1). The equiv-
alent MILP problem is now given by

(MV )

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
x;y;�

�

s.t. � � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8 j 2 T
x 2 X; y 2 V integer

obtained from (MY) by replacing Y by V .
It remains to find a suitable representation of the

constraint y 2 V by means of supporting hyperplanes.
The master problem given in [4] is obtained from prob-
lem (MV) by replacing y 2 V by y 2 Y . Duran and
Grossmann 1986 justify this step by arguing that a rep-
resentation of the constraints y 2 V is included in the
linearizations in problem (MV). However, it is not diffi-
cult to derive anMINLP problemwhere this would lead
to an incorrect master problem [5], [11, p. 79].

In order to derive a correct representation of y 2 V
it is necessary to consider howNLP solvers detect infea-
sibility. Infeasibility is detected when convergence to an
optimal solution of a feasibility problem occurs. At such
an optimum, some of the nonlinear constraints will be
violated and other will be satisfied and the norm of the
infeasible constraints can only be reduced by making
some feasible constraints infeasible. A suitable frame-
work for nonlinear feasibility problems in the context of
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outer approximation is

F(yk)

8̂
ˆ̂<
ˆ̂̂:

min
x

X

i2J?

wk
i g
C
i (x; y

k)

s.t. g j(x; yk) � 0; j 2 J;
x 2 X:

The constraints in F(yk) have been divided into two
sets: one that can be satisfied and another that cannot
be satisfied. Infeasible subproblems now correspond to
solutions of F(yk) with

P
i2J? wk

i g
C
i (x, yk) > 0. Most

common feasibility problems such as l1 and l1 as well
as the feasibility filter [6] fit into this framework. The
following lemma shows how solutions of F(yk) can be
used to construct a representation of y 2 V .

Lemma 1 If NLP(yk) is infeasible, so that xk solves F(yk)
with

X

i2J?

wk
i (g

k
i )
C > 0; (4)

then y = yk is infeasible in the constraints

0 � gki C (r gki )
>

�
x � xk

y � yk

�
; 8i 2 J?

0 � gkj C (r gkj )
>

�
x � xk

y � yk

�
; 8 j 2 J;

for all x 2 X. The proof of this Lemma can be found in
[5, Lemma 1].

The General Case

This subsection completes the derivation of the MILP
master program by combining the developments of the
previous two subsections. Let the integer assignment yk

produce an infeasible subproblem and denote

S D
n
k : NLP(yk) infeasible; xk solves F(yk)

o
:

Note that S is the complement of the set T defined in
the previous subsection. It then follows directly from
Lemma 1 that the constraints

0 � gk C [r gk]>
�
x � xk

y � yk

�
; 8k 2 S;

exclude all integer assignments yk for which NLP(yk) is
infeasible. Thus a general way to correctly represent the

constraints y 2 V in (MV ) is to add linearizations from
F(yk) when infeasible subproblems are obtained, giving
rise to the following MILP master problem:

(M)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
x;y;�

�

s.t. � � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8 j 2 T

0 � gk C [r gk]>
 
x � xk

y � yk

!

8k 2 S
x 2 X; y 2 Y integer:

The development of the preceding two subsections pro-
vides a proof of the following result:

Theorem 2 If assumptions A1), A2) and A3) hold, then
(M) is equivalent to (P) in the sense that (x�, y�) solves
(P) if and only if it solves (M).

Problem (M) is an MILP problem, but it is not prac-
tical to solve (M) directly, since this would require all
subproblems NLP(yj) to be solved first. This would be
a very inefficient way of solving problem (P). Therefore,
instead of attempting to solve M directly, relaxations of
(M) are used in an iterative process that is the subject of
the next section.

Linear Outer Approximation

This section describes, how relaxations of the master
program (M), developed in the previous section can
be employed to solve the model problem (P). The re-
sulting algorithm is termed linear outer approximation.
It is shown to iterate finitely between NLP subprob-
lems and MILP master program relaxations. This al-
gorithm is seen to be less efficient if curvature infor-
mation is present in the problem. A worst-case exam-
ple, in which linear outer approximation visits all in-
teger assignments has been derived in [5]. This exam-
ple motivates the introduction of a second order term
into the MILP master program relaxations, resulting
in a quadratic outer approximation algorithm which is
considered in the next section.
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Each iteration of the linear outer approximation al-
gorithm chooses a new integer assignment yi and at-
tempts to solve NLP(yi). Either a feasible solution xi is
obtained or infeasibility is detected and xi is the solu-
tion of a feasibility problem F(yi) (other pathological
cases are eliminated by the assumption that the set X
is compact). The algorithm replaces the sets T and S in
(M) by the sets

Ti D
˚
j � i : x j solution toNLP(y j)

�
;

Si D
n
k � i : xk solution to F(yk)

o
:

It is also necessary to prevent any yj, j2Ti, from becom-
ing the solution of the relaxed master problem. This can
be done by including a constraint

� < UBDi ;

where

UBDi D min
˚
f j : j 2 Ti�

is an upper bound on the optimum. Thus the following
master problem is defined

(Mi)

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
x;y;�

�

s.t. � < UBDi

� � f j Cr( f j)>
 
x � x j

y � y j

!

0 � g j Cr[g j]>
 
x � x j

y � y j

!

8 j 2 Ti

0 � gk Cr[gk]>
 
x � xk

y � yk

!

8k 2 Si

x 2 X; y 2 Y integer:

The algorithm solves (Mi) to obtain a new integer as-
signment yi+1, and the whole process is repeated itera-
tively. A detailed description of the algorithm is as fol-
lows.

Nonlinear Programming

NLP - subproblem

Mixed Integer Linear

Programming
MILP master program

MILP infeasible?

Yes

STOP

NLP generates
supporting
hyperplanes

fix the
integer
variables

add new
supporting
hyperplanes

MILP finds
new integer
assignment

No

Generalized Outer Approximation, Figure 1
Illustration of linear outer approximation

Initialization: y0 given:
set i = 0; T�1 = ;; S�1 = ;; UBD�1 =1
REPEAT
1: Solve NLP(yi) at F(yi) as appropiate. Let the so-

lution be xi :

2: Liniarize objective and constraint functions
about (xi ; yi ). Set Ti = Ti�1 [ fig or Si =
Si�1 [ fig as appropriate.

3: IF (NLP(yi) feasible AND f i < UBDi�1)
THEN
update current best point by setting x� = xi ;

y� = yi ; UBDi = f i
ELSE Set UBDi = UBDi�1:

4: Solve the current relaxation (Mi) of the master
program (M), giving a new yi+1. Set i = i + 1.

UNTIL ((Mi ) is infeasible)

Algorithm 1: Linear outer approximation

The figure below illustrates the different stages of
the algorithm.

The algorithm also detects whether or not (P) is in-
feasible. If UBD = 1 on exit, then all integer assign-
ments that are visited by the algorithm are infeasible
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(i. e. Step 3 is not invoked). The use of upper bounds
on � and the definition of the sets Ti and Si ensure
that no yi is replicated by the algorithm. This enables
a proof to be given that the algorithm terminates after
a finite number of steps, provided that there is only a fi-
nite number of integer assignments.

Theorem 3 If assumptions A1), A2) and A3) hold, and
if |Y| <1, then Algorithm 1 terminates in a finite num-
ber of steps at an optimal solution of (P) or with an indi-
cation that (P) is infeasible.

A proof of this theorem can be found in [5]. Below
a brief outline of the proof is given: The optimality of
xi in NLP(yi) implies that � � f i for any feasible point
in (3). The upper bound � < f i therefore ensures that
the choice y = yi in (Mk) has no feasible points x 2 X.
Therefore the algorithm is finite. The optimality of the
algorithm follows from the convexity of f and g which
ensures that the linearizations are supporting hyper-
planes.

Quadratic Outer Approximation

Curvature can often play an important role in optimiza-
tion. If this is the case, then an algorithm based on lin-
ear representations of the problem functions can be in-
efficient. In [5], a worst-case example is given for which
linear outer approximation visits all integer points. This
motivates the introduction of a curvature information
into the master programs. In the remainder of this sec-
tion it is shown how this can be achieved for linear
outer approximation by including a second order La-
grangian term into the objective function of the MILP
master programs.

These considerations have led to the development
of a new algorithm based on the use of second order
information. The development of such an algorithm
seems contradictory at first sight, since quadratic func-
tions do not provide underestimators of general convex
functions. However, the derivation of the previous sec-
tion allows the inclusion of a curvature term into the
objective function of the MILP master problem. This
quadratic term influences the choice of the next iterate
by the algorithm without surrendering the finite con-
vergence properties which rely on the fact that the fea-
sible region of the master problem is an outer approxi-
mation of the feasible region of the MINLP problem P.

The resulting algorithm is referred to as quadratic outer
approximation and is obtained by replacing the relaxed
master problem (Mi) by theMIQP problem (Qi) in Step
4 of Algorithm 1. Introducing the quadratic term

qi(x; y) D
1
2

�
x � xi

y � yi

�>
r2Li

�
x � xi

y � yi

�
;

where

Li D L(xi ; yi ; �i ) D f (xi ; yi)C (�i )>g(xi ; yi )

is the usual Lagrangian function.
The new master problem (Qi) can be defined as

(Qi )

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

min
x;y;�

�C qi(x; y)

s.t. � < UBDi

� � f j C (r f j)>
 
x � x j

y � y j

!

0 � g j C [r g j]>
 
x � x j

y � y j

!

8 j 2 Ti

0 � gk C [r gk]>
 
x � xk

y � yk

!

8k 2 Si

x 2 X; y 2 Y integer:

Numerical experience in [11, Chapter 6] indicates that
adding a curvature term reduces the number of iter-
ations of outer approximation if general integer vari-
ables are present. However, the iteration count is not
reduced for problems involving binary variables only.
As a consequence these preliminary results indicate that
quadratic outer approximation only improves the com-
putation times for problems with general integer vari-
ables, as MIQP problems are usually more expensive to
solve than MILP problems.

Avoiding Resolving the Master Problems

This section presents a new approach to the solution
of successive master program relaxations. It has been
proposed by Quesada and Grossmann [13] for a class
of problems whose objective and constraint functions
are linear in the integer variables and is called LP/NLP
based branch and bound algorithm. Their approach is
generalized here to cover problems with nonlinearities
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Generalized Outer Approximation, Figure 2
Progress of LP/NLP based branch and bound

in the integer variables. In addition a new algorithm
QP/NLP based branch and bound is proposed based on
the quadratic master program (Qi) which takes curva-
ture information into account.

The motivation for the LP/NLP based branch and
bound algorithm is that outer approximation usually
spends an increasing amount of computing time in
solving successive MILP master program relaxations.
Since the MILP relaxations are strongly related to one
another this means that a considerable amount of infor-
mation is re-generated each time a relaxation is solved.
The new approach avoids the re-solution of MILP mas-
ter program relaxations by updating the branch and
bound tree. This section makes extensive use of branch
and bound terminology; see the extensive literature on
branch and bound (e. g., [1,2,8,9,12]) for the relevant
definitions.

Instead of solving successive relaxations of (M), the
new algorithm solves only one MILP problem which
is updated as new integer assignments are encountered
during the tree search. Initially an NLP-subproblem is
solved and the initial master program relaxation (M0) is
set up from the supporting hyperplanes at the solution
of the NLP-subproblem. The MILP problem (M0) is
then solved by a branch and bound process with the ex-
ception that each time a node (corresponding to an LP
problem) gives an integer feasible solution yi, say, the
process is interrupted and the corresponding NLP(yi)
subproblem is solved. New linearizations from NLP(yi)
are then added to every node on the stack, effectively
updating the branch and bound tree. The branch and
bound process continues in this fashion until no prob-
lems remain on the stack. At that moment all nodes are
fathomed and the tree search is exhausted.
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Initialization: y0 given;
set i = 1; T�1 = ;; S�1 = ;

Set up the initial master program:
Solve NLP(y0). Let the solution be x0:
Linearize objective and constraint functions about (x0; y0):
Set T0 = f0g:
Set x� = x0; y� = y0; UBD0 = f 0.

Place (M0) with its integer restrictions relaxed on the stack.
WHILE (stack is not empty) DO BEGIN
1: Remove a problem (P0) from the stack and solve the LP giving (x0; y0; �0): �0 is a lower bound for all

NLP child problems whose root is the current problem.
2: IF (y0 integer) THEN

Set yi = y0;
Solve NLP(yi) or F(yi):
Let the solution be xi :

Linearize objective and constraint functions about (xi ; yi ):
Set Ti = Ti�1 [ fig or Si = Si�1 [ fig:
Add linearizations to all pending problems on the stack.
IF (NLP(yi)feasible AND f i < UBDi) THEN
Update best point x� = xi ; y� = yi ; UBDi+1 = f i :
ELSE Set UBDi+1 = UBDi :

ENDIF
Place (P0) back on stack; set i = i + 1:

Pruning: Remove all problems from stack with �0 > UBDi+1:

ELSE
Branch on an integer variable and add two new problems to the stack.
ENDIF

END (WHILE-LOOP)

Algorithm 2: LP/NLP based branch and bound

Unlike ordinary branch and bound a node cannot
be assumed to have been fathomed, if it produces an
integer feasible solution, since the previous solution at
this node is cut out by the linearizations added to the
master program. Thus only infeasible nodes can be as-
sumed to be fathomed. In the case of MILP master pro-
grams there exists an additional opportunity for prun-
ing. Since the LP nodes are outer approximations of
the MINLP subproblem corresponding to their respec-
tive subtree a node can be regarded as fathomed if its
lower bound is greater than or equal to the current up-
per bound UBDi.

As in the two outer approximation algorithms the
use of an upper bound implies that no integer assign-
ment is generated twice during the tree search. Since
both the tree and the set of integer variables are fi-
nite the algorithm eventually encounters only infeasi-

ble problems and the stack is thus emptied so that the
procedure stops. This provides a proof of the following
consequence to Theorem 3.

Corollary 4 If assumptions A1), A2) and A3) hold, and
if |Y| <1, then Algorithm 2 terminates in a finite num-
ber of steps at a solution of (P) or with an indication that
(P) is infeasible.

The figure below illustrates the progress of Algorithm
2. In i), the LP relaxation of the initial MILP has been
solved and two branches added to the tree. The LP that
is solved next (indicated by an 
 ) does not give an in-
teger feasible solution and two new branches are intro-
duced. The next LP in ii) produces an integer feasible
solution indicated by a box. The corresponding NLP
subproblem is solved and in iii) all nodes on the stack
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are updated (indicated by the shaded circles) by adding
the linearizations from the NLP subproblem including
the upper bound UBDi which cuts out the current as-
signment yi. Then, the branch and bound process con-
tinues on the updated tree by solving the LP marked
by a 
.

If curvature information plays an important part
in the problem (P), then it may be beneficial to add
a quadratic term qi(x, y) to the master problem. This
gives rise to QP/NLP based branch and bound algo-
rithm. It differs from Algorithm 2 in two important
aspects. The first difference is that QP rather than LP
problems are solved in the tree search. The second dif-
ference is a consequence of the first. Since QP problems
do not provide lower bounds on the MINLP problems
(P), the pruning step in Algorithm 2 cannot be applied.

In preliminary numerical experiments in [11, Chap-
ter 6] and [7] it has been observed that the LP and
QP version of Algorithm 2 are usually faster than their
counterparts based on Algorithm 1, often beating the
latter by a factor of 2. A detailed numerical comparison
of the two approaches is still outstanding.

See also

� Chemical Process Planning
� Extended Cutting Plane Algorithm
� Generalized Benders Decomposition
�MINLP: Application in Facility Location-allocation
�MINLP: Applications in Blending and Pooling

Problems
�MINLP: Applications in the Interaction of Design

and Control
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Branch and Bound Methods
�MINLP: Design and Scheduling of Batch

Processes
�MINLP: Generalized Cross Decomposition
�MINLP: Global Optimization with ˛BB
�MINLP: Heat Exchanger Network Synthesis
�MINLP: Logic-based Methods
�MINLP: Outer Approximation Algorithm
�MINLP: Reactive Distillation Column Synthesis
�Mixed Integer Linear Programming: Mass and Heat

Exchanger Networks
�Mixed Integer Nonlinear Programming
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Generalized primal-relaxed dual approach (GPRD) in
the context of global optimization employs the Ben-
ders’ idea of partitioning (see [2]) in order to exploit the
structure of global optimization problems with com-
plicating variables (variables which, when temporar-
ily fixed, render the remaining optimization problem
much simpler, see [4]). For the class of global optimiza-
tion problem considered by the GPRD approach, fix-
ing the values of the complicating variables reduces the
given problem to a convex program, parameterized by
the values of the complicating variables. In order to ap-
proximate the solution of this class of problems effi-
ciently, the GPRD approach uses the primal and relaxed
dual problems with fixed complicating variables to pro-
vide sharper upper and lower bounds of the solution re-
spectively, following the original ideas in [2,4] and [9].

It however adopts a different way of construct-
ing relaxed dual problems by generalizing the original
method used in the GOP algorithms (see [3]) so that it
can handle a wider range of global optimization prob-
lems including nonsmooth ones.

Let k, p, n,m be some positive integers. Let X and Y
be two closed sets in Rn and Rm respectively. Let f , gi,
hj (1� i� k and 1 � j � p) be continuous functions on
Rn × Rm. Let g = (g1, . . . , gk)| and h = (h1, . . . , hp)|.

Let us consider the following global optimization
problem:

(OP) � D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
x;y

f (x; y)

s.t. g(x; y) � 0;
h(x; y) D 0;
x 2 X; y 2 Y ;
1 � i � k; 1 � j � p;

where X and Y are nonempty closed convex sets in Rn

and Rm respectively. It is assumed that for any fixed y 2

Y , or x 2 X, 1 � i � k, and 1� j� p, f (�, y), gi(�, y), f (x,
�), gi(x, �) are convex functions, and hj (�, y), hj(x, �) are
affine functions. It is also assumed that for any fixed y 2
V = {y 2 Y : there is an x 2 X: g(x, y) � 0 and h(x, y) =
0}, the partial primal problem (OP) is stable in the sense
that its perturbation function has a nonempty subgradi-
ent at zero point; see [1]. This assumption holds when,
for instance, the Slater’s constraint qualification holds
for (OP) at every fixed y 2 V , though it is more general
than the Slater’s.

Although the problem (OP) appears to address only
a limited class of global optimization programs, it is
shown in [5] that very broad mathematical program-
ming problems can indeed be reformulated in this form
by using a simple variable transformation. Further-
more, it is shown in [6] that for any fixed y 2 Y the
reformulated problems are always stable.

It follows from the stability assumption that for any
fixed y0 2 V there exist Lagrange multipliers (�0, �0) 2
Rp × Rk

+ and x0 2 X such that the triplet (x0, �0, �0) is
the solution of the following saddle problem:

8̂
<̂
ˆ̂:

g(x0; y0) � 0;
h(x0; y0) D 0;
�>0 g(x0; y0) D 0;

and for any (x, �, �) 2 X × Rp × Rk
+

(SP) L(x0; y0; �; �) � L(x0; y0; �0; �0)
� L(x; y0; �0; �0);

where the Lagrange function of the primal problem
(OP) is defined by

L(x; y; �; �) D f (x; y)C �>h(x; y)C �>g(x; y):

The solution (x0, �0,�0) of (SP) can be found by solving
the following partial primal problem:

(PP) min
x2X;

g(x;y0)�0;
h(x;y0)D0

f (x; y0);

which is a convex minimization problem.
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For a given y0 2 V , the GPRD approach finds an
upper bound for the solution of (OP) by solving (PP):

�C(y0) D min
x2X;

g(x;y0)�0;
h(x;y0)D0

f (x; y0):

The problem (PP) is in general easier to solve as it is
convex. The GPRD approach then estimates a lower
bound for the solution of (OP) by solving the follow-
ing relaxed dual problem:

(RD)
��(U;H)

D min
y2V

max
(	t ;
t )2U

min
x2X

H(	t ;
t)(x; y);

where U = {(�t, �t) 2 Rp × Rm
+ : 1 � t � N}, and the

mapping H: U ! C0(X × Y) is such that the function
H(	t ;
t)(�, �) is continuous and satisfies that for any fixed
(�t, �t) 2 U,

L(x; y; �t ; �t)

D f (x; y)C �>t h(x; y)C �
>
t g(x; y)

� H(	t ;
t )(x; y); 8(x; y) 2 X � Y :

In the GPRD approach, the set U is usually constructed
to include the multipliers (�, �) obtained from solving
the problem (PP) above.

The generalized primal-relaxed dual algorithm is to
construct, for n = 0, 1, . . . , a sequence of elements yn
2 Y , sets Un, and functions H(	t ;
t)

n for each (�t, �t) 2
Un such that �+ (yn) � ��(Un, Hn)! 0 as n! 0. The
selections of Un and H(	t ;
t)

n are clearly not unique but
they have to be constructed so that the global solutions
of the relaxed-dual problems (RD) can be solved effi-
ciently. In the literatureUn is set to be the unit of all the
Lagrange multipliers (�, �) of the partial primal prob-
lems (PP) with y = ym (m = 1, . . . , n). Assume that the
selection H(	t ;
t)

n is given for any (�t, �t) 2 Un. Then
the generalized primal-relaxed dual algorithm reads:

1 Given y0 2 V ; and � > 0:

2 Given yn 2 V ; solve (PP) for y = yn to obtain
xn and Lagrange multiplies (�n ; �n):

3 Solve (RD) to obtain yn+1; where Un =
[n

m=1f(�m; �m)g:
4 Stop if �+(yn) � ��(Un ;Hn) < �:

Otherwise go to Step 2 with n = n + 1:

PRD Algorithm for (OP)

It is shown in [7] that the PRD algorithm converges
to the global solutions of (OP) under some mild as-
sumptions.

There are many possible choices for the mapping
role H. In the literature the following results have
been reported. In Geoffrion’s original work in [4],
H(	m ;
m)

n (x, y) = L(x, y, �m, �m) (1 � m � n). It is in
general difficult to solve (RD) computationally with this
choice ofHn. In the pioneer work [3],Hn takes the form
of

H(	m ;
m )
n (x; y)

D L(xm ; ym ; �m ; �m)

Crx L(xm ; y; �m ; �m)(x � xm)
CryL(xm ; ym ; �m ; �m)(y � ym)

(m D 1; : : : ; n);

where xm, ym, �m, �m are obtained from the previous
iterations of the PRD algorithm and rxL(x, y, �, �) (or
ryL(x, y, �, �)) is the gradient of the Lagrange func-
tion L at x (or y) for a fixed (y, �, �) (or (x, �, �)).
The resulting PRD algorithm has been referred to as
GOP algorithm and has been widely used in various
global optimization problems (see, e. g., [8] for a sur-
vey). Important progress has been made in developing
efficient ways of solving (RD) for the GOP algorithm,
see, also [8].

The GOP algorithm is only applicable to smooth
optimization problems where the objective functions
and the constraints are differentiable. Nonsmooth op-
timization problems occur in many important real ap-
plications. In [7] the GPRD approach is applied to
a class of nonsmooth global optimization problems
where

f D F Cmax
e2E

Fe

and

gi D Gi Cmax
e2E

Ge
i ; i D 1; : : : ; k;

where E = {1, . . . , d}, and the smooth C1 functions F, Fe,
G = (G1, . . . , Gk)|,Ge = (Ge

1, . . . , G
e
k)

| satisfy all the con-
ditions in (OP) for e = 1, . . . , d. The resulting algorithm,
referred to as EGOP, reads:
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1 Given y0 2 V , and � > 0.
2 Given yn 2 V , solve (PP) for y = yn to obtain

xn and Lagrange multipliers (�n ; �n).
3 Solve (RD) to obtain yn+1, where Un =
[n

m=1f(�m; �n)g and for any (�m; �m) 2 Un ,

H(�m ;�m)
n (x; y)

= LS(xm ; ym ; �m; �m)
+rx LS(xm ; y; �m ; �m)(x � xm)
+ryLS(xm ; ym ; �m ; �m)(y � ym)

+max
e2E

(Fe(xm; ym)+rxFe (xm; y)(x�xm)
+ryFe(xm; ym)(y � ym))

+
kX
i=1

�i
m max

e2E
(Ge

i (xm; ym))

+rxGe
i (xm; y)(x � xm)

+ryGe
i (xm ; ym)(y � ym);

where the smooth part of the Lagrange is de-
fined by LS(x; y; �; �) = F(x; y) + �>h(x; y) +
�>G(x; y).

4 Stop if �+(yn) � ��(Un ;Hn) < �. Otherwise go
to Step 2 with n = n + 1.

EGOP Algorithm for (OP)

This algorithm is identical with the GOP algorithm
in the smooth case where Fe = 0, Ge = 0 for e = 1, . . . , d.
The EGOP covers a wider range of global optimization
problems, and it is shown in [7] to be convergent un-
der essentially the same assumptions which ensure the
convergence of the GOP algorithm.

Penalty implementation of the PRD algorithm has
also been considered in the literature to explore another
way of coping with possible infeasible primal or relaxed
dual subproblems in the algorithm. In [7], the EGOP
algorithm is applied to the following two penalty prob-
lems:

(NPOP)� min
(x;y)2X�Y

P(x; y);

where

P(x; y) D f (x; y)C �
kX

jD1

max
�
0; g j(x; y)

�

C �

pX
jD1

ˇ̌
hj(x; y)

ˇ̌
; � > 0 :

and
(SPOP)M min

(x;y)2X�Y
P(x; y);

where

P(x; y) D f (x; y)CM
kX

jD1

max
�
0; g j(x; y)

�2

CM
pX

jD1

ˇ̌
hj(x; y)

ˇ̌2
; M > 0:

The convergence of the two penalty implementations
of EGOP algorithm is established in [7], where it is
shown that the sequences {(xn, yn)} generated by the
EGOP algorithm for the penalty problems (NPOP)�
and (SPOP)M converge to the solutions of the (OP)
when � is large enough orM tends to infinite.

See also

� ˛BB Algorithm
� Global Optimization in Phase and Chemical

Reaction Equilibrium
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Introduction

In generalized semi-infinite optimization problems,
a finite-dimensional decision variable x is subject to in-
finitely many inequality constraints, that is, in

GSIP : minimize f (x) subject to x 2 M ;

the feasible set is described by

M D fx 2 Rn jg(x; y) � 0 for all y 2 Y(x)g ;

with the index set

Y(x) D fy 2 Rm jv`(x; y) � 0; ` 2 Lg :

All defining functions f ; g; v`; ` 2 L D f1; : : : ; sg are
assumed to be real valued and at least continu-
ous on their respective domains. Moreover, the set-
valued mapping Y : Rn � Rm is assumed to be locally
bounded, that is, for each x̄ 2 Rn there exists a neigh-
borhoodU of x̄ such that

S
x2U Y(x) is bounded inRm.

In applications such as design centering, robust
optimization, and (reverse) Chebyshev approximation
([13,32]), often finitely many semi-infinite constraints
gi (x; y) � 0; y 2 Yi (x); i 2 I; describe the feasible set

M of GSIP, along with finitely many equality con-
straints in the definitions of M and Y(x). In order to
avoid technicalities this article focuses on the basic case
of a single semi-infinite constraint (see [13,32] for more
general formulations).

As opposed to a standard semi-infinite optimiza-
tion problem, the possibly infinite index set Y(x) of
the semi-infinite inequality constraint is allowed to vary
with x in a GSIP. For surveys and detailed studies about
standard semi-infinite optimization see [10,15,25]. In
contrast to standard semi-infinite programs, the feasi-
ble set of GSIP is not necessarily a closed set, and it
might possess a stable disjunctive structure ([32]).

Powerful optimality conditions are based on a thor-
ough analysis of these topological structures. This arti-
cle mainly deals with first-order optimality conditions
and will, thus, begin with a discussion of different first-
order properties of the feasible set.

Definitions

The key to understanding the topological features in the
feasible set of GSIP lies in the bilevel structure of semi-
infinite programming ([27,32]). In fact, it is not hard to
see that the semi-infinite constraint in GSIP is equiva-
lent to

'(x) :D max
y2Y(x)

g(x; y) � 0 ;

which means that the feasible set M of GSIP is the
lower-level set of some optimal value function:

M D fx 2 Rnj'(x) � 0g : (1)

The usual convention “max; D �1” is consistent
here, as an empty index set Y(x) corresponds, loosely
speaking, to “the absence of restrictions” at x and,
hence, to the feasibility of x.

The function � is the optimal value function of the
so-called lower-level problem

Q(x) : max
y2Rm

g(x; y) subject to v`(x; y) � 0; ` 2 L :

In contrast to the upper-level problem, which consists
in minimizing f over M, in the lower-level problem x
plays the role of an n-dimensional parameter, and y is
the decision variable. Themain computational problem
in semi-infinite programming is that the lower-level
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problem has to be solved to global optimality, even if,
for example, only a stationary point of the upper-level
problem is sought.

Topological Properties

The alternative description of the feasible set in (1)
shows that the topological properties of M are deter-
mined by the continuity properties of �, whereas first-
and second-order optimality conditions will rely on the
first- and second-order properties of �. The proper-
ties of optimal value functions have been studied exten-
sively in parametric optimization ([2]; for a brief intro-
duction see [32]).

The optimal value function � can be shown to be at
least upper semicontinuous, so that points x 2 Rn with
'(x) < 0 belong to the topological interior ofM. On the
other hand, for investigations of the local structure ofM
or of local optimality conditions one is only interested
in feasible points from the boundary @M ofM. Hence it
suffices to consider the zeros of �, that is, points x 2 Rn

for which Q(x) has maximal value '(x) D 0. We de-
note the globally maximal points of Q(x) for arbitrary
x 2 Rn by

Y?(x) D fy 2 Y(x)jg(x; y) D '(x)g

and for the special case of x 2 M \ @M by

Y0(x) D fy 2 Y(x)jg(x; y) D 0g :

The set Y0(x) is also called the upper-level active in-
dex set of GSIP.

Note that M is closed if for all x 2 Rn the index set
Y(x) is nonempty and theMangasarian–Fromovitz con-
straint qualification (MFCQ) holds at some element of
Y0(x) ([13,32]). IfM is not closed, there may exist infea-
sible boundary points x 2 @M, that is, boundary points
with '(x) > 0.

The Reduction Ansatz

For theoretical as well as numerical purposes it is of cru-
cial importance to keep track of the elements of Y?(x)
for varying x. These points solve the lower-level prob-
lem so that for functions g and v`; ` 2 L; which are
continuously differentiable with respect to y, they sat-

isfy the first-order necessary optimality condition of
Karush–Kuhn–Tucker: let

L(x; y; �) D g(x; y) � �>v(x; y) ;

denote the Lagrangian of Q(x) with multiplier vec-
tor � 2 Rs . Then for x̄ 2 M and each ȳ 2 Y?(x̄) such
that MFCQ holds at ȳ in Q(x̄), there exist multipli-
ers �̄ � 0 with DyL(x̄; ȳ; �̄) D 0 and �̄` � v`(x̄; ȳ) D 0,
` 2 L. Here DyL denotes the gradient of L with re-
spect to y as a row vector. Note that the multiplier
vector �̄ is uniquely determined if instead of MFCQ
the stronger linear independence constraint qualifica-
tion (LICQ) holds at ȳ.

Keeping track of the elements of Y?(x) can now
be achieved, for example, by means of the implicit
function theorem, if the functions g and v`; ` 2 L; are
C2 with respect to y. For x̄ 2 M a local maximizer ȳ
of Q(x̄) is called nondegenerate in the sense of Jon-
gen/Jonker/Twilt ([19]), if LICQ, strict complementary
slackness and a second-order sufficiency condition are
satisfied. The Reduction Ansatz ([14,16,35]) is said to
hold at x̄ 2 M if all global maximizers of Q(x̄) are non-
degenerate. The set Y?(x̄) can then only contain finitely
many points, say, Y?(x̄) D f ȳ1; : : : ; ȳ pgwith p 2 N . By
a result from [8] the local variation of these points with
x can be described by the implicit function theorem.

In fact, for x locally around x̄ there exist contin-
uously differentiable functions yi (x); 1 � i � p; with
yi (x̄) D ȳ i such that yi (x) is the locally unique local
maximizer ofQ(x) around ȳ i . It turns out that the func-
tions 'i(x) :D g(x; yi (x)) are even C2 in a neighbor-
hood of x̄. Their gradients are

D'i(x̄) D DxL(x̄; ȳ i ; �̄ i) ; (2)

where �̄ i is the uniquely determined multiplier vector
corresponding to ȳ i .

A major consequence of the Reduction Ansatz is
the so-called Reduction Lemma ([16]): if the Reduction
Ansatz holds at x̄, then for all x from a neighborhood U
of x̄ one has

'(x) D max
1�i�p

'i(x) :

In view of (1) this means that locally around a feasible
boundary point x̄ 2 M \ @M, the feasible setM can be
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described by finitely many C2�constraints, that is,GSIP
locally looks like a smooth finite optimization problem:

M \ U D fx 2 U j 'i(x) � 0; i D 1; : : : ; pg : (3)

In particular, locally around x̄ set M is closed, and it
does not possess a stable disjunctive structure at x̄.

First-Order Properties of the Feasible Set

Since the Reduction Ansatz cannot be expected to
hold generically everywhere in M \ @M, the first-order
structure of M is also studied under considerably
weaker assumptions. For the first-order approximation
ofM one defines the contingent cone � ?(x̄;M) toM at
x̄ as follows: d̄ 2 � ?(x̄;M) if and only if there exist se-
quences of scalars (t�)�2N and of vectors (d�)�2N such
that

t� & 0; d� ! d̄(� !1) and x̄C t�d� 2 M

for all � 2 N:

The contingent cone is a closed cone, not necessarily
convex, containing first-order information aboutM. In
view of (1) the contingent cone toM at x̄ should be re-
lated to a level set of a first order approximation of �
at x̄. Unfortunately, the differentiability properties of �
can be very weak, so that lower and upper directional
derivatives of � at x̄ in direction d̄ in the Hadamard
sense ([4]) come into play:

' 0�(x̄; d̄) D lim inf
t&0;d!d̄

'(x̄ C td) � '(x̄)
t

and

' 0C(x̄; d̄) D lim sup
t&0;d!d̄

'(x̄ C td) � '(x̄)
t

:

� is called directionally differentiable at x̄ (in the
Hadamard sense) if for each direction d ¤ 0 one has
' 0�(x̄; d) D ' 0C(x̄; d) D: '

0(x̄; d). The outer lineariza-
tion cone ofM at x̄ can now be defined as

L?(x̄;M) D fd 2 Rnj' 0�(x̄; d) � 0g

and the inner linearization cone by

L(x̄;M) D fd 2 Rn j' 0C(x̄; d) < 0g :

For x̄ 2 @M \ M the chain of inclusions

L(x̄;M) � � ?(x̄;M) � L?(x̄;M) (4)

holds ([22,33]). A good first-order description of M
around x̄ can thus be obtained if the linearization cones
L(x̄;M) and L?(x̄;M) do not differ toomuch from each
other.

For example, in standard semi-infinite program-
ming the index set mapping Y(x) � Y is constant, and
the theorem of Danskin ([6]) then says that � is direc-
tionally differentiable with

' 0(x̄; d) D max
y2Y0(x̄)

Dx g(x̄; y)d

for all d 2 Rn . The linearization cones

L(x̄;M) D
\

y2Y0(x̄)

fd 2 RnjDx g(x̄; y)d < 0g

and

L?(x̄;M) D
\

y2Y0(x̄)

fd 2 Rn jDx g(x̄; y)d � 0g

thus differ only by the strictness of inequalities, and
they do not possess a disjunctive structure.

If inGSIP the Reduction Ansatz holds at x̄, using (2)
it is not hard to see that � is directionally differentiable
with

' 0(x̄; d) D max
1�i�p

DxL(x̄; ȳ i ; �̄ i )d

for all d 2 Rn . The linearization cones

L(x̄;M) D
p\

iD1

fd 2 RnjDxL(x̄; ȳ i ; �̄ i )d < 0g

and

L?(x̄;M) D
p\

iD1

fd 2 RnjDxL(x̄; ȳ i ; �̄ i )d � 0g

again differ only by the strictness of inequalities.
Under weaker assumptions than the Reduction

Ansatz the situation in GSIP becomes more involved
since � does not even have to be directionally differ-
entiable. The following estimates for the upper and
lower directional derivatives from [9,23] are known to
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be tight: for x̄ 2 @M \ M such that MFCQ is satisfied
at each y 2 Y0(x̄) one has for each d 2 Rn

sup
y2Y0(x̄)

min
�2KKT(x̄;y)

DxL(x̄; y; �) d � ' 0�(x̄; d)

� ' 0C(x̄; d) � max
y2Y0(x̄)

max
�2KKT(x̄;y)

DxL(x̄; y; �)d :

Here

KKT(x; y) D f� 2 Rs j� � 0;DyL(x; y; �) D 0;

�` � v`(x; y) D 0; ` 2 Lg

denotes the set of Karush–Kuhn–Tucker multipliers at
y in Q(x).

At least this yields estimates for the linearization
cones:

\
y2Y0(x̄)

\
�2KKT(x̄;y)

fd 2 Rn jDxL(x̄; y; �) d < 0g

� L(x̄;M) � � ?(x̄;M) � L?(x̄;M)

�
\

y2Y0(x̄)

[
�2KKT(x̄;y)

fd 2 RnjDxL(x̄; y; �)d � 0g :

However, the estimate for the inner linearization
cone is rather poor in many situations in which the
problem data are endowed with a special structure.
In [31] analogous estimates are given without the as-
sumption of MFCQ in Y0(x̄).

A disjunctive structure of� ?(x̄;M) is intimately re-
lated to the nonuniqueness of the lower-level Karush–
Kuhn–Tucker multipliers. This becomes clearer un-
der the assumption that the lower-level problems
Q(x); x 2 U; are convex for some neighborhood U of
x̄, and that Y(x̄) possesses a Slater point. Due to results
from [11,18,26] the multiplier set KKT(x̄) then does
not depend on y 2 Y0(x̄), and � is directionally differ-
entiable at x̄ with

' 0(x̄; d) D min
�2KKT(x̄)

max
y2Y0(x̄)

DxL(x̄; y; �) d

for all d 2 Rn . This yields

L(x̄;M) D
[

�2KKT(x̄)

\
y2Y0(x̄)

fd 2 Rn jDxL(x̄; y; �) d < 0g

and

L?(x̄;M) D
[

�2KKT(x̄)

\
y2Y0(x̄)

fd 2 Rn j

DxL(x̄; y; �) d � 0g :

Now both the inner and outer linearization cones
possess a disjunctive structure, and they only differ by
the strictness of inequalities. Moreover it becomes obvi-
ous that the occurrence of a stable disjunctive structure
in GSIP is caused by nonunique lower-level Karush–
Kuhn–Tucker multipliers. For more details on lower-
level problems with a special structure see [27,29,32].

Constraint Qualifications

In what follows let the functions f , g, and v` ; ` 2 L; be
continuously differentiable. It is well known ([3]) that
at a local minimizer x̄ of f on M the following primal
first-order necessary optimality condition holds:

fd 2 Rn jD f (x̄)d < 0g \ � ?(x̄;M) D ; : (5)

To obtain a more explicit condition from (5) one
needs an explicit description of � ?(x̄;M). A good can-
didate would be the outer linearization cone L?(x̄;M),
which contains the contingent cone by (4). Even in fi-
nite optimization simple examples show, however, that
� ?(x̄;M) can be a proper subset of L?(x̄;M). In this
case one cannot replace the contingent cone in (5) by
the outer linearization cone.

On the other hand, in view of (4) it is always pos-
sible to replace the contingent cone in (5) by the in-
ner linearization cone. However, the resulting optimal-
ity condition may be trivially satisfied since L(x̄;M) can
be void itself.

These observations give rise to the following defini-
tions.

Definition 1 The extended Mangasarian–Fromovitz
constraint qualification (EMFCQ) holds at x̄ 2 M if
L(x̄;M) ¤ ;, and the extended Abadie constraint qual-
ification (EACQ) holds at x̄ 2 M if � ?(x̄;M) D
L?(x̄;M).

Note that EMFCQ coincides with MFCQ for finite dif-
ferentiable optimization problems ([24]). Furthermore,
it is obvious that EACQ coincides with the Abadie con-
straint qualification (ACQ, [1]) for finite differentiable
optimization problems. Whereas in finite optimization
MFCQ is stronger than ACQ, for GSIP this is not nec-
essarily the case as an example in [33] shows (see, how-
ever, [31]). For extensions of the Karush–Kuhn–Tucker
constraint qualification to GSIP see [12]. Explicit for-
mulations of EMFCQ under different structural as-
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sumptions on the lower-level problem Q(x̄) can eas-
ily be obtained from the descriptions of L(x̄;M) given
above.

Formulation

An important difference to finite or standard semi-
infinite programming is that, for GSIP, there does not
exist a single first-order necessary optimality condition,
but the explicit formulation of the condition heavily
depends on the structure of the lower-level problem.
In fact, from the abstract primal first-order optimality
condition (5) one can derive explicit dual conditions
by replacing the contingent cone by an appropriate lin-
earization cone and then cast the resulting conditions
on certain infinite inequality systems in a dual formu-
lation by means of theorems of the alternative, like, for
example, the lemma of Gordan ([5,17]).

First-Order Optimality Conditions. In what fol-
lows, such optimality conditions are given for the struc-
tures discussed above. Recall that optimality conditions
are trivial at interior points ofM.

Theorem 1 ([16]) Let x̄ 2 @M \ M be a local min-
imizer of GSIP, at which the Reduction Ansatz holds.
Moreover, let there exist a d0 2 Rn such that

DxL(x̄; ȳ i ; �̄ i ) d0 < 0 for all 1 � i � p ;

(i. e. EMFCQ holds at x̄). Then there exist multipli-
ers �i � 0, i D 1; : : : ; p, with jf1 � i � pj�i > 0gj � n
such that

D f (x̄)C
pX

iD1

�i DxL(x̄; ȳ i ; �̄ i ) D 0 :

Theorem 2 ([29,32]) Let x̄ 2 @M \M be a local mini-
mizer of GSIP, let the lower-level problems Q(x); x 2 U,
be convex for some neighborhood U of x̄, and let Y(x̄)
possess a Slater point. Then for each choice � 2 KKT(x̄)
such that there exists a d0 with

DxL(x̄; y; �) d0 < 0 for all y 2 Y0(x̄) ; (6)

there exist yi 2 Y0(x̄) and multipliers �i � 0,
i D 1; : : : ; p, with jf1 � i � pj�i > 0gj � n, such that

D f (x̄)C
pX

iD1

�i DxL(x̄; yi ; �) D 0 :

If EMFCQ holds at x̄, then at least one such choice �
exists.

Theorem 3 ([27,32]) Let x̄ 2 @M \ M be a local min-
imizer of GSIP, and let MFCQ hold at all y 2 Y0(x̄).
Moreover, let there exist a d0 2 Rn such that

DxL(x̄; y; �) d0 < 0

for all � 2 KKT(x̄; y) ; y 2 Y0(x̄) ;

(which is sufficient for EMFCQ at x̄). Then there exist
yi 2 Y0(x̄), � i 2 KKT(x̄; yi ), and multipliers �i � 0,
i D 1; : : : ; p, with jf1 � i � pj�i > 0gj � n, such that

D f (x̄)C
pX

iD1

�i DxL(x̄; yi ; � i) D 0 :

Note that, under the convexity assumption on the
lower-level problem, Theorem 2 provides a whole
family of optimality conditions (parametrized by
� 2 KKT(x̄)) and, thus, takes a possible disjunctive
structure of M at x̄ into account. On the other hand,
in the absence of a nice lower-level structure, Theo-
rem 3 yields a much weaker condition (which cannot
be strengthened without further assumptions, as exam-
ples show).

First-order necessary optimality conditions for
GSIP have been derived under several other structural
assumptions and other theoretical approaches as well.
In fact, without the assumption of EMFCQ, Fritz John-
type optimality conditions can be derived ([32]), and
there also exist optimality conditions without the as-
sumption of any regularity condition, either in the
upper- or in the lower-level problem ([20,31,32]). Con-
ditions under other constraint qualifications are in-
vestigated in [12]. Furthermore, other theoretical ap-
proaches to optimality conditions are the linearization
approach from [27] and conditions based on quasid-
ifferentiable calculus ([7,27,30]). First-order sufficient
optimality conditions forGSIP are examined in [32,34].

Second-Order Optimality Conditions

Second-order necessary and sufficient optimality con-
ditions can be obtained in a straightforward manner
under the Reduction Ansatz. One must simply write
down the corresponding condition for the reduced fi-
nite optimization problem with the feasible set from
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(3). Unfortunately, the Hessians of the optimal value
functions 'i(x) D g(x; yi (x)); 1 � i � p; have a more
complicated structure than the gradients from (2), due
to the appearance of so-called shift terms. In fact, one
has

D2
x'i(x̄) D D2

xL(x̄; ȳ i ; �̄ i )�

 
D2

yxLi (x̄; ȳ i ; �̄ i)
�DxvLi

0
(x̄; ȳ i )

!>

�

 
D2

yLi (x̄; ȳ i ; �̄ i ) �D>y vLi
0
(x̄; ȳ i )

�DyvLi
0
(x̄; ȳ i) 0

!�1

�

 
D2

yxLi (x̄; ȳ i ; �̄ i )
�DxvLi

0
(x̄; ȳ i )

!
;

where DxvLi
0
stands for the matrix with rows Dxv`;

` 2 Li
0 :D f` 2 Lj v`(x̄; ȳ i ) D 0g.

Second-order conditions are also known under
weaker assumptions, for example without the strict
complementary slackness assumption of the Reduction
Ansatz ([16]), and in connection with second-order
epiregularity ([13,28], see also [4]). A second-order sta-
bility analysis for GSIP is given in [21].

Conclusions

First- and second-order optimality conditions are not
only of theoretical importance, but also of high signifi-
cance for the design of efficient numerical methods for
GSIP. A review of such methods, including methods
of feasible directions, KKT methods, and discretization
methods, is given in [13].

See also

� Bilevel Optimization: Feasibility Test and Flexibility
Index

� Parametric Optimization: Embeddings, Path
Following and Singularities

� Second Order Constraint Qualifications
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One important application of nonlinear least squares
concerns with data fitting or parameter estimations. In
ordinary least squares for data fitting, it is assumed that
the errors in independent variables are either zero or
negligible. Although there are situations in which errors
in independent variables are zero or negligible, there
exist many cases such as experiments and observations
where this isnot so and use of the ordinary least squares
may lead to bias in the estimated values of parameter
vector and variance values [8]. Generalized total least
squares problems are formulated from data fitting if er-
rors in all variables are taken into account. Suppose that
we have chosen a model function y = �(x, t) to fit a set
of data y1, . . . , ym sampled at m points t1, . . . , tm, where
x 2 Rn is an adjustable parameter vector. The gener-
alized total least squares problem concerning with this
data fitting determines an optimal value of x and � such
that the function

f (x; �) D
1
2

mX
jD1

[wj(�(x; � j) � y j)2 C v j(� j � t j)2]

D
1
2
[r>Wr C e>Ve]

is minimized, where (�(x, � j), � j), j = 1, . . . , m, are true
but unknown values of pair (y, t),W = diag(w1, . . . ,wm),
V = diag(v1, . . . , vm), wj � 0, vj � 0, j = 1, . . . , m, are
weighting factors, r and e are two m-vectors with com-
ponents rj = �(x, � j)� yj, ej = � j� tj, j = 1, . . . , m, re-
spectively.

Generalized total least squares problems can be
solved by directly applying any method for ordinary
nonlinear least squares or general minimization prob-
lems. Since these methods minimize the objective func-
tion f (x, �) with respect to (n+m) variables x and � , and
do not allow for the use of the special structureof the
function, direct use of these methods will not be effi-
cient. Assuming that the functions rj(x, �), j = 1, . . . ,
m, hence the function f (x, �) is twice continuously dif-
ferentiable, the first and the second order derivatives of
f (x, �) are defined by

r f D
�
rx f
r� f

�
D

�
AWr

Ve C DWr

�
;

r2 f D
�
r2

xx f r2
x� f

r2
�x f r2

�� f

�
;
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where

r2
xx f D AWA> C

mX
jD1

wjr jr2
xx r j;

r2
x� f D AWD C

mX
jD1

wjr jr2
x� r j;

r2
�� f D V C DWDC

mX
jD1

wjr jr2
�� r j;

A D
�
rx r1 � � � rx rm

�
;

D D diag
h
@r1
@�1
� � � @rm

@�m

i
:

The (m× m)-matrix r2
�� f is a diagonal matrix with di-

agonal elements

vj C wj

�
@r j
@� j

�2

C wjr j
@2r j
@�2j

:

In developing algorithms for generalized total least
squares, it is important to exploit the special structures
of the function f (x, �) and its derivatives, and in par-
ticular, the fact that variables x and � can be treated
separately. W.E. Demming [2], M. O’Neill, I.G. Sin-
clair and J. Smith [5], D.R. Powell and J.R. Macdonald
[6] proposed approximate Newton methods for polyno-
mial data fitting. These methods evaluate the second or-
der derivatives r2

xx f and r2
�� f analytically or numeri-

cally, but ignore the mixed partial derivatives r2
x� f and

r2
�x f . When analytical derivatives are used, approxi-

mate Newton methods are not very efficient because
of the unreasonable approximations. When derivatives
are evaluated from difference quotient and compensa-
tions for ignoring mixed parts are made, the behav-
ior of these methods is improved, because in this case
the methods are equivalent to using one Newton step
to separate problem variables and then the separated
problem is solved using Newton method.

An optimization problem is separable if the opti-
mization with respect to some of the variables is eas-
ier than with respect to others. Generalized total least
squares problems are a kind of separable optimization
problems. W.H. Southwell [7] uses the first order nec-
essary condition to separate the vector x and the vector
� and then the separated problem is solvedusing New-
ton method. Gauss-Newton and quasi-Newton meth-
ods can also be used to solve the separated problems.

When Newton method is applied to solve a gener-
alized total least squares problem, the solution of the
Newton equation
�
r2

xx f r2
x� f

r2
�x f r2

�� f

� �
ıx
ı�

�
D �

�
rx f
r� f

�

gives a correction (ıx, ı�) to (x, �), that is,

xC D x C ıx; �C D � C ı�;

where x+, �+ denote the new iterate. When the fitting
function �(x, t) is a polynomial in the form

�(x; t) D
nX

iD1

xi pi (t);

where pi(t), i = 1, . . . , n, are a set of orthogonal polyno-
mials, then off-diagonal elements of the (n × n)-matrix
r2

xx f are all zeros. Thus both the matrices r2
xx f and

r2
�� f are diagonal. By assuming the elements of matri-

ces r2
x� f and r2

�x f are negligible, approximate New-
ton methodsapproximate the Hessian matrix r2f by
the simple diagonal matrix
�
r2

xx f
r2
�� f

�
:

Since r2
xx f and r2

�� f are diagonal, the solution ıx and
ı� can be easily given by

ıxi D �

Pm
jD1 wjr j pi (� j)Pm
jD1 wj pi (� j)2

; i D 1; : : : ; n;

ı� j D �
v j e j C wj

@�(x;� j)
@� j

r j

v j C wj

�
@�(x;� j)
@� j

�2
C wjr j

@2�(x;� j)
@�2j

;

j D 1; : : : ;m:

Polynomials pi(t), i = 1, . . . , n, orthogonal over a set of
points � j, j = 1, . . . ,m, can be generated using the recur-
rence relation

p1(t) D 1; p2(t) D t � ˛1;

pi (t) D (t � ˛i�1)pi�1(t)� ˇi�1pi�2(t);

i D 3; : : : ; n;

where

˛i�1 D

Pm
jD1 wj� j pi�1(� j)2Pm
jD1 wjpi�1(� j)2

;

ˇi�1 D

Pm
jD1 wj� j pi�1(� j)pi�2(� j)Pm

jD1 wj pi�2(� j)2
:
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Approximate Newtonmethods begin iteration from
the initial point x(1) = 0 and � (1)j = tj, j = 1, . . . ,m. At each
iteration, the polynomials pi(t), i = 1, . . . , n, orthogonal
over the set of points � (k)j , j = 1, . . . , m, are first calcu-
lated from the recurrence relation, then iteration

x(kC1) D x(k) C ıx(k); � (kC1) D � (k) C ı� (k)

is implemented to generate a new iterate. The process
is repeated until convergence is reached. If the resulting
fitting polynomial is required to express in the form of
power series

�(x; t) D
nX

iD1

ci t i�1 D
nX

iD1

xi pi (t);

the coefficients ci can be calculated from

ci D
nX

kDi

xk�iC1kC1; 1 � i � n;

where

�i k D

(
1 if i D k;
0 if i > k or i; k < 2;

�iC1kC1 D �i k � ˛k�1�iC1;k � ˇk�1�iC1k�1;

i < k:

Powell and Macdonald extended the method to
more general case where �(x, t) is a general nonlinear
function of both the variables x and t. In this case, the
(n × n)-matrix r2

xx f is no longer diagonal, and the cor-
rection ıx needs the solution of the equations

r2
xx f ıx D �rx f :

By taking account of the omitted parts of the mixed
partial derivatives r2

x� f and r2
�x f , they use ‘uncon-

ventional formulas’, rather than analytical derivatives
or usual difference approximations, to approximate
derivatives in rxf and r 2

xx f so that the omission parts
can be compensated to some degree. In fact, their ap-
proximate Newtonmethod is equivalent, in some sense,
to the separated Newton method.

Approximate Newton methods require evaluations
of second order derivatives for problem functions. Ig-
noring all the second order terms in r2

xx f , r2
x� f , r2

�x f
and r2

�� f , an approximation to r2f is directly obtained

from the first order derivatives of functions rj and ej, j =
1, . . . ,m. The iteration scheme x(k+1) = x(k)+ ı x(k), � (k+1)

= � (k)+ ı� (k) with ıx(k) and ı� (k) given by

�
AkWkA>k AkWDk

DkWA>k V C DkWDk

� �
ıx
ı�

�

D �

�
AkWr(k)

Ve(k) C DkWr(k)

�

gives the Gauss–Newton method for generalized total
least squares. Special structure of the system can be ex-
ploited to get savings in finding its solution. Define Pk

= V+ DkWDk. From the bottom part of the system we
have

ı� D �P�1k
�
Ve(k) C DkWr(k) C DkWA>k ıx

�
:

Since Pk is a diagonal matrix, once ıx is obtained, ı�
can be directly obtained by substitutions. Substituting
ı� into the top part of the system we obtain

�
AkWA>k � AkWDkP�1k DkWA>k

�
ıx

D AkW
1
2 b(k)

with

b(k) DW
1
2

�
�
�r(k) C DkP�1k (Ve(k) C DkWr(k))

�
:

This equation can be expressed as

AkW
1
2UkW

1
2A>k ıx D AkW

1
2 b(k)

where Uk = I �W l/2DkP�1k DkW1/2 is a diagonal matrix
with diagonal elements vj/[vj+ wj(@r(k)j / @� j)2] > 0, j = 1,
. . . , m. The solution ıx(k) can be generated by first per-
forming a QR factorization to the matrix U1/2

k W1/2A>k

U
1
2
k W

1
2A>k D Q

�
R
0

�

and then back substitutions in

Rıx D QU�
1
2

k b(k):

The Gauss–Newton method is locally convergent
and convergence behavior depends upon the closeness
of the Gauss–Newton matrix to the true Hessian matrix
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r2f at the solution. In order to introduce global conver-
gence for Gauss–Newton method, line search technique
or trust region strategy can be used. Let

Jk D

"
AkW

1
2 0

DkW
1
2 V

1
2

#

Then
�
AkWA>k AkWDk

DkWA>k V C DkWDk

�
D Jk J>k

and the Gauss–Newton matrix is at least positive
semidefinite, often positive definite, (ıx(k), ı� (k)) is a de-
scent direction of f (x, �) at (x(k)), � (k)). A line searcha-
long the direction determines a steplength ˛k satisfying
some descent conditions and the new iteration point is

x(kC1) D x(k) C ˛kıx(k);

� (kC1) D � (k) C ˛kı�
(kC1):

P.T. Boggs, R.H. Byrd and R.B. Schnabel [1] use
trust region technique in their modification of Gauss–
Newton method for generalized total least squares
problems. The modification is a generalization of the
Levenberg–Marquardt method, in which the trust re-
gion subproblem
(
min qk(ız) D



J>k ız C h(k)


2

s.t. kızk � 	k

is solved, where�k is the trust region radius,

z D
�
x
�

�
; h(k) D

 
W

1
2 r(k)

V
1
2 e(k)

!
:

The solution, denoted by ız(�), of the subproblem sat-
isfies the system of equations

Bk

�
ıx
ı�

�
D �

�
AkWr(k)

Ve(k) C DkWr(k)

�
;

kız(�)k D 	k ;

�> 0, unless k ız(0) k � �k, where Bk denotes the ma-
trix
�
AkWA>k C �I AkWDk

DkWA>k V C DkWDk C �I

�
:

Let Pk D V C DkWDk C �I. From the buttom part of
the system, we get

ı� D �P�1k [Ve(k) C DkWr(k) C DkWA>k ıx]:

Substituting it into the top part we have

(AkW
1
2UkW

1
2A>k C �I)ıx D AkW

1
2 b(k);

Uk D I �W
1
2 DkP

�1
k DkW

1
2 ;

b(k) DW
1
2

� [�r(k) C DkP
�1
k (Ve(k) C DkWr(k))]:

Since this system is the normal equation of the linear
least squares problem

min








"
U

1
2
k W

1
2A>k

�
1
2 I

#
ıx C

"
U�

1
2

k b(k)

0

#




 ;

the solution ıx(k) can be obtained by performing a QR

factorization to the matrix U
1
2
k W

1
2A>k , a sequence of

plane rotations to eliminate �1/2I and back substitu-
tions.

For a given value �(`), ıx(�(`)) is obtained from the
solution of the system and then ı �(�(`)) from substitu-
tion. If
ˇ̌
ˇ�(�(`))

ˇ̌
ˇ D

ˇ̌
ˇ



ız(�(`))




 �	k

ˇ̌
ˇ � �	k

is satisfied, ız(�(`)) is accepted as an approximate solu-
tion of the trust region subproblem where � 2 (0, 1)is
a preset tolerance. Otherwise, �(`) is updated to give
a new value �(`+1) and a solution ız(�(`+1)) is recom-
puted from the system.Moré’s updating formula [4]

�(`C1) D �(`) �
�(�(`))
r�(�(`))



ız(�(`))




	k

can be used to generate �(`+1), where r�(�(`)) is eval-
uated from difference approximation

r�(�(`)) D
�(�(`)) � �(�(`�1))
�(`) � �(`�1) :

For generalized total least squares problems, the
parameter vector x and the variable vector � can be
treated separately. The first order necessary condition
for a point to be a solution of the problem can be used
to eliminate the � dependence in the function f (x, �).
Consider the system of equations

r� f D Ve C DWr D 0:

These contain m nonlinear equations with m un-
knowns, each of which only contains one unknown � j
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for fixed value of x

vj(� j � t j)C wj(�(x; � j) � y j)
@�(x; � j)
@� j

D 0;

j D 1; : : : ;m:

When these equations can be algebraically solved to
give an explicit solution expression �(x), substitution
it into the function f (x, �) allows the parameter vector
x to be determined by directly using any conventional
method to minimize the function f (x, �(x)) which now
is a function of the parameter vector x. However, in
most cases, it is impossible or difficult to get an explicit
form of the solution �(x) and each equation mustbe
solved numerically for each given value of x by mini-
mizing the functions

 (x; � j) D
1
2
[wj(�(x; � j) � y j)2 C v j(� j � t j)2];

j D 1; : : : ;m;

to get an approximate solution, �(x) say, to the solu-
tion �(x) so that the values of function f (x, �(x)) and its
derivatives with respect to x can be evaluated from the
values x and �(x).

Assume thatr2
�� f (x�, ��) is positive definite, then it

follows from the implicit function theorem [3] that there
exist open neighborhoods N(x�), N(��) of x�, �� such
that for any x 2 N(x�), a unique � satisfying the sys-
tem exists in N(��), this being the vector �(x). Further-
more, �(x) is continuously differentiable and r2

�� f (x,
�(x)) is positive definite for all x 2 N(x�). Substituting
�(x) into the function f (x, �) we get a separable mini-
mization problem

min f (x; �(x));

which is defined only in terms of x and reduces the
problem dimension from m + n to n. The separation is
particularly efficient since in most cases,m is very large.
Using the chain rule, the differentiability of �(x) and the
fact that r� f = 0 we get derivatives of the function f (x,
�(x))

g(x) Drx f Crx�r� f D rx f ;

G(x) Dr2
xx f Cr

2
x� frx�

Dr2
xx f � r

2
x� f [r

2
�� f ]

�1r2
�x f :

Since the positive definiteness of the matrix G(x) is im-
plied by that of the matrix r2f , if r2f is positive defi-

nite at the solution (x�, ��), the matrix G(x�) is positive
definite, too.

The separated Newton method minimizes the func-
tion f (x, �(x)) using Newton iteration

Gkıx(k) D �g(k); x(kC1) D x(k) C ıx(k)

to generate a sequence {x(k)}, whereGk and g(k) are eval-
uated at x(k) and �(x(k)). �(x(k)) is an approximate solu-
tion of the system r� f = 0 obtained using Newton iter-
ation

�
(sC1)
j D �

(s)
j �

 0(x(k); � (s)j )

 00(x(k); � (s)j )
;

s D 1; 2; : : : ; j D 1; : : : ;m:

When
ˇ̌
ˇ� (sC1)

j � �
(s)
j

ˇ̌
ˇ � �;

�
(sC1)
j is accepted as � j(x(k)) where � > 0 isa preset small

constant. The values tj and � j(x(k�1)), j = 1, . . . , m, can
be used as starting values of these iterations for k = 1
and k � 2, respectively.

A careful observation shows that the difference be-
tween the Powell–Macdonald method and the sepa-
rated Newton method is that for given value x(k), the
former carries out only one Newton iteration for the
system r� f = 0 while the later one solves the system
quite exactly by repeated doing the iteration.

The separated Newton method still requires the
evaluation of secondorder derivatives. Ignoring second
order terms in all derivatives r2

xx f , r2
x� f , r2

�x f and
r2
�� f , we get an approximation to G

Mk D AkW
1
2UkW

1
2A>k ;

Uk D (I C V�1DkWDk )�1:

Then the iteration

Mkıx(k) D �g(k); x(kC1) D x(k) C ıx(k)

is the separated Gauss–Newton method [8]. The prop-
erty that the convergence of Gauss–Newton method
for ordinary least squares depends on the closeness of
the Gauss–Newton matrix to true Hessian matrix is
applicable to the separated Gauss–Newton method. If
M(x�) = G(x�), the method is locally convergent and
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rate of convergence is quadratic. IfM(x�) 6D G(x�), the
method may not converge and if it converges, the rate is
at best linear. In order to force global convergence, line
search or trust region techniques can be incorporated.

For large residual problems, the Gauss–Newton ma-
trix M is not a good approximation to G and quasi-
Newton updates can be used to generate better ap-
proximations. When quasi-Newton updates, for exam-
ple BFGS update, are used, the separated problem is re-
garded as a general minimization problem, the special
structure of the problem function is not exploited and
approximations are not directly obtained from the first
order derivatives. The vectors ı(k) and � (k) used in up-
dating formulas can be defined by

ı(k) D ıx(k) D x(kC1) � x(k);

� (k) D g(x(kC1); �(x(kC1))) � g(x(k); �(x(k)))

Alternative definitions for �(k) can be derived by us-
ing thespecial structure of the derivatives. Two com-
mon used definitions for � (k) are

� (k) D AkC1WA>kC1ıx
(k) C AkC1WDkC1ı�

(k)

C (AkC1 � Ak)r(kC1);

� (k) D AkC1W(r(kC1) � r(k))

C (AkC1 � Ak)Wr(kC1);

where ı� (k) = �(x(k+1))� �(x(k)). Numerical experi-
ments favors the last definition of � (k) [9].

Based on the separated Gauss–Newton method and
the separated BFGS method, separated hybrid method
is a simple generalization of the hybrid method for or-
dinary nonlinear least squares problems, where a test
[9] is derived to determine what step should be cho-
sen at each iteration. When the test chooses the Gauss–
Newton step, the approximation Bk to Gk is set to the
Gauss– Newton matrix Mk and when the test chooses
the BFGS step, the matrix Bk is obtained from Bk�1 us-
ing BFGS updating formula.

When separated methods are used to solve gener-
alized total least squares problems, computational sav-
ings can be obtained if we initially ignore errors in tj,
j = 1, . . . , m, and just solve an ordinary nonlinear least
squares problem. Whenreasonable reduction in the ob-
jective function has been achieved, errors in all vari-
ables are then considered and separated methods are
applied. This modification of any separated method is

effective in solving generalized total least squares prob-
lems.

See also

� ABS Algorithms for Linear Equations and Linear
Least Squares

� ABS Algorithms for Optimization
� Gauss–Newton Method: Least Squares, Relation to

Newton’s Method
� Least Squares Orthogonal Polynomials
� Least Squares Problems
� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Least Squares Problems
� Nonlinear Least Squares: Trust Region Methods
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Introduction

The theory as well the applications of variational in-
equalities (VIs) and the nonlinear complementarity
problem (NCP) have proved to be a very powerful tool
for studying a wide range of problems arising in me-
chanics, physics, optimization, and applied sciences.
A survey on the developments of VI and NCP is in [7].
In recent years, considerable interest has been shown
in developing various extensions and generalizations
of the VI problem. An important class of such gen-
eralizations, introduced in [2], is the so-called gen-
eralized variational inequality (GVI). This class has
many important and significant applications in various
fields such as mathematical physics and control the-
ory, economics, and transportation equilibrium (see,
e. g., [1,11]). For example, it is known that the traf-
fic equilibrium problem can be formulated as a VI
when the travel cost between any two given nodes for
a given flow is fixed [4]. However, the traffic conditions
may vary and the travel cost between two given nodes
may not be fixed, but within a cost interval. In this
case the corresponding problem can be formulated as
a GVI. Moreover, GVI provides a unifying framework
for many general problems such us fixed-point, opti-
mization, and complementarity problems. In what fol-
lows we give an overview of recent developments con-
cerning the issue of existence of a solution and equiva-
lent reformulations.

Problem Formulation and Framework

In its general form, the GVI problem can be stated as
follows:

find x� 2 X and u� 2 F(x�) such that

hu�; y � x�i � 0 8 y 2 X ;

where
� h�; �i denotes the usual inner product in Rn ,
� X � Rn is a nonempty closed and convex set,
� Rn � Rn is a set-valued map, i. e., an operator that

associates with each x 2 Rn a set F(x) � Rn .
If F is a single valued function, then the GVI problem
reduces to the classical VI, which is to find x� 2 X such
that

hF(x�); y � x�i � 0 8 y 2 X :

In connection with the set-valued map F : Rn �
Rn a few definitions need to be recalled. First, F is char-
acterized by its graph:

graph (F) D f(x; u) 2 Rn �Rn : u 2 F(x)g :

The image of X under F is

F(X) D
[
x2X

F(x) ;

the inverse of F is defined by

F�1(u) D fx : u 2 F(x)g;

and the domain of F is the set

dom (F) D fx 2 Rn : F(x) ¤ ;g :

Throughout we assume that dom (F) � X. Over the
past two decades, most effort has been concentrated on
the question of the existence of solutions to GVI prob-
lems. The study of the existence of solutions of GVI in-
volves several continuity properties of set-valued maps.
We recall these conditions in the sequel.
� A set-valued map F : Rn � Rn is said to be upper

semicontinuous (u.s.c.) at x 2 Rn if for each open
set V � F(x) there exists a neighborhood U of x
such that F(U) � V ; F is u.s.c. on a set X � Rn if
it is u.s.c. at every point in X.

� A set-valued map F : Rn � Rn is upper hemicon-
tinuous on X � Rn ; if its restriction to line seg-
ments of X is upper semicontinuous.
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The study of the existence of solutions of GVI in-
volves also some monotonicity-type properties for set-
valued maps. In what follows we recall the definitions.

(M1) F is quasimonotone on X if, for every pair of dis-
tinct points x; y 2 X and every u 2 F(x), v 2 F(y),
we have:

hv; x � yi > 0 H) hu; x � yi � 0 :

(M2) F is properly quasimonotone on X if, for any
x1; : : : ; xn 2 X and any �1; : : : ; �n > 0 withPn

iD1 �i D 1, there exists j 2 f1; : : : ; ng such that
for all u j 2 F(x j) and x D

Pn
iD1 �i x i , we have:

hu j; x � x ji � 0 :

(M3) F is pseudomonotone on X if, for every pair of
distinct points x; y 2 X and every u 2 F(x); v 2
F(y), we have:

hv; x � yi � 0 H) hu; x � yi � 0 :

(M4) F is monotone on X if, for every pair of distinct
points x; y 2 X and every u 2 F(x); v 2 F(y), we
have:

hu � v; x � yi � 0 :

(M5) F is strictly monotone on X if, for every pair of
distinct points x; y 2 X and every u 2 F(x); v 2
F(y), we have:

hu � v; x � yi > 0 :

(M6) F is strongly monotone onX with constant ˇ > 0
if, for every pair of distinct points x; y 2 X and ev-
ery u 2 F(x); v 2 F(y), we have:

hu � v; x � yi � ˇkx � yk2 ;

where k � k denotes the classical euclidean norm.
(M7) F is maximal monotone on X if it is monotone

on X and its graph is not properly contained in the
graph of any other monotone operator on X.

The relationships among these kinds of monotonicity
are represented in Fig. 1.

strongly
monotone

maximal
monotone

strictly
monotone monotone

pseudomonotone

properly
quasimonotone

quasimonotone

Generalized Variational Inequalities: A Brief Review, Figure 1
Relationships among generalized monotonicity conditions

Existence andUniqueness

In recent years the existence of solutions to GVIs has
been investigated extensively. In what follows we pro-
vide some of the most fundamental results. The basic
result on the existence of a solution to the GVI problem
requires the set X to be compact and convex and the
map F to be u.s.c. From this basic result many others
can be derived by replacing the compactness of X with
additional coercivity conditions on F.

Existence of Solutions: Bounded Domain

This section presents some existence results for solu-
tions of GVI in the case of a compact domain. The fol-
lowing existence theorem exploits the formulation of
GVI as a fixed-point problem.

Theorem 1 ([8]) If X is compact and F is u.s.c. on X
with compact and convex values, then GVI has a solu-
tion.

Theorem 2 ([12]) If X is compact and F is upper hemi-
continuous and properly quasimonotone on X with com-
pact and convex values, then GVI has a solution.
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Existence of Solutions: Unbounded Domain

The existence of solutions of GVI on unbounded do-
mains is guaranteed by the same conditions as for
bounded domains, together with a coercivity condition.
In the literature various coercivity conditions have been
considered. In particular (see [5]):

(C1)

9 R > 0; 8x 2 XŸXR ; 8u 2 F(x) ;
9 y 2 XR : hu; y � xi < 0 ;

(C2)

9 R > 0; 8 x 2 XŸXR ; 9 y 2 XR ;

8 u 2 F(x) : hu; y � xi < 0 ;

(C3)

9 R > 0; 8 x 2 XŸXR ; 9 y 2 XR ;

9 v 2 F(y) : hv; y � xi < 0 ;

(C4)

X1 \ (F(X))� D f0g ;

where

XR D fx 2 X : kxk � Rg

and

(F(X))� D fd 2 Rn : hu; di � 0;8u 2 F(X)g

is the polar cone of F(X). Further, the recession cone
X1, for X closed and convex, is defined by

X1 D fd 2 Rn : x C t d 2 X; 8 t � 0; x 2 Xg :

Some basic relationships among these coercivity
conditions are summarized in the following result.

Theorem 3 ([5])
� (C2)H) (C1).
� If F has convex values, then (C2) and (C1) are equiv-

alent.
� If F is pseudomonotone on X, then (C3)H) (C2).
� (C4)H) (C3).
� If F is upper hemicontinuous and pseudomonotone

on X, then (C2), (C3) and (C4) are equivalent.

� If F has convex values and it is upper hemicontinu-
ous and pseudomonotone on X, then (C1), (C2), (C3),
and (C4) are equivalent.

The coercivity conditions allow us to exhibit a suffi-
ciently large ball intersecting with X such that no point
outside this ball is a solution of the GVI; then one can
establish the existence of a solution stated below.

Theorem 4 ([5]) If F is upper hemicontinuous and
pseudomonotone on X with compact and convex values,
then the following statements are equivalent:
� GVI has a nonempty and compact solution set.
� (C1) holds;
� (C2) holds.
� (C3) holds.
� (C4) holds.

In what follows we state an existence theorem for which
we require neither the upper semicontinuity of F, nor
the compactness, nor the convexity of F(x), but we need
the maximal monotonicity of F.

Theorem5 ([15]) Assume that F is maximalmonotone
on Rn. Then the solution set of GVI is nonempty and
compact if and only if (C4) holds.

In general, GVI can have more than one solution. The
following theorem gives conditions under which GVI
can have at most one solution.

Theorem 6
� If F is strictly monotone on X, then GVI has at most

one solution.
� If F is u.s.c., strongly monotone on X, and has

nonempty convex and compact values, then GVI has
a unique solution.

GVI and Related Problems

As stated, the theory of GVI is a powerful unifying
methodology that contains as special cases several well-
known problems such as fixed-point, optimization, and
complementarity problems. In what follows we de-
scribe these equivalent formulations of the GVI prob-
lem. Such formulations can be very beneficial for both
analytical and computational purposes. Indeed we can
apply classic results of these problems to treat the GVI.
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GVI and Fixed-Point Problems

In what follows we exploit the formulation of GVI as
a fixed-point problem. We recall that x� is a fixed point
of the set-valued map F : X � Rn if

x� 2 X and x� 2 F(x�) :

The fixed-point reformulation is very relevant for the
GVI problem. Indeed we can apply Kakutani’s fixed-
point theorem, which is instrumental for proving the
existence result on a bounded domain. We define the
following set-valued map:


 : X � conv (F(X))� X � conv (F(X))

(x; u) 7! � (u) � F(x) ;

where � (u) D argminx2Xhu; xi is the set of con-
strained minimizers of the map hu; xi on X and
conv (F(X)) denotes the convex hull of F(X). Assum-
ing that X is compact, � (u) results in being nonempty.
It easy to see that the problem of finding a fixed point
(x�, u�) of
, i. e.,

x� 2 K; u� 2 F(x�); x� 2 argmin
x2K
hu�; xi ;

is equivalent to GVI.
It is worth noting that the GVI problem can also be

formulated as an inclusion as follows:

find x� 2 K such that 0 2 F(x�)C NK(x�) ;

i. e., finding a zero of the set-valued map F C NK in the
domain X, where the normal cone NX(x) to the set X at
point x 2 X is given by:

NX(x) D fd 2 Rn : hd; y � xi � 0 8 y 2 Xg :

GVI and Optimization Problems

Let us consider the constrained optimization problem:
(
min f (x)
x 2 X ;

(1)

where
� X is a closed and convex subset of Rn ,
� The objective function f is defined on an open

neighborhood of X, denoted˝ .

It is well known that if f is continuously differen-
tiable, then the classical VI with F D r f is a necessary
optimality condition for (1). The VI gives also a suffi-
cient condition if f is pseudoconvex on X, i. e.,

f (x) > f (y) H) hr f (x); y � xi < 0 ;

for all x; y 2 X.
Therefore, if f is continuously differentiable and

pseudoconvex on X, the VI with F D r f is equivalent
to the optimization problem (1). In what follows we ex-
tend these results in terms of GVI when f : ˝ ! R is
a locally Lipschitz continuous function, that is, for each
point x 2 ˝ there exists a neighborhood U of x such
that f is Lipschitz continuous on U. To this end we re-
call some basic facts about Clarke calculus for a locally
Lipschitz continuous function, see [3]. The Clarke’s
generalized derivative of f at x in the direction v, de-
noted by f 0(x;v), is given by

f 0(x; v) D lim sup
y!x
t#0

f (yC t v) � f (y)
t

:

The generalized gradient of f at x, denoted by @ f (x), is
defined as follows:

@ f (x) D f� 2 Rn : h�; vi � f 0(x; v) 8 v 2 Rng :

A generalized derivative can be obtained from the gen-
eralized gradient:

f 0(x; v) D maxfh�; vi : � 2 @ f (x)g :

We can extend the definition of pseudocon-
vexity for a locally Lipschitz continuous function
f : ˝ ! R, [16]: f is pseudoconvex on ˝ if, for all
x; y 2 ˝, there exists � 2 @ f (x) such that

h�; y � xi � 0 H) f (x) � f (y) :

Let us now consider the GVI with Clarke gradient op-
erator F D @ f . We can state the following result.

Theorem 7 ([3]) A GVI with F D @ f provides neces-
sary optimality conditions for problem (1).

In general, a GVI does not give sufficient optimality
conditions. However, as shown in [16], when f is pseu-
doconvex on ˝ , the GVI gives sufficient optimality
conditions too. Consequently, as for the single-valued
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case, if f is pseudoconvex on ˝ , a GVI with F D @ f is
equivalent to the optimization problem (1). The above
discussion focused on the GVI with gradient operator;
however, an arbitrary set-valued map, in general, is not
a gradient map. A powerful tool in dealing with the GVI
problem by way of its equivalent optimization reformu-
lation is given by the so-called gap functions. Specifi-
cally, we say that a function ' : Rn �Rn ! R [ fC1g
is a gap function for GVI if
� '(x; u) � 0 for all (x; u) 2 graph (F),
� x� is a solution of GVI if and only if x� 2 X and

there exists u� 2 F(x�) such that '(x�; u�) D 0.
Hence, the GVI problem can be rewritten as the follow-
ing constrained optimization problem:
(
min '(x; u)
(x; u) 2 graph (F) :

An example of a gap function, proposed in [6], is:

'(x; u) D sup
y2X
hu; x � yi; (x; u) 2 Rn �Rn : (2)

The function '(x; �) is convex and closed for every
fixed x 2 Rn and '(�; u) is affine for every fixed u 2 Rn

(see [6]). It is worth noting that � represents a duality
gap in the Mosco duality scheme [14] for GVI. Let us
consider this more general GVI problem: find x� 2 Rn

and u� 2 F(x�) such that

hu�; x � x�i � �(x�) � �(x) 8 x 2 Rn ; (3)

where � : Rn ! R [ fC1g is a proper, lower semi-
continuous convex function. The dual problem of (3)
is defined as: find v� 2 Rn and y� 2 �F�1(�v�) such
that

hy�; v � v�i � ��(v�) � ��(y) 8 v 2 Rn ;

where ��(v) D supx2Rn fhv; xi � �(x)g is the Fenchel
conjugate of '.

Theorem 8 ([15]) The gap function (2) measures the
duality gap of Mosco’s duality scheme:

�(x)C ��(�u)C hu; xi D

(
'(x; u) if x 2 X
C1 otherwise:

The gap function � is not differentiable in general.
Moreover, when graph (F) is unbounded, it is in gen-
eral not finite valued. These drawbacks can be avoided

by using a regularized gap function. Let us consider

'G(x; u) D max
y2X

�
hu; x � yi �

1
2
kx � yk2G

�
;

where (x; u) 2 Rn �Rn ; G is a symmetric positive
definite matrix, and k � kG is the norm in Rn defined
by kxkG D

p
hx;G xi. This function, introduced in [6]

for generalized quasivariational inequalities, i. e., GVIs
where set X depends on solution x, is a gap function for
GVI and is called a regularized gap function. Since

 G(x; u; y) D hu; x � yi �
1
2
kx � yk2G

is strongly concave with respect to y, there is a unique
maximizer over X denoted by y(x; u). If we denote the
projection operator onto set X with respect to the norm
k � kG by˘X;G(�); it is easy to check that this maximizer
is

y(x; u) D ˘X;G(x � G�1 u) :

Therefore, the regularized gap function

'G(x; u) D hu; x � y(x; u)i �
1
2
kx � y(x; u)k2G

is finite valued everywhere. Moreover, the regularized
gap function is continuously differentiable, and its gra-
dient is given by

rx'G(x; u) D uC G [y(x; u) � x] ;

ru'G(x; u) D x � y(x; u) :

Therefore, using the regularized gap function we obtain
an equivalent differentiable optimization reformulation
of the GVI problem. Gap functions can be used in the
design of numerical algorithms for solving the GVI.

GVI and Complementarity Problems

It is well known that, when X is a closed convex cone
and F : X ! Rn , the VI problem is equivalent to the
NCP problem, which consists in finding x� 2 X such
that

F(x�) 2 X� and hF(x�); x�i D 0 ;

where

X� D fd 2 Rn : hu; di � 0;8u 2 Xg
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is the negative polar cone of X. Such a relationship is
preserved in the GVI problems. First, let us consider an
extension of the NCP problem, see [17], that can be de-
fined as follows.

Let X be a closed convex cone of Rn and F a set-
valued map. The generalized complementarity prob-
lem (GCP) is to find x� 2 X such that there exists
u� 2 F(x�) satisfying the following properties:

u� 2 X� and hu�; x�i D 0 :

As in the single-valued case, both problems GVI and
GCP have the same solution set if the underlying set X
is a closed convex cone.
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In this article we describe the main moment prob-
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The StandardMoment Problem

Let g1, . . . , gn and h be given real-valued Borel measur-
able functions on a fixed measurable space X := (X, A).
We would like to find the best upper and lower bound
on

�(h) :D
Z
X
h(t)�(dt);

given that � is a probability measure on X with pre-
scribed moments
Z

gi(t) �(dt) D yi ; i D 1; : : : ; n:

Here we assume � such that
Z
X
jgi j �(dt) < C1; i D 1; : : : ; n;

and
Z
X
jhj �(dt) < C1:

For each y := (y1, . . . , yn) 2 Rn, consider the optimal
quantities

L(y) :D L(yjh) :D inf


�(h);

U(y) :D U(yjh) :D sup


�(h);

where � is a probability measure as above with

�(gi ) D yi ; i D 1; : : : ; n:

If there is no such probability measure � we set L(y) :=
+1, U(y) := �1.

If h := �S the characteristic function of a given mea-
surable set S of X, then we agree to write

L(yj�S ) :D LS (y); U(yj�S ) :D US (y):

Hence, LS(y)� �(S)�US(y). Consider g: X! Rn such
that g(t) := (g1(t), . . . , gn(t)). Set also g0(t) := 1, all t 2 X.
Here we basically present J.H.B. Kemperman’s (1968)
geometric methods for solving the above main moment
problems [13] which were related to and motivated by
[18,20,24]. The advantage of the geometric method is
that many times is simple and immediate giving us the
optimal quantities L, U in a closed-numerical form, on
the top of this is very elegant. Here the �-field A con-
tains all subsets of X.

The next result comes from [22,23,25].

Theorem 1 Let f 1, . . . , f N be given real-valued Borel
measurable functions on a measurable space˝ (such as
g1, . . . , gn and h on X). Let� be a probability measure on
˝ such that each f i is integrable with respect to �. Then
there exists a probability measure �0 of finite support on
˝ (i. e., having nonzero mass only at a finite number of
points) satisfying
Z
˝

fi(t) �(dt) D
Z
˝

fi(t) �0(dt);

all i = 1, . . . , N.

One can even achieve that the support of �0 has at most
N+ 1 points. So from now on we can talk only about
finitely supported probability measures.

Call

V :D conv g(X)

(conv stands for convex hull), where g(X) := {z 2 Rn: z
= g(t) for some t 2 X} is a curve in Rn (if X = [a, b]� R
or if X = [a, b] × [c, d]� R2).

Let S� X, and letM+ (S) denote the set of all prob-
ability measures on X whose support is finite and con-
tained in S.

The next results come from [13].

Lemma 2 Given y 2 Rn, then y 2 V if and only if 9� 2
M+(X) such that

�(g) D y

(i. e. �(gi) :=
R
X gi(t) �(dt) = yi, i = 1, . . . , n).

Hence L(y|h) < +1 if and only if y 2 V (note that by
Theorem 1,

L(yjh) D inf
˚
�(h) : � 2 MC(X); �(g) D y

�

and

U(yjh) D sup
˚
�(h) : � 2 MC(X); �(g) D y

�
):

Easily one can see that

L(y) :D L(yjh)

is a convex function on V , i. e.

L(�y0 C (1 � �)y00) � �L(y0)C (1 � �)L(y00);
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whenever 0 � � � 1 and y0, y00 2 V . Also U(y) := U(y|
h) = � L(y| � h) is a concave function on V .

One can also prove that the following three proper-
ties are equivalent:
i) int(V) := interior of V 6D �;
ii) g(X) is not a subset of any hyperplane in Rn;
iii) 1, g1, . . . , gn are linearly independent on X.

From now on we assume that 1, g1, . . . , gn are lin-
early independent, i. e. int(V) 6D �.

Let D� denote the set of all (n + 1)-tuples of real
numbers d� := (d0, . . . , dn) satisfying

h(t) � d0 C
nX

iD1

di gi(t); all t 2 X: (1)

Theorem 3 For each y 2 int (V) we have that

L(yjh) (2)

D sup

(
d0 C

nX
iD1

di yi : d� D (d0; : : : ; dn) 2 D�
)
:

Given that L(y| h) > � 1, the supremum in (2) is even
assumed by some d� 2 D�.

If L(y|h) is finite in int(V), then for almost all y 2 int(V)
the supremum in (2) is assumed by a unique d� 2 D�.
Thus L(y| h) < + 1 in int(V) if and only if D� 6D ;.
Note that y := (y1, . . . , yn) 2 int(V) � Rn if and only if
d0 +

Pn
i = 1 diyi > 0 for each choice of the real constants

di not all zero such that d0+
Pn

iD1 digi(t) � 0, all t 2
X. (The last statement comes from [8 p. 5] and [12 p.
573].)

If h is bounded then D� 6D ;, trivially.

Theorem 4 Let d� 2 D� be fixed and set

B(d�)

:D

(
z D g(t) : d0 C

nX
iD1

di gi (t) D h(t); t 2 X

)
(3)

Then for each point

y 2 conv B(d�) (4)

the quantity L(y|h) is found as follows. Set

y D
mX
jD1

p j g(t j)

with

g(t j) 2 B(d�);

and

p j � 0;
mX
jD1

p j D 1: (5)

Then

L(yjh) D
mX
jD1

p jh(t j) D d0 C
nX

iD1

di yi : (6)

Theorem 5 Let y 2 int(V) be fixed. Then the following
are equivalent:
i) 9� 2 M+ (X) such that �(g) = y and �(h) = L(y|h),

i. e. infimum is attained.
ii) 9d� 2 D� satisfying (4).

Furthermore for almost all y 2 int(V) there exists at
most one d� 2 D� satisfying (4).

In many situations the above infimum is not attained so
that Theorem 4 is not applicable. The next theorem has
more applications. For that, set

�(z) :D lim inf
ı!0

inf
t
fh(t) : t 2 X; jg(t)� zj < ıg : (7)

If "� 0 and d� 2 D�, define

C"(d�)

:D

(
z 2 g(T) : 0 � �(z) �

nX
iD0

di zi � "

)
; (8)

and

G(d�) :D
1\
ND1

convC 1
N
(d�): (9)

It is easily proved that C"(d�) and G(d�) are closed; fur-
thermore B(d�)� C0(d�)� C"(d�), where B(d�) is de-
fined by (3).

Theorem 6 Let y 2 int(V) be fixed.
i) Let d� 2 D� be such that y 2 G(d�). Then

L(yjh) D d0 C d1y1 C � � � C dn yn : (10)
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ii) Assume that g is bounded. Then there exists d� 2 D�

satisfying

y 2 convC0(d�) � G(d�)

and

L(yjh) D d0 C d1 y1 C � � � C dn yn : (11)

iii) We further obtain, whether or not g is bounded, that
for almost all y 2 int(V) there exists at most one d� 2
D� satisfying y 2 G(d�).

The above results suggest the following practical simple
geometric methods for finding L(y|h) and U(y|h), see
[13].

The Method of Optimal Distance

Call

M :D convt2X(g1(t); : : : ; gn(t); h(t)):

Then L(y|h) is equal to the smallest distance between
(y1, . . . , yn, 0) and (y1; : : : ; yn ; z) 2 M. Also U(y|h) is
equal to the largest distance between (y1, . . . , yn, 0) and
(y1; : : : ; yn ; z) 2 M. Here, M stands for the closure of
M. In particular we see that L(y|h) = inf{yn + 1 : (y1, . . . ,
yn, yn + 1) 2M} and

U(yjh)

D sup fynC1 : (y1; : : : ; yn ; ynC1) 2 Mg :
(12)

Example 7 Let � denote probability measures on [0,
a], a > 0. Fix 0 < d < a. Find

L :D inf



Z
[0;a]

t2 �(dt)

and

U :D sup



Z
[0;a]

t2 �(dt)

subject to
Z
[0;a]

t �(dt) D d:

So consider the graphG := {(t, t2): 0� t� a}. CallM :D
convG D convG.

A direct application of the optimal distance method
here gives us L = d2 (an optimal measure � is supported
at d with mass 1), and U = da (an optimal measure �
here is supported at 0 and a with masses (1 � d/a and
d/a, respectively).

The Method of Optimal Ratio

We would like to find

LS (y) :D inf�(S)

and

US (y) :D sup�(S);

over all probability measures � such that

�(gi ) D yi ; i D 1; : : : ; n:

Set S0 := X � S. CallWS :D convg(S),WS0 :D convg(S0)
and W :D convg(X), where g := (g1, . . . , gn).

Finding LS(y).
1) Pick a boundary point z of W and ‘draw’ through z

a hyperplane H of support toW.
2) Determine the hyperplane H0 parallel to H which

supports WS0 as well as possible, and on the same
side as H supportsW.

3) Denote

Ad :DW \ H D WS \ H

and

Bd :DWS0 \ H0:

Given that H0 6D H, set Gd :D conv(Ad [ Bd ). Then
we have that

LS (y) D
	(y)
	

; (13)

for each y2 int(V) such that y2Gd. Here,�(y) is the
distance from y to H0 and � is the distance between
the distinct parallel hyperplanes H, H0.
Finding US(y). (Note that US(y) = 1 � LS0(y).)

1) Pick a boundary point z ofWS and ‘draw’ through z
a hyperplane H of support toWS. Set Ad :=WS \H.

2) Determine the hyperplane H0 parallel to H which
supports g(X) and hence W as well as possible, and
on the same side as H supports WS. We are inter-
ested only in H0 6D H in which case H is between H0

andWS.
3) Set Bd :=W \H0 =WS0 \H0. Let Gd as above. Then

US (y) D
	(y)
	

; (14)

for each y 2 int(V), where y 2 Gd, assuming that H
and H0 are distinct. Here,�(y) and � are defined as
above.
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Examples here of calculating LS(y) and US(y) tend
to be more involved and complicated, however the ap-
plications are many.

The ConvexMoment Problem

Definition 8 Let s � 1 be a fixed natural number and
let x0 2 R be fixed. By ms(x0) we denote the set of
probability measures � on R such that the associated
cumulative distribution function F possesses an (s �
1)th derivative F(s�1) (x) over (x0, +1) and furthermore
(�1)s F(s�1) (x) is convex in (x0, +1).

Description of the Problem

Let gi, i = 1, . . . , n; h are Borel measurable functions
from R into itself. These are assumed to be locally inte-
grable on [x0, +1) relative to Lebesgue measure. Con-
sider � 2ms(x0), s � 1 such that

�(jgi j) :D
Z

R
jgi (t)j �(dt) < C1;

i D 1; : : : ; n (15)

and

�(jhj) :D
Z

R
jh(t)j �(dt) < C1: (16)

Let c := (c1, . . . , cn) 2 Rn be such that

�(gi ) D ci ; i D 1; : : : ; n; � 2 ms(x0): (17)

We would like to find L(c) := inf
 � (h) and

U(c) :D sup


�(h); (18)

where � is as above described.
Here, the method will be to transform the above

convex moment problem into an ordinary one handled
by the first section, see [14].

Definition 9 Consider here another copy of (R, B); B
is the Borel �-field, and further a given function P(y, A)
on R × B.

Assume that for each fixed y 2 R, P(y, �) is a proba-
bility measure on R, and for each fixed A 2 B, P(�, A) is
a Borel-measurable real-valued function on R. We call
P aMarkov kernel. For each probability measure � onR,

let � := T� denote the probability measure on R given
by

�(A) :D (T�)(A) :D
Z

R
P(y;A) �(dy):

T is called aMarkov transformation.

In particular: Define the kernel

Ks(u; x) :D

(
s(u�x)s�1
(u�x0)s

if x0 < x < u;
0 elsewhere:

(19)

Notice Ks (u, x) � 0 and
R
R Ks (u, x) = dx = 1, all u >

x0. Let ıu be the unit (Dirac) measure at u. Define

Ps(u;A) :D

8<
:
ıu(A) if u � x0;Z
A
Ks(u; x) dx if u > x0:

(20)

Then

(T�)(A) :D
Z

R
Ps(u;A)�( du) (21)

is a Markov transformation.

Theorem 10 Let x0 2 R and natural number s � 1
be fixed. Then the Markov transformation (21) � = T�
defines a 1-1 correspondence between the set m� of all
probability measures � on R and the set ms(x0) of all
probability measures � on R as in Definition 8. In fact
T is a homeomorphism given that m� and ms(x0) are
endowed with the weak�-topology.

Let �: R! R be a bounded and continuous function.
Introducing

��(u) :D (T�)(u) :D
Z

R
�(x) � Ps(u; dx); (22)

then
Z
�d� D

Z
�� d�: (23)

Here �� is a bounded and continuous function from R
into itself.

We obtain that

��(u) D

8̂
ˆ̂<
ˆ̂̂:

�(u) if u � x0;Z 1

0
�((1 � t)uC tx0)sts�1 dt

if u > x0:

(24)
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In particular

1
s!
(u � x0)s��(u)

D
1

(s � 1)!

Z u

x0
(u � x)s�1�(x) dx:

(25)

Especially, if r > � 1 we get for �(u) := (u � x0)r that

��(u) D
�
r C s
s

��1
(u � x0)r , for all u > x0. Here r ! :=

1� 2 � � � r and
�
r C s
s

�
:D

(r C 1) � � � (rC s)
s!

:

Solving the ConvexMoment Problem

Let T be the Markov transformation (21) as described
above. For each � 2 ms (x0) corresponds exactly one �
2 m� such that � = T�. Call g�i := Tgi, i = 1, . . . , n and
h� := Th. We have
Z

R
g�i d� D

Z
R
gi d�

and
Z

R
h� d� D

Z
R
h d�:

Notice that we get

�(g�i ) :D
Z

R
g�i d� D ci ; i D 1; : : : ; n: (26)

From (15), (16) we get that
Z

R
T jgi j d� < C1; i D 1; : : : ; n;

and
Z

R
T jhj d� < C1: (27)

Since T is a positive linear operator we obtain |Tgi| �
T|gi|, i = 1, . . . , n, and |Th| � T|h|, i. e.
Z

R

ˇ̌
g�i
ˇ̌
d� < C1; i D 1; : : : ; n;

and
Z

R
jh�j d� < C1:

That is, g�i , h
� are �-integrable.

Finally

L(c) D inf
�
�(h�) (28)

and

U(c) D sup
�

�(h�); (29)

where � 2m� (probability measure onR) such that (26)
and (27) are true.

Thus the convex moment problem is solved as
a standard moment problem (see the first section).

Remark 11 Here we restrict our probability measures
on [0, +1) and we consider the case x0 = 0. That is �
2ms(0), s� 1, i. e. (� 1)s F(s� 1) (x) is convex for all x >
0 but � ({0}) = � ({0}) can be positive, � 2m�. We have

��(u) D su�s �
Z u

0
(u � x)s�1 � �(x) � dx;

u > 0:
(30)

Further ��(0) = �(0), (�� = T�). Especially,

if �(x) D xr

then ��(u) D
�
r C s
s

��1
� ur;

(r � 0):

(31)

Hence the moment

˛r :D
Z C1
0

xr�( dx) (32)

is also expressed as

˛r D

�
r C s
s

��1
� ˇr ; (33)

where

ˇr :D
Z C1
0

ur �(du): (34)

Recall that T� =�, where � can be any probability mea-
sure on [0, +1).

Here we restrict our probability measures on [0, b],
b > 0 and again we consider the case x0 = 0. Let � 2
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ms(0) and
Z
[0;b]

xr �(dx) :D ˛r ; (35)

where s� 1, r > 0 are fixed.
Also let � be a probability measure on [0, b] unre-

stricted, i. e. � 2m�. Then ˇr D

�
r C s
s

�
˛r , where

ˇr :D
Z
[0;b]

ur �(du): (36)

Let h: [0, b]!R+ be an integrable function with respect
to Lebesgue measure. Consider � 2 ms (0) such that

Z
[0;b]

h d� < C1: (37)

i. e.
Z
[0;b]

h� d� < C1; � 2 m�: (38)

Here h� = Th, � = T� and
Z
[0;b]

h d� D
Z
[0;b]

h� d�:

Letting ˛r be free, we have that the set of all possible
(˛r , �(h)) = (�(xr), �(h)) coincides with the set of all

 �
rC s
s

��1
� ˇr ; �(h�)

!

D

 �
rC s
s

��1
� �(ur); �(h�)

!
;

where � as in (37) and � as in (38), both probability
measures on [0, b]. Hence, the set of all possible pairs
(ˇr , �(h)) = (ˇr , �(h�)) is precisely the convex hull of
the curve

� :D f(ur ; h�(u)) : 0 � u � bg : (39)

In order one to determine L(˛r) the infimum of all�(h),
where � is as in (35) and (37), one must determine the
lowest point in this convex hull which is on the vertical
through (ˇr, 0). For U(˛r) the supremum of all �(h), �
as above, onemust determine the highest point of above
convex hull which is on the vertical through (ˇr , 0).

For more on the above see again §1.

Infinite Many Conditions Moment Problem

See also [16].

Definition 13 A finite nonnegative measure � on
a compact and Hausdorff space S is said to be inner reg-
ular when

�(B) D sup f�(K) : K � B; K compactg (40)

holds for each Borel subset B of S.

Theorem 14 See [16]. Let S be a compact Hausdorff
topological space and ai: S! R(i 2 I) continuous func-
tions (I is an index set of arbitrary cardinality), also let ˛i
(i 2 I) be an associated set of real constants. Call M0(S)
the set of finite nonnegative inner regular measures � on
S which satisfy the moment conditions

�(ai ) D
Z
S
ai (s) �(ds) � ˛i ; all i 2 I: (41)

Also consider the function b: S! R which is continuous
and assume that there exist numbers di � 0 (i 2 I), all
but finitely many equal to zero, and further a number q
� 0 such that

1 �
X
i2I

di ai (s) � qb(s); all s 2 S: (42)

Finally assume that M0(S) 6D ; and call

U0(b) D sup f�(b) : � 2 M0(S)g : (43)

(�(b) :=
R
S b(s) �(ds)). Then

U0(b)

D inf

(X
i2I

ci˛i :
ci � 0;

b(s) �
P

i2I ci ai(s) all s 2 S

)
;

(44)

here all but finitely many ci, i 2 I, are equal to zero.
Moreover, U0(b) is finite and the above supremum is as-
sumed.

Remark 15 In general we have: let S be a fixed measur-
able space such that each 1-point set {s} is measurable.
Further let M0(S) denote a fixed nonempty set of finite
nonnegative measures on S.

For f : S! R a measurable function we denote

L0( f ) :D L( f ;M0(S))

:D inf
�Z

S
f (s) �(ds) : � 2 M0(S)

	
:

(45)
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Then we have

L0( f ) D �U0(� f ): (46)

Now one can apply Theorem 14 in its setting to find
L0(f ).

Applications and Discussion

The above described moment theory optimization
methods have a lot of applications in many sciences.
Tomention a few of them: physics, chemistry, statistics,
stochastic processes and probability, functional anal-
ysis in mathematics, medicine, material science, etc.
Optimization moment theory could be also considered
the theoretical part of linear finite or semi-infinite pro-
gramming (here we consider discretized finite nonneg-
ative measures).

The above described methods have in particular im-
portant applications: in the marginal moment prob-
lems and the related transportation problems, also in
the quadratic moment problem, see [17].

Other important applications are in tomography,
crystallography, queueing theory, rounding problem in
political science, and martingale inequalities in proba-
bility. At last, but not least, optimization moment the-
ory has important applications in estimating the speeds:
of the convergence of a sequence of positive linear oper-
ators to the unit operator, and of the weak convergence
of nonnegative finite measures to the unit-Dirac mea-
sure at a real number, for that and the solutions of many
other important optimal moment problems please see
[2].

Final Conclusion

Optimization moment theory is a very active area of
mathematical probability theory with a lot of applica-
tions in other subjects, and with a lot of researchers
from around the world in it contributing new useful re-
sults, continuously during all of the 20th century.
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The general routing problem (GRP) is a routing prob-
lem defined on a graph or network where a minimum
cost tour is to be found and where the route must in-
clude visiting certain required vertices and traversing
certain required edges. More formally, given a con-
nected, undirected graphGwith vertex setV and (undi-
rected) edge set E, a cost ce for traversing each edge e
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2 E, a set VR � V of required vertices and a set ER �
E of required edges, the GRP is the problem of finding
a minimum cost vehicle route, starting and finishing at
the same vertex, passing through each v 2 VR and each
e 2 ER at least once ([13]).

The GRP contains a number of other routing prob-
lems as special cases. When ER = ;, the GRP re-
duces to the Steiner graphical traveling salesman prob-
lem (SGTSP) ([4]), also called the road traveling sales-
man problem in [7]. On the other hand, when VR = ;,
the GRP reduces to the rural postman problem (RPP)
([13]). When VR = V , the SGTSP in turn reduces to
the graphical traveling salesman problem or GTSP ([4]).
Similarly, when ER = E, the RPP reduces to the Chinese
postman problem or CPP ([5,8]).

The CPP can be solved optimally in polynomial
time by reduction to a matching problem ([6]), but
the RPP, GTSP, SGTSP and GRP are all NP-hard.
This means that the computational effort to solve such
a problem increases exponentially with the size of the
problem. Therefore exact algorithms are only practical
for a GRP if it is not too large, otherwise a heuristic al-
gorithm is appropriate. The GRP was proved to be NP-
hard in [10].

In [3], an integer programming formulation of the
GRP is given, along with several classes of valid inequal-
ities which induce facets of the associated polyhedra
under mild conditions. Another class of valid inequal-
ities for the GRP is introduced in [11] and in [12] it is
shown how to convert facets of the GTSP polyhedron
into valid inequalities for the GRP polyhedron. These
valid inequalities form the basis for a promising branch
and cut style of algorithm described in [2] which can
solve GRPs of moderate size to optimality.

In [9], a heuristic algorithm for the GRP is de-
scribed. The author adapts Christofides’ heuristic for
the TSP to show that when the triangle inequality holds
in the graph, the heuristic has a worst-case ratio of
heuristic solution value to optimum value of 1.5.

There are many vehicle routing applications of the
GRP. In these cases, the edges of the graph are used
to represent streets or roads and the vertices represent
road junctions or particular locations on a map. In any
practical application there are likely to be many addi-
tional constraints which must also be taken into ac-
count such as the capacity of the vehicles, time-window
constraints for when the service may be carried out,

the existence of one-way streets and prohibited turns
etc.

Many applications are for the special cases when ei-
ther ER = ; or VR = ;. However, there are some types of
vehicle routing applications where the problem is most
naturally modeled as a GRP with both required edges
and required vertices. For example, in designing routes
for solid waste collection services, collecting waste from
all houses along a street could be modeled as a required
edge and collecting waste from the foot of a multistory
apartment block could be modeled as a required vertex.
Other examples include postal delivery services where
some customers with heavy demand might be mod-
eled as required vertices, while other customers with
homes in the same street might be modeled together as
a required edge. School bus services are other examples
of GRPs where a pick-up in a remote village could be
modeled as a required vertex, but if the school bus must
pick-up at some point along a street (and is not allowed
to perform a U-turn in the street) then that may best be
modeled as a required edge.

Further details about solution methods and appli-
cations for various network routing problems can be
found in [1].
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Genetic algorithms (GAs) comprise a class of stochas-
ticglobal optimization methods based on several strate-
gies from biological evolution. The basic genetic algo-
rithm was developed by J.H. Holland and his students
([5,6,7,8]), and was based on the observation that selec-
tion (either natural or artificial) can produce highly op-

timized individuals in a relatively short number of gen-
erations. This is true despite the fact that the space of all
gene mutations through which a population must sort
is astronomical. For instancethe genome of the yeast
Saccharomyces cerevisiae, which is the simplest eukary-
ote, contains just over 6000 genes, each of which can
occur in several mutant forms. Despite this, S. cere-
visiae can reoptimize itself to survive and flourish in
many new environments in a relatively short number
of generations. This is equivalent to having a com-
puter search for a near-optimal solution to a 6000-
dimensional problem where each of the 6000 variables
can take on any one of a large number of values.

The most important notion from natural systems
that the GA employs is the use of a population of in-
dividuals which go through a selection step to produce
offspring and pass on their genetic material.Optimality
or fitness is measured by how many offspring an indi-
vidual produces. A second notion is the use of crossover
in which individuals share genetic information and pass
the shared information onto their offspring. A third
borrowing from nature is the idea ofmutation, the con-
sequence of which is that the transfer of genetic infor-
mationis prone to random errors. This helps maintain
the level of genetic diversity in a population.

The implementation of a simple GA (SGA) which
uses these ideas is straightforward. The description that
follows uses a binary encoding, but all of the ideas fol-
low identically for integer or even real number encod-
ings. The most important idea is that one works with
a population of individuals which will interact through
genetic operators to carry out an optimization process.
An individual is specified by a chromosome C which is
a bit string of lengthNc that can be decoded to give a set
ofN parameters xi which are the natural parameters for
the optimization application. Each parameter xi is en-
coded by ni bits so that

PN
i ni = Nc. In what follows,

chromosome and bit string are synonymous. A fitness
function f (x1, . . . , xN), which is the function to be op-
timized, is used to rank the individual chromosomes.
An initial population of Npop individuals is formed by
choosing Npop bit strings at random, and evaluating
each individual’s fitness. (Decode C! (x1, . . . , xN), cal-
culate f (x1, . . . , xN).)Subsequent generations are formed
as follows. All parents (members of the current gener-
ation) are ranked by fitness and the highest fitness in-
dividual is placed directly into the next generation with
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no change. (This step of keeping the most-fit individual
intact is termed elitism and is a purely heuristic addi-
tion. It insures that good solutions to the problem at
hand are not lost until better ones are found.) Next,
pairs of parents are selected and their chromosomes are
crossed over to form chromosomes of the remaining in-
dividuals in the next generation. A parent’s probability
of being selected increases with its fitness. So for a min-
imization application, the parent with the current low-
est value of f (x1, . . . , xN) has the highest chance of being
selected for mating. Crossover consists of taking some
subset of the bits from parent 1 and the complementary
set of bits from parent 2 and combining them to form
the chromosome of child 1. A childis simply a mem-
ber of the next generation. The remaining bits from the
two parents are combined to form the chromosome of
child 2. Additionally, during replication there is a small
probability of a bit flip or mutation in a chromosome.
This serves primarily to maintain diversity and prevent
premature convergence. Convergence occurs when the
population becomes largely homogeneous – most in-
dividuals have almost the same values for all of their
parameters. Premature convergence occurs when the
population converges early in a run, before significant
amount of searching has been performed. The most
common cause is a poor choice of the scaling of the
fitness function. It should be noted that ‘premature’
and ‘early’ are loosely defined. To bound the magni-
tude of the effect of mutations, the binary chromo-
somes are usually Gray coded. An integer that is repre-
sented as a Gray coded binary number has the property
that most single bit flips change the value of the deci-
mal integer represented by the chromosome by ˙1. In
sum, the algorithm consists of successively transform-
ing one generation of individuals into the next using the
operations of selection, crossover and mutation. Since
the selection process is biased towards individuals with
higher fitness, individuals are produced that come ever
closer to being optimal solutions to the function of in-
terest.

It is important to emphasize that crossover is
the key feature that distinguishes the GA from other
stochastic global search methods. If crossover is inef-
fective, GA degenerates into a random walk search be-
ing executed separately by each individual in the popu-
lation. The random walk is generated by the mutation
operator.

The GA is presented below as pseudocode:

PROCEDURE genetic algorithm()
Initialize population;
FOR (g = 1 to Ngen generations) DO

FOR (i = 1 to Npop individuals) DO
Evaluate fitness of individual i: fi(g):

END FOR;
Save best individual to population g + 1;
FOR (i = 2 to Npop) DO

Select 2 individuals;
Crossover: create 2 new individuals;
Mutate the new individuals;
Move new individuals to population g+1;

END FOR;
END FOR;

END genetic algorithm;

Pseudocode for the Simple Genetic Algorithm

Selection commonly uses a roulette wheel procedure.
Each individual is assigned a slice of the unit circle pro-
portional to its fitness (f (x1, . . . , xN)).One then chooses
pairs of random numbers to select the next two individ-
uals to be mated. A typical crossover operator takes the
chromosomes from apair of individuals and chooses
a common cut point along them. One child gets the
portion of the first parent’s chromosome to the left of
thecut point, and the portion of the second parent’s
chromosome to the right of the cut point. The chromo-
some of the second child is comprised of the remaining
fragments of the two parent chromosomes. In the most
commonmutation operator each bit in the binary chro-
mosome has an equal and low probability being flipped
from 1 to 0 or vice versa.Many variants on these opera-
tors have been used.

The important variables in the GA method are the
population size, Npop, the total number of generations
allowed, Ngen, the number of bits used to represent
a real variable, and the mutation rate. The total CPU
time used in an optimization run is proportional to
Npop × Ngen × T(f ), where T(f ) is the time required to
evaluate the fitness function f (x1, . . . , xN). This leads
to a trade-off between having large, diverse popula-
tions that explore parameter space widely, and having
smaller populations that explore longer. In practice, the
choice is problem dependent.
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The simple GA and a large number of variants
have been successfullyused to find near-optimal solu-
tions to many engineering and scientific applications.
([2,3,4,6,9,10,11]) Although much effort has gone into
formally analyzing the GA to understand why it is so
robust, the most important formal result is the Schema
theorem ([6,7,8]). Schemata are strings made up of the
characters 1, 0 and 
 which is the ‘don’t care’ charac-
ter. These schemata are building blocks out of which
the strings representing individuals’ chromosomes can
be constructed. For instance the string 11100 contains
schema such as 111, 1100 and 1 
 10. The schema theo-
rem provides a powerful statement about the behavior
of schemata in a chromosome. Mathematically, it states

m(H; g C 1)

� m(H; g)
f (H)
f

�
1 � pc

ı(H)
l � 1

� pm
o(H)
pm

�
; (1)

wherem(H, g) is the number of examples of a schemaH
that exist in the population at generation g; f (H) is the
average fitness of chromosomes containing H; f is the
average fitness of all chromosomes; pc is the probability
that crossover will occur at a particular mating; pm is
the probability that a particular bit will be mutated; l
is the length of the chromosome; ı(H) is the length of
the schema in bits; and o(H) is the order of the schema,
defined to be the number of fixed (as opposed to don’t
care) positions in the schema.

The factors outside the brackets in (1) indicate that
a particular schema will increase its representation in
the population at a rate proportional to its fitness rela-
tive to the average fitness. Good schemata will increase
their representation exponentially and bad schemata
will decrease their representation likewise. The terms
inside the bracket serve to decrease this exponential
convergence by disrupting the selection-based pres-
sure. Both crossover and mutation can disrupt good
schemata. The longer a schema is, the more likely it is to
be disrupted by crossover, and disappear from the pop-
ulation. In the same fashion, schemata with many fixed
positions are more likely to be disrupted by mutations.

The competition between selection which drives the
population towards convergence on a good solution
and crossover and mutation which drive the popula-
tion towards more diverse states are the keys to the
GA. Crossover is especially important for keeping the

method from being trapped in local minima. One con-
sequence of the parameter shuffling brought about by
the crossover operator is that the GA is most efficient at
optimizing functions that are at least partially separa-
ble. One individual can find a state where half of the pa-
rameters of the fitness function are optimized and a sec-
ond individual can find a state where the other half are
optimized. If these individuals crossover at the correct
point, one of theirchildren will have the parameter val-
ues that globally optimize the function.

As with most other heuristic global optimization
methods, no definitive statements can be made about
the global optimality of GA-generated solutions.

A family of algorithms that are very similar to the
GA, called evolution strategieswere developed indepen-
dently and virtually simultaneously in Germany by I.
Rechenberg ([1,12]).
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Genetic algorithms (GAs; cf. also � Genetic algo-
rithms) have been used for a large number of model-
ing applications in chemical and biological fields [5,9].
At least three factors contribute to this. First, GAs pro-
vide an easy-to-use global search and optimization ap-
proach. Second, they can easily handle noncontinu-
ous functions. Finally, they are relatively robust even

for moderately high-dimensional problems. All of these
have contributed to the use of the GA for the important
but computationally demanding field of protein struc-
ture prediction.

Proteins carry out a wide variety of functions in liv-
ing cells, almost all of which require that the protein
molecules assume precise 3-dimensional shapes [2,3].
Enzymes are typical examples. They generally consist
of a large structure of 100–300 amino acids stabilizing
a small active site which is designed to carry out a spe-
cific chemical reaction such as cleaving a bond in a tar-
get molecule. Even slight changes in the structure of
the active site can destroy the protein’s ability to func-
tion. Many drugs act by fitting snugly into enzymes’ ac-
tive sites, causing them to shut down. Therefore, a de-
tailed understanding of the 3-dimensional structure of
a protein can enhance our understanding of its func-
tion. This can in turn help understand related disease
processes and can finally lead to disease cures. Unfortu-
nately the experimental determination of protein struc-
tures, using x-ray crystallography or solution NMR is
very difficult. Currently the structures of only a few
thousand of the estimated 100,000 proteins that are
used by the human body have been determined this
way. The alternative is to predict the structures com-
putationally.

The basic computational approach is simple to state,
although many details have yet to be worked out. It re-
lies on the experimental fact that a protein in solution
(as well as any other molecule) will tend to find a state
of low free energy. Free energy accounts for the inter-
nal energy (potential plus kinetic) of single molecules as
well as the entropy of the ensemble of molecules of the
same type. At absolute zero, the entropy contribution
to the energy, as well as the kinetic energy, go to zero,
leaving only the potential energy. Therefore, the most
likely shape or state of a protein at absolute zero is the
one of lowest potential energy. The simplest computa-
tional model then needs a method to search the space of
conformations and an energy function (approximating
the physical potential energy) which is minimized dur-
ing the search. (A protein’s conformation is the descrip-
tion of the 3-dimensional positions of all of the atoms
for a fixed set of atoms and atom-atom connections.
The configuration describes the atom-atom connectiv-
ity and only changes through chemical bond forming
or breaking.) The conformation which yields the lowest
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value of the energy function is a best estimate of con-
formation of the natural protein. It is possible to extend
this simple model to include the effects of finite tem-
perature, but these extensions are beyond the scope of
this article. In-depth discussions of molecular model-
ing, including energy functions for proteins and other
molecules can be found in [6,8,10], and [1].

Because proteins possess many degrees of freedom,
and the energy functions have many local minima,
global optimization methods that search efficiently and
are not prone to being caught in local minima are re-
quired. The GA is often used because it fits both of these
criteria.

Proteins [2] are long linear polymers composed of
well-conserved sequences of the 20 amino acids. Each
amino acid is in turn made up of a backbone

R
j

� (NH � C˛ � CO) �

where R stands for one of the 20 side groups that make
the amino acids unique. These range from a single hy-
drogen atom to chains having many degrees of free-
dom. The primary structure of the protein is simply the
sequence of amino acids. For many naturally occurring
proteins, this sequence carries sufficient information to
determine the final 3-dimensional or tertiary structure
of the protein. Experimentally, proteins that have been
denatured (caused to unfold by heating the solution or
changing its chemical composition) will spontaneously
refold to their active, or native conformation, when the
solution is returned to its original state.

There are two sets of coordinates often used for
specifying the conformation of a protein. The first are
the standard Cartesian coordinates for each atom. For
N atoms, this requires 3N � 6 numbers. The alternative
is to use internal coordinates which are the bond dis-
tances (distances between atoms bound together), the
bond angles (angles formed by a given atom and two
atoms bound to it), and the dihedral angles (the angle of
rotation about a center bond for a set of 4 atoms bound
as A � B � C � D). To a good first approximation, the
bond distances and bond angles are fixed at values that
are independent of the particular amino acid or protein.
Therefore, the conformation of a protein is determined
largely by the values of its dihedral angles. There are
on average about 15 atoms and about 3 dihedrals per

amino acid, requiring about N/5 degrees of freedom to
describe the conformation of an N-atom protein. The
dimension of conformation space for a moderate-size
protein of 100 amino acids ( 	 1500 atoms) is 	 4500
when using Cartesian coordinates vs. 	 300 when us-
ing internal coordinates with fixed bond distances and
angles.

In many protein structure prediction applications,
the simple GA approach is used. For each generation,
one calculates the fitness (energy) of each individual
in the population, selects pairs of individuals based on
their energy, performs crossover andmutation. The GA
chromosome directly codes for the values of the dihe-
dral angles. Both binary encoded and real number en-
coded chromosomes have been used with equal success.
For binary encoded dihedrals, one must decide on the
resolution of the GA search. The maximum one would
use is 10 bits per angle which gives a resolution of about
1/3 degree. Often as few as 5 or 6 bits will be sufficient,
especially if the GA-generated conformations will be
subjected to local gradient minimization.

For each GA individual, the chromosome is de-
coded to give the values of the dihedrals which are
passed to the energy function. This in turn returns an
energy which is used as the fitness for the subsequent
selection process.

Another encoding scheme that is often used is based
on the idea of a rotamer library. It is known from study-
ing the set of experimentally known structures that the
dihedral angles in many amino acid side chains take
on restricted sets of values. Also, the values of several
neighboring dihedrals are often correlated. It has then
been possible to develop libraries of preferred sidechain
conformations (called rotamers) for each amino acid.
This can be incorporated into the GA by having each
word in the chromosome simply determine which of
a set of rotamers to use for each amino acid in the se-
quence. The use of rotamer libraries in the GA frame-
work is illustrated in references [7,12,13,14], and [11].

The other major ingredient needed for a protein
structure prediction method is an energy function to be
minimized. This is a huge area of research which is be-
yond the scope of this article, but twomajor approaches
will be summarized. The first scheme uses physics-
based empirical potentials. These are functions of the
bond distances, bond angles, dihedral angles, and non-
bonded distances (distances between atoms not directly
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bound together). The functional forms are derived from
the results of accurate but computationally expensive
quantum mechanical calculations that are performed
on small molecular fragments such as individual amino
acids. The results are fitted to simple functions with
several free parameters. The parameter values are ei-
ther taken from the original quantum calculations or
from independent spectroscopic experiments. Various
methods are used to approximate the effect of the water
and salt environment around the protein. The advan-
tage of these potentials is that they are continuous and
very general. They can be constructed for any protein
and give reasonable energies for any conformation re-
quested. The disadvantage is that they are not yet suf-
ficiently accurate to give reliable structure predictions.
For many if not all of the proteins whose structure is
known, there are conformations that have much lower
calculated energy than that of the experimental confor-
mation.

The second approach is to use potentials based on
observations of known protein structures. Basically,
more probable conformations (ones that look more like
real proteins) will have lower energy values. For in-
stance certain sequences of amino acids almost always
assume a particular secondary structure. The secondary
structure of a protein describes the presence of multi-
amino acid helices, sheets and turns but not the ex-
act placement of the atoms in the secondary structure
elements or the spatial orientation of these elements.
These potentials have the advantage that they build on
our observations of proteins as entire molecules and in-
corporate long-range order. As with the empirical po-
tentials, though, they suffer from accuracy problems.
However, except for very small proteins (less than 20
amino acids) the structure-based potentials show the
most promise.

A common feature of GA-based protein structure
prediction methods is the use of hybrid approaches
combining standard GA with a local search method.
The GA is then used primarily to perform an efficient
global search which is biased towards regions of con-
formation space with low energy. This is a pragmatic
approach driven by the large number of degrees of free-
dom even when internal coordinates are used. A simple
and often used approach [5] is to subject GA-generated
conformations to gradient minimization. Another ap-
proach is to use a population of individuals which carry

out independent Monte-Carlo or simulated annealing
walks (cf. also � Simulated annealing methods in pro-
tein folding; � Monte-Carlo simulated annealing in
protein folding) for a number of steps and then undergo
selection, crossover and mutation [4,15,16].

See also

� Adaptive Simulated Annealing and its Application
to Protein Folding

� Bayesian Global Optimization
� Genetic Algorithms
� Global Optimization Based on Statistical Models
�Monte-Carlo Simulated Annealing in Protein

Folding
� Packet Annealing
� Random Search Methods
� Simulated Annealing Methods in Protein Folding
� Stochastic Global Optimization: Stopping Rules
� Stochastic Global Optimization: Two-phase

Methods
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Introduction

Geometric programming is an important class of non-
linear optimization problems. Their source dates back
to the 1960s when Zener began to study a special type

of minimization cost problem for design in engineer-
ing, now known as geometric programming. The term
geometric programming is adopted because of the cru-
cial role that the arithmetic-geometric mean inequality
plays in its initial development.

Actually, the early work in geometric program-
ming was, for the most part, concerned with mini-
mizing posynomial functions subject to inequality con-
straints on such functions, which was called posyn-
omial geometric programming. In the past decade,
because a number of models abstracted from applica-
tion fields were not posynomial geometric program-
ming, the theory had to be generalized to a much
broader class of optimization problems called gener-
alized geometric programming, which has spawned
a wide variety of applications since its initial develop-
ment. Its great impact has been in the areas of (1) en-
gineering design [1,4,10,11]; (2) economics and statis-
tics [2,3,6,9]; (3) manufacturing [8,17]; (4) chemical
equilibrium [13,16]. Reference [19] focuses on solu-
tions for generalized geometric programming.

Formulation

[19] provides a global optimization algorithm for the
generalized geometric programming (GGP) problem
stated as:

GGP

8̂
ˆ̂̂<
ˆ̂̂̂
:

min G0(x)
s.t. Gm(x) � ım;m D 1; : : : ;M

x 2 X D fx : 0 < xl
i � xi � xui

i D 1; : : : ;Ng

where Gm(x) D
PTm

tD1 ımtcmt
QN

iD1 x
�mti
i , m D

0; 1; : : : ;M, and cmt are positive coefficients, Tm are
the given number of the terms in the function Gm(x),
ımt D C1 and �1; ım D C1 or �1; �mti are arbitrary
real constant exponents. In general, formulation GGP
corresponds to a nonlinear optimization problem with
a nonconvex objective function and constraint set.
In Gm(x), if ımt D C1 for all t; t D 1; : : : ; Tm , and
xi > 0; i D 1; : : : ;N, then the function Gm(x) is called
a posynomial. Note that if we set ımt D C1 for all
m D 0; 1; : : : ;M; t D 1; : : : ; Tm and ım D C1 for all
m D 1; : : : ;M, then the GGP formulation reduces
to the classical posynomial geometric programming
(PGP) formulation that laid the foundation for the the-
ory of the GGP problem.
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Local optimization approaches for solving the GGP
problem include three kinds of methods in general.
First, successive approximation by posynomials, called
“condensation,” is the most popular [14]. Second, Passy
and Wilde [15] developed a weaker type of duality,
called “pseudo-duality,” to accommodate this class of
nonlinear optimization. Third, some nonlinear pro-
grammingmethods are adopted to solve the GGP prob-
lem based on exploiting the characteristics of the GGP
problem [12].

Though local optimization methods for solving the
GGP problem are ubiquitous, global optimization algo-
rithms based on the characteristics of the GGP prob-
lem are scarce. Maranas and Floudas [13] proposed
such a global optimization algorithm based on the ex-
ponential variable transformation of GGP, the convex
relaxation, and branch and bound on some hyperrect-
angle region. Reference [19] proposes a branch-and-
bound optimization algorithm that solves a sequence
of linear relaxations over partitioned subsets in order
to find a global solution, and to generate the linear
relaxation of each subproblem and to ensure conver-
gence to a global solution, special strategies have been
applied. (1) The equivalent reverse convex program-
ming (RCP) formulation is considered. (2) A linear
relaxation method for the RCP problem is proposed
based on the arithmetic-geometric mean inequality and
the linear upper bound of the reverse convex con-
straints; this method is more convenient with respect to
computation than the convex relaxation method [13].
(3) A bound tightening method is developed that will
enhance the solution procedure, and, based on this
method, a branch-and-bound algorithm is proposed.

Methods and Applications

Transformation

In [5], Duffin and Peterson show that any GGP problem
can be transformed into the following reverse posyno-
mial geometric programming (RPGP):
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min x0
s.t. gm(x) � 1; m D 1; : : : ; p

gm(x) � 1; m D pC 1; : : : ; q
x 2 ˝0 D fx : 0 < xl

i � xi � xui <1
i D 0; : : : ; ng

where gm(x) are posynomials for m D 1; : : : ; q, and
n � N .

To see how such a reformulation is possible, first
consider the objective function in GGP. If the optimal
value of GGP is positive, the GGP problem is equivalent
to the following form:

(GGP1) :

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x0
s.t. x�10 G0(x) � 1;

Gm(x) � ım;m D 1; : : : ;M
x 2 X :

And if the optimal value of GGP is negative, then GGP
can be transformed into the following form:

(GGP2) :

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x0
s.t. x0G0(x) � �1 ;

Gm(x) � ım;m D 1; : : : ;M
x 2 X :

We can add a large constant to the objective function
of GGP in order to ensure that the optimal value of
(GGP) is positive, then derive the form GGP1. In this
method a probably lower bound estimation for the op-
timal value of GGP is needed.

Secondly we turn to consider the constraints. If the
primal constrained function Gm(x) is either a posyno-
mial or the negative of a posynomial, then it is obvious.
So we only consider the following constrained function:

Gm(x) D h1(x) � h2(x) � 1 ;

where each hi (x)(i D 1; 2) is a posynomial. Notice that
x satisfies the above inequality if and only if there exists
a single variable s > 0 such that (x, s) satisfies

h1(x) � s � h2(x)C 1 :

Now note that the above formulation is equivalent to
the following two constraints

s�1h1(x) � 1 and s�1h2(x)C s�1 � 1 ;

which are in a form consistent with the formulation
RPGP.

By applying the following exponent transformation

xi D exp zi ; i D 0; : : : ; n
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to the formulation RPGP, we can obtain the following
reverse convex programming (RCP) problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min exp(z0)
s.t. gm(z) � 1; m D 1; : : : ; p

gm(z) � 1; m D pC 1; : : : ; q
z 2 ˝ D fz : zLi � zi � zUi ;
i D 0; 1; : : : ; ng

where

gm(z) D
TmX
tD1

cmt exp

( nX
iD0

�mti zi

)
; m D 1; : : : ; q

Because each expf
Pn

iD0 �mti zig is convex, both the ob-
jective and constrained functions are convex.

The main difficulty for solving the RCP problem is
connected with the presence of the reverse convex con-
straints gm(z) � 1; m D pC 1; : : : ; q, which destroy
the convexity and possibly even the connectivity of the
feasible set and give rise to a nonconvex feasible region.

Linear Relaxation Programming

The principal construct in the development of a solu-
tion procedure for solving the RCP problem is the con-
struction of a linear relaxation programming of RCP
for obtaining the lower bound for this problem, as well
as for its partitioned subproblems [19] derives such
a linear relaxation by applying the arithmetic-geometric
mean inequality for the convex constraints and overes-
timating every reverse convex constraint in either the
initial bounds on the variables of the problem or mod-
ified bounds as defined for some partitioned subprob-
lem in a branch-and-bound scheme.

(1) Linear Relaxation for Convex Constraints The
arithmetic-geometric mean inequality that played such
a crucial role in developing the duality theory for
posynomial programming is also used to obtain lin-
ear relaxation programming. Recall that this inequality
states that for any vector ! > 0 and any nonnegative
weight vector "whose components sum to one, we have

X
t

!t �
Y
t

(
!t

"t
)"t

provided (!t/"t)"t is defined to be 1 when "t D 0. Give
a posynomial

gm(x) D
X
t

umt(x) D
X
t

cmt
Y
i

xmti
i

and "m � 0 with
P

t "mt D 1. Then a condensed
posynomial ḡm(x) is defined by

ḡm(x) D c̄m
Y
i

x�̄mi
i

where c̄m D
Q

t(cmt/"mt)"mt and �̄mi D
P

t �mti"mt .
Thus the condensed posynomial ḡm(x) is also

a posynomial, and it has a single posynomial term.
According to this method, the condensed single term
for the convex constraints gm(z) � 1 of RCP, where
zi D ln xi , is of the following form:

ḡm(z) D c̄m exp

 X
i

�̄mi zi

!
(1)

where the definitions of c̄m and �̄mi have been given in
the former.

To illustrate how the condensed term can be used to
obtain the linear relaxation, we consider the following
convex constraints gm(z) � 1;m D 1; : : : ; p and select
an arbitrary weight vector "m � 0 whose components
sum to one. We use the condensed constrained func-
tions to replace the above convex constraints:

ḡm(z) � 1; m D 1; : : : ; p : (2)

It follows that

ḡm(z) � gm(z)

for each m D 1; : : : ; p. Thus if in RCP the convex con-
straints are replaced by the condensed constraints, the
feasible region for RCP will be contained in the new
feasible region. Notice that the condensed constraints
(2) can be easily transformed into equivalent formula-
tions as linear constraints:

Lm(z) D
X
i

�̄mi zi C ln c̄m � 0; m D 1; : : : ; p :

(2) Linear Relaxation for Reverse ConvexConstraints
For reverse convex constraints such a linear relaxation
can be obtained by overestimating every convex func-
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tion gm(z) of the reverse convex constraint with a lin-
ear function Lm(z) for every m D pC 1; : : : ; q. The
method in [13] of underestimating a concave function
with a linear function is adopted, and we describe the
linear function as follows:

Lm(z) D
TmX
tD1

cmt

(
Amt C Bmt

 nX
iD0

�mti zi

!)

and

Amt D
YU
mt exp(YL

mt) � YL
mt exp(YU

mt)
YU
mt � YL

mt
;

Bmt D
exp(YU

mt) � exp(YL
mt)

YU
mt � YL

mt
;

YL
mt D

nX
iD0

min(�mti zLi ; �mti zUi ) ;

YU
mt D

nX
iD0

max(�mti zLi ; �mti zUi ) ;

and it follows that

Lm(z) � gm(z); m D pC 1; : : : ; q :

Thus if in (RCP) the reverse convex constraints are re-
placed by the overestimation linear constraints, the fea-
sible region for RCP will be contained in the new feasi-
ble region.

(3) Linear Relaxation Programming For the objec-
tive function of RCP, it is obvious that min exp(z0) is
equivalent to min z0. From the above discussion for the
two kinds of constraints respectively, [19] constructs
the corresponding linear relaxation programming on
the region˝ LRP(˝) as follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min z0
s.t. Lm(z) � 0; m D 1; : : : ; p

Lm(z) � 1; m D pC 1; : : : ; q
z 2 ˝ D fz : zLi � zi � zUi ;
i D 0; 1; : : : ; ng :

The following results establish some salient properties
of the linear relaxation programming LRP(˝) that are
essential in designing the proposed algorithm.

Lemma 1 Assume the minimum of LRP(˝) is LB�;
then exp(LB�) provides a lower bound of the optimal
value of the RCP problem.

Proof We denote the feasible region of RCP and
LRP(˝) D and P; then it is immediate that P � D by
the construction method. So based on the above as-
sumption, exp(LB�) is a lower bound of the minimum
of the RCP problem. �

Branch-and-Bound Algorithm

Reference [19] develops a branch-and-bound algorithm
to solve the RCP based on the former linear relaxation
method. This algorithm needs to solve a sequence of
linear relaxation programming problems over˝ or the
subsets of˝ in order to find a global solution. Further-
more, to ensure convergence to a global solution, a new
bound tightening method (BTM) is proposed and will
be applied to enhance the solution procedure.

The critical element in guaranteeing convergence to
a global minimum is the choice of a suitable branching
rule. In [18] three kinds of branching methods are pro-
vided. Reference [19] chooses the first method, a simple
and standard bisection rule. This method is sufficient
to ensure convergence since it drives all the intervals to
zero for the variables that are associated with the term
that yields the greatest discrepancy in the employed ap-
proximation along any infinite branch of the branch-
and-bound tree.

Branching rule:
Assume that the hyperrectangle ˝q is going to be

divided. Then the selection of the branching variable ze,
which possesses a maximum length in˝q and the parti-
tioning of˝q are done using the following rules, where
˝q D fz : zLj (˝

q) � z j � zUj (˝
q); j D 0; : : : ; ng. Let

e D argmax
n
zUj (˝

q) � zLj (˝
q)
o
;

and partition ˝q by bisecting the interval [zLe (˝q);
zUe (˝q)] into the subintervals [zLe (˝q); (zLe (˝q) C
zUe (˝q))/2] and [(zLe (˝q)C zUe (˝q))/2; zUe (˝q)].

In what follows we describe the BTM strategy pro-
posed by [19].

Assume that the subhyperectangle ˝q(s) (s is the it-
eration counter) is selected for further consideration. If
in the node q(s) the corresponding solution ẑ(˝q(s)) is
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not feasible in some convex constraint, let

l D argmaxfgm(ẑ(˝q(s)))j

gm(ẑ(˝q(s))) D
TmX
tD1

umt(ẑ(˝q(s))) > 1g :

Compute the weight vector "̄l by "̄l i D ul i (ẑ)/gl (ẑ);
i D 1; : : : ; Tl , and then condense the function gl(z) us-
ing this weight vector as described in Sect. “Linear Re-
laxation Programming.” Then a new single term is ob-
tained, and therefore a new linear constraint is added to
the linear relaxation programming LRP(˝q(s)). Denote
this new linear relaxation programming and new added
condensed single term LRP(˝q(s)) and ḡl (z). And
from the discussion in Sect. “Linear Relaxation Pro-
gramming” we know ḡl (z) D c̄l exp(

P
i �̄l i zi ), where

c̄l D
Q

t(cl t/"̄l t)
"̄l t and �̄l i D

P
t �l t i "̄l t .

It is obvious that

ḡl (ẑ(˝q(s))) D gl (ẑ(˝q(s))) ;

and since gl (ẑ(˝q(s))) > 1, it follows that ẑ(˝q(s))
does not satisfy the new added constraint ḡl (z) � 1.
From the arithmetic-geometric mean inequality, we
have ḡl (z) � gl (z). Of course, the new single-term con-
straint ḡl (z) � 1 is equivalent to a linear constraint.
Hence, if z is feasible for RCP, it is certainly feasible for
LRP(˝q(s)), whose feasible region obviously does not
contain the point ẑ(˝q(s)). Clearly, this BTM technique
will enhance the solution procedure.

Based on the previous BTM technique, [19] con-
structs the global optimization algorithm. The basic
steps of the algorithm are summarized in the following
statement.

Algorithm Statement

step 0: (Initialization)

0.1: Assume a convergence tolerance ı>0, and
the initial weights "m;m D 1; : : : ; p. Set the iteration
counter s D 0, then Qs D Q0 D f1g; q(s) D q(0) D 1;
˝q(s) D ˝1 D ˝ . Set an initial upper bound U� D1.

0.2: Solve the problem LRP(˝q(s)), and denote the
solution and the minimum (ẑ(˝q(s)); LBq(s)).

0.3: If ẑ(˝q(s)) is feasible for RCP, then stop with
ẑ(˝q(s)) as the prescribed solution to the RCP problem,
else let LB(s) D LBq(s);

0.4: If ẑ(˝q(s)) is not feasible on some convex con-
straints, the BTM technique will be adopted.

step 1: (Partitioning step) Choose a branching vari-
able ze, then partition ˝q(s) to get ˝q(s):1 and ˝q(s):2.
Replace q(s) by node indices q(s):1; q(s):2 in Qs.

step 2: (Feasibility check for (RCP)) For each q(s):w,
where w D 1; 2, compute:

gm(w) D c̄m exp

 nX
iD0

min(�̄mi zLi ; �̄mi zUi )

!
;

for m D 1; : : : ; p

gm(w) D
TmX
tD1

cmt exp
�
YU
mt
�
;

for m D pC 1; : : : ; q

where c̄m ; �mi ;YU
mt have been defined in Sect. “Linear

Relaxation Programming.” If for somem 2 f1; : : : ; pg,
gm(z)>1, or for some m 2 fpC 1; : : : ; qg, gm(z) < 1,
then the node indices q(s):w will be eliminated. If
˝q(s):w (w D 1; 2) are all eliminated, then go to step 5.

step 3: (Updating upper bound) For undeleted sub-
hyperrectangle update

Amt ; Bmt ;YL
mt ;Y

U
mt :

Solve LRP(˝q(s):w ), where w D 1 or w D 2 or
w D 1; 2, and denote the solutions and optimal val-
ues (ẑ(˝q(s):w); LBq(s):w ). Then if ẑ(˝q(s):w) is feasible
for RCP, U� D minfU�; LBq(s):wg.

step 4: (Deleting step) If LBq(s):w > U� C ı, then
delete the corresponding node;

step 5: (Fathoming step) Fathom any nonimproving
nodes by setting QsC1 D Qs�fq 2 Qs : LBq � U��ıg.
If QsC1 D ;, then stop, and exp(U�) is the optimal
value, z�(�) (where � 2 �0) are the global solutions,
where �0 D f� : z�0 (�) D U�g. Otherwise, s D s C 1;

step 6: (Node-selection step) Set LB(s) D minfLBq :
q 2 Qsg, then select an active node q(s) 2

argminfLB(s)g for further considering;
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step 7: (Bound tightening step) If in this node q(s),
ẑ(˝q(s)) is feasible in all convex constraints of RCP,
then return to step 1, else the BTM technique will be
adopted, and then return to step 1.

Theorem 1 (convergence result) The above algorithm
either terminates finitely with the incumbent solution be-
ing optimal to RCP or it generates an infinite sequence
of iterations such that along any infinite branch of the
branch-and-bound tree, any accumulation point of the
sequence LB(s) will be the global minimum of the RCP
problem.

Proof A sufficient condition for a global optimiza-
tion to be convergent to the global minimum, stated
in Horst and Tuy [7], requires that the bounding oper-
ation be consistent and the selection operation bound
improving.

A bounding operation is called consistent if at every
step any unfathomed partition can be further refined
and if any infinitely decreasing sequence of successively
refined partition elements satisfies:

lim
s!C1

(U� � LB(s)) D 0 ; (3)

where LB(s) is a lower bound inside some subhyperrect-
angle in stage s and U* is the best upper bound at iter-
ation s, not necessarily occurring inside the above same
subhyperrectangle. In the following we will demon-
strate that (3) holds.

Since the employed subdivision process is the bisec-
tion, the process is exhaustive. Consequently, from the
discussion in [13] (3) holds, and this means that the em-
ployed bounding operation is consistent.

A selection operation is called bound improving if
at least one partition element where the actual lower
bound is attained is selected for further partition af-
ter a finite number of refinements. Clearly, the em-
ployed selection operation is bound improving because
the partition element where the actual lower bound is
attained is selected for further partition in the immedi-
ately following iteration.

In summary, it is shown that the bounding op-
eration is consistent and that the selection operation
is bound improving; therefore, according to Theo-
rem IV.3. in Horst and Tuy [7], the employed global
optimization algorithm is convergent to the global min-
imum. �

Applications

Reference [19] reports the numerical experiment for
the deterministic global optimization algorithm de-
scribed above to demonstrate its potential and feasibil-
ity. The experiment is carried out with the C program-
ming language. The simplex method is applied to solve
the linear relaxation programming problems.

To illustrate how the proposed algorithm works,
first [19] gives a simple example to show the solving
procedure of the proposed algorithm.

Example 1:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min x21 C x22
s.t. 0:3x1x2 � 1

x 2 X D f2 � x1 � 5;
1 � x2 � 3g :

First, transform the above problem into the RPGP
form as follows:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min x0
s.t. g1(x) D x�10 x21 C x�10 x22 � 1

g2(x) D 0:3x1x2 � 1
x 2 ˝0 D fx j 5 � x0 � 10;
2 � x1 � 5; 1 � x2 � 3g :

Let xi D exp zi (i D 0; 1; 2), then we can obtain the
following reverse convex programming problem (P) of
Example 1 :

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min exp(z0)
s.t. f1(z) D exp(�z0 C 2z1)

C exp(�z0 C 2z2) � 1
f2(z) D 0:3 exp(z1 C z2) � 1
z 2 ˝ D fz j
1:6094 � z0 � 2:3026;
0:6931 � z1 � 1:6094;
0 � z2 � 1:0986g :

In step 0, set ı D 10�3, s=0, U� D 1. For the
convex constraint function f1(z), choose the initial
weight as "1 D (1/2; 1/2) since it has two terms. Then
q(s) D 1;Qs D Q0 D f1g, ˝q(s) D ˝1 D ˝. Accord-
ing to the discussion in Sect. “Methods and Applica-
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tions“, the LRP(˝1) of problem P is formulated below:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:9356z1 C 1:9356z2 � 1:7416
z 2 ˝1 :

The solution and optimal value of LRP(˝1) are:

ẑ(˝1) D (1:6094; 0:6931; 0:2231) ;
LB1 D 1:6094 :

Since ẑ(˝1) is not feasible for problem P, then
LB(s) D LB(0) D 1:6094. Since ẑ(˝1) is not feasible
for f1(z) � 1, then the BTM technique will be adopted.
First, update the weight "1 according to the solution
ẑ(˝1), and derive "1 D (0:7191; 0:2809), then from for-
mula (1) in Sect. “Methods and Applications“, we ob-
tain a new linear constraint:

L3(z) D �z0 C 1:4382z1 C 0:5618z2 � �0:5938 :

The current linear relaxation programming denoted as
LRP(˝1) is:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:9356z1 C 1:9356z2 � 1:7416
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
z 2 ˝1 :

In step 1, divide the region ˝1 into the following
two regions:

˝2 D fz j 1:6094 � z0 � 2:3026 ;

0:6931 � z1 � 1:6094; 0 � z2 � 0:5493g ;

˝3 D fz j 1:6094 � z0 � 2:3026 ;
0:6931 � z1 � 1:6094; 0:5493 � z2 � 1:0986g ;

then the node set Q0 D f2; 3g.
In step 2, the two nodes inQ0 have not been deleted;

then go to step 3. After updating the parameters ac-

cording to the formula in Sect. “Linear Relaxation Pro-
gramming“ respectively, we can obtain the new func-
tion L2(z) in each node. Then we have LRP(˝2):

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:3633z1 C 1:3633z2 � 1:3450
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
z 2 ˝2

and we have LRP(˝3):

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 2:3613z1 C 2:3613z2 � 2:8946
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
z 2 ˝3 :

The solutions and optimal values are respectively

ẑ(˝2) D (1:7555; 0:6931; 0:2934) ;

LB2 D 1:7555

ẑ(˝3) D (1:9356; 0:6931; 0:8427) ;

LB3 D 1:9356 :

In step 4 the two nodes have not been deleted; then go
to step 5. Compute

Q1 D Q0 � fq 2 Q0 : LBq � U� � ıg D f2; 3g ;

and set s D 1. In step 6, the current lower bound is

LB(s) D LB(1) D minfLBq; q 2 Qsg

D minfLB2; LB3g D 1:7555 :

So wewill choose the active node as q(1) D 2 for further
consideration.

In step 7 in the node q(1), the BTM technique
is adopted. From formula (1) in Sect. “Methods
and Applications” we compute the new weight
"1 D (0:6899; 0:3101) according to the solution ẑ(˝2),
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and we obtain the following new linear constraint:

L4(z) D �z0 C 1:3797z1 C 0:6203z2 � 1:2919 :

The current linear relaxation programming denoted as
LRP(˝2) is:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min z0
s.t. L1(z) D �z0 C z1 C z2 � �0:6931

L2(z) D 1:3633z1 C 1:3633z2 � 1:3450
L3(z) D �z0 C 1:4382z1 C 0:5618z2
� �0:5938
L4(z) D �z0 C 1:3797z1 C 0:6203z2
� 1:2919
z 2 ˝2 :

Then return to step 1, divide the region˝2, and go into
a new circle. After 22 iterations, the procedure stops.
The global minimum of problem P is 1.9140, and the
global solution is

z� D (1:9140; 0:6933; 0:5107) :

Then the global minimum of example 1 is 6.7804, and
the global solution is x� D (2:0003; 1:6664).

Additionally, to test the algorithm, [19] chooses five
examples, all of which are taken from engineering, con-
cerning the detailed application context, please refer to
the releveant references.

Example 2 ([1]):

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min x0
s.t. x�10 x�12 x�13 x5 C 5x�10 x

1
2
1 x4x5 � 1

x
1
3
2 x3 � x

1
2
4 � �1

�x5 � 2x0x1x2x43x�14 x5 � �1
x 2 X D fx j 30 � x0 � 40;
0:01 � x1 � 1;
0:0001 � x2 � 1;
15 � x3 � 20;
15 � x4 � 20;
0:1 � x5 � 1g :

Example 3 ([11]):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min x0
s.t. 0:274x3x44 C 2520:66x1x54 C x0x23

�x0x1x2x3 C 1 � 1
x1x�12 x3 � 1
x1x44 � 1
x3x34 � 1
x 2 X D fx j 10�12 � x0 � 2;
20 � x1 � 35;
120 � x2 � 160;
1 � x3 � 10;
10�6 � x4 � 1g :

Example 4 ([20]):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min x0
s.t. 3:7x�10 x0:851 C 1:985x�10 x1

C700:3x�10 x�0:752 � 1
0:7673x0:052 � 0:05x1 � 1
x 2 X D fx j 5 � x0 � 15;
0:1 � x1 � 5;
380 � x2 � 450g :

Example 5 ([20]):
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min x0
s.t. 4x1 � 4x20 � 1

�x0 � x1 � �1
x 2 X D fx j 0:01 � x0 � 15;
0:01 � x1 � 15g :

Example 6 ([5]):
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min x0:83 x1:24

s.t. x1x�14 C x�12 x�14 � 1
�x�21 x�13 � x2x�13 � �1
x 2 X D fx j 0:1 � x1 � 1;
5 � x2 � 10;
8 � x3 � 15;
0:01 � x4 � 1g :

The following table summarizes the computational
results on the above five examples. In the table s denotes
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the number of the iteration, L denotes the longest node
number inQs described in the algorithm statement, and
ı denotes the convergence tolerance. The results show
that the algorithm of [19] can globally solve the GGP
problem effectively.

No. Solution
2 (37.0070,0.4489,0.0048,18.0348,16.0449,0.5667)
3 (0.0000, 32.7781,155.0000, 4.7288, 0.0027)
4 (11.9637, 0.8098, 442.0915)
5 (0.5, 0.5)
6 (0.1020, 7.0711, 8.3284, 0.2434)

no s L ı CPU time
2 131 28 10�3 4s
3 191 74 10�6 6s
4 138 39 10�6 5s
5 96 10 10�9 1s
6 146 42 10�6 6s
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Abstract

Global equilibrium search is a method that can be ap-
plied to a variety of hard optimization problems. The
algorithm utilizes ideas similar to those of the simu-
lated annealing method. The algorithm accumulates in-
formation about the search space in order to generate
new solutions for the subsequent stages. This method
has been successfully applied to well-known prob-
lems such as the multidimensional knapsack problem,
the job-shop scheduling problem, the unconstrained
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quadratic programming problem, the maximum satis-
fiability problem, etc.

The numerous discrete optimization problems that
arise in practice have such different characteristics that
development of a general purpose solution method is
clearly impracticable. One way of tackling this issue is
to develop a library of suitable solution methods, allow-
ing the practitioner to choose the most suitable for his
problem under his time constraints and quality require-
ments. In recent decades, heuristic approaches, such as
tabu search [1], simulated annealing (SA) [3], etc., have
gained a considerable amount of attention from the sci-
entific community for being the only practical tool that
can be applied to a wide range of difficult problems.
Global equilibrium search (GES) offers another highly
effective tool for solving large-scale optimization prob-
lems.

The method was introduced by Shylo [7] in 1999. It
shares ideas similar to those that inspired the SA tech-
nique, while providing, in practice, faster asymptotic
convergence to the optimal solution on a wide class of
optimization problems. Moreover, the GESmethod can
be used in an ensemble with other techniques, which
makes it more versatile than most of its predecessors.

Consider a discrete optimization problem of the fol-
lowing form:

minf f (x) : x 2 S : S � f0; 1gng (1)

where f is some quality function. Let us introduce a ran-
dom binary vector � that takes a value from a feasi-
ble set S according to the Boltzmann distribution, with
� � 0 being the temperature parameter:

Pf�(�) D xg D
exp(�� f (x))P
x2S exp(�� f (x))

: (2)

Consider the SA method applied to problem (1).
It can be shown easily that under certain conditions
(i. e., symmetric neighborhood structure) the station-
ary probabilities of the Markov chain associated with
the SA method are given by (2).

Set S can be split into two subsets in such a way that
one of them contains the feasible solutions for which
the jth component is 1, and another set will contain the
solution with the jth component equal to 0. Let us name
these two sets S1j and S0j . Obviously, S

1
j [ S0j D S. Then

the probability of the jth component of � being 1 can be
expressed as

p j(�) � Pf� j(�) D 1g D

P
x2S1j

exp(�� f (x))
P

x2S exp(�� f (x))
: (3)

The idea of the GES method is to use some subset
of known solutions bS to generate new solutions in the
successive stages of the algorithm. The distribution (3)
or any other equivalent formula [4] can be used for such
a generation (substituting S withbS in the formula):

bp j(�) � Pfb� j(�) D 1g D

P
x2bS 1

j
exp(�� f (x))

P
x2bS exp(�� f (x))

: (4)

If arg minf f (x) : x 2bS g is unique, then the average
Hamming distance between newly generated solutions
and the best solution in the setbS converges to zero as
� goes to infinity. However, the speed of such conver-
gence is not the same for different components of the
solutions generated, i. e., the speed of convergence of
the jth component depends on the quality of the solu-
tions S1j compared with the quality of solutions in S0j .
Simply put, the temperature parameter in (3) controls
the level of similarity of the newly generated solutions
with high-quality solutions inbS. The uniqueness of the
best solution x� inbS mentioned above should be main-
tained at all stages of the algorithm.

One of the limitations of the strategy described
above is that in order to implement it, there should exist
an easy way of generating random solutions from Swith
the distribution given by (4). Unfortunately, for some
problems, the structure of set S would make this hard
to achieve. For such cases, the local search based tech-
niques (i. e., SAmethod, tabumethod, GESmethod) are
not easily applicable.

Another issue with generating the random solution
x from S using (4) is that the components of the ran-
dom solution x are not independent random variables.
However, for the simplicity of an algorithm, this is usu-
ally ignored because the convergence property is more
important for the performance of the algorithm.

Whenever the new solution is added to set bS, it is
easy to recalculate the probabilities bp j if the denomina-
tor and numerator in (4) are stored separately. There-
fore, there is no need to store the whole set bS in the
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Input: � – vector of temperature values, K – number of temperature stages,
maxn f ail – restart parameter, ngen – # of solutions generated during each
stage

Output:
1: xbest  construct random solution;bS=E=fxbestg
2: while stopping criterion = FALSE do
3: ifbS = ; then
4: x  construct random solution
5: xmax = x
6: bS = fxmaxg (set of known solutions)
7: E = fxmaxg (set of elite solutions)
8: end if
9: for n f ail = 0 to n f ail� do
10: xold = xmax
11: for k = 0 to K do
12: calculate generation probabilities(pk ;bS; �k )
13: for g = 0 to ngen do
14: x  generate solution(xmax , pk)
15: R search method(x) (R is some subset of encountered solutions)
16: bS =bS [ R
17: xmax = arg min f f (x) : x 2bSg
18: if f (xmax) < f (xbest) then
19: xbest = xmax
20: end if
21: update elite set(E,R)
22: end for
23: end for
24: if f (xold) > f (xmax) then
25: n f ail = 0
26: end if
27: bS = E
28: end for
29: P = P [ N(xbest; dp)
30: E = E � P
31: if RESTART-criterion= TRUE then
32: E = ;
33: end if
34: bS = E;
35: xmax = arg min f f (x) : x 2bSg
36: end while
37: return xbest

Global Equilibrium Search, Figure 1
Global equilibrium search method (general scheme)

memory! The notion ofbS is used below mainly for the
simplicity of discussion.

The performance of any GES-based algorithm is
dependent on the choice of the temperature sched-

ule. As with the SA method, there is no basic recipe
to provide an optimal schedule for the GES. The gen-
eral advice here is to choose the sequence of increas-
ing values �0 D 0; �1; �2 D �1˛; : : : ; �K D �K�1˛ (K
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is a number of temperature stages and ˛ > 0), in such
a manner that the algorithm will find the best solu-
tion from setbS almost for sure when generating solu-
tions with temperature parameter �K . However, there
is no need to provide a separate cooling schedule for
each problem solved. Simple scaling of the cost func-
tion ( f 0(x) D C � f (x), C > 0) can make one temper-
ature schedule suitable for a wide range of problems
from the same class. The choice of scaling factor can be
made, for example, in the initial stage of the algorithm,
when � D 0. Additionally, if we multiply the denomi-
nator and numerator of (4) by exp(� f (x�)), where x�

is the best solution frombS, then the convergence to the
best solution frombS is less dependent on the absolute
values of solution costs.

The general scheme of the GES method is presented
in Fig. 1. There are some elements that are included in
the scheme, but that were not discussed above: elite so-
lutions set, prohibition of certain solutions and restart-
ing the search. These elements are not necessary for
success of the GES method and can be easily excluded.
However, for some classes of problems they can provide
a significant performance improvement.

The main cycle (lines 2–36) is repeated until some
stopping criterion is satisfied. The algorithm execution
can be terminated when the best known record for the
given problem is improved, or when the running time
exceeds some limiting value. If the set of known solu-
tions S̃ is empty, then the initialization of the data set
is performed in lines 3–7. The cycle in lines 9–28 is ex-
ecuted until there is no improvement in nfail� consec-
utive cycles. The main element of the GES method is
the temperature cycle (lines 11–23). The probabilities
that guide the search are estimated using expression (4)
at the beginning of each temperature stage (line 12).
For each probability vector, ngen solutions are gener-
ated (lines 13–22). These solutions are used as initial
solutions for the local search procedure (line 15). The
subset of encountered solutions R is used to update set
bS (line 16).

Some set of the solutions can be stored in mem-
ory, in order to provide a fast initialization of the algo-
rithm’s memory structures (lines 27 and 34). Such a set
is referred to as an elite set in the algorithm pseudocode.
Certain solutions can be excluded from this set to avoid
searching the same areas multiple times. In lines 29 and
30, the solutions for which the Hamming distance to

xbest is less than parameter dp are excluded from the elite
set.

A number of successful applications of the GES
method have been reported in recent years [6]. The ap-
plication of the GES method for the multidimensional
knapsack problem is described in [8].

The GES based method was presented in [5] for
solving job-shop scheduling problems. To date, suit-
able exact solution methods are not able to find high-
quality solutions with reasonable computational effort
for the problems involving more than ten jobs and ten
machines. The computational testing of the GES algo-
rithm provided a set of new upper bounds for a wide
set of challenging benchmark problems [2]. The com-
parison with existing techniques for job-shop schedul-
ing asserts that the GESmethod has a great potential for
solving scheduling problems.

The application of GES for the unconstrained
quadratic programming problem was discussed in [4],
where GES was used in a combination with a tabu al-
gorithm. Such an ensemble proved to be an extremely
efficient tool for large-scale problems, outperforming
some of the best available solution techniques.

In conclusion, the universality of the GES method
together with its flexibility make it an optimization tool
worth considering.
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Probability-one homotopy methods are a class of algo-
rithms for solving nonlinear systems of equations that
are accurate, robust, and converge from an arbitrary
starting point almost surely. These new globally con-
vergent homotopy techniques have been successfully
applied to solve Brouwer fixed point problems, poly-
nomial systems of equations, constrained and uncon-
strained optimization problems, discretizations of non-
linear two-point boundary value problems based on
shooting, finite differences, collocation, and finite ele-
ments, and finite difference, collocation, and Galerkin
approximations to nonlinear partial differential equa-
tions.

Probability-OneGlobally
Convergent Homotopies

A homotopy is a continuous map from the interval [0,
1] into a function space, where the continuity is with re-
spect to the topology of the function space. Intuitively,
a homotopy �(�) continuously deforms the function
�(0) = g into the function �(1) = f as � goes from 0 to 1.
In this case, f and g are said to be homotopic. Homotopy
maps are fundamental tools in topology, and provide

a powerful mechanism for defining equivalence classes
of functions.

Homotopies provide a mathematical formalism for
describing an old procedure in numerical analysis, vari-
ously known as continuation, incremental loading, and
embedding. The continuation procedure for solving
a nonlinear system of equations f (x) = 0 starts with
a (generally simpler) problem g(x) = 0 whose solution
x0 is known. The continuation procedure is to track the
set of zeros of

�(�; x) D � f (x)C (1 � �)g(x) (1)

as � is increased monotonically from 0 to 1, starting at
the known initial point (0, x0) satisfying �(0, x0) = 0.
Each step of this tracking process is done by starting at
a point (e�;ex) on the zero set of �, fixing some �� > 0,
and then solving �(e�C	�; x) D 0 for x using a locally
convergent iterative procedure, which requires an in-
vertible Jacobian matrix Dx�(e�C 	�; x). The process
stops at � = 1, since f (x) D �(1; x) D 0 gives a zero x of
f (x). Note that continuation assumes that the zeros of �
connect the zero x0 of g to a zero x of f , and that the Ja-
cobian matrix Dx�(�, x) is invertible along the zero set
of �; these are strong assumptions, which are frequently
not satisfied in practice.

Continuation can fail because the curve � of zeros
of �(�, x) emanating from (0, x0) may:
1) have turning points,
2) bifurcate,
3) fail to exist at some � values, or
4) wander off to infinity without reaching � = 1.
Turning points and bifurcation correspond to singu-
lar Dx�(�, x). Generalizations of continuation known
as homotopy methods attempt to deal with cases 1) and
2) and allow tracking of � to continue through singu-
larities. In particular, continuation monotonically in-
creases �, whereas homotopy methods permit � to both
increase and decrease along � . Homotopy methods can
also fail via cases 3) or 4).

The map �(�, x) connects the functions g(x) and
f (x), hence the use of the word ‘homotopy’. In general
the homotopy map �(�, x) need not be a simple con-
vex combination of g and f as in (1), and can involve �
nonlinearly. Sometimes � is a physical parameter in the
original problem f (x; �) = 0, where � = 1 is the (nondi-
mensionalized) value of interest, although ‘artificial pa-
rameter’ homotopies are generally more computation-
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ally efficient than ‘natural parameter’ homotopies �(�,
x) = f (x; �). An example of an artificial parameter ho-
motopy map is

�(�; x) D � f (x;�)C (1 � �)(x � a); (2)

which satisfies �(0, a) = 0. The name ‘artificial’ reflects
the fact that solutions to �(�, x) = 0 have no physical
interpretation for � < 1. Note that �(�, x) in (2) has
a unique zero x = a at � = 0, regardless of the structure
of f (x; �).

All four shortcomings of continuation and homo-
topy methods have been overcome by probability-one
homotopies, proposed in 1976 by S.N. Chow, J. Mallet-
Paret, and J.A. Yorke [2]. The supporting theory, based
on differential geometry, will be reformulated in less
technical jargon here.

Definition 1 Let U � Rm and V � Rp be open sets,
and let �: U×[0, 1)×V ! Rp be a C2 map. � is said to
be transversal to zero if the p×(m+1+p) Jacobian matrix
D� has full rank on ��1(0).

The C2 requirement is technical, and part of the defini-
tion of transversality. The basis for the probability-one
homotopy theory is the parametrized Sard’s theorem,
[2]:

Theorem 2 Let �: U × [0, 1) ×V ! Rp be a C2 map.
If � is transversal to zero, then for almost all a 2 U the
map

�a(�; x) D �(a; �; x)

is also transversal to zero.

To discuss the importance of this theorem, takeU =Rm,
V = Rp, and suppose that the C2 map �: Rm × [0, 1) ×
Rp! Rp is transversal to zero. A straightforward appli-
cation of the implicit function theorem yields that for
almost all a 2 Rm, the zero set of �a consists of smooth,
nonintersecting curves which either:
1) are closed loops lying entirely in (0, 1) × Rp,
2) have both endpoints in {0} × Rp,
3) have both endpoints in {1} × Rp,
4) are unbounded with one endpoint in either {0} × Rp

or in {1} × Rp, or
5) have one endpoint in {0} × Rp and the other in {1} ×

Rp.
Furthermore, for almost all a 2 Rm, the Jacobian matrix
D�a has full rank at every point in ��1a (0). The goal is to

Globally Convergent Homotopy Methods, Figure 1
Zero set for
a(�, x) satisfying properties 1)–4)

construct a map �a whose zero set has an endpoint in
{0} ×Rp, and which rules out 2) and 4). Then 5) obtains,
and a zero curve starting at (0, x0) is guaranteed to reach
a point (1; x). All of this holds for almost all a 2 Rm,
and hence with probability one [2]. Furthermore, since
a 2 Rm can be almost any point (and, indirectly, so can
the starting point x0), an algorithm based on tracking
the zero curve in 5) is legitimately called globally con-
vergent. This discussion is summarized in the following
theorem (and illustrated in Fig. 1).

Theorem 3 Let f : Rp! Rp be a C2 map, �: Rm×[0, 1)×
Rp ! Rp a C2 map, and �a(�, x) = �(a, �, x). Suppose
that
1) � is transversal to zero.
Suppose also that for each fixed a 2 Rm,
2) �a(0, x) = 0 has a unique nonsingular solution x0,
3) �a(1, x) = f (x) (x 2 Rp).
Then, for almost all a 2 Rm, there exists a zero curve �
of �a emanating from (0, x0), along which the Jacobian
matrix D�a has full rank.

If, in addition,
4) ��1a (0) is bounded,
then � reaches a point (1; x) such that f (x) D 0). Fur-
thermore, if D f (x) is invertible, then � has finite arc
length.

Any algorithm for tracking � from (0, x0) to (1; x),
based on a homotopy map satisfying the hypothe-
ses of this theorem, is called a globally convergent
probability-one homotopy algorithm. Of course, the
practical numerical details of tracking � are nontriv-
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ial, and have been the subject of twenty years of re-
search in numerical analysis. Production quality soft-
ware called HOMPACK90 [6] exists for tracking � . The
distinctions between continuation, homotopymethods,
and probability-one homotopy methods are subtle but
worth noting. Only the latter are provably globally con-
vergent and (by construction) expressly avoid dealing
with singularities numerically, unlike continuation and
homotopy methods which must explicitly handle sin-
gularities numerically.

Assumptions 2) and 3) in Theorem 3 are usually
achieved by the construction of � (such as (2)), and
are straightforward to verify. Although assumption 1)
is trivial to verify for some maps, if � and a are involved
nonlinearly in � the verification is nontrivial. Assump-
tion 4) is typically very hard to verify, and often is a deep
result, since 1)–4) holding implies the existence of a so-
lution to f (x) = 0.

Note that 1)–4) are sufficient, but not necessary, for
the existence of a solution to f (x) = 0, which is why
homotopy maps not satisfying the hypotheses of the
theorem can still be very successful on practical prob-
lems. If 1)–3) hold and a solution does not exist, then
4) must fail, and nonexistence is manifested by � go-
ing off to infinity. Properties 1)–3) are important be-
cause they guarantee good numerical properties along
the zero curve � , which, if bounded, results in a globally
convergent algorithm. If � is unbounded, then either the
homotopy approach (with this particular �) has failed
or f (x) = 0 has no solution.

A few remarks about the applicability and limita-
tions of probability-one homotopy methods are in or-
der. They are designed to solve a single nonlinear sys-
tem of equations, not to track the solutions of a param-
eterized family of nonlinear systems as that parameter
is varied. Thus drastic changes in the solution behavior
with respect to that (natural problem) parameter have
no effect on the efficacy of the homotopy algorithm,
which is solving the problem for a fixed value of the
natural parameter. In fact, it is precisely for this case of
rapidly varying solutions that the probability-one ho-
motopy approach is superior to classical continuation
(which would be trying to track the rapidly varying so-
lutions with respect to the problem parameter). Since
the homotopy methods described here are not for gen-
eral solution curve tracking, they are not (directly) ap-
plicable to bifurcation problems.

Homotopy methods also require the nonlinear sys-
tem to be C2 (twice continuously differentiable), and
this limitation cannot be relaxed. However, requiring
a finite-dimensional discretization to be smooth does
not mean the solution to the infinite-dimensional prob-
lem must also be smooth. For example, a Galerkin
formulation may produce a smooth nonlinear system
in the basis function coefficients even though the ba-
sis functions themselves are discontinuous. Homotopy
methods for optimization problems may converge to
a local minimum or stationary point, and in this regard
are no better or worse than other optimization algo-
rithms. In special cases homotopy methods can find all
the solutions if there is more than one, but in general
the homotopy algorithms are only guaranteed to find
one solution.

Optimization Homotopies

A few typical convergence theorems for optimization
are given next (see the survey in [5] for more examples
and references). Consider first the unconstrained opti-
mization problem

min
x

f (x): (3)

Theorem 4 Let f : Rn ! R be a C3 convex map with
a minimum atex, kexk2 � M. Then for almost all a, kak2
< M, there exists a zero curve � of the homotopy map

�a(�; x) D �r f (x)C (1 � �)(x � a);

along which the Jacobianmatrix D�a(�, x) has full rank,
emanating from (0, a) and reaching a point (1;ex), where
ex solves (3).

A function is called uniformly convex if it is convex and
its Hessian’s smallest eigenvalue is bounded away from
zero. Consider next the constrained optimization prob-
lem

min
x�0

f (x): (4)

This is more general than it might appear because the
general convex quadratic program reduces to a problem
of the form (4).

Theorem 5 Let f : Rn ! R be a C3 uniformly convex
map. Then there exists ı > 0 such that for almost all a� 0
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with kak2 < ı there exists a zero curve � of the homotopy
map

�a(�; x) D �K(x)C (1 � �)(x � a);

where

Ki(x) D �
ˇ̌
ˇ̌@ f (x)
@xi

� xi
ˇ̌
ˇ̌
3

C

�
@ f (x)
@xi

�3

C x3i ;

along which the Jacobian matrix D�a(�, x) has full rank,
connecting (0, a) to a point (1; x), where x solves the con-
strained optimization problem (4).

Given F : Rn ! Rn, the nonlinear complementarity
problem is to find a vector x 2 Rn such that

x � 0; F(x) � 0; x>F(x) D 0: (5)

It is interesting that homotopy methods can be adapted
to deal with nonlinear inequality constraints and com-
binatorial conditions as in (5). Define G : Rn! Rn by

Gi(z) D � jFi (z) � zi j3 C (Fi(z))3 C z3i ;

i D 1; : : : ; n;

and let

�a(�; z) D �G(z)C (1 � �)(z � a):

Theorem 6 Let F : Rn ! Rn be a C2 map, and let the
Jacobian matrix DG(z) be nonsingular at every zero of
G(z). Suppose there exists r > 0 such that z > 0 and zk =
kzk1 � r imply Fk(z) > 0. Then for almost all a > 0 there
exists a zero curve � of �a(�, z), along which the Jacobian
matrix D�a(�, z) has full rank, having finite arc length
and connecting (0, a) to (1; z), where z solves (5).

Theorem 7 Let F : Rn ! Rn be a C2 map, and let the
Jacobian matrix DG(z) be nonsingular at every zero of
G(z). Suppose there exists r > 0 such that z� 0 and kzk1
� r imply zkFk(z) > 0 for some index k. Then there exists
ı > 0 such that for almost all a � 0 with kak1 < ı there
exists a zero curve � of �a(�, z), along which the Jacobian
matrix D�a(�, z) has full rank, having finite arc length
and connecting (0, a) to (1; z), where z solves (5).

Homotopy algorithms for convex unconstrained opti-
mization are generally not computationally competitive
with other approaches. For constrained optimization
the homotopy approach offers some advantages, and,
especially for the nonlinear complementarity problem,

is competitive with and often superior to other algo-
rithms. Consider next the general nonlinear program-
ming problem

8̂
<̂
ˆ̂:

min �(x)
s.t. g(x) � 0;

h(x) D 0;

(6)

where x 2 Rn, � is real valued, g is an m-dimensional
vector, and h is a p-dimensional vector. Assume that
� , g, and h are C2. The Kuhn–Tucker necessary opti-
mality conditions for (6) are (cf. also � Equality-con-
strained nonlinear programming: KKT necessary opti-
mality conditions):

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

r�(x)C ˇ>rh(x)C �>r g(x) D 0;
h(x) D 0;
g(x) � 0;
� � 0;
�>g(x) D 0;

(7)

where ˇ 2 Rp and � 2 Rm. The complementarity con-
ditions � � 0, g(x) � 0, �|g(x) = 0 are replaced by the
equivalent nonlinear system of equations

W(x; �) D 0; (8)

where

Wi(x; �) D � j�i C gi (x)j3 C �3
i �

�
gi (x)

�3
;

i D 1; : : : ;m:
(9)

Thus the optimality conditions (7) take the form

F(x; ˇ; �)

D

0
@
[r�(x)C ˇ>rh(x)C �>r g(x)]>

h(x)
W(x; �)

1
A D 0:

(10)

With z = (x, ˇ, �), the proposed homotopy map is

�a(�; z) D �F(z)C (1 � �)(z � a); (11)

where a 2 Rn+p+m. Simple conditions on � , g, and h
guaranteeing that the above homotopy map �a(�, z)
will work are unknown, although this map has worked
very well on some difficult realistic engineering prob-
lems.
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Globally Convergent Homotopy Methods, Table 1
Taxonomy of homotopy subroutines

x = f (x) F(x) = 0 �(a; �; x) = 0 algorithm
dense sparse dense sparse dense sparse

FIXPDF FIXPDS FIXPDF FIXPDS FIXPDF FIXPDS ordinary differential equation
FIXPNF FIXPNS FIXPNF FIXPNS FIXPNF FIXPNS normal flow
FIXPQF FIXPQS FIXPQF FIXPQS FIXPQF FIXPQS augmented Jacobian matrix

Frequently in practice the functions � , g, and h in-
volve a parameter vector c, and a solution to (6) is
known for some c = c(0). Suppose that the problem un-
der consideration has parameter vector c = c(1). Then

c D (1 � �)c(0) C �c(1) (12)

parametrizes c by � and � = �(x;c) = �(x;c(�)), g =
g(x;c(�)), h = h(x;c(�)). The optimality conditions in
(10) become functions of � as well, F(�, x, ˇ, �) = 0,
and

�a(�; z) D �F(�; z)C (1 � �)(z � a) (13)

is a highly implicit nonlinear function of �. If F(0, z(0))
= 0, a good choice for a in practice has been found to
be a = z(0). A natural choice for a homotopy would be
simply

F(�; z) D 0; (14)

since the solution z(0) to F(0, z) = 0 (the problem cor-
responding to c = c(0)) is known. However, for various
technical reasons, (13) is much better than (14).

Software

There are several software packages implementing both
continuous and simplicial homotopy methods; see [1]
and [6] for a discussion of some of these packages.
A production quality software package written in For-
tran 90 is described here. HOMPACK90 [6] is a For-
tran 90 collection of codes for finding zeros or fixed
points of nonlinear systems using globally convergent
probability-one homotopy algorithms. Three qualita-
tively different algorithms (ordinary differential equa-
tion based, normal flow, quasi-Newton augmented Ja-
cobian matrix) are provided for tracking homotopy
zero curves, as well as separate routines for dense and
sparse Jacobian matrices. A high level driver for the spe-

cial case of polynomial systems is also provided. HOM-
PACK90 features elegant interfaces, use of modules,
support for several sparse matrix data structures, and
modern iterative algorithms for large sparse Jacobian
matrices.

HOMPACK90 is logically organized in two differ-
ent ways: by algorithm/problem type and by subroutine
level. There are three levels of subroutines. The top level
consists of drivers, one for each problem type and algo-
rithm type. The second subroutine level implements the
major components of the algorithms such as stepping
along the homotopy zero curve, computing tangents,
and the end game for the solution at � = 1. The third
subroutine level handles high level numerical linear al-
gebra such as QR factorization, and includes some LA-
PACK and BLAS routines. The organization of HOM-
PACK90 by algorithm/problem type is shown in Ta-
ble 1, which lists the driver name for each algorithm and
problem type.

The naming convention is

FIXP

8<
:
D
N
Q

9=
;
�
F
S

	
;

where D 	 ordinary differential equation algorithm,
N 	 normal flow algorithm, Q 	 quasi-Newton aug-
mented Jacobian matrix algorithm, F 	 dense Jaco-
bian matrix, and S 	 sparse Jacobian matrix. Depend-
ing on the problem type and the driver chosen, the user
must write exactly two subroutines, whose interfaces
are specified in the module HOMOTOPY, defining
the problem (f or �). The module REAL_PRECISION
specifies the real numeric model with

SELECTED_REAL_KIND(13);

which will result in 64-bit real arithmetic on a Cray,
DEC VAX, and IEEE 754 Standard compliant hard-
ware.
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The special purpose polynomial system solver POL-
SYS1H can find all solutions in complex projective
space of a polynomial system of equations. Since a poly-
nomial programming problem (where the objective
function, inequality constraints, and equality con-
straints are all in terms of polynomials) can be formu-
lated as a polynomial system of equations, POLSYS1H
can effectively find the global optimum of a polyno-
mial program. However, polynomial systems can have
a huge number of solutions, so this approach is only
practical for small polynomial programs (e. g., surface
intersection problems that arise in CAD/CAM model-
ing).

The organization of the Fortran 90 code into mod-
ules gives an object oriented flavor to the package. For
instance, all of the drivers are encapsulated in a single
MODULE HOMPACK90. The user’s calling program
would then simply contain a statement like

USE HOMPACK90, ONLY : FIXPNF
Many scientific programmers prefer the reverse call
paradigm, whereby a subroutine returns to the calling
program whenever the subroutine needs certain infor-
mation (e. g., a function value) or a certain operation
performed (e. g., amatrix-vector multiply). Two reverse
call subroutines (STEPNX, ROOTNX) are provided for
‘expert’ users. STEPNX is an expert reverse call step-
ping routine for tracking a homotopy zero curve � that
returns to the caller for all linear algebra, all function
and derivative values, and can deal gracefully with sit-
uations such as the function being undefined at the re-
quested steplength.

ROOTNX provides an expert reverse call end game
routine that finds a point on the zero curve where g(�,
x) = 0, as opposed to just the point where � = 1. Thus
ROOTNX can find turning points, bifurcation points,
and other ‘special’ points along the zero curve. The
combination of STEPNX and ROOTNX provide con-
siderable flexibility for an expert user.

See also

� Parametric Optimization: Embeddings, Path
Following and Singularities

� Topology of Global Optimization
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Abstract

It is becoming apparent that convex financial planning
models are at times a poor approximation of the real
world. More realistic, and more relevant, models need
to dispense with normality assumptions and concavity
of the utility functions to be optimized. Moreover, the
problems are large scale but structured; consequently
specialized algorithms have been proposed for their
solution. The aim of this article is to discuss a non-
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convex portfolio-selection problem and describe algo-
rithms that can be used for its solution.

Background

Modern portfolio theory started in the 1950s with
H. Markowitz’s work [16,17]. Since then a lot of re-
search has been done in improving the basic models
and dispensing with the limiting assumptions of the
field. The aim of this article is to introduce the problem
of optimization of higher-order moments of a portfo-
lio. This model is an extension of the celebrated mean-
variance model of Markowitz [16,17]. The inclusion of
higher-order moments has been proposed as one possi-
ble augmentation to the model in order to make it more
applicable. The applicability of the model can be broad-
ened by relaxing one of its major assumptions, i. e. that
the rate of returns are normal. In order to solve the
portfolio-selection problem, we first need to address the
problem of scenario generation, i. e. the description of
the uncertainties used in the portfolio-selection prob-
lem. Both problems are non-convex, large-scale, and
highly relevant in financial optimization.

We focus on a single-period model where the deci-
sion maker (DM) provides as input preferences with re-
spect to mean, variance, skewness and possibly kurtosis
of the portfolio. Using these four parameters we then
formulate the multicriterion optimization problem as
a standard non-linear programming problem. This ver-
sion of the decision model is a non-convex linearly con-
strained problem.

Before we can solve the portfolio-selection prob-
lem we need to describe the uncertainties regarding the
returns of the risky assets. In particular we need to spec-
ify: (1) the possible states of the world and (2) the prob-
ability of each state. A common approach to this mod-
elling problem is the method of matching moments (see
e. g. [5,9,20]). The first step in this approach is to use the
historical data to estimate the moments (in this paper
we consider the first four central moments, i. e. mean,
variance, skewness and kurtosis). The second step is to
compute a discrete distribution with the same statisti-
cal properties as those calculated in the previous step.
Given that our interest is on real-world applications, we
recognize that there may not always be a distribution
that matches the calculated statistical properties. For
this reason we formulate the problem as a least-squares

problem [5,9]. The rationale behind this formulation
is that we try to calculate a description of the uncer-
tainty that matches our beliefs as well as possible. The
scenario-generation problem also has a non-convex ob-
jective function and is linearly constrained.

For the two problems described above we apply
a new stochastic global optimization algorithm that has
been developed specifically for this class of problems.
The algorithm is described in [19]. It is an extension
of the constrained case of the so-called diffusion algo-
rithm [1,4,6,7]. The method follows the trajectory of
an appropriately defined stochastic differential equa-
tion (SDE). Feasibility of the trajectory is achieved by
projecting its dynamics onto the set defined by the lin-
ear equality constraints. A barrier term is used for the
purpose of forcing the trajectory to stay within any
bound constraints (e. g. positivity of the probabilities,
or bounds on how much of each asset to own).

A review of applications of global optimization to
portfolio selection problems appeared in [13]. A de-
terministic global optimization algorithm for a mul-
tiperiod model appeared in [15]. This article comple-
ments the work mentioned above in the sense that we
describe a complete framework for the solution of a re-
alistic financial model. The type of models we consider,
due to the large number of variables, cannot be solved
by deterministic algorithms. Consequently, practition-
ers are left with two options: solve a simpler, but less
relevant, model or use a heuristic algorithm (e. g. tabu-
search or evolutionary algorithms). The approach pro-
posed in this paper lies somewhere in the middle. The
proposed algorithm belongs to the simulated-anneal-
ing family of algorithms, and it has been shown in [19]
that it converges to the global optimum (in a proba-
bilistic sense). Moreover, the computational experience
reported in [19] seems to indicate that the method is
robust (in terms of finding the global optimum) and re-
liable. We believe that such an approach will be useful
in many practical applications.

Models

Scenario Generation

From its inception stochastic programming (SP) has
found several diverse applications as an effective
paradigm for modelling decisions under uncertainty.
The focus of initial research was on developing effec-
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tive algorithms for models of realistic size. An area that
has only recently received attention is on methods to
represent the uncertainties of the decision problem.

A review of available methods to generate meaning-
ful descriptions of the uncertainties from data can be
found in [5]. We will use a least-squares formulation
(see e. g. [5,9]). It is motivated by the practical concern
that the moments, given as input, may be inconsistent.
Consequently, the best one can do is to find a distribu-
tion that fits the available data as well as possible. It is
further assumed that the distribution is discrete. Under
these assumptions the problem can be written as

min
!;p

nX
iD1

� kX
jD1

p jmi(! j) � �i

�2

s:t
kX

jD1

p j D 1p j � 0 j D 1; : : : ; k;

where �i represents the statistical properties of interest
and mi (�) is the associated ‘moment’ function. For ex-
ample, if �i is the target mean for the ith asset, then
mi(! j) D ! i

j i. e. the jth realization of the ith asset.
Numerical experiments using this approach for a mul-
tistage model were reported in [9] (without arbitrage
considerations). Other methods such as maximum en-
tropy [18] and semidefinite programming [2] enjoy
strong theoretical properties but cannot be used when
the data of the problem are inconsistent. A disadvan-
tage of the least-squares model is that it is highly non-
convex, which makes it very difficult to handle numer-
ically. These considerations lead to the development
of the algorithm described in Sect. “A Stochastic Opti-
mization Algorithm” (see also [19]) that can efficiently
compute global optima for problems in this class.

When using scenario trees for financial planning
problems it becomes necessary to address the issue of
arbitrage opportunities [9,12]. An arbitrage opportu-
nity is a self-financing trading strategy that generates
a strictly positive cash flow in at least one state and
whose payoffs are non-negative in all other states. In
other words, it is possible to get something for nothing.
In our implementation we eliminate arbitrage oppor-
tunities by computing a sufficient set of states so that
the resulting scenario tree has the arbitrage-free prop-
erty. This is achieved by a simple two-step process. In
the first step we generate random rates of returns; these

are sampled by a uniform distribution. We then test for
arbitrage by solving the system

xi
0 D e�r

mX
jD1

xi
j j ;

mX
jD1

 j D 1;  j � 0;

j D 1; : : : ;m i D 1; : : : ; n ;

(1)

where xi
0 represents the current (known) state of the

world for the ith asset and xi
j represents the jth real-

ization of the ith asset in the next time period (these
are generated by the simulations mentioned above).
r is the riskless rate of return. The  j are called the risk-
neutral probabilities. According to a fundamental re-
sult of Harisson and Kerps [10], the existence of the
risk-neutral probabilities is enough to guarantee that
the scenario tree has the desired property. In the sec-
ond step, we solve the least-squares problem with some
of the states fixed to the states calculated in the first step.
In other words, we solve the following problem:

min
!;p

nX
iD1

� kX
jD1

p jmi (! j)C
mX
lD1

plmi(!̂l ) � �i

�2

s:t
kCmX
jD1

p j D 1p j � 0 j D 1; : : : ; k C m :

(2)

In the problem above, !̂ are fixed. Solving the preced-
ing problem guarantees a scenario tree that is arbitrage
free.

Portfolio Selection

In this section we describe the portfolio-selection prob-
lem when higher-order terms are taken into account.
The classical mean–variance approach to portfolio
analysis seeks to balance risk (measured by variance)
and reward (measured by expected value). There are
many ways to specify the single-period problem. We
will be using the following basic model:

min
w
� ˛E[w]C ˇV [w]

s.t
nX

iD1

wi D 1 li � wi � ui i D 1; : : : ; n ;
(3)

where E[�] and V [�] represent the mean rate of return
and its variance respectively. The single constraint is
known as the budget constraint and it specifies the ini-
tial wealth (without loss of generality we have assumed
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that this is one). The ˛ and ˇ are positive scalars and
are chosen so that ˛ C ˇ D 1. They specify the DM’s
preferences, i. e. ˛ D 1 means that the DM is risk seek-
ing, while ˇ D 1 implies that the DM is risk averse. Any
other selection of the parameters will produce a point
on the efficient frontier. The decision variable (w) rep-
resents the commitment of the DM to a particular asset.
Note that this problem is a convex quadratic program-
ming problem for which very efficient algorithms exist.
The interested reader is referred to the review in [23]
for more information regarding the Markowitz model.

We propose an extension of the mean–variance
model using higher-order moments. The vector-
optimization problem can be formulated as a standard
non-convex optimization problem using two additional
scalars to act as weights. These weights are used to en-
force the DM’s preferences. The problem is then for-
mulated as follows:

min
w
� ˛E[w]C ˇV [w] � �S[w]C ıK[w]

s.t
nX

iD1

wi D 1 li � wi � ui i D 1; : : : ; n ;
(4)

where S[�] and K[�] represent the skewness and kurto-
sis of the rate of return respectively. � and ı are positive
scalars. The four scalar parameters are chosen so that
they sum to one. Positive skewness is desirable (since
it corresponds to higher returns, albeit with low proba-
bility), while kurtosis is undesirable since it implies that
the DM is exposed to more risk. The model in (4) can
be extended to multiple periods while maintaining the
same structure (non-convex objective and linear con-
straints). The numerical solution of (2) and (4) will be
discussed in the next section.

Methods

A Stochastic Optimization Algorithm

The models described in the previous section can be
written as:

min
x

f (x)

s:t Ax D b

x � 0 :

A well-known method for obtaining a solution to an
unconstrained optimization problem is to consider the

following ordinary differential equation (ODE):

dX(t) D �r f (X(t))dt : (5)

By studying the behaviour of X(t) for large t, it can be
shown that X(t) will eventually converge to a stationary
point of the unconstrained problem. A review of so-
called continuous-path methods can be found in [25].
A deficiency of using (5) to solve optimization prob-
lems is that it will get trapped in local minima. To al-
low the trajectory to escape from local minima, it has
been proposed by various authors (e. g. [1,4,6,7]) to
add a stochastic term that would allow the trajectory
to ‘climb’ hills. One possible augmentation to (5) that
would enable us to escape from local minima is to add
noise. One then considers the diffusion process:

dX(t) D �r f (X(t))dtC
p
2T(t)dB(t) ; (6)

where B(t) is the standard Brownian motion in Rn. It
has been shown in [4,6,7], under appropriate condi-
tions on f and T(t), that as t!1, the transition prob-
ability of X(t) converges to a probability measure ˘ .
The latter has its support on the set of global minimiz-
ers.

For the sake of argument, suppose we did not have
any linear constraints but only positivity constraints.
We could then consider enforcing the feasibility of the
iterates by using a barrier function. According to the al-
gorithmic framework sketched out above, we could ob-
tain a solution to our (simplified) problem by following
the trajectory of the following SDE:

dX(t) D �r f (X(t))dtC�X(t)�1dtC
p
2T(t)dB(t);

(7)

where � > 0 is the barrier parameter. By X-1 we will
denote an n-dimensional vector whose ith component
is given by 1/Xi . Having used a barrier function to deal
with the positivity constraints, we can now introduce
the linear constraints into our SDE@. This process has
been carried out in [19] using the projected SDE:

dX(t) D P[�r f (X(t))C�X(t)�1]dtC
p
2T(t)PdB(t);

(8)

where P D I � AT (AAT)�1A. The proposed algorithm
works in a similar manner to gradient-projection al-
gorithms. The key difference is the addition of a bar-
rier parameter for the positivity of the iterates and
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a stochastic term that helps the algorithm escape from
local minima.

The global optimization problem can be solved by
fixing � and following the trajectory of (8) for a suit-
ably defined function T(t). After sufficient time passes,
we reduce � and repeat the process. The proof that fol-
lowing the trajectory of (8) will eventually lead us to the
global minimum appears in [19]. Note that the projec-
tion matrix for the type of constraints we need to im-
pose for our models is particularly simple. For a con-
straint of the type

Pn
iD1 xi D 1 the projection matrix is

given by

Pi j D

(
� 1

n if i ¤ j;
n�1
n otherwise.

Other Methods

In this article we have focused on the numerical solu-
tion of a financial planning problem using a stochas-
tic algorithm. We end this article by briefly discussing
other possible approaches. Only stochastic methods
will be discussed; for deterministic methods we refer
the interested reader to [13].

Two-phase methods: Methods belonging to this
class, as the name suggests, have two phases: a local
and global phase. In the global phase, the feasible region
is uniformly sampled. From each feasible point a local
optimization algorithm is started. The later process is
the local phase. This basic algorithmic framework has
been modified to improve its performance by various
authors. Improving this type of method requires care-
ful selection of the sample points from which to start
the local optimizations. Inevitably there is some com-
promise between computational efficiency and theoret-
ical convergence. For a review of two-phase methods
we refer the reader to [21] and references therein.

Simulated annealing (SA): This family of algo-
rithms was inspired by the physical behaviour of atoms
in a liquid. The method was independently proposed
by Cerny[3] and Kirkpatrick et al. [11]. The method
is inspired by a fundamental question of statistical me-
chanics concerning the behaviour of the system in low
temperatures. For example, will the atoms remain fluid
or will they solidify? If they solidify, do they form
a crystalline solid or a glass? It turns out [11] that if
the temperature is decreased slowly, then they form

a pure crystal; this state corresponds to the minimum
energy of the system. If the temperature is decreased
too quickly, then they form a crystal with many defects.
SA algorithms generate a point from some distribution.
Whether to accept the new point or not is decided by
an acceptance function. The latter function is ‘temper-
ature’ dependent. At high temperatures the function is
likely to accept the new point, while at low tempera-
tures only points close to the global optimum value are
supposed to be accepted. As can be anticipated, the per-
formance of the algorithm depends on the annealing
schedule, i. e. how fast the temperature is reduced. Per-
formance also depends on how points are sampled, the
acceptance function and, of course, the stopping condi-
tions. An excellent review article for SA is [14].

Stochastic adaptive search methods: These types
of algorithms have strong theoretical properties but
present challenging implementation issues. A typical
algorithm from this class is the pure adaptive search
method. This method works like a pure random search
method but with the additional assumption of the abil-
ity to sample from a distribution that gives realizations
that are strictly better than the incumbent. There exist
many variants and combinations of this type of method,
and an excellent review of them is given in [24].

Genetic algorithms: This class of algorithms has
been inspired by concepts from evolutionary biology
and from aspects of natural selection. There are two
phases in these algorithms: generation of the popula-
tion and updating. During the generation phase, can-
didate points (offsprings) are generated by sampling
a p.d.f. This p.d.f. is usually specified from the origi-
nal or the previous generation (the parents). In the sec-
ond phase the population is updated. This update is
performed by applying a selection mechanism and per-
forming mutation operations on the population. There
are very few theoretical results concerning the con-
vergence properties of genetic algorithms. However, if
their success in applications is anything to go by, then
more attention needs to devoted to convergence as-
pects of the method. An excellent review of genetic al-
gorithms is given in [22].

Tabu search: This is another heuristic algorithm
that has been successfully used for global optimization
(especially combinatorial problems) but lacks theoret-
ical backing. This class of algorithms was proposed by
Glover, and a review of the method appeared in [8]. The
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algorithm has three phases: preliminary search, intensi-
fication, and diversification. In the first phase, the algo-
rithm takes the current configuration, examines neigh-
bouring solutions, and selects the one with the best
objective function value. This process is continued un-
til no improving state can be identified. At this stage the
possibility of returning to this point is ruled out by plac-
ing it into a list. This list is called the tabu list. In the
second phase (intensification), the tabu list is cleared
and the algorithm returns to the first phase. In the fi-
nal stage (diversification), the most frequent moves that
were placed into the tabu list during the first phase are
placed from the start into the list. The algorithm then
starts from a random initial point. In this phase the al-
gorithm is not allowed to make any moves that are in
the tabu list.
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Environmental Systems Analysis
and Optimization

The harmonized consideration of technical, economic
and environmental objectives in strategic planning and
operational decision making is of paramount impor-
tance, on a worldwide scale. Environmental quality is-
sues are of serious concern even in the most developed
countries, although direct pollution control expendi-
tures are typically in the 2–3 percent range of their gross
domestic product. The ‘optimized’ or at least ‘accept-
able’ solution of environmental quality problems re-
quires the combination of knowledge from a multitude
of areas, and requires an interdisciplinary effort.

In the past decades, mathematical programming
(MP) models have been applied also to the analysis
and management of environmental systems. The an-
notated bibliography [9] reviews over 350 works, in-
cluding some thirty books. Note further that the en-
gineering, economic and environmental science litera-
ture contains a very large amount of work that can serve
as a basis and therefore is closely related to such mod-
eling efforts. For instance, the classic textbook [28] re-
views the basic quantitative models applied in describ-
ing physical, chemical and biological phenomena of rel-
evance. A more recent exposition (with a somewhat
broader scope) is presented in, for instance, [11]. The
chapters in the latter edited volume discuss the follow-
ing issues:
� environmental crisis, as a multidisciplinary chal-

lenge;

� soil pollution;
� air pollution;
� water pollution;
� water resources management;
� pesticides;
� gene technology;
� landscape planning;
� environmental economics;
� ecological aspects;
� environmental impact assessment;
� environmental management models.
Environmental management models are discussed – in
the broader context of governmental planning and op-
erations – already in [8]. In addition to items listed
above, the (relevant) topics covered include also
� solid waste management;
� urban development;
� policy analysis.
Numerous further books can be mentioned; with vary-
ing emphasis on environmental science, engineering,
economics or systems analysis. Consult, e. g., [1,2,3,
4,6,10,13,15,16,17,18,19,23,24,25,29,31,32,33]. Most of
these works also provide extensive lists of additional
references.

In the framework of this short article there is no
room to go into any detailed discussion of environ-
mental models. Therefore we shall only emphasize one
important methodological aspect reflected by the ti-
tle: namely, the relevance of global optimization in this
context.

The predominant majority of MP models pre-
sented, e. g., in the books listed or in [9] belong to (con-
tinuous or possibly mixed integer) linear programming,
or to convex nonlinear programming, with additional –
usually rather simplified – considerations regarding
system stochasticity. At the same time, more detailed or
more realistic models of natural systems and their gov-
erning processes often possess high (explicit or hidden)
high nonlinearity. For instance, onemay think of power
laws, periodic or chaotic processes, and (semi)random
fluctuations, reflected by many natural objects on var-
ious scales: mountains, waters, plants, animals, and so
on. For related far-reaching discussions, consult, for
example, [5,7,20,21], or [30]. Since many natural ob-
jects and processes are inherently nonlinear, manage-
ment models that optimize the behavior of environ-
mental systems frequently lead to multi-extremal deci-
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sion problems. Continuous global optimization (GO)
is aimed at finding the ‘absolutely best’ solution of such
models, in the possible presence of many other (locally
optimal) solutions of various quality. See � Continu-
ous global optimization: Models, algorithms and soft-
ware and � Continuous global optimization: Applica-
tions for a number of textbooks andWWWsites related
to the subject of GO. Therefore, here we mention only
the handbook [14] and the WWW site [22].

We shall illustrate the relevance of GO by two very
general examples, adapted from [26]. The latter book
presents also a number of other case studies related
to environmental modeling and management, with nu-
merous additional references pertinent to this subject.

Model Calibration

The incomplete or poor understanding of environmen-
tal – as well as many other complex – systems calls
for descriptive model development as an essential tool
of the related research. The following main phases of
quantitative systems modeling can be distinguished:
� identification: formulation of principal modeling

objectives, determination (selection) of suitable
model structure;

� calibration: (inverse) model fitting to available data
and background information;

� validation and application in analysis, forecasting,
control, management.

Consequently, the ‘adequate’ or ‘best’ parameterization
of descriptive models is an important stage in the pro-
cess of understanding environmental systems. Interest-
ing, practically motivated discussions of the model cal-
ibration problem are presented also in [1,3,12,32].

A fairly simple and commonly applied instance of
the model calibration problem can be stated as follows.
Given
� a descriptive system model (e. g. of a lake, river,

groundwater or atmospheric system) that depends
on certain unknown (physical, chemical) parame-
ters; their vector is denoted by x;

� the set of a priori feasible parameterizations D;
� the model output values y(m)

t = y(m)
t (x) at time mo-

ments t = 1, . . . , T;
� a set of corresponding observations yt at t = 1, . . . , T;
� a discrepancy measure denoted by f which expresses

the distance between y(m)
t and yt .

Then the optimized model calibration problem can be
formulated as

(
min f (x) :D f fy(m)

t (x); ytg
s.t. x 2 D:

(1)

Frequently, D is a finite n-interval (a ‘box’); fur-
thermore, f is a continuous or somewhat more special
(smooth, Lipschitz, etc.) function. Additional structural
assumptions regarding f may be difficult to postulate,
due to the following reason. For each fixed parame-
ter vector x, the model output sequence {y(m)

t (x)} may
be produced by some implicit formulas, or by a com-
putationally demanding numerical procedure (such as
e. g., the solution of a system of partial differential equa-
tions). Consequently, althoughmodel (1)most typically
belongs to the general class of continuous GO prob-
lems, a more specific classification may be difficult to
provide. Therefore one needs to apply a GO procedure
that enables the solution of the calibration problem un-
der the very general conditions outlined above.

To conclude the brief discussion of this example,
note that in [26] several variants of the calibration prob-
lem statement are studied in detail. Namely, the model
development and solver system LGO is applied to solve
model calibration problems related to water quality
analysis in rivers and lakes, river flow hydraulics, and
aquifer modeling. (More recent implementations of
LGO are described elsewhere: consult, e. g., [27].)

‘Black Box’ Optimization
(in Environmental Systems)

As outlined above, the more realistic – as opposed to
strongly simplified – analysis of environmental pro-
cesses frequently requires the development of sophisti-
cated systems of (sub)models: these are then connected
to a suitable optimization modeling framework. For ex-
amples of various complexity, consult [1,2,10,19,32].
We shall illustrate this point by briefly discussing
a modeling framework for river water quality man-
agement: for additional details, see [26] and references
therein.

Assume that the ambient water quality in a river at
time t is characterized by a certain vector s(t). The com-
ponents in s(t) can include, for instance the following:
suspended solids concentration, dissolved oxygen con-
centration, biological oxygen demand, chemical oxy-
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gen demand, concentrations of micro-pollutants and
heavy metals, and so on. Naturally, the resulting water
quality is influenced by a number of factors. These in-
clude the often stochastically fluctuating (discharge or
nonpoint source) pollution load, as well as the regional
hydro-meteorological conditions (streamflow rate, wa-
ter temperature, etc). Some of these factors can be di-
rectly observed, while some others may not be com-
pletely known. In a typical model development pro-
cess, submodels are constructed to describe all physi-
cal, chemical, biological, and ecological processes of rel-
evance. (As for an example, one can refer to the classical
Streeter–Phelps differential equations that approximate
the longitudinal evolution of biological oxygen demand
in a river; consult [25,28].)

In order to combine such system description with
management models, one has to be able to evaluate all
decision considered. Each given decision x can be re-
lated, inter alia, to the location and sizing of industrial
and municipal wastewater treatment plants, the control
of nonpoint source (agricultural) pollution, the design
of a wastewater sewage collection network, the daily op-
eration of these facilities, and so on. The analysis fre-
quently involves the computationally intensive evalua-
tion of environmental quality – e. g., by solving a sys-
tem of (partial) differential equations – for each deci-
sion option considered. The quite (possibly) more real-
istic stochastic extensions of such models may also re-
quire the execution of Monte-Carlo simulation cycles.
Under such or similar circumstances, environmental
management models can be (very) complex consisting
of a number of ‘black box’ submodels. Consequently,
the following general conceptual modeling framework
may, and often will, lead to multi-extremal model in-
stances requiring the application of suitable GO tech-
niques:

minfTCEM(x)g;

EQmin � EQ(x) � EQmax;

TFmin � TF(x) � TFmax;

(2)

in which
� TCEM(x) is total (discounted, expected) costs of en-

vironmental management;
� EQ(x) is resulting environmental quality (vector);
� EQmin and EQmax are vector bounds on ‘acceptable’

environmental quality indicators;

� TF(x) are resulting technical system characteristics
(vector);

� TFmin and TFmax are vector bounds on ‘acceptable’
technical characteristics.

Numerous other examples could be cited: similarly to
the case considered above, they may involve the solu-
tion of systems of (algebraic, ordinary or partial dif-
ferential) equations, and/or the statistical analysis of
the environmental (model) system studied. For fur-
ther examples – including data analysis, combination
of expert opinions, environmental model calibration,
industrial wastewater management, regional pollution
management in rivers and lakes, risk assessment and
control of accidental pollution – in the context of
global optimization consult, e. g., [26], and references
therein.
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The reliable calculation of phase equilibrium for mul-
ticomponent mixtures is a critical aspect in the simu-
lation, optimization and design of a wide variety of in-
dustrial processes, especially those involving separation
operations such as distillation and extraction. It is also
important in the simulation of enhanced oil recovery
processes such as miscible or immiscible gas flooding.
Unfortunately, however, even when accurate models of
the necessary thermodynamic properties are available,
it is often very difficult to actually solve the phase equi-
librium problem reliably.

Background

The computation of phase equilibrium is often consid-
ered in two stages, as outlined by M.L. Michelsen [12,
13]. The first involves the phase stability problem, that
is, to determine whether or not a givenmixture will split
into multiple phases. The second involves the phase
split problem, that is to determine the amounts and
compositions of the phases assumed to be present. Af-
ter a phase split problem is solved it may be necessary
to do phase stability analysis on the results to deter-
mine whether the postulated number of phases was cor-

http://solon.cma.univie.ac.at/~neum/glopt.html
http://solon.cma.univie.ac.at/~neum/glopt.html
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rect, and if not repeat the phase split problem. Both the
phase stability and phase split problems can be formu-
lated as minimization problems, or as equivalent non-
linear equation solving problems.

For determining phase equilibrium at constant tem-
perature and pressure, the most commonly considered
case, a model of the Gibbs free energy of the system is
required. This is usually based on an excess Gibbs en-
ergy model (activity coefficient model) or an equation
of state model. At equilibrium the total Gibbs energy of
the system is minimized. Phase stability analysis may be
interpreted as a global optimality test that determines
whether the phase being tested corresponds to a global
optimum in the total Gibbs energy of the system. If it
is determined that a phase will split, then a phase split
problem is solved, which can be interpreted as finding
a local minimum in the total Gibbs energy of the sys-
tem. This local minimum can then be tested for global
optimality using phase stability analysis. If necessary
the phase split calculation must then be repeated, per-
haps changing the number of phases assumed to be
present, until a solution is found that meets the global
optimality test. Clearly the correct solution of the phase
stability problem, itself a global optimization problem,
is the key in this two-stage global optimization pro-
cedure for phase equilibrium. As emphasized in [10],
while it is possible to apply rigorous global optimization
techniques directly to the phase equilibrium problem,
it is computationally more efficient to use a two-stage
approach such as outlined above, since the dimension-
ality of the global optimization problem that must be
solved (phase stability problem) is less than that of the
full phase equilibrium problem.

In solving the phase stability problem, the conven-
tional solution methods are initialization dependent,
and may fail by converging to trivial or nonphysical
solutions or to a point that is a local but not a global
minimum. Thus there is no guarantee that the phase
equilibrium problem has been correctly solved. Because
of the difficulties that may arise in solving phase equi-
librium problems by standard methods (e. g., [12,13]),
there has been significant interest in the development
of more reliable methods. For example, the methods of
A.C. Sun and W.D. Seider [16], who use a homotopy
continuation approach, and of S.K. Wasylkiewicz, L.N.
Sridhar, M.F. Malone and M.F. Doherty [18], who use
an approach based on topological considerations, can

offer significant improvements in reliability. C.M. Mc-
Donald and C.A. Floudas [7,8,9,10] show that, for cer-
tain activity coefficient models, the phase stability and
equilibrium problems can be made amenable to solu-
tion by powerful global optimization techniques, which
provide a mathematical guarantee of reliability.

An alternative approach for solving the phase sta-
bility problem, based on interval analysis, that pro-
vides both mathematical and computational guarantees
of global optimality, was originally suggested by M.A.
Stadtherr, C.A. Schnepper and J.F. Brennecke [15], who
applied it in connection with activity coefficient mod-
els, as later done also in [11]. This technique, in par-
ticular the use of an interval Newton and generalized
bisection algorithm, is initialization independent and
can solve the phase stability problemwithmathematical
certainty, and, since it deals automatically with round-
ing error, with computational certainty as well. J.Z.
Hua, Brennecke and Stadtherr [3,4,5,6] extended this
method to problems modeled with cubic equation of
state models, in particular the Van der Waals, Peng–
Robinson, and Soave–Redlich–Kwong models. Though
interval analysis provides a general purpose and model
independent approach for guaranteed solution of the
phase stability problem, the discussion below will focus
on the use of cubic equation of state models.

Phase Stability Analysis

The determination of phase stability is often done us-
ing tangent plane analysis [1,12]. A phase at specified
temperature T, pressure P, and feed mole fraction vec-
tor z is unstable and can split (in this context, ‘unstable’
refers to both the thermodynamically metastable and
classically unstable cases), if the molar Gibbs energy of
mixing surface m(x, v) ever falls below a plane tangent
to the surface at z. That is, if the tangent plane distance

D(x; v) D m(x; v) � m0 �

nX
iD1

�
@m
@xi

�

0
(xi � zi )

is negative for any composition (mole fraction) vector
x, the phase is unstable. The subscript zero indicates
evaluation at x = z, n is the number of components, and
v is the molar volume of the mixture. A common ap-
proach for determining if D is ever negative is to min-
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imize D subject to the mole fractions summing to one

1 �
nX

iD1

xi D 0 (1)

and subject to the equation of state relating x and v:

P �
RT
v � b

C
a

v2 C ubv C wb2
D 0: (2)

Here a and b are functions of x determined by spec-
ified mixing rules. The ‘standard’ mixing rules are b
=
Pn

iD1 xibi and a =
Pn

iD1
Pn

jD1xixjaij, with ai j D
(1 � ki j)

pai a j . The ai(T) and bi are pure component
properties determined from the system temperature T,
the critical temperatures Tci, the critical pressures Pci

and acentric factors !i. The binary interaction parame-
ter kij is generally determined experimentally by fitting
binary vapor-liquid equilibrium data. Equation (2) is
a generalized cubic equation of state model. With the
appropriate choice of u and w, common models such
as Peng–Robinson (u = 2, w = �1), Soave–Redlich–
Kwong (u = 1, w = 0), and Van der Waals (u = 0, w = 0)
may be obtained. It is readily shown that the stationary
points in this optimization problem must satisfy

si (x; v) � si (z; v0) D 0; i D 1; : : : ; n � 1; (3)

where

si D
�
@m
@xi

�
�

�
@m
@xn

�
:

The (n + 1) × (n + 1) system given by equations (1),
(2) and (3) above can be used to solve for the stationary
points in the optimization problem.

The equation system for the stationary points has
a trivial root at (x, v) = (z, v0) and frequently has multi-
ple nontrivial roots as well. Thus conventional equation
solving techniques may fail by converging to the trivial
root or give an incorrect answer to the phase stability
problem by converging to a stationary point that is not
the global minimum ofD. This is aptly demonstrated by
the experiments of K.A. Green, S. Zhou and K.D. Luks
[2], who show that the pattern of convergence from dif-
ferent initial guesses demonstrates a complex fractal-
like behavior for even very simple models like Van der
Waals. The problem is further complicated by the fact
that the cubic equation of state (2) may have multiple
real volume roots v.

As an example of a system that causes numerical
difficulties, consider the binary mixture of hydrogen
sulfide (component 1) and methane (component 2) at
a temperature of 190 K and pressure of 40.53 bar (40
atm) modeled using the Soave–Redlich–Kwong equa-
tion of state, and with an overall feed composition of z1
= 0.0187. Figure 1 shows a plot of the reduced Gibbs en-
ergy of mixing m vs. x1 for this system (in the reduced
composition space where x2 = 1 � x1), and also shows
the tangent at the feed composition.

The corresponding tangent plane distance function
is shown in Fig. 2 and Fig. 3.

Note that this system has a region, around x1 of
0.03 to 0.05, where multiple real volume roots occur
and thus multiple values of m and D exist; only the
lowest values are physically significant. This system has
five stationary points, four minima and one maximum.
Conventional locally convergent methods are typically
used with multiple initial guesses, generally at or near

Global Optimization: Application to Phase Equilibrium Prob-
lems, Figure 1
Reduced Gibbs energy of mixing m versus x1 for the system
hydrogen sulfide and methane, showing tangent at a feed
composition of 0.0187

Global Optimization: Application to Phase Equilibrium Prob-
lems, Figure 2
Tangent plane distance D versus x1 for the example system
of Fig. 1. See Fig. 3 for enlargement of area near the origin
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Global Optimization: Application to Phase Equilibrium Prob-
lems, Figure 3
Enlargement of part of Fig. 2, showing area near the origin

the pure components (x1 = 0 and x1 = 1). When this is
done convergence will likely be to the local minimum
at the feed composition (0.0187) and to the local min-
imum around 0.88. The global minimum with D < 0
is missed, leading to the incorrect conclusion that the
mixture is stable.

Interval Analysis

Interval analysis makes possible themathematically and
computationally guaranteed solution of the phase sta-
bility problem. Since the mole fraction variables xi are
known to lie between zero and one, and it is easy to put
physical upper and lower bounds on the molar volume
v as well, a feasible interval for all variables is readily
identified. By applying an interval Newton/generalized
bisection approach to the entire feasible interval, enclo-
sures of all the stationary points of the tangent plane
distance D can be found by solving the nonlinear equa-
tion system (1)–(3), and the globalminimum of D thus
identified. This approach requires no initial guess, and
is applicable to any model for the Gibbs energy, not
just those derived from equations of state. For the bi-
nary system used as an example above, all five station-
ary points are easily found, and the global minimum at
x1 = 0.0767, v = 64.06 cm3/mol, and D = � 0.004 thus
identified [3,6].

The efficiency of the interval approach can depend
significantly on how tightly one can compute interval
extensions for the functions involved. The interval ex-
tension of a function over a given interval is an enclo-
sure for the range of the function over that interval.
When the natural interval extension, that is the func-
tion range computed using interval arithmetic, is used,
it may tightly bound the actual function range. How-

ever, it is not uncommon for the natural interval exten-
sion to provide a significant overestimation of the true
function range, especially for functions of the complex-
ity encountered in the phase stability and equilibrium
problems.

Some tightening of bounds can be achieved by tak-
ing advantage of information about function mono-
tonicity. Another simple and effective way to allevi-
ate this difficulty in this context is to focus on tight-
ening the enclosure when computing interval exten-
sions of mole fraction weighted averages, such as r DPn

iD1 xi ri , where the ri are constants. Due to the mix-
ing rules for determining a and b, such expressions oc-
cur frequently, both in the equation of state (2) itself,
as well in the derived model m(x, v) for the Gibbs en-
ergy of mixing and thus in equation (3). The natural
interval extension of r will yield the true range (within
roundout) of the expression in the space in which all
the mole fraction variables xi are independent. How-
ever, the range can be tightened by considering the con-
straint that the mole fractions must sum to one. One
approach for doing this is simply to eliminate one of
the mole fraction variables, say xn. Then an enclosure
for the range of r in the constrained space can be deter-
mined by computing the natural interval extension of
rn C

Pn�1
iD1 (ri � rn)xi . However, this may not yield the

sharpest possible bounds on r in the constrained space.
For constructing the exact (within roundout)

bounds on r in the constrained space, S.R. Tessier [17]
and Hua, Brennecke and Stadtherr [5] have presented
a very simple method, based on the observation that at
the extrema of r in the constrained space, at least n �
1 of the mole fraction variables must be at their up-
per or lower bound. This observation can be derived
by viewing the problem of bounding the range of r in
the constrained space as a linear programming prob-
lem. As shown in [5], when the constrained space inter-
val extensions for mole fraction weighted averages are
used, together with information about function mono-
tonicity, significant improvements in computational ef-
ficiency, nearly an order of magnitude even for small
(binary and ternary) problems, can be achieved in us-
ing the interval approach for solving the phase stability
problem.

For small problems, it is usually efficient to globally
minimize D by finding all of its stationary points, since
this does not require repeated evaluation of the range
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of D. However, in general, for making a determination
of phase stability or instability, finding all the station-
ary points is not really necessary, nor for larger prob-
lems, desirable. For example, if an interval is encoun-
tered over which the interval extension of D has a neg-
ative upper bound, this guarantees that there is a point
at which D < 0, and so one can immediately conclude
that the mixture is unstable without determining all the
stationary points. It is also possible to easily make use
of the underlying global minimization problem. Since
the objective function D has a known value of zero at
the mixture feed composition (tangent point), any in-
terval over which the interval extension ofD has a lower
bound greater than zero cannot contain the global min-
imum and can be discarded, even though it may contain
a stationary point (at which D will be positive and thus
not of interest). Thus, one can essentially combine the
interval-Newton technique with an interval branch and
bound procedure in which lower bounds are generated
using interval techniques.

Also, it should be noted that the global interval ap-
proach described here can easily be combined with ex-
isting local methods for determining phase stability and
equilibrium. First, some (fast) local method is used. If it
indicates instability then this is the correct answer as it
means a point at whichD < 0 has been found. If the local
method indicates stability, however, this may not be the
correct answer since the local method may have missed
the global minimum in D. Applying interval analysis
as described here can then be used to confirm that the
mixture is stable if that is the case, or to correctly deter-
mine that it is really unstable if that is the case.

Conclusion

As demonstrated in [3,4,5,6,11,15], interval analysis can
be used to solve phase stability and equilibrium prob-
lems efficiently and with complete reliability, provid-
ing a method that can guarantee with mathematical
and computational certainty that the correct result is
found, and thus eliminating computational problems
that are encountered with conventional techniques.
The method is initialization independent; it is also
model independent, straightforward to use, and can be
applied in connection with any equation of state or
activity coefficient model for the Gibbs free energy of
a mixture. There are many other problems in the anal-

ysis of phase behavior, and in chemical process analysis
in general [14], that likewise are amenable to solution
using this powerful approach.
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Many practically significant problems require to opti-
mize in a ‘black box’ situation, when the objective func-
tion is given by a code, but its structure is not known.
In some algorithms, developed for such a case, differ-
ent heuristic ideas are implemented. A disadvantage of
the heuristic algorithms is dependence of the results on
many parameters which choice is difficult because of
rather vague meaning of these parameters. To develop
a theory of global optimization the ‘black box’ should be
replaced by a ‘grey box’ corresponding to some model
of predictability/uncertainty of values of an objective
function.

A model of an objective function is an important
counterpart of any optimization theory (e. g., quadratic
models are widely used to construct algorithms for lo-
cal nonlinear optimization). The uncertainty on val-
ues of multimodal functions at the arbitrary points of
the feasible region is more essential than uncertainty
on the value of the objective function which will be
calculated at the current iteration of the local descent.
Therefore, the global optimization models that describe
the objective function with respect to information ob-
tained during the previous iterations are different from
polynomial models used in local optimization. Differ-
ent models may be used; e. g., a deterministic model,
defining the guaranteed intervals for unknown func-
tion values, or a statistical model, modeling the uncer-
tainty on function value bymeans of a random variable.
The choice of a model is crucial because it defines the
methodology of constructing the corresponding algo-
rithms. A Lipschitzian typemodel enables the construc-
tion of global optimization algorithms with guaranteed
(worst case) accuracy. However, the number of func-
tion evaluations in the worst case grows drastically with
the dimensionality of the problem and the prescribed
accuracy. In spite of this pessimistic theoretical result
many practical rather complicated problems have been



1292 G Global Optimization Based on Statistical Models

solved heuristically. Because a heuristics is a human ex-
perience based methodology, oriented towards average
(typical, normal) conditions, it seems reasonable to de-
velop a theory formalizing the principle of rational be-
havior with respect to average conditions in global op-
timization. The average rationality is well justified for
playing a ‘game against nature’ whichmodels optimiza-
tion conditions better than an antagonistic game where
the principle of minimax (guaranteed result) is well jus-
tified. The method ology of average rationality was ap-
plied to develop the general theory of rational choice
under statistically interpreted uncertainty [4]. This gen-
eral theory was further specified to develop the theory
of global optimization based on statistical models of
multimodal functions [11].

To construct a statistical model of multimodal func-
tion f (x), x 2 A � Rn, the axiomatic approach is ap-
plied: the rationality of comparisons of likelihood of
different values of f (�) is postulated by simple, intu-
itively acceptable axioms, and it is proved that the in-
terpretation of an unknown value f (x) as a Gaussian
random variable �x is compatible with the axioms. The
parameters of �x (mean value m(x|(xi, yi)) and vari-
ance �2(x|(xi, yi)), where yi = f (xi) are known func-
tion values obtained during the search) are introduced
by axiomatic theory of extrapolation under uncertainty.
In the one-dimensional case both functions are very
simple: m(x|(xi, yi)) is piecewise linear (connecting the
neighboring trial points) and �2 (x|(xi, yi)) is piecewise
quadratic.

By means of further (more restrictive) assumptions,
the statistical models, corresponding to the stochas-
tic functions, may be specified. The one-dimensional
model corresponding to the Wiener process was intro-
duced in [3]. However, the specification of a model as
a stochastic function is not very reasonable: this nor-
mally involves additional very serious implementation
difficulties and does not help to choose the model ac-
cording to the a priori information on the problem.
Using a statistical model the algorithm is constructed
maximizing the probability to find better points than
those found during the previous search. Such a strat-
egy is justified also by the natural axioms of ratio-
nality of search. In the one-dimensional case the al-
gorithm is easy to implement. In the multidimen-
sional case, an auxiliary optimization problem must be
solved [8].

Although the algorithm is based on the statistical
model it is described without of use of randomization.
Therefore it may be investigated by usual deterministic
methods, e. g. the convergence of the algorithm in the
is proved under weak assumptions on the underlying
statistical model (continuity ofm(x|�), �2(x|�) and weak
dependence of both characteristics at point x on (xi, yi)
for relatively remote points xi [8]).

Themodels and algorithms of this approach are well
grounded theoretically because they are derived from
natural assumptions on rational behavior of an opti-
mizer. As a topic for further research, the theory of av-
erage complexity seems very prospective. It would be
important to evaluate the complexity of practically ef-
ficient algorithms constructed by the approach as well
as to obtain general bounds and compare them with
those obtained for Lipschitzian algorithms. The first re-
sults in this direction are interesting even for the one-
dimensional case: the limit distribution of error of pas-
sive random search in case of the Wiener model exists
or does not exist depending on a subtle interpretation of
the model [2]. Other important theoretical topics are:
developing dual (global-local) models for the multidi-
mensional case, and justification of multidimensional
statistical models oriented towards algorithms of the
branch and bound type (cf. also � Integer program-
ming: Branch and bound methods), whose auxiliary
computations would be essentially less time consum-
ing thanmaximization of the probability over the whole
feasible region at each iteration.

Many algorithms were constructed using different
statistical models and more or less theoretically justi-
fied ideas. For example, a Bayesian algorithm (cf. also
� Bayesian global optimization) is defined by mini-
mizing the average error with respect to the stochas-
tic function chosen for a model [5]. By interpolation,
the next calculation of a value of the objective function
is performed at minimum point of m(�|(xi, yi)) [1,6].
For the information-statistical method, an ad hoc one-
dimensional model is constructed [1,7]. The algorithms
may be generalized for the case with ‘noisy’ functions,
see for example the algorithm in [8,10].

The known results from the theory of stochastic
functions as well as axiomatic construction of statis-
tical models do not give numerically tractable models
which are completely adequate to describe local and
global properties of a typical global optimization prob-
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lem [1]. But in the framework of statistical models the
adequacy, e. g., to local prop erties of the objective func-
tion, might be tested as a statistical hypothesis. If the
statistical model is locally inadequate in a subset of the
feasible region, then the objective function is assumed
unimodal in this subset and a local minimum of f (x)
may be found by a local technique. An example of the
combination of global and local search with a stopping
rule corresponding to a high probability of finding the
global minimum is presented in [9].

In the case of one-dimensional global optimization
there are many competing algorithms including algo-
rithms based on statistical models [8]. The algorithms
representing different approaches may be compared
with sufficient reliability by means of experimental test-
ing. Since the codes in one-dimensional case are very
precise realizations of theoretical algorithms then in-
fluence of implementation specifics is insignificant (at
least with respect to multidimensional cases) and the
comparison results may be generalized from codes to
corresponding approaches. The results in [8] show that
the algorithm from [9] and its modification [8] out-
performs algorithms based on Lipschitzian type mod-
els even if a good estimate of the Lipschitz constant
is available. The comparison of multidimensional al-
gorithms is methodologically more difficult, partly be-
cause of very different stopping conditions. But gener-
ally speaking, the algorithms based on statistical models
are efficient with respect to the number of evaluations
of the objective function for the multimodal functions
up to 10–15 variables [8]. The auxiliary computations
require much computing time and computer memory.
Therefore, such algorithms are rational to use for the
problems, whose objective unction is expensive to eval-
uate. If an objective function is cheap to evaluate, the
gain obtained from a low number of function evalua-
tions may be less than the loss caused by the auxiliary
computations.

A detailed review of the subject is presented in [8];
further references may be found in [1].
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Batch processes are a popular method for manufactur-
ing products in low volume or that require several com-
plicated steps in the synthesis procedure. The growth
in the market for specialty chemicals has contributed to
the demand for efficient batch plants. Batch processes
are especially attractive due to their inherent flexibil-
ity. They can accommodate a wide range of production
requirements. Batch equipment can be reconfigured to
produce more than one product. Finally, certain pieces
of equipment in batch processes can be used for more
than one task.

An important area of concern in the design of batch
processes is their ability to accommodate changes in

production requirements and processing parameters.
The key issue is: given some degree of uncertainty in
a) the future demand for the products and b) the pa-
rameters that describe the chemical and physical steps
involved in the process, what is the appropriate amount
of flexibility the process should possess so as to main-
tain feasible operation while maximizing profits?

Manymethods have been proposed for the design of
batch plants under knownmarket conditions and nom-
inal operating conditions. Two major classes of batch
plant designs aremultiproduct plants and multipurpose
plants. In the multiproduct plant, all products follow
the same sequence of processing steps. Typically, one
product is produced at a time in what is termed a single-
product campaign (SPC). Multipurpose batch plants al-
low products to be processed using different sequences
of equipment, and in some cases products can be pro-
duced simultaneously.

While significant progress has been made in the de-
sign and scheduling of batch plants, until recently the
issues of flexibility and design under uncertainty have
received little attention. Among the first to address the
problem of batch plant design under uncertainty in
a novel way were [10], and [8]. They divided the vari-
ables in the design problem into five categories: struc-
tural, design, state, operating, and uncertain. Structural
variables describe the interconnections of the equip-
ment in the plant. Design variables describe the size
of the process equipment and are fixed once the plant
is constructed. State variables are dependent variables
and are determined once the design and operating vari-
ables are specified. Operating variables are those whose
values can be changed in response to variations in the
uncertain variables. Finally, the uncertain parameters
are the quantities that can have random values which
can be described by a probability distribution. Usu-
ally the uncertain parameters have normal distributions
and are considered to be independent of each other.
[8] also introduced the distinction between variations
which have short-term effects and those with long-term
effects. [18] extended this idea, suggesting a distinction
between ‘hard’ and ‘soft’ constraints in which the for-
mer must be satisfied for feasible plant operation, but
the latter may be violated, subject to a penalty in the ob-
jective function. They considered the time required to
produce a product as uncertain and developed a prob-
lem formulation.
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In [12], and [13] the authors addressed the prob-
lem of multiproduct batch plant design with uncertain-
ties in both demand for the products and in technical
parameters such as processing times and size factors.
They restricted their designs to one piece of equipment
per stage. [3] presented several variations on the prob-
lem of design with uncertain demands. They used inter-
val methods to develop different solution procedures,
including a two-stage approach and a penalty function
approach. Another type of batch plant is the multipur-
pose plant. [14] proposed a scenario-based approach for
the design of multipurpose batch plants with uncertain
production requirements. The multipurpose approach
resulted in a large scale MILP model for which efficient
techniques for obtaining good upper and lower bounds
were proposed. [15] developed a model for the multi-
product batch design problemwhich takes into account
uncertainties in the product demands and in equipment
availability. They considered the problem of design
feasibility separately from the maximization of profits
and presented an approach for achieving both criteria.
[16] addressed the problem of uncertain demands, and
used a scenario-based approach with discrete proba-
bility distributions for the demands. In addition, they
considered the scheduling problem as a second stage,
following the design problem. [6], and [7] considered
the multiproduct batch plant design problem based on
a stochastic programming formulation. They developed
a relaxation of the production feasibility requirement
and added a penalty term to the objective function to
account for partial feasibility. Through this analysis, the
problem can be reformulated as a single large scale non-
convex optimization problem. [2] extended this work
to the design of multipurpose batch plants and imple-
mented an efficient Gaussian quadrature technique to
improve the estimation of the expected profit. [5] iden-
tified special structures in the nonconvex constraints
for multiproduct and multipurpose batch design for-
mulations. These properties can be exploited to obtain
tight bounds on the global solution. This allows very
large scale design problems to be solved in reasonable
CPU time using the ˛BB method of [1].

Conceptual Framework

Most batch design problems are variations on the same
basic model of a batch plant. The plant consists of M

processing stages where each stage j contains Nj identi-
cal pieces of equipment. The volume of each unit, Vj, is
a design variable, and the number of units per stage, Nj,
may be a variable or a fixed parameter.

In the batch plant, NP products are to be made, and
the amount of each produced isQi. Each product is pro-
duced in a number of batches of identical size, Bi. Using
these definitions, a number of constraints on the design
of the plant can be imposed. These constraints are:
1) an upper limit on the batch size,
2) a lower limit on the amount of time between

batches,
3) an upper limit on the total processing time allowed,

and
4) a constraint on the production related to the de-

mand for each product. The basic form of these con-
straints is shown below, for a multiproduct batch
plant with single-product campaigns.

Constraints on Batch Size

The batch size for each product i cannot be larger than
the size of the pieces of equipment in each stage j. This
can be written

Bi �
Vj

Si j
;

i D 1; : : : ;NP; j D 1; : : : ;M:

The size factor, Sij, is the capacity required in stage j
to process one unit of product i.

Minimum Cycle Time

In order to make sure that each batch is processed sep-
arately in a given stage, one batch cannot begin pro-
cessing until the previous batch has been processed for
a certain amount of time. This is called the cycle time

TLi �
ti j
N j
;

i D 1; : : : ;NP; j D 1; : : : ;M:

The time factor, tij is the amount of time to process
one batch of product i in stage j.
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Constraints on Production Time

The amount of time needed to produce all of the
batches must be less than the total time available, H,

NPX
iD1

Qi

Bi
TLi � H:

Demand Constraints

The production for each product must meet the de-
mand.

Qi D Di :

Economic Objective Function

The objective is to maximize profits. The profit is calcu-
lated by subtracting the annualized capital costs from
the revenues:

Profit D
NPX
iD1

Qi � pi �
MX
jD1

˛ jN jV
ˇ j
j ;

where pi is the price of product i. The annualization fac-
tor for the cost of the units in stage j is ˛j.

In the case where the number of units per stage,
Nj is variable and/or the unit sizes, Vj, take only dis-
crete values, this problem is a mixed integer nonlinear
optimization problem (MINLP). If Nj is fixed and the
unit sizes are continuous, the problem is a nonlinear
program (NLP). In either case, the problem is noncon-
vex, therefore conventional mixed integer and nonlin-
ear solvers cannot be used robustly. Instead, global op-
timization techniques must be employed to guarantee
that the optimal solution is located.

Sources of Uncertainty

Within the mathematical framework for a multiprod-
uct batch plant there are a number of possible sources
of uncertainty. The most commonly studied are uncer-
tainty in the process parameters, like the size factors, Sij,
and the time factors, tij, and uncertainty in the product
demand, Di. In addition to these, [3] considered uncer-
tainty in the time horizon,H, and in the product prices,
pi.

Uncertainty in the process parameters is model in-
herent uncertainty, as classified by [11]. That is, un-
certainty in the process parameters affects the feasible

operation of the batch plant. Conversely, uncertainty
in the product demand is an external source of uncer-
tainty, therefore it only affects the objective function,
and not the feasibility of the plant design.

Uncertainty in Process Parameters

The size factors and processing times affect the feasi-
ble design and operation of the batch plant. The goal is
to design a plant that can operate feasibly, even if there
is some uncertainty in the values of these parameters.
The approach that is commonly followed is to consider
a number of different scenarios, where each scenario
corresponds to a set of parameter realizations. For ex-
ample, if the size factors, Sij, have some nominal value,
Si j , then one scenario is that all of the size factors are at
their nominal value. Similarly, if we have some knowl-
edge about the amount of uncertainty in the size fac-
tors, we can construct a lower extreme scenario, where
each size factor is at its lower bound, SLi j, and an up-
per extreme scenario, SUi j . The new set of size factors,
reflecting the different scenarios is represented by the
parameter Spi j . The scenarios can be weighted using the
factor, wp.

The set of constraints for the batch design problem
must be modified so that the design is feasible over the
whole set of scenarios, P:

Bi �
Vj

Sp
i j

; Tp
Li �

t pi j
N j
;

NPX
iD1

Qp
i

Bi
Tp
Li � H:

Uncertainty in Product Demand

Uncertainty in the demand for the products affects the
profitability of the plant. In this case, the product de-
mand is given by a probability distribution function
J(� i) where � i represents the uncertain demand for
product i. The calculation of the expected revenues re-
quires the integration over an optimization problem:

E

"
max
Qi

NPX
iD1

piQi

#

D

Z
2R(Vj;N j)

max
Qi

( NPX
iD1

piQi

)
J(�) d� : (1)
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The integration should be performed over the feasible
region of the plant, which is unknown at the design
stage. See [6] for a Gaussian quadrature approach to
discretize the integration. The range of uncertain de-
mands is covered by a grid, where each point on the grid
represents a set of demand realizations, and is assigned
a weight corresponding to its probability, !q Jq. The set
of quadrature points is represented by Q. The expected
revenues are now calculated as a multiple summation:

E

"
max
Qi

NPX
iD1

piQi

#

D

PX
pD1

1
wp

QX
qD1

!q Jq
NPX
iD1

piQ
qp
i :

In addition, the time horizon constraint must be
modified:

NPX
iD1

Qqp
i

Bi
Tp
Li � H; 8p 2 P; 8q 2 Q:

Global Optimization Approaches

The set of constraints for the design of a multiprod-
uct batch plant under uncertainty form a nonconvex
optimization problem. Global optimization techniques
must be used in order to ensure that the true optimal
design is located.

Following the analysis of [9], an exponential trans-
formation can be applied, reducing the number of non-
linear terms in the model.

Vj D exp(v j); 8 j 2 M;

Bi D exp(bi); 8i 2 NP;

Tp
Li D exp(t pLi); 8i 2 NP:

In [5] and [6] global optimization methods were de-
veloped to solve this problem, where the number of
units in each stage, Nj, is fixed. In this case, the cycle
time becomes a parameter, determined by,

t pLi D max
j

(
ln

 
t pi j
N j

!)
;

8i 2 NP; 8p 2 P:

The nonlinear optimization problem to be solved is
written as a minimization:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

min
bi ;v j;Q

qp
i

ı

MX
jD1

˛ jN j exp
�
ˇ jv j

�

�

PX
pD1

1
wp

QX
qD1

!q Jq
NPX
iD1

piQ
qp
i

C�

PX
pD1

1
wp

QX
qD1

!q Jq
NPX
iD1

pi
�
�
q
i � Qqp

i

�

s.t. v j � ln(Sp
i j)C bi

NPX
iD1

Qqp
i � exp(t

p
Li � bi ) � H

� Li � Qqp
i � �

q
i

ln(VL
j ) � v j � ln(VU

j )

min
j;p

ln

 
VL
j

Sp
i j

!
� bi � min

j;p
ln

 
VU
j

Sp
i j

!
:

(2)

Note that the time horizon constraint is the only non-
convex constraint remaining in the problem formula-
tion. A penalty term is added to the objective function
to account for unsatisfied demand, the penalty parame-
ter is � .

The GOP Approach

In [7] and [2] the GOP algorithm of [4,17] has been ap-
plied to solve design formulations for both multipur-
pose and multiproduct batch plants. GOP converges to
the global optimum solution by solving a primal prob-
lem and a number of relaxed dual problems in each it-
eration. In [7] it is observed that if the variables in the
batch design problem are partitioned so that y = {vj, bi}
and x = {Qqp

i }, then the problem is convex in y for every
fixed x, and linear in x for every fixed y. This satisfies
Condition A) of the GOP algorithm.

A property was developed in [7] that allows the
number of relaxed duals per iteration to be reduced
from 2NP�Q to 2NP, making the problem computation-
ally tractable.

˛BB Approach

The ˛BB approach of [1] was applied in [5] to solve
both multiproduct and multipurpose design formu-
lations. ˛BB is a branch and bound approach that
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converges to the global solution by solving a se-
quence of upper and lower bounding problems. The
lower bounding problem is formulated by subtracting
a quadratic term, multiplied by the constant ˛, from
each of the nonconvex terms, thus convexifying the
problem. Often, the size of the ˛ term must be esti-
mated, resulting in poor lower bounds in the first few
levels of the branch and bound tree. However, the non-
convex terms in the batch plant design formulation al-
low the exact value of ˛ to be calculated, resulting in
a tight lower bound on the global solution. This tech-
nique has been used to find the optimal design for
a multiproduct batch plant with 5 products in 6 stages.
This corresponds to a nonconvex NLPwith 15,636 vari-
ables, 3155 constraints, and 15,625 nonconvex terms.

Other Types of Batch Plants

In addition to the multiproduct batch plant with single-
product campaign illustrated in the preceding sections,
there are many other batch plant design formulations
that can be adapted to consider the issue of uncertainty
in design.

Mixed-Product Campaign

This is another example of a multiproduct batch plant.
In this case, storage of the intermediate products is al-
lowed between processing steps. In addition, batches of
different products can be alternated. This allows a re-
duction in the total production time. Rather than be-
ing limited by the largest cycle time for all stages, this
method calculates the total production time for each
stage:

Tqp;tot
j �

NPX
iD1

 
Qqp

i

Bi

!
t pi j:

The total time for each stage must be less than the total
time allowed:

H � Tqp;tot
j �

NPX
iD1

 
Qqp

i

Bi

!
t pi j:

This can be written

NPX
iD1

 
Qqp

i

Bi

!
t pi j � H:

Note that this constraint has the same form as the
time horizon constraint for the single-product cam-
paign formulation.

Multipurpose Batch Plant-Single Equipment
Sequence

In a multipurpose batch plant, the equipment can be
used for more than one function, therefore each prod-
uct may have a different route through the plant. In
the single equipment sequence case, there is one dis-
tinct route for each product. Production is carried out
in a sequence of campaigns L, and there may be more
than one product produced simultaneously in a cam-
paign, h. The time needed for each campaign, Ch, is
based on the maximum cycle time for all products in
the campaign,

LX
hD1

˛hiC
qp
h �

 
Qqp

i

Bi

!
Tp
Li ;

where

˛hi D

8̂
<̂
ˆ̂:

1 if product i is allowed
in campaign h;

0 else:

Finally, the sum of all campaign times must be less than
the total time available:

LX
hD1

Cqp
h � H:

Multipurpose Batch Plant-Multiple Equipment
Sequence

In this case, there are multiple routes through the plant
for each product i, PRi. The total amount of product i
produced is the sum over the production of i in each
route:

Qqp
i D

X
r2PRi

qqpr :

The time for campaign Ch is based on themaximum
cycle time for each route in the campaign,

LX
hD1

˛hrC
qp
h �

 
qqpr
Br

!
t pLr:
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The sum of all campaign times must be less than the
total time available,

LX
hD1

Cqp
h � H:

Note that in both of the multipurpose batch de-
sign formulations shown above, the constraints that are
added are either linear, or have the exact same form
of nonconvexities as shown for the multiproduct batch
design formulation. Therefore, the global optimization
techniques discussed in Section ‘Global Optimization
Approaches’ are applicable to these problems.
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The global optimization techniques are still quite un-
popular in the astronomical community, in particular,
among the double stars astronomers. Among the rea-
sons of their reticence one finds a long practice of man-
ual and graphical methods, ‘least squares’ adjustments
of a linearized objective function, differential correc-
tion, etc.

This article does not present, unfortunately, the
state of the art in orbits determination, even if a few
astronomers, mostly young ones, tries to convince the
others that a global minimization step is useful. This ar-
ticle presents a possible way to obtain the orbital pa-
rameters of double-lined spectroscopic visual binaries.

Astronomical Problem

The generic terms ‘binary star’ designate two stars that
are gravitationally linked together. Since J. Kepler, one
knows that such an interaction leads to an elliptic or-
bital motion of one star around each the other (Ke-
pler’s first law). The Kepler third law tells us that there
is a simple relation between the orbital period (P), the
semimajor axis of the relative orbit (a) and the mass
sum of the 2 stars (MA (the mass of the brighter star)
andMB (the mass of the fainter component)):

a3

P2 D MA CMB ;

where a is expressed in astronomical unit (1 A.U. is
equal to the average distance of the Earth from the Sun),
P is expressed in years and the masses in solar masses
(Mˇ). This relation is still, almost 400 years after Ke-
pler, the only direct and hypothesis-free method to es-
timate stellar masses.

A visual binary corresponds to a situation where the
2 stars are visually resolved and the orbital motion, pro-
jected on the plane orthogonal to the sight direction,
can be perceived. From the relative positions of B with
respect to A along time (t, x and y), one can extract
the 7 parameters characterizing the visual orbit. Among

these parameters, there are P and the angular value of a
(expressed in seconds of arc). The latter cannot be con-
verted into its linear value in A.U. unless the distance to
the binary system is known (or, equivalently, the paral-
lax of the system,$ , is known).

A binary star is spectroscopic if the motion of its
spectral lines is observable. This motion is due to the
Doppler effect: all lines issued from one star are shifted
toward the blue (red) side of the spectrum when that
star is moving toward (away from) the observer. The
wavelength shift between the laboratory wavelength,
�L, and the observed one, �O, is connected to the radial
velocity V through:

�O � �L

�L
D

V
c

where c stands for the speed of the light in the vacuum.
In a double-lined spectroscopic binary, lines from the
two components are seen in the spectrum.

The radial velocity curve ((t, VA), (t, VB)) of each
component along time shows a periodic variation. Lets
KA designates the amplitude of the radial velocity curve
of component A and KB the amplitude of component
B. There is a relation between the mass ratio and the K �
values:

KA

KB
D

MB

MA

The amplitudes are usually expressed in km/s.
Hence, if a binary star is simultaneously visual and

double-lined spectroscopic, one can extract the individ-
ual masses and the distance to the system with no extra
hypothesis.

Objective Function

To describe the observations of a double-lined spectro-
scopic visual binary requires at least 10 parameters. By
observations, one means the relative positions of the
fainter component with respect to the brighter star and
the radial velocities of both components. Why more
than 10 parameters could be necessary is beyond the
scope of this paper. Among the different possible sets
of 10 parameters, we select:
� a(0 0): the angular semimajor axis of the relative orbit

of the fainter component around the brighter star;
� i: the inclination of the orbital plane with respect to

the plane orthogonal to the direction sight;
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� !: the argument of the periastron;
� ˝ : the longitude of the ascending node;
� e: the eccentricity;
� P: the period;
� T: the periastron epoch (one of them);
� V0: the radial velocity of the system’s center of mass;
� $ : the parallax of the system;
� �: the ratio of the semimajor axis (relative to the

brighter component) to the sum of the two semima-
jor axes.

The most natural way to combine visual and spectro-
scopic observations is to use a least squares approach
and to seek the minimum of an expression like:

D(a; i; : : : ;$; �)

D

NvX
jD1

2
4
 o
x j �bx j

�x j

!2

C

0
@

o
y j �by j
�y j

1
A

23
5

C

NsAX
kD1

0
@

o
VAk �

bVAk

�VAk

1
A

2

C

NsBX
lD1

0
@

o
VBl �

bVBl

�VBl

1
A

2

(1)

where the hat (super) stands for the adjusted (observed)
quantity and � � are the a priori known (or estimated)
standard deviations of the observations.

In fact, yet this idea of combining the two aspects of
the orbit is unusual. Most of the time, astronomers keep
the separation when computing the orbital parameters.
Visual observers compute their own orbit and spectro-
scopists theirs: one group simply fixes some parameters
(w, e, P and T) to the values obtained by the other group
(e. g., [5]). A few papers only presents a simultaneous
adjustment of the ten parameters (e. g., [12,18]).

The reader could be puzzled by the fact that the
expression of D seems to be too kind to have numer-
ous local minima and to require a global optimization
method to be minimized. A description of how x, y, VA

and VB are computed is going to justify our approach.
The visual orbit requires

x DAX C FY ;

y D BX C GY ;

X D cos E � e;

Y D
p
1 � e2 sin E;

where X and Y (x and y) are the angular rectangular co-
ordinates, in the orbital (tangential) plane, of the fainter
component with respect to the brighter one; A, B, F and

G are the Thiele–Innes constants, expressed in terms of
a(0 0), i, ! and˝ as

A D a(00)(cos! cos˝ � sin! sin˝ cos i);

B D a(00)(cos! sin˝ C sin! cos˝ cos i);

F D a(00)(� sin! cos˝ � cos! sin˝ cos i);

G D a(00)(� sin! sin˝ C cos! cos˝ cos i):

E is the eccentric anomaly at time t, determined unam-
biguously by Kepler’s equation

E � e sin E D
2
P
(t � T):

For a spectroscopic orbit j (j = A or j = B), one needs

VA D V0 � KA(cos(! C v)C e cos!);

VB D V0 C KB(cos(! C v)C e cos!);

Kj D
2a(km)

j sin i

86400 � 365:242198781P
p
1 � e2

;

tan
v
2
D

r
1C e
1 � e

tan
E
2
:

The angular separation in arcseconds is converted into
its linear value using

a(km) D
a(00)

$
� 1:49598 � 108;

a(km)
A D �a(km);

a(km)
B D (1 � �)a(km):

Global Search

In front of a low-dimension but highly nonlinear prob-
lem, what can be used to find the minimum of an ex-
pression such as D (equation (1))? Simulated annealing
([8,11]) has already been successfully applied to the de-
termination of the orbital parameters of visual binaries
[14]. In that case, only 7 parameters are required, but
the nature of the problem seems close enough to the
current one to be tempted to use the same approach.

The implementation of SA used for the visual prob-
lem gives satisfaction ([1,15]). Nevertheless, the in-
crease of the working space dimension is, by itself,
enough to justify the search for an improved algorithm
for the combined spectroscopic-visual problem.

Among the few SA implementations for continuous
functions, the one in ‘Numerical Recipes’ [16] was se-
lected. Although the published code behaves very well,
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some improvements (at least for our purpose) are pos-
sible. We are going to focus on modifications of the ba-
sic algorithm, mainly some improvements of the guess
generator. A rough pseudocode of the algorithm in [16]
is given below:

DO
use a simplex to get a new solution;
decrease the temperature;

WHILE (temperature > Tmin);

Suggested pseudocode after [16]

Let’s first remind that the guess generator proposed in
[16] is based on a thermally disturbed simplex [13].
When the temperature approaches 0, the generator re-
duces to theNelder–Mead algorithm and a local conver-
gence can be expected. W.H. Press et al. announce a lo-
cal convergence whereas V. Torczon [17] showed such
a convergence cannot be guaranteed with the Nelder–
Mead algorithm.

The major drawback of this algorithm is that the
simplex can degenerate (a vertex becomes a linear com-
bination of strictly less than the other n ones). If that
happens, only a subspace of the complete working space
can be visited and the risk of missing the minimum
raises.

To decide whether or not to reinitialize the simplex
can be based on the mean of the values at the n+1 ver-
tices. The mean is compared with the mean at the pre-
vious temperature. If the relative change is not impor-
tant enough or the generator stops at a local minimum,
a new simplex is generated. The best point ever met is
chosen as one of the vertices.

A natural way to initialize a simplex is to choose the
n remaining vertices such that each edge issued from
the (n+1)th point is parallel to a different axis of coor-
dinates. A refined version of that approach is adopted.
Instead of randomly choosing the value of the compo-
nent in the interval of accepted values for that compo-
nent, some ‘taboo’ restrictions are added.

The overall working space is divided in regions.
When a new simplex is generated, each cells contain-
ing a vertex are marked as taboo. The random selec-
tion of the value of a component is repeated until the
resulting cell (C) does not lie in a taboo region (TL).

Even if the best point ever met does not change between
two successive re-initializations, this procedure guar-
antees that the two simplices are different. That raises
the probability of visiting the overall space. Practically,
the taboo cells are kept in a circular linked list and dis-
carded when space for a new cell is required. The result-
ing pseudocode is given below:

DO
use a simplex to get a new solution;
IF initialization required
THEN adopt the best solution as the (n+1)th

vertex;
for the first n vertices (Vi)
DO

Vi = Vn+1;
DO
change the ith component of Vi ;
identify C;
WHILE (C in TL);
add C to TL;

OD;
FI;
decrease the temperature;

WHILE (temperature > Tmin);

Adopted pseudocode

Ingber’s algorithm ([6,7]) is used for the annealing sche-
dule. The initial temperature is set to 10hl og10(D)i where
hlog10(D)i stands for the mean of the logarithm of the
objective function over the first generated simplex.

Element Value Std. dev.
a(00) 0:072 0:0010
i(ı) 68 1:3
!(ı) 352 2:2
˝(ı) 262:0 0:53
e 0:38 0:016
P(yr) 1:7255 0:00098
T (Besselian yr) 1979:332 0:0099
V0(km/s) �9:78 0:13
!(00) 0:038 0:0012
	 0:349 0:0096
mass A(Mˇ) 1:5 0:18
mass B(Mˇ) 0:8 0:12

Orbital parameters of HIP111170 and their standard deriva-
tions
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Example 1 (HIP111170)

The double star HIP111170 ( = HR8851 = HD213429)
is a good example to illustrate how appropriate a si-
multaneous adjustment is whereas a disjoint one would
failed. The visual observations ([9,10]) are too few to
allow a visual orbit determination: 3.5 observations (2

Global Optimization in Binary Star Astronomy, Figure 1
Adjusted visual orbit of HIP 111170. The cross represents
component A

Global Optimization in Binary Star Astronomy, Figure 2
Adjusted spectroscopic orbits of HIP 111170

quantities) are necessary to adjust 7 parameters. Fortu-
nately, the spectroscopic data are more numerous and
the two radial velocity curves are well covered. From
amathematical point of view, two visual observations is
the minimum if the spectroscopic observations [3] are
well spread over the two curves.

The table above gives the orbital parameters used
for the figures. The obtained parallax is in quite good
agreement with the 0.03918˙0.0018300 after the Hip-
parcosmission [4].

Conclusion

Even when the observations seem very precise, the ob-
jective function describing the residual between the ob-
served and computed data has many local minima. As-
tronomers should be aware of that fact as they should be
aware of techniques to efficiently tackle such situations.

See also

� ˛BB Algorithm
� Continuous Global Optimization: Applications
� Continuous Global Optimization: Models,

Algorithms and Software
� Differential Equations and Global Optimization
� DIRECT Global Optimization Algorithm
� Global Optimization Based on Statistical Models
� Global Optimization Methods for Systems of

Nonlinear Equations
� Global Optimization Using Space Filling
� Topology of Global Optimization
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Introduction

The cutting angle method (CAM) is a deterministic
method for solving different classes of global optimiza-
tion problems. It is a version of the generalized cutting
plane method, and it works by building a sequence of
tight underestimates of the objective function. The se-
quence of global minima of the underestimates con-
verges to the global minimum of the objective func-
tion. It can also be seen from the perspective of branch-
and-bound type methods, which iterate the steps of
branching (partitioning the domain), bounding the ob-
jective function on the elements of the partition, and
also fathoming (eliminating those elements of the par-
tition which cannot contain the global minimum).

The key element of CAM is the construction of tight
underestimates of the objective function and their effi-
cient minimization in a structured optimization prob-
lem. CAM is based on the theory of abstract convex-
ity [23], which provides the necessary tools for building
accurate underestimates of various classes of functions.
Such underestimates arise from a generalization of the
following classical result: each convex function is the
upper envelop of its affine minorants [21]. In abstract
convex analysis, the requirement of linearity of the mi-
norants is dropped, and abstract convex functions are
represented as the upper envelops of some simple mi-
norants, or support functions, which are not necessar-
ily affine. Depending on the choice of the support func-
tions, one obtains different flavours of abstract convex
analysis.
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By using a subset of support functions, one obtains
an approximation of an abstract convex function from
below. Such one-sided approximation, or underesti-
mate, is very useful in optimization, as the global min-
imum of the underestimate provides a lower bound on
the global minimum of the objective function. One can
find the global minimum of the objective function as
the limiting point of the sequence of global minima of
the underestimates. This is the principle of the cutting
angle method of global optimization [1,2,23].

The cutting angle method was first introduced for
global minimization of increasing positive homoge-
neous (IPH) functions over the unit simplex [1,2,23].
Then it was extended to a broader class of Lipschitz pro-
gramming problems [9,25]. In this Chapter, after pro-
viding the necessary theoretical background, we will de-
scribe versions of CAM for global minimization of IPH
and Lipschitz functions over a polytope (in particular
the unit simplex), and provide details of its algorithmic
implementation.

Definitions

Notation

� n is the dimension of the optimization problem;
� I D f1; : : : ; ng;
� xi is the ith coordinate of a vector x 2 Rn ;
� xk 2 Rn denotes the k-th vector of some sequence
fxkgKkD1;

� [l ; x] D
P

i2I li xi is the inner product of vectors l
and x;

� if x; y 2 Rn then x � y, xi � yi for all i 2 I;
� if x; y 2 Rn then x � y, xi > yi for all i 2 I;
� Rn

C :D fx D (x1; : : : ; xn) 2 Rn : xi � 0 for all
i 2 Ig (nonnegative orthant);

� RC1 denotes (�1;C1];
� em D (0; : : : ; 0; 1; 0; : : : ; 0) denotes the m-th unit

orth of the space Rn .
� S D fx 2 Rn

C :
P

i2I xi D 1g (unit simplex).

Abstract Convex Functions

Let X � Rn be some set, and let H be a nonempty set
of functions h : X ! V � [�1;C1]. We have the
following definitions [23].

Definition 1 A function f is abstract convex with re-
spect to the set of functions H (or H-convex) if there

exists U � H such that:

f (x) D supfh(x) : h 2 Ug; 8x 2 X :

Definition 2 The set U of H-minorants of f is called
the support set of f with respect to the set of func-
tions H:

supp( f ;H) D fh 2 H; h(x) � f (x) 8x 2 Xg :

Definition 3 H-subgradient of f at x is a function
h 2 H such that:

f (y) � h(y)� (h(x)� f (x)); 8y 2 X :

The set of all H-subgradients of f at x is called H-
subdifferential

@H f (x) D fh 2 H : f (y) � h(y)� (h(x)� f (x));

8y 2 Xg :

Definition 4 The set @�H f (x) at x is defined as

@�H f (x) D fh 2 supp( f ;H) : h(x) D f (x)g :

Proposition 1 [23], p.10. If the set H is closed under
vertical shifts, i. e., (h 2 H; c 2 R) implies h � c 2 H,
then @�H f (x) D @H f (x).

When the set of support functions H consists of all
affine functions, then we obtain the classical convexity.
Next we examine two other examples of sets of support
functions H.

IPH Functions

Recall that a function f defined on Rn
C is increasing if

x � y implies f (x) � f (y).

Definition 5 A function f : Rn
C ! R is called IPH

(Increasing Positively Homogeneous functions of de-
gree one) if

8x; y 2 Rn
C; x � y) f (x) � f (y);

8x 2 Rn
C;8� > 0 : f (�x) D � f (x) :

Let the set H1 be the set of min-type functions

H1 D fh : h(x) D min
i2I

ai xi ; a 2 Rn
C; x 2 Rn

Cg :

Proposition 2 [23] A function f : Rn
C ! RC1 is ab-

stract convex with respect to H1 if and only if f is IPH.
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Example 1 The following functions are IPH:
1) f (x) D

P
i2I ai xi with ai � 0;

2) pk (x) D
�P

i2I x
k
i
� 1

k (k > 0);
3) f (x) D

p
[Ax; x] where A is a matrix with non-

negative entries;
4) f (x) D

Q
j2J x

t j
j where J � I; t j > 0;

P
j2J t j D

1.

It is easy to check that
� the sum of two IPH functions is also an IPH func-

tion;
� if f is IPH, then the function � f is IPH for all � > 0;
� let T be an arbitrary index set and ( ft)t2T be a fam-

ily of IPH functions. Then the function finf(x) D
inft2T ft(x) is IPH;

� let ( ft)t2T be the same family and there exists a point
y � 0 such that supt2T ft(y) < C1 then the func-
tion fsup(x) D supt2T ft(x) is finite and IPH.
These properties allow us to give two more exam-

ples of IPH functions.

Example 2 The following maxmin functions are IPH:
1)

f (x) D max
k2K

min
j2J

X
i2I

a jk
i xi

where a jk
i � 0; k 2 K; j 2 J; i 2 I. Here J and K are

finite sets of indices;
2)

f (x) D max
k2K

min
j2Jk

X
i2I

a j
i xi (1)

where a j
i � 0; j 2 Jk ; k 2 K. Here Jk and K are

finite sets of indices.
Note that an arbitrary piecewise linear function f

generated by a collection of linear functions f 1; : : : ; f m

can be represented in the form (1) (see [5]); hence an
arbitrary piecewise linear function generated by non-
negative vectors is IPH.

Let l 2 Rn
C; l ¤ 0 and I(l) D fi 2 I : li > 0g. We

consider the function x 7! hl ; xi defined by the for-
mula l(x) D hl ; xi where the coupling function h�; �i is
defined as

hl ; xi D min
i2I(l )

li xi : (2)

Here I(l) D fi 2 f1; : : : ; ng j li > 0g. This function
is called a min-type function generated by the vector

l. We shall denote this function by the same symbol
l(x). Clearly a min-type function is IPH. It follows from
Proposition 2 that:
� A finite function f defined on Rn

C is IPH if and only
if

f (x) D maxfhl ; xi : l 2 H1; l � f g ; (3)

� Let x0 2 Rn
C be a vector such that f (x0) > 0 and

l D f (x0)/x0. Then

hl ; xi � f (x)

for all x 2 Rn
C and hl ; x0i D f (x0).

The vector f (x0)/x0 is called the support vector of
a function f at a point x0.

Lipschitz Functions

Definition 6 A function f : X ! R is called Lipschitz-
continuous in X, if there exists a number M > 0 such
that

8x; y 2 X : j f (x)� f (y)j � Mjjx � yjj :

The smallest such number is called the Lipschitz con-
stant of f in the norm jj � jj1.

Let the set H2 be the set of functions of the form

H2 D fh : h(x) D a � Cjjx � bjj;

x; b 2 Rn ; a 2 R;C 2 RCg :

Proposition 3 [23] A function f : Rn ! RC1 is H2-
convex if and only if f is a lower semicontinuous func-
tion. The H2-subdifferential of f is not empty if f is Lips-
chitz.

There is an interesting relation between IPH functions
and Lipschitz functions, which allows one to formulate
the problem of minimization of Lipschitz function over
the unit simplex as the problem of minimization of IPH
functions restricted to the unit simplex.

Theorem 1 (see [23,25]). Let f : S ! R be a Lip-
schitz function and let

M D sup
x;y2S;x¤y

j f (x)� f (y)j
kx � yk1

(4)

1The norm jj � jj can be replaced by any metric, or, more gen-
erally, any distance function based on Minkowski gauge. For ex-
ample, a polyhedral distance dP (x; y) D maxf[(x � y); hi] j1 �
i � mg, where hi 2 Rn; i D 1; : : : ;m is the set of vectors that
define a finite polyhedron P D

Tm
iD1fx j [x; hi ] � 1g.
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be the least Lipschitz constant of f in k � k1-norm, where
kxk1 D

P
i2I jxi j. Assume that

min
x2S

f (x) � 2M :

Then there exists an IPH function g : Rn
C ! R such that

g(x) D f (x) for all x 2 S.

Methods

We consider the problem of global minimization of an
H-convex function f on a compact convex set D � X,

minimize f (x) subject to x 2 D : (5)

We will deal with the two mentioned cases of f being
H1-convex (IPH) and H2-convex (Lipschitz).

Generalized Cutting Plane Method

A consequence of Propositions 2 and 3 is that we can
approximateH-convex functions from below using a fi-
nite subset of functions from supp( f ;H). Suppose we
know a number of values of the function f at the points
xk ; k D 1; : : : ;K. Then the pointwise maximum of the
support functions hk 2 @�H f (xK),

HK(x) D max
kD1;:::;K

hk(x) (6)

is a lower approximation, or underestimate of f . We
have the following generalization of the classical cutting
plane method by Kelley [16].

Kmax is the limit on the number of iterations of the
algorithm. The problem at Step 2.1 is called the auxil-
iary, or relaxed, problem. Its efficient solution is the key
to numerical performance of the algorithm. For convex
objective functions,HK is piecewise affine, and the solu-
tion to the relaxed problem is done by linear program-
ming. However, when we consider other abstract con-
vex functions, like IPH or Lipschitz, the relaxed prob-
lem is not linear, but it also has a special structure that
leads to its efficient solution.

Global Minimization of IPH Functions
over Unit Simplex

In this section we present an algorithm for the search
for a global minimizer of an IPH function f over the

Step 0. (Initialisation)
0.1 Set K = 1.
0.2 Choose an arbitrary initial point x1 2 D.

Step 1. (Calculate H-subdifferential)
1.1 Calculate hK 2 @�

H f (xK).
1.2 Define HK(x) := max

k=1;:::;K
hk(x), for all x 2 D.

Step 2. (Minimize HK)
2.1 Solve the Problem

Minimize HK(x) subject to x 2 D:

Let x� be its solution.
2.2 Set K := K + 1; xK := x�.

Step 3. (Stopping criterion)
3.1 If K < Kmax and fbest � HK(x�) > � go to

Step 1.

Global Optimization: Cutting Angle Method, Algorithm 1
Generalized Cutting Plane Algorithm

unit simplex S, that is we shall study the following opti-
mization problem:

minimize f (x) subject to x 2 S (7)

where f is an IPH function defined on Rn
C. Note that

an IPH function is nonnegative on Rn
C, since f (x) �

f (0) D 0. We assume that f (x) > 0 for all x 2 S. It
follows from positiveness of f that I(l) D I(x) for all
x 2 S and l(x) D f (x)/x.

Since I(em) D fmg, then the vector l D f (em)/em

can be represented in the form l D f (em)em and

h f (em)em; xi D f (em)xm :

Remark 1 Note that HK(x) :D max
kD1;:::;K

min
i2I(l k )

l ki xi �

max
�
HK�1(x); min

i2I(l K )
l Ki xi

	
, which simplifies solution

to the auxiliary problem at Step 2.1.

This Algorithm reduces the problem of global min-
imization (7) to the sequence of auxiliary problems.
It provides lower and upper estimates of the global
minimum f * for the problem (7). Indeed, let �K D

minx2S HK(x) be the value of the auxiliary problem. It
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follows from (3) that

hl k; xi � min
i2I(l k )

l ki xi � f (x) for all x 2 S;

k D 1; : : : ;K :

Hence HK(x) � f (x) for all x 2 S and �K �

minx2S HK(x) � minx2S f (x): Thus �K is a lower es-
timate of the global minimum f *. Consider the number
�K D minkD1;:::;K f (xk) D : fbest . Clearly �K � f�,
so �K is an upper estimate of f *. It is shown in [23]
that �K is an increasing sequence and �K � �K ! 0
as K !C1. Thus we have a stopping criterion, which
enables us to obtain an approximate solution with an
arbitrary given tolerance.

Global Minimization of Lipschitz Functions

Method Based on IPH Functions By using Theo-
rem 1, global minimization of Lipschitz function over
the simplex S can be reduced to the global minimiza-
tion of a certain IPH function over S.

Let f : S ! R be a Lipschitz function and let

c � 2M �min
x2S

f (x) ; (8)

where M is defined by (4). Let f1(x) D f (x) C c. It
follows from Theorem 1 that the function f 1 can be ex-
tended to an IPH function g. The problem

minimize g(x) subject to x 2 S (9)

is clearly equivalent to the problem

minimize f1(x) subject to x 2 S : (10)

Thus we apply the cutting angle method to solve prob-
lem (10). Clearly functions f and f 1 have the same min-
imizers on the simplex S. If the constant c in (8) is
known, CAM is applied for the minimization of a Lips-
chitz function f over S with no modification. If c is un-
known, we can assume that c is a sufficiently large num-
ber, however numerical experiments show that CAM is
rather sensitive to the choice of c, in particular, when c
is very large, the method converges very slowly. In or-
der to estimate c we need to know an upper bound on
the least Lipschitz constant M and a lower estimate of
the global minimum of f .

If the feasible domain is not the unit simplex S but
a polytope, it can be embedded into S with a simple

change of variables. Solution to the constrained auxil-
iary problem in Step 2.1 of the algorithm was investi-
gated in [8].

Direct Method Consider H2-convex functions,
which, by Proposition 3 include all Lipschitz functions.
Let dP be a polyhedral distance function. As a conse-
quence of H2-convexity, we can approximate Lipschitz
functions from below using underestimates of the form

HK(x) D max
kD1;:::;K

hk(x)

D max
kD1;:::;K

( f (xk) � CdP(x; xk)) ;
(11)

where C � M, and M is the Lipschitz constant of f
with respect to the distance dP. Then we apply the Al-
gorithm 1 to function f in the feasible domain D. The
auxiliary problem as Step 2.1 becomes

minimize max
kD1;:::;K

( f (xk) � CdP (x; xk))

subject to x 2 D :

The same considerations about the convergence of
the algorithm as those for Algorithm 2 are applied. Note

Step 0. (Initialisation)
0.1 Take points xm = em , m = 1; : : : ; n. Set K = n.

0.2 Calculate l k = f (xk)/xk , k = 1; : : : ;K:

Step 1. (Calculate H-subdifferential)
1.1 Define HK(x) := max

k=1;:::;K
min
i2I(l k )

l ki xi , for all

x 2 S.

Step 2. (Minimize HK)
2.1 Solve the Problem

Minimize HK(x) subject to x 2 S:

Let x� be its solution.
2.2 Set K := K + 1; xK := x�.
2.3 Compute l K = f (xK)/xK

Step 3. (Stopping criterion)
3.1 If K < Kmax and fbest � HK(x�) > � go to

Step 1.

Global Optimization: Cutting Angle Method, Algorithm 2
Cutting Angle Algorithm for IPH functions
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that in the univariate case the underestimate HK in (11)
is exactly the same as the saw-tooth underestimate in
Piyavski-Shubert method [20,26] if dP is symmetric.

For minimization of Lipschitz functions, an esti-
mate of the Lipschitz constant is required in both cases,
when transforming f to an IPH function, or using Al-
gorithm 1 directly. The crucial part in both methods is
the efficient solution to the auxiliary problem in Step
2.1. The next section presents a very fast combinato-
rial algorithm for enumeration of all local minimizers
of functions HK .

The Auxiliary Problem

The Step 2.1 (find the global minimum of HK(x)) is
the most difficult part of the cutting angle method. This
problem is stated in the following form:

minimize HK(x) subject to x 2 S (12)

where

HK(x) D max
k�K

min
i2I(l k )

l ki xi D max
k�K

hk(x) ; (13)

K � n, l k D f (xk)/xk are given vectors, k D 1; : : : ;K.
Note that xk D ek ; k D 1; : : : ; n:

Proposition 4 [2,3] Let K > n, l k D l kk e
k ; k D

1; : : : ; n; l k > 0; jI(l k)j � 2; k D n C 1; : : : ;K.
Then each local minimizer of the function HK(x) defined
by (13) over the simplex S is a strictly positive vector.

Corollary 1 Let {xk} be a sequence generated by Algo-
rithm 2. Then xk � 0 for all k > n.

Let ri(S) D fx 2 S : xi > 0 for all i 2 Ig be the relative
interior of the simplex S. It follows from Proposition 4
and Corollary 1 that we can solve the problem (12) by
sorting the local minima of the functionHK over the set
ri (S). We now describe some properties of local min-
ima ofHK on ri (S), which will allow us to identify these
minima explicitly.

It is well known that functions hk and HK are direc-
tionally differentiable. Let f 0(x; u) denote directional
derivative of the function f at the point x in the direc-
tion u. Also let

R(x) D fk : hk(x) D HK(x)g ;

Qk(x) D fi 2 I(l k) : l ki xi D hk(x)g :
(14)

Proposition 5 (see, for example, [13]). Let x � 0.
Then

(hk)0(x; u) D min
i2Qk (x)

l ki ui ;

(HK)0(x; u) D max
k2R(x)

(hk)0(x; u) D max
k2R(x)

min
i2Qk (x)

l ki ui :

Let x 2 S. The cone

K(x; S) D fu 2 Rn : 9˛0 > 0

such that x C ˛u 2 S 8˛ 2 (0; ˛0)g

is called the tangent cone at the point x with respect to
the simplex S. The following necessary conditions for
a local minimum hold (see, for example, [13]). Suppose
x 2 ri(S). Then K(x; S) D fu :

P
i2I ui D 0g:

Proposition 6 Let x 2 S be a local minimizer of the
function HK over the set S. Then (HK)0(x; u) � 0 for all
u 2 K(x; S).

Applying Propositions 5 and 6 we obtain the following
result.

Proposition 7 [2,3] Let x � 0 be a local minimizer of
the function HK over the set ri (S), such that HK(x) > 0.
Then there exists an ordered subset fl k1 ; l k2 ; : : : ; l kng of
the set fl1; : : : ; l Kg such that
1)

x D

 
d
l k11
; : : : ;

d
l knn

!
where d D

1P
i2I

1
l kii

; (15)

2)

max
k�K

min
i2I(l k )

l ki
l k ii
D 1; (16)

3) Either ki D fig for all i 2 I or there exists m 2 I
such that km � nC 1; if km � n then km D m;

4) if km � n C 1 and l kmi ¤ 0 then l kmi > l k ii for all
i 2 I; i ¤ m :

Solution of the Auxiliary Problem

It follows from Propositions 4 and 7 that we can find
a global minimizer of the function HK defined by (13)
over the unit simplex using the following procedure:
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� sort all subsets fl k1 ; : : : ; l kng of the given set
l1; : : : ; l K vectors, such that (16) holds and l kmi >

l k ii ; i ¤ m if km � nC 1; i 2 I(l km ) and km D m if
km � n;

� for each such subset, find the vector x defined
by (15);

� choose the vector with the least value of the function
HK among all the vectors described above.
Thus, the search for a global minimizer is reduced

to sorting some subsets, containing n elements of the
given set fl1; : : : l Kg with K > n. Fortunately, Proposi-
tion 7 allows one to substantially diminish the number
of sorted subsets.

The subsets L D fl k1 ; : : : ; l kng can be visualized
with the help of an n � n matrix whose rows are given
by the participating support vectors

L D

0
BBBB@

l k11 l k12 : : : l k1n
l k21 l k22 : : : l k2n
:::

:::
: : :

:::

l kn1 l kn2 : : : l knn

1
CCCCA
: (17)

The conditions 2) and 4) of Proposition 7 are then easily
interpreted as follows. Condition 4) implies that the di-
agonal elements of matrix L are smaller than elements
in their respective columns, and condition 2) implies
that the diagonal of L is not dominated by any other
support vector l k 62 L (zero entries of matrix L are ex-
cluded from compaisons). Thus we obtain a combina-
torial problem of enumerating all combinations L that
satisfy conditions 2) and 4).

However it is impractical to enumerate all such
combinations directly for large K. Fortunately there is
no need to do so. It was shown in [6,7,8] that the re-
quired combinations can be put into a tree structure.
The leaves of the tree correspond to the local minimiz-
ers of HK , whereas the intermediate nodes correspond
to the minimizers of Hn ;HnC1; : : : ;HK�1.The incre-
mental algorithm based on the tree structure makes
computations very efficient numerically (as processing
of queries using trees requires logarithmic time of the
number of nodes). It is possible to enumerate several
billions of local minimizers of HK (e. g., when n D 5
and K D 100; 000) in a matter of seconds on a standard
Pentium IV based workstation.

The direct method of minimization of Lipschitz
functions involves solution to a different auxiliary prob-

lem, that of minimizing HK given in (11), with dP being
a simplicial distance function. It turns out that a very
similar method of enumeration of local minimizers of
HK , by putting them in a tree structure, also works [9].
There is a counterpart of Proposition 7, with the differ-
ence that the support vectors are defined by

l ki D
f (xk)
C
� xk

i ; (18)

and the local minima and minimizers of HK are identi-
fied through

d D HK(x�) D
C(Trace(L)C 1)

n
;

x�i D
d
C
� l k ii ; i D 1; : : : ; n;

(19)

where constant C is chosen greater or equal to the Lips-
chitz constantM of f in the simplicial distance dP. Thus
both versions of CAM, for IPH and for Lipschitz func-
tions, share the same algorithm, but with different defi-
nitions of support vectors.

The actual algorithms for enumeration of local
minima of HK and maintaining the tree structure, as
well as treatment of linear constraints, are presented
in [7,8,9]. The algorithms involve a crucial fathoming
step, and can be seen as branch-and-bound type algo-
rithms [9,12,23].

Conclusions

Cutting angle methods are versions of the general-
ized cutting plane method for IPH, Lipschitz and other
classes of abstract convex functions. The main idea
of this deterministic method is to replace the original
problem of minimizing f with a sequence of relaxed
problems with special structure. The objective func-
tions in the relaxed problems provides tight lower esti-
mates of f , and the sequence of their solutions converge
to the global minimum of f . Efficient solution to the re-
laxed problemmakes CAM very fast on a class of global
optimization problems.

Optimization is not the only field such underesti-
mates are applied. Versions of CAM are also used for
non-uniform random variate generation [10] and mul-
tivariate data interpolation [11].

Both versions of CAM described here have been
successfully applied to a number of real life problems,
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including very difficult molecular geometry prediction
and protein folding problems [12,17]. A software li-
brary GANSO for global and non-smooth optimiza-
tion, which includes the cutting angle method, is avail-
able from http://www.ganso.com.au.
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generalization is based on the so-called envelope repre-
sentation of the objective function.

We begin with the simplest case of a convex differ-
entiable function f in order to introduce this approach.
For such a function the tangent hyperplane T = {xr
f (y)(x � y)+ f (y) = 0} is simultaneously a support hy-
perplane. That is, the inequality f (x) � f (y)+ r f (y)(x
� y) holds for each x. This inequality can be expressed
also in the following form: the affine function

hy(x) D r f (y)(x � y)C f (y) (1)

is a support function for the function f . Thus the func-
tion f can be represented as the pointwise maximum of
the functions of the form hy:

f (x) D max
y

hy(x):

One of the main results of convex analysis asserts that
an arbitrary lower semicontinuous convex function f
(perhaps admitting the value +1) is the upper envelope
(UE) of the set of all its affine minorants:

f (x) D sup
�
h(x) : h is an affine function;

h � f

	
:

(The inequality h � f stands for h(x) � f (x) for all x.)
The supremum above is attained if and only if the sub-
differential of f at the point x is nonempty. Since affine
functions are defined by means of linear functions, one
can say that convexity is‘linearity + envelope represen-
tation’.

As it turns out the contribution of‘envelope repre-
sentation’ to the convexity is fairly large. This obser-
vation stimulated the development of the rich theory
of‘convexity without linearity’. (See [12,14,19] and ref-
erences therein.) In particular, functions which can be
represented as UE of subsets of a set of sufficiently sim-
ple functions are studied in this theory.

We need the following definition. Let H be a set of
functions. A function f is called abstract convex (AC)
with respect toH (orH-convex) if f is the UE of a subset
from H, that is

f (x) D sup fh(x) : h 2 H; h � f g : (2)

The set H is called the set of elementary functions.
For applications we need sufficiently simple elementary
functions.

Many results from convex analysis related to var-
ious kinds of convex duality can be extended to ab-
stract convex analysis Abstract convexity sheds some
new lights to the classical Fenchel–Moreau duality and
the so-called level sets conjugation (see [19]). The set s(f ,
H) = {h 2 H:h � f }, presented in (2), is called the sup-
port set of f . The mapping f 7�! s(f , H) is called the
Minkowski duality ([9]). The support set accumulates
a global information of a function f in terms of the set of
elementary functionsH and it can be useful in the study
of global optimization problems involving the function
f .

One of the main notions of convex analysis, which
plays the key role for applications to optimization, is
the subdifferential. There are two equivalent definitions
of the subdifferential of a convex function. The first of
them is based on the global behavior of the function.
A linear function l is called a subgradient (i. e. a mem-
ber of the subdifferential) of the function f at a point y
if the affine function h(x) = l(x)� (l(y)� f (y)) is a sup-
port function with respect to f , that is h(x) � f (x) for
all x. The second definition has a local nature and is
connected with local approximation of the function: the
subdifferential is a closed convex set of linear functions
such that the directional derivative u 7�! f 0x (u) at the
point x is presented as the UE of this set. For a differen-
tiable convex function these two definitions reflect re-
spectively support and tangent sides of the gradient.

The various generalizations of the second definition
have led to development of the rich theory of nons-
mooth analysis. The natural field for generalizations of
the first definition is AC.

A function h 2 H is called the subgradient (or H-
subgradient) of an H-convex function f at a point y if
f (x)� h(x)� (h(y)� f (y)) for all x. The set @H f (y) of all
subgradients of f at y is referred to as the subdifferential
of the function f at the point y.

Let H0 be the closure of the set H under vertical
shifts, that is

H0 D
�
h0 : h0(x) D h(x) � c;

h 2 H; c 2 R

	
:

Clearly h 2 @H0 f (y) if and only if f (y) = max{h0(y):h0 �
f , h0 2H0}. Thus ifH is already closed under shifts then

@H f (y) D fh 2 s( f ;H) : h(y) D f (y)g : (3)
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Thus the subdifferential is not empty if and only if the
supremum in (2) is attained.

Sometimes (3) is used for the definition of the sub-
differential for an arbitrary set of elementary functions
H (not necessary closed under shifts).

Many methods of convex minimization are based
on the local properties of the convex subdifferential
(more precisely, on the directional derivative). How-
ever there are some methods which exploit only the
support property of the subdifferential. The conceptual
schemes of these methods can be easily extended for AC
functions. One of these methods is presented below.

Consider the following problem

f (x)! min; x 2 X; (4)

where X is a compact set. Assume that f is AC with re-
spect to a set of elementary functions H. We consider
the following algorithm based on the generalized cut-
ting plane idea, which is a nonlinear generalization of
the classical cutting plane method.

0 Let k := 0: Choose an arbitrary initial point x0 2
X;

1 Calculate a subgradient in the form (3) that is an
element hk 2 s( f ;H) such that hk(xk) = f (xk);

2 Find a global optimum y� of the problem

max
0�i�k

hi(x)! min; x 2 X. (5)

3 Let xk+1 = y�; k := k + 1. Go to step 1:

Conceptual scheme (generalized cutting plane method)

Convergence of the sequence constructed by this
procedure to a global minimizer has been proved under
very mild assumptions by D. Pallaschke and S. Rolewicz
[12]. Upper and lower estimates of the optimal value of
the problem (4) can be computed, which lead to an ef-
ficient stopping criterion (compare with [2]).

There are two major difficulties in the numerical
implementation of the Algorithm. The first is the cal-
culation of a subgradient. In general it is very difficult
to find it numerically, however it is possible in several
important particular cases. The second difficulty is the
solution of the auxiliary problem (5). This is a linear

programming problem in the case of the set H of affine
functions, but for sets of more complicated functions
the problem (5) is essentially of a combinatorial nature
or a problem of convex maximization.

The simplest example of this approach is Lipschitz
programming. If f is a Lipschitz function we can, for ex-
ample, take as H the set of functions h of the form h(x)
= � a kx � xok � c, where a is a positive and c is a real
number, xo 2 X. In order to find an H-subgradient we
should take a > L where L is the Lipschitz constant of
the function f ; thus we need to know an upper estimate
of this constant; this is a special piece of global infor-
mation about this function. With such H the problem
(4) can be reduced to a sequence of special problems of
concave minimization. Some known algorithms of Lip-
schitz programming fall within the described approach
[11,21].

For fairly large classes of functions defined on the
cone Rn

C of all n-vectors with nonnegative coordinates
it is possible to take as H a set of functions which in-
cludes as its main part a min-type function of the form

l(x) D min
i2T (l )

li xi ; x 2 Rn
C;

with T (l) D fi : li > 0g :
(6)

We define the infimum over empty set to be zero. If l is
a strictly positive vector and c a positive number then
the set {x: mini lixi � c} is a complement to a ‘right
angle’. Exploiting min-type functions instead of linear
functions allows us to separate a point from the (not
necessary convex) set by the complements of ‘right an-
gles’.

Various classes of elementary functions arise, based
on the set L of all functions of the form (6) with l 2 Rn

C.
In particular, L itself and sets

H1 D fh : h(x) D l(x) � c; l 2 L; c 2 Rg ;

H2 D fh : h(x) D min(l(x); c); l 2 L; c 2 Rg

are convenient for applications. The classes of AC with
respect toH1 andH2 functions are quite large [14]. The
first of them consists of all increasing (with respect to
the usual order relation) functions f such that the func-
tion of a real variable t ! f (tx), t 2 [0, +1), is con-
vex for all x 2 Rn

C. This class contains all homogeneous
functions of degree ı � 1, their sums and UE of sets of
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such functions. In particular it contains all polynomials
with nonnegative coefficients. The second class consists
of all increasing functions f such that f (tx) � tf (x) for
all x 2 Rn

C and t 2 [0, 1]. Concave increasing functions
f with f (0) � 0 and UE of sets of such functions belong
to this class. Also, positively homogeneous functions of
degree ı � 1, their sums and UE of sets of such func-
tions belong to it.

For minimizing AC functions with respect to Hi (i
= 1, 2) we need again to calculate the Hi-subgradients
in the form (5) and then to reduce the problem (4) to
a sequence of auxiliary problems. A version of the gen-
eralized cutting plane method in such a case is called
‘cutting angle method’ ([2,14]).

A.M. Rubinov et al. ([1,14,16,17]) have demon-
strated that for AC functions generated by various
classes of min-type functions it is possible to find sub-
gradients very easily. In particular, only the number
f (x) (resp. f 0(x, x)) is required for the calculation of an
element of @H2 f (x) (resp. @H1 f (x)), without any addi-
tional information about a global behavior of the func-
tion f . Thus the main problem with implementation of
the cutting angle method is to solve the auxiliary sub-
problem, which is a problem of the mixed integer pro-
gramming of a special kind in this case.

Let L be the set of all functions (6) with l 2 Rn
C. It

can be shown ([14,16]) that a function f defined on Rn
C

is L-convex if and only if f is IPH (increasing and pos-
itively homogeneous of degree one).IPH functions can
serve for the miminization of a Lipschitz function over
the unit simplex Sn = {x 2Rn

C:
P

ixi = 1}. First ([14,15]),
for each Lipschitz function g defined on Sn there exists
a constant c>0 such that the functioneg(x) D g(x)C c
can be extended to an IPH function defined on Rn

C. Sec-
ond, the auxiliary problem (5) for problem (4) with an
IPH function f and X = Sn, has a special structure and
can be efficiently solved for fairly large n (see [14, Chap.
9] and references therein). Thus, the minimization of
a Lipschitz function over the unit simplex can be effi-
ciently accomplished by the cutting angle method.

Numerical experiments demonstrate that a combi-
nation of the cutting angle method with a local search
is very efficient, since the cutting angle method allows
one to leave a local minimizer fairly quickly.

Envelope representation is useful also in the study
of some theoretical problems arising in optimization.
Many interesting examples of such applications can be

found in the books [12,14,19]. In particular, a general
scheme of penalty and augmented Lagrangian based on
the notion of the subdifferential is presented in [12]. I.
Singer [19] demonstrated that Fenchel–Moreau duality
leads to a unified theory of duality results for very gen-
eral optimization problems. It can be shown [18] that
AC forms the natural framework for the study of solv-
ability theorems (generalizations of Farkas’ lemma; cf.
� Farkas lemma;� Farkas lemma: Generalizations). In
contrast with numerical methods based on applications
of subdifferentials, the study of solvability theorems is
based on application of support sets. AC serves also for
the study of some problems of quasiconvex minimiza-
tion (see for example [10,13,20]).

A subsetH of a set X of functions is called the supre-
mal generator ([9]) of X if each function from X is AC
with respect to H. There exist very small supremal gen-
erators of very large classes of functions. The following
two examples of such supremal generators are useful for
nonsmooth optimization.
1) Recall that a function f is called positively homoge-

neous (PH) of degree k if p(�x) = �kp(x) for � > 0.
It can be shown ([14]) that the set of all functions of
the form

h(x) D �a

 nX
iD1

x2i

! 1
2

C

nX
iD1

li xi ; (7)

where a � 0, l1, . . . , ln are real numbers is a supre-
mal generator of the set PH1 of all lower semicon-
tinuous PH functions of degree one defined on n-
dimensional space Rn. Since each function (7) is
concave it follows that the set of all concave PH func-
tions of degree one is a supremal generator of PH1.

2) It can be shown ([3,4,9,14]) that the set H of all
quadratic functions h of the form

h(x) D �a
nX

iD1

x2i C
nX

iD1

li xi C c; (8)

where a � 0, l1, . . . , ln, c are real numbers is a supre-
mal generator of the set of all lower semicontinuous
functions f :Rn ! R [ {+1} minored by H in the
following sense: there exists h 2H such that f � h.

Supremal generators are a convenient tool in the study
of nonsmooth optimization problems. A local approxi-
mation of the first (resp. second) order of a nonsmooth
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function is fulfilled very often by various kinds of gen-
eralized derivatives of the first (resp. second) order,
which are PH functions of the first (resp. second) de-
gree. Practical applications of these derivatives to opti-
mization are based on their representation in terms of
linear (resp. quadratic) functions.

Linearization of lower semicontinuous PH func-
tions of the first degree can be accomplished by supre-
mal generators of the space PH1, consisting of concave
functions. Each finite concave function g 2 PH1 can be
presented as min

n
l(x) : l 2 @g(0)

o
where @g(0) is the

superdifferential (in the sense of convex analysis) of this
function g at the origin. Hence each function g 2 PH1

can be linearized by the operation sup min.
The second order approximation of a nonsmooth

function f at a point x can be accomplished by the sub-
jet, that is the set

@2;� f (x)

D

8<
:(r g(x);r

2g(x)) :
f � g has a

local minimum x
with g 2 C2(Rn)

9=
; :

(Here r g(x) (resp. r2 g(x)) stands for the gradient
(resp. Hessian) of a function g at a point x.) LetH be the
set of all functions of the form (8). It can be shown (see
[5,6]) that the subjet @2,�f (x) is nonempty if and only if
theH-subdifferential @H f (x) is not empty. AC with re-
spect toH can also serve for supremal representation of
the second order generalized derivatives of nonsmooth
functions in terms of quadratic functions (see[5]).

See also

� Dini and Hadamard Derivatives in Optimization
� Nondifferentiable Optimization
� Nondifferentiable Optimization: Cutting Plane

Methods
� Nondifferentiable Optimization: Minimax Problems
� Nondifferentiable Optimization: Newton Method
� Nondifferentiable Optimization: Parametric

Programming
� Nondifferentiable Optimization: Relaxation

Methods
� Nondifferentiable Optimization: Subgradient

Optimization Methods
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Introduction

The filled function methods describe a class of global op-
timization methods for attacking the problem of find-
ing a global minimizer of a function f : X ! < over
a certain subset X � <n . Each variant of such meth-
ods replaces the objective function f (x) by a specific
auxiliary function that is associated with a local min-
imum and some parameters in every iteration, and is
minimized through some local search strategies. The
term “filled function” means that every auxiliary func-
tion can fill the region of attraction at a certain neigh-
borhood of a local minimum of the objective function.

The definition of a filled function involves some
basic concepts. The term “basin” was introduced first
in [1]. A basin of a function f (x) at an isolated min-
imizer x�1 denotes a connected domain B�1 which con-
tains x�1 and in which starting from any point the steep-
est descent trajectory of f (x) converges to x�1 , but out-
side of which the steepest descent trajectory of f (x) does
not converge to x�1 . Accordingly, a hill of a function f (x)
at a maximizer x�1 is a basin of � f (x) at the point x�1 .

In addition, the basin B�2 at a minimizer x�2 is lower
(or higher) than the basin B�1 at another minimizer x�1
if the following inequality holds:

f (x�2 ) < f (x�1 ) (or f (x�2 ) � f (x�1 )) :

Definitions

The first kind of filled function method was proposed
in [5] for the unconstrained optimization problem

min
x2<n

f (x) :

The corresponding filled function involved two param-
eters, and was defined by

P(x; x�1 ; r; �) D
1

rC f (x)
exp

�
�
kx � x�1 k2

�2

�
; (1)

where x�1 is a minimizer of the objective function f (x),
and r and � are parameters such that rC f (x�1 ) > 0; � >
0. In order to demonstrate the principle of the filled
function method, people usually assume that the func-
tion f (x) is twice continuously differentiable and coer-
cive, i. e., its Hessian is continuous and the following
condition holds:

lim
kxk!C1

f (x) D C1 : (2)

It is also assumed that the function f (x) has only a finite
number of minimizers in a closed domain˝ � <n that
contains all global minimizers of f (x).

Under certain other conditions concerning the pa-
rameters r and �, the function P(x; x�1 ; r; �) defined
in (1) has three properties as follows:
(a) x�1 is a maximizer of P(x; x�1 ; r; �) and the whole

basin B�1 at x�1 becomes a part of a hill of
P(x; x�1 ; r; �) at x�1 .

(b) P(x; x�1 ; r; �) has no minimizers or saddle points in
any higher basin of f (x) than B�1 at x�1 .

(c) f (x) has a lower basin B than B�1 at x�1 , then there
is a point x0 in such a basin B that minimizes
P(x; x�1 ; r; �) on the line through x0 and x�1 .

A function satisfying the above three properties is said
to be a filled function of f (x) at the local minimizer x�1 .
Note that the above definition just lists the main prop-
erties required for a filled function, in which the num-
ber of parameters is not an important factor (see the
discussion about categories of filled functions below).
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Usually, when people develop a variant of the filled
function method, property c in the above definition
may be replaced by a similar one. For example, it was
replaced in [21] by

(c1) If f (x) has a basin B�2 at x�2 that is lower than
B�1 , then there is a point x0 2 B�2 that minimizes
P(x; x�1 ; r; �) on the line through x�1 and x00, for
every x00 in some neighborhoods of x�2 .

Note that property c1 is much stronger than that re-
quired in [5] since aminimizer is required for lines con-
necting the current minimizer with every point in some
neighborhoods of a next better minimizer.

In addition, for the unconstrained global optimiza-
tion problem, in [16] two classes of continuously dif-
ferentiable filled functions with multiplicative and ad-
ditive structures, respectively, were proposed which as-
sumed the existence of a local minimizer in a lower
basin but not just on lines.

Under such assumptions as the objective function
f : <n ! < is coercive, continuously differentiable and
has finite local minimizers, another stronger variant of
the filled functions can be found in [18], where the con-
cept of a basin at a local minimizer was extended to that
of a G-basin. A subset B� � <n is said to be a G-basin
of f (x) corresponding to a local minimizer x� if it is
a connected domain with the following properties:

(i) f (x) � f (x�) for any x 2 B�;
(ii) x̄ 2 B� is a local minimizer of f (x) if and only if

f (x̄) D f (x�).
The definition in [18] requires that a filled function

p(x) is differentiable and satisfies some modifications of
conditions a and b as follows:

(a0) x�1 is a strictly local maximizer of p(x).
(b0) For any x ¤ x� satisfying f (x) � f (x�), x is not

a stationary point of p(x).
Furthermore, any lower local minimizer x̄ of f (x) than

a nonglobal minimizer x� is also a local minimizer of
the filled function and is lower than every point on the
boundary of the box set ˝ which contains all global
minimizers of f (x). For points higher than x� in˝ , the
farther they are from x� implies a lower value of the
filled function.

Recently, in order to take advantages of filled func-
tions and reduce the difficulty in adjusting the value of

parameters, the concept a locally filled function was in-
troduced in [9,22], which was based on the concept of
a local basin.

Given a bounded and closed convex set ! � ˝ and
a basin B1 of the objective function f (x) at a local mini-
mizer x�1 , if the set

B1(!) :D ! \ B1 ¤ ; ;

then B1(!) is called a local basin associated with x�1
and !. Furthermore, a continuously differential func-
tion P(x) is said to be a locally filled function associated
with ! at a local minimizer x1� of f (x) if the following
conditions hold:

(a2) x�1 is an interior point of ! and a strict local max-
imizer of P(x).

(b2) If B1(!) is a local basin containing the point x�1 ,
then P(x) does not have any local minimizer or
saddle point in B1(!).

(c2) If there exist local basins lower than B1(!), then
at least one of such local basins, e. g., B2(!), sat-
isfies the following condition: There is a point
x2 2 B2(!) such that P(x) decreases strictly along
the segment connecting x�1 and x2, that is,
P((1 � ˛)x�1 C ˛x2) is decreasing strictly with re-
spect to ˛ 2 [0; 1].

In [9,22], the difference between a filled function and
a locally filled function was illustrated by such a func-
tion y D f (x) defined on the interval [–0.5,0.5] as

f (x) D z1(sin(12x)C 1:5) ;

where the variable z1 was defined by

z1 D log(z2 C 10�5)C 10 ;

z2 D

 �
x �

1
4

�2 �
x C

1
4

�2

C 10�4
!
x2 :

Note that x� D 0:2366 is one of its local minimizers. An
auxiliary function

Q(x; x�;A) D �[ f (x)� f (x�)] exp
�
Akx � x�k2

�

does not satisfy the definition of the filled function on
[–0.5,0.5] for the parameter A D 16, but it satisfies all
conditions associated with a locally filled function for
the parameter A D 16 and the choice of the interval
! D [�0:1; 0:3].
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Methods

If the objective function f : <n ! < is coercive, then
its global minimizer can be found in a suitable large
bounded closed set ˝ � <n which should be explored
completely. In general, let us denote the feasible re-
gion for minimizing f : X � <n !< by ˝ , and as-
sume that for any point x 2 @˝, f (x) > miny2˝ f (y).

The basic outline of filled function methods can be
described as follows:

Step 1 Choose an initial point x1 2 ˝ . Denote the
maximum of the iteration number and the index of
the iterative process by Iter_No and k, respectively.
Set k D 0.

Step 2 Minimize the function f (x) in ˝ starting from
the point x1 2 ˝ and obtain a local minimizer x�1
of f (x). Denote the basin of the objective function f
at x�1 by B�1 .

Step 3 Choose two suitable parameters r and �, and
construct a filled function P(x; x�1 ; r; �) associated
with x�1 and f , for example, which is defined by (1).

Step 4 Minimize the filled function P(x; x�1 ; r; �) and
find another point x2 in a lower basin B�2 of f than
B�1 if such a point x2 exists for a suitable choice of
parameters r and �.

Step 4.1 If a lower basin B�2 of f than B�1 at x�1 is found,
then a new local minimizer x�2 can be obtained by
any local search strategy. Furthermore, perform the
replacement of variables such as

x�2 ! x�1 ; B�2 ! B�1 ; k C 1! k ;

and go to step 3 (The method continues searching
for a global minimum by minimizing another filled
function corresponding to the local minimizer x�2 ).

Step 4.2 Otherwise, either the parameters should be
adjusted again by an internal updating strategy, or
no better local minimizer than x�1 can be found
in˝ .

Step 5 If the iterative index k > Iter_No, or no better
local minimizer of f can be found in ˝ , the cur-
rent best local minimizer will be regarded as a global
minimizer of f in˝ .

In the above outline of filled function methods, how to
choose parameters in a filled function is an important
issue, and it may be implemented through an internal

iterative process for minimizing P(x; x�1 ; r; �) approx-
imately in order to find a lower basin of f or an in-
creasing direction x̄ � x�1 for P(x; x�1 ; r; �) at a point
x̄. An algorithmic implementation and some practical
considerations can be found in [5].

Until now people have proposed many kinds of
filled functions, for which some are general, while many
others are specific [3,5,6,7,8,10,11,12,13,14,15,17,20,
21,23]. These filled functions can be classified into four
categories.

Two-Parameter Filled Functions

A two-parameter filled function was presented in (1).
Although the first filled function method was proposed
to deal with unconstrained optimization problems, the
two-parameter filled function method had been ex-
tended to find a constrained global minimizer [3].

The constrained optimization problem can be for-
mulated as follows:

Minimize f (x);

subject to gi(x) � 0; i 2 I ;
hj(x) D 0; j 2 E ;

(3)

where I and E are indices sets corresponding to
inequalities and equalities, respectively. The two-
parameter filled function for problem (3) is defined by

PF(x; x�1 ; r; �) D
1

rC F(x)
exp

�
�
kx � x�1 k2

�2

�
; (4)

where

F(x) D f (x)C
X
i2I
�i maxf0;�gi(x)gC

X
j2E

� j jhj(x)j

(5)

is an exact penalty function for the constrained mini-
mization problem (3), and � 2 <jIjCC, � 2 <

jEj
CC. Since

the function defined by (4) is a nonsmooth filled func-
tion, the definitions such as basin and filled function
should be modified accordingly, see [3].

Two-parameter filled functions have two disadvan-
tages. One is that the changes of both the filled function
and its gradient (if available) are affected by the term
exp(�kx � x�1 k2/�2). When kx � x�1 k2 is large, it is dif-
ficult to distinguish these changes, so some pseudo-
minimizers, or saddle points or higher minimizers of
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the filled functions may be located. The other is that
the coordination between r and � is very difficult; even
a global minimizer x� may be lost for an improper set-
ting of parameters.

Several modified two-parameter filled functions
were proposed in [7] as follows:

P̃(x; x�1 ; r; �) D
1

rC f (x)
exp

�
�
kx � x�1 k

�2

�
;

G(x; x�1 ; r; �) D ��
2 log[rC f (x)]� kx � x�1 k

2 ;

G̃(x; x�1 ; r; �) D ��
2 log[rC f (x)]� kx � x�1 k :

A more general form of filled functions with two pa-
rameters can be found in [20]:

P(x; r;A) D  (rC f (x))exp(�Aw(kx� x�k k
ˇ )) ; (6)

where ˇ � 1, A > 0, the parameter r is chosen such
that r C f (x) > 0 for all x 2 ˝ , and the functions
 (t); w(t) have the following properties:

(i)  (t) and w(t) are continuously differentiable for
t 2 (0;C1).

(ii) For t 2 (0;C1),  (t) > 0;  0(t) < 0 and
 0(t)/ (t) is monotonically increasing.

(iii) w(0) D 0 and for any t 2 (0;C1), w(t) > 0;
w0(t) � c > 0.

Note that choices for the functions  (t) and w(t)

can be 1/ta(a > 0), csch(t), exp (1/t) � 1; : : : and
t; sinh(t); et � 1; : : :, respectively. The general form of
filled functions in (6) includes the class of generalized
filled functions considered in [24], which are special
two-parameter filled functions.

Since the above filled functions may tend to zero
or –1 as kxk ! C1 for some objective functions f (x)
or F(x), they do not approximate a coercive objective
function properly. In such a case, a coercive filled func-
tion may be preferred. In [8] the concept of a globally
convexized filled function for a twice continuously dif-
ferentiable function f : ˝ ! < was introduced.

A continuous function U(x) is a globally convexized
filled function if it has three properties:

(a) U(x) has no stationary point in the region

S1 D fx j f (x) � f (x�1 ); x 2 ˝g ;

except a prefixed point x0 2 S1 that is a minimizer
of U(x).

(b) U(x) has a minimizer in the region (if it exists)

S2 D fx j f (x) < f (x�1 ); x 2 ˝g :

(c) lim
kxk!C1

U(x) D C1.

Two successful globally convexized filled functions can
be found in [8] as follows:

U1(x; x�1 ; x0;A; h) D kx � x0k
� arctanfA[ f (x)� f (x�1 )C h]g ;

U2(x; x�1 ; x0;A; h) D kx � x0k

� tanhfA[ f (x)� f (x�1 )C h]g :

In general, such globally convexized filled functions
may be expressed by

U(x; x�1 ; x0;A; h) D �(kx�x0k)�(A[ f (x)� f (x
�
1 )Ch])

for a large enough A > 0 and a suitable parameter h
such that

0 < h < f (x�1 ) � f (x�) ;

where x� is a global minimizer of f (x), x�1 is not a global
but is a local minimizer of f (x), and �(t) and '(t) are
continuously differentiable univariate functions satisfy-
ing the following conditions [8]:

(i) �(0) D 0, �0(t) � ˛ > 0;8t � 0.
(ii) �(0) D 0, �(t) is monotonically increasing for all

t 2 < (or for t 2 (�t1;C1), where t1 > 0).
(iii) �0(t) > 0;8t 2 < (or �0(t) > 0;8t 2 (�t1;C1),

where t1 > 0).
(iv) When t !C1, �0(t) is monotonically decreas-

ing to 0 at least as fast as 1/t.
Note that choices for these two functions can be t,

tan(t), et � 1; : : : for �(t) and arctan t; tanh(t); 1 �
e�t ; : : : for �(t).

Single-Parameter Filled Functions

In order to reduce the difficulty in coordination be-
tween r and � in a two-parameter filled function, several
single-parameter filled functions were proposed in [7]:

Q(x; x�1 ;A) D �[ f (x) � f (x�1 )] exp
�
Akx � x�1 k

2� ;
Q̃(x; x�1 ;A) D �[ f (x) � f (x�1 )] exp

�
Akx � x�1 k

�
;

rE(x; x�1 ;A) D �r f (x) � 2A[ f (x)� f (x�1 )](x � x�1 );

r Ẽ(x; x�1 ;A) D �r f (x) � A[ f (x)� f (x�1 )]
x � x�1
kx � x�1 k

:
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More and more single-parameter filled functions
appeared afterwards. For example,

H(x; x�1 ; a) D
1

ln[1C f (x) � f (x�1 )]
� akx � x�1 k

2

was proposed in [11], which is defined only for the re-
gion where f (x) � f (x�1 ) � 1. The L function

L(x; x�1 ; a) D ��kx � x�1 k
2 � [ f (x) � f (x�1 )]

1/m

and the mitigated L2 function

ML2(x; x�1 ; a) D ��
�

1
kx � x�1 kp

�
�[ f (x)� f (x�1 )]

1/m

were proposed in [12] and [13], respectively, where
m > 1 is a prefixed natural number, � is a positive pa-
rameter, and ' is a mitigator. A function y : < ! < is
said to be amitigator if it is a twice continuously differ-
entiable function in its domain and has the following
properties:
(i) y(0) D 0, y0(t) > 0, and y00(t) < 0 for all t > 0.
(ii) lim

t!C1
y(t) exists.

Note that the ML2 function can reduce the negative
definite effect in the Hessian of a single-parameter
filled function such as the L function significantly. The
numerical results and generalizations can be found
in [12,13,14,15].

A more general form for the single-parameter filled
functions can be expressed by

Q(x;A) D ��( f (x)� f (x�k ))exp(Aw(kx � x�k k
ˇ )) ;

where ˇ � 1, A > 0, and the functions '(t) and w(t)
have the following properties [20]:

(i) '(t) is continuously differentiable for t � 0.
(ii) �(0) D 0, �0(t) > 0; 8t � 0.
(iii) �0(t)/�(t) is monotonically decreasing for

t 2 (0;C1).
(iv) w(0) D 0 and for any t 2 (0;C1), w(t) > 0;

w0(t) � c > 0.

Note that the choices for these functions can be t,
at � 1(a > 1), sinh(t); : : : for '(t) and t; sinh(t); et �
1; : : : for w(t).

In order to avoid the influence of the exponential
term, a general single-parameter filled function can be
set by

U(x;A) D ��( f (x)� f (x�k )) � Aw(kx � x�k k
ˇ ) ;

where the function �(t) is continuous on [0;C1) and
is differentiable in (0;C1). Furthermore, the functions
�(t) and w(t) have the following properties [20]:

(i) �(0) D 0;
(ii) �0(t) > 0 is monotonically decreasing for

t 2 (0;C1) and limt!0C �
0(t) D C1;

(iii) w(0) D 0 and for any t 2 (0;C1), w(t) > 0;
w0(t) � c > 0.

Nonsmooth Filled Functions

It is well known that the constrained optimization
problem can be formulated as a nonsmooth opti-
mization problem by using the exact penalty func-
tion; see [3] or (3)–(5). With use of the methods of
nonsmooth analysis, a nonsmooth unconstrained op-
timization problem was studied in [10], which involved
a modified filled function as follows

PF (x; x�1 ; r; �)

D ln
�
1C

1
rC F(x)

�
exp

�
�
kx � x�1 k2

�2

�
; (7)

where F(x) is a weak semismooth objective function
and x�1 is a local minimizer of F(x).

For a composite function F(x) in the form

F(x) D f (x)C h(c(x)) ;

where f (x) and c(x) D (c1(x); : : : ; cm(x))T are smooth
functions and h : Rm ! R is convex but nons-
mooth [2], a kind of two-parameter filled function

P(x; r;A) D  (r C f (x))exp(�Akx � x�k k
2)

was considered in [20], where the function  (t) has
properties such as:
(i)  (t) > 0 for t � 0.
(ii)  (t) is monotonically decreasing for t � 0.
(iii)  (t1) �  (t2) � c2(t2 � t1) for t2 > t1 � 0, where

c2 > 0 is a constant.
In addition, for the single-parameter filled functions,
we can also consider some general forms as follows:

U(x;A) D ��( f (x)� f (x�k ))exp(Akx � x�k k
2) ;

or

Ũ(x;A) D ��( f (x)� f (x�k )) � Akx � x�k k
2 ;

where A > 0 is a parameter, and the function '(t) is
required to satisfy certain conditions [20]:
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(i) �(0) D 0, �(t) is monotonically increasing for
t � 0;

(ii) c1(t2 � t1) � �(t2) � �(t1) � c2(t2 � t1) for
t2 > t1 � 0, where 0 < c1 � c2 are constants.

Note that even for a continuously differential uncon-
strained optimization problem, there may exist a non-
smooth filled function. For example, a two-parameter
nonsmooth filled function

P(x; x�1 ; �; �) D f (x�1 ) �min[ f (x�1 ); f (x)]
� �kx � x�1 k

2

C �fmax[0; f (x)� f (x�1 )]g
2

(8)

was introduced in [21], where f (x) is coercive and Lip-
schitz continuous with a constant L in <n .

Discrete Filled Functions

After the concept of the filled functions was introduced
for continuous global optimization by Ge [5], some
people tried to transform discrete global optimization
problems into continuous ones and then to solve them
by the continuous filled function methods [6,17,23].

For the discrete case, since the third property of
a continuous filled function usually does not hold, such
an extension is not trivial. Difficulties may also oc-
cur when continuous optimization methods are applied
to deal with discrete optimization problems where the
gradient vectors are unavailable or expensive to com-
pute.

Discrete filled functions are related to the concept of
the discrete neighborhood. The discrete neighborhood
for a point x 2 Zn is usually defined by

N (x) D fx; x ˙ ei j i D 1; 2; : : : ; ng ;

where ei is the ith unit vector (i. e., the n-dimensional
vector with the ith component equal to 1 and all other
components equal to 0). On the basis of the local search
approach and the two-parameter filled function defined
by (1), Zhu [23] proposed an approximate algorithm
for a class of nonlinear integer programming problems

min
x2˝\Zn

f (x) ;

where˝ is a bounded closed box with all vertices inte-
gral. The algorithm is a direct method, which tries to
improve a current discrete local minimal solution by
minimizing an associated filled function. In [23], the

author used two examples to illustrate the numerical
performance of the algorithm proposed there.

In addition, based on the concept of 1/5-neighbor-
hood of an integer point x such as

N (x) D
�
y 2 <n j ky � xk1 �

1
5

	
;

Ge and Huang [6] investigated unconstrained nonlin-
ear integer programming, constrained nonlinear inte-
ger programming, and mixed nonlinear integer pro-
gramming problems. For such cases, the authors tried
to use a penalty function to transform a nonlinear inte-
ger programming problem into a global optimization
problem, which can be solved by the filled function
method if the objective function is twice continuously
differentiable in <n , and its gradient and Hessian ma-
trix are bounded. In particular, when the constraints are
equalities, all constrained functions are assumed to be
twice continuously differentiable.

The unconstrained nonlinear integer programming
model in [6] has the form:

Minimize f (x) ;

subject to jxi j � bi ; i D 1; 2; : : : ; n

x 2 Zn ;

(9)

where each bi is an integer. Under certain conditions, if
x� is a global minimizer of a penalty function

�1(x; k) D f (x)� k
nX

iD1

cos 2xi

in the box fx j jxi j � bi ; i D 1; 2; : : : ; ng and x� is in
a 1/5-neighborhood of an integer point x̄, then x̄ is a so-
lution of problem (9).

For some integer m < n, if the second constraint
in (9), x 2 Zn , is replaced by xi 2 Z(i D m;m C
1; : : : ; n), then the corresponding problem is called
the mixed nonlinear integer programming problem, for
which a similar function

�2(x; k) D f (x)� k
nX

iDm

cos 2xi

can be used as a penalty function.
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Similarly, for a constrained nonlinear integer pro-
gramming problem

Minimize f (x) ;

subject to ci(x) D 0; i D 1; 2; : : : ; p ;

minf0; ci(x)g D 0; i D pC 1; : : : ; q ;

jxi j � bi ; i D 1; 2; : : : ; n

x 2 Zn ;

(10)

some results can be derived by using the following
penalty function:

�3(x; r; k) D f (x)C r
pX

iD1

c2i (x)

C r
qX

iDpC1

�
minf0; ci(x)g

�2

� k
nX

iD1

cos 2xi :

The minimization of �3(x; r; k) can be dealt with by the
filled function method proposed for constrained opti-
mization problems [3].

For the discrete optimization problem

min
x2X�Zn

f (x) ;

where f is a Lipschitz function, X is a bounded and
(strictly) pathwise connected domain, Ng et al. [17]
modified the definition of continuous filled functions
in order to allow them to be applied to discrete cases.
Now we give a definition of a discrete filled function as
follows:

Given a discrete local minimizer x� of a function
f : X � Zn ! R, let B� be the discrete basin of f
at x� over X. A function F : X ! R is said to be
a discrete filled function of f at x� if it satisfies the
following conditions:

(a) x� is a strict local maximizer of F over X;
(b) F has no discrete local minimizers in B� or

in any discrete basin of f higher than B�;
(c) If f has a discrete basin B�� at x�� that is

lower than B�, then there is a discrete point
x0 2 B�� that minimizes F on a discrete path
fx�; : : : ; x0; : : : ; x��g in X.

On the basis of the two-parameter nonsmooth filled
function defined by (8) at a local minimizer x�1 , a two-
phase algorithm was proposed to solve a discrete global
optimization problem in [17]. In phase 1, a discrete
steepest descent method was applied to find a local min-
imizer x�1 of f over X, which was called the local search.
Phase 2 searched for a minimum of the discrete filled
function defined by (8) on a discrete path in X via some
special search directions, which was called global search.
The global search would identify a point x0 in a discrete
basin lower than the discrete basin B�1 of f at x�1 . The
algorithm stopped when minimizing a discrete filled
function did not yield a better solution than the current
best local minimizer.

Summary

Many existing filled function methods require the as-
sumption that the objective function has only a fi-
nite number of local minimizers. In addition, they also
require that these local minima have different objec-
tive values. The assignment of single/two parameters in
a filled function is a very important issue for ensuring
the existence of a specific point for the filled function,
by which a better local minimum of the original objec-
tive function can be found in a lower basin if it exists.
Note that even for a local minimizer existing in a lower
basin, how to find it is still a reduced optimization prob-
lem.

Furthermore, it is hard to find a general stopping
criterion for the filled function methods, i. e., to check
whether a feasible point obtained by any of the filled
function methods is a global minimizer or not. All these
drawbacks indicate that research on the filled function
methods will be fascinating in the future. People may
consider extensive approaches to solve global optimiza-
tion problems, for example, by using modified func-
tions which include some nonfilled functions [19], or by
using locally filled functions which are integrated with
techniques in cluster analysis [9,22].
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Introduction

Given the wide variety of different global optimiza-
tion techniques, every time we have a new optimiza-
tion problem we must select the best technique for
solving this problem. This selection problem is made
more complex by the fact that most techniques for solv-
ing global optimization problems have parameters that
need to be adjusted to the problem or to the class of
problems. For example, in gradient methods, one can
select different step sizes.

When we have a single or few parameters to choose,
it is possible to empirically try many values and come
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up with an (almost) optimal value. Thus, in such situ-
ations, we can identify an optimal version of the cor-
responding technique. In other approaches, such as
methods like convex underestimators (described in de-
tail in the next section), instead of selecting the value of
single number-valued parameter, we have to select the
auxiliary function. It is not practically possible to test all
possible functions, so it is not easy to identify an opti-
mal version of the corresponding technique [9].

This entry presents the work of Floudas and
Kreinovich [9,10] on the functional forms of convex
underestimators for twice continuously differentiable
functions. They consider the problem of selecting the
best auxiliary function within a given global optimiza-
tion technique. Specifically, they showed that in many
such selection situations, natural symmetry require-
ments enables one to either analytically solve the prob-
lem of finding the optimal auxiliary function, or at least
reduce this problem to the easier-to-solve problem of
finding a few parameters.

In particular, they showed that we can thus explain
both the ˛BB method [1,2,6,16] and the generalized
˛BB recently proposed in [4,5]. A recent review article
on these deterministic global optimization approaches
can be found in [8].

Selecting Convex Underestimators:
The ˛BBMethod

It is well known that convex functions are compu-
tationally easier to minimize than non-convex ones
(see [7]). This relative easiness is not only an empirical
fact, it also has a theoretical justification (see [13,19]).

Because of this relative easiness, one of the ap-
proaches for minimization of a non-convex function
f (x) D f (x1; : : : ; xn) (under certain constraints) over
a box [xL; ; xU ] D [xL1 ; xU1 ] � : : : � [xLn ; xUn ] is to first
minimize its convex “underestimator”, i. e., a convex
function L(x) � f (x). Since L(x) is an underestimator,
the minimum of L(x) is a lower bound for the minimum
of f (x). By selecting L(x) as close to f (x) as possible, we
can get estimates for min f (x) which are as close to the
actual minimum as possible.

The quality of approximation improves when the
boxes become smaller. To get more accurate bounds on
min f (x), we can bisect the box [xL, xU] into sub-boxes
whithin a regular branch-and-bound framework, and

use the above technique to estimate min f (x) after con-
sidering the result of each node and utilizing fathoming
of branches where appropriate.

A known efficient approach to designing a convex
underestimator is the ˛BB global optimization algo-
rithm [1,2,6,16], in which we select an underestimator
L(x) D f (x)C ˚(x), where

˚(x) D �
nX

iD1

˛i � (xi � xLi ) � (x
U
i � xi ) : (1)

Here, the parameters ˛i are selected in such a way that
the resulting function L(x) is convex and still not too
far away from the original objective function f (x). For
a thorough presentation of ways to select these param-
eters, see [1,2,3,11].

In many optimization problems, the ˛BB tech-
niques are very efficient, but in some non-convex opti-
mization problems, it is desirable to improve their per-
formance. One way to do that is to provide a more gen-
eral class of methods, with more parameters to tune.
In the ˛BB techniques, for each coordinate xi , we have
a single parameter ˛i affecting this coordinate. Chang-
ing ˛i is equivalent to a linear re-scaling of xi. Indeed,
if we change the unit for measuring xi to a new unit
which is �i times smaller, then all the numerical val-
ues become �i times larger: xi ! yi D gi(xi), where
gi (xi) D �i � xi . In principle, we can have two different
re-scalings:
� xi ! yi D gi (xi) D �i � xi on the interval [xLi, xi],

and
� xi ! zi D hi(xi) D �i � xi on the interval [xi, xUi].
If we substitute the new values yi D gi (xi) and zi D
hi (xi) into the formula (1), then we get the following
expression

˚(x) D �
nX

iD1

˛i �
�
gi (xi)� gi (xLi )

�
�
�
hi(xUi )�hi(xi)

�
:

(2)

For the above linear re-scalings, we get

e̊(x) D �
nX

iD1

ęi � (xi � xLi ) � (x
U
i � xi) ;

where ęi D ˛i � �i � �i .
From this viewpoint, a natural generalization is to

replace linear re-scalings gi(xi) and hi(xi) with non-
linear ones, that is, to consider convex underestimators
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of the type L(x) D f (x) C ˚(x), where ˚(x) is de-
scribed by the formula (2) with non-linear functions
gi(xi) and hi(xi). Now, instead of selecting a number
˛i for each coordinate i, we have an additional free-
dom of choosing arbitrary non-linear functions gi(xi)
and hi(xi). The question of which are the best choices
is naturally posed. In [4,5], several different non-linear
functions were tried, and it turned out that among
the tested functions, the best results were achieved for
the exponential functions gi (xi) D exp(�i � xi ) and
hi(xi) D � exp(��i � xi). For these functions, the ex-
pression (2) can be somewhat simplified: indeed,

˛i �
�
gi(xi) � gi (xLi )

�
�
�
hi (xUi ) � hi (xi)

�

D ˛i � (e�i �xi � e�i �x
L
i ) � (�e��i �x

U
i C e��i �xi )

D ęi � (1 � e�i �(xi�x
L
i )) � (1 � e�i �(x

U
i �xi )) ;

where ęi
def
D ˛i � e�i �(x

U
i �x

L
i ):

Two related questions naturally arise and are ad-
dressed in the work of Floudas and Kreinovich [9,10]:
� first, a practical question: an empirical choice is

made by using only finitely many functions; is this
choice indeed the best – or there are other, even bet-
ter functions gi(xi) and hi(xi), which we did not dis-
cover because we did not try them?

� second, a theoretical question: how can we explain
the above empirical fact?

Shift Invariance

The starting point for measuring each coordinate xi is
often a matter of arbitrary choice. If a selection of the
functions gi(xi) and hi(xi) is “optimal” (in some intu-
itive sense), then the results of using these optimal func-
tions should not change if we simply change the start-
ing point for measuring xi, that is, replace each value xi
with a new value xi C s, where s is the shift in the start-
ing point. Indeed, otherwise, if the “quality” of the re-
sulting convex underestimators changes with shift, we
could apply a shift and get better functions gi(xi) and
hi(xi) – which contradicts the assumption that the se-
lection of gi(xi) and hi(xi) is already optimal.

The “optimal” choices gi(xi) and gi(xi) can be de-
termined from the requirement that each component
˛i � (gi (xi) � gi (xLi )) � (hi(xUi ) � hi(xi)) in the sum (2)
be invariant under the corresponding shift, that is, that
they satisfy the following definition.

Definition 1 A pair of smooth functions (g(x),h(x))
from real numbers to real numbers is shift-invariant if
for every s and ˛, there exists ę(˛; s) such that for every
xL, x, and xU , we have

˛ �
�
g(x) � g(xL)

�
�
�
h(xU) � h(x)

�

D ę(˛; s) � �g(x C s) � g(xL C s)
�

�
�
h(xU C s) � h(x C s)

�
:

(3)

At first glance, shift invariance is a reasonable but weak
property. It turns out, however, that this seemingly
weak property actually almost uniquely determines the
optimal selection of exponential functions. Proposi-
tion 1 applies.

Proposition 1 If a pair of functions (g(x), h(x)) is shift-
invariant, then this pair is either exponential or linear,
i. e., each of the functions g(x) and h(x) has the form
g(x) D AC C � exp(� � x) or g(x) D AC k � x.

For a proof, see [9] or [10].

Sign Invariance

In addition to shift, another natural symmetry is chang-
ing the sign. If we require that the expression (2) re-
main invariant under a replacement of x by –x, then
we get the relation between g(x) and h(x) : h(x) D
�g(�x). So, if a pair (g(x), h(x)) is shift-invariant and
sign-invariant, then:
� either g(x) D exp(� � x) and h(x) D � exp(�� � x),
� or g(x) D h(x) D x.
In other words, the optimal generalized ˛BB scheme is
either the original ˛BB [1,2,6,16], or the scheme with
exponential functions described in [4,5].

Scale Invariance

Sign-invariance can be perceived as a special case of
scale-invariance. Scale-invariance addresses a change
in the unit for measuring x, that is, transformations
x ! � � x.

We have already shown that there are only two
shift-invariant solutions: exponential and linear func-
tions. Out of these two solutions, only the linear so-
lution – corresponding to the original ˛BB – is scale-
invariant. Thus, if we also require scale-invariance, we
restrict ourselves only to original techniques and miss
the (often better) exponential generalizations.
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Although imposing both shift- and scale-invariance
leads to restrictions, one could still choose to employ
only the latter, formally expressed as follows:

Definition 2 A pair of smooth functions (g(x),h(x))
from real numbers to real numbers is scale-invariant if
for every � and ˛, there exists ę(˛; �) such that for ev-
ery xL, x, and xU , we have

˛ �
�
g(x) � g(xL)

�
�
�
h(xU) � h(x)

�

D ę(˛; �) � �g(� � x) � g(� � xL)
�
�
�
h(� � xU )

� h(� � x)
� (4)

The following proposition applies. For a proof, see [9].

Proposition 2 If a pair of functions (g(x), h(x)) is scale-
invariant, then this pair is either exponential or linear,
i. e., each of the functions g(x) and h(x) has the form
g(x) D A � x� or g(x) D AC k � ln(x).

From the theoretical viewpoint, these functions may
look as good as the exponential functions coming from
shift invariance, but in practice, they do not work so
well. The problem with these solutions is that they do
not preserve smoothness. Both linear and exponen-
tial functions which come from shift-invariance are in-
finitely differentiable for all x and hence, adding the
corresponding term˚(x) will not decrease the smooth-
ness level of the objective function. In contrast, the
functions g(x) D x� which come from scale invari-
ance are not infinitely differentiable at x D 0 or when
� is not integer. So, if we use scale invariance to select
a convex underestimator, we end up with a new param-
eter � which only attains integer-valued values and is,
thus, less flexible than the continuous-valued parame-
ters coming from scale-invariance.

Generalization of Shift Invariance

Instead of the expression (2), we can consider an even
more general expression

˚(x) D �
nX

iD1

˛i � ai (a; xL) � bi(xi ; xUi ) : (5)

What can be concluded from shift-invariance in this
more general case?

Definition 3 A pair of smooth functions (a(x, xL),
b(x, xU)) from real numbers to real numbers is shift-

invariant if for every s and ˛, there exists ę(˛; s) such
that for every xL, x, and xU , we have

˛ � a(x; xL) � b(x; xU )

D ę(˛; s) � a(x C s; xL C s) � b(x C s; xU C s) :
(6)

Regarding such functions, Floudas and Kreinovich [9]
proved the following proposition:

Proposition 3 If a pair of functions (a(x, xL), b(x, xU))
is shift-invariant, then

a(x; xL) � b(x; xU ) D A(x � xL) � B(xU � x) � e� �x
L

for some functions A(x) and B(x) and for some real num-
ber � .

Comment. If we additionally require that the expression
a(x; xL)�b(x; xU ) be invariant under x ! �x, then we
conclude that B(x) D A(x).

Another shift-invariance result comes from the fol-
lowing observation. Both the ˛BB expression

�(x � xL) � (xU � x)

and the generalized expression

�(1 � e� �(x�x
L )) � (1 � e� �(x

U�x))

have the form a(x� xL) � a(xU � x) with a(0) D 0. The
differences x�xL and xU�x come from the fact that we
want these expressions to be shift-invariant. The prod-
uct formmakes sense, since we want the product to be 0
on each border x D xL and x D xU of the correspond-
ing interval [xL, xU].

On the other hand, it is well known that optimizing
a product is more difficult than optimizing a sum; since
we will be minimizing the expression f (x)C˚(x), it is
therefore desirable to be able to reformulate it in terms
of the easier-to-minimize sum, e. g., as b(x � xL) C
b(xU � x)C c(xU � xL) for some functions b and c (for
minimization purposes, c does not depend on x and is
thus a constant). It is worth mentioning that both the
˛BB expression and its exponential generalization al-
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low such representation. Note that:

� (x � xL) � (xU � x)

D
1
2
� (x � xL)2 C

1
2
� (xU � x)2 �

1
2
� (xU � xL)2;

and

� (1 � e� �(x�x
L )) � (1 � e� �(x

U�x))

D �1C e� �(x�x
L ) C e� �(x

U�x) � e� �(x
U�xL ) :

Interestingly, the above two expressions are the only
ones which have this easiness-to-compute property:

Definition 4 We say that a smooth function a(x) from
real numbers to real numbers describes an easy-to-
compute underestimator if a(0) D 0, a0(0) ¤ 0, and
there exist smooth functions b(x) and c(x) such that for
every x, xL, and xU , we have

a(x�xL)�a(xU�x) D b(x�xL)Cb(xU�x)Cc(xU�xL):

(7)

The condition a0(0) ¤ 0 comes from the fact that oth-
erwise, for small �x def

D x � xL and xU � x, each value
a(x�xL) will be quadratic in x�xL, the resulting prod-
uct will be fourth order, and we will not be able to com-
pensate for quadratic non-convex terms in the original
objective function f (x) – which defeats the purpose of
using f (x)C ˚(x) as a convex underestimator.

Proposition 4 The only functions which describe easy-
to-compute underestimators are a(x) D k�x and a(x) D
k � (1 � e� �x).

This is another shift-invariance related result that is also
proven in [9]. It selects linear and exponential functions
as “the best” in some reasonable sense. Floudas and
Kreinovich [9] proved that any “natural” shift-invariant
optimality criterion on the set of all possible underesti-
mator methods selects either a linear or an exponential
function.

Final Remarks

The work of Floudas and Kreinovich [9,10] has a much
further-reaching effect than on the case of ˛BB-
based convex underestimation mainly discussed here.
A symmetry-based approach leads to optimal tech-
niques also in the cases of optimal bisection (for se-
lecting box-splitting strategies) and optimal selection

of penalty and barrier functions. Other empirically op-
timal techniques can also be explained by symmetry-
based arguments. These include the “epsilon-inflation”
technique [15,18], results in simulated annealing and
genetic algorithms [17], as well as optimal selection of
probabilities in swarm optimization [12,14].
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Introduction

Various deterministic global optimization algorithms
that utilize a branch and bound framework make use
of convex underestimators of the functions under con-
sideration. For a recent review of such approaches,
see [7]. For arbitrarily nonconvex C2-continuous func-
tions f (x), defined in domain X D [xL; xU ], the ˛BB
underestimator [1,2,3,6,10] is typically used. This is

constructed by adding to the original function the fol-
lowing separable relaxation term, �(x;˛):

�(x;˛) D �
nX

iD1

˛i (xi � xLi )(x
U
i � xi ) ; (1)

where ˛i � 0; i D 1; 2; : : : ; n. The resulting underesti-
mator of f (x) would thus be

L˛BB(x;˛) D f (x)C �(x;˛) : (2)

Since the relaxation term is separable, the follow-
ing relationship exists among the Hessian matrices of
L˛BB(x;�), f (x) and �(x;˛):

r2L˛BB(x;˛) D r2 f (x)C 2A ; (3)

where A D r2�(x;˛) D diag f˛1; ˛2; : : : ; ˛ng. The ad-
dition of the relaxation term corresponds to a diagonal
shift of the Hessian matrix. Therefore, if we select large
enough values for the ˛i parameters, the nonconvexi-
ties in the original function can be overpowered and the
resulting underestimator L˛BB(x;˛) becomes convex.

A number of rigorous methods have been devised
in order to select appropriate values for these param-
eters [1,2,3,8]. Extensive computational testing of the
algorithm [3] showed that the most efficient of those
methods is the one based on the scaled Gerschgorin the-
orem. According to this method, it suffices to select

˛i D max

2
640;�12

0
B@hi i �

nX
jD1
j¤i

max
n
jhi jj;

jhi jj
o (xUj � xLj )

(xUi � xLi )

1
CA

3
75 ; (4)

where hvu and hvu are lower and upper bounds of
@2 f /@xv xu that can be calculated by interval analysis.

The g-˛BB approach was developed in [4,5] and of-
fers an alternative convex underestimation functional
form than the one originally proposed in the ˛BB the-
ory. The new relaxation scheme suggests subtraction of
a similar separable term that is of exponential, rather
than quadratic, nature.

The New Relaxation Term

In this section, we present the new relaxation function.
It shares most of the characteristics of the relaxation
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function, �(x;˛), used in the original ˛BB underesti-
mator described above. However, it possesses novel ad-
ditional properties that enable it to derive convex un-
derestimators that are tighter to the original function.
Thus, the new underestimators can help expedite the
branch and bound process of the overall global opti-
mization framework.

The new relaxation function is defined as follows:

˚(x; �) D �
nX

iD1

(1� e�i (xi�x
L
i ))(1� e�i (x

U
i �xi )) ; (5)

where � D (�1; �2; : : : ; �n)T is a vector of nonnegative
parameters. As will be explained later, these parame-
ters play a similar role as the ˛i’s in the original ˛BB
method.

The gradient of ˚(x;�) is

r˚(x; �) D �

0
BBBB@

��1e�1(x1�x
L
1 ) C �1e�1(x

U
1 �x1)

��2e�2(x2�x
L
2 ) C �2e�2(x

U
2 �x2)

:::

��n e�n(xn�x
L
n ) C �n e�n(x

U
n �xn )

1
CCCCA

and its Hessian is defined by the diagonal matrix

r2˚(x; �) D diag
n
�2i e

�i (xi�xLi ) C �2i e
�i (xUi �xi ) :

i D 1; 2; : : : ; n
o
:

Note that r2˚(x; �) is a function of x as opposed to
the Hessian matrix of �(x;˛), used in ˛BB, which is
constant throughout the domain X.

The new relaxation function ˚(x;�) has the follow-
ing important properties:
P1: ˚(x; �) � 0, for all x 2 [xL ; xU ].
P2: ˚(x; �) D 0 at the corner points of the interval

[xL; xU ].
P3: ˚(x;�) is a convex function.
P4: ˚(x;�) achieves its minimum at the middle point,

xmid, of X and its maximum at the corner points.
P5: The diagonal element of r2˚(x; �) is a convex

function and achieves its minimum at the mid-
dle point and its maximum at the endpoints of
[xLi ; x

U
i ].

The New Underestimating Function

The new underestimating function, L1(x;�), is formed
by adding ˚(x;�) to the nonconvex function f (x), that

is,

L1(x; �) D f (x)C ˚(x; �) : (6)

The Hessian of L1 is

r2L1(x; �) D r2 f (x)Cr2˚(x; �) :

The underestimator L1(x; �) has the following impor-
tant properties:
U1: L1(x;�) is an underestimator of f (x).
U2: L1(x;�) matches f (x) at all corner points of X.
U3: The maximum separation distance between the

nonconvex function f (x) and its underestimator
L1(x;�) is bounded.

U4: The underestimators constructed over supersets of
the current set are always less tight than the un-
derestimator constructed over the current box con-
straints.
Since the function ˚(x;�) is convex for every x 2 X

and � � 0, all nonconvexities in the original function
f (x) can be eliminated, provided that the parameters � i
have the appropriate values. The selection of these val-
ues is presented in the next section.

Selection of Appropriate Parameter Values

The initial values for the � i parameters are selected by
solving the following system of nonlinear equations:

`i C �
2
i C �

2
i e
�(xUi �x

L
i ) D 0; i D 1; 2 : : : ; n ; (7)

where `i � 0; i D 1; 2; : : : ; n. The parameters `i con-
vey second-order characteristics of the original non-
convex function into the construction process of the
underestimator. Candidate values for these parameters
can be selected as follows:

`i D �2˛i ; i D 1; 2 : : : ; n ; (8)

where ˛i � 0; i D 1; 2; : : : ; n are the parameters that
correspond to the original ˛BBmethod, as given by (4).
Akrotirianakis and Floudas [4] proved that such a se-
lection for the � i parameters always results in an un-
derestimator that is tighter than the one resulting from
the original method, i. e., (2). However, this new under-
estimator is not necessarily convex. Furthermore, they
proved that there always exists some selection of � i pa-
rameters that results in a convex underestimator.
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Therefore, they developed a systematic procedure
that determines values for all parameters � i that not
only guarantee the convexity of the underestimating
function L1(x;�) but also ensure that L1(x;�) is at least
as tight as the underestimating function L˛BB(x;˛). This
procedure is an iterative scheme that is based on inter-
val analysis and consecutive partitions of the domain X.
Before we present the scheme, let us present two addi-
tional results from [4] that are relevant:

Theorem 1 Let � D (�
1
; �

2
; : : : ; �

n
)T be the solution

of system (7), with `i defined by (8). Then, the two un-
derestimators L1(x; �) and L˛BB(x;˛), where

˛ D

 
4(1 � e0:5�1(x

U
1 �x

L
1 ))2

(xU1 � xL1 )2
; : : : ;

4(1� e0:5�n (x
U
n �xLn ))2

(xUn � xLn )2

!T

; (9)

have the same maximum separation distance from f (x).

Theorem 2 Let ˛ D (˛1; ˛2; : : : ; ˛n)T be the values of
the ˛ parameters as computed by (4). Then, the two un-
derestimators L1(x; �) and L˛BB(x;˛), where

� D

 
2 log(1C

p
˛1(xU1 � xL1 )/2)

xU1 � xL1
; : : : ;

2 log(1C
p
˛n(xUn � xLn )/2)

xUn � xLn

!T

; (10)

have the same maximum separation distance from f (x).

The main result of the above two theorems is that
for any � 2 [�; �] there exists an ˛ 2 [˛; ˛], such that
the underestimators L1(x;�) and L˛BB(x;˛) have the
same maximum separation distance from the noncon-
vex function f (x). From all these pairs of underestima-
tors, the only one that is known to be convex a pri-
ori is L˛BB(x;˛), since this is the one resulting from
the classical ˛BB method. However, as will be apparent
from the examples presented later, the underestimators
L˛BB(x;˛) and L1(x;�) are convex within a large portion
of the intervals [˛; ˛] and [�; �]; respectively. On the
basis of the above observations, it is natural to search
for a vector � in the interval [�; �] or for a vector ˛ in
the interval [˛; ˛], so that at least one of the underesti-
mators L1(x;�) and L˛BB(x;˛) is convex.

The algorithm described below was developed in [4]
for the appropriate selection of values for the � param-
eters, so that the corresponding underestimator is both
a convex function and at least as tight as the underesti-
mator used by the classical ˛BB method. It searches for
a vector � 2 [�; �] so that the corresponding ˛ 2 [˛; ˛]
produces an underestimating function L˛BB(x;˛) that is
convex. The search starts by setting � D � and ˛ D ˛
and then checking whether L˛BB(x;˛) is convex. This
is done by using the scaled Gerschgorin method to de-
termine lower bounds on the eigenvalues of the Hes-
sian matrix r2L˛BB(x;˛). For those lower bounds that
are negative, the intervals of the corresponding vari-
ables are bisected, thereby generating a number of sub-
domains that are stored in a list, denoted by �1. Then,
the algorithm checks whether r2L˛BB(x;˛) is posi-
tive semidefinite in each of those subdomains using
again the scaled Gerschgorin method. If the size of
the list, �1, exceeds a certain number of nodes, then
r2L˛BB(x;˛) is most likely not positive semidefinite.
The values of all � i’s have to then be increased by a pre-
specified positive quantity, � > 0, and the correspond-
ing values of the new ˛i’s are calculated. The algorithm
now tries to verify whether r2L˛BB(x;˛), with the new
increased ˛ parameters, is positive semidefinite. It con-
tinues in this manner until the list �1 becomes empty.
In that case, the corresponding ˛ values make the Hes-
sian matrix, r2L˛BB(x;˛), positive semidefinite for all
x 2 X and consequently L˛BB(x;˛) is a convex underes-
timator. The main reason for using the underestimator
L˛BB(x;˛) instead of the underestimator L1(x;�) is that
it is easier to verify the positive definiteness of the ma-
trix r2L˛BB(x;˛) than that of the matrix r2L1(x; �).
For more details see Alg. 1

Termination of the above algorithm is guaranteed
by the fact that L˛BB(x;˛) is known, a priori, to be con-
vex underestimator.

Computational Results

Because an iterative procedure is needed to determine
appropriate values for the � i parameters, the construc-
tion of the new underestimators requires more com-
putational effort than that required for the classical
˛BB method. However, within a global optimization
framework, actual computational savings may be real-
ized since the tighter underestimators produced by the
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Algorithm:

Step 1 (initialization): Set K = 1; J = 1, Jmax = 2n + 1 � = 1:1 XJ = X�1 = fXJg and 
i;K = 

i
.

Step 2: For alli = 1; 2� � �; n, use (9) to calculate the ˛i;K that correspond to 
i;K , and form the underestimator
L˛BB(x;˛K).

Step 3: If the maximum separation distance of L˛BB(x;˛K) from f (x) is less than the maximum separation
distance of L˛BB(x;˛) from f (x) then go to step 4.
Otherwise, adopt as an underestimator the classical ˛BB underestimator, L˛BB(x;˛), and stop.

Step 4: Check whether L˛BB(x;˛K) is convex:
Repeat

Step 4.1: Remove the last element from the list �1 of unexplored subdomains. Let us name that subdomain
Xl ast .

Step 4.2: Form the interval Hessian [r2L˛BB(x;˛K)] with x 2 Xl ast .
Step 4.3: Use (4) and (8) to find lower bounds on each eigenvalue of the interval Hessian

[r2L˛BB(x;˛K)] in Xl ast .
Step 4.4: Form the set I� = fi : `i < 0g.
Step 4.5: If I� ¤ ;, bisect all intervals [xLi;l ast; xUi;l ast] with i 2 I�, and add them at the end of the list �1.
Step 4.6: Set J = J + 2jI�j � 1, where jI�j represents the cardinality of the set I� (i. e., a total of 2jI�j new

subdomains have been generated and added to the list and one node has been removed).

Until (�1 = ; or J = Jmax).
Step 5: If �1 = ; then stop. The Hessian r2L˛BB(x;˛K) is positive semidefinite for all x 2 X and L˛BB(x;˛K)

is a convex underestimator. Also the underestimator L˛BB(x;˛K) is tighter than the underestimator
L˛BB(x;˛) obtained by the classical ˛BB method.
Otherwise, increase the values of all 
i;K; i = 1; 2; : : : ; n by setting 
i;K+1 = �
i;K . Set K = K + 1 and go to
step 2.

Global Optimization: g-˛BB Approach, Algorithm 1

new method could expedite the branch and bound pro-
cess through faster fathoming and visits to fewer tree
nodes.

A detailed computational comparison between the
new underestimators and the ones used by the classi-
cal ˛BB method was performed by Akrotirianakis and
Floudas [5]. They concluded that the new underesti-
mators usually perform better than the classical ˛BB
method, in terms of both the overall CPU time and
the number of nodes generated by the enumeration
tree. It was also observed that the new underestima-
tors perform better when the problem involves many
arbitrarily nonconvex terms in the objective or con-
straints.

In the same study, Akrotirianakis and Floudas [5]
also presented a hybrid optimization framework where
underestimators L1(x; �) were used to construct the re-

laxation in every node of the branch and bound tree.
A stochastic random-linkage algorithm [9] was then
employed to solve these relaxations and the method
exhibited improved computational efficiency. Interest-
ingly enough, the method located the actual global op-
timum in all case studies, despite the lack of theoretical
guarantees owing to the fact that the underestimators
L1(x; �) are not necessarily convex.

As an illustration, we present here two examples
from [5]:

Example 1
This example involves a nonconvex function that de-
scribes the molecular conformation of pseudoethane. It
is taken from [11], where the global minimum potential
energy conformation of small molecules is studied. The
Lennard-Jones potential is expressed in terms of a sim-
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Global Optimization: g-˛BB Approach, Figure 1
Function f1(x) and comparison of underestimators L˛BB(x;˛) and L˛BB(x;˛)

ple dihedral angle. The potential energy of the molecule
is given by the following function:

f1(x) D 588600
(3r20�4cos()r

2
0�2(s in2()cos(x�

2	
3 )�cos2())r20)6

� 1079:1
3r20�4cos()r

2
0�2(s in2()cos(x�

2	
3 )�cos2())r20)3

C 600800
(3r20�4cos()r

2
0�2(s in2()cos(x)�cos2())r

2
0)6

� 1071:5
(3r20�4cos()r

2
0�2(s in2()cos(x)�cos2())r

2
0)3

C 481300
(3r20�4cos()r

2
0�2(s in2(C

2	
3 )cos(x)�cos2())r20)6

� 1064:6
(3r20�4cos()r

2
0�2(s in2(C

2	
3 )cos(x)�cos2())r20)3

;

where r0 is the covalent bond length (r0 D 1:54A), � is
the covalent bond angle (� D 109:5o) and x is the dihe-
dral angle (x 2 X D [0; 2]). Figure 1 depicts the graph
of f 1(x).

The value of the ˛ parameter computed by the clas-
sical ˛BB method using (4) is ˛ D 77:124 and the cor-
responding value for the � parameter, obtained by (10),
is � D 1:0673. Also, by solving (7) for � we obtain
� D 0:8521 and the corresponding value for the ˛
parameter, obtained by (9), is ˛ D 18:579. The iter-
ative algorithm checks whether there exist values of
� 2 [�; �] and ˛ 2 [˛; ˛] such that the underestima-
tor L˛BB(x;˛) is convex. After 16 iterations it concludes
that if ˛ D ˛, then L˛BB(x;˛) is a convex underestima-
tor of f 1(x). Furthermore, if � D � , then L1(x;�) is also

a convex underestimator of f 1(x). Note that the values
of � and ˛ did not have to increase at all.

The resulting minima of the two underestima-
tors L˛BB(x;˛) and L˛BB(x;˛) are �762:2377 and
�184:4244, respectively. Figure 1 depicts these two un-
derestimators and reveals the improvement in tight-
ness.

Example 2 This example is taken from [2] and exam-
ines the following two-dimensional nonconvex func-
tion:

f2(x) D cos(x1) sin(x2) �
x1

x22 C 1
;

where x1 2 [�1; 2] and x2 2 [1; 1]. The above func-
tion possesses three minima and its graph is depicted
in Fig. 2. The values of the ˛ parameters computed
by the classical ˛BB method using (4) are ˛1 D 1:921
and ˛2 D 10:921. Using (10), we can determine the
corresponding value for the � parameters; these are
�1 D 0:75 and �2 D 1:46. Also, by solving (7) for
�i ; i D 1; 2, we obtain �

1
D 0:672 and �

2
D 1:267. Us-

ing (9), we can determine the corresponding values for
the ˛ parameters; these are ˛1 D 1:3456 and ˛2 D 6:5.

The iterative algorithm checks whether there ex-
ist values of �i 2 [�

i
; � i]; i D 1; 2 and ˛i 2

[˛ i ; ˛ i ]; i D 1; 2, such that the underestimator
L˛BB(x;˛) is convex. After eight iterations it concludes
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Global Optimization: g-˛BB Approach, Figure 2
Function f2(x) and comparison of underestimators L˛BB(x;˛) and L˛BB(x;˛)

that if ˛ D (1:8325; ˛2), then L˛BB(x;˛) is a convex
underestimator of f 2(x). Also, if � D (0:74; �

2
), then

L1(x;�) is also a convex underestimator of f 2(x). Note
that only the value of �1 had to be increased from its
original value, �

1
, and the increase was only by 10%.

The resulting minima of the two underestima-
tors L˛BB(x;˛) and L˛BB(x;˛) are � 15.88469 and
� 10.22767, respectively. Figure 2 depicts these two un-
derestimators and reveals the improvement in tight-
ness.
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Generalized geometric GGP or signomial programming
(GGP) problems are characterized by an objective func-
tion and constraints which are the difference of two
posynomials. A posynomial G(x) is simply the sum of
a number of posynomial terms or monomials gk(x), k =
1, . . . , K, multiplied by some positive real constants ck, k
= 1, . . . , K. Each monomial gk(x) is in turn the product
of a number of positive variables each of them raised to
some real power,

gk(x) D xd1;k1 � � � xdN;kn ; k D 1; : : : ;K;

where d1, k, . . . , dN , k 2 R and are not necessarily inte-
gers. The term ‘geometric programming’ was adopted
because of the key role that the well-known arithmetic-
geometric inequality played in the initial developments.
Generalized geometric problems were first introduced
and studied by U. Passy and D.J. Wilde [28] and G.J.
Blau and Wilde [8] when existing (posynomial) geo-
metric programming (GP) formulations failed to ac-
count for the presence of negatively signed monomi-
als in models for important engineering applications.
These applications are extensively reviewed in [31] and
[16]. Chemical engineering applications include heat
exchanger network design [14], chemical reactor design
[8,9], optimal condenser design [4], oxygen production
[21], membrane separation process design [12], opti-
mal design of cooling towers [16], chemical equilibrium
problems [29], optimal control [23], batch plant mod-
eling [20,33], optimal location of hydrogen supply cen-
ters [3] and many more.

By grouping together monomials with identical
sign, the generalized geometric problem can be formu-
lated as the following nonlinear optimization problem:

GGP

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

min
t

G0(t) D GC0 (t) � G�0 (t)

s.t. Gj(t) D GCj (t) � G�j (t) � 0;
j D 1; : : : ;M;
ti � 0; i D 1; : : : ;N;

where

GCj (t) D
X

k2KCj

c jk
NY
iD1

t˛i jki ;

j D 0; : : : ;M;

G�j (t) D
X
k2K�j

c jk
NY
iD1

t˛i jki ;

j D 0; : : : ;M;

where t = (t1, . . . , tN) is the positive variable vector;
GCj , G

�
j , j = 0, . . . , M, are positive posynomial func-

tions in t; ˛ijk are arbitrary real constant exponents;
and cjk are positive coefficients. Also, the sets KCj , K

�
j

count how many positively/negatively signed monomi-
als form posynomials GCj , G

�
j respectively. In general,

formulation GGP corresponds to a nonlinear optimiza-
tion problemwith nonconvex objective function and/or
constraint set. Note that if we set K�j = 0 for all j = 0,
. . . , M then the mathematical model for GGP reduces
to the (posynomial) geometric programming (GP) for-
mulation which laid the foundation for the theory of
generalized geometric problems.

Unlike (posynomial) problems (GP), the problems
GGP remain nonconvex in both their primal and dual
representation and no known transformation can con-
vexify them. They may involve multiple local min-
ima and/or nonconvex feasible regions and therefore
are much more difficult problems to solve. Local opti-
mization approaches for solving GGP problems include
bounding procedures based on posynomial condensa-
tion [2,5,13,15,23]; iterative solution of KKT conditions
[9,25,32]; and adaptations of general purpose nonlin-
ear programmingmethods [1,7,10,19,24,26,31].A com-
putational comparison of available codes for signomial
programming is given in [12,32]. While local optimiza-
tion methods for solving GGP problems are ubiqui-
tous, application of specialized global optimization al-
gorithms on GGP problems is scarce. J.E. Falk [17] pro-
posed such a global optimization algorithm based on
the exponential variable transformation of GGP and
the convex relaxation and branch and bounding on the
space of exponents of negative monomials (j = 1, . . . ,
M and k 2 K�j ). Based on these ideas, C.D. Maranas
and C.A. Floudas [27] proposed an alternative parti-
tioning in the typically smaller space of variables i =
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1, . . . , N. The proposed branch and bound type algo-
rithm attains finite �-convergence to the global mini-
mum through the successive refinement of a convex re-
laxation of the feasible region and/or of the objective
function and the subsequent solution of a series of non-
linear convex optimization problems. The efficiency of
the proposed approach is enhanced by eliminating vari-
ables through monotonicity analysis, by maintaining
tightly bound variables through rescaling, by further
improving the supplied variable bounds through con-
vex minimization. The proposed approach was applied
to a large number of test examples, in particular robust
stability analysis problems.

Robust Stability Analysis

Robust stability analysis of nonlinear systems involves
the identification of the largest possible region in the
un- certain model parameter space for which the con-
troller manages to attenuate any disturbances in the
system. The stability of a feedback structure is deter-
mined by the roots of the closed loop characteristic
equation:

det (I C P(s; q)C(s; q)) D 0;

where q is the vector of the uncertain model parame-
ters, and P(s), C(s) the transfer functions of the plant
and controller, respectively. After expanding the deter-
minant we have:

P(s; q) D an(q)sn

C an�1(q)sn�1 C � � � C a0(q) D 0;

where the coefficients ai(q), i = 0, . . . , n, are typically
multivariable polynomial functions. The ‘zero exclu-
sion condition’ (ZEC) implies that a system with char-
acteristic equation P(q, s) = 0 is stable only if it does not
have any roots on the imaginary axis for any realization
of the qs in the uncertain model parameter space Q:

0 … P( j!; q); 8q 2 Q; and 8! 2 [0;1]:

A stability margin km can then be defined as follows:

km( j!) D inf fk : P( j!; q(k)) D 0; 8q 2 Qg :

Robust stability for this model is then guaranteed if and
only if

km � 1:

Geometrically, km expands the initial uncertain param-
eter regionQ as much as possible without loosing stabil-
ity. Note that, typically real parameter uncertainty is ex-
pressed as bounds on the real parameters of the model.

Checking the stability of a particular system with
characteristic equation P(j!, q) involves the solution of
the following nonconvex optimization problem.

(S)

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

min
qi ;k�0;!�0

k

s.t. Re[P( j!; q)] D 0
Im[P( j!; q)] D 0
qNi �	q�i k � qi
� qNi C	qCi k;

i D 1; : : : ; n;

where qN is a stable nominal point for the uncertain
parameters and �q+, �q� are estimated bounds. Note
that it is important to be able to always locate the global
minimum of (S), otherwise the stability margin might
be overestimated. This overestimation can sometimes
lead to the erroneous conclusion that a system is stable
when it is not. Because for most problems without time
delays ai(q), i = 0, . . . , n, are multivariable polynomial
functions, formulation (S) corresponds to a generalized
geometric problem. Next, an illustrative robust stability
example is highlighted.

This example was studied in [18] and [30]. The
plant has three uncertain parameters and the charac-
teristic equation is:

P(s; q1; q2; q3) D s4 C (10C q2 C q3)s3

C (q2q3 C 10q2 C 10q3)s2

C (1 � q2q3 C q1)s C 2q1 :

The nominal values of the parameters of the system are

qN1 D 800; qN2 D 4; qN3 D 6;

and the bounded perturbations are:

	qC1 D 	q�1 D 800;

	qC2 D 	q�2 D 2;

	qC3 D 	q�3 D 3:
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After eliminating ! the zero exclusion formulation be-
comes:
8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min k
s.t. 10q22q33 C 10q32q23 C 200q22q23

C100q32q3 C 100q2q33 C q1q2q23
Cq1q22q3 C 1000q2q23 C 8q1q23
C1000q22q3 C 8q1q22 C 6q1q2q3
C60q1q3 C 60q1q2
�q21 � 200q1 � 0

800 � 800k � q1 � 800C 800k
4 � 2k � q2 � 4C 2k
6 � 3k � q3 � 6C 3k:

The stability margin is found to be km = 0.3417, which
implies that the system is unstable. Furthermore, the
first instability occurs at:

q�1 D 1073:4;

q�2 D 3:318;

q�3 D 4:975:
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Global Optimization of Heat Exchanger Networks, Figure 1
Head exchanger network superstructure
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terms; Linear fractional terms

The cost of energy represents an important part of
the total operating cost of many processing plants.
Therefore, the recovery of energy through heat ex-
changer networks (HENs) has played an important role
in industry, and has been a major concern of design
engineers for the last two decades (for reviews, see
[5,10,11]). Design approaches based on mathematical
programming techniques and models have been devel-
oped and applied in the synthesis and the optimiza-
tion of HENs (see for instance [3,12,18]). The synthesis
of HENs with a mathematical modeling framework in-
volves the optimization of a superstructure like the one
in Fig. 1 [18], and represents a difficult global optimiza-
tion problem from a deterministic point of view [20].

Nonconvexities are introduced into mathematical
models forHENs by the fractional powers of linear frac-
tional terms that appear in heat transfer area cost terms,

Area Cost D C
� q
U	T

�ˇ
:

Here the variables are the heat transfer rate, q, and the
logarithmic mean temperature difference driving force,
�T or LMTD, U is the heat transfer coefficient, and C
and ˇ are cost coefficient and exponent, respectively.
Other sources of nonconvexities in mathematical pro-
gramming models for heat exchanger networks arise
due to the logarithmic mean temperature difference
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driving force, which can be given rigorously

LMTD D
�
dth � dtc

�

log
h
d th
d tc

i ;

or by an approximation like the ones due to W.R. Pa-
terson [13]

LMTD D
1
3

�
1
2
(dth C dtc)

�
C

2
3

p
dthdtc

or J.J.J. Chen [2]

LMTD D
�
(dth)(dtc)(dth C dtc)

2

� 1
3

:

Here, dth and dtc are the temperature differences at
the hot and cold extremes in the heat exchanger. Non-
convexities in mathematical models of HENs also may
appear in the form of bilinear terms that are used to
model the nonisothermal mixing of process streams.
For instance, the energy balance for modeling the non-
isothermal mixing of process streams 1 and 2 to pro-
duce stream 3 would require the inclusion of the fol-
lowing bilinear equation in the mathematical model:

f1t1 C f2t2 D f3t3;

in which f stands for heat capacity flowrate, and t for
stream temperature.

The issue of determining a global optimum solu-
tion for problems involving heat exchanger networks
was first considered in [17]. Since then, representative
global optimization problems in heat exchanger net-
works have been posed, see for instance [4]. Never-
theless, deterministic global optimization algorithms,
and their application to the optimization of certain
classes of NLP and MINLP models in heat exchanger
networks appeared only until the 1990s in [1,6,9,14,
15,16,20,21,22].

Most of the applications of deterministic global op-
timization algorithms for the solution of nonconvex
problems involving HENs are based on a branch and
bound framework [7,8]. Within the branch and bound
approach for global optimization, lower bounds of the
global minimum value of the objective function are
computed by solving a convex relaxation of the origi-
nal nonconvex problem over subsections of the search
region. For the development of the convex relaxations

for nonconvex problems in HENs, the following prop-
erties are exploited.

Property 1 ([19,20,21,22]) Let � and�T be continuous
positive variables with �T > 0. Also, let U, C, ˛ and ˇ
be positive constants, with ˇ > 0, and ˛ = (ˇ + 1)/ˇ.
Then, the function

C
�
�˛

U	T

�ˇ

is convex. Furthermore, if q is a positive variable, and
S is a convex subset in R2

C, the convex optimization
problem in (2) can be used to compute a rigorous lower
bound for the solution of the problem in (1), i. e., the
problem in (2) is a valid convex relaxation of the prob-
lem in (1):

8̂
<̂
ˆ̂:

GloMin C
� q
U�T

�ˇ
s.t. (q; 	T) � S

0 � qL � q � qU ;

(1)

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

min C
�
˛

U�T

�ˇ

s.t. � � (qL)
1
˛

C
(qU )

1
˛ �(qL)

1
˛

qU�qL (q � qL)

(q; 	T) � S;
0 � qL � q � qU ; � � 0:

(2)

Property 2 ([19]) Let dth, dtc and �T, be continuous
positive variables. Also, let T1 and T2, be positive con-
stants such that T1 � T2 > 0. Then the following in-
equalities are convex:

	T �
�
dth � dtc

�

log
h
d th
d tc

i ;

	T �
�
dth � (T1 � T2)

�

log
h

d th
(T1�T2)

i ;

	T �
�
(T1 � T2) � dtc

�

log
h
(T1�T2)

d tc

i

Property 3 ([19]) Let dth, dtc and �T, be continuous
positive variables. Also, let T1 and T2, be positive con-
stants such that T1 � T2 > 0. Then the following in-
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equalities, which are based on the Paterson approxima-
tion [13] for the LMTD, are convex:

	T �
1
3

�
(dth C dtc)

2

�
C

2
3

p
dthdtc;

	T �
1
3

�
(dth C T1 � T2)

2

�
C

2
3

p
dth(T1 � T2);

	T �
1
3

�
(T1 � T2 C dtc)

2

�
C

2
3

p
(T1 � T2)dtc:

Property 4 ([19]) Let dth, dtc and �T, be continuous
positive variables. Also, let T1 and T2, be positive con-
stants such that T1 � T2 > 0. Then the following in-
equalities, which are based on the Chen approximation
[2] for the LMTD, are convex:

	T �
�
(dth)(dtc)(dth C dtc)

2

� 1
3

;

	T �
�
(dth)(T1 � T2)(dth C T1 � T2)

2

� 1
3

;

	T �
�
(T1 � T2)(dtc)(T1 � T2 C dtc)

2

� 1
3

:

Property 5 ([19]) Let dth, dtc be continuous positive
variables, and let �T be the logarithmic mean temper-
ature difference,�T = [dth � dtc/log[dth/dtc]. Also, as-
sume that r is a constant determined by the ratio of
two particular values of dth and dtc. Then, the follow-
ing bounding inequality is valid, and holds as an equal-
ity along the line determined by the ratio r = dth/dtc:

	T � P(r)dth C Q(r)dtc;

where

P(r) D

(
0:5 if r D 1;
1/r�1Clog(r)

[log(r)]2 if r ¤ 1;

Q(r) D

(
0:5 if r D 1;
r�1�log(r)
[log(r)]2 if r ¤ 1:

Several other useful properties and their application in
the development of convex relaxations for HENs prob-
lems can be found in [1,6,14,19], and [20,21,22]

As an illustrative example of the use of the above
properties, and the application of global optimization
techniques in heat exchanger networks, consider the

Global Optimization of Heat Exchanger Networks, Figure 2
Heat exchanger network for the illustrative problem

Global Optimization of Heat Exchanger Networks, Figure 3
Global optimumHEN design of the illustrative problem

determination of the global optimal design of the HEN
shown in Fig. 2 [14]; stream data and cost information
are included in Table 1. This problem was originally
solved in [14] and [21] using the arithmetic mean tem-
perature difference driving force (AMTD), and assum-
ing isothermal mixing of process streams (t5 = t6).

Figure 3 shows the global optimum solution of the
nonconvex model (P) associated with the illustrative
problem. A design with a total network cost of $36,199
is determined. Note that model (P) does not assume
isothermal mixing, utilizes the approximation by Chen
[2], and enforces a minimum approach temperature of
5 degrees. The global optimization of model (P) was
performed with the branch and contract algorithm pro-
posed in [21,23]; the convex model (R) was used in
the computation of rigorous lower bounds of the total
network cost. The solution process required 7 branch
and bound nodes, and approximately 37 cpu seconds of
a Pentium I processor running at 133Mhz. Alternative
suboptimal solutions for the illustrative problem based
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Global Optimization of Heat Exchanger Networks, Table 1
Problem data for illustrative example

Tin Tout F
Stream (K) (K) (kW K�1)
H1 575 395 5.555
H2 718 398 3.125
C1 300 400 10
C2 365 � 4.545
C3 358 � 3.571

Cost of Heat Exchanger 1 ($yr�1) = 270[A1(m2)]
Cost of Heat Exchanger 2 ($yr�1) = 720[A2(m2)]
Cost of Heat Exchanger 3 ($yr�1) = 240[A3(m2)]
Cost of Heat Exchanger 4 ($yr�1) = 900[A4(m2)]
U1 =U1 = 0:1 kW m�2 K�1

U3 =U4 = 1:0 kW m�2K�1

on the rigorous LMTD include network designs with
total costs of $38,513, $39,809, $41,836, and $47,681.

NonconvexModel (P)

Indices
1, 2, 3, 4 = index for heat exchangers
1h, 2h, 3h, 4h = hot side of heat exchangers
1c, 2c, 3c, 4c = cold side of heat exchangers

Parameters

U1, U2, U3, U4 = overall heat transfer coefficients

Positive Variables

t = stream temperature
dt = temperature difference at end of heat exchanger
�T = approximation of the logarithmic mean

temperature difference
q = heat transfer rate
f = heat capacity flowrate

Objective Function

min 270
q1

U1	T1
C 720

q2
U2	T2

C 240
q3

U3	T3
C 900

q4
U4	T4

:

Model Constraints
q1 D 5:555(t1 � 395);

q1 D f1(t5 � 300);

q2 D 3:125(t2 � 398);

q2 D f2(t6 � 300);

q3 D 4:545(t3 � 365);

q3 D 5:555(575 � t1);

q4 D 3:571(t4 � 358);

q4 D 3:125(718 � t2);

q1 C q2 D 1000;

q1 C q3 D 999:9;

q2 C q4 D 1000;

f1 C f2 D 10;

dt1h D t1 � t5;

dt1c D 95;

dt2h D t2 � t6;

dt2c D 98;

dt3h D 575 � t3;

dt3c D t1 � 365;

dt4h D 718 � t4;

dt4c D t2 � 358;

	T1 D
�
(dt1h)(dt1c)(dt1h C dt1c)

2

� 1
3

;

	T2 D
�
(dt2h)(dt2c)(dt2h C dt2c)

2

� 1
3

;

	T3 D
�
(dt3h)(dt3c)(dt3h C dt3c)

2

� 1
3

;

	T4 D
�
(dt4h)(dt4c)(dt4h C dt4c)

2

� 1
3

;

f1t5 C f2t6 D 4000;

0 � qLi � qi � qUi ; i D 1; 2; 3; 4;

0 � tLj � t j � tUj ; j D 1; 2; 3; 4; 5; 6;

dtk � 5; k D 1h; 1c; 2h; 2c; 3h; 3c; 4h; 4c

0 � f L1 � f1 � f U1 ; 0 � f L2 � f2 � f U2 :
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ConvexModel (R)

Objective Function

min 270
[�1]2

U1	T1
C 720

[�2]2

U2	T2

C 240
[�3]2

U3	T3
C 900

[�4]2

U4	T4
:

Model Constraints

�i � (qLi )
1
2 C

(qUi )
1
2 � (qLi )

1
2

qUi � qLi
(qi � qLi );

i D 1; 2; 3; 4;

q1 D 5:555(t1 � 395);

q1 D y15 � 300 f1;

q2 D 3:125(t2 � 398);

q2 D y26 � 300 f2;
q3 D 4:545(t3 � 365);

q3 D 5:555(575� t1);

q4 D 3:571(t4 � 358);

q4 D 3:125(718� t2);

q1 C q2 D 1000;

q1 C q3 D 999:9;
q2 C q4 D 1000;

f1 C f2 D 10;

dt1h D t1 � t5;

dt1c D 95;

dt2h D t2 � t6;

dt2c D 98;
dt3h D 575 � t3;

dt3c D t1 � 365;

dt4h D 718 � t4;

dt4c D t2 � 358;

	T1 �
�
(dt1h)(dt1c)(dt1h C dt1c)

2

� 1
3

;

	T2 �
�
(dt2h)(dt2c)(dt2h C dt2c)

2

� 1
3

;

	T3 �
�
(dt3h)(dt3c)(dt3h C dt3c)

2

� 1
3

;

	T4 �
�
(dt4h)(dt4c)(dt4h C dt4c)

2

� 1
3

;

z11 D t5 � 300;

z22 D t6 � 300; y15 C y26 D 4000;

y15 � tL5 f1 C f L1 t5 � f L1 t
L
5 ;

y15 � tU5 f1 C f U1 t5 � f U1 tU5 ;

y15 � tL5 f1 C f U1 t5 � f U1 tL5 ;

y15 � tU5 f1 C f L1 t5 � f L1 t
U
5 ;

y26 � tL6 f2 C f L2 t6 � f L2 t
L
6 ;

y26 � tU6 f2 C f U2 t6 � f U2 tU6 ;

y26 � tL6 f2 C f U2 t6 � f U2 tL6 ;

y26 � tU6 f2 C f L2 t6 � f L2 t
U
6 ;

z11 �
1
f1

0
B@
q1 C

q
qL1 qU1q

qL1 C
q
qU1

1
CA

2

;

z22 �
1
f2

0
B@
q2 C

q
qL2 q

U
2q

qL2 C
q
qU2

1
CA

2

;

z11 �
q1
f L1
C qU1

�
1
f1
�

1
f L1

�
;

z11 �
q1
f U1
C qL1

�
1
f1
�

1
f U1

�
;

z22 �
q2
f L2
C qU2

�
1
f2
�

1
f L2

�
;

z22 �
q2
f U2
C qL2

�
1
f2
�

1
f U2

�
;

z11 �
1

f L1 f U1

�
f U1 q1 � qL1 f1 C qL1 f

L
1
�
;

z11 �
1

f L1 f U1

�
f L1 q1 � qU1 f1 C qU1 f U1

�
;

z22 �
1

f L2 f U2
( f U2 q2 � qL2 f2 C qL2 f

L
2 );

z22 �
1

f L2 f U2

�
f L2 q2 � qU2 f2 C qU2 f U2

�
;

0 � qLi � qi � qUi ; i D 1; 2; 3; 4;

0 � tLj � t j � tUj ; j D 1; 2; 3; 4; 5; 6;

dtk � 5; k D 1h; 1c; 2h; 2c; 3h; 3c; 4h; 4c;

0 � f L1 � f1 � f U1 ; 0 � f L2 � f2 � f U2 ;

y15; y26; z11; z22 � 0:
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The hit and run algorithms fall into the category of se-
quential random search methods (cf. also � Random
search methods), or stochastic methods. These meth-
ods can be applied to a broad class of global optimiza-
tion problems. They seem especially useful for prob-
lems with black-box functions which have no known
structure. These problems often involve a very large
number of variables, and may include both continuous
and discrete variables.

The concept of hit and run is to iteratively generate
a sequence of points by taking steps of random length
in randomly generated directions. R.L. Smith, in 1984
[12], showed that this method can be used to generate
points within a set S that are asymptotically uniformly
distributed. The hit and run method was originally ap-
plied to identifying nonredundant constraints in linear
programs [1,3], and in stochastic programming [2].

Hit and run was first applied to optimization in
[16], and the name improving hit and run (IHR) was
adopted. The term ‘improving’ was intended to indi-
cate that the sequence of points were improving with
regard to their objective function values. The IHR al-
gorithm couples the idea of pure adaptive search [8,15]
with the hit and run generator to produce an easily im-
plemented sequential random search algorithm. Pure
adaptive search (PAS, see also� Random search meth-
ods) predicts that points uniformly generated in im-
proving level sets has, on the average, a linear number
of iterations in terms of dimension. One way to approx-
imate PAS, would be to use hit and run to generate ap-
proximately uniform points, and then select those that
land in improving level sets. This is the idea behind im-
proving hit and run.

In addition to IHR, a family of methods have been
developed that are based on hit and run. Other vari-
ations include: adding an acceptance probability with
a cooling schedule, varying the choice of direction,
varying the length of step, and modifying the sampling
method to include amixture of continuous and discrete
variables.

Hit and Run Based Algorithms

The underlying concept of hit and run based algorithms
is that, if hit and run could generate a uniformly dis-
tributed point in an improving level set, then PAS pre-
dicts that we need only a linear number of such points.
The point generated by just one iteration of hit and run
is far from uniform and may not be in the improv-
ing set, so the number of function evaluations is not
expected to be linear in dimension, but in [16] it was
shown that the expected number of function evalua-
tions for IHR on the class of elliptical programs (e. g.
positive definite quadratic programs) is polynomial in
dimension, O(n5/2). The number of function evalua-
tions includes those points that are rejected because
they do not fall into the improving level set. This the-
oretical performance result motivates the use of hit and
run for optimization. Numerical experience indicates
that IHR has been especially useful in high-dimensional
global optimization problems when there are many lo-
cal minima embedded within a broad convex structure.

The general framework for a hit and run based op-
timization algorithm for solving a global optimization
problem,
(
min f (x)
s.t. x 2 S;

where f is a real-valued function on S, is stated below.

PROCEDURE hit and run optimization method()
InputInstance();
Generate an initial solution X0;
Set Y0 = f (X0);
Set k = 0;
DO until stopping criterion is met;

Generate a random direction Dk ;
Generate a random steplength �k ;
Evaluate candidate point Wk = Xk + �kDk ;
Update the new point,

Xk+1 =

(
Wk if candidate point accepted
Xk if rejected

Set Yk+1 = min(Yk , f (Xk+1));
OD;
RETURN(Best solution found, Yk+1);

END hit and run optimization method;

Pseudocode for a hit and run based optimisation algorithm
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Improving hit and run uses the most basic hit and
run generator, which is to generate a direction vector
Dk that is uniformly distributed on a hypersphere, and
then generate a steplength �k which is generated uni-
formly on the intersection of Dk with the feasible set S.
In many applications, Smay be an n-dimensional poly-
tope described by linear constraints, in which case the
intersection of a direction with S is easily computed us-
ing a slight modification of a minimum ratio test (see
[16] for details). This is the most basic hit and run gen-
erator, but several variations have been developed.

One variation is to add an acceptance probability
with a cooling schedule to the hit and run generator,
as in simulated annealing (cf. � Simulated annealing).
This was developed in [10] and called the hide-and-seek
algorithm. Just as IHR was motivated by pure adap-
tive search, hide-and-seek was motivated by adaptive
search [9] (see also � Random search methods). Adap-
tive search generates a series of points according to
a sequence of Boltzman distributions, with parameter
T changing on each iteration. The theory predicts that
adaptive search with decreasing temperature parame-
ter T will converge with probability one to the global
optimum, and the number of improving points have
the same linear bound as PAS. Hide-and-seek uses the
basic hit and run generator, but accepts the candidate
point with the Metropolis criterion and parameter T. It
is interesting to consider the two extremes of the accep-
tance probability: if the temperature is fixed at infinity,
then all candidate points are accepted, and the hit and
run generator approximates pure random search with
a uniform distribution; at the other extreme if the tem-
perature is fixed to zero, then only improving points
are accepted, and we have improving hit and run. H.E.
Romeijn and Smith derived a cooling schedule which
essentially starts with hit and run, and approaches IHR.
They proved that hide-and-seek will eventually con-
verge to the global optimum, even though it may expe-
rience deteriorations in objective function values. They
also present computational results on several test func-
tions, which compare favorably with other algorithms
in the literature.

A second variation to the basic hit and run gener-
ator is to modify the direction distribution. Thus far,
we have only described choosing a direction according
to a uniform distribution on an n-dimensional hyper-
sphere, which has also been termed hyperspherical di-

rection (HD) choice. In [16] and [10], the direction dis-
tribution is defined more generally; the direction may
be generated from a multivariate normal distribution
with mean 0 and covariance matrixH. If theHmatrix is
the identity matrix, then the direction distribution is es-
sentially the uniform distribution on a hypersphere. In
[4] a nonuniform direction distribution is derived that
optimizes the rate of convergence of the algorithm. Al-
though exact implementation of the optimal direction
distribution may be very difficult, it motivates an adap-
tive direction choice rule called artificial centering hit
and run.

Another choice for direction distribution is the co-
ordinate direction (CD) method, in which the direc-
tion is chosen uniformly from the n coordinate vec-
tors (spanning Rn). Both HD and CD versions of di-
rection choice were presented and applied to identify-
ing nonredundant linear constraints in [1]. They were
also tested in the context of global optimization in [14].
Computationally, CD can outperform HD on specific
problems where the optimum is properly aligned, how-
ever HD is guaranteed to converge with probability one,
while it is easy to construct problems where CD will
never converge to the global optimum. A simple ex-
ample is given in [5] where local minima are lined up
on the coordinate directions, and it is impossible for
the CD algorithm to leave the local minimum unless
it accepts a nonimproving point. For such an exam-
ple, in [5] it is shown that the CD algorithm coupled
with a nonzero acceptance probability for nonimprov-
ing points will converge with probability one. Experi-
mental results were also reported.

A third variation to the basic hit and run generator
modifies it to be applicable to discrete domains [7,11].
Hit and run as described so far has been defined on
a continuous domain. An extension to a discrete do-
main was accomplished by superimposing the discrete
domain onto a continuous real number system. It was
motivated by design variables such as fiber angles in
a composite laminate, or diameters in a 10-bar truss,
where the discrete variables have a natural continuous
analog. Two slightly different modifications have been
introduced.

In [11] the candidate points were generated us-
ing Hit and run on the expanded continuous domain,
where the objective function of a nondiscrete point is
equal to the objective function evaluated at its nearest
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Global Optimization: Hit and RunMethods, 1
Two schemes to modify hit and run to disrete domains

discrete value. In this way, the modified algorithm oper-
ates on a continuous domain where the objective func-
tion is a multidimensional step function, with plateaus
surrounding the discrete points. This modification still
converges with probability 1 to the global optimum, as
proven in [11].

The diagram in Fig. 1 illustrates this method. Start-
ing from point X1, hit and run on the continuous do-
main generates a candidate point such as A. The ob-
jective function at A is set equal to that of its nearest
discrete point B, forcing f (A) = f (B). If the candidate
point is accepted, then X2 = A, and another candidate
point (shown as C) is generated.

A second scheme to modify hit and run to oper-
ate on discrete domains is to similarly generate a point
on a continuous domain, and then round the gener-
ated point to its nearest discrete point in the domain on
each iteration [6,7,13]. Again starting from point X1 in
Fig. 1, suppose A is generated. In this version, the can-
didate point is taken as the nearest discrete neighbor,
in this example B. The objective function is evaluated at
B, f (B), and if the point is accepted, then X2 = B. The
difference in this variation is illustrated by noting that
the next candidate point is generated from B instead of
from A, see point D in Fig. 1. Also note that only dis-
crete points are maintained. In [6,7] it is shown that this

second scheme dominates the first scheme in terms of
average performance for the special class of spherical
programs, and numerical results have been promising.

Another modification to the basic hit and run gen-
erator is in the way the steplength is generated. Instead
of generating the point uniformly on the whole line
segment, the line segment can be restricted to a fixed
length, or adaptively modified. S. Neogi [6] refers to
this as full-line length, restricted line length, or adap-
tive stepsize. In [6] the adaptive stepsize is coupled with
an acceptance probability to maintain a fixed probabil-
ity of generating an improving point. See [6] for a more
detailed discussion of this variation of a simulated an-
nealing algorithm based on the hit and run generator.

The many variations of hit and run have been nu-
merically tested on many test functions and applied to
real applications. All of the papers referenced in this ar-
ticle include numerical results, but the details are left to
the individual papers. Overall, the theoretical motiva-
tions and numerical experience leads us to believe that
hit and run is a promising approach to global optimiza-
tion.

See also

� Random Search Methods
� Stochastic Global Optimization: Stopping Rules
� Stochastic Global Optimization: Two-phase

Methods
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Introduction

Mathematically the global optimization problem is for-
mulated as

f � D min
X2D

f (X) ;

where a nonlinear function f (X), f : Rn ! R, of con-
tinuous variables X, is an objective function; D 2 Rn

is a feasible region; n is a number of variables. A global
minimum f * and one or all global minimizers X*:

f (X�) D f �

should be found. No assumptions on unimodality are
included in the formulation of the problem. Most often
an objective function is defined by an analytical formula
or an algorithm, which evaluates the value of the ob-
jective function using the values of variables and arith-
metic operations. � Continuous global optimization:
models, algorithms and software.

One of the classes of methods for global optimiza-
tion are methods based on interval arithmetic. Interval
arithmetic [10] provides bounds for the function val-
ues over hyper-rectangular regions defined by intervals
of variables. The bounds may be used in global opti-
mization to detect the sub-regions of the feasible region
which cannot contain a global minimizer. Such sub-
regions may be discarded from the subsequent search
for a minimum.

Interval arithmetic provides guaranteed bounds but
sometimes they are too pessimistic. Interval arithmetic
is used in global optimization to provide guaranteed
solutions, but there are problems for which the time
for optimization is too long. A disadvantage of interval
arithmetic is the dependency problem [5]: when a given
variable occurs more than once in interval computa-
tion, it is treated as a different variable in each occur-
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rence. This causes widening of computed intervals and
overestimation of the range of function values.

Analysis of both overestimating and underestimat-
ing intervals is useful to estimate how much inter-
val bounds overestimate the range of function values.
Moreover inner interval arithmetic operations may be
used instead of standard interval arithmetic operations
in some cases when dependency of operands is known
or operands are known to be monotonic. Although
monotonicity cannot easily be determined in advance,
inner and standard interval arithmetic operations may
be chosen randomly building random interval arith-
metic, estimating the range of real function values from
a sample of random intervals.

Methods / Applications

Interval Analysis in Global Optimization

Interval arithmetic is proposed in [10]. Interval arith-
metic operates with real intervals x D

�
x; x

�
D

fx 2 Rjx � x � xg, defined by two real numbers
x 2 R and x 2 R, x � x. For any real arithmetic op-
eration x ı y the corresponding interval arithmetic op-
eration x ı y is defined as an operation whose result
is an interval containing every possible number pro-
duced by the real operation with the real numbers from
each interval. The interval arithmetic operations are de-
fined as:

x C y D
h
x C y; x C y

i
;

x � y D
h
x � y; x � y

i
;

x � y D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

h
x y; xy

i
; x > 0 ; y > 0 ;h

x y; xy
i
; x > 0 ; 0 2 y ;h

xy; x y
i
; x > 0 ; y < 0 ;�

x y; x y
�
; 0 2 x ; y > 0 ;h

min(xy ; xy) ;

max(xy; xy)
i
; 0 2 x ; 0 2 y ;h

xy; xy
i
; 0 2 x ; y < 0 ;h

xy; xy
i
; x < 0 ; y > 0 ;h

xy; xy
i
; x < 0 ; 0 2 y ;h

xy; xy
i
; x < 0 ; y < 0 ;

x/ y D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

h
x/ y; x/y

i
; x > 0 ; y > 0 ;h

x/ y; x/y
i
; x > 0 ; y < 0 ;h

x/y; x/y
i
; 0 2 x ; y > 0 ;�

x/ y; x/ y
�
; 0 2 x ; y < 0 ;h

x/y; x/ y
i
; x < 0 ; y > 0 ;h

x/y; x/ y
i
; x < 0 ; y < 0 :

An interval function can be constructed replacing
the usual arithmetic operations by interval arithmetic
operations in the formula or the algorithm for calcu-
lating values of the function. An interval value of the
function can be evaluated using the interval function
with interval arguments. The resulting interval always
encloses the range of real function values in the hyper-
rectangular region defined by the vector of interval
arguments:

n
f (X) jX 2 X; X 2 Rn ; X 2 Rn

o
� f

�
X
�
;

where f : Rn ! R, f : [R;R]n ! [R;R]. Because of
this property the interval value of the function can be
used as the lower and upper bounds for the function in
the region which may be used in global optimization.

The first version of interval global optimization al-
gorithm was oriented to minimization of a rational
function by bisection of sub-domains [12]. Interval
methods for global optimization were further devel-
oped in [3,4,11], where the interval Newton method
and the test of strict monotonicity were introduced.
A thorough description including theoretical as well as
practical aspects can be found in [5] where a very ef-
ficient interval global optimization method involving
monotonicity and non-convexity tests and the special
interval Newton method is described. � Interval global
optimization.

A branch and bound technique is usually used to
construct interval global optimization algorithms. An
iteration of a classical branch and bound algorithm
processes a yet unexplored sub-region of the feasi-
ble region. Iterations have three main components:
selection of the sub-region from a candidate list to
process, bound calculation, and branching. In inter-
val global optimization algorithms bounds are calcu-
lated using interval arithmetic. All interval global opti-
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mization branch and bound algorithms use the hyper-
rectangular partitions and branching is usually per-
formed bisecting the hyper-rectangle into two. Variants
of interval branch-and-bound algorithms for global
optimization where the bisection was substituted by
the subdivision of subregions into many subregions in
a single iteration step have been investigated in [2]. The
convergence properties have been investigated in detail.
An extensive numerical study is presented in [8].� Bi-
section global optimization methods; � Interval analy-
sis: Subdivision directions in interval branch and bound
techniques.

The tightness of bounds is a very important factor
for efficiency of branch and bound based global op-
timization algorithms. An experimental model of in-
terval arithmetic with controllable tightness of bounds
to investigate the impact of bound tightening in inter-
val global optimization was proposed in [14]. The ex-
perimental results on efficiency of tightening bounds
were presented for several test and practical problems.
Experiments have shown that the relative tightness of
bounds strongly influences efficiency of global opti-
mization algorithms based on the branch and bound
approach combined with interval arithmetic.

Underestimating Interval Arithmetic

Kaucher arithmetic [6,7] defining underestimates is
useful to estimate how much interval bounds overes-
timate the range of function values. Kaucher arithmetic
operations (ıu) are defined as:

x Cu y D
h
x C y _ x C y

i
;

x �u y D
h
x � y _ x � y

i
;

x �u y D

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

h
x y _ xy

i
; x > 0 ; y > 0

or x < 0 ; y < 0 ;h
x y; x y

i
; x > 0 ; 0 2 y ;h

xy _ x y
i
; x > 0 ; y < 0

or x < 0 ; y > 0 ;h
x y; xy

i
; 0 2 x ; y > 0 ;

[0; 0] ; 0 2 x ; 0 2 y ;�
xy; x y

�
; 0 2 x ; y < 0 ;h

xy; xy
i
; x < 0 ; 0 2 y ;

x/u y D

8̂
ˆ̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

h
x/y _ x/ y

i
; x > 0 ; y > 0

or x < 0 ; y < 0 ;h
x/y _ x/ y

i
; x > 0 ; y < 0

or x < 0 ; y > 0 ;�
x/ y; x/ y

�
; 0 2 x ; y > 0 ;h

x/y; x/y
i
; 0 2 x ; y < 0 ;

where [a_ b] D [min(a; b);max(a; b)]. Underestimat-
ing interval arithmetic guarantees to underestimate:

f
u

�
X
�
�
n
f (X) jX 2 X;

o
� f

�
X
�
:

An interval defined by Kaucher arithmetic is a worst
case estimate and can be the degenerate interval [0; 0].
A regularized version of Kaucher arithmetic proposed
in [13] assumes regularity of the dependency between
variables. In the underestimation assuming regular-
ity of the dependency between variables, multiplica-
tion operation (�ur) is defined differently fromKaucher
arithmetic:

x Cur y D x Cu y ;

x �ur y D x �u y ;

x �ur y D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

h
min(x y; xy); �(x; x; y; y)

i
;

x > 0 ; y > 0 or x < 0 ; y < 0 ;h
�(x; x; y; y);max(x y; xy)

i
;

x > 0 ; y < 0 or x < 0 ; y > 0 ;h
�(x; x; y; y); �(x; x; y; y)

i
;

otherwise ;

x
ı
ur y D x

ı
u y ;

where

�(x1; x2; y1; y2) D

8̂
<̂
ˆ̂:

x2y1 ; (x2�x1)y2�x1(y2�y1)
2(x2�x1)(y2�y1)

> 1 ;
x1y2 ;

(x2�x1)y2�x1(y2�y1)
2(x2�x1)(y2�y1)

< 0 ;
(x2 y2�x1 y1)2

4(x2�x1)(y2�y1)
; otherwise :

In [1,9] inner interval arithmetic is defined. If the
operands in the interval operations to calculate the
function values are known to be monotonic then stan-
dard interval arithmetic operations may be combined
with inner interval operations to tighten resulting in-
tervals without losing the guarantee of enclosure [1]. If
it is known that operands in subtraction or division are
dependent or are monotonic and have the same mono-
tonicity (either both are monotonically increasing or
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both monotonically decreasing) then inner interval op-
erations may be used instead of standard interval op-
erations. If it is known that operands in summation or
multiplication are monotonic and do not have the same
monotonicity (one is monotonically increasing and an-
other is monotonically decreasing) then inner interval
operations may be used instead of standard interval
operations.

The difference between inner interval operations
(ıin) and underestimating interval operations (ıu) con-
cerns the result of multiplication:

x Cin y D x Cu y ;

x �in y D x �u y ;

x �in y D

8̂
<
:̂

h
max(x y; xy);min(x y; xy)

i
;

0 2 x; 0 2 y;
x �u y; otherwise ;

x
ı
in y D x

ı
u y :

Random Interval Arithmetic

It is difficult computationally to find which operands
are dependent, to be certain they are monotonic, and to
determine their monotonicity (intervals of the deriva-
tives of all operands need to be found). Random inter-
val arithmetic proposed in [1] is obtained by choosing
standard or inner interval operations randomly with the
same probability at each step of the computation. The
range of function values is estimated using a number of
sample intervals evaluated using random interval arith-
metic. The estimation is based on the assumptions that
the distribution of the centres of the evaluated inter-
vals is normal with a very small relative standard de-
viation and the distribution of the radii is normal but
taking only positive values. The mean value of the cen-
tres �centres, the mean value of the radii �radii and the
standard deviations of the radii �radii of the random in-
tervals are used to evaluate an approximate range of the
function

[�centres ˙ (�radii C ˛�radii)] ; (1)

where ˛ is between 1 and 3 depending on the number of
samples and the desired probability that the exact range
is included in the estimated range. It is suggested in [1]
that a compromise between efficiency and robustness
can be obtained using ˛ D 1:5 and 30 samples. Experi-

mental results presented in [1] for some functions over
small intervals show that random interval arithmetic
provides tight estimates of the ranges of the consid-
ered function values with probability close to 1. How-
ever, in the experiments, the intervals of variables of the
function considered were small. In the case of large in-
tervals of variables, and particularly for multi-variable
functions, the obtained estimates for a range of func-
tion values frequently do not fully enclose the range of
function values.

For the application of random interval arithmetic to
global optimization it is important to extend these ideas
to the case of functions defined over large multidimen-
sional regions. Balanced random interval arithmetic
proposed in [16] extending the ideas of [1], is obtained
by choosing standard and inner interval operations at
each step of the computation randomly with prede-
fined probabilities for the standard and inner opera-
tions. A number of sample intervals are evaluated. It is
assumed that the distribution of centres of the evaluated
balanced random intervals is normal and that the distri-
bution of radii is folded normal, also known as absolute
normal, because the radii cannot be negative. The range
of values of the function in the defined region is esti-
mated using the mean values (�) and the standard devi-
ations (�) of centres and radii of the evaluated balanced
random intervals:

[�centres˙ (3:0�centres C �radii C 3:0�radii)] : (2)

The ranges of values of the objective function esti-
mated using balanced random interval arithmetic can
be used in the general branch and bound framework
building a stochastic global optimization algorithm.
The performance of such an algorithm has been eval-
uated experimentally on market model estimation [17]
and on chemical engineering problems. When speed of
optimization is more important than guaranteed reli-
ability, such an algorithm is a good alternative to the
algorithm with standard interval arithmetic because it
is several times faster.

Balanced Interval Arithmetic

The exact range of function values lies between the
results of overestimating and underestimating interval
arithmetic. Estimates of the ranges of function values
estimated from the results of standard interval arith-
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metic and inner interval arithmetic were investigated
in [15]. There, balanced interval arithmetic is defined
as the weighted mean of the overestimating and under-
estimating intervals of the function:

pc � f
�
X
�
C (1 � pc) � f

u

�
X
�
; (3)

where the predefined coefficient 0 � pc � 1 defines
the balance between overestimating and underestimat-
ing intervals.

The ranges of the values of several functions es-
timated using balanced interval arithmetic and using
balanced random interval arithmetic have been experi-
mentally compared [15]. The results of the experiments
have shown that ranges estimated using balanced inter-
val arithmetic compete with ranges estimated using bal-
anced random interval arithmetic. However balanced
interval arithmetic is not based on the assumptions of
normal distributions and does not require several sam-
ples.

The ranges of values of the objective function esti-
mated using balanced interval arithmetic can be used
in the general branch and bound framework building
a deterministic global optimization algorithm. When
the predefined coefficient pc is less than 1, the algo-
rithm may be faster than the algorithm with standard
interval arithmetic.

For each interval function, there exists ˛, 0 � ˛ �
1, for whichn

f (X) jX 2 X;
o
� ˛ � f

�
X
�
C (1 � ˛) � f

u

�
X
�

for all possible sub-regions of the feasible region,
X � D. The algorithm guarantees the exact solution
if pc � ˛.
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Microclusters are [11] aggregates of atoms, ions, or
molecules, sufficiently small that a significant propor-
tion of these units is present on their surfaces. They
correspond to systems that are neither single entities
nor continua composed by an infinite number of units,
but lie somewhere in between bridging the gap between
single atoms or molecules and bulk matter. Typically,
microclusters consist of two to several hundred atoms.
A key word pertaining to the novel features of micro-
clusters is size effects [26]. The microscopic size of mi-
croclusters gives rise to unique properties in two ways.
First, a large percentage of a cluster’s atoms are on or
close to the surface, and surface atoms do not arrange
themselves in the same way as do atoms in bulk mat-
ter, but instead they tend to avoid being exposed on
the surface. Assuming a spherical shape, the fraction of
the number of surface atoms is 4/n1/3. For n = 102 this
number is 86%, for n = 103 is 40% and for n = 104 is
still 20%. For example, in a cluster of 55 argon atoms
at least 42 atoms are on the surface in some sense. This
effect completely overwhelmsthe tendency of atoms to
arrange themselves in a regular crystalline array as they
normally do in bulk matter. For instance, the ordering
of silicon atoms in the Si10 cluster is completely differ-
ent from the ordering in the silicon crystalline struc-
ture. It appears that clusters consisting of specific num-
bers of atoms are extremely stable, as they show up
more prominently in the mass spectrum than neigh-
boring cluster sizes. These numbers of particles that en-
hance stability are called magic numbers and they are
substance specific [2]. For instance [3], xenium clus-
ters consisting of N = 13, 19, 23, 25, . . . are particularly
stable, although for sodium clusters the magic numbers
are N = 8, 20, 40, 58, 92, . . . .

The study of the topography of the potential en-
ergy function of a microcluster in the internal config-
urational space was and still remains a central prob-

lem in this area of research [11,13]. This problemcan
be succinctly stated as follows: Given N particles inter-
acting with two-body central forces, find their configu-
ration(s) in the three-dimensional Euclidean space in-
volving the global minimum total potential energy.

This can be expressed mathematically as follows:

V D
N�1X
iD1

NX
jDiC1

�(ri j);

where

ri j D
q
(xi � x j)2 C (yi � y j)2 C (zi � z j)2;

x1 D y1 D z1 D y2 D z2 D z3 D 0:

Here, V is the total potential energy of the microclus-
ter as the summation of all two-body interaction terms,
�(rij) is the potential energy term corresponding to the
interaction of particle i with particle j, and rij is the Eu-
clidean distance between i and j. Note that in the dou-
ble summation, j spans from i + 1 to N so that we avoid
double counting pair interactions and the interaction
of a particle with itself. Furthermore, by specifying x1
= y1 = z1 = 0, we fix the first particle at (0, 0, 0) elimi-
nating all three translational degrees of freedom of the
microcluster. By further imposing y2 = z2 = z3 = 0 we
eliminate the rotational degrees of freedom as well. Pair
potentials that have been used in cluster studies include
the following [11]:
1) �(r) = (n �m)�1 [nr�m �mr�n] (Mie);
2) �(r) = 4 �{(�/r)12 � (�/r)6} (Lennard–Jones);
3) �(r) = [1 � ea(1� r)]2 � 1 (Morse);
4) �(r) = Ae�ar2 � Be�br2 (Gaussian);
5) �(r) = z˛zˇ /r + Ae�r/� (Born–Meyer);
Lennard–Jones and Morse potential models are the
most popular selections to describe the force field.

Even under simplifying assumptions about the in-
teraction energy, the minimization of the total potential
energy is very difficult to solve because it corresponds to
a nonconvex optimization problem involving numer-
ous local minima. Hoare [11] claimed that the num-
ber of local minima of an n—atom microcluster grows
as exp(n2). In fact, L.T. Wille [34] has shown that the
complexity of determining the global minimum energy
of a cluster of particles interacting via two-body forces
belongs to the class NP. In other words, there is no
known algorithm that can solve this problem in nonex-
ponential time [22]. A geometrical, possibly topological
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proof that a local minimum is both unique and global is
not likely to be found because there still exist unsolved
problems in the theory of sphere packings where diffi-
culties are without any doubt less acute [4,5,6,10], than
those in the minimization problem at hand.

Existing methods use physical intuition, approxi-
mation procedures, mimicking of physical phenom-
ena, random searches, lattice optimization/relaxation,
or local/global optimization approaches. M.R.Hoare, in
a series of papers [12,13,14,15,16], proposed a method
of finding minima of the total potential function of an
5 � N � 66 particle Lennard–Jones cluster based on
a growth scheme involving the following steps: First,
a particular compact seed structure involving a small
number of atoms is selected which is likely to appear in
the N-particle structure. At each iteration an extra par-
ticle is placed at all packing vertices and the resulting
structures are tested for geometrical uniqueness. The
distinct structures are then relaxed and a local opti-
mization procedure locates and records the local min-
ima involved. Each of the minima then serve as a new
seed structure in repetition of the procedure. Finally,
all of the generated distinct local minima are tabulated
in decreasing order of binding energies. A number of
‘growth rules’ are incorporated in the procedure that
alleviates the computational effort. Using this method,
Hoare generated a large number of local minima for
structures from 5 to 66 particles. However, no claim for
complete enumeration of all local minima, and thus de-
tection of the global minimum, can be made. In fact, it
has been reported [32] that solutions of low-symmetry
are not likely to be found with this method.

Piela’s method [25] is based on the simple idea of
smoothly deforming the potential energy hypersurface
[29], in such a way as to make shallow potential wells
disappear gradually, while the deeper ones grow at their
expense. As the potential wells evolve they change their
position and size. One then eventually ends up with
a single potential well that has absorbed all the others
which hopefully corresponds to the global minimum.
A local optimization procedure then can easily find the
single local minimum corresponding to the global one
as well. The hypersurface is deformed using the diffu-
sion equation, with the original shape of the hypersur-
face representing the initial concentration distribution.
The main advantage of this method is that you do not
have to explore the myriads of local optima, nor do you

have to know their position beforehand. However, the
approach depends on the conjecture that shallow po-
tential wells disappear faster than deeper ones. In fact,
it has been observed that when the global minimum lies
on a narrow potential well of large depth, it might dis-
appear faster than a wider, originally shallower, poten-
tial well.

Simulated annealing [18] variations has been widely
used either alone, or in conjunction with some other
method(s). A large number of researchers have been
using this method for finding the global minimum of
the potential energy function. Wille [32,33] solved the
potential minimization problem for up to 25 particles,
interacting under two-body Lennard–Jones forces and
he found two new minima for N = 24 that were better
than the one reported in [11]. P. Ballone and P. Mi-
lani [1] using a semi-empirical many-body potential,
solved for the ground-geometries of carbon clusters in
the range 50 � M � 72 and found that all the struc-
tures of low energies are hollow spheres with nearly
graphitic atomic arrangement. D. Hohl and R.O. Jones
[17] applied the same methodology also to phosphorus
clusters P2 to P8, arriving to arather counterintuitive
most stable structure for P8. In [23] a combined sim-
ulated annealing and a quasi-Newton-like conjugate-
gradient method is used for determining the structure
of mixed argon-xenon clusters interactingwith two-
body Lennard–Jones forces. In [30,31] the binding en-
ergy of Nickel Lennard–Jones clusters is studied using
the simulated annealing method in a canonical ensem-
ble Monte-Carlo technique. The simulated annealing
method can be viewed as a method for stochastically
tracing the annealing process by Monte-Carlo simu-
lation. D. Shalloway [27,28] presented a deterministic
method for annealing the objective function by tracing
the evolution of a multiple-Gaussian-packet approxi-
mation and using notions from renormalization group
theory. This method has been applied to microcluster
conformation problems and it appears that in most of
the test problems was able to identify the global mini-
mum.

Lattice optimization techniques have been very ef-
ficient in generating structures involving the lowest
known potential energy. In [7] it is proposed that the
most energetically favored microclusters in the range
20 � N � 50 are the onesthat involve interpenetrat-
ing icosahedra (polyicosahedra) or (PIC). For N � 55
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a double icosahedral (DIC) growth scheme was intro-
duced [8] and for 55 � N � 147 [9] a third layer icosa-
hedral structure using two different surface arrange-
ments was presented. Using these notions, J.A. Northby
[24] derived optimal configurations for Lennard–Jones
microclusters in the range 13�N � 147 based on a lat-
tice optimization/relaxation algorithm. First a heuris-
tic procedure is employed for finding a set of lattice
local minimizers assuming icosahedral- (IC) or face-
centered (FC) arrangements. Then, the currently best
lattice minimizers are relaxed by using a local optimiza-
tion algorithm. G.L. Xue [35] improved on Northby’s
method [24] by reducing the time complexity of the
algorithm. Furthermore, by relaxing every lattice local
minimizer a number of better optimal configurations
were found in the range 13� N � 147. However, it ap-
peared that the best local lattice does not always relax to
the structure involving thelowest total Lennard–Jones
potential energy. A parallel implementation [19] al-
lowed results on minimum energies for clusters of up to
N = 1,000 atoms. Also by employing a parallel version
of a two-level simulated annealing algorithm [36,37,38]
solutions for clustersizes as large as N = 100,000 have
been reported.

C.D. Maranas and C.A. Floudas [20,21] introduced
deterministic global optimization to the microcluster
minimum potential energy problem. It was shown that
the problem is convex only if both the first and second
derivatives of the pairwise potential energy model with
respect to the Euclidean distance are positive. This left
only a narrow convex envelope for both Lennard–Jones
and Morse potential energy models. To widen this en-
velope, the sum of squares of all Cartesian coordinates
multiplied by a positive parameter ˛ were added to
the original objective function. It was shown that there
exists a value for ˛ such that the augmented objec-
tive function is convex. An upper bound for this value
was identified. Based on these developments a branch
and bound algorithm was devised based on the con-
vex lower bounding of the objective function through
the use of the ˛ parameter. The algorithm was imple-
mented for finding the global minimum configuration
of small Lennard–Jones and Morse microclusters. For
larger ones lower and upper bounds were derived by
using a relaxation procedure. Later, these ideas sparked
the development of the ˛BB algorithm for general non-
convex optimization problems.
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A general mathematical problem encountered in var-
ious applications is to find the configuration of r un-
known points in Rn (quite often n � 3) satisfying

a number of constraints on their mutual distances and
their distances to m fixed points, while minimizing
a given function of these distances. Often the unknown
points represent the locations of facilities to be con-
structed to serve the users located at the fixed points,
so as to minimize a cost function (travel time, trans-
port cost for customers, etc.) or to maximize the global
attraction (utility, number of customers, etc.). Also the
unknown pointsmay represent the cluster centers while
the fixed points are the objects to be classified into
groups (clusters). The biggest challenge occurs when
the unknown points represent the objects (atoms, parti-
cles) whose interactions depend upon their mutual dis-
tances: the objective function in these problems is then
interpreted as a “potential energy function” that should
attain a global minimum at the unknown configuration.

For many years, combinatorial geometric reason-
ing and nonlinear programming methods have been
the basic tools in the study of these problems. How-
ever, since most nonconvex problems are characterized
by the existence of many local nonglobal minimizers,
other more suitable methods have to be used to effi-
ciently cope with this difficulty.

Global optimization methods began to be intro-
duced in these fields more than two decades ago [9,15].
Subsequently, dc optimization techniques were used to
tackle facility location with nonconvex objective func-
tions and nonconvex constraints [5,6,12,13,19,20,21].

Single Facility Location

The first location problem, introduced by Weber
(1909), was to find the location of a facility so as to min-
imize the sum of its weighted distances to a given set
of users located in a plane. Over the years this uncon-
strained convex minimization problem has been fur-
ther and further generalized, leading to more and more
complex models of location.

Minisum andMaxisum

Suppose a new facility is designed to serve m users lo-
cated at a1; : : : ; > am 2 R2

C. Certain users, henceforth
called the “attraction points,” are interested in having
the facility located as close to them as possible. Oth-
ers, called the “repulsion points,” would like the facil-
ity to be located as far away from them as possible. Let
J1, J2 denote the index sets of attraction and repulsion
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points, respectively. For each user j D 1; : : : ;m a func-
tion qj(t) is known that measures the cost of travel-
ing a distance t away from aj; also, hj(x) is a function
of the distance from user j to point x 2 R2. It is as-
sumed that the function qj(t) is concave increasing with
q j(t)! C1 as t !1, while hj(x) is a convex func-
tion such that hj(x)!C1 as kxk ! C1. So if x is
the unknown location of the facility, then to take ac-
count of the interest of attraction points, one should try
to minimize the sum

P
j2J1 q j(hj(x)), whereas from the

point of view of repulsion points one should try to max-
imize the sum

P
j2J2 q j(hj(x)). Under these conditions,

a reasonable objective of the decision maker may be to
locate the facility so as to minimize the quantity
X
j2J1

q j(hj(x)) �
X
j2J2

q j(hj(x))

over Rn
C. Denoting the right derivative of qj(t) at 0 by

qj+(0) and assuming qCj (0) < C18 j, it can easily be
seen that each function g j(x) :D Kjh j(x)C q j[hj(x)] is
convex for Kj � qCj (0), and so we come up with the dc
optimization problem

minfG(x) � H(x)jx 2 Rn
Cg ; (1)

where G(x),H(x) are convex functions defined by

G(x) D
X
j2J2

g j(x)C
X
j2J1

Kjh j(x) ;

H(x) D
X
j2J1

g j(x)C
X
j2J2

Kjh j(x) :

Problems with the above objective function are called
minisum problems.

In other circumstances, instead of minimizing the
cost, one may seek to maximize the total attraction
X
j2J1

q j[hj(x)] �
X
j2J2

q j[hj(x)] ;

where each qj is a convex decreasing function. Assuming
qCj (0) > �1, the problem is then

maxfG̃(x)� H̃(x)jx 2 Rn
Cg ; (2)

where G̃(x); H̃(x) are now the convex functions

G̃(x) D
X
j2J1

g j(x)C
X
j2J2

Kjh j(x) ;

H̃(x) D
X
j2J2

g j(x)C
X
j2J1

Kjh j(x) :

Obviously, any maxisum problem can be converted
into aminisum one and vice versa. Most problems stud-
ied in the literature are minisum, under much more re-
stricted assumptions than in the above setting (see [16]
and references therein). Weber’s classical formulation
corresponds to the case J2 D ¿ (no repulsion points)
and hj(x) D kx � a jk; q j(t) D wjt;wj � 0;8 j. The
cases J2 ¤ ; with qj(t) nonlinear have begun to be in-
vestigated only recently, motivated by growing con-
cerns about the environment.

Maximin andMinimax

When siting emergency services, like a fire station, one
does not want to maximize the overall attraction but
rather to guarantee for every user a minimal attraction
as large as possible. The problem, often referred to as
the p-center problem, can be formulated as

max
n

min
jD1; ::: ;m

q j[hj(x)]jx 2 Rn
C

o
; (3)

where qj(t) are convex decreasing functions (minimax
problem). Assuming jqCj (0)j <18 j as previously, we
have the dc representation q j[hj(x)] D g j(x)�Kjh j(x);
hence

min
jD1; ::: ;m

q j[hj(x)]

D

nX
jD1

g j(x) � max
jD1; ::: ;n

h
Kjh j(x)C

X
i¤ j

gi (x)
i
;

and so (3) is again a dc optimization problem.
By contrast, when siting an obnoxious facility, one

wants to minimize the maximal attraction to an user, so
the optimization problem to be solved is

max
˚
min jD1; ::: ;k q j[hj(x)]jx 2 Rn

C

�
; (4)

where qj(t) are concave increasing functions (minimax
problem). Again, assuming jqCj (0)j <18 j, we have
the dc representation q j[hj(x)] D Kj(x) � g j(x), and
so

max
jD1;:::;m

q j[hj(x)]

D max
jD1; ::: ;n

h
Kjh j(x)C

X
i¤ j

g j(x)
i
�

mX
jD1

g j(x) ;
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i. e., the minmax location problem (4) is again a dc op-
timization problem.

A special maximin location problem worth men-
tioning is the design centering problem encountered
in engineering design. Given a compact convex set
B � Rn containing 0 in its interior andm compact con-
vex sets Dj; j D 1; : : : ;m contained in a compact con-
vex set C � Rn , find x 2 C so as to maximize

r(x) D min
jD0;1; ::: ;m

r j(x) ;

where r j(x) D minfp(y � x) : y 2 Djg; p : Rn ! RC
is the gauge of B and D0 D Rn n C. It can be shown [17]
that the function r0(x) is concave while r1(x); : : : ;
rm(x) are convex, so this can be viewed as a maximin
problem in which each Dj is a user and rj(x) is the dis-
tance from point x to user j.

Constrained Location

In the real world many factors may set restrictions on
the facility sites. Therefore, practical location problems
are often constrained.

Location on Union of Convex Sets

The most simple type of restriction is that the facility
can be located only in one of several given convex re-
gions C1; : : : ;Ck [8]. If Ci D fx : ci (x) � 0g, with ci(x)
being convex functions, then the constraint x 2 [k

iD1Ci

can be expressed as

min
iD1; ::: ;k

ci(x) � 0 ;

which is a dc constraint.

Location on Area with Forbidden Regions

In other circumstances, the facility can be located only
outside some forbidden regions that are, for instance,
open convex sets Co

i D fx : ci(x) < 0g;with ci(x) being
convex functions (see, e. g., [2]). Since the constraint
x … [k

iD1C
o
i is equivalent to miniD1; ::: ;k ci(x) � 0, this

is again a dc constraint.

General Constrained Location Problem

The most general situation occurs when the constraint
set is a compact, not necessarily convex, set. However,
a striking result of dc analysis shows that even in this

general case the constraint can be expressed as a dc in-
equality [12,22].

Of course the corresponding dc optimization prob-
lem is very hard. Although a method (the relief indi-
cator method [18]) exists for dealing with general non-
convex constraints, so far it only works in low dimen-
sion.

Multiple Source

When more than one facility is to be located, the objec-
tive function depends upon whether these facilities pro-
vide the same service or different services to the users.

If there are r � 2 facilities providing the same ser-
vice, these facilities are called sources. Each user is then
served by the closest source. So if xi is the unknown lo-
cation of the ith facility and X D (x1; : : : ; xr) 2 (R2)r ,
then the overall attraction is

X
jin J1

q j[h̃ j(X)] �
X
j2J2

q j[h̃ j(X)] ; (5)

where h̃ j(X) D minfhj(xi) : i D 1; : : : ; rg and q j; hj

are as previously. Since h̃ j(X) D
Pr

iD1 hj(xi) �
maxiD1; ::: ;r

P
i¤l h j(xi), the first term in (5) is the dc

function

X
j2J1

g j(X)�
X
j2J1

Kj

" rX
iD1

hj(xi)C max
lD1; ::: ;r

X
i¤l

h j(xi)

#
;

where Kj � jqCj (0)j and

g j(X) D q j[h̃ j(X)]CKj

� rX
iD1

hj(xi )Cmax
lD1;:::;r

X
i¤l

h j(xi)
�

is a convex function. Similarly for the second term
in (5). Hence the objective function in the r source
problem is a dc function on (R2)r .

The multisource problem is usually referred to
as the generalized Weber problem, or also the r-me-
dian problem when J2 D ;. Traditionally it is often
viewed as a location-allocation problem and formu-
lated as amixed 0-1 integer programming problem (see,
e. g., [16]).

Clustering

In many practical situations we have a set of objects of
a certain kind that we want to classify into r � 2 groups
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(clusters), each including elements close to each other
in some well-defined sense. In the simplest case, this
gives rise to the following problem: for a given finite
set of points a1; : : : ; am 2 Rn , find r cluster centers
xi 2 Rn ; i D 1; : : : ; r, such that the sum of the min-
ima over i 2 f1; : : : ; rg of the “distance” between each
point aj and the cluster centers xi ; i D 1; : : : ; r, is min-
imized. If d(a, x) denotes the distance from a to x, then
the problem is

min

( mX
jD1

min
iD1;:::;r

d(a j ; xi) : xi 2 [0; b]

)
: (6)

Formally, this is nothing but the r-median problem,
i. e., the generalized Weber problem with J2 D ;.

If d(a; x) D
Pn

iD1 jai � xi j, then, using the equal-
ity jai � xi j D minfyi : � yi � ai � xi � yig, prob-
lem (6) can be written as

mX
jD1

min
lD1; ::: ;r

 nX
iD1

y jli

!

� y jl � a j � xl � y jl

j D 1; : : : ;m; l D 1; : : : ; r ;

which is a concave minimization problem under linear
constraints. One way to cope with the large dimension
of this problem is to replace it with the equivalent bilin-
ear program

min
mX
jD1

rX
lD1

t jl y jl

s:t: � y jl � a j � xl � y jl j D 1; : : : ;m; l D 1; : : : ; r
rX

lD1

t jl y jl ; t jl � 0;
rX

lD1

t jl D 1 :

and to solve the latter approximately to a local optimum
by alternately fixing t and y.

When d(a; x) D
qPn

iD1(ai � xi )2, the problem is
no longer a concave minimization but can be re-
duced to a dc program by easy manipulations. In [1]
results of solving the generalized Weber problem
with m D 10;000; p D 2, and m D 1;000; p D 3, by dc
methods are reported. Alternatively, (6) can also be
transformed into a monotonic optimization and solved
by recently developed monotonic optimization meth-
ods [23,24]. For this observe that d(a; x) D (d(a; x)C

Pn
iD1 xi) �

Pn
iD1 xi , and since u(a; x) D d(a; x) CPn

iD1 xi and
Pn

iD1 xi are both increasing functions, it
follows that d(a,x) is a dm (difference of monotonic)
function, and, hence, (6) is a monotonic optimization
problem.

Multiple Facility

When the r � 2 facilities to be located provide differ-
ent services, aside from the costs due to interactions
between facilities and users, one should also consider
the costs due to pairwise interactions between facilities.
The latter costs can be expressed by functions of the
form �i l [hi l (xi ; xl )], where again hi l (xi ; xl ) are convex
nonnegative valued functions and �i l (t) are concave in-
creasing functions on [0;C1) with finite right deriva-
tives at 0. The total cost one would like to minimize is
then

rX
iD1

Fi(xi )C
X
i<l

�i l [hi l (xi ; xl )] ; (7)

where Fi(xi ) D
P

j2J1 q ji[hj(xi)] �
P

j2J2 q ji[hj(xi)]
and q ji ; hj are as in minisum single facility problems.

As we saw above, each function Fi(xi) is dc, hence
each function �i l [hi l (xi ; xl )] is dc, too, and (7) is again
a dc function on (R2)r . In the special case when there
are no repulsion points (every Fi (xi) is convex) and the
pairwise interactions between facilities �i l (t) are con-
vex, this is simply a convex function. Also, in the ab-
sence of interactions between facilities (�i j(:) D 0 8i j),
the minimization of function (7) splits into r indepen-
dent single facility minisum problems.

Molecular Conformation

A variant of the multifacility problem that has risen to
attract much research in recent years is the so-called
molecular conformation problem encountered in com-
putational biology, computational chemistry, and pro-
tein folding. This is the problem of determining ground
states or stable states of certain classes of molecular
clusters and proteins and can be stated as follows [14].
Given a cluster of N atoms (in three-dimensional
space), we wish to locate their centers x1; : : : ; xN so
as to minimize the potential energy function

VN (x1; : : : ; xN) D
X

1�i< j�N

v(kxi � x jk) ;
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where k:k is the euclidean norm and v(r) the inter-
atomic pair potential. This can be viewed as a multifa-
cility problem in which there is no user but many facil-
ities (the number N may be rather large; see, e. g., [14]).
In models used for computation, the pair potentials of
interest include the following:

v(r) D r�12 � 2r�6 (Lennard-Jones) ;

v(r) D
h
1 � e˛(1�r)

i2
� 1 (Morse) ;

v(r) D
z˛zˇ

r
C Ae

�r
� (Born-Meyer) :

Using representation theorems in dc optimization, it
can be seen that these functions are dc (at least for
r � ", where " is an arbitrary small positive number).

Distance Geometry

A related problem that also has applications in molec-
ular conformation, and other questions such as survey-
ing and satellite ranging, data visualization, and pattern
recognition, etc., is the multidimensional scaling prob-
lem or distance geometry problem. It consists in finding
r objects x1; : : : ; xr inRn such that the quantity

Vr(x1; : : : ; xr) D
X
i< j

wi j

�
ı2i j � kx

i � x jk2
�2

(8)

is smallest, where � D (ıi j);W D (wi j) are symmetric
matrices of order r such that

ıi j D ı ji � 0; wi j D wji � 0 (i < j);

ıi i D wii D 0 (i D 1; : : : ; r) :

By writing this problem as

min
X
i< j

wi jkxi � x jk2 � 2
X
i< j

wi jıi jkxi � x jk

s.t. xi 2 Rn(i D 1; : : : ; r)
(9)

or, alternatively, as

min
X
i; j

wi j t2i j

ˇ̌
ˇ̌
ˇ
�ti j � ı2i j � kx

i � x jk2 � ti j (8i < j)
xi 2 Rn ; i D 1; : : : ; r

(10)

we again obtain a dc optimization problem that is also
a monotonic optimization problem.
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The harmonic retrieval (HR) problem is an ubiqui-
tous problem that arises in various applications, such
as signal modeling and direction-of-arrival. It consists
of estimating the parameters of multiple sinusoids from
noisy data. The data is modeled as

y(t) D
KX

kD1

a�k sin(2 f �k t)C n(t);

t D 1; : : : ;N;

(1)

where a�k , f
�
k , and �

�
k are the amplitude, frequency, and

phase of the kth sinusoid, respectively. It is assumed
that the number of sinusoids, K, is known and all fre-
quencies satisfy 0 < f �k < 0.5, k = 1, . . . , K, and f �k 6D
f �j for k 6D j. In addition, the noise, n(t), is assumed to
be zero-mean, white Gaussian noise (WGN) with vari-
ance �2

n . Given the data, y(t) for t = 1, . . . , N, the goal
is to estimate the sinusoid parameters, �� = [a�1 , . . . , a�K ,
f �1 , . . . , f �K].

The conventional FFT or periodogram-based meth-
ods [4, Chapt. 1]are only able to solve the HR prob-
lem when frequencies are spaced more than 1/N cy-
cles/sample apart, where N is the number of available
data points. To tackle the problem where the difference
between any two frequencies is smaller than the thresh-
old 1/N, high resolution techniques must be used [4,
Chapt. 5]. The sinusoidal parameter estimation problem
is based on solving the least squares (LS) problem (P):

(P) b�LS �D argmin


J(�); (2)

where

J(�)

D

NX
tD1

(
y(t)�

KX
kD1

ak sin(2 fk t C �k)

) 2

;
(3)

and � = [a1, . . . , aK , f 1, . . . , f K , �1, . . . , �K]. We can
see from (3) that the objective function is nonconvex,
which suggests that a global optimization method rep-
resents the most appropriate procedure for determin-
ingb�LS.

Two methods that have been proposed for solving
(P) are the one proposed in [8], for which we will re-
fer to as Stoica’s method and the Iterative Quadratic
Maximum Likelihood method (briefly: IQML method)
[1]. Both methods can not guarantee convergence un-
less the initial conditions are sufficiently close to the
global minimum. Stoica’s method first generates ini-
tial estimates using the overdetermined Yule–Walker
method. Then, it improves on these estimates by us-
ing a periodogram-based procedure and a simplified
Gauss–Newton algorithm to iteratively maximize the
likelihood function. In [8], it was shown experimen-
tally that Stoica’s method requires extremely large data
records. The well known IQML method is an itera-
tive quadratic maximization algorithm that attempts
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to determine the maximum likelihood (ML) estimates
in terms of a prediction polynomial. This algorithm,
as our experiments show, produces poor estimates for
short data records and/or low signal-to-noise ratio
(SNR). The IQML algorithm is also noted to sometimes
fail to converge and the estimated frequencies are al-
most always inconsistent [9].

Taking a different approach, we will apply the global
optimization algorithm of interval methods (IM) to
the HR problem (2). Interval method type algorithms
[3,6,7] have proven to be an excellent and reliable pro-
cedure for solving global optimization problems involv-
ing nonconvex objective functions. One of the reasons
one chooses interval methods is because they are ap-
plicable to most optimization problems regardless of
convexity and differentiability of the objective function,
or knowledge of its Lipschitz constant. Additionally,
for continuous objective functions, its convergence to
a global optimum interval has been proven [3]. In us-
ing the IM method for solving the LS estimates of (2),
convergence is very slow.

One way to overcome the problem of slow con-
vergence is to decompose the problem whereby opti-
mization occurs over smaller dimensions and in paral-
lel. This can be accomplished through combining the
expectation-maximization algorithm (briefly: EM algo-
rithm) [2] with the interval method. This proposed
combination of the EM algorithm with the interval
method is defined as the expectation-maximization in-
terval method (EMIM) algorithm. The EM algorithm
represents a computationally efficient method for solv-
ing estimation problems. For the HR problem, the EM
algorithm decomposes the HR problem into K sub-
problems, where K is the number of sinusoids. The K
subproblems, which are nonconvex optimization prob-
lems, are then solved using an IM global optimization
method. This results in an algorithm that is able to con-
verge to the global minimum interval with significantly
reduced computational complexity, in comparison with
using the IM algorithm alone for solving (P).

Interval Arithmetic

Interval methods are a class of global optimization al-
gorithms that utilize interval arithmetic. An interval
which contains the global minimum is found by par-
titioning the search space into regions, where at each

iteration, regions are selected for further search by ad-
ditional partitioning. Those partitions that cannot con-
tain the global minimum are discarded. Amajor advan-
tage of interval methods is their ability to find the global
minimum of nonconvex differentiable or nondifferen-
tiable objective functions.

Interval arithmetic [6] was developed to automati-
cally estimate and control numerical errors caused by
finite precision of computer arithmetic. The INTLIB li-
brary [5] is used to implement interval arithmetic as
used in the IM algorithm. A real interval number X
= [a, b] consists of the set set{x: a � x � b} of real
numbers. Additional notations used here are: the upper
bound (ub) of X = b, the lower bound (lb) of X = a, the
mid-point of X is m(X) = (a + b)/2, and the width of X
is w(X) = b� a. Furthermore, w(X) = max{w(Xi)}iDn

iD1
where X = [X1, . . . , Xn]|. The general interval arith-
metic operational rules is defined as X�Y = {x�y:x 2
X, y 2 Y}, where X and Y are real interval numbers
and� represents the arithmetic operations of plus, mi-
nus, multiplication, and division. For additional infor-
mation on interval arithmetic see [6,7].

The unconstrained global optimization problem can
be described as

min
x2D

g(x); (4)

where g(x): Rn R, x 2 Rn and D 2 Rn represents the
feasible region. The main tool for solving the problem
in (4) is the concept of inclusion function. A function
G(X): In ! I is an inclusion function of the objective
function g(x), if x 2 Y implies that g(x) 2G(Y) and that
the isotonicity property is met (i. e. X � Y implies that
F(X) � G(Y)). The inclusion function with isotonic-
ity property provides the theory for the use of interval
methods as a global optimization procedure. In short,
inclusion functions represent the range of function val-
ues of f over the interval X.

The optimization procedure for the interval method
involves continually bisecting a box Xi from an initial
box, X0, until G(Xi), the inclusion function, contains
the global minimum given that w(G(Xi)) � �. What
differentiates this method from the method of exhaus-
tive search is that regions of the objective are discarded
from evaluation if the lbG(Xi) in the list, L, is greater
than the minimum between the past or present value
of ubG(Xj) given that i 6D j. The algorithm of E.R.
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GlobalOptimizationMethods forHarmonic Retrieval, Table 1
A pseudocode for interval methods

PROCEDURE interval method
Set Y := X;
Calculate G(Y), y :=lbG(Y), g̃ :=ub G(m)
where m =mid Y
Initialize list L := f(Y ; y)g.

REPEAT until convergence
Choose a coordinate direction k, parallel to Yi ,
and of max length.
Bisect Y to obtain boxes V1, V2, where
Y = V1 [ V2.
Calculate G(V1) and G(V2) and vi :=lb G(Vi )
for i = 1,2.
Place (G(Vi ), vi ) at end of list.
Choose pair (Ỹ ; ỹ) from L such that ỹ � z,
8(Z; z).
Discard pairs from list, (Z; z), if z > g̃.
Terminate if !(Z) < �, 8Z, in L.
Denote first pair of list by (Y ; y).
Compute m := mid Y and
g̃ = min( g̃; ub G(m)).

RETURN
END interval method

Hansen [3,7] is the particular interval method that will
be used for locating the LS estimates of the HR prob-
lem and is outlined in Table 1. In [7], it was proven
that convergence to the global minimum was achieved
if w(G(X))! 0 as w(X)! 0.

Interval Method for Solving HR

To apply the IM to solving the HR problem, the objec-
tive function (3) must be placed in its inclusion form:

J(
)

D

NX
tD1

"
y(t)�

KX
kD1

Ak sin(2Fk t C ˚k)

#2

;
(5)

where 
 = [A1, . . . , AK , F1, . . . , FK , ˚1, . . . , ˚K] and
Ak, Fk, and ˚k are the interval counterparts of ak, f k,
and �k, respectively. Throughout this paper capital let-
ters represent interval variables that correspond to its
real variable equivalent. The initial interval, 
0, is cho-
sen such that it encompasses the global minimum. This
is accomplished by choosing an interval that is deter-

Global Optimization Methods for Harmonic Retrieval, Fig-
ure 1
Objective function of a single sinusoid

mined from a priori information or from other high
resolution HR methods [4]. The IM of Hansen’s, de-
scribed in previous section, is used to determine the
global minimum,
�, of (5). The objection function (5)
for a single frequency, phase and amplitude held con-
stant, is plotted in Fig. 1). It can easily see that this rep-
resents a very difficult but practical problem for global
optimization.

Simulations

In this section, a numerical experiment will be demon-
strated to show the performance of the IM for solving
the HR problem (P). The experiments consist of esti-
mating the sinusoid parameters for the following data,

y(t) D 1:0 sin(2(0:2)tC 0:0)C n(t);
t D 1; : : : ; 35;

(6)

where n(t) is white Gaussian noise. We choose the ini-
tial box for the IM algorithm to be 
 = [A, F, ˚]|

= [[0.71.2], [0.10.3], [00.4]]|. The signal-to-noise-ratio
(SNR) is defined as

10 log

" KX
kD1

0:5
(a�k )

2

�2
n

#
;

where �2
n is the variance of the noise. The results of

this simulation, shown in Table 2, is described in terms
of sample mean and standard deviation based on 50
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GlobalOptimizationMethods forHarmonic Retrieval, Table 2
IM estimates

IM: N = 35 (50 MC runs)
SNR 10 5 0

a� = 1:0 1:0155 1:0447 1:0633
˙0:0518 ˙0:0913 ˙0:1365

f � = :20 0:1995 0:1993 0:1989
˙6:591 �
10�4

˙0:0012 ˙0:0017

�� = 0 0:0654 0:0839 0:1193
˙0:0564 ˙0:0975 ˙0:1319

GlobalOptimizationMethods forHarmonic Retrieval, Table 3
IQML Estimates

IQML: N = 35 (50 MC runs)
SNR 10 5 0

a� = 1:0 1:0080 0:9862 0:8919
˙0:0533 ˙0:1479 ˙0:3230

f � = :20 0:1998 0:1970 0:1728
˙7:623 �
10�4

˙0:0202 ˙0:0839

�� = 0 0:0141 �0:0126 0:5288
˙0:0949 ˙0:2852 ˙1:1429

Monte-Carlo (MC) runs. This results are based on the
midpoints of 
. Note that the final estimates, b� , are
very close to the true value of �� with a small standard
deviation. In comparison with IQML, see Table 3, the
IM fares considerably better in both mean and standard
deviation. This is particularly notable when comparing
the frequency component, which represents the most
important feature of harmonic retrieval.

The convergence rate of the IM is sensitive to the
order, K, of the HR problem. In fact, the dimension-
ality of the parameter space, In, increases at a rate of
3K. Thus, as n increases, the convergence rate becomes
prohibitively slow. The curse of dimensionality can be
mitigated through decomposition and parallelizing the
problem by utilizing the EM algorithm as described in
the next section.

EMIM

The detailed development of the EM algorithm [2] is
well-known, and will be outlined here as part of the de-

velopment of the EMIM algorithm for solving the HR
problem. To determine the LS estimates of the sinu-
soidal parameters, the EM algorithm first decomposes
the observed data y(t) into its signal components (E
step) and then estimates the parameters of each signal
component separately (M step). The algorithm iterates
back and forth between the E step andM step, using the
current estimate to decompose the observed data better
and thus improve the next parameter estimate.

For the HR problem, the incomplete data is the ob-
served data, y(1), . . . , y(N). The complete data is mod-
eled as the following K data records:

yk(t) D a�k sin(2 f �k t C �
�
k )C nk(t);

k D 1; : : : ;K;

where nk(t) = ˇk[y(t)�
PK

kD1 a
�
k sin(2f

�
k t + �

�
k )]. The

ˇk’s are arbitrary real-valued scalars satisfying
PK

kD1ˇk

= 1 and ˇk � 0. Thus
PK

kD1 nk(t) = n(t), for t = 1, . . . ,N.
The EM algorithm, beginning with n = 0, is represented
by the following two steps:
E) For k = 1, . . . , K, compute

b� (n)k (t) Dba(n)k sin(2bf (n)k tCb�(n)
k )

C ˇk

"
y(t)�

KX
lD1

ba(n)l sin(2bf (n)l t Cb�(n)
l )

#
:
(7)

M) For k = 1, . . . , K,

b� (nC1)
k D arg min

ak ; fk ;�k
J(n)k ; (8)

where

J(n)k D

NX
tD1

(b� (n)k (t)� ak sin(2 fk t C �k))2: (9)

The parameter vector b� (n)k
�
D [ba(n)k ;

bf (n)k ;
b�(n)

k ]> is the

estimate for ��k
�
D [a�k ; f

�
k ; �

�
k ]
> after n iterations. In

the original HR problem, we have to search the (3 ×
K)-dimensional parameter space to find the minimum
value of the least squares objective function. But after
the EM algorithm decomposes the HR problem into
K smaller subproblems, we only have to solve K sub-
problems each of which requires the search of a 3-
dimensional parameter space to find the global optimal
point(s). This results in a significant reduction in com-
putational complexity.
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To solve the minimization problem in M step, we
resort to using the IM for finding the final interval that
contains the point minimizing the objective function.
Since IM has been proven to converge to the global
optimum for continuous objective functions [3], this
algorithm will not be trapped in the local extremum.
Needed in the IM algorithm is the inclusion function
of the objective function (6), which is constructed by
forming the natural interval extension [3,7] of Jk:

J (n)k D

NX
tD1

�
b� (n)k (t)� Ak sin(2Fk t C ˚k)

�2
; (10)

where Ak, Fk, and ˚k are the interval counterparts of
ak, f k, and �k, respectively. The initial value b� (0)k D

[ba(0)k ;
bf (0)k ;

b�(0)
k ]> are arbitrarily guessed or can come

from other high-resolution estimation methods. The
initial interval 
k, 0 = [Ak, 0, Fk, 0, ˚k, 0]| for the M)
step is the region over which the minimization is car-
ried out. This initial interval 
k, 0 is used at the begin-
ning of each M) step of the EMIM algorithm. At the
(n + 1)st iteration of EMIM, the IM partitions 
k, 0

iteratively to find the final interval estimate b
(nC1)
k .

The m(b
(nC1)
k ) D b� (nC1)

k will be used as the parame-
ter estimate to computeb� (nC1)

k (t) for the next iteration
of the EMIM algorithm. The process is repeated untilPK

kD1




b� (nC1)
k �b� (n)k




 � �, where � is chosen by the
user.

Consider the case where b� (0)i D
b� (0)j and ˇi = ˇj.

It is straightforward to see that b� (n)i (t) D b� (n)j (t) and
Ji = Jj in the E)-step and M)-step, respectively. Thus,
b
(nC1)

i D b
(nC1)
j for all n which means that the final

estimates for � i and � j will be the same. In order to
avoid this problem, ˇi must not equal ˇj or b� (0)i must
not equalb� (0)j in order to fully exploit the capability of
the EMIM algorithm.

Simulations

Our experiments consist of estimating the sinusoidal
parameters for the following data,

y(t) D 1:0 sin(2(0:2)t C 0:0)

C 1:0 sin(2(0:22)t C 0:0)C n(t);
t D 1; : : : ; 35;

where n(t) is white Gaussian noise. Since |0.2 � 0.22|
< 1/35 = 0.02857, the periodogram cannot be used to

determine the frequencies. We choose the initial box for
the EMIM algorithm to be:

[
1;0; 
2;0]>

D [A1;0; F1;0; ˚1;0;A2;0; F2;0; ˚2;0]>

D [[0:7 1:2]; [0:1 0:3]; [0 0:4];

[0:7 1:2]; [0:1 0:3]; [0 0:4]]>

and ˇ1 = 0.09, ˇ2 = 0.91. The signal-to-noise-ratio
(SNR) is defined as

10 log

" KX
kD1

0:5
(a�k )

2

�2
n

#
;

where �2
n is the variance of the noise. If no a priori in-

formation about the possible values of the sinusoid pa-
rameters is available, the full range of possible values
for the frequency, the phase, and the amplitude must
be used as the initial intervals. Utilizing the full range
will impose no difficulty when very fast computing en-
gines are used. However, other high resolution tech-
niques can be used to yield a smaller and more cogent
initial interval.

Using 50 MC runs, we computed the sample means
and standard deviations for the EMIM and the IQML
algorithms. (See Table 4 and Table 5, respectively). As
for the EMIM, the mid-points of the final interval es-
timates are considered as the final estimates, thus the

GlobalOptimizationMethods forHarmonic Retrieval, Table 4
EMIM estimates

EMIM: N = 35; � = 10�6 (50MC runs)
SNR 10 5 0

a�
1 = 1:0 1:0305 1:0235 1:0263

˙0:0992 ˙0:1389 ˙0:1622
f �
1 = :20 0:1993 0:1993 0:1969

˙2:209 �
10�4

˙4:119 �
10�4

˙0:0110

��
1 = 0 0:0631 0:0851 0:1369

˙0:0764 ˙0:1152 ˙0:1609
a�
2 = 1:0 1:0284 1:0501 1:0995

˙0:0744 ˙0:1036 ˙0:1054
f �
2 = :22 0:2192 0:2194 0:2182

˙0:0012 ˙0:0016 ˙0:0051
��
2 = 0 0:0746 0:0757 0:1314

˙0:1177 ˙0:1224 ˙0:1662
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GlobalOptimizationMethods forHarmonic Retrieval, Table 5
IQML estimates

IQML: N = 35 (50 MC runs)
SNR 10 5 0

a�
1 = 1:0 0:9549 0:6615 0:7404

˙0:3283 ˙0:2908 ˙0:2778
f �
1 = :20 0:1963 0:1707 0:1404

˙0:0137 ˙0:0476 ˙0:0836
��
1 = 0 0:3332 0:9323 0:5472

˙0:6117 ˙1:0843 ˙1:0659
a�
2 = 1:0 0:9013 0:7567 0:8582

˙0:3732 ˙0:2683 ˙0:2788
f �
2 = :22 0:2428 0:2559 0:2721

˙0:0685 ˙0:0867 ˙0:0985
��
2 = 0 �0:0886 �0:0079 0:3123

˙0:4852 ˙0:7185 ˙0:8358

sample mean and variance can be calculated accord-
ingly. Note that the EMIM generates estimates which
have mean values very close to the true parameter
values and relatively very small variances. As for the
IQML, its variance for each value of SNR is significantly
larger than the corresponding EMIM. Clearly, EMIM
outperforms IQML by providing estimates that are less
biased with smaller variances.

Conclusion

In comparison between the two types of IM algorithms
with the IQML method, it was shown that both the
IM and EMIM algorithms represent a powerful tool
for solving the HR problem. Furthermore, it has been
noted that by decomposing the problem by the EMIM
algorithm does not degrade the performance of using
the IM.

We have shown experimentally that the IM and
EMIM algorithms are robust for very short data records
and low SNR. Nevertheless, if the dimensionality is low
or convergence to the ML estimates is desired, then the
IM algorithm can be used. For either EMIM or IM, con-
vergence time can be improved by generating initial in-
terval of smaller widths by using other high resolution
HR methods. Furthermore, using a multi-processor
computer to implement the decomposed sub-problems
in parallel can also reduce the execution time.
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The problem of finding a solution of a system of equa-
tions and/or system of inequalities is one of the main re-
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search subjects in numerical analysis and optimization.
The source of systems of equations and/or inequalities
contains many ‘real-world’ problems ([2,7]), the non-
linear complementarity problem (cf. also � General-
ized nonlinear complementarity problem), the varia-
tional inequality problem (cf. also � Variational in-
equalities) over a convex set, Karush-Kuhn-Tucker sys-
tems, the feasibility problem, the problem of computing
a Brouwer’s fixed point ([10,15]).

In general, a system of nonlinear equations and/or
inequalities is given by

(SNE)

8̂
<̂
ˆ̂:

hi(x) D 0; i 2 I;
g j(x) � 0; j 2 J;

x 2 X;

where I, J are finite index sets, X � Rn is a convex set,
and hi (i 2 I), gj (j 2 J) are nonlinear functions defined
on a suitable set containing X.

Solution methods for (SNE), which are based on
convex and nonsmooth optimization techniques, and
fixed point algorithms can be found in [2,3,4,5,14,15],
and references given therein.

In order to apply global optimization methods for
solving (SNE), one defines a vector function h: Rn !

R|I| having components hi(x)(i 2 I), a function

f (x) D maxfkh(x)k ;
˚
g j(x) : j 2 J)

��
;

where k � k is any vector norm on R|I|, and considers the
following global optimization problem

(GOP) f � D min f f (x) : x 2 Xg :

In particular, the function f in (GOP) can be defined by

f (x) D max
˚
fjhi (x)j : i 2 Ig ;

˚
g j(x) : j 2 J)

��
:

In general, a vector x� 2 Rn is a solution of (SNE) if
and only if it is a global optimal solution of (GOP) and
f � = f (x�) = 0. Thus, finding a solution of (SNE) can
be replaced by computing a global optimal solution of
(GOP). In the case that I = ;, i. e., (SNE) is a system of
inequalities, global optimization algorithms to (GOP)
will terminate whenever a feasible point x 2 X is found
satisfying f (x) � 0. While applying a global optimiza-
tion algorithm to (GOP), if it is pointed out that f � > 0

(e. g., a lower bound � of f � can be computed such that
� > 0), then obviously (SNE) has no solution.

There are three main classes of (SNE), which can be
solved by implementable methods in global optimiza-
tion:
i) The functions hi (i 2 I) and gj (j 2 J) are all d.c. (a

function is called d.c. if it can be expressed as the
difference of two convex functions, see�D.C. pro-
gramming).

ii) The functions hi (i 2 I) and gj (j 2 J) are all Lips-
chitzian with Lipschitz constants Li (i 2 I) and Mj

(j 2 J), respectively.
iii) The corresponding problem (GOP) can be replaced

by a convex relaxation problem.
For class i), the function f in (GOP) is d.c., and one can
find an explicit form of f as the difference of two convex
functions, so that d.c. programming techniques can be
applied ([9,11,12,18,19]).

For class ii), if in the definition of f , `p-norms are
used, i. e.

kh(x)kp D

8̂
ˆ̂<
ˆ̂̂:

 X
i2I

jhi (x)jp
! 1

p

; 1 � p <1

max
i2I
jhi(x)j ; p D1;

then f is Lipschitzian with Lipschitz constant L =
max {

P
i 2 ILi, {Mj: j 2 J}}. Algorithms for solv-

ing Lipschitz optimization problems can be found in
[6,7,8,9,10,12,16,17].

Techniques for the construction of convex relax-
ation problems for some special cases of class iii) are
given in [13].
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Multiplicative functions, products of real-valued func-
tions f i, i = 1, . . . , p, are generally nonconvex functions
even though each f i is convex. As a result, most multi-
plicative programming problems containing

Qp
iD1 f i(x)

in the objective and/or constraints are nonconvex min-
imization; and hence we need global optimization to
look for a global minimum in stacks of local minima.
Fortunately, however, the number p of f is in multiplica-
tive functions encountered in practical applications is
rather small in comparison with the number n of vari-
ables; e. g. two or three in geometrical optimization
[10] and at most five in multiple objective optimization
[1]. As will be seen later, this enables us to embed the
troublesome nonconvexity into a small subspace of di-
mension p. Exploiting such a property, called low-rank
nonconvexity [6], a number of researchers have devel-
oped efficient algorithms since the late 1980s years to
solve various subclasses of multiplicative programming
problems, including the linear multiplicative program

(
min (c>1 xC c10)(c>2 xC c20)
s.t. x 2 D;

(1)

where D� Rn is a polytope and c>i x + ci0 > 0 for any x
2 D; the convex multiplicative program

8̂
<̂
ˆ̂:
min

pY
iD1

fi(x)

s.t. x 2 D;

(2)

where D is a compact convex set and the f is are convex
functions positive-valued on D; the generalized convex
multiplicative program

8̂
<̂
ˆ̂:
min

pX
iD1

f2i�1(x) f2i(x)C g(x)

s.t. x 2 D;

(3)

whereD and the f is are the same as in (2) and g is a con-
vex function; and the convex program with an addi-

tional convex multiplicative constraint
8̂
ˆ̂̂<
ˆ̂̂̂
:

min g(x)
s.t. x 2 D

pY
iD1

fi(x) � 1;
(4)

where D, the f is and g are the same as in (3). As long as
p is a small number, all of these nonconvex programs
can be solved in a practical amount of time even if n
exceeds a few hundreds.

Linear Multiplicative Program

Problem (1), though simple looking, is NP-hard (cf.
also � Complexity theory; � Complexity classes in
optimization) as shown in [11]. There are two ma-
jor methods, each of which is based on a variant of
parametric simplex algorithms for linear programming
[12].

The first method introduces a parameter � � 0 and
transforms (1) into an equivalent problem:

8̂
<̂
ˆ̂:

min � f1(x)
s.t. x 2 D

f2(x) � �; � � 0;

(5)

where f i(x) = c>i x + ci0, i = 1, 2. To solve (5), we need
only to solve

min f f1(x) : x 2 D; f2(x) � �g (6)

for all � � �min = min{f 2(x): x 2 D}, using the paramet-
ric right-hand side simplex algorithm (cf. also � Para-
metric linear programming: Cost simplex algorithm).
We then have a set of optimal solutions x(�) to (6) and
the analytical expression of

�(�) D � f1(x(�));

which is a piecewise quadratic function over � � �min.
Let

�� 2 argmin f�(�) : � � �ming :

Then x(��) is an optimal solution to (1).
This parametric method, proposed by K. Swarup

[13] in the middle 1960s, was originally used for find-
ing a locally optimal solution to (1). Strangely, it had
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not been appreciated as an efficient global optimization
tool until the second parametric method was developed
by H. Konno and T. Kuno [4] more than twenty years
later.

The second method also introduces a parameter �
� 0, but in a deferent way:

(
min F(x; �) � � f1(x)C f2(x)

�

s.t. x 2 D; � � 0:
(7)

For any x we have

min fF(x; �) : � � 0g D 2
p

f1(x) f2(x):

Therefore, (7) is equivalent to (1); moreover, (7) is
equivalent to finding a minimum point �� of a function

 (�) D min fF(x; �) : x 2 Dg (8)

over � > 0. Since the right-hand side of (8) is a linear
program, we can locate �� using the parametric objec-
tive simplex algorithm. In fact, noting that � = �/(� +
1/�) maps� = {�: � > 0} to a unit interval {�: 0 < � < 1},
we solve

min
˚
�c>1 xC (1 � �)c>2 x : x 2 D

�
(9)

parametrically over � 2 (0, 1). Let x(�) denote an opti-
mal solution to (9). Then

�� 2 argmin f f1(x(�)) f2(x(�)) : � 2 (0; 1)g

gives �� D
q

	�

(1�	�) ; and x(��) is an optimal solution
to (1).

Under some probabilistic assumptions, the average
number of simplex pivots needed to solve a linear pro-
gram with a single parameter is known to be polyno-
mial in the problem input length [12]. Hence, (1) can
also be solved in polynomial time on the average, which
contrasts sharply with the result of the worst-case anal-
ysis.

ConvexMultiplicative Program

The above parametric methods for (1) can be extended
to more general classes of multiplicative programming
problems. For example, (7) is directly applicable to the
special case of (2) where p = 2; but it is difficult to design
an algorithm for solving (7) parametrically when the f is

are nonlinear functions. One effective approach in this
case is branch and bound on the set of parameter val-
ues � = {�: � > 0} [7] (cf. also � Integer programming:
Branch and bound methods).

Let F denote the family of functions of the form:

˛� C
ˇ

�
;

where ˛, ˇ 2 R. The function  defined by (8) is
a pointwise minimum of some functions in F such that
˛ = f 1(x) and ˇ = f 2(x) for x 2 D. The family F pos-
sesses the following properties:
i) Any two points (�s,  s), (� t ,  t) 2 R2, with 0 < �s <

� t , uniquely determine

 s�s �  t�t

�2s � �
2
t

� C
 s /�s �  t/�t
1/�2s � 1/�2t

/� 2 F ;

ii) Any function in F is Lipschitz continuous over � �
� 0 for any � 0 > 0;

iii) Two distinct functions in F have at most one inter-
section point over � > 0.

Suppose [�s, � t]�� is an interval containing ��. Since
f 1 and f 2 are convex, F(�, �) is also a convex function
for any � > 0; and hence  (�s) and  (� t) can be com-
puted by convex programming. For (�s,  (�s)) and (� t ,
 (� t)), let us construct a function in F according to i):

u(�; �s ; �t)

D
 (�s)�s �  (�t)�t

�2s � �
2
t

� C
 (�s)/�s �  (�t)/�t

1/�2s � 1/�2t
/�:

From iii) we have

u(�; �s ; �t) �  (�); 8� 2 [�s ; �t]:

Let �m 2 arg min {u(�; �s, � t): � 2 [�s, � t]} and

u2(�) D

(
u(�; �s ; �m) if 0 < � � �m ;
u(�; �m ; �t) if � � �m :

Then u2 underestimates  over [�s, � t] and is better
than u1 = u(�; �s, � t) in the sense:

u1(�) � u2(�) �  (�); 8� 2 [�s ; �t]:

In this way, as improving the underestimator of  suc-
cessively, we can generate the sequence of minimum
points of uks convergent to ��.
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The parametrization (7) can further be extended to
(2) with p� 2 [8] as follows:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min F(x; �) �
pX

iD1

�i f i(x)

s.t. x 2 D;
pY

iD1

�i � 1; � � 0:

(10)

Karush–Kuhn–Tucker conditions with respect to � im-
ply the equivalence between (2) and (10). Let

 (�) D min fF(x; �) : x 2 Dg :

Then (10) reduces to a problem with p variables:8̂
<̂
ˆ̂:

min  (�)

s.t.
pY

iD1

�i � 1; � � 0:
(11)

The objective function is concave and coordinatewise
nondecreasing; and its value at any � � 0 can be com-
puted by convex programming.

An alternative approach to (2) with p � 2 [14] is
a generalization of (5):8̂

ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min
pY

iD1

�i

s.t. x 2 D;
fi(x) � �i ; i D 1; : : : ; p;
� � 0:

(12)

LetW 2 Rn × Rp denote the feasible region of (12) and

˝ D
˚
� 2 Rp : 9x; (x; �) 2 W

�
:

Then (12) also reduces to a problem with p variables:8̂
<̂
ˆ̂:
min

pX
iD1

log �i

s.t. � 2 ˝:

(13)

The objective function is concave; the feasible region˝
is a projection of the convex setW and hence a convex
set.

Both (11) and (13) are concave minimization prob-
lems (cf. also�Concave programming); however, even
general-purpose algorithms such as branch and bound
and outer approximation (cf. also � Generalized outer
approximation) [3] can handle them very efficiently
when p is less than five.

Other Multiplicative Programs

In a way similar to (11), problem (3) can reduce to
a concave minimization problem with 2p variables [5]
through a parametrization:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

min
pX

iD1

�2i�1( f2i�1(x))2 C �2i ( f2i(x))2

2

Cg(x)
s.t. x 2 D

�2i�1�2i � 1; i D 1; : : : ; p;
� � 0:

(14)

Let  (�) denote the optimal value of (14) with fixed �.
Then (14) reduces to

8̂
<̂
ˆ̂:

min  (�)
s.t. �2i�1�2i � 1; i D 1; : : : ; p;

� � 0:

(15)

The objective function is concave and coordinatewise
nondecreasing. For problem (4), we can use the follow-
ing parametrization [9]:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

min g(x)
s.t. x 2 D

fi(x) � �i ; i D 1; : : : ; p;
pY

iD1

�i � 1; � � 0:

(16)

Let  (�) denote the optimal value of (16) with fixed �.
Then (16) is equivalent to

8̂
<̂
ˆ̂:

min  (�)

s.t.
pY

iD1

�i � 1; � � 0:
(17)

The objective function  is convex; but the feasible re-
gion is a d.c. set (difference of two convex sets). Thus,
we can solve (3) and (4) by solving smaller-size prob-
lems (15) and (17), respectively. For a more complete
survey of the algorithms, see the article by Konno and
Kuno in [2].

We have seen that the parametric approach offers
an efficient tool to handle multiplicative programming
problems. This approach is not specific to the mul-
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tiplicative structure but can be extended to a much
wider class of nonconvex minimization problems, in-
cluding minimum concave-cost flow problems, facil-
ity location, multilevel programming and so forth. The
textbook [6] shows how the parametric approach can
be generalized to a broad class of problems.

See also

� Linear Programming
�Multiparametric Linear Programming
�Multiplicative Programming
� Parametric Linear Programming: Cost Simplex

Algorithm
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Introduction

Various deterministic global optimization algorithms
that utilize a branch and bound framework make use
of convex underestimators of the functions under con-
sideration. This entry presents the work of Meyer and
Floudas [11] on the convex underestimation of C2-con-
tinuous functions. The work extends and refines the
convex underestimation approach used in the ˛BB
global optimization algorithm [1,2,3,4,10]. A recent re-
view of deterministic global optimization approaches
can be found in [6].

Let f : Rn ! R be a smooth nonconvex C2-con-
tinuous function. Its convex underestimator � : Rn 2

x ! R is defined as:

�(x) :D f (x) � q(x) (1)

where q : Rn ! R is some perturbation function.
In the classical ˛BB approach, a series of simplifica-

tions are made to yield an efficient convexification pro-
cedure. The first of these simpifications is the imposi-
tion of a quadratic structure on the perturbation func-
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tion:

q(x) :D
nX

iD1

˛i (xi � xi)
�
xi � xi

�
: (2)

To ensure that q(x) is nonnegative, ˛ is assumed to be
nonnegative. Observe that q(x), a quadratic function
with a diagonal Hessian matrix r2q(x) :D 2 diag(˛)
has an eigenvalue–eigenvector structure that is uniform
over the entire domain x with eigenvectors that are
aligned with the coordinate axes. In the work of Ad-
jiman et al. [2], a second simplification is introduced
in which the interval extension, Hx, is used instead
of r2f (x) itself. The interval extension of the matrix
r2 f (x) 2 Rn�n is a matrix of intervals of R. Each el-
ement Hx

i,j of the matrix Hx is defined in such a way
that

@2 f
@xi@x j

ˇ̌
ˇ̌
x
2 Hx

i j for all x 2 x:

Computing the tightest possible interval extension is in
itself a global optimization problem. In practice, an in-
terval extension can be calculated using interval arith-
metic [12,14,16]. The overestimation made in the in-
terval calculations may result in a significant loss of ac-
curacy. Adjiman et al. [2] applied the work of [5,7,8,
9,13,15,17,18], and devised various methods to com-
pute ˛ vectors that guarantee the convexity of the un-
derestimators. The tightness of the underestimators is
dependent on the particular ˛ calculation method used.
Extensive computational testing [1] showed that the
method based on the scaled Gerschgorin theorem per-
forms better in practice.

In the work of Meyer and Floudas [11], the form of
the ˛BB perturbation function and the way in which
it is calculated are reexamined, a novel spline based
method for convex underestimation is proposed and
an efficient means of computing these tighter underes-
timators is elucidated.

An ˛ Spline Underestimator

The size of the domain x affects the result of every step
in the ˛ calculation and strongly influences the tight-
ness of the resulting convex underestimator. In partic-
ular, reducing x reduces the mismatch between the as-

sumed quadratic functional form and the ideal form;
it reduces the overestimation in the interval extension
of the Hessian matrix; and the maximum separation
distance has been shown to be a quadratic function of
interval length [10]. It is therefore useful to construct
a convex underestimator using a number of different
˛ vectors, each applying to a subregion of the full do-
main x.

Let f (x) : Rn ! R be a C2-continuous function.
For each variable xi 2 R, let the interval [xi ; xi ] be par-
titioned into Ni subintervals. The endpoints of these
subintervals are denoted with x0i ; x

1
i ; � � � ; x

Ni
i , where

xi D x0i < x1i < � � � < xk
i < � � � < xNi

i D xi . In this no-
tation, the kth interval is [xk�1

i ; xk
i ]. A smooth convex

underestimator of f (x) over x is defined by (1). The new
perturbation function, q(x), would be:

q(x) :D
nX

iD1

qki (xi) for xi 2
h
xk�1
i ; xk

i

i
; (3)

qki (xi) :D ˛
k
i

�
xi � xk�1

i

�

�
�
xk
i � xi

�
C ˇk

i xi C �
k
i : (4)

In each interval [xk�1
i ; xk

i ], ˛
k
i � 0 is chosen such

that r2�(x), the Hessian matrix of �(x), is pos-
itive semi-definite for all members of the set˚
x 2 x : xi 2 [xk�1

i ; xk
i ]
�
. qki (xi) is the quadratic func-

tion associated with variable i in interval k. The func-
tion q(x) is a piecewise quadratic function contructed
from the functions qki (xi).

The continuity and smoothness properties of q(x)
are produced in a spline-like manner. For q(x) to
be smooth the qki functions and their gradients must
match at the endpoints xk

i . In addition, we require that
q(x) D 0 at the vertices of the hyperrectangle x. To sat-
isfy these requirements, the following conditions are
imposed for all i D 1; : : : ; n:

q1i
�
x0i
�
D 0

qki
�
xk
i

�
D qkC1

i

�
xk
i

�
8k D 1; : : : ;Ni � 1

qNi
i

�
xNi
i

�
D 0

dqki
dxi

ˇ̌
ˇ̌
ˇ
xki

D
dqkC1

i

dxi

ˇ̌
ˇ̌
ˇ
xki

8k D 1; : : : ;Ni � 1

(5)



1372 G Global Optimization: p-˛BB Approach

Expanding these equations for each i D 1; : : : ; n,
one obtains the following system of equations:

ˇ1
i x

0
i C �

1
i D 0

ˇk
i x

k
i C �

k
i D ˇ

kC1
i xk

i C �
kC1
i

8k D 1; : : : ;Ni � 1

ˇ
Ni
i xNi

i C �
Ni
i D 0

�˛k
i

�
xk
i � xk�1

i

�
C ˇk

i D ˛
kC1
i

�
xkC1
i � xk

i

�
C ˇkC1

i

8k D 1; : : : ;Ni � 1
(6)

which can be represented as:

2
6666666666666666664

�x0i �1
x1i �x

1
i 1 �1

: : :
: : :

: : :
: : :

xk
i �x

k
i 1 �1

: : :
: : :

: : :
: : :

xNi
i 1

�1 1
�1 1

: : :
: : :

�1 1

3
7777777777777777775

2
6666666666666666664

ˇ1
i
ˇ2
i
:::

ˇk
i
:::

ˇ
Ni
i
�1i
�2i
:::

�
Ni
i

3
7777777777777777775

D

2
6666666666666666664

0
0
:::

0
:::

0
s1
s2
:::

sNi�1
i

3
7777777777777777775

(7)

where ski D �˛
k
i (x

k
i � xk�1

i ) � ˛kC1
i (xkC1

i � xk
i ).

The solution of the above linear system of equations
is:

ˇ1
i D

PNi�1
kD1 ski

�
xk
i � xNi

i

�

xNi
i � x0i

ˇk
i D ˇ

1
i C

k�1X
jD1

s ji 8k D 2; : : : ;Ni (8)

� k
i D �ˇ

1
i x

0
i �

k�1X
jD1

s ji x
j
i 8k D 1; : : : ;Ni

For a rigorous proof of the continuity, smoothness,
convexity and underestimation properties of underesti-
mator �(x), see [11].

Nonconcave Perturbation

Consider a function f (x) which is convex in one subdo-
main and concave in another. In the ˛ spline approach,
�(x) can be convex even if the ˛ values are negative in
the regions in which f (x) is strictly convex. In the classi-
cal ˛BB underestimator, the underestimation property
is guaranteed by the concavity of q(x), as given in (2).
The concavity of q(x) is, in turn, a result of the non-
negativity of the ˛ values. In this section, we discuss
how the underestimation property of �(x) can bemain-
tained when some ˛ values are negative.

The underestimation property, �(x) � f (x) for all
x 2 x, is ensured by the following condition:

min
x2x

q(x) � 0 (9)

Instead of solving minimization problems, the key
idea is to adjust the ˛’s to prevent the creation of lo-
cal minima at any nonvertex point in x by prohibit-
ing the occurrence of stationary points on convex re-
gions of the perturbation function. This is illustrated
in Fig. 1. In Fig. 1a, a concave perturbation function
is depicted. The non-negativity of this function follows
from its concavity. In Fig. 1b, a perturbation function is
shown which is convex over the domain marked with
a bold line.

The point x� is a stationary point of q in this
convex region and we note that q (x�) is negative. In
Fig. 1c, the perturbation function is again convex over
the marked region but there is no stationary point in
this region. This function is non-negative over the en-
tire domain [x; x].

Using this idea, Meyer and Floudas [11] derived
a tight convex underestimator by starting with q(x),
with non-negative ˛ values as defined in Sect. “An
˛ Spline Underestimator”, and making the zero ˛’s
negative, one at a time, while maintaining the convexity
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Global Optimization: p-˛BB Approach, Figure 1
(a) Concave, (b) nonconcave, and (c) nonnegative nonconcave perturbation functions

of �(x) and avoiding the generation of stationary points
on the convex portions of q(x). For the rest of this sec-
tion we will assume that f : x! R is a univariate func-
tion, x D [x; x] � R. The separable structure of the ˛
spline function allows the techniques developed here to
be applied to the multivariate case.

Note that the ˇ and � parameters defining q(x) are
functions of the ˛’s and the endpoints, x0; : : : ; xN . The
following formula, derived from (8), is an expression
for ˇk in terms of ˛1; : : : ; ˛N .

ˇk D
1

xN � x0

k�1X
jD1

�
� ˛ j �x j � x j�1� �x j � x0

�

� ˛ jC1 �x jC1 � x j� �x j � x0
��

C
1

xN � x0

N�1X
jDk

�
� ˛ j �x j � x j�1� �x j � xN�

� ˛ jC1 �x jC1 � x j� �x j � xN��

(10)

Suppose that having calculated ˇ 2 RN for some
given ˛ 2 RN , we wish to modify some element ˛j.
Meyer and Floudas [11] derived formulae that may be
used to update the ˇ’s following such an ˛ update. Un-
der the substitution ˛ j ! ˜̨ j , the elements ˜̌1; : : : ; ˜̌N

that satisfy (8)may be expressed in terms of ˇ1; : : : ; ˇN ,
˛j and ˜̨ j using the following update formulae:

˜̌k � ˇk D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1� �x j�1 � x0

�

C
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1� �x j � x0

�

D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 C x j � 2x0

�
if j < k

(11)

˜̌k � ˇkD
1

xN � x0
�
˛ j � ˜̨ j

� �
x j � x j�1� �x j�1 � x0

�

C
1

xN � x0
�
˛ j � ˜̨ j��x j � x j�1��x j � xN�

D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 C x j � x0 � xN� if j D k

(12)

˜̌k � ˇk D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 � xN�

C
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j � xN�

D
1

xN � x0
�
˛ j � ˜̨ j� �x j � x j�1�

�
�
x j�1 C x j � 2xN� if j > k

(13)

A stationary point x� of the function q : R! R is
one that satisfies:

dq
dx

ˇ̌
ˇ̌
x�
D 0, ˛k

�
xk C xk�1 � 2x�

�
C ˇk D 0

in some interval x� 2 [xk�1; xk]. It follows that an
interval k contains no stationary point if either 1

2 (x
k C

xk�1Cˇk /˛k ) > xk or 1
2 (x

k C xk�1Cˇk/˛k ) < xk�1.
Meyer and Floudas [11] derived conditions on ˛j

that guarantee the absence of such stationary points.
Their results are summarized in the following three
Lemmas, which correspond to cases j < k, j D k and
j > k, respectively.

Lemma 1 Consider two intervals [x j�1; x j] and
[xk�1; xk] where j < k. Let the sequence of ˛ values
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defining qk(x) be

f˛1; : : : ; ˛ j; : : : ; ˛k ; : : : ; ˛N�1g ;

where ˛k < 0. Let q̃k(x) be the function defined by the
sequence of ˛ values

f˛1; : : : ; ˜̨ j; : : : ; ˛k ; : : : ; ˛N�1g ;

where ˜̨ j < 0. There exists no stationary point of q̃k(x)
on the interval [xk�1; xk] if either of the following
bounds on ˜̨ j hold:

˜̨ j >
�
xN � x0

� �
�˛k �xk � xk�1�C ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2x0

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2x0

�
�
x j � x j�1

� �
x j C x j�1 � 2x0

� ;

or

˜̨ j <
�
xN � x0

� �
˛k �xk � xk�1�C ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2x0

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2x0

�
�
x j � x j�1

� �
x j C x j�1 � 2x0

� :

Lemma 2 Consider an interval [xk�1; xk]. Let
f˛1; ˛2; : : : ; ˛N�1g be the sequence of ˛ values deter-
mining qk(x). Let q̃k(x) be the function defined by the
sequence of ˛ values

f˛1; : : : ; ˛k�1; ˜̨ k ; ˛kC1; : : : ; ˛N�1g

where ˜̨ k < 0. A stationary point of q̃(x) does not exist
on the interval [xk�1; xk] if either of the following condi-
tions hold:

˜̨ k >
��

xk � xk�1
� �
xk C xk�1 � 2x0

� if � � 0

˜̨ k >
��

xk � xk�1
� �
xk C xk�1 � 2xN

� if � > 0
(14)

where

� D ˇk �xN � x0
�

C ˛k
�
xk � xk�1

� �
xk�1 C xk � x0 � xN

�
:

Lemma 3 Consider two intervals [x j�1; x j] and
[xk ; xk�1] where j > k. Let ˛k < 0, and f˛1; : : : ;

˛k ; : : : ; ˛ j ; : : : ; ˛N�1g be the sequence of ˛ values de-
termining qk(x). Let q̃k(x) be the function defined by
the sequence of ˛ values f˛1; : : : ; ˛k ; : : : ; ˜̨ j ; : : : ; ˛N�1g

where ˜̨ j < 0. A stationary point of q̃k(x) does not ex-
ist on the interval [xk�1; xk] if either of the following
bounds on ˜̨ j hold:

˜̨ j >
�
xN � x0

� �
˛k �xk � xk�1�C ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2xN

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2xN�
�
x j � x j�1

� �
x j C x j�1 � 2xN

� ;

˜̨ j < �
�
xN � x0

� �
˛k �xk � xk�1� � ˇk�

�
x j � x j�1

� �
x j C x j�1 � 2xN

�

C
˛ j �x j � x j�1� �x j�1 C x j � 2xN�
�
x j � x j�1

� �
x j C x j�1 � 2xN

� :

When q(x) is concave on a set of intervals and is guar-
anteed to have no stationary point on the remainder of
the intervals, q(x) is monotonically nondecreasing be-
tween x0 and a global maximum x� and monotonically
nonincreasing between x� and xN . Under the afore-
mentioned conditions, the perturbation function q(x)
is always non-negative and, thus, �(x) is a valid under-
estimator of f (x) [11].

Illustrative Example

As an illustration, we present here an example from
Meyer and Floudas [11]. It involves the well-known
Lennard–Jones potential energy function:

f (x) D
1
x12
�

2
x6

in the interval [x; x] D [0:85; 2:00]. The first term of
this function is a convex function and dominates when
x is small, while the second term is a concave function
which dominates when x is large. The minimum eigen-
value of this function in an interval [x; x] can be calcu-
lated explicitly as follows:

min f 00 D

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

156
x14
�

84
x8

if x � 1:21707

� 7:47810 if [x; x] 3 1:21707
156
x14
�

84
x8

if x � 1:21707 :
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Global Optimization: p-˛BB Approach, Figure 2
Lennard–Jones convex underestimators with (a) concave and (b) nonconcave perturbations

Global Optimization: p-˛BB Approach, Table 1
Parameters for 2 subinterval perturbation for Lennard–Jones
function

k xk min f 00 ˛k ˇ k �k

0 0.850
1 1.425 �7.47810 3.73905 1.62764 �1.38349
2 2.000 �3.84462 1.92231 �1.62764 3.25528

Global Optimization: p-˛BB Approach, Table 2
Parameters for 16 subinterval perturbation of Lennard–
Jones function

k xk min f 00 ˛k ˇ k �k

0 0.850000
1 0.921875 326.18127 0.00000 1.78326 �1.51577
2 0.993750 81.99112 0.00000 1.78326 �1.51577
3 1.065625 13.55346 0.00000 1.78326 �1.51577
4 1.137500 �4.27629 2.13815 1.62958 �1.35200
5 1.209375 �7.46047 3.73024 1.20779 �0.87222
6 1.281250 �7.47810 3.73905 0.67093 �0.22296
7 1.353125 �6.71098 3.35549 0.16101 0.43038
8 1.425000 �5.21291 2.60645 �0.26750 1.01021
9 1.496875 �3.84462 1.92231 �0.59301 1.47405
10 1.568750 �2.78248 1.39124 �0.83117 1.83055

11 1.640625 �2.00473 1.00236 �1.00321 2.10044
12 1.712500 �1.44791 0.72395 �1.12729 2.30401
13 1.784375 �1.05201 0.52600 �1.21713 2.45786
14 1.856250 �0.77029 0.38515 �1.28262 2.57472
15 1.928125 �0.56887 0.28443 �1.33074 2.66405
16 2.000000 �0.42385 0.21192 �1.36642 2.73284

Global Optimization: p-˛BB Approach, Table 3
Parameters defining nonconcave perturbations for the
Lennard–Jones potential

k xk min f 00 ˛k ˇ k �k

0 0.850000
1 0.921875 326.18127 0.00000 0.00000 0.00000
2 0.993750 81.99112 �7.37920 0.53038 �0.48894
3 1.065625 13.55346 �6.77673 1.54784 �1.50004
4 1.137500 �4.27629 2.13815 1.88124 �1.85532
5 1.209375 �7.46047 3.73024 1.45945 �1.37553
6 1.281250 �7.47810 3.73905 0.92259 �0.72627
7 1.353125 �6.71098 3.35549 0.41267 �0.07294
8 1.425000 �5.21291 2.60645 �0.01584 0.50689

9 1.496875 �3.84462 1.92230 �0.34135 0.97074
10 1.568750 �2.78248 1.39124 �0.57951 1.32724
11 1.640625 �2.00473 1.00236 �0.75155 1.59713
12 1.712500 �1.44791 0.72395 �0.87563 1.80069
13 1.784375 �1.05201 0.52600 �0.96547 1.95454
14 1.856250 �0.77029 0.38515 �1.03096 2.07140
15 1.928125 �0.56887 0.28443 �1.07909 2.16074
16 2.000000 �0.42385 0.21192 �1.11476 2.22952

The classical ˛BB underestimator for this function
and interval is f (x) � 7:47810

2 (x � x)
�
x � x

�
. Bisecting

the domain and applying (8), we obtain a convex un-
derestimator defined by the parameters in Table 1.

Partitioning the domain into 16 equal sized subin-
tervals and applying (8), we obtain the convex under-
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estimator �(x) with the parameters defining q(x) of Ta-
ble 2.

The potential energy function, the classical ˛BB un-
derestimator, and the �(x) underestimators are shown
in Fig. 2a. In this figure, the ˛ spline underestimator
based on 2 subregions is denoted as �(2), while that
based on 16 subregions is denoted as �(16).

Figure 2b depicts the strengthening of an underes-
timation function through the use of nonconcave per-
turbations. A negative ˛ value has been assigned to two
of the three regions in which the second derivative is
strictly positive, as shown in Table 3. The resulting un-
derestimator is depicted as ��(x), while the notation
�+(x) is used to depict the underestimator with no neg-
ative ˛’s (same as �(16) in Fig. 2a).
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The prediction of the behavior of fluid mixtures is
a fundamental aspect of chemical process engineering.
The physico-chemical problem of computing solutions
to the phase and chemical equilibrium problem is cen-
tral to the design, control and operation of many im-
portant processes. These include distillation (standard
and azeotropic), extraction trains, petroleum reservoirs
and applications involving gases at high pressure. The
ubiquity of the flash calculation in chemical engineer-
ing is just one example of its prevalence. Because the
properties of many fluids vary in a complex fashion,
the thermodynamic models that have arisen to describe
their behavior create some difficulties in their applica-
tion. These challenges will be explored in this article.

Problem Statement

The equilibrium condition is characterized by an ex-
tremum of some thermodynamic condition. Most com-
monly, the focus is on systems that attain equilibrium
states under conditions of constant pressure (P) and
temperature (T) where the global minimum value of
the Gibbs free energy describes the true equilibrium
state. The problem may be stated as follows:

Given C components participating in up to P po-
tential phases under isothermal and isobaric con-
ditions find the number of phases and the distri-
bution of components in those phases that yield
the global minimum of the Gibbs free energy.

The requisite material balance constraints must also be
satisfied. In what follows, all quantities associated with
the Gibbs free energy are treated as dimensionless by
dividing by RT, where R is the universal gas constant.
The total Gibbs free energy is given by the summation
of the molar Gibbs free energies for each phase:

G D
X
k2P

nk gk D
X
k2P

Gk ;

where nk is the total number of mols present in phase k;
gk andGk are respectively themolar and totalGibbs free

energy of phase k. The composition variables can be de-
fined intensively in terms of mol fractions (x � {xki }),
or extensively, as the number of mols of component i
in phase k (n� {nk

i }). It is easy to move from one form
to the other via the relation nk

i = nkxki . g
k is naturally

expressed with intensive variables while extensive vari-
ables are appropriate for Gk. The equilibrium solution
must also satisfy the linear material balance constraints.

Thermodynamic Models

Turning to the available thermodynamic models avail-
able to predict fluid phase behavior, these typically lead
to expressions for the molar Gibbs functions that are
mathematically complex, nonlinear and nonconvex. In
this section, the analysis is presented for the molar
Gibbs function.

Liquid Phases

Many liquid phases are only partially miscible (referred
to as phase splitting). Nonideality is often expressed
through the employment of excess functions which at-
tempt to correlate the deviation of the system from ide-
ality. The excess Gibbs free energy is simply the amount
by which the Gibbs free energy is above that of an ideal
solution:

gE(x) D g(x) � gI(x)

with

gI(x) D
X
i2C

xi�ıi C
X
i2C

xi ln xi ;

where �°
i is the chemical potential of pure component i

referred to the standard state. gI(x) is convex. A num-
ber of different expressions of increasing complexity are
now summarized for the excess Gibbs functions The
only variables are the mol fractions xi and all other
quantities are parameters particular to the thermody-
namic model. References to these equations and their
parameters can be found in [21].

TheWilson Equation

Because the molar Gibbs free energy is convex in this
case, this equation is the only model described here that
cannot be used to predict phase splitting.

gE(x) D �
X
i2C

xi ln
X
j2C

�i j x j:
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Regular Solutions

This equation is bilinear:

gE(x) D
X
i2C

X
j2C

Ai jxi x j:

The NRTL Equation

This widely used model consists of a summation of bi-
linear fractional terms:

gE(x) D
X
i2C

xi

P
j � jiG ji x jP
j G ji x j

:

The next three models are nonconvex in form. They
are grouped together because it has been shown in [16]
how they can be transformed into the difference of two
convex functions (d.c. form), allowing the application
of standard branch and bound global optimization al-
gorithms.

The UNIQUAC Equation

The excess Gibbs function is composed of a residual
part and a combinatorial part, denoted gEC(x), defined
as:

gEC(x) D
X
i2C

xi
h
1 �

z
2
qi
i
ln

ri xiP
j r jx j

C
X
i2C

z
2
qi xi ln

qi xiP
j q jx j

:

The excess Gibbs function is then given as:

gE(x) D gEC(x)C
X
i2C

q0i xi ln

P
j q0jx jP

j q
0
j� ji x j

:

The next two models represent the behavior of
molecules in mixtures by aggregating the properties of
constituent functional groups (represented by the index
set G = {g} = {l}).

The UNIFAC Equation

The combinatorial part is the same as for the UNI-
QUAC equation:

gE(x) D gEC(x)C
X
i2C

xi
X
g2G

�g i

�

(
Qg ln

P
j x jq jP

j x j
P

l Ql�l j�l g
� ln� (i)

g

)
:

The ASOG Equation

gE(x) D
X
i2C

xi ln
siP
j x j s j

C
X
i2C

xi
X
g2G

�g i

�

(
ln

P
j x j

P
l �l jP

j x j
P

l �l j ag l
� ln� (i)

g

)
:

Of all the above methods, the NRTL, UNIQUAC and
UNIFAC are currently the most commonly used. No-
tice that some of the correlations are of high mathe-
matical complexity. While this is necessary in order to
predict multiple liquid phases, it can lead to problems
where extraneous and erroneous additional phases are
predicted. An example is given in [19] where the NRTL
equation mathematically predicts three liquid phases
when the physical mixture has only two phases.

Vapor Phases

Deviation from ideality in vapor phases is often ex-
pressed through the use of fugacity coefficients:

g(x; z) � gI(x) D ln�(x; z);

where �(x, z) is the fugacity coefficient of the mixture.
The standard state is usually assumed to be an ideal gas
at T and unit fugacity. The compressibility z = pv/RT
measures deviation from the ideal gas law, and an ex-
pression for it is required to calculate �(x, z). For an
ideal gas, z = 1; otherwise, z is often obtained from an
equation of state (EOS) which correlates the tempera-
ture, pressure, volume and the composition of nonideal
mixtures. This equation of state then becomes an addi-
tional constraint (typically nonlinear and nonconvex)
that must be obeyed over all compositions. One possi-
ble generalized equation of state can be written in its
standard form as:

z � ˛B �
z � ˛B
z � B

C
A

z C ˇB
D 0; (1)

A D
X
i2C

X
j2C

Ai jxi x j; B D
X
i2C

Bi xi ; (2)

where ˛ and ˇ are constants that depend on the equa-
tion of state employed. The more important equations
of state include the van der Waals (˛ = ˇ = 0), Soave–
Redlich–Kwong (˛ = 0, ˇ = 1), and Peng–Robinson
(˛ D

p
2 � 1, ˇ D

p
2 C 1). See [26] for a thorough

review. Note that (1) is composed of the sum of a linear



Global Optimization in Phase and Chemical Reaction Equilibrium G 1379

fractional and a bilinear fractional function, and that (2)
defines A as a bilinear function. This means that when
an equation of state is used, an additional level of com-
plexity is added to the problem in the form of noncon-
vex and nonlinear constraints.

As is demonstrated in several standard texts [26],
the overall mixture fugacity coefficient can be obtained
using (1) as:

ln�(x; z)

D (z � 1)� ln (z � B)C
1

(˛ C ˇ)
A
B
ln

z � ˛B
zC ˇB

:

This function is highly nonlinear and nonconvex, con-
sisting of a bilinear fractional function (A/B) multiply-
ing the logarithm of a linear fractional function.

Obtaining Equilibrium Solutions

Here the global minimum of the total Gibbs function is
sought subject to the material balance constraints. Be-
cause the total Gibbs function is used, extensive vari-
ables are appropriate. Following [23], assume there are
 phase classes characterized by a separate thermody-
namic model. EOS represents the phase class where an
EOS is used. Before solving the problem, P� , the num-
ber of phases consistent with phase class  , must be se-
lected. P =[�P� . The solution will then yield Peq

� � P�
where Peq

� is the number of phases of class  present in
nonzero amounts at equilibrium. Consider a potential
LLV mixture: if the NRTL is used to model two liquid
phases, and the Peng–Robinson equation for a single
vapor phase, then 1 = NRTL, P�1 = 2; 2 = PR, P�2
= 1. If the actual physical mixture at equilibrium is cal-
culated as LV, then Peq

�1 = Peq
�2 = 1. The phase rule [26]

gives an upper bound on the number of possible phases.
The optimization formulation can now be written as:

(G)

8̂
<
:̂
min
n2N

G D
X
p2�

X
k2P	

Gk

s.t. EOSk D 0; 8k 2 P�EOS ;

where

N D

(
n :

X
k

nk
i D nT

i ; 8i; nk
i � 0; 8i; k

)
:

Here, nTi is the total number of moles of component i in
the mixture. Note that the equation of state in (G) com-

prising (1) and (2) is assumed to be written in extensive
form.

Equation Based Approaches

Even though (G) is naturally expressed as an optimiza-
tion problem, equation based approaches are by far the
most prevalent due to their use in commercial chemical
process simulators. The first order necessary optimality
conditions of (G) reduce to a set of nonlinear equations,
corresponding to the condition of equality of chemical
potentials (�k

i ):

�k
i D �

k0
i ; 8i 2 C; 8k; k0 2 P: (3)

All chemical engineering undergraduates encounter the
direct iteration K-value method for solving (3), known
as the single stage flash calculation. A general descrip-
tion is supplied by [12]. The inside-out algorithm of
[2] is of especial prominence due to its superior perfor-
mance to other methods. Because these equations are
nonconvex, there may be several solutions which satisfy
them, and these methods are prone to failure, especially
at conditions close to the critical point (which is called
the plait point for liquid phases).

Local Optimization

Given the problems associated with the equation based
approaches, various attempts to solve (G) using local
optimization have been attempted. A steepest descent
method was used in [27] and is known as the RAND
method. Various methods were compared to an im-
plementation of Wolfe’s quadratic programming algo-
rithm in [5]. A variable projection method was used
in [3]. Several other variants of Newton based meth-
ods have been employed (see [17] for a brief summary).
None of these methods—typically Newton or quasi-
Newton algorithms—removes the possibility of con-
verging to a local optimum, or a trivial solution (sad-
dle point where the mol fractions in two phases of the
same class are the same), and are highly dependent on
starting point. A major problem is that P� is unknown
and must be guessed, and therefore, the incorrect num-
ber of phases Peq

� is easily obtained with these methods.
Another key problem in these approaches is the devel-
opment of numerical singularities when phases coalesce
or split as the algorithm progresses [22].
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Global Optimization

The above facts motivate the employment of global op-
timization techniques because if an approach can be
guaranteed to obtain the global optimum solution of
(G), then a sufficiency condition for phase equilibrium
is automatically supplied. The first use of global opti-
mization to solve (G) was undertaken in [17], where it
was shown how the GOP algorithm [4] could be used in
cases where the NRTL equation was used to model liq-
uid phase behavior. New variables were introduced so
that the formulation of (G) would consist of a biconvex
objective function and a bilinear constraint set, satisfy-
ing the requirements of the GOP to guarantee global
optimality. For the UNIQUAC equation, a branch and
bound global optimization algorithm described in [10]
was implemented to determine the global minimum of
(G) [15]. A key aspect of the work in [17] was the math-
ematical transformation of the nonconvex expressions
for the Gibbs free energies into formswith special struc-
ture, namely the difference of two convex function (d.c.
form). Similar transformations and this same algorithm
can be also applied to the UNIFAC, ASOG and modi-
fied Wilson equations, as shown in [16]. These were the
first approaches to guarantee convergence to the global
solution of (G), regardless of the supplied initial point.

Verifying Equilibrium Solutions

The tangent plane criterion provides an alternative suf-
ficiency condition for a candidate equilibrium solution
to correspond to a global minimum of the Gibbs free
energy [7]. A candidate solution must satisfy the neces-
sary condition for equilibrium—that is, satisfy (3). Sta-
bility requires that the tangent hyperplane constructed
using the chemical potential values of the candidate so-
lution (denoted ��i ) at no point lies above the molar
Gibbs surface for all phase classes used to model the
mixture. Stated in optimization terms, if the global min-
imum of the tangent plane distance function, D� , for
each phase class  used to represent the behavior of
the mixture, is nonnegative 8 , then the candidate so-
lution corresponds to a global minimum of the Gibbs
free energy [1]. The phase stability problem is defined
for a phase class  as:

(S)

8<
:
min
x2X

D� D g� �
X
i2C

xi��i

s.t. EOS(x; z) D 0 if EOS � ;

where X = {x:
P

ixi = 1, xi � 0, 8i}. Clearly, (1) and
(2) are required for (S) when EOS �  .g� is obtained
from the appropriate thermodynamic models described
earlier. Therefore, it is seen that the approach involves
verifying that a candidate solution is the equilibrium
one.

Equation Based Approaches

As with (G), the first order necessary optimality condi-
tions of (S) reduce to a set of nonlinear equations:

��i � �
�
i D K; s.t. x 2 X; (4)

whereK is a constant. The EOSmust be satisfied ifEOS

�  . If a nonnegative solution to this set of equations
is obtained, then the postulated solution is assumed to
be stable. Standard direct iteration methods have been
used [20] as well as homotopy continuation methods
[24] to solve (4). However, no guarantee of obtaining
all stationary points can be provided with the typical
equation based approach. However, an interval New-
ton method has been used in [11] to �-enclose all sta-
tionary points. This work can be considered a ‘global’
method for equation solving. It should be noted that
a branch and bound global optimization algorithm [13]
has been used to obtain all homogeneous azeotropes in
mixtures [9]; because the condition of azeotropy adds
a single linear constraint (equality of mol fractions in
all phases) to (3), this approach can in principle be used
to guarantee obtaining all �-global solutions to both (3)
and (4).

Global Optimization

The advantage of a global optimization approach is
that if a nonnegative solution is found, then it can be
definitively asserted that the candidate solution is the
globally stable equilibrium one, unlike available local
algorithms. It is shown in [18] how global optimiza-
tion can be used to solve (S), using the GOP algorithm
for the NRTL equation, and a branch and bound algo-
rithm for the UNIQUAC equation. For the modified
Wilson, ASOG and UNIFAC equations, it was shown
in [16] how this same branch and bound algorithm
could be used after transforming the expressions for
g(x) into d.c. form. It has been shown how the formula-
tions for (G) and (S) involving equations of state can
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be transformed into biconvex form allowing the ap-
plication of a number of global optimization algo-
rithms [14], although no implementation was under-
taken. An important recent extension of global opti-
mization to the case of equations of state is supplied
in [8] where the nonlinear terms are validly underes-
timated within the framework of a branch and bound
algorithm.

Combining Approaches

From the above development, it is apparent that:
1) To obtain a candidate equilibrium solution, either

solve (G) or (3); and
2) To verify a candidate as the equilibrium solution, ei-

ther solve (S) or (4).
Approach 1) is problematic because the a priori selec-
tion of P� represents a formidable challenge. If too few
phases are allowed, then convergence to constrained
minima can occur; if too many are assumed, then nu-
merical problemsmay arise, or convergence to trivial or
local extrema may occur. Therefore, the concept of us-
ing the tangent plane criterion to provide initial guesses
for (G) or (3) has been shown to greatly increase re-
liability with a tolerable increase in computational ef-
fort. In addition, when solving (G) or (3), the num-
ber of composition variables is NV = |C||P|, while for
(S) or (4), NV = |C|. The performance of the RAND
method was found to considerably improve when com-
bined with a phase-splitting algorithm [6]. The semi-
nal work of M.L. Michelsen [20] proposed an iterative
approach whereby the solution from the tangent plane
criterion is used to initialize the search for the equilib-
rium solution. This is implemented using a direct sub-
stitution method (K-value approach) as well as an op-
timization method. The calculations are computation-
ally efficient and reported to be quite reliable, although
there is the danger of predicting a stable phase distribu-
tion, when, in fact, this is not the case. In a comparative
study for liquid-liquid phase splitting [25], Michelsen’s
method was found to be the most reliable. A similar it-
erative approach using homotopy continuation meth-
ods to solve (4) have also been used in [24]. However,
there are a number of difficulties associated with these
approaches. First, no guarantee of obtaining all station-
ary points can be provided. Second, since the solutions
obtained from the stability problem are then used to

initiate the search for a solution with a lower Gibbs free
energy, these guesses may lead to local optima, or even
infeasible equilibrium solutions. Therefore, no guaran-
tees can be made of having obtained the equilibrium
solution, even though overall reliability is significantly
increased.

Global Optimization

When solving (G) using global optimization, the maxi-
mum allowable number of phases P� ,8 , must be con-
sidered for rigorous determination of phase and chem-
ical equilibrium. This leads to high computational ef-
fort when often the global solution is generated early in
the global optimization search [19]. For these reasons,
an algorithm known as GLOPEQ (global optimization
for the phase and chemical equilibrium problem) was
implemented in [19]. An iterative approach was pro-
posed based on the fact that solving (S) to global op-
timality to verify a candidate solution is vastly prefer-
able to solving (G). GLOPEQ therefore leads to signifi-
cant computational savings over other global optimiza-
tion approaches. It should be noted that the approach
described in [8] can be incorporated into GLOPEQ,
extending its applicability and giving the first global
optimization method for both nonideal liquid and va-
por phases. The key difference between GLOPEQ and
the other local iterative approaches is that global opti-
mization is used at each step of the algorithm, allowing
a guarantee to be made of obtaining the true equilib-
rium solution no matter the starting point.

Reaction Equilibria

If reaction occurs in the mixture, then the permissible
regions N and X must be adjusted. See [23] for an ele-
gant analysis of the tangent plane criterion for reacting
mixtures. Note that N and X remain linear and they do
not affect the global optimization approach for solving
(G) or (S).

General Comments on Efficiency

Clearly local approaches, while less reliable, are more
efficient than global optimization approaches. Because
of the relatively heavy computational burden of global
optimization, these approaches are more justified for
off-line analysis as they could not be practically used in
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a chemical process simulator. Having said that, compu-
tational times of seconds for highly nonideal mixtures
of up to eight components [8] provide a great deal of
promise for improving the robustness of the equilib-
rium calculation without resulting in excessive solution
times.

See also

� ˛BB Algorithm
� Continuous Global Optimization: Models,

Algorithms and Software
� Generalized Primal-relaxed Dual Approach
� Global Optimization: Application to Phase

Equilibrium Problems
� Global Optimization in Batch Design Under

Uncertainty
� Global Optimization in Generalized Geometric

Programming
� Global Optimization Methods for Systems of

Nonlinear Equations
� Interval Global Optimization
�MINLP: Branch and Bound Global Optimization

Algorithm
�MINLP: Global Optimization with ˛BB
� Optimality Criteria for Multiphase Chemical

Equilibrium
� Smooth Nonlinear Nonconvex Optimization

References

1. Baker LE, Pierce AC, Luks KD (1982) Gibbs energy analysis
of phase equilibria. Soc Petrol Eng J 731

2. Boston JF, Britt HI (1978) A radically different formulation
and solution of the single stage flash problem. Comput
Chem Eng 2:109–122

3. Castillo J, Grossmann IE (1981) Computation of phase and
chemical equilibria. Comput Chem Eng 5:99

4. Floudas CA, Visweswaran V (1993) A primal-relaxed dual
global optimization approach. JOTA 78(2):187

5. Gautam R, Seider WD (1979) Computation of phase and
chemical equilibrium, Part I: Local and constrainedminima
in Gibbs free energy. AIChE J 25(6):991

6. Gautam R, Seider WD (1979) Computation of phase and
chemical equilibrium, Part II: Phase-splitting. AIChE J
25(6):999

7. Gibbs JW (1873) A method of geometrical representation
of the thermodynamic properties of substances by means
of surfaces. Trans Connecticut Acad 2:382–404

8. Harding ST, Floudas CA (2000) Phase stability with cu-
bic equations of state: A global optimization approach.
AIChE J

9. Harding ST, Maranas CD, McDonald CM, Floudas CA (1997)
Locating all homogeneous azeotropes inmulticomponent
mixtures. I-EC Res 36:160–178

10. Horst R, Tuy H (1992) Global optimization, 2nd edn.
Springer, Berlin

11. Hua JZ, Brennecke JF, Stadtherr MA (1998) Reliable
computation of phase stability using interval analysis:
Cubic equation of state models. Comput Chem Eng
22(9):1207–1214

12. King CJ (1980) Separation processes, 2nd edn. McGraw-
Hill, New York

13. Maranas CD, Floudas CA (1995) Finding all solutions
of nonlinearly constrained systems of equations. JOGO
7:143–182

14. McDonald CM (1999) A novel reformulation of the phase
equilibrium problem when using equations of state and
subsequent application of global optimization. Presented
at AIChE Annual Meeting

15. McDonald CM, Floudas CA (1994) Decomposition based
and branch and bound global optimization approaches for
the phase equilibrium problem. J Global Optim 5:205–251

16. McDonald CM, Floudas CA (1995) Global optimization and
analysis for the Gibbs free energy function using the UNI-
FAC, Wilson and ASOG equations. I-EC Res 34:1674

17. McDonald CM, Floudas CA (1995) Global optimization for
the phase and chemical equilibrium problem: Application
to the NRTL equation. Comput Chem Eng 19(11):1111

18. McDonald CM, Floudas CA (1995) Global optimization for
the phase stability problem. AIChE J 41(7):1798

19. McDonald CM, Floudas CA (1997) GLOPEQ: A new compu-
tational tool for the phase and chemical equilibrium prob-
lem. Comput Chem Eng 21(1):1–23

20. Michelsen ML (1982) The isothermal flash problem. Part I.
Stability. Part II. Phase–split calculation. Fluid Phase Equilib
9:1–40

21. Reid RC, Prausnitz JM, Poling BE (1987) The properties of
gases and liquids, 4th edn. McGraw-Hill, New York

22. Seider WD, Brengel DD, Widagdo S (1991) Nonlinear anal-
ysis in process design. AIChE J 37(1):1

23. Smith JV, Missen RW, Smith WR (1993) General optimality
criteria for multiphasemultireaction chemical equilibrium.
AIChE J 39(4):707

24. Sun AC, Seider WD (1995) Homotopy-continuation
method for stability analysis in the global minimization of
the Gibbs free energy. Fluid Phase Equilib 103:213

25. Swank DJ, Mullins JC (1986) Evaluation of methods for cal-
culating liquid-liquid phase-splitting. Fluid Phase Equilib
30:101

26. Walas SM (1985) Phase equilibria in chemical engineering.
Butterworths, London

27. White WB, Johnson SM, Dantzig GB (1958) Chemical equi-
librium in complex mixtures. J Chem Phys 28(5):751



Global Optimization of Planar Multilayered Dielectric Structures G 1383

Global Optimization of Planar
Multilayered Dielectric Structures
CLAIRE S. ADJIMAN1, R.F. OULTON2

1 Centre for Process Systems Engineering,
Dept. of Chemical Engineering,
Imperial College London, London, UK

2 NSF Center for Scalable
and Integrated Nanomanufacturing,
University of California at Berkeley, Berkeley, USA

MSC2000: 65K99

Article Outline

Introduction
Formulation

Statement of Physical Problem
Analytical Gradients for Effective Optimization

Methods and Applications
Multi-Level Approaches
Simulated Annealing
Genetic and Memetic Algorithms
Needle Optimization
Deterministic Methods
A Comparison of Methods for an Infrared Filter Design

Conclusions
References

Introduction

Multi-layered dielectric structures are relevant in many
applications that seek to influence electromagnetic ra-
diation across the infrared, optical and X-ray spec-
tra. Anti-reflection coatings, components for integrated
optics and semiconductor lasers are based on multi-
layered dielectric designs; they are generally modeled
using the transfer matrix method that has been in
widespread use for the past thirty years [5,26]. In
many cases optical designs can be devised by deduc-
tive reasoning, but, as design objectives have become
more elaborate, robust numerical optimization tech-
niques have become increasingly relevant. Baumeister
reported the first refinement technique for multilayer
dielectric in 1958 [3].

The synthesis of multi-layered dielectric structure
designs requires a robust global optimization approach.
The mathematical model that describes the optical
properties of these structures is highly non-linear and

presents any solver the task of sifting through count-
less local minima. Early approaches relied on stochastic
global methods. The lack of deterministic methods in
the literature highlights the challenging mathematical
task of identifying minimizing convex approximations.
As far as the authors know, the only deterministic ap-
proach proposed to date is limited in scope due to ap-
proximations that are made to derive model equations
such that the problem has a unique solution.

This encyclopedia entry examines the problem of
multilayer dielectric design, which has been treated
with a range of algorithms over the past 20 years.
Stochastic approaches are reviewed including Simu-
lated Annealing, Genetic Algorithms and a Multi-Level
approach. A deterministic minimization approach is
also discussed. The study may be considered a review
and critical comparison of techniques for electromag-
netic filter design.

Formulation

Statement of Physical Problem

Multilayered dielectric structures have two modes of
operation: in passive mode, a structure reflects or trans-
mits light from an external source as a function of the
input wavelength and direction; in active mode, a struc-
ture creates light internally and distributes the emis-
sion both spectrally and spatially. Figure 1 illustrates
these two modes of operation. Here, a(
)i (�; zi ) and
ā(
)i (�; zi ) are the forward and backward propagating
amplitudes in Region i respectively. The superscript in
brackets (� D fs; pg) indicates the polarization, which
is described as either Transverse Electric (s) or Trans-
verse Magnetic (p).

In the passive geometry, amplitudes are equated
with real measurable quantities: ja1(�; z1)j2 D 1,
jā1(�; z1)j2 D R(�), jaN (�; zN )j2 D T(�) and
jāN(�; zN )j2 D 0, where R(�) and T(�) are the reflec-
tivity and transmissivity of the structure respectively.
In active mode ja1(�; z)j2 D 0, jā1(�; z1)j2 D Pb(�),
jaN(�; zN )j2 D Pf(�), jāN(�; zN )j2 D 0 where Pf and Pb
are the forward and backwards emission powers. The
source amplitudes, ai(�; zi ) D A(�) and ā2(�; zi ) D
Ā(�) are dependent on the type of emission source and
will not be elaborated upon here. For more information
on these issues, the reader should refer to [10] and [4].
In both operation modes, the structure interacts with
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Global Optimization of Planar Multilayered Dielectric Struc-
tures, Figure 1
Schematic of a multilayer dielectric structure highlighting
the nomenclature . . .

light as a function of its wavelength, �, and the op-
tical angle parameter, � D ni sin �i , which is related
to the propagation angle, �i , in region i. Note that �
is invariant throughout the structure unlike �i , which
varies with the refractive index, ni, due to Snell’s law
(ni sin �i D constant).

The following analysis considers only the passive
mode of operation, although the approach is readily
adaptable to describe problems involving the active
mode. Therefore, R(�) and T(�) are usually part of
some expression to be minimized. The design variables
to be optimized are the refractive indices, ni, and layer
thicknesses, di, throughout the structure. The optimiza-
tion problem is posed as follows: a single valued objec-
tive function FfR(�;n; d); T(�;n; d)g involving the re-
flectivity and transmissivity must be minimized subject
to unknown variables n D fnig and d D fdig where
i 2 f1; : : : ; Ng. The problem is typically bounded,
defining a variable space of finite extent: for example,
the unknown variables here are constrained to upper,
nU , dU and lower, nL , dL bounds. This is summarized
as,

min
n;d

FfR(�; n; d); T(�; n; d)g

s:t: n� nU � 0
nL � n � 0

d � dU � 0

dL � d � 0 :

(1)

The use of the transfer matrix method to describe the
propagation of light through multi-layer planar dielec-
tric materials is well-established [5,26]. Oulton and Ad-

jiman [28] present an alternative and more compact
representation highlighting the mathematical details of
the model and symmetries that are useful for writing ef-
ficient code and deriving compact analytical gradients
for local optimization.

Consider the schematic for a general multilayered
structure in Fig. 1. The transfer matrix, T(
)

ji (�), relates
the electromagnetic field amplitudes in regions i and j
at zi as follows, 

a(
)j (�; zi )
ā(
)j (�; zi )

!

D

 
X(
)C

j; i (�) X(
)�
j; i (�)

X(
)�
j; i (�) X(
)C

j; i (�)

! 
a(
)i (�; zi )
ā(
)i (�; zi )

!

D T(
)
ji (�)

 
a(
)i (�; zi )
ā(
)i (�; zi )

!
(2)

X(
)˙
j; i D

1
2

 
C(
)
i; j ˙

1

C(
)
i; j

!
: (3)

The coupling coefficients, C(
)
i; j are

C(s)
i; j D

s
ˇ j

ˇi

C(p)
i; j D

nj

ni

s
ˇi

ˇ j
:

(4)

Here, ˇi D k0
q
n2i � �2 is related to � and � through

k0 D 2/�, the wavenumber of the incident light. ˇi is
the component of the wavenumber normal to the pla-
nar layers and is sometimes referred to as the propaga-
tion constant. Note that T(
)

ji (�) is symmetric with only
two independent elements.

To describe propagation across region j, of thick-
ness dj D z j � zi , the amplitudes, aj(�; z j) and
ā j(�; z j) at zj are related to the amplitudes, aj(�; zi)
and ā j(�; zi) at zi by the transfer matrix, P j(�), which
is independent of polarization for isotropic materials.

 
a(
)j (�; z j)
ā(
)j (�; z j)

!

D

�
eiˇ jd j 0
0 e�iˇ jd j

� 
a(
)j (�; zi)
ā(
)j (�; zi)

!

D P j(�)

 
a(
)j (�; zi )
ā(
)j (�; zi )

!
:

(5)
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In order to relate the fields at the interfaces between re-
gions i C 2 and i C 1 at ziC1 and regions i C 1 and i
at zi, interface and propagation matrices are multiplied
together such that,

�
aiC1(�; ziC1)
āiC1(�; ziC1)

�
D M(
)

iC1; i (�)
�

ai(�; zi )
āi(�; zi )

�
(6)

where M(
)
iC1; i(�) D PiC1(�)T(
)

iC1; i (�). In the general
formulation, the amplitudes can be expressed as a vec-
tor of plane wave modes corresponding to the vari-
ous angles of propagation within the planar dielectric
medium.When considering N values of � (angles of in-
cidence), the transfer matrix,M(
)

iC1; i will be a 2N � 2N
matrix. Notice, however, that due to Snell’s law and the
law of reflection M(
)

iC1; i is sparse with only 4N compo-
nents along the diagonals of each quadrant of M(
)

iC1; i .
Therefore there are only 2N independent components.
From here on, the parameter � will be dropped from
the mathematical expressions for brevity.

Analytical Gradients for Effective Optimization

The efficiency and accuracy of local optimization can
be enhanced by using analytically determined gradi-
ents. Methods for determining the gradients of trans-
fer matrices have been presented in the literature [29],
but here the new formalism allows a compact analyti-
cal evaluation which leads to simplified coding and ef-
ficient strategies for calculating large numbers of gradi-
ents for one structure.

Consider the derivative of the standard mode
matching matrix equation with respect to the variable,
� i for an optical structure with N layers:

@

@�i

 
a(
)N (zN)
ā(
)N (zN)

!
D
@M(
)

N; 1

@�i

 
a(
)1 (z1)
ā(
)1 (z1)

!

CM(
)
N; 1

@

@�i

 
a(
)1 (z1)
ā(
)1 (z1)

!
:

(7)

Given any two constant boundary condition ampli-
tudes the matrix equation can be solved for the deriva-
tives of the unknown amplitudes. Consider now the
derivative of the matrix with respect to the variables of
a given layer.

The derivative with respect to di is the easiest to
evaluate as only one phase matrix, Pi, needs to be dif-

ferentiated. The matrix derivative is:

@M(
)
N; 1

@di
D M(
)

N; idM
(
)
d i M

(
)
i; 1

D ikz iM(
)
N; i

�
1 0
0 �1

�
M(
)

i; 1 :

(8)

Differentiation with respect to the refractive index, ni,
is much more complicated as it involves the product of
three matrices and must be evaluated using the Leib-
niz rule. In the current representation, transfer matrix
symmetries can be exploited to give a concise form as in
Eq. (8), which can be written for the two polarizations
as follows:

@M(
)
N; 1

@ni
D M(
)

N; idM
(
)
ni

M(
)
i; 1 (9)

where,

dM(s)
ni
D

ni k20
ˇ2
i

�
iˇi di 1

2

˚
e2iˇi d i � 1

�
1
2

˚
e�2iˇi d i � 1

�
�iˇi di

�

dM(p)
ni
D

ni k20
ˇ2
i0

@ iˇi di 1
2
ˇ 2
i �k

2
x

k20n
2
i

˚
e2iˇi d i � 1

�

1
2
ˇ 2
i �k

2
x

k20n
2
i

˚
e�2iˇi d i � 1

�
�iˇi di

1
A :

(10)

These are extremely concise forms for the matrix
derivatives of fairly complicated expressions where
each gradient only requires the evaluation of a supple-
mentary transfer matrix, dM(
)

�i
and one additional ma-

trix evaluation.
The reflectivity, R and transmissivity, T, involve

the absolute square of the field amplitudes. Given the
derivative of the amplitude, ai(zi), the derivative of its
absolute square is given by,

dR
d�i
D

d(ai (zi)ai(zi )�)
d�i

D 2<fai(zi )g<
�
dai (zi )
d�i

	

C 2=fai(zi )g=
�
dai (zi )
d�i

	
:

(11)

Methods and Applications

By the early 1990s, a range of optimization methods
were being used to generate optical multi-layer filter de-
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signs. Dobrowolski and co-workers reviewed ten meth-
ods for computational speed and effectiveness at reach-
ing an optimum solution to determine which would be
best suited to these highly non-linear problems [11].
Amongst these were both global and local methods but,
at this time of limited computer power, no particular
approach was deemed superior over the fixed calcula-
tion time of 2 hours. The authors rated a local gradient-
based modified Gauss-Newton method highly for its
consistency over the problems investigated. The obser-
vation that the global optimization methods performed
on a par with local methods, despite the clear limitation
in fixed calculation time, was also noted.

Computing power today is not as great an is-
sue and the use of global optimization techniques for
multi-layered optical design has attracted a great deal
of attention (see references throughout this Section).
Global algorithms can be broadly divided into two
categories: deterministic and stochastic. Deterministic
methods guarantee a global solution, usually at the
expense of calculation time, whereas stochastic meth-
ods converge rapidly to solutions with only a prob-
abilistic guarantee of global optimality in finite time.
Liberti and Kucherenko investigated these contrast-
ing philosophies by comparing the deterministic spa-
tial Branch and Bound (sBB) and Stochastic Multi Level
Single Linkage (MLSL)methods for a range of test func-
tions [24]. The authors concluded that the stochas-
tic method, in the cases studied, converged faster to
a global optimum with a high degree of probability, but
the deterministic method could perform better in cases
where specific theoretical assumptions about a prob-
lem’s analytical structure could be taken into account.
In general, deterministic methods require preparation
for a particular problem, whereas stochastic methods
can be more readily adapted for black-box scenarios.
Nevertheless, stochastic approaches cannot guarantee
global optimality in finite time.

In this section, a range of global optimization ap-
proaches are reviewed. It is most useful that in the
study of these methods, some authors have examined
the same numerical synthesis problem: the design of
an anti-reflection coating to operate in the far in-
frared [1,6,11,25,28,36,44]. The objective is to minimize
a Germanium (Ge: refractive index nGe D 4:2) and
Zinc Oxide (ZnS: refractive index nZnS D 2:2) multi-
layered structure to achieve a normal incidence reflec-

tivity, R(� D 0) 7! 0 for N	 D 47 equidistant wave-
lengths in the spectral band 7:7 � � � 12:3 μm. The in-
cident medium is air and the substrate which the struc-
ture is built on has refractive index nSub D 4.

The objective function, F(d; �i ; Ri), was chosen to
be the same as that used by authors in the literature to
allow comparative studies.

F(d; �i ; Ri ) D

"
1
N	

N�X
iD1

Ri(�i )2
#�1/2

: (12)

In the following studies, the optimum layer thicknesses
for reproducing the best designs are omitted for brevity,
so the reader should consider the relevant references for
this information.

Multi-Level Approaches

In Multi-Level (ML) approaches (e. g., [20,21,23,24,
28]), different starting points are generated by a higher-
level algorithm, and the problem is solved from each
starting point by a lower-level local optimization al-
gorithm. This approach is very general because it re-
quires no tuning. It has been applied by Oulton and
Adjiman [28] to the design of multi-layered dielec-
tric device design by using a deterministic sampling of
the parameter space and local nonlinear programming
(NLP) solver. The approach is able to rank many lo-
cal solutions for post-optimization analysis. It is also
non-adaptive at the global level in that the algorithm
depends only on the current state and not on pre-
viously calculated states. This brings two advantages:
firstly, non-adaptive methods are deemed superior to
adaptive ones in multi-processor applications, which is
certainly a benefit for computationally intensive global
optimization problems. Secondly, non-adaptive algo-
rithms have freedom over the specification of conver-
gence criteria. Since the optimization algorithm in [28]
essentially operates by batch local optimization, it can
be halted according to criteria such as the number of
global iterations or after a set time limit. Rigorous cri-
teria are also applicable to the ML strategy [20,21,23]:
as the algorithm progresses the probability that the cur-
rent best local solution is the global one increases, pri-
marily due to the global search coverage guaranteed
through the appropriate choice of the sampling ap-



Global Optimization of Planar Multilayered Dielectric Structures G 1387

proach; for instance, Oulton and Adjiman used a Sobol’
sequence [33], a deterministic Low Discrepancy Se-
quence (LDS) which provides a good coverage of the
variable space. The Sobol’ LDS was selected because its
construction is based on i) homogeneity as the num-
ber of sample points, n 7! 1, ii) good distribution
for small n and iii) fast computational algorithm. All
these features, but particularly ii), make this LDS most
applicable to the current problem. There are a variety
of LDSs that are constructed on differing requirements
such as Holton, Faure, Niederreiter and Sobol’ amongst
others [7,18,27,33].

Simulated Annealing

Simulated annealing (SA) has been applied to a vari-
ety of electromagnetic multilayer design problems in
the infra-red, ultra-violet and X-ray spectra [6,8,9,15,
22,41,42]. SA [22] operates by randomly changing an
initial design in small steps and accepting the changes
based on an evaluation of the new design performance
according to criteria that become increasingly stringent
as the algorithm progresses. Changes are always ac-
cepted if they result in a better design. On the other
hand, a worse design is accepted with a probability
based on a Boltzmann distribution. The probability of
acceptance is tuned by changing the Boltzmann tem-
perature according to a user-specified schedule. Wider
exploration of the variable space at the start of the op-
timization is achieved by setting a high temperature,
which essentially allows the algorithm to accept worse
designs and thereby move between local regions of at-
traction. A cooling schedule restricts the algorithm’s
ability to investigate adjacent local regions and forces
convergence to a local optimum. In this case, it is clear
that convergence to the global optimum will be depen-
dent on the initial design and especially on the cooling
schedule.

The first reports on SA applied to multilayer design
highlighted mainly the technique’s ability to avoid lo-
cal minima [41], although adaptations to avoid deep lo-
cal minima were also reported [8]. These reports were
for structure in the visible to near infrared spectra. The
method has recently seen use in the design of reflec-
tors for UV [15] and X-ray [9] spectra. These have
applications that include neutron optics, X-ray astro-
physics and synchrotron radiation. In this region of the

spectrum, matter interacts with electromagnetic radia-
tion differently requiring a modified transfer matrix de-
scription that accounts for surface roughness and inter-
diffusion (See [9] and references therein). Wu et al. have
applied simulated annealing to a different optics prob-
lem involving diffraction gratings [42]. This important
design problem concerns the efficient coupling of light
into and out of waveguides and optical interconnects.

Boudet et al. [6] use SA to synthesize multilayer de-
signs for the problem given in the introduction to this
section. Results for NL D 17 (triangle) and NL D 20
(filled triangle) are shown in Fig. 2b along with results
generated using other approaches. The merits of the
method are discussed in Sect. “A Comparison of Meth-
ods for an Infrared Filter Design”.

Genetic and Memetic Algorithms

Evolutionary or Genetic Algorithms (GA) are the pre-
ferred method in the optics community [2,14,16,17,19,
25,39,43,44,45,46,47]. GAs operate on the principle that
the evolution of a random population of parameteriza-
tions, subject to iterative rules of reproduction and mu-
tation, will converge to a region of attraction contain-
ing the global optimum [17]. Members of the popula-
tion with high performance are given a greater likeli-
hood of reproducing thereby generating a better popu-
lation than the one before. Mutation prevents the algo-
rithm converging too quickly and provides the mecha-
nism by which the variable space can be explored more
fully. Usually, local optimization is required to refine
the final solution. In the case of the Memetic algorithm,
local optimization is performed on each new member
of the population. This approach could therefore be
considered as a multi level approach (see earlier Sec-
tion).

Eisenhammer et al. [14] optimized the performance
of heat mirrors for solar cells: these are high pass filters
that transmit optical solar radiation but reflect thermal
radiation, which would otherwise be lost by the solar
cell. Their designs differ slightly from typical dielectric
multilayers since they incorporate metals, which help
to reflect thermal frequencies. Bagnoud and Salin [2]
and Yakovelev and Tempea [43] have applied GAs to
the design of chirpped mirrors, which are used to make
ultra-fast lasers with fempto-second pulses. These so-
phisticated mirrors are designed to have a reflectance
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over a broad range of frequencies and, in addition, must
also be compensated to ensure stability of the reflection
phases. Yakovelev and Tempea [43] used a memetic
algorithm and report fast convergence compared with
the standard GA. Hoorfar et al. [19] developed the GA
approach by considering the choice of dielectric ma-
terials from a list of candidates for the multilayer de-
sign. The authors thereby treat the mixed parameter ap-
proach (i. e. discrete and continuous optimization pa-
rameters) to which the GA approach appears amenable.
Other authors have developed the technique still fur-
ther by considering multiple objective and constraint
functions [39]. The standard infrared filter design prob-
lem introduced by Aguilera et al. [1] has been treated by
Martin et al. [25,44,46]: the results of these studies are
shown in Fig. 2b along with those of other global opti-
mization approaches.

Needle Optimization

Most optimization strategies for multilayer design
problems consider the variation of layer thickness di
and layer refractive index ni. Variations of the stan-
dard techniques including multiple objective functions
and mixed parameter optimization have also been dis-
cussed in this article. However, few methods con-
sider the variation in the number of layers of a mul-
tilayer design problem. The needle optimization ap-
proach tackles the problem exactly from this perspec-
tive [32,34,35,37,38,40]. Firstly, the optimum position
for introducing a needle like layer perturbation to
a structure is determined: this usually corresponds to an
insertion point that gives optimum convergence of the
objective function. Tikhonov Jr et al. [35] provide an al-
gorithm for locating this optimum position before nee-
dle insertion. For some objective functions, this is an-
alytically determined, but, for flexibility, numerical ap-
proaches are available also [34,40]. Following insertion
of a needle, the new design is used as the starting point
for a local optimization. The needle insertion and local
optimization procedure is repeated until no more re-
finement is possible within the constraints of the prob-
lem at hand.

An alternative approach to this problem, which has
not yet been explored, would be to formulate the prob-
lem as Mixed-Integer Program, in which the existence
or otherwise of each putative layer would be repre-

sented by a binary variable. This problem could be
solved locally using standard techniques, and many of
the global methods discussed here could be applied.

Deterministic Methods

Deterministic algorithms generally require the non-
linear set of model equations to be analyzed to obtain
a convex problem which underestimates the minimum
of the original design problem. Using one of various
search approaches, such as Branch and Bound, it is pos-
sible to converge to a feasible global minimum by suc-
cessively solving such problems, which produce tighter
and tighter bounds on the solution along an infeasible
design path. These methods are reviewed extensively
elsewhere in the Encyclopedia.

Due to the complexity of the highly coupled transfer
matrix equations, it is difficult to find appropriate con-
vex estimators. However, Tikhonravov and Dobrowol-
sky [36] treat the above problem using an approxi-
mate infeasible path approach, reducing the problem to
a quadratic programming problem with linear inequal-
ity constraints with one global optimum solution. Fea-
sible solutions are obtained by local optimization of the
resulting design. In their method, the reflection calcu-
lation is approximated for � D 0 by i) assuming con-
tinuous variation of the refractive index profile, and ii)
assuming only a small reflectivity, R(0). In the scope of
general multilayer optimization problems, these con-
ditions are fairly restrictive, but they are applicable to
the filter design problem posed by Aguilera et al. [1].
Strictly, this is not a deterministic global optimization
method because it is based on solving an approximate
problem to global optimality, and there is no guaran-
tee that this corresponds to the global solution of the
original problem. Tikhonravov and Dobrowolsky [36]
perform the local optimization of a discretized struc-
ture to find a feasible solution. One interesting aspect
of their approach is the proof of an optimal relation-
ship between the minimum objective function and the
optical thickness of a filter for a given set of material
parameters. Although solutions along this line may not
exist, the condition marks the limit of global optimality.
The limiting condition of optimality is plotted in Fig. 2
and marks a theoretical boundary above which all so-
lutions must lie. This is useful as a benchmark for the
development of deterministic global optimization algo-
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Global Optimization of Planar Multilayered Dielectric Structures, Table 1
Details of solvers and their implementations in this study. (a) [25]; (b) [6]; (c) [44]; (d) [28]. * Value estimated based on 1600
generations and 100 members per population. ** Value estimated based on computation time and CPU type, taking into
account details from [25]. � Number of function evaluations depends on number of layers design and fixed computation
time of 5hrs

Function Evals. CPU Time Language CPU
(a) 160,000* 6–10 Hrs C++ HP Apollo Series
(b) �100,000** 5 Hrs C++ HP Apollo 715/75
(c) 150,000 Unknown C++ Unknown
(d) 150,000–250,000 5 Hrs MatLab/C++ Intel PIV 2GHz

Global Optimization of Planar Multilayered Dielectric Structures, Table 2
Comparison of optimum solutions found using ML [28] and GA [44]. The ML algorithm performed between approximately
150; 000 and 250; 000 function evaluations, depending on the number of layers, while the GA algorithm used between
150; 000 and 650; 000 function evaluations (specific number is unknown)

Number of Layers 15 17 23 26 27 36
GA Merit Function (%) 0.855 0.697 0.577 0.523 0.553 0.494

Optical Thickness (μm) 20.34 27.04 40.17 50.99 44.98 71.15

ML Merit Function (%) 0.675 0.638 0.556 0.531 0.535 0.507
Optical Thickness (μm) 31.26 38.19 45.19 56.28 52.10 64.47

rithms and for assessing the performance of stochastic
methods.

A Comparison of Methods
for an Infrared Filter Design

It is very difficult to compare the general performance
of optimization approaches. In the following study,
methods are compared through their performance in
solving the infrared filter design problem that was de-
scribed in the introduction to this Section. In each case,
the same problem with precisely the same objective
function is considered. In addition, past authors have
terminated their solvers after a set number of iterations
to allow a fair comparison with other methods. How-
ever, this can be a confusing measure of convergence as,
in the case of GAs, a global optimummay not have been
reached and in the case of SA, the cooling schedule may
limit the effectiveness of the method. Consequently, the
reader will note that there is no consensus over the
global optimum between any of the optimization meth-
ods. Nevertheless, it is important to place each solver
on an equal footing, and the number of function evalu-
ations will be used as a measure of this. Table 1 shows
information specific to each solver used in the study.

It should be noted here, that only past studies of this
problem using the methods discussed are compared in
this study. Other studies that treat this problem can be
found in [1,11,12,30,31] amongst others.

Yang and Kao [44] have provided an extensive study
on this problem analyzing designs with varying layer
number. The same approach was taken to generate data
for the ML approach following the strategy in [28].
A direct comparison of optima found by GA [44] and
ML methods is shown in Table 2 as a function of the
number of design layers. Here, GA was allowed 150,000
function evaluations before stopping, whereas ML was
allowed 5 hours, which, depending on the number lay-
ers, allows between 150,000 and 250,000 function eval-
uations. Both methods operate equally well, but, ML
tends to locate slightly better solutions at the expense
of optical thickness (this is equivalent the sum of the
layer thicknesses multiplied by the respective refractive
indices). This is to be expected due to the slightly larger
number of function evalualtions allowed for structures
with lower numbers of layers.

The trade-off between the optical thickness of a filter
and its reflectivity has been examined by Dombrowol-
sky et al. [13]. Based on a quasi-deterministic quadratic
approach [36] to the anti-reflection coating design, they
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Global Optimization of Planar Multilayered Dielectric Structures, Figure 2
(a) Positions of all local solutions found using ML approach for 17 and 20 layers in the 5 hour calculation time. (b) Compar-
ison of optimum solutions of GA [25], SA [6], ML [28] and optimum locus for this problem [13]. Note that for the GA and SA
algorithms, the maximum optical thickness of the filter is 32 µm, whereas, the ML algorithm has no upper limit. The top 10
solutions for the ML approach are shown

Global Optimization of Planar Multilayered Dielectric Struc-
tures, Figure 3
New results of the ML approach generated by varying the
number of layers from 15 to 30. Through post optimization
analysis, the top 50 results nearest the optical locus [13]were
identified

specify a locus merit function against optical thickness.
This represents a theoretical limit on optimality for
a given anti-reflection bandwidth. This can be tested in
this instance: Fig. 2a shows the locus of solutions for
merit function, F , against optical thickness using the
ML approach [28]. Here, dots represent the solutions

for the 17 layer structure and crosses, solutions of the
20 layer structure for the ML approach. It is clear that
all solutions appear on or above the optimal locus rep-
resented by the broken line. Note however, that the op-
timal locus does not guarantee that solutions should be
found on or near it. Figure 2b shows these results along-
side optical designs using GA [25] and SA [6]. Here, it is
important to note that the GA and SA approaches limit
the total optical thickness to 32 μm, whereas the ML al-
gorithm is free to locate solutions over a larger range.
Despite this, all methods appear comparable, with per-
haps the GA appearing superior over SA. The effective-
ness of the ML approach in identifying solutions near
the optimal locus can actually be assessed after opti-
mization.

An advantage of the ML approach is the ability to
perform post optimization analysis on local minima
making the optimization problem highly adaptive. This
is appealing because supplementary design criteria can
be taken into account without having to alter the ob-
jective function directly; the optimization is usually ex-
tremely sensitive to the form of the objective function.
This can be quite effective since ML generates between
100 and 200 local solutions in the 5 hour calculation
time, depending on the number of layers in a design.
For example, further analysis of the local optima in the
current example allows solutions near the optimal locus
to be identified. New results were generated using the
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same approach as in [28] for designs ranging in layer
number from 15–30. The top 50 solutions nearest the
optimal locus were then filtered out from the complete
set and are plotted in Fig. 3. Clearly, solutions very close
to the optimal locus highlight the effectiveness of ML.
However, the reduced number of function evaluations
for structures with larger numbers of periods limits the
effectiveness of the search. It is also interesting to note,
that this analysis identifies gaps along the optimal locus.
This suggests that, in some cases, extra layers are redun-
dant when seeking to optimize both layer thickness and
merit function.

Conclusions

The design of multi-layered dielectric optical struc-
tures can be formulated as a highly nonlinear optimiza-
tion problem in which the thickness and refractive in-
dex of each layer is to be optimized, based on an ap-
propriate objective function. This problem is known
to have a large number of local minima, and several
global optimization algorithm have been proposed to
tackle it. These algorithms are mostly stochastic search
algorithms (Simulated Annealing, Genetic Algorithms
and Memetic Algorithms) or deterministic algorithms
with a probabilistic guarantee of convergence (Multi-
Level Algorithm). A deterministic approach with guar-
anteed global optimality has also been proposed based
on an approximation of the design problem. The per-
formance of several of these algorithms has been com-
pared for a specific problem.

Future work on this design problem must continue
to address the challenges posed by the large number of
local optima which exist. The design formulation can
also be extended to include the number of layers as one
of the design variables. An early and encouraging effort
in this direction is the needle optimization algorithm.
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Introduction

The multiple-minima problem, i. e., the large number
of minima associated with the potential functions used
to represent the conformational energy of a polypep-
tide chain, is one of the greatest obstacles to overcome
in order to compute the three-dimensional structure
of a protein. Despite much effort and a large num-
ber of interesting ideas and approaches, progress to-
ward the solution of this problem has been very slow.
An exhaustive search of the conformational hyper-
surface of a large polypeptide is not computationally
feasible even with today’s supercomputers. Originally,
the challenge was to locate the global energy mini-
mum of small oligopeptides such as the pentapeptide
Metenkephalin [1,17,20,26,45,46,48,55,57,58,59,72,73,
79,91].

Since the global minimum of a potential function
for a specific sequence is not known a priori, the only
possibility of locating the global minimum of the po-
tential energy is to carry out a large number of inde-
pendent tests and determine if there is convergence to
a unique conformation. This approach has been used in
the test studies ofMet-enkephalin in which hundreds of
independent runs using different techniques have led to
a unique lowest energy conformation, shown in Fig. 1,
for the Empirical Conformational Energy Program
for Peptides (ECEPP/2 [44,50,89], and ECEPP/3 [49])

Global Optimization in Protein Folding, Figure 1
Lowest-energy conformation of Metenkephalin using the
ECEPP/2 force field [27]

potential energy functions. Similar results have been
achieved for other test cases corresponding to larger se-
quences [1,23,39,56,62,77,78,80,81,94]. More recently,
we have focused our efforts on the development of
searching techniques that combine molecular dynam-
ics with a coarse-grained representation of the protein
structure. This approach to the protein folding prob-
lem is more rigorous since it accounts for entropic con-
tributions and, on the other hand, is computationally
more advantageous due to the simplified treatment of
the complexities of the amino acid geometry. Our lab-
oratory has made considerable progress in this area of
research during the past few years, and we present a de-
scription of some of the successful methods that we
have developed.

The Build-up Procedure

While systematic and exhaustive enumeration of all
possible conformations is not practically feasible for
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polypeptides and proteins, attempts have been made to
develop algorithms that lead to a truncated systematic
search of the conformational space of these molecules.
One of these methods, developed in our laboratory,
the build-up procedure, [9,71,85,86,88,91] assumes that
short-range interactions play a dominant role in deter-
mining the conformation of a polypeptide chain. Thus,
the method starts by locating the low-energy confor-
mations of small fragments of the chain by an exhaus-
tive energy minimization procedure. Then, a selection
of the minima is carried out, keeping those that lie
within an appropriate chosen upper bound (the cutoff
energy) of the lowest-energy fragment. Subsequently,
the limited set of minima for one fragment is combined
with the set of another fragment to form larger peptides
which are also subjected to energy-minimization. This
process is repeated until the whole chain is eventually
built up from its constituent parts. At successive stages
of the algorithm, more and more long-range interac-
tions come into play.

Outline of the Procedure

1. The smallest fragment that the build-up procedure
uses to construct a polypeptide conformation is the
single amino acid. The ECEPP/2 minimum-energy
conformations of terminally blocked single residues
were reported by M. Vásquez, G. Némethy and H.A.
Scheraga [90]. The conformations were ordered by
increasing energy using a cutoff energy of 5 kcal/mol
and were classified according to the code defined
by S.S. Zimmerman, M.S. Pottle, G. Némethy and
H.A. Scheraga [98]. The ECEPP/3 force field pro-
duces the same energy minima for all blocked amino
acids with the exception of the proline and hydrox-
yproline residues.

2. All possible dipeptides for a given molecule are gen-
erated from single-residue data (for a peptide with
n residues there are n�1 dipeptides). After energy-
minimization, the dipeptides are sorted and are used
to construct tripeptides.

3. Subsequent steps to form larger fragments of the
polypeptide chain involve joining two fragments
with one or more residues in common, e. g. after
generating conformations for the tripeptides, these
can be used to construct tetrapeptides from two
tripeptides having two residues in common. This

process is continued until the whole polypeptide
chain is built.

Drawbacks of the Procedure

One of the major difficulties of the build-up proce-
dure is that the number of conformations of fragments
that must be energy-minimized and stored at each step
increases exponentially. A partial solution, aside from
using an energy cut-off, is to retain only those min-
ima whose backbone conformations differ significantly:
e. g. when several local minima have almost identical
backbone but different side-chain conformations, only
the lowest-energy minimum is kept while the degen-
erate ones are discarded. This approach drastically re-
duces the number of conformations to be stored at each
stage of the procedure; however, it may lead to prob-
lems at later stages because the side-chain rotamers that
are most favorable energetically in smaller fragments
are not necessarily favored in the whole polypeptide
chain. Another difficulty associated with the procedure
is that atomic overlaps can occur when two fragments
are joined in an arbitrary manner. These overlaps lead
to conformations with extremely high energy for which
minimization is usually not computationally feasible.
A set of algorithms designed to surmount these prob-
lems was presented by K.D. Gibson and H.A. Scher-
aga [9].

Applications

The build-up procedure has been used extensively in
a number of studies of different molecules, among them
Metenkephalin [91], Gramicidin S [6,51], Melittin [71],
bovine pancreatic trypsin inhibitor [92,93] and colla-
gen [41,42,43]. The method appears to work well for
small oligopeptides and fibrous proteins but, except in
a few cases, its application to larger molecules becomes
unmanageable for polypeptide chains containing 10 or
more amino acid residues.

The Self Consistent Electrostatic FieldMethod

Among all the interactions that lead to protein folding,
electrostatic interactions are the only ones character-
ized as long-range. Therefore, they undoubtedly must
play an important role in folding. The dominant effects
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of electrostatic interactions in proteins are well recog-
nized [60]. Among these effects, it is worth mentioning:
� The orientation of the CO and NH dipoles in ˛-he-

lices are very favorable electrostatically [95] leading
to a large dipole moment associated with this type of
secondary structure.

� The electric field produced by an ˛-helix constitutes
a very important stabilizing factor of the native con-
formations of proteins containing this type of sec-
ondary structure [11].

� The relative orientations of ˛-helices and ˇ-sheets
in proteins are favorable electrostatically [4,12,25].

Based on this evidence, L. Piela and H.A. Scher-
aga [62], hypothesized that that the native conforma-
tion of a protein arises when the electrostatic interac-
tions are near optimal, or equivalently, that the native
conformation must have approximately optimal orien-
tations of its group dipoles in the electric field gener-
ated by the whole molecule and its surrounding solvent.
Based on this assumption (which was later confirmed
through rigorous calculations on an extensive set of
proteins [82]), a conformational search method, named
the Self-Consistent Electric Field (SCEF) method, was
developed. The SCEF procedure was implemented as
follows:
1. Given an arbitrary starting conformation of the

molecule, minimize the total (e. g. ECEPP/3) confor-
mational energy to reach the nearest local minimum.

2. For this minimized conformation, the electric field
due to the whole molecule is calculated at each CO
and NH group of the peptide units, and also in the
middle of the C0-N peptide bond.

3. The direction of the electric field with respect to the
CO and NH bond dipole moments provides infor-
mation as to which peptide units are badly oriented.
This electrostatic analysis of the alignment between
the permanent dipoles and the electric field, is used
to generate a diagnostic rotation. The diagnostic ro-
tation is the variation that must be applied to a given
torsional angle to obtain the best alignment of the
worst oriented peptide-unit dipoles with respect to
the electric field, e. g., if the electrostatic analysis in-
dicates that the dipole moment of the peptide bond
between residues i and i+1 is the worst oriented, the
diagnostic rotation will describe a change of the cor-
responding backbone dihedral angles  i and �iC1

required to align the dipole moment of the unit.

4. Carry out the diagnostic rotation.
5. Use the new conformation of the molecule as the

starting point in step 1:
� if a new local minimum is reached, then repeat

the procedure from step 2 for the new local min-
imum;

� if the same local minimum is found, then step 3
must be repeated, but using the diagnostic rota-
tion for the next worst-oriented dipole.

6. Steps 1–5 are repeated until self-consistency is
achieved, i. e., until further application of the pro-
cedure does not change the conformation of the
molecule.

Computation of the Electric Field
and Dipole Moments

If r represents the position vector assigned to the dipole
moment i of a group of atoms, then the electric field,
E(r), is computed as:

E(r) D (1 /� )
X
k

0
qk(r � rk)

ı
jr � rk j3 (1)

where � is the dielectric constant, qk indicates the
charge on atom k with position vector rk and the prime
in the summation sign indicates that the atoms which
contribute to the ith dipole moment as well as those
other atoms covalently bonded to them should be ex-
cluded from the computation.

The electric field is computed at three points, ri, CO,
ri, NH, and ri. These are reference points with respect
to which the dipole moments of the CO bond, �CO

i ,
the NH bond, �NH

i , and the whole ith peptide unit, �i ,
respectively, are calculated. These dipole moments are
computed according to the following relations:

�CO
i D qC(r i;C � r i;CO)C qO(r i;O � r i;CO) (2)

�NH
i D qN(r i;N � r i;NH)C qH(r i;H � r i;NH) (3)

�i D qC(r i;C � r i)C qO(r i;O � r i)

C qN(r i;N � r i)C qH(r i;H � r i ) (4)

ri, CO, ri, NH, and ri are chosen so that the bond
quadrupole moments of the CO and NH bonds, QCO,
QNH, respectively, vanish, i. e., the three points satisfy
the following relations:

QCO D qC jr i;C � r i;COj2C qO jr i;O � r i;COj2 D 0 (5)
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QNH D qN jr i;N� r i;NHj2CqHjr i;H� r i;NHj2 D 0 (6)

and,

r i D (r i;C � r i;N)/2 : (7)

Degree of Alignment of a Dipole Moment
with the Electric Field

The process of aligning a particular dipole moment, �X
i

(with X being CO or NH), with the electric field can be
accomplished by rotations of the backbone dihedral an-
gles  i, and �iC1 (see Fig. 2). When such a rotation is
carried out, only the electric field components perpen-
dicular to the rotation axis will change:

E?k(r i;CO) D E(r i;CO) � [E(r i;CO) � e i;k]e i;k (8)

E?k(r i;NH) D E(r i;NH) � [E(r i;NH) � e i;k]e i;k (9)

where ei, k for k D 1; 2 denotes the unit vector along
the axes of rotation,  i, and �iC1, respectively. Further-
more, in writing these equations it was assumed that the
points ri, CO and ri, NH are sufficiently close to the rota-
tion axis.

Global Optimization in Protein Folding, Figure 2
SCEF peptide unit i with the atomic charges used in the
ECEPP force field

The energy, E, of a dipole in an electric field is
a given by:

E D �� � E : (10)

Assuming that the electric field in the neighborhood
of the ith peptide group is relatively uniform, a lower
bound for the energy gain due to a rotation is repre-
sented by:

�Ei D �ECO
i C�ENH

i (11)

where the individual energy gains, �ECO
i (< 0) and

�ENH
i (< 0), to align the dipole and the field vectors are,

�EX
i D �j�

X
i;?kj jE?k(r i;X)j C

�
�X

i;?k � E?k(r i;X)
�

(12)

with

�X
i;?k D �

X
i � (�X

i � e i;k)e i;k : (13)

The value of�Ei given by Eq. (11) is used as a measure
of the deviation from perfect alignment in the electric
field of the ith peptide unit.

Best-possible Alignment of a Dipole Moment
with the Electric Field

From an analysis of the �Eis, it is possible to detect
which peptide unit is the most unfavorably oriented in
the electric field. The SCEF method provides a mech-
anism to compute the rotation that should lead to an
improved orientation of this peptide unit with respect
to the electric field. To accomplish this, the electric
field E(r i ) at the ith peptide unit can be viewed as the
sum of two contributions generated by the portions
of the polypeptide chain on both sides of the ith unit:
(a) EN (r i ) generated by the part of the molecule con-
taining theN-terminus; and (b)EC (r i ) generated by the
part of the molecule containing the C-terminus,

E(r i) D EN(r i)C EC (r i ) : (14)

The components of �i, EN (r i ) and EC (r i ) paral-
lel to an axis of rotation do not change with rotations
about this axis. On the other hand, the perpendicular
components of these vectors with respect to a given
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axis, say ei, k, do change with rotations about the axis
and they are given by:

�i;?k D �i � e i;k(�i � e i;k) (15)

EN;?k(r i ) D EN (r i ) � e i;k
�
EN (r i ) � e i;k

�
(16)

EC;?k(r i ) D EC (r i ) � e i;k
�
EC (r i) � e i;k

�
: (17)

If �i;?k does not lie along E?k D EN;?k C EC;?k ,
perfect alignment between the vectors can be obtained
by a single rotation about ei, k. For k= 1, a rotation about
the  i axis produces a change of EN;?1 to E0N;?1. Sim-
ilarly for k D 2, a rotation about the �iC1 axis leads
to a change of EC;?2 to E0C;?2. Therefore, alignment is
achieved if either one of the following equations is sat-
isfied: for k D 1 ( i axis),

�i;?1�(E0N;?1CEC;?1) D j�i;?1j jE0N;?1CEC;?1j (18)

for k D 2 (�iC1 axis),

�i;?2�(EN;?2CE0C;?2) D j�i;?2j jEN;?2CE0C;?2j: (19)

From geometrical considerations (see Fig. 3), the so-
lution of Eq. (18) (similarly for Eq. (19)) is found to sat-
isfy the relation:

j˛j D arccos(c/b) (20)

where b D jEN;?1j, c D d1/2 with d D b2 � a2 sin2 �C ,
a D jEC;?1j, and �C is the angle between EC;?1 and
�i;?1. Equation (20) has various numbers of solutions.
If they exist, these solutions correspond to rotations of

Global Optimization in Protein Folding, Figure 3
SCEF: solution of alignment Eq. (18)

the dipole moment �i;?1 with different energies. The
value leading to the lowest energy represents the solu-
tion to the alignment Eq. (18). This rotation of  i leads
to an energy gain given by,

�Ei;N D ��i;?1 � (E0N;?1 � EN;?1) : (21)

Expressions similar to Eq. (20) and (21) have been
derived for the rotation around the �iC1 axis (k D 2)
and for the corresponding energy gain, �Ei;C .

It should be mentioned that, in reality, the solution
given by Eq. (20) produces an approximate alignment
of �i;?1 with the corresponding electric field compo-
nent. The reason is that the derivation of these equa-
tions was based on the assumptions that (a) the center
of the peptide unit is on the  i axis of rotation, and
(b) the electric field is homogeneous. While, in reality,
these conditions are not satisfied, the results obtained
from these expressions are reasonably accurate [62].

Finally, after both rotations about the  i and �iC1

axis have been computed, the SCEF method has to
decide which rotation should be implemented. The
method selects the rotation associated with the more
negative energy gain (�Ei;N or �Ei;C). In those cases
where no solution is found for  i and �iC1, another
unfavorable peptide unit is chosen.

Applications

The procedure was tested on a 19-residue poly(L-ala-
nine) chain [62] with acetyl-and N-methyl amide ter-
minal blocking groups. The starting conformations
were a series of partially ˛-helical conformations repre-
senting different degrees of distortion from the canon-
ical right-handed ˛-helix. The right-handed ˛-helical
conformation corresponds to the global energy mini-
mum of the ECEPP/2 (and ECEPP/3) potential func-
tion. In the four cases reported, the procedure was
able to achieve the conformation corresponding to the
global energy minimum in a very short computation
time.

Figure 4a shows the starting conformation of one of
the tests. The conformation contains only 1.5 ˛-helical
turns at each terminus and 70.6% of the native hydro-
gen bonds are broken. In subsequent iterations of the
SCEF procedure, the right-handed ˛-helix shown at the
bottom of Fig. 4b, was completely recovered.
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Global Optimization in Protein Folding, Figure 4
SCEF method: application to poly(L-alanine)

The SCEF procedure was also used [76] in a re-
strictive search of the conformational space of the
58-residue protein bovine pancreatic trypsin inhibitor
(BPTI). In this application, the algorithm led to a series

of conformations with up to 50 kcal/mol lower than the
starting conformation.

TheMonte Carlo-MinimizationMethod

The Monte Carlo-Minimization (MCM) [26], [27]
method developed by Z. Li and H.A. Scheraga was mo-
tivated by experimental studies indicating that proteins
are not static structures but instead undergo fluctua-
tions. For a protein to be stable, its native conformation
must be stable not only to small perturbations but also
against larger-scale thermal fluctuations. Based on these
considerations, Li and Scheraga developed a stochastic
approach for global optimization of polypeptides and
proteins that combines the power of the Metropolis
Monte Carlo method [40] in global combinatorial opti-
mization and that of conventional energy minimization
to find local minima. The underlying working hypoth-
esis of the method is that protein folding can be consid-
ered as aMarkov process, with (a) Boltzmann transition
probabilities, and (b) this Markov process should lead
to a unique absorbing state [3] that corresponds to the
native state for a natural biologically active protein. For
this absorbing state, equilibrium is reached after a suf-
ficiently long time and the stationary probability of oc-
currence approaches unity.

The Metropolis Monte Carlo method can simulate
the thermal processes, by taking into account both ran-
dom fluctuations and energetic considerations. How-
ever, straightforward applications of the Metropolis
Monte Carlo method to polypeptides has proven to be
quite inefficient [10,57,74] mainly because (a) a high-
dimensional conformational space has to be sampled
by making small increments of the variables in each
step, and (b) The large energy barriers in the confor-
mational space tend to confine the sampling to a very
restrictive region of the space. To overcome these diffi-
culties, theMCMmethod includes conventional energy
minimization as a second important feature. Thus, the
MCM method generates a Markov walk on the hyper-
lattice of all discrete energy minima, with Boltzmann
transition probabilities.

The procedure implemented in theMCM algorithm
is as follows:
� Given an energy-minimized conformation, Cmin

curr,
with total energy Emin

curr, a Monte Carlo sampling
strategy is used to generate a perturbed conforma-
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Global Optimization in Protein Folding, Figure 5
	� maps for the five residues of Metenkephalin showing the backbone dihedral angles of 18 random starting conforma-
tions (indicated by the numbers 1 to 18) for theMCMmethod. The backbonedihedral angles of the globalminimumachieved
by the MCMmethod in all the runs (see Fig. 1) are indicated by 0

tion Cpert. The sampling strategy consists of ran-
dom changes, involving k dihedral angles of the to-
tal number Ndieh used to described the molecule.
The number of changes are generated with prob-
abilities 2�k (k D 1; 2; : : : ;Ndieh). This probability
selection implies that fluctuations involving more
degrees of freedom are sampled with successively
lower probabilities. This sampling strategy satisfies
the ergodicity requirements, i. e., any local mini-
mum is accessible from any other one after a finite
number of random sampling steps. Furthermore,
in order to improve the average acceptance ratio,
random changes involving backbone dihedral an-
gles are sampled more frequently than those of side
chains. This type of sampling strategy led to an av-
erage acceptance ratio of approximately 20% at 0°C
for Metenkephalin.

� The randomly generated conformation, Cpert, is
then subjected to conventional energy minimization
until it reaches the nearest local minimum of the

potential energy function (ECEPP/2 or ECEPP/3).
Minimization of the energy is carried out with
the Secant Unconstrained Minimization Solver
(SUMSL) algorithm [8]. The resulting conforma-
tion, Cmin

pert , has a total energy Emin
pert and is usually free

of atomic overlaps.
� The energies of the conformations Cmin

pert and Cmin
curr

are compared, and the Metropolis criterion is used
to decide which conformation is to be kept, i. e.,
if the energy difference �E D Emin

pert � Emin
curr < 0, or

(when �E > 0) if e��E/RT is greater than a ran-
domly generated number between 0 and 1, the new
conformation, Cmin

pert replaces the current Cmin
curr; oth-

erwise, Cmin
pert is discarded.

Applications

The MCM procedure was successfully applied to study
the conformational preference of the pentapeptide
Metenkephalin [26,27]. In its initial application [26], 13
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of 18 random starting conformations of this oligopep-
tide converged to the global minimum, shown in Fig. 1,
within the time of the simulations. Using a different
sampling strategy [27], the 5 remaining runs also con-
verged to the same lowest energy structure. Figure 5
shows the values of the backbone dihedral angles, � and
 for the 18 starting conformations.

As a further development, we extended the concept
of MCM to include biasing the perturbations to elec-
trostatic interaction, giving the Electrostatically Driven
Monte Carlo (EDMC) method, which is described in
the next section. More recently, we took advantage
of grouping the conformations obtained in the search
into families which are updated on the fly and, using
the properties of the families in the subsequent steps
of the search, this resulted in the conformation-family
Monte Carlo (CFMC)method [65]. The CFMCmethod
was used to search the conformational space of the
B-domain of staphylococcal protein A in the united-
residue representation [65] and for crystal structure
prediction of small molecules [63].

The Electrostatically Driven
Monte CarloMethod

The Electrostatically Driven Monte Carlo (EDMC)
method, introduced by D.R. Ripoll and H.A. Scher-
aga, is a procedure for iteratively searching the confor-
mational hypersurface of relatively small polypeptide
molecules. The EDMC method incorporates the best
features of the SCEF and MCMmethods and combines
them with a set of new techniques to produce a more
efficient search of the conformational space.

The search for the the global energy minimum of
a molecule proceeds as a “quasi-random walk” along
a conformational pathway. As with the MCM method,
this pathway is defined, in principle, by an infinite se-
quence of energy-minimized conformations encoun-
tered over an unbounded number of iterative steps of
the algorithm. In practice, however, a finite number of
iterations is specified for a given run. The underlying
assumption behind the EDMC method is that (a) the
electrostatic interactions should lead to conformations
representing an improvement of the charge distribu-
tion, i. e. the new conformations are expected to have
lower electrostatic and total energies; and (b) thermal
fluctuations, on the other hand, are expected to intro-

duce disorder within the molecule. These thermal ef-
fects could force the molecule to adopt conformations
that are higher in energy, but may allow it to escape
from stable local minima of relatively high energy.

The implementation of these ideas is accomplished
as follows: Thermal effects are associated with random
changes in the molecular conformation, i. e. a small
set of randomly-chosen variables was altered randomly.
On the other hand, the reordering effect of the elec-
trostatic interactions was viewed as a tendency of all
permanent dipole moments associated with the pep-
tide units of the polypeptide, to attain their best possi-
ble alignment in the local electric field produced by the
rest of the molecule. Additionally, a series of new fea-
tures [77], included in the latest implementation of the
EDMCmethod, has helped to accelerate the search and
to optimize the process of generation of new conforma-
tions.

The Procedure

The first accepted conformation on the conformational
pathway followed by the EDMC method is usually an
unfolded state of the polypeptide chain (i. e. the initial
values of the variables describing the molecular confor-
mation are assigned randomly); its energy is minimized
to relieve possible atomic overlaps. The subsequent ac-
cepted conformations are obtained by a variety of tech-
niques described below. An iteration of the procedure
is defined as a set of manipulations of the currently ac-
cepted conformation that leads to its replacement by
a newly generated conformation.

The strategy used to produce new conformations
within an iteration of the method is based upon a com-
bination of movements associated with the electrostatic
interactions and thermal motion.
(a) An important technique that the EDMC method

uses to generate new conformations is based on an
electrostatic analysis similar to that produced by
the SCEF method [62], but extended to consider
the permanent dipole moments of polar side-
chains. As a first step of an iteration, this electro-
static analysis of the currently accepted conforma-
tion (the initial energy–minimized conformation
or the accepted conformation from the previous it-
eration) is carried out to determine the alignment
of the permanent dipoles with the local electric
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field produced by the whole molecule. As a result,
diagnostic rotations that could improve the local
dipole alignments with the electric field are pro-
duced for all permanent dipole moments. These di-
agnostic rotations are incorporated into a predic-
tion list of possible conformational changes. The
information contained in this list is used to gener-
ate new conformations in a subsequent search for
states of lower energy.

(b) Since it may happen that none of these predic-
tions leads to an acceptable conformation, a ran-
dom and/or biased sampling technique is also used
to generate additional conformations. The follow-
ing procedure is followed:
1. Specification of the mode in which the variable

dihedral angles of the selected residues are to be
altered:
i) Select all variables at random;
ii) Select the backbone variables randomly

within specific regions of the � �  map;
iii) Select all variables from pre-computed

low-energy conformations of the tri-pep-
tides included in the sequence;

iv) Select backbone variables compatible with
regular structures ˇ-sheets or ˛-helices).

2. Random selection of i) the number of residues
to be affected by the changes, and ii) their po-
sitions in the sequence.

The latest implementation of the algorithm [77] in-
cludes a technique to produce a cluster analysis of the
accepted minima. The conformations are grouped into
clusters using rms distance criteria and ranked on the
basis of their total energies. Furthermore, every gener-
ated conformation, even if rejected, is associated with
an existing cluster or family, but added to it only if its
energy is lower than the one corresponding to the best
member of that family.During an iteration, randomly
generated conformations can also be produced by per-
turbing low-energy conformations included in any of
the clusters (except the one containing the current ac-
ceptedminima) using the protocol described in item (b)
above.

A conformation generated by any of these two pro-
cedures (a or b) is subjected to minimization of the to-
tal energy where the backbone and side-chain dihedral
angles of the molecule are considered as variables. The
energy-minimization procedure is carried out with the

SUMSL algorithm [8]. The value of the potential en-
ergy constitutes the basis for either the acceptance or
rejection of the new minimum-energy conformation.
A newly generated conformation must fulfill two cri-
teria to be accepted:
1. If a generated conformation is found to correspond

to an accepted minimum that has already been
encountered more than a pre-defined number of
times (usually 5–10), then it is automatically ex-
cluded from further consideration. This analysis of
the long–term behavior of the search provides one
of the criteria to ensure that the search does not be-
come trapped in a set of local minima of the confor-
mational space.

2. If a conformation satisfies the previous condition, its
energy Enew is compared with the energy, Ecurr, of the
current accepted conformation, and the Metropolis
criterion [40], as described for the MCM method, is
applied.
When the energy of the new conformation passes

both tests successfully, the conformation is accepted,
replacing the current one, and a new iteration begins.

Backtrack

The number of conformations generated within a given
iteration is limited (usually 100 to 200 conformations).
It may happen that neither the set of electrostatic pre-
dictions, nor the set of randomly generated confor-
mations produces an acceptable conformation. Under
these circumstances, the algorithm then assumes that
the current local minimum is quite stable and a new
procedure named backtrack is triggered. The backtrack
procedure attempts to displace the search to a differ-
ent region of the conformational hypersurface by sub-
stantially altering the processes of generation and ac-
ceptance of conformations.

The backtrack procedure involves the following:
a) A new set of conformations is generated by chang-

ing a large number of variables simultaneously. In
particular, the procedure tends to select the vari-
ables associated mainly with the backbone of the
polypeptide chain; and,

b) the temperature parameter, T, used in the Metropo-
lis acceptance criterion is (i) raised abruptly to a very
high value, or (ii) steadily increased by means of
a pre-defined heating scheme.
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The backtrack procedure is applied until the ac-
ceptance test is satisfied, or until the number of gen-
erated conformations reaches a predetermined maxi-
mum value. In the rare event that the latter situation
occurs, the run is terminated since it is assumed that it
is practically impossible to escape from the current re-
gion of the conformational space. On the other hand,
when a conformation from the backtrack procedure is
accepted, the temperature parameter is reset to its origi-
nal user-specified value, and the generation mechanism
is switched back to the standard protocol described
above.

The objective of the modified generation procedure
during backtrack is to produce conformations substan-
tially different from the current minima, while rais-
ing the temperature has the effect of increasing the
probability of acceptance of conformations with ener-
gies much higher than the current local minimum. The
backtrack mechanism has been shown to be an effective
technique to help the search avoid being trapped in sta-
ble, high-energy regions of the conformational space.

The EDMC method has some similarities with sim-
ulating annealing, proposed by S. Kirkpatrick, C.D.
Gelatt and M.P. Vecchi [15], since both make use of
high temperatures to surmount large energy barriers.
The difference is that the EDMC procedure concen-
trates the search in the low-energy regions of the con-
formational space using energy minimization and a low
temperature value. High temperatures are used rarely
during backtrack to escape from stable or already vis-
ited regions. Once this is accomplished, the tempera-
ture parameter is reset to its initial (low) value. A search
using simulated annealing, on the other hand, starts
with a high temperature value and this parameter is
gradually reduced during the simulation. The expecta-
tion is that, given a sufficiently high initial temperature
and a good annealing schedule, the search will over-
come large energy barriers and will become localized
in the low-energy region containing the global mini-
mum.

Applications

The multiple-minima problem has been found to be
computationally tractable by the EDMCmethod on ex-
isting computers for polypeptides sequences consisting
of up to 20 amino acid residues.

Global Optimization in Protein Folding, Figure 6
Lowest-energy conformation of the membrane-bound por-
tion of melittin for the ECEPP/3 force field determined by
the Conformational Space Annealing [23] and the EDMC [77]
methods

In applications to Metenkephalin [79], oxy-
tocin [39], arginine-vasopressin [39], decaglycine [80],
a 19-residue chain of poly(L-alanine) [78], and the
20-residue membrane-bound portion of melittin [77]
(see Fig. 6), the EDMC algorithm converged to unique
conformations presumed to be the global energy min-
ima for those particular sequences.

In other applications, to a seven-residue pep-
tide epitope [75], and a twelve-residue analogue of
mastoparan and mastoparan X [7], the method identi-
fied very low-energy conformations, but it is not certain
that the global energy minima were attained in these
cases.

Lately, the EDMC method has been applied to the
36-residue villin headpiece subdomain [81], and the
45-residue fragment B-domain of staphylococcal pro-
tein A [94]. In both applications, unrestricted global
searches that started from randomly generated confor-
mations encountered in their paths low-energy basins
that included native-like conformations. To our knowl-
edge, the application to the B-domain of staphylococ-
cal protein A was, at the time, the first all-atom sim-
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ulation in which such a large protein was ever folded
from random initial conformations without resort to
knowledge-based information.

The EDMC method has also been used in restric-
tive searches of the conformational space of larger
molecules. In an application to the 58-residue protein
BPTI [76], the algorithm produced the lowest energy
conformation known for BPTI using the ECEPP/2 or
ECEPP/3 potential. In addition, the EDMCmethod has
also been used to search the conformational properties
of a non-oncogenic p21 protein [30] and a molecular
switch designed as a biological logic gate [2].

The Diffusion Equation Method
and OtherMethods Based on the Deformation
of the Potential-Energy Surface

The diffusion equation method (DEM) is a determinis-
tic approach that attempts to solve the multiple-min-
ima problem by deforming the potential energy hyper-
surface. The basic idea of the method, introduced by
Piela et al.[61], is to deform the multivariable func-
tion that represents the potential energy in such a man-
ner as to make the shallow wells disappear gradually,
while other potential wells grow at their expense. Un-
der the assumption that the shallower wells will dis-
appear more easily than the deep wells, it is possi-
ble to envision an iterative procedure that, applied to
the potential function, will change its shape, making
most of the minima become shallower until they dis-
appear, while leaving a single absorbing minimum re-
lated to the lowest minimum of the original function.
At this point of the deformation process, a simple lo-
cal minimization algorithm should be able to retrieve
the position of the unique minimum from any starting
point. However, since the deformation of the poten-
tial should likely have altered the location of all min-
ima, the global minimum of the original function is
not the same as the minimum of the deformed surface.
Its location can, in principle, be attained by slowly re-
versing the deformation and using standard local min-
imization procedures. Piela et al. showed that the de-
formation of the hypersurface can be carried out with
the aid of the diffusion equation. In this context, the
original shape of the potential function has the mean-
ing of an initial concentration (or temperature) distri-
bution.

The diffusion equation method which must be
solved to obtain a deformed potential-energy surface is
given by Eq. (22).

r2F(x1; x2; : : : ; xn ; t) D
@F(x1; x2; : : : ; xn ; t)

@t
(22)

where x1; x2; : : : ; xn are variables describing the con-
formation of a molecule, r2 D

�
@2/@x21 ; @2/@x22 ; : : : ;

@2/@x2n
�
is the Laplacian operator, the variable t rep-

resents time and can be identified with the extent of
deformation, and F is the deformed potential-energy
function. Additionally, Eq. (22) is solved with the ini-
tial condition F(x1; x2; : : : ; xn ; 0) D f (x1; x2; : : : ; xn),
where f (x1; x2; : : : ; xn) is the original (undeformed)
potential-energy function. The function F usually rep-
resents a concentration or a temperature distribution.
If the function f (x1; x2; : : : ; xn) is bounded, a solution
of Eq. (22) exists for any positive value of t.

The procedure described above represents a spon-
taneous mass transport (or flow of heat) in a medium
for an initial distribution of concentration (or temper-
ature) given by the function f (x1; x2; : : : ; xn) (which in
our case represents the conformational energy). Gov-
erned by the diffusion equation and independent of the
initial conditions, the concentration (or temperature),
will evolve with time in such a manner that it will be-
come constant for t D1. However, it is expected that
the concentration (or temperature) will exhibit a sin-
gle minimum for certain (very large) values of t. This
single minimum should represent the last trace of the
potential well corresponding to the global minimum of
the original hypersurface f (x1; x2; : : : ; xn). The defor-
mation and its subsequent reversal to retrieve the posi-
tion of the original minimum is illustrated in Fig. 7.

Application of the DEM consists of the following
steps:
� Solve Eq. (22) using F(x; 0) D f (x) as the initial

condition or apply the operator T(t) for a suffi-
ciently large value of t (t0); then, use a local min-
imization to locate the position x�t0 of the unique
minimum on the deformed surface. This is the start-
ing point to be used in the reversing procedure.

� Apply the reversing procedure described above.
� For a reversing procedure involving m steps, the

position x�0 obtained by minimizing F(x�t0�(m�1)�t ;

t0 D 0) should correspond, hopefully, to the posi-
tion of the global minimum of the function f .



1404 G Global Optimization in Protein Folding

Global Optimization in Protein Folding, Figure 7
TheDEMmethod: Illustration of the deformation of the origi-
nal potential f (x) D x4 C 2x3 C 0:9x2 by the operator T(t) D
exp

�
td2/dx2

�
, and of the reversing procedure. The deforma-

tion applied by the operator T(t0 D 0:25) leads to a curve
with a unique minimum that is achievable from any point of
the space with a simple minimization. The reversing proce-
dure is shown by the arrows directed downward. Each step
of the reversing procedure is followed by minimization sym-
bolized in the figure by aball movingdownhill from themin-
imum position of the upper curve and always reaching the
position of theminimum in the lower curve. In the final step,
the global minimum of the original function is found

Among other applications, the DEM has been applied
to:
� A cluster of 55 Lennard-Jones atoms for which the

global minimum was found [16].
� A single terminally blocked alanine [17].
� The pentapeptide Met-enkephalin [17] for which

the method led to practically the same global-min-
imum backbone structure obtained by other meth-
ods. The test, however, was carried out under more
restrictive conditions since only the backbone dihe-
dral angles � and  were considered as variables.

� Prediction of the crystal structures of hexasulfur and
benzene molecules [96,97].

Although the DEM method is, in theory, a determin-
istic approach, we found [96,97] that it must be com-
bined with aMonte Carlo search to work formore com-

plex systems. When the potential-energy surface is de-
formed to contain just a single minimum, it is so flat
that, to the numerical accuracy, it is effectively constant.
Thus, deformation cannot be carried out to leave only
one minimum. Moreover, the position of a minimum
on a highly deformed surface is too far from that on
the original energy surface. During the process of re-
versal, the single minimum splits into multiple minima
and it is not clear which one of those should be chosen
to continue the reversal. In our successful application
to crystal-structure prediction [96,97] we, therefore, in-
troduced the MCM search both on the deformed po-
tential-energy surface and during reversal.

Taking advantage of the concept of the deforma-
tion of potential-energy surfaces, we developed sev-
eral other methods for the search of the global mini-
mum of the energy of polypeptide and proteins. The
distance scaling method (DSM) [70] developed by J.
Pillardy and L. Piela, (as well as its predecessor, the
shift method (SM) [68]) attempts to solve the mul-
tiple-minima problem using transformations of the
atom–atom distances that lead to smoothing of the
potential energy hypersurface. These methods have
subsequently evolved into the Self-Consistent Basin-
to-Deformed-Basin Mapping (SCBDBM) method, in
which the coupling between the basin containing the
global energy minimum to the corresponding basin in
the deformed potential-energy surface is established.
The SCBDBM involves some Monte Carlo search on
the deformed potential-energy surface and during the
process of reversal. All three methods have been ap-
plied successfully to clusters of argon atoms and water
molecules [67,68,69,70] and to the prediction of crys-
tal structures [97]. The SCBDBM method was also ap-
plied [66] in searches for low-energy minima of poly-
L-ananine chains of up to 100 amino-acid residues in
length and the 10–55 fragment of the B-domain of
staphylococcal protein A using a united-residue rep-
resentation of the polypeptide chain. As opposed to
DEM, the SM, DSM, and SCBDBM approaches, al-
though not so elegant from the theoretical point of
view, involve simple transformations of the potential-
energy surface and are, therefore, much better for prac-
tical use than DEM, which requires solving a parabolic
differential equation in multiple dimensions and with
complicated boundary conditions, which is a highly
non-trivial task.
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Another approach related to deformation of the
potential-energy surface has been developed by K.A.
Olszewski, L. Piela and H.A. Scheraga [55] and
termed Self-Consistent Mean Torsional Field (SCMTF)
method. It is based on the idea that the ground-state
solution of the Schroedinger equation contains infor-
mation about the location of the global minimum.
Their implementation uses a mean field approxima-
tion to solve a set of coupled Schroedinger equa-
tions in a dihedral-angle space. Each equation de-
scribes the changes of a single dihedral angle in the
averaged field of the others. This approach was suc-
cessful in finding the lowest-energy conformations of
Met-enkephalin [55], and decaglycine and eikosaala-
nine chains [56].

The Conformational Space AnnealingMethod

One of the most efficient methods to search the con-
formational space of polypeptide chains developed in
our laboratory is the Conformational Space Annealing
(CSA) method [19,21,22,24], which combines the ideas
of genetic algorithms, the build-up procedure, random
search, and local minimization. The CSA method be-
gins with a randomly-generated population of confor-
mations which are energy minimized to generate the
first bank of conformations. The first bank is meant
to represent a sparse sampling of the conformational
space that captures short-range interactions. From the
initial population, a number of conformations (called
seeds) are selected as parents for the trial popula-
tion. These “seed” conformations are altered in a non-
random fashion to create new trial conformations. As
in any genetic algorithm, the trial population is gen-
erated by the use of genetic operators: mutations and
crossovers. Unlike traditional genetic algorithms, the
mutation operator applied in CSA does not change the
value of the selected variable randomly; instead it uses
values of the corresponding variables in the initial pop-
ulation (the first bank) or in the current population of
conformations as a pool of random numbers. A copy
of the first bank is used as a source of “random” vari-
ables, which are not uniformly distributed but their dis-
tribution is determined by intramolecular interactions
at this stage, mainly by steric overlap. The crossover op-
erators copy a set of variables representing a continuous
segment of the polypeptide chain of various size taken

from a randomly selected conformation in the current
population to a selected parent conformation (seed).
This is described in detail in the next section. Atten-
tion is paid to assure that all trial conformations are sig-
nificantly different from each other and from the par-
ent conformations. After generation, all trial conforma-
tions are energy minimized. The next step of the CSA
algorithm is the update of the current population (the
bank) without increasing its size. Each trial conforma-
tion is compared to each existing conformation of the
bank. If the trial conformation is similar to an existing
conformation of the bank, only the lower-energy con-
formation out of these two is preserved. If the trial con-
formation is not similar to any existing conformation
in the bank it represents a new distinct region of con-
formational space. Then it replaces the highest-energy
conformation in the bank, if its energy is lower than the
highest energy in the bank, otherwise it is discarded.
The distance between conformations i and j is defined
as the difference of their dihedral angles. If the distance,
Dij, is less than or equal to some predefined cutoff value,
Dcut, conformations i and j are considered similar, oth-
erwise they are considered different. CSA achieves its
efficacy by beginning with a large Dcut value to essen-
tially search all possible structures, and then gradually
reduces (“anneals”) Dcut by reducing the minimum dis-
tance between the conformations of the bank and fo-
cusing the search in low-energy regions of conforma-
tional space. After updating the current population, the
seed conformations are selected from the set of confor-
mations not selected as seeds previously; additionally
attention is paid to cover the conformational space as
broadly as possible by selecting conformations not sim-
ilar to each other as seed conformations.

The CSA method was shown to be very efficient
in finding the global minimum of the ECEPP/3 poten-
tial energy function for Metenkephalin [22] and melit-
tin [24]; it was also implemented as a standard search
technique with the coarse-grained UNRES force field
developed in our laboratory (see next section).

Hierarchical Approach

Another approach developed in our laboratory [38,87]
starts with a coarse-grained representation of a protein
and provides atomistic details at the end. It can be sum-
marized in the following three stages:
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Global Optimization in Protein Folding, Figure 8
The UNRES model of polypeptide chains. The interaction
sites are side-chain centroids of different sizes (SC) and
the peptide-bond centers (p) indicated by shaded circles,
whereas the ˛-carbon atoms (small empty circles) are in-
troduced only to assist in defining the geometry. The vir-
tual C˛–C˛ bonds have a length of 3.8 Å, corresponding to
a trans peptide group; � and � , denoting the virtual-bond
angle and virtual-bond dihedral angle, respectively, are vari-
able. Each side chain is attached to the corresponding ˛-car-
bon with a “bond length”, bSCi , variable “bond angle”, ˛SCi ,
formed by SCi and the bisector of the angle defined by C˛

i�1,
C˛
i , and C˛

iC1, and with a variable “dihedral angle” ˇSCi of
counterclockwise rotation about the bisector, starting from
the right side of the C˛

i�1, C
˛
i , C

˛
iC1 frame

1 Extensive simulations with using the coarse-grained
UNRES model [28,29,35,36,37,53,54] developed in
our laboratory and subsequent selection of struc-
tures with the lowest free energy.

2 Conversion of selected coarse-grained structures to
all-atom structures.

3 Exploration of the conformational space of all-atom
structures in the neighborhood of geometries ob-
tained in Stage 2.
In the UNRES model, a polypeptide chain is rep-

resented as a sequence of ˛-carbon atoms (C˛) with
attached united side chains (SC) and united peptide
groups (p), each of which is positioned in the middle
between two consecutive C˛ atoms, as shown in Fig. 8.

All three stages are executed using physics-based
potentials; therefore, energy is the determinant of each
of them. Stage 1 is the key point of the approach, be-
cause it provides the widest range of exploration of the
conformational space. Consequently, we have put most
of our effort in the development of the coarse-grained
UNRES force field. To execute stage 2, we developed an
approach in which the peptide groups are positioned
first within an ˛-carbon trace to minimize their energy
of local and electrostatic interactions [13] and, subse-
quently, the side-chain atoms are added to minimize
the energy of the chain given a coarse-grained geom-
etry [14]. The all-atom ECEPP/3 [49] force field is used
in stage 3.

The effective energy function is a sum of dif-
ferent terms corresponding to interactions between
the SC (USCiSC j ), SC and p (USCi p j), and p (Upi p j)
sites, as well as local terms corresponding to bend-
ing of virtual-bond angles � (Ub), side-chain rotamers
(Urot), virtual-bond torsional (Utor) and double-tor-
sional (Utord) terms, virtual-bond-stretching (Ubond)
terms, correlation terms (U (m)

corr) pertaining to coupling
between backbone-local and backbone-electrostatic in-
teractions [29] (where m denotes the order of correla-
tion), and a term accounting for the energetics of disul-
fide bonds (USS). Each of these terms is multiplied by
an appropriate weight, w. The energy function is given
by Eq. (23).

U D wSC
X
i< j

USCiSC j C wSCp
X
i¤ j

USCi p j

C wpp
X
i< j�1

Uel
pi p j
C wtor

X
i

Utor(�i)

C wtord
X
i

Utord(�i ; �iC1)C wb
X
i

Ub (�i)

C wrot
X
i

Urot(˛SCi ; ˇSCi )

C

6X
mD3

w(m)
corrU

(m)
corr

C wbond

nbondX
iD1

Ubond(di )C wSS
X
i

USS ;i :

(23)

The expression for the effective energy in the
UNRES model was derived based on the physics of in-
teractions, as a cluster-cumulant [18] expansion of the
effective free energy of a protein plus the surround-
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ing solvent, in which the secondary degrees of freedom
had been averaged out [29,31,35]. Most of the expres-
sions were parameterized based on energy surfaces of
models systems computed by ab initio molecular quan-
tum mechanics [35,53]; some of them were parameter-
ized based on the statistics from the PDB [36,37]. The
energy-term weights (the w’s in Eq. (23)) were deter-
mined [54] by using the method of hierarchical opti-
mization of the potential-energy landscape developed
in our laboratory [28], in which the energy of selected
training proteins decreases with increasing native-like-
ness.

Using the Conformational Space Annealing (CSA)
method [19,21,22] to search for the global energy min-
imum of the UNRES energy function, we achieved
considerable success in the Community Wide Experi-
ments of Techniques for Protein Structure Prediction
(CASP). In CASP3, we made the best prediction for
target T0061 (protein HDEA), predicting its 60-residue
segment within 4.2 Å C˛ RMSD from the experimen-
tal structure (PDB code: 1BG8) [34]. The experimental
and predicted structures are superposed in Fig. 9.

At that time, our force field did not contain suf-
ficient correlation terms and was unable to account
for ˇ-sheet formation. After introducing correlation
terms [29], in the CASP4 –CASP6 experiments wewere
able to predict significant portions of the structures of
˛ C ˇ and ˇ proteins [52,64]. In the CASP6 experi-
ment [52], we predicted complete structures of five pro-
teins and large portions of structure of other protein
without ancillary information from protein structural
databases. The largest ˛-helical protein, the whole of
which except for a short C-terminal fragment was pre-
dicted in CASP6 was target T0198 (235 residues; we
predicted the topology of its 208-residue ˛-helical part)
and the largest ˛ C ˇ protein was T0230 (97 residues).

We extended our hierarchical approach to treat
oligomeric proteins [83,84] and to proteins containing
disulfide bonds [5]; the second extension includes the
energy-based prediction of disulfide-bond topology.

Recently [33] we extended the implementation of
the UNRES force field to mesoscopic dynamics. The
corresponding simulations led us to the conclusion that
conformational entropy makes a major contribution to
the probability of occurrence of a family of conforma-
tions. A particular single conformation can have a very
low potential energy but no chance to appear at room

Global Optimization in Protein Folding, Figure 9
Superposition of the crystal (dark grey) and predicted (light
gray) structures of HDEA. The C˛ atoms of the fragment in-
cluded between residues D25 to I85 were superposed. The
RMSD is 4.2 Å. Helices 3, 4 and 5 are indicated as H-3, H-4 and
H-5, respectively

temperature if it belongs to a very narrow basin in the
potential-energy surface. On the contrary, higher-en-
ergy conformations could form a very broad basin and,
consequently, make an overwhelming contribution to
the statistical ensemble at room temperature. Conse-
quently, in our latest work [32] we have reformulated
energy-based protein-structure prediction as a search
of the basin with the lowest free energy at physiological
temperatures, by using techniques based on molecular
dynamics, such as replica-exchange molecular dynam-
ics [47] to search conformational space.
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M, Schafroth HD, Kaźmierkiewicz R, Ripoll DR, Pillardy J,
Saunders JA, Kang Y-K, Gibson KD, Scheraga HA (2005)
Physics-based protein-structure prediction using a hier-
archical protocol based on the UNRES force field – test
with CASP5 and CASP6 targets. Proc Natl Acad Sci USA
102:7547–7552

53. Ołdziej S, Kozłowska U, Liwo A, Scheraga HA (2003) Deter-
mination of the potentials ofmean force for rotation about
C˛ ���C˛ virtual bonds in polypeptides from the ab initio
energy surfaces of terminally-blocked glycine, alanine, and
proline. J Phys Chem A 107:8035–8046

54. Ołdziej S, Łagiewka J, Liwo A, Czaplewski C, Chinchio M,
Nanias M, Scheraga HA (2004) Optimization of the UNRES



1410 G Global Optimization in Protein Folding

force field by hierarchical design of the potential-energy
landscape: III. Use of many proteins in optimization. J Phys
Chem B 108:16950–16959

55. Olszewski KA, Piela L, Scheraga HA (1992) Mean-field
theory as a tool for intramolecular conformational op-
timization. 1. Tests on terminally-blocked alanine and
Metenkephalin. J Phys Chem 96:4672–4676

56. Olszewski KA, Piela L, Scheraga HA (1993) Mean field the-
ory as a tool for intramolecular conformational optimiza-
tion. 2. Tests on the homopolypeptides decaglycine and
icosalanine. J Phys Chem 97:260–266

57. PaineGH, Scheraga HA (1985) Prediction of the native con-
formation of a polypeptide by a statistical-mechanical pro-
cedure. I. Backbone structure of enkephalin. Biopolymers
24:1391–1436

58. Paine GH, Scheraga HA (1986) Prediction of the native
conformation of a polypeptide by a statistical-mechanical
procedure. II. Average backbone structure of enkephalin.
Biopolymers 25:1547–1563

59. Paine GH, Scheraga HA (1987) Prediction of the native
conformation of a polypeptide by a statistical-mechani-
cal procedure. III. Probable and average conformations of
enkephalin. Biopolymers 26:1125–1162

60. Perutz MF (1978) Electrostatic effects in proteins. Science
201:1187–1191

61. Piela L, Kostrowicki J, Scheraga HA (1989) The multi-
ple-minima problem in the conformational analysis of
molecules. Deformation of the potential energy hyper-
surface by the diffusion equation method. J Phys Chem
93:3339–3346

62. Piela L, Scheraga HA (1987) On the multiple-minima prob-
lem in the conformational analysis of polypeptides. I. Back-
bone degrees of freedom for a perturbed ˛-helix. Biopoly-
mers 26:S33–S58

63. Pillardy J, Arnautova YA, Czaplewski C, Gibson KD, Scher-
aga HA (2001) Conformation-family Monte Carlo: a new
method for crystal structure prediction. Proc Natl Acad Sci
USA 98:12351–12356

64. Pillardy J, Czaplewski C, Liwo A, Lee J, Ripoll DR,
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Introduction

In their effort to locate the global solution, deterministic
global optimization algorithms, like the ˛BB [1,2,6,14],
employ a branch and bound framework. During this
process, convex underestimation techniques are used to
formulate relaxed convex problems that can be solved
to optimality with the use of local solvers, thus provid-
ing valid lower bounds for the original problem. The
tightness of the underestimators used is of fundamental
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importance for the computational performance of these
algorithms, since a tighter relaxation can lead to faster
fathoming and less nodes of the branch and bound tree
to be visited [7]. A recent review article on deterministic
global optimization approaches can be found in [8].

In the case of arbitrary nonconvex functions that do
not exhibit an exploitable mathematical structure, the
˛BB general underestimator [3,6] can be used:

L(x) D f (x)�
VX

vD1

˛v (xv � xLv )(x
U
v � xv) : (1)

Originally introduced in [14], this underestimator
derives from the function by subtracting a positive
quadratic (˛v � 08v). Given sufficiently large values
of the ˛v parameters, all nonconvexities in the orig-
inal function f (x) can be overpowered, resulting into
a convex underestimator L(x) that is valid for the en-
tire domain [xL; xU ]. A number of rigorous methods
have been devised in order to select appropriate values
for these parameters [2,3,13]. Extensive computational
testing of the algorithm [1] showed that the most effi-
cient of those methods is the one based on the scaled
Gherschgorin theorem. According to this method, it
suffices to select:

˛v D max

(
0;�

1
2

�
hvv �

VX
uD1
u¤v

max
˚
jhvuj;

jhvuj
o (xUu � xLu )
(xUv � xLv )

�) (2)

where hvu and hvu are lower and upper bounds of
@2 f /@xvxu that can be calculated by interval analysis.

One could use alternatively a new class of general
purpose convex underestimators that has been devel-
oped by Akrotirianakis and Floudas [4,5]. These under-
estimators are derived in a similar fashion, by subtract-
ing an exponential term from the original function, that
is:

L1(x) D f (x)�
VX

vD1

�
1 � e�v (xv�x

L
v )
� �

1 � e�v (x
U
v �xv )

�
:

(3)

An iterative systematic procedure is used to determine
the values of the �v parameters so as the underesti-
mating function to be convex. The procedure ensures

also that the resulting underestimator L1(x) is tighter
than L(x), the one that results from the original method.
Floudas and Kreinovich [9,10] have in fact shown that
these two functional forms (original quadratic and ex-
ponential) are the only optimal ones, since they are the
only ones to be shift-, sign- and scale-invariant.

Maranas and Floudas [14] showed that the maxi-
mum separation distance between the original function
f (x) and the underestimator L(x) of (1) is a quadratic
function of interval length. Because of this, as well as
because of potentially less overestimation in the inter-
val extension of the Hessian matrix elements hvu , the
underestimator would become tighter with shrinkage
of the domain under consideration. This was firstly ex-
ploited in Meyer and Floudas [15], where a piecewise
approach was utilized. The method proposed partition-
ing of the domain intomany subdomains and construc-
tion of the corresponding ˛BB underestimator for each
one of them. These underestimators, although not valid
for the entire domain, are much tighter in their respec-
tive subdomains. A hyperplane is subsequently added
to each one of these underestimators and is selected in
such a way, so that the combination of all these con-
vex pieces results into an overall convex underestimator
that is continuous and smooth (C1-continuity).

This entry describes the work of [11,12] on the de-
velopment of tight convex underestimators. The con-
struction of these underestimators is based on a piece-
wise application of the ˛BB underestimator, in a similar
fashion with the p-˛BB approach [15], but, instead of
adding hyperplanes, we identify those supporting line
segments that have to be combined with convex parts
of the original underestimators so as to form a C1-
continuous convex underestimator that is valid for the
overall domain under consideration. One can also con-
sider only the lines defined by these linear segments,
thus coming up with a piecewise linear underestimator
that can easily be incorporated in the NLP relaxation as
a set of linear constraints.

In their work, Gounaris and Floudas [12] also
demonstrated how one can make use of the high quality
results of the approach in the univariate case so as to ex-
tend its applicability to functions with a higher number
of variables. This is achieved by proper projections of
the multivariate ˛BB underestimators into select two-
dimensional planes. Furthermore, since the method
utilizes projections into lower-dimensional spaces, they
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explored ways to recover some of the information lost
in this process. In particular, they apply the method af-
ter having transformed the original problem in an or-
thonormal fashion. This leads to the construction of
even tighter underestimators, through the accumula-
tion of additional valid linear cuts in the relaxation.

Theoretical Results for Univariate Functions

Let f (x) be a univariate function that needs to be
underestimated in D D [xL; xU ]. We select an in-
teger N > 1 and partition the complete domain in
N segments of equal length. Thus, the i-th subdo-
main would be defined as Di D [xi�1; xi], where:
xi D xL C i

N (x
U � xL); i D 0; 1; : : : ;N .

For every subdomain Di ,i D 1; 2; : : : ;N , we con-
struct the corresponding ˛BB underestimator:

Pi (x) D f (x)� ˛ i (x � xi�1)(xi � x)

˛ i D max
�
0;�

1
2
f 00

(Di )

	 (4)

where f 00
(Di )

is a lower bound of the second derivative
that is valid for the entire subdomain Di .

Note that although an underestimator Pi }(x) can be
defined outside its respective subdomain, its convexity
is only guaranteed for x 2 [xi�1; xi ].

We define P(x); x 2 [xL; xU ] to be the following
branched function:

P(x) D Pi (x); if xi�1 � x � xi : (5)

Function P(x) is a piecewise convex valid underes-
timator of f (x). Since it is not convex, a convexifica-
tion technique has to be employed. The proposed tech-
nique involves the identification of those supporting
line segments that are required for an overall underesti-
mator U(x). The technique is based on two algorithms,
called “inner” and “outer”, which are described in detail
in [11].

The underestimator U(x) consists of the identified
linear parts, as well as convex parts of the underesti-
mators Pi(x), therefore it is a C1-continuous branched
function. This might pose some computational compli-
cations if the lower bounding (relaxation) problem is
to be solved by local optimization solvers that require
C2-continuity. In order to avoid this problem, one can
take into account only the lines defined by the line seg-
ments. According to this alternative, we first identify

the linear segments needed for the construction of un-
derestimator U(x), but we consider those as lines de-
fined in [xL; xU ]. Let there be K such lines denoted
as Tk(x); k D 1; 2; : : : ;K and arranged in order of as-
cending slope. If applicable, this set can be augmented
with lines that are tangential to P1 and PN at the respec-
tive domain edges xL and xU .

Each of these lines Tk is a valid underestimator of
function f (x) across the whole domain. We define the
function V(x) to be the pointwise maximum of all these
lines. V(x) is convex, since it is the pointwise maxi-
mum of linear functions and it is obviously an under-
estimator, since it consists of pieces of other underes-
timators. At the expense of some tightness (in the re-
gions where underestimator U(x) consisted of convex
parts), we now have a piecewise linear underestimator
V(x) that can be incorporated in the relaxation as a set
of linear constraints. The whole lower bounding prob-
lem can now be formulated as a linear programming
problem (LP).

Tightness of Univariate Underestimator

It is apparent that as the level of partitioning increases,
the underestimator P(x) comes closer to the function,
and therefore convex underestimators U(x) and V(x)
approach the convex envelope of f (x). Gounaris and
Floudas [11] proved the following two theorems that
are relevant with the tightness of the resulting underes-
timators in the univariate case:

Theorem 1. There is some finite partitioning level N,
for which the convex underestimator U(x) is the convex
envelope of function f (x).

Theorem 2. There is some finite partitioning level N,
for which underestimator V(x) is �-close to underestima-
tor U(x), that is:

max
x2D
fU(x) � V (x)g < � (6)

where: � > 0 is an arbitrarily small constant.

Since these univariate underestimators are very tight,
the remaining question is whether we can exploit them
so as to construct underestimators of functions in
higher dimensions. Gounaris and Floudas [12] pre-
sented some extensions of the method for application
on multivariate functions that involve dimension re-
duction of the problem through proper projections into
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lower-dimensional spaces. These extensions are de-
scribed in Sect. “Extension to Multivariate Functions”.

Extension to Multivariate Functions

Let f (x) be a function of V variables that needs to be
underestimated in a box domain D D [xL1 ; xU1 ] � � � � �
[xLV ; x

U
V ]. We choose integers Nv > 1; v D 1; 2; : : : ;V

and partition each range [xLv ; xUv ] in Nv segments of
equal length. Thus, the j-th segment of the vth set would
be defined as [x j�1

v ; x j
v], where: x

j
v D xLv C

j
Nv
(xUv �

xLv ); j D 0; 1; : : : ;Nv . The completeV-dimensional do-
main D has now been partitioned into N D

QV
vD1 Nv

box subdomains of equal measures. Let Di be such a V-
dimensional subdomain. It is uniquely defined by a set
of indices iv ; 1 � iv � Nv ;8v D 1; 2; : : : ;V . Thus, the
ith subdomain would be defined as Di D [xi1�1

1 ; xi1
1 ] �

� � � � [xiV�1
V ; xiV

V ].
For every subdomain Di, i D 1; 2; : : : ;N, we con-

struct the corresponding ˛BB underestimator [1,2,
3,6,14]:

Pi (x) D f (x)�
VX

vD1

˛ i
v (xv � xiv�1

v )(xiv
v � xv )

˛ i
v D max

(
0;�

1
2

�
h(i)vv �

VX
uD1
u¤v

max
n
jh(i)vuj;

jh(i)vuj
o (xiu

u � xiu�1
u )

(xiv
v � xiv�1

v )

�)
(7)

where h(i)vu and h(i)vu are respectively lower and upper
bounds of @2 f /@xv xu that are valid for the entire sub-
domain Di.

Note that although an underestimator Pi(x) can be
defined outside its respective subdomain, its convexity
is only guaranteed for x 2 Di .

We select variable w; 1 � w � V , which we des-
ignate to be the active variable, and enumerate all
Mw D N/Nw permutations of indices iv ; v ¤ w. Ev-
ery such permutation m; 1 � m � Mw , corresponds
to a subdomain Dwm D [xLw ; xUw ] �

QV
vD1
v¤w

[xiv�1
v ; xiv

v ],
which can be further divided into Nw subdomains
Dwmj D [x j�1

w ; x j
w ] �

QV
vD1
v¤w

[xiv�1
v ; xiv

v ]; j D 1; 2;
: : : ;Nw . These subdomains, belong to the set of the
original subdomains Di (for iw D j) and therefore each
one has an underestimator Pwmj(x) associated with it,

that is:

Pwmj(x) D f (x)� ˛ i
w (xw � x j�1

w )(x j
w � xw )

�

VX
vD1
v¤w

˛ i
v (xv � xiv�1

v )(xiv
v � xv)

(8)

where index i satisfies Di D Dwmj and parameters
˛ i
v ; v D 1; 2; : : : ;V are calculated according to (7).
For every such subdomain Dwmj ; j D 1; 2; : : : ;Nw ,

we define the following univariate function:

Gwmj(xw) D min
xv
8v¤w

Pwmj(x); x j�1
w � xw � x j

w : (9)

Since they correspond to the minimum of a convex
function over a subset of its variables, these functions
are convex. Furthermore, each one is defined over a dif-
ferent segment of [xLw ; xUw ]. Therefore, each one can be
considered as a convex piece of an overall piecewise con-
vex underestimator. The latter is fully suitable for appli-
cation of the convex underestimation method for uni-
variate functions which was described in the previous
sections.

Let Vwm(xw) be the piecewise linear underestima-
tor obtained by the univariate method, and let it be the
pointwise maximum of Kwm associated lines, that is:

Vwm(xw) Dmax fTwmk (xw);8k D 1; 2; : : : ;Kwmg ;

xLw � xw � xUw
(10)

Without loss of generality, let us assume that the
lines Twmk are arranged in order of ascending slope,
that is, slope(Twm(k�1)) < slope(Twmk ); k D 2;
3; : : : ;Kwm , and that the set already includes the po-
tential augmented tangents at the domain edges, desig-
nated earlier as T0 and TK+ 1.

Univariate underestimator Vwm(xw) could, in prin-
ciple, be considered as a multivariate function that is
dependent to only one variable, xw, and defined over
the whole multidimensional (dimension V) subdomain
Dwm. That is:

Vwm(xw)! Vwm(x), x 2 Dwm (11)

Function Vwm(x) is piecewise affine and consists of
segments of V-dimensional hyperplanes. Since these
hyperplanes depend only on the wth variable, they are
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parallel to all standard basis vectors ev with the excep-
tion of ew (to which they are parallel only if the slope
of the corresponding line Twmk is zero). This function
is a valid underestimator for the original function f (x)
across the whole subdomain Dwm.

Applying the aforementioned procedure for ev-
ery permutation m D 1; 2; : : : ;Mw , we come up with
a collection of such underestimating segments, each
of which is a valid underestimator for the function
f (x) across a subset of its original domain D. In or-
der to develop a convex underestimator that would be
valid for the whole domain, we have to combine all
these segments. Let m D 0 denote the combination of
all permutations m D 1; 2; : : : ;Mw . This combination
can be achieved back in the projection space, by com-
puting the lower hull of the set of all underestimators
Vwm(xw). In fact, one needs to consider only the ver-
tex points of each underestimator Vwm(xk) (that is the
points of intersection between two lines Twm(k�1) and
Twmk), as well as their end points

�
xLw ; Twm1(xLw )

�
and�

xUw ; Twm(Kwm )(xUw )
�
. Any standard 2d convex hull al-

gorithm (e. g., Graham-Scan) can be used for this pur-
pose. The lower hull is a convex piecewise linear func-
tion Vw0(xw), and it is the pointwise maximum of Kw0

lines, that is:

Vw0(xw) Dmax fTw0k(xw);8k D 1; 2; : : : ;Kw0g ;

xLw � xw � xUw :
(12)

By construction, this function is a convex underes-
timator of all piecesGwmj(xw) for all permutations, that
is:

Vw0(xw) �Gwmj(xw); xw 2 [x j�1
w ; x j

w];
8 j D 1; 2; : : : ;Nw ;8m D 1; 2; : : : ;Mw :

(13)

Therefore, function Vw0(xw), if considered as Vw0(x), is
a valid underestimator for function f (x) across its whole
original domain D.

For any selection of the active variable w, the
method will yield a convex (piecewise affine) underes-
timator which would be valid for the whole domain of
interest, D. However, the method can be independently
applied for every variable being active (one at a time),

leading to a collection of valid underestimators. The
pointwise maximum of all these is itself a valid convex
underestimator, and is tighter (or equally tight) to the
original function than any of its predecessors. Thus, the
resulting underestimator is:

V (x) D max fVw0(x);8w D 1; 2; : : : ;Vg ; x 2 D :

(14)

Note that the underestimator V(x) is also piece-
wise hyperplanar, and can be represented in the prob-
lem relaxation as a set of linear constraints. Since we
do not know explicitly which hyperplanes Tw0k(xw)!
Tw0k(x); k D 1; 2; : : : ;Kw0;w D 1; 2; : : : ;V contribute
some part of theirs to the overall underestimator V(x),
all of them should be included in this relaxation, despite
the fact that some may end up being redundant.

Since our method produces piecewise affine under-
estimators L � V , the resulting convex relaxation is
just a linear programming problem (LP), which takes
the form of (15).

min

;x

�

s:t: � � T(0)
w0k(xw)

(
8k D 1; 2; : : : ;K(0)

w0
8w D 1; 2; : : : ;V

)

T(q)
w0k(xw ) � 0

8̂
<
:̂
8k D 1; 2; : : : ;K(q)

w0
8w D 1; 2; : : : ;V
8q D 1; 2; : : : ;Q

9>=
>;

(15)

Domain Rotation

The methodology presented in Section 4 involves the
minimization of underestimators Pwmj(x), over all their
variables with the exception of one, variable xw, which is
designated as “active”. Whenever such a projection into
spaces of lower dimensionality is involved, there is the
possibility that some useful information is lost. Some of
this lost information will be recovered if we opt to ap-
ply the methodology for every variable being “active”,
one at a time, which basically calls for projecting into V
different two-dimensional planes, each one being paral-
lel to a different basis vector ev ; v D 1; 2; : : : ;V . How-
ever, since there is a finite number of variables in our
problem, there is a limited number of planes to which
we can project. If we want to enhance further the col-
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Global Optimization: Tight Convex Underestimators, Figure 1
Univariate functions f1�4 with underestimators V(x) for three different partitioning levels (N D 24, 36 and 48)

lection of underestimators that we will eventually accu-
mulate in the relaxation (thus improve our chances for
better tightness/lower bound), we will have to project
into additional planes, that do not correspond to some
variable that is “natural” to the problem, rather than to
some linear combination of theirs.

This can be achieved by applying an orthonormal
transformation to the problem’s variable space, that is:

x ! x0 D R � x : (16)

This transformation has to be orthogonal, which
means that it should preserve the lengths of vectors
and the angles between vectors. Furthermore, it should
be an orientation-preserving transformation. A V � V
matrix R that could provide such a transformation is
called a rotation matrix and has to be a member of the

special orthogonal group, that is:

R 2 SO(V ),
�

R�1 D RT

jRj D C1 :
(17)

In their work, Gounaris and Floudas [12] discuss
the selection of a suitable such matrix. They rigorously
address the issue of selecting a suitable “rotated” do-
main and some suitable level of partitioning, and they
also present a method to calculate appropriate values
for the ˛ parameters in the transformed counterpart of
the problem.

Examples

Figure 1 depicts the plots for four nonlinear univariate
functions. In particular, for functions: f1(x) D (3x �
1:4)sin(18x)C1:7, f2(x) D x2�cos(18x), f3(x) D (xC
sinx)e�x and f4(x) D �

P5
kD1 ksin[(k C 1)x C k].
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Global Optimization: Tight Convex Underestimators, Figure 2
Piecewise planar underestimators of bivariate functions

The underestimators presented correspond to par-
titioning in N D 24; 36 and 48 subdomains (increasing
tightness).

Figure 2 depicts plots for four nonlinear bivari-
ate functions. For each case, N1 � N2 is the level of
partitioning used and �' is the resolution of domain
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rotation. Some additional information regarding the
improvement of lower bound, as well as the number
of linear cuts that have to be accumulated in the relax-
ation, is also included.
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A large number of decision problems in the world of
applications may be formulated as searching for a con-
strained global optimum (minimum, for certainty)

'� D '(y�)

D min f'(y) : y 2 D; gi (y) � 0; 1 � i � mg ;

where the domain of search (DS)

D D
˚
y 2 RN : � 2�1 � y j � 2�1; 1 � j � N

�
;

RN is the N-dimensional Euclidian space and the objec-
tive function '(y) (henceforth denoted gm+1(y)) and the
left-hand sides gi(y), 1 � i � m, of the constraints are
Lipschitzian (with respective constants Li, 1 � i � m +
1) and may be multi-extremal.

If DS is set defined by the hyperparallelepiped

S D
˚
w 2 RN : aj � wj � b j; 1 � j � N

�
;
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then, by introducing the transformation

y j D
wj � (aj C b j)/2

�
;

� D max
˚
b j � aj : 1 � j � N

�
;

and the extra constraint

g0(y) D max
� ˇ̌

y j
ˇ̌
�

b j � aj

2�
: 1 � j � N

	
� 0;

it is possible to keep up the initial presentation D for DS
(which is assumed to be the standard one) not altering
the relations of Lipschitzian properties in dimensions.

The assumption of the divided functions gi, 0 � i �
m + 1, differences being bounded by the respective con-
stants Li (Lipschitzian property), which may be inter-
preted as a mathematical description of a limited power
of change in real systems, provides a basis for estimat-
ing '� and y�; by exploring DS with finite number of
trials depending on the desired accuracy of search. This
Lipschitzian approach ([2,5,9,20]) requires, in general,
substantially less trials than the plain uniform grid tech-
nique owing to the thorough selection of each subse-
quent trial with the account of all the previously com-
puted functions’ values.

Such a selection turns into solving some auxiliary
multidimensional optimization problem (MOP) of in-
creasing multi-extremality (along with the accumula-
tion of trial outcomes) at each step of the search pro-
cess. But the case N = 1 is effectively solvable and,
therefore, it is of interest to present MOP by its one-
dimensional equivalent.

A possible way to do so ([1,7,11,12,14,15,18]) is to
employ single-valued Peano curves y(x) continuously
mapping the unit interval [0, 1] on the x-axis onto the
hypercube D and, thus, yielding the equality

'� D '(x�)

D min
�
'(y(x)) : x 2 [0; 1];

gi(y(x)) � 0; 0 � i � m

	
:
(1)

These curves, first introduced in [4,8], are ‘filling’ the
cube, i. e. they pass through every point of D, and this
gave rise to the term space filling curves (SFC); see sur-
vey [10].

The construction of SFC can be explained by fol-
lowing the scheme from [4]. Divide D into 2N equal hy-
percubes of ‘first-partition’ by cutting D with the set of

N mutually orthogonal hyperplanes (each plain is par-
allel to one of the coordinate ones and passes through
the middle points of D edges orthogonal to this hyper-
plane). Then divide (in the above manner) each of the
obtained first-partition cubes into 2N second-partition
cubes. Continuing this process, i. e. consequently cut-
ting each cube of a current partition into 2N cubes of the
subsequent partition, yields hypercubes of anyMth par-
tition with the edge-length equal 2�M . The total num-
ber of cubes in theMth partition is equal 2MN .

Next, cut the interval [0, 1] into 2N equal parts.
Then, once again, cut each of these parts into 2N smaller
(equal) parts, etc. Designate d(M, v) the subinterval of
Mth partition, where v is the coordinate of the left end-
point of this interval. The length of d(M, v) is equal
2�MN . Assume that v 2 d(M, v), but the right endpoint
of this subinterval (if it is not equal 1) does not belong
to it.

Establish a mutually single-valued correspondence
between all subintervals of any particularMth partition
and all subcubes of Mth partition. Henceforth, the no-
tation D(M, v) will stay for the subcube corresponding
to the subinterval d(M, v) and vice versa. Assume this
correspondence to satisfy the following conditions:
� D(M + 1, v0) � D(M, v00) if and only if d(M + 1, v0)
� d(M, v00).

� d(M, v0) and d(M, v00) have a common endpoint
(which is either v0 or v00) if and only if D(M, v0) and
D(M, v00) have a common face (i. e. these subcubes
are contiguous).

Now, a single-valued continuous map y(x) is set by in-
troducing the third requirement
� If x 2 d(M, v), then y(x) 2 D(M, v), forM � 1.
Note that for any integer M � 1 and any given x 2 [0,
1] there is just one subinterval meeting the condition x
2 d(M, v); the continuity is the consequence of the first
two conditions.

Approximation of SFC

The center yc(x) of the subcubeD(M, v) containing y(x)
may be interpreted as an approximation to y(x); the in-
equalities

max
nˇ̌
ˇycj (x) � y j(x)

ˇ̌
ˇ : 1 � j � N

o
� 2�(MC1);

x 2 [0; 1];
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reflect the accuracy attainable for any particular preset
value ofM.

A constructive way to establishing the above
correspondence is described and substantiated in
[3,12,15,19] and, in short, can be presented as follows.
Introduce the auxiliary hypercube

	 D
˚
y 2 RN : � 0:5 � yi � 1:5; 1 � i � N

�

and designate �(s), 0� s� 2N � 1, the subcubes of the
first partition of�. The centers of�(s) (to be referred as
u(s)) are N-dimensional binary vectors defined by the
relations

ui(s) D (ˇi C ˇi�1) mod 2;

1 � i < N; uN D ˇN�1;
(2)

where ˇi, 0 � i < N, are digits in binary presentation of
s:

s D ˇN�12N�1 C � � � C ˇ020: (3)

Owing to this numeration, any two centers u(s) and u(s
+ 1), 0 � s < 2N � 1, have just one different coordinate,
which means that the corresponding subcubes�(s) and
�(s + 1) are contiguous.

Next, let the binary form of v in d(M, v) be

0 � v D
MNX
iD1

˛i2�i < 1:

Then the identity d(M, v) = d(z1, . . . , zM), where

z j D
NX
iD1

˛( j�1)NCi2i ; 1 � j � M; (4)

provides the possibility to interpret d(z1, . . . , zM), as the
zMth subinterval of the interval d(z1, . . . , zM�1) divided
into 2N equal parts (the numeration streams from left
to right along the x-axis). Note that the above identity
implies D(M, v) = D(z1, . . . , zM).

Now, mapping � onto D by the linear transforma-
tion and assuming that D(z1) = D(s) if D(s) is the image
of�(s), we obtain the numeration (in the first partition
ofD) satisfying the above conditions. Then by mapping
� onto each subcube D(z1) of the first partition, we get
the desired numeration in the second partition of D,
whereD(z1, z2) =D(z1, s) ifD(z1, s) is the image of�(s),
and so on. To ensure that D(z1, 2N � 1) andD(z1 + 1, 0)

would also have a common face (and, in general, the
last subcube in the first partition of D(z1, . . . , zM) and
the first subcube in the first partition of D(z1, . . . , zM+
1) would also be contiguous) we add some mechanism
in the above numeration procedure to provide the nec-
essary juxtapositioning.

Introduce the integer l = l(z1, . . . , zM) indicating the
number of the only coordinate which has to be different
for the center of the initial subcube D(z1, . . . , zM , 0) and
the last subcube D(z1, . . . , zM , 2N � 1) of the next par-
tition of D(z1, . . . , zM) and the binary vector w = w(z1,
. . . , zM) indicating the position of the center of the sub-
cube D(z1, . . . , zM , 0). To do so we employ the integer
function

l(s) D

8̂
<̂
ˆ̂:

1 if s D 0 or s D 2N � 1;

min
n
j : 2 � j � N; ˇ j�1 D 1

o
;

otherwise;

(5)

where ˇj�1 is from (3), and the binary vector-function

wi(s C 1) D wi(s) D

(
ui (s); i D 1;
ui (s); 2 � i � N;

(6)

where s is supposed to be the odd number, ui stays for
logical negation of ui, and w(0) = u(0). The amended
procedure for successive numeration in subsequent
partitions includes the operations:
� permutation of uN and ut in u(zj) from (2) and of

wN and wt in w(zj) from (6) with t = l(zj�1), where
zj�1 is from (4), 1 < j �M, and l(zj�1) is from (5); t
= N if j = 1. New vectors are to be referred as ut(zj)
and wt(zj);

� addition

utq
i (z j) D (ut

i (z j)C qi) mod 2; 1 � i � N;

wtq
i (z j) D (wt

i (z j)C qi) mod 2; 1 � i � N;

where q = w(zj�1), 1 < j�M, and q = (0, . . . , 0) 2 RN

if j = 1;
� transformation

l t(z j) D

8̂
<̂
ˆ̂:

N; l(z j) D t;
t; l(z j) D N;
l(z j); l(z j) ¤ N and l(z j) ¤ t;

where t is from the above permutation.
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The successively computed values utq(zj), wtq(zj), lt(zj)
are used instead of the initial values u(zj), w(zj), l(zj), 1
� j �M, to obtain the approximation

yc(x) D
MX
jD1

(utq(z j) � p)2� j; x 2 d(M; v);

with p = (2�1, . . . , 2�1) 2 RN .
The important property of reducing dimensionality

through SFC is that functions gi(y(x)), 0 � i � m + 1,
from (1) corresponding to Lipschitzian functions from
the initial MOP satisfy the uniform Hölder conditions
([7,11,15,19])

ˇ̌
gi(y(x0)) � gi (y(x00))

ˇ̌
� Ki(

ˇ̌
x0 � x00

ˇ̌
)

1
N ;

x0; x00 2 [0; 1];

with respective coefficients Ki D 4Li
p
N , 0 � i � m +

1.
Problem (1) can further be reduced to an uncon-

strained case by employing the index approach (IA)
([7,13,17,18]) which makes no use of penalties and,
thus, does not require any adjustments of penalty co-
efficients. Within IA functions gi(y(x)) from (1) may
not be defined throughout [0, 1]; they have to be com-
putable only at the points x 2 [0, 1] meeting the condi-
tions gk(y(x)) � 0, 1 � k < i (this property is to be re-
ferred as partial computability of problem functionals).
Therefore, within IA the outcome of each trial is given
by a dyad

f (x) D g�(y(x)); � D �(x) D �(y(x)); (7)

where � is the number of the first constraint violated at
the point x; this number is to be referred as the index of
the corresponding point.

The unconstrained equivalent of (1) is

 (x�) D min f (x) : x 2 [0; 1]g ;

where

 (x) D
g�(y(x))

K�

�

(
0; � D �(x) � m;
'�

K�
; � D �(x) D mC 1;

and x� is a solution to (1). The algorithm presented be-
low solves (1) byminimizing (x). It substitutes the un-
known values '� and Ki, 0� i�m+1, by their running
estimates; it also surmounts the discontinuity inherent
to  (x).

Algorithm

The first trial is to be executed at an arbitrary interior
point x1 2 (0, 1). The choice of any subsequent point
xk+1, k � 1, is due to the rules:
1) Renumber the points x1, . . . , xk of the previous trials

by subscripts in the increasing order of the coordi-
nate, i. e.

0 D x0 < � � � < xk < xkC1 D 1;

and associate them with the computed values zi =
f (xi), 1 � i � k, from (7); values z0 and zk+1 are un-
defined.

2) Collect in the sets

I� D fi : 1 � i � k; � D �(xi)g ;
0 � � � mC 1;

all subscripts corresponding to the points with equal
indices; it is assumed that �(x0) = �(xk+1) = � 1 and
I�1 = {0, k + 1}.

3) Construct the unions

S� D I�1 [ � � � [ I��1; 0 � � � mC 1;

and

T� D I�C1 [ � � � [ ImC1 [ ImC2;

0 � � � mC 1;

of subscripts corresponding to the trial points with
the indices less than � and exceeding � respectively;
Im+2 = ; by the definition.

4) Compute the running lower bounds

�� D max( ˇ̌
z j � zi

ˇ̌

(x j � xi)
1
N
: i; j 2 I� ;

i < j

)
(8)

for respective Hölder coefficients of the functions
g�(y(x)), 0 � � �m + 1. If I� contains less than two
elements or if �� from (8) is equal zero, assume that
�� = 1.

5) Find the values

z�� D

(
�"� ; T� ¤ ;;
min fzi : i 2 I�g ; T� D ;;

for all nonempty sets I� , 0 � � � m + 1; vector " =
("0, . . . , "m) is the input of the algorithm.
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6) Compute characteristics R(i), 1 � i � k + 1, where

R(i) D 	i

C
(zi � zi�1)2

r2�2
�	i

�
2(zi C zi�1 � 2z�� )

r��
;

i � 1; i 2 I� ;

R(i) D 2	i �
4(zi � z�� )

r��
;

i 2 I� ; i � 1 2 S� ;

R(i) D 2	i �
4(zi�1 � z�� )

r��
;

i � 1 2 I� ; i 2 S� ;

	i D (xi � xi�1)
1
N :

Proper choice of the parameter r > 1 allows to use
the product r�� as an upper bound for K� .

7) Select integer t from

R(t) D max fR(i) : 1 � i � k C 1g

and execute the subsequent trial at the point

xkC1 D
xt C xt�1

2

� sign(zt � zt�1)
�
jzt � zt�1j

��

�N
�
1
2r

if �(xt) = �(xt�1); otherwise, i. e. if �(xt�1) 6D �(xt),
the second term is omitted.

The concept of "-reserved solution y", where

'(y") D min

8<
:'(y) :

y 2 D;
gi(y) � �"i ;
0 � i � m

9=
;

and "i > 0, 0 � i � m, provides interpretation for "
from Step 5). The sequence of points {xk} selected by
the Steps 1)–7) in the interval [0, 1] generates the cor-
responding sequence {yk} = {y(xk)} in D.

Convergence Conditions

([15,16,17] [18]). Assume that the following is true:
� the problem (1) has an "-reserved solution;
� functions gi(y), 0 � i � m + 1, admit Lipschitzian

continuations throughout D;
� from some Step onwards, the values �� , 0 � � � m

+ 1, from (8) satisfy the inequalities

r�� > 16L�
p
N; 0 � � � mC 1:

Then any limit point y of the sequence {yk} generated
by the above algorithm satisfies the conditions:

'(y) D inf

8<
:'(y

k) :
k 2 N1;

gi (yk) � 0;
0 � i � m

9=
; � '(y");

where N1 is the set of positive integers.
As long as in applications SFC y(x) is to be approx-

imated by yc(x) corresponding to some Mth partition,
it is important to notice that the substantiation of the
above convergence conditions implies the relation

2�M �
1
p
N

min
0���m

�
"�

L�

�
;

which means that the existence of an "-reserved solu-
tion may be interpreted as some kind of the regularity
conditions (cf. [6]).

Dimensionality reduction through SFC causes some
loss of the information on the closeness of trial points is
the initial multidimensional space. Two close points in
Dmay have substantially nonclose pre-images in [0, 1].
To overcome this obstacle, it is possible either to store
all pre-images of each trial point (close points in D al-
ways have some close pre-images; see [12]) or to use
some sets of shifted SFC to provide the better transfer
of metric information (see [17]).

GOSF based on the reduction to one dimension by
using SFC and on the reduction to unconstrained prob-
lems by employing IA admits effective parallelization
(see [16,19]).
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Weber’s problem and all its variations with positive
weights is clearly one of the most extensively studied
problems in the area of continuous location theory. It
frequently arises in planning situations where a single
central facility must be located so as to minimize the
total cost associated with serving a number of demand
centers. In all these cases, the underlying assumption,
that the associated service costs are directly propor-
tional to the Euclidean distance of the demand center
from the central facility, has been adopted.

Weber’s problem with attraction and repulsion can
be stated as follows: Given a number of ‘attractive’ or
‘repulsive’ points located on a 2D-plane, find the posi-
tion of a single facility inside an arbitrary region P such
that the sum of the weighted distances of all points from
the single facility is at its global minimum.

This problem can be formulated as the following
nonlinear optimization problem:

min
(x;y)2P

X

i2IC

wi

q
(x � xi)2 C (y � yi )2

�
X
i2I�

wi

q
(x � xi)2 C (y � yi)2;

where I+, I� are the sets of attractive (users) and repul-
sive (residents) points, respectively; wi, i 2 I+ the pos-
itive weight of the ith attractive point and �wi, i 2 I�

the negative weight of the ith repulsive point; (xi, yi) are
the coordinates of the ith attractive or repulsive point;
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and P is the region where where the single facility must
be situated.

The unconstrained version of this problem has
been shown to involve a number of important proper-
ties. The first property provides a sufficient condition
for having finite solutions or solutions at infinity. Z.
Drezner and G.O. Wesolowsky [6] by using the well-
known triangle inequality relation proved the follow-
ing:

Property 1 For the unconstrained problem, if W > 0
then the global optimum location is finite; ifW < 0 then
the global optimum location is at infinity, where

W D
X

i2IC

wi �
X
i2I�

wi :

The second property deals with the localization of all lo-
cal minimum solutions. LetR be the radius of the small-
est circle enclosing all points. The square of this radius
R can be obtained through the solution of the following
nonlinear optimization problem:

8̂
<̂
ˆ̂:

min
xc ;yc ;R2

R2

s.t. (xc � xi)2 C (yc � yi )2 � R2;

8i 2 IC [ I�;

which is convex in the combined space of the coordi-
nates of the center of the circle (xc, yc) and the square of
the radius of the circle R2 enclosing all points. Drezner
and Wesolowsky [6] proved the following localization
property, which generalizes the majority theorem [24]
for Weber’s problem.

Property 2 For the unconstrained problem, all local
minima and therefore the global minimum are inside
a disc with a radius equal to

� D
R

p
1 � ˛2

where

˛ D
W�

WC
;

WC D
X

i2IC

wi ; W� D
X
i2I�

wi :

Note that the boundary of this disc is attainable.

The case ˛ = 1 or, equivalently, W = 0 is accounted
for by finding the optimal solution at infinity and com-
paring it with the best finite solution. Drezner and
Wesolowsky [6] by using asymptotic analysis showed
the following:

Property 3 For the unconstrained problem, if W = 0
the best solution at infinity is �(A2 + B2)1/2 where:

A D
X

i2IC

wixi �
X
i2I�

wixi ;

B D
X

i2IC

wi yi �
X
i2I�

wi yi :

The following property examines whether a demand
point corresponds to a local minimum [6].

Property 4 For the unconstrained problem, if there is
a point i such that

wi � (Wx CWy)1/28̂
<̂
ˆ̂:

> 0; then point i is a local minimum;
< 0; then point i is not a local minimum;
D 0; then both possibilities are open;

where

Wx D
X

i; j2IC;i¤ j

wi(xi � x j)p
(xi � x j)2 C (yi � y j)2

�
X

i; j2I�;i¤ j

wi(xi � x j)p
(xi � x j)2 C (yi � y j)2

;

Wy D
X

i; j2IC;i¤ j

wi(yi � y j)p
(xi � x j)2 C (yi � y j)2

�
X

i; j2I�;i¤ j

wi(yi � y j)p
(xi � x j)2 C (yi � y j)2

:

P.-C. Chen and others [5] and F. Plastria [14] de-
rived independently the following sufficient condition
for a demand point to be the global minimum solution.

Property 5 For the unconstrained problem, if there is
a point i� 2 I+ such that

wi� �
X

i2IC[I�;i¤i�

wi ;

then (xi� , yi�) is the global optimum location.
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It is quite straightforward to show that if all weights
are positive then the expression for the weighted sum
of the Euclidean distances is convex [13] and there-
fore the single local minimum corresponds to the global
minimum. This means that the total expression for the
sum of weighted Euclidean distances is a difference of
two convex functions. As it has been noted earlier the
presence of negative weights greatly complicates the lo-
cation of the global minimum solution by introduc-
ing concave contributions in the objective function.
This special class of difference of two convex func-
tions (DC) optimization problems has recently (1990)
received considerable attention [7]. The next theorem
introduces a set of conditions for convexity of F(x, y) at
some point (x, y).

Property 6 F(x, y) is convex at (x, y) if
X

i2IC[I�

Wi

ri
� 0;

and
X

i2IC[I�

X

j2IC[I�;
j>i

WiWj

r3i r
3
j

�
�
(x � xi )(y � y j)C (x � x j)(y � xi)

�2
� 0;

where ri D
p
(x � xi)2 C (y � yi )2, i 2 I+ [ I� and

Wi D

(
wi ; i 2 IC;
�wi ; i 2 I�:

A proof of this property can be found in [11].
A special case of this problem, involving three

points with weights equal to one, was first posed by P.
Fermat in the seventeenth century and it was solved ge-
ometrically by E. Toricelli. E. Weiszfeld [23] first pro-
posed a simple iterative algorithm but with no con-
vergence proof. Later, H.W. Kuhn [8,9,10] proved that
Weiszfeld’s algorithm was convergent assuming no it-
erate coincided with any of the demand points. L.M.
Ostresh [12] and E. Balas and others [1] proposed mod-
ifications of the Weiszfeld algorithm where by perturb-
ing the current point, if it coincided with a demand
point, was global convergence guaranteed. C.Y. Wang
[22] proved that Weiszfeld’s algorithm has linear rate
of convergence under certain conditions and sublin-
ear otherwise. More recently (1980s), P.H. Calamai and

A.R. Conn [2,3,4] and M.L. Overton [13] introduced
second order methods which involved local quadratic
convergence and global convergence under conditions.
G.L. Xue [25,26], and Xue and J.B. Rosen [15] proved
unconditional global convergence and conditional lo-
cal quadratic convergence for a second order algorithm
and computational comparisons were carried out be-
tween Weiszfeld’s algorithm and Newton’s algorithm
on a parallel machine.

Most papers address only positive weights reflecting
the inherent assumption that all points ‘attract’ the cen-
tral facility. However, in real world there exists an abun-
dance of example problems where certain points ‘repel’
the central facility. For example nuclear plants, sewage
treatment plants, or polluting industrial units may be
desired to be as close as possible to their customers so
that transportation costs are minimized but at the same
time environmental considerations require that these
facilities be as far as possible from residential areas and
fragile ecological systems. This need to locate a facility
away from certain points can be quantified through the
use of negative weights as shown in [16,19]. A negative
weight means that the value of the objective function is
increased as the facility approaches the corresponding
point. Therefore, the global optimum location of a fa-
cility is now the one that balances the repulsion and the
attraction acting on the central facility. It is interesting
to note that the introduction of negative weights greatly
increases the complexity of the problem.

Weber’s problem with some negative weights was
first considered by L.-N. Tellier [17], who studied the
case of two attractive and one repulsive point. Later,
Tellier and D. Pollanski [18] analyzed exhaustively all
different cases involving three demand points and de-
rived statistical conclusions regarding the types of pos-
sible solutions. Drezner and Wesolowsky [6] proved
a number of theoretical results and proposed a heuris-
tic algorithm for locating the global minimum solu-
tion. However, it was Chen and others [5] who first
presented an exact outer approximation algorithm for
Weber’s problem with attraction and repulsion by ex-
ploiting the d.c. structure of the problem. In addition,
they [5] extend their procedure to exponentially decay-
ing repulsion and facility location within a set of dis-
joint convex polygons. Later, Maranas and Floudas [11]
proposed a branch and bound type global optimization
algorithm for solving Weber’s problems with attraction
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and repulsion. The approach was based on the iterative
solution of a set of convex and concave lower bound-
ing problems. Convergence to an �-global minimum
was proven and examples were solved with as many as
10,000 points. By analyzing the computational results
they observed that for any given number of pointsN the
difficulty of the problem increases as we introducemore
repulsive points. This trend continues until about equal
numbers of attractive and repulsive points are reached.
Then, a sharp decrease in computational requirements
is observed as more repulsive points are added. In fact,
it is easier to solve problems involving more repulsive
points than attractive ones. The standard deviation of
the total number of required iterations and function
evaluations is fairly small for all ratios of attractive to
repulsive points with the sole exception of the N+ = N�

=N/2 case where the standard deviation is substantially
increased. For a given ratio of attractive to repulsive
points the CPU requirements increase almost linearly
with N reflecting the fact that most of CPU time is spent
on function evaluations.

A generalization of Weber’s problem is the maxi-
mization of the sum of decreasing convex functions of
arbitrary metrics. H. Tuy and F.A. Al-Khayyal [20] pro-
posed the first algorithm for finding global solutions
to the problem by reducing it to a sequence of uncon-
strained nondifferentiable convex minimization prob-
lems. Later, they [21] extended this work to account for
repulsion as well and proposed a d.c. reformulation of
the problem which enabled them to develop a global
optimization procedure.
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Abstract

Awell-studied problem in the area of computational bi-
ology is the sequence alignment problem. Three mixed-
integer linear optimization models have been devel-
oped to address the global pairwise sequence alignment
problem in a mathematically rigorous fashion. These
formulations, in addition to their rigor, allow for (a) the
natural introduction of functionally important conser-
vation constraints, (b) the creation of a rank-ordered
list of the highest scoring alignments and (c) the refine-
ment of alignments by using pairwise interaction scores
from simplified force fields. The third model, a path se-
lection approach, employs some of the algorithmic ad-
vantages of dynamic programmingmethods, to outper-
form other optimization models.

Keywords and Phrases

Sequence alignment; Integer linear optimization;
Global pairwise alignment; Rank-order list of
alignments

Introduction

Sequence alignment methods aim to both identify re-
lated protein sequences and determine the best align-
ment between them. This approach provides a rough
measure of evolutionary distance andmay indicate pos-
sible relationships between the protein structure and
function of similar sequences. Multiple scoring matri-
ces have been developed based on the techniques of the
percent of accepted mutations (PAM) [3] and protein
blocks (BLOSUM) [5] to quantify this evolutionary dis-
tance between aligned residues.

The pairwise sequence alignment problem is most
commonly addressed through either (i) global align-
ment or (ii) local alignment techniques. The goal of
global alignment algorithms is to determine the highest
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scoring overall alignment spanning the length of both
sequences. One widely used approach for this prob-
lem is a dynamic programming approach proposed by
Needleman and Wunsch [10].

Proteins may share sequence similarity in some re-
gions, but not in others. Local alignment algorithms are
more suited to these problems and strive to align only
the highest scoring subsequence match. Smith andWa-
terman extended the dynamic programming approach
for global pairwise sequence alignment problems to ad-
dress the local alignment problem [14]. Dynamic pro-
gramming approaches are computationally inadequate
for large scale database searches, so a number of heuris-
tic algorithms for local pairwise sequence alignment
have been proposed [1,2,11,12].

Several researchers have studied the effect of includ-
ing information about near-optimal alignments. The
investigation of the suboptimal paths and scores al-
lows for an evaluation of the reliability of portions of
a sequence alignment. A review of several approaches
to this problem and their impact can be found else-
where [17].

In some cases, an alignment between two sequences
can be improved by constraining the problem to in-
clude biologically important information in the overall
alignment. One example of this is the required conser-
vation of certain residues that form a motif necessary
for function. This problem has been addressed recently
by dynamic programming algorithms [4,15].

Models

Several integer linear optimization (ILP) models have
been developed to rigorously and completely address
the problem of global pairwise sequence alignment
in a general fashion. A comparison of the three ap-
proaches, a template-based model, a template-free
model, and a path selection model are presented in the
following sections. The formulation of the problem as
an integer linear optimization problem provides a de-
terministic guarantee of identifying the global maxi-
mum alignment [6], allows for the introduction of inte-
ger cut constraints, provides a framework for the intro-
duction of functionally-specific constraints, and shows
promise for the optimal identification of pairwise inter-
actions.

Template-Based Model

Consider two protein sequences S1, S2 of lengthsM and
N respectively, where M > N. Let the index i represent
each position in Sequence S1 and the index j represent
each position in S2, as shown in Eqs. 1–2.

i 2 1; 2 : : :M (1)

j 2 1; 2 : : :N (2)

The template-based optimization model assigns each
amino acid of both sequences to a template to generate
the optimal alignment. Equation 3 defines a template
length K as the sum of the length of the larger sequence
and the parameter N_GAPSm , representing the maxi-
mum number of allowed gaps. This model requires the
introduction of an index k, representing the position in
the template, as defined by Eq. 4.

K D M C N_GAPSm (3)

k 2 1; 2 : : : K (4)

The assignment of an amino acid to a template position
requires the definition of the binary variables, yik and
zjk, as shown in Eqs. 5–6.

yik D

8<
:

1 if amino acid i of S1 is assigned to
template positionk

0 otherwise
(5)

z jk D

8<
:

1 if amino acid j of S2 is assigned to
template position k

0 otherwise
(6)

A position in the template may not have an amino
acid assigned to it in the overall alignment. Therefore,
Eqs. 7–8 introduce additional binary variables to repre-
sent these alignment gaps.

ygk D

8<
:

1
if template position k is a gap
for Sequence S1

0 otherwise
(7)

zgk D

8<
:

1 if template position k is a gap
for Sequence S2

0 otherwise
(8)

The objective function of this optimization model max-
imizes the alignment score, which is the sum of a scor-
ing matrix value for each matching amino acid pair mi-
nus any associated penalties for gaps inserted in the
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sequence. The scoring matrix will assign a weight, wij,
to any template position k that contains the amino acid
in position i of Sequence S1 and also the amino acid in
position j of S2.

For an affine gap penalty model with no penalties
for gaps that begin or end a sequence, the objective
function can then be posed as shown in Eq. 9. The con-
tribution of the scoring matrix at positions i; j,wij, is
considered only if position i of Sequence 1 is assigned
to position k of the template, yik, and if position j of Se-
quence 2 is assigned to position k of the template, zjk.
The gap opening existence terms of Sequence 1, goS1k ,
and Sequence 2, goS2k , are weighted by the gap open-
ing penalty value of wo to assess the penalty for the
first residue of any gap in a sequence. The existence of
a gap extension variable of either sequence, gl S1k and
gl S2k , produces a penalty of wl for each occurrence. The
active gl S1k and gl S2k variables that are contained within
a beginning or an ending gap are counteracted by the
product of gbS1k , gbS2k , geS1k , or geS2k withwl . Gap open-
ing penalties at the beginning or end of a sequence are
explicitly omitted through only summing over the re-
duced index, such that 2 � k � K � 1.

max
X
i

X
j

X
k

wi j � yik � z jk �
K�1X
kD2

(goS1k C goS2k ) � wo

�

K�1X
kD2

�
(gl S1k � gbS1k � geS1k )

C (gl S2k � gbS2k � geS2k )
�
� wl

(9)

The objective function of Eq. 9 requires the lineariza-
tion of the product of two binary variables and is sub-
ject to numerous constraints. The details of the model
are available elsewhere [8].

Template-Free Model

Unlike the previously described mixed-integer linear
programming formulation of the global pairwise se-
quence alignment problem in Sect. “Template-Based
Model”, the optimization model presented here does
not assign the amino acids of each sequence to a tem-
plate. However, information about the maximum num-
ber of allowable gaps is still included in this model,
through the variable K in Eq. 3.

In the template-free model, a binary variable, zij, is
defined in Eq. 10 to represent the alignment of posi-
tion i in S1 to position j in S2. A method to handle gaps
in the sequence still must be introduced into the model
to account for the evolutionary changes that lead to
residue insertions and deletions. Aligning a gap residue
to another gap residue is not allowed. This observation
leads to two possibilities of gap occurrences. A gap can
either be in Sequence 1, across from a residue j in Se-
quence 2 or in Sequence 2, across from a residue i in
Sequence 1. These possibilities are modeled with the bi-
nary variables zgi and yg j , defined by Eq. 11–12.

zi j D

8<
:

1 if position j in S2 aligns with
positioni in S1

0 otherwise
(10)

zgi D

8<
:

1 if no position j in S2 aligns
to the residue in position i of S1

0 otherwise
(11)

yg j D

8<
:

1 if no position i in S1 aligns
to the residue in position j of S2

0 otherwise
(12)

The objective function in Eq. 13 maximizes the sum
of the weights of the residue-residue alignments minus
the sum of the gap penalties, plus the appropriate terms
that remove the penalties from the gaps at the begin-
ning and ends of the sequences. The scoring matrix val-
ues at any given pair of positions, wij are included when
the binary variables indicating a sequence alignment
that matches positions i and j, zij, are activated. For an
affine gap penalty model, the variables representing the
existence of a gap opening, goS1j and goS2i , and the ex-
istence of a gap extension, gl S1j and gl S2i , are multiplied
by their respective weights, wo and wl . If a gap residue
is present at the beginning or ending of a sequence, it
will be accounted for in an active value for one of gbS1j ,
geS1j , gbS2i , geS2i to remove the penalty assigned by the
previous terms.

max
X
i j

wi jzi j

�
X
j

(wo � goS1j C wl � gl S1j )



1430 G Global Pairwise Protein Sequence Alignment via Mixed-Integer Linear Optimization

�
X
i

(wo � goS2i C wl � gl S2i )

C

N�1X
j>1

wl � (gbS1j C geS1j ) (13)

C

M�1X
i>1

wl � (gbS2i C geS2i )

C wo � (geS11 C geS21 )

C wo � (geS1M C geS2N )

The objective function of Eq. 13 is subject to numerous
constraints. The details of these constraints are avail-
able elsewhere [9].

Path Selection Model

Let us introduce a binary variable Nij that repre-
sents the alignment of the residue at position i in Se-
quence 1 to the residue at position j in Sequence 2.
This binary variables performs a similar role as zij in
Sect. “Template-FreeModel”. The typical assignment of
this match assesses a weight, wij, based on a scoring ma-
trix developed through evolutionary analysis of protein
sequences.

A successful sequence alignment will have many ac-
tive Nij variables, which we will designate as nodes.
Let the binary variable yi i0 j j0 represent the existence of
a connecting path between node Nij and a neighbor-
ing node Ni 0 j0 . Associated with this connecting path,
is a weight parameter, Cii 0 j j0 , which can be calculated
in advance from the scoring matrix w and any position
dependent gap penalty form that is specified a priori.
An example of the representation of the node and path
variables is illustrated in Fig. 1.

Once these variables have been defined, the ob-
jective function of the optimal sequence alignment is
merely the sum of the product of the variable for the
existence of the path, yi i 0 j j0 , and the path weight, Cii 0 j j0

as shown in Eq. 14.

max
X
i

X
i 0>i

X
j

X
j0> j

yi i 0 j j0 � Cii 0 j j0 (14)

The variable yi i 0 j j0 is defined only as the existence of
a contact between two neighboring nodes, where each
node Ni 0; j0 that has an incoming connecting path ac-
tivated must also have an outgoing path. In effect, this
constraint can be thought of as a “mass” balance around

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Figure 1
(a) Alignment of two hypothetical sequence fragments.
(b) A node and path representation of the alignment prob-
lem as formulated by the mathematical model. Note the
three active paths connecting the four selected node vari-
ables

the node. This constraint is specified for all nodes ex-
cept those that are allowed to begin or end an alignment
by Eq. 15.

X
i<i 0

X
j< j0

yi i 0 j j0 �
X
i 00>i 0

X
j00> j0

yi 0 i 00 j0 j00 D 0

8 1 < i0 < M; 1 < j0 < N
(15)

Equation 16 requires an alignment that matches the
first residue in one of the two sequences to a residue
in the other sequence. This constraint invalidates any
alignment that aligns the first residue in both sequences
to a gap, a physically meaningless alignment and allows
for the path weights, Cii 0 j j0 , to be precalculated.
X
i 0>1

X
j

X
j0> j

yiD1;i 0 j j0 C
X
i

X
i 0>i

X
j0> j

yi i 0; jD1; j0

�
X
i 0>1

X
j0>1

yiD1;i 0; jD1; j0 D 1
(16)

If one sequence ends in a gap, the terminal residues
of the other sequence must be prevented from aligning
to earlier residues in a physically unrealistic way. Equa-
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tion 17 allows exactly one active node Ni; j involving
a terminal residue in either Sequence 1 or Sequence 2.

X
i<M

X
j

X
j0> j

yi;i 0DM; j j0 C
X
i

X
i 0>i

X
j<N

yi i 0 j; j0DN

�
X
i<M

X
j<N

yi;i 0DM; j; j0DN D 1

(17)

It is more efficient and more meaningful to restrict
the search to within a maximum alignment length, K.
Equations 18–19 require the sum of the sequence length
and the number of gaps created by the alignment to
be less than the maximum alignment length for Se-
quences 1 and 2 respectively.

X
i

X
i 0>i

X
j

X
j0> jC1

( j0 � j) � yi i 0 j j0 C

X
i

X
i 0>i

X
j0>1

( j � 1) � yi i 0; jD1; j0 C

X
i

X
i 0>i

X
j<N

( j0 � N) � yi i 0 j j0DN CM � K

(18)

X
i

X
i 0>iC1

X
j

X
j0> j

(i0 � i) � yi i 0 j j0 C

X
i 0>1

X
j

X
j0> j

( j � 1) � yiD1;i 0 j j0 C

X
i<M

X
j

X
j0> j

( j0 � N) � yi;i 0DM; j j0 C N � K

(19)

Equations 14–19 form the general mathematical model
for the path selection approach to the global pairwise
sequence alignment problem. Any of the three models
presented can be expanded to include functionally-spe-
cific constraints, integer cut constraints, and pairwise
interactions. Only the constraints necessary to include
these features in the path selection model will be pre-
sented here.

Functionally-Specific Constraints

For some sequence alignment problems, specific
residues are related to the function of a protein and
should be maintained in a meaningful sequence align-
ment. This idea can be enforced in a mathematically
rigorous way. These constraints can only be defined if
the node existence variables, Nij, are connected to the

path existence variables, yi i 0 j j0 . One way to accomplish
this is by summing over a pair of indices within the path
variables, as shown in Eqs. 20–21.

X
i<i 0; j< j0

yi i 0 j j0 D Ni 0 j0 8i0 > 1; j0 > 1 (20)

X
i 0>i; j0> j

yi i 0 j j0 D Ni j 8i D 1 or j D 1 (21)

Constraints enforcing residue identity can then be
written in terms of theNij variables. If position i� in Se-
quence 1 must be conserved to maintain function, then
Eq. 22 enforces this requirement.

X
j;AAi�DAA j

Ni� j D 1 (22)

Integer Cut Constraints

This alignment model can be further extended by in-
troducing integer cut constraints. After each solve of
the above model, the previous solution is excluded from
the feasible solution space by Eq. 23. A is the set of ac-
tive variables in the solution to be excluded, I is the set
of inactive variables and card(A) is the cardinality of set
A, or the number of members of set A.

X
(i i 0 j j0)2A

yi i 0 j j0 �
X

(i i 0 j j0)2I

yi i 0 j j0 � card(A) � 1 (23)

Pairwise Interaction Scores

A score can also be assigned for the alignment of a pair
of amino acids i; i0 in one sequence to a specific pair of
amino acids j; j0 in the second sequence. One promis-
ing application of these pairwise interactions scores is
the ability to better evaluate the fitness of an alignment
between a protein of known structure and an unknown
protein with remote sequence homology. A number of
recently developed C˛-based distance dependent force
fields [7,13,16] are a good source for these scores be-
cause they allow some flexibility between the backbones
of these two structures.

A pairwise interaction score requires the definition
of the variable zi i 0 j j0 , representing the successful align-
ment of both i; j (Nij) and i0; j0 (Ni 0 j0 ). This variable is
initially introduced in Eq. 24 as the product of two node
existence binary variables.

zi i 0 j j0 D Ni j � Ni 0 j0 8i; i0; j; j0 (24)
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Equation 24 is nonlinear and must be linearized us-
ing standard optimization techniques by Eqs. 25–27,
which replace Eq. 24.

X
i j

zi i 0 j j0 � Ni 0 j0 8i0; j0 (25)

X
i 0 j0

zi i 0 j j0 � Ni j 8i; j (26)

Ni j C Ni 0 j0 � 1 � zi i 0 j j0 8i; i0; j; j0 (27)

Let the score of a pairwise interaction be denoted as
Pi i 0 j j0 . The objective function of Eq. 14 is expanded to
include an additional contribution as shown in Eq. 28.

max
X
i

X
i 0>i

X
j

X
j0> j

yi i 0 j j0 �Cii 0 j j0Czi i 0 j j0 �Pi i 0 j j0 (28)

The ability of the sequence alignment models to eas-
ily allow for pairwise interaction scores illustrates their
true power and flexibility. The model is guaranteed to
converge to the optimal solution even for problems of
this type. This guarantee suggests the effectiveness that
could be achieved by incorporating such a model into
a fold recognition framework.

Results and Discussion

The mixed-integer linear programming models of
Sect. “Models” can address generic sequence alignment
problems of a reasonable size. This method will be illus-
trated on an alignment of G-protein coupled receptors
with the use of integer cut constraints and an alignment
of pancreatic trypsin inhibitors demonstrating the use
of functionally-relevant conservation constraints. All
the alignments are calculated using the BLOSUM62
scoring matrix and an affine gap model with a gap
opening penalty of 11 and a gap extension penalty of 1.

G-protein Coupled Receptors

G-protein coupled receptors are a type of membrane
protein that regulate material and ion transport across
a cell membrane, a reason they are a popular target
for drug development. The alignment of the seventh
transmembrane helix of bovine rhodopsin (34 amino
acids) to the seventh transmembrane helix of H1R (35

Sequence 1:
KNCCNEHLHM FTIWLGYINS TLNPLIYPLC NENFK
Sequence 2:
SDFGPIFMTI PAFFAKTSAV YNPVIYIMMN KQFR

ITERATION: 1 OBJECTIVE: 26 (9 matches)
1234567890 1234567890 1234567890 12345678

S1: KNCCNEHLHM F-TI--WLGY INSTLNPLIY PLCNENFK
| || || || | |

S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR

--------------------------------------------------
ITERATION: 2 OBJECTIVE: 25 (8 matches)

1234567890 1234567890 1234567890 12345678
S1: KNCCNEHLHM FTIWLGYINS T---LNPLIY PLCNENFK

| | || || | |
S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR
--------------------------------------------------
ITERATION: 3 OBJECTIVE: 25 (7 matches)

1234567890 1234567890 1234567890 12345678
S1: KNCCNEHLHM FTI---WLGY INSTLNPLIY PLCNENFK

| || || | |
S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR
--------------------------------------------------
ITERATION: 4 OBJECTIVE: 25 (7 matches)

1234567890 1234567890 1234567890 12345678
S1: KNCCNEHLHM FT---IWLGY INSTLNPLIY PLCNENFK

| || || | |
S2: ----SDFGPI FMTIPAFFAK TSAVYNPVIY IMMNKQFR

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Figure 2
A rank-ordered list of the top four optimal alignments of the
helix 7 region of the human histamine receptor (Sequence 1)
to the helix 7 region of the bovine rhodopsin (Sequence 2)
for a template length of 50 residues

amino acids), the first human histamine receptor, will
be considered to illustrate alignment uncertainty [9].
Figure 2 shows the the regions of uncertainty in the se-
quence alignment using integer cut constraints. There
is a strong conservation of alignment at the ends of
the selected sequence, including the preservation of the
highly conserved NPxxY motif. The central regions of
the aligned sequences shows more variability. This ob-
servation could be a result of less structural conserva-
tion in the region, or less sequence similarity required
for structural (and functional) conservation.

A comparison of the computational resources re-
quired for this problem is presented in Table 1. A larger
template length results in a more complex optimization
problem to be solved. The path selection model signif-
icantly outperforms the other formulations, especially
for the larger template lengths.
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Sequence 1:
MLKYTSISFL LIILLFSFTN ANPDCLLPIK TGPCKGSFPR YAYDSSEDKC
VEFIYGGCQA NANNFETIEE CEAACL

Sequence 2:
RPDFCLEPPY TGPCKARIIR YFYNAKAGLC QTFVYGGCRA KRNNFKSAED
CMRTCGGA

OBJECTIVE: 141 (26 exact matches)
1234567890 1234567890 1234567890 1234567890 1234567890

S1: MLKYTSISFL LIILLFSFTN ANPD-CLLPI KTGPCKGSFP RYAYDSSEDK
|| || | ||||| || |

S2: ---------- ---------- -RPDFCLEPP YTGPCKARII RYFYNAKAGL

S1: CVEFIYGGCQ ANANNFETIE ECEAACL--
| | |||| | ||| | | |

S2: CQTFVYGGCR AKRNNFKSAE DCMRTCGGA

Global Pairwise Protein Sequence Alignment via Mixed-Integer Linear Optimization, Figure 3
Optimal alignment of bombyx mori kazal-type serine proteinase inhibitor 1 (Sequence 1) to bovine pancreatic trypsin in-
hibitor (Sequence 2), given the requirement of cysteine conservation and a template length of 100

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Table 1
Computational performance of the template-based (TB),
template-free (TF) and path selection (PS) models for helix 7
of the G-protein coupled receptor proteins (run times in sec-
onds on an Intel Pentium3.2 GHz processor, usingCPLEX 9.0)

K TB TF PS Objective
40 1000+ 35.21 1.30 26,25,25,25
45 1000+ 177.8 5.27 26,25,25,25
50 1000+ 1000+ 14.71 26,25,25,25

Serine Protease Inhibitors

Serine protease inhibitors are responsible for regulat-
ing serine proteases, proteins necessary for hydrolyzing
peptides. One well-studied protein within this class is
the bovine pancreatic trypsin inhibitor (BPTI). Its na-
tive three-dimensional structure is stabilized by 3 disul-
fide bonds that are conserved across the class of serine
protease inhibitors. An alignment of BPTI (58 amino
acids) to the bombyx mori (domestic silkworm) kazal-
type serine protease inhibitor (76 amino acids) has pre-
viously been investigated in the context of introducing
constraints for the functionally important conservation
of the disulfide bonds [8]. The results of such an align-
ment are presented in Fig. 3. The six conserved cysteine
residues necessary for the formation of the three disul-

Global Pairwise Protein Sequence Alignment via Mixed-
Integer Linear Optimization, Table 2
Computational performance of the template-based (TB),
template-free (TF) and path selection (PS) models for the
alignment of bombyx mori kazal-type serine proteinase in-
hibitor 1 to bovine pancreatic trypsin inhibitor (run times
in seconds on an Intel Pentium 3.2GHz processor, using
CPLEX 9.0)

K TB TF PS Objective
80 886.4 0.36 0.64 141
90 1000+ 80.3 1.74 141

100 1000+ 912.4 2.77 141

fide bridges that stabilize the functional protein are ap-
parent from this alignment.

A comparison of the computational resources re-
quired for this problem is presented in Table 2. Even
with the inclusion of the conservation constraints, the
path selection model still solves this alignment example
quite rapidly for large template lengths. Although the
template-free approach slightly outperforms the path
selection approach for short template length restric-
tions, it does not scale very well with increases in tem-
plate length. Similar to the first example, the template-
free approach solves the problem significantly faster
than the template-based approach, but the path selec-
tion approach is superior to both of the mixed-integer
linear programming techniques.
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A supply chain (SC) may be defined as an integrated
process where several business entities such as suppli-
ers, manufacturers, distributors, and retailers work to-
gether to plan, coordinate and control the flow of ma-
terials, parts, and finished goods from suppliers to cus-
tomers. This chain is concerned with two distinct flows:
a forward flow of materials and a backward flow of in-
formation. Similarly, a global supply chain (GSC) may
be defined as a SC where one or more of these busi-
ness entities operate in different countries. For many
years, researchers and practitioners have concentrated
on the individual processes and entities within the SC.
Within the past few years, however, there has been an
increasing effort in optimizing the entire SC. This arti-
cle intends to highlight some of the early results from
the 1960s to 1995 that have led to today’s SC research
and most of the recent results that address the design
and management of GSC networks (as of 2000).

Within manufacturing and logistics research, the
current stream of SC research is largely built on prior
work in the area of multi-echelon inventory models.
The early works [4,5] and [14] form the basis for most
of the research done in this area. See [13] and [3] for ex-
tensive reviews of multi-echelon inventory models. For
detailed and more recent discussions of multi-echelon
models, see [12,19,20].



Global Supply Chain Models G 1435

As companies began to realize the benefits of op-
timizing the SC as a single entity, researchers began
utilizing operations research (OR) techniques to bet-
ter model supply chains. See [2] for an extensive review
of the literature in SC modeling. Typically, a SC model
tries to determine:
� the transportation modes to be used;
� the suppliers to be selected;
� the amount of inventory to be held at various loca-

tions in the chain;
� the number of warehouses and plants to be used;

and
� the location and capacities of these warehouses and

plants.
However, as a result of the globalization of the econ-
omy, the models have become more complex. GSC
models now often try to include factors such as ex-
change rates, international interest rates, trade barriers,
taxes and duties, market prices, and duty drawbacks.
All of these factors are generally difficult to include in
mathematical models because of the uncertainty and
nonlinearity they introduce.

See [21] and [7] for extensive reviews on GSC
models. [21] concentrates on strategic production-
distribution models whereas [7] focus on the integra-
tion of SC network optimization with real options pric-
ing methods. This article complements these reviews by
giving a chronological listing of the models in both ar-
eas.

In [15] an international facility location model is
presented. This is one of the first mathematical pro-
grams that includes financial aspects in GSC modeling.
The authors develop a large scale nonlinear mixed in-
teger programming problem (MIP). The objective func-
tion takes into account the expected profit and the vari-
ance of the profit, where the variance of the profit is
multiplied by a risk aversion factor. Plant capacities,
market demands and financial constraints are included
in the model. The formulation considers production
and transportation costs, exchange rate fluctuations, in-
ternational interest rates, market prices, import tariffs,
and export taxes.

In [9] a deterministic model is proposed for maxi-
mizing the after tax profit of a large scale international
distribution network. Transportation costs, fixed setup
costs, variable production and purchasing costs, and
fixed vendor costs are included in the model. Themodel

enforces production capacity constraints, demand lim-
its, material requirements at each plant, supplier capac-
ity constraints, balance constraints at plants and dis-
tribution centers, feasible flow constraints, and offset
trade requirements. The model is run sequentially over
a fixed time horizon and computational results are pre-
sented for various problem sizes.

In [6] the differences are analyzed between an in-
ternational SC model and a single-country model, and
a dynamic, nonlinear MIP model is developed. The in-
clusion of features such as duties, tariffs, tax rates, and
exchange rates produce models that are very difficult to
solve optimally even for small size problems.

In [8] a normative model is presented for the opera-
tions of a global company. Plant location, capacity and
product mix, and material and cash flow determina-
tion are the decisions included in the model. The model
consists of a master problem and a set of subproblems.
The master problem is amultiperiod stochastic program
and the subproblems are single period stochastic pro-
grams. These problems are linked through a set of sub-
models such as a stochastic SC model, a financial flow
model, a stochastic exchange rate model, and a price-
demand model.

In [17] a stochastic dynamic programming (DP)
model is developed that treats the SC as equivalent to
owning a financial option instrument. The value of the
option depends on the real exchange rate. The authors
consider production switching between two manufac-
turing plants located in different countries depending
on the real exchange rate. The model does not consider
characteristics such as multiple products or different SC
stages. The model becomes intractible for more than
one exchange rate process.

In [1] a comprehensive, multiperiod, multicom-
modity MIP model is proposed which is used to opti-
mize the SC of Digital Equipment Corporation (DEC).
The objective of the model is to minimize a function
of total production and distribution cost, savings from
credit, and an additional term which contains produc-
tion and transportation times. The total cost includes
fixed and variable costs of production, transportation
cost, material handling, inventory, and overhead costs.
The savings from credit are due to reexporting prod-
ucts. The model enforces constraints on demand satis-
faction, production and throughput capacities at each
facility, and bounds on decision variables. In addition,
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international constraints such as duty drawback, duty
relief, and offset trade are included. The authors de-
scribe how DEC used this model to manage their GSC.

In [18] a multiperiod stochastic DP is introduced
that allows the firm to switch among several production
modes to maximize profit. The production modes they
consider are exporting from the home country, a joint
venture with local partners, and establishing a wholly
owned subsidiary for a foreign firm. It concludes by
identifying cases in which one of these modes would be
preferred to the others.

In [16] a stochastic DP formulation is developed
for the valuation of global manufacturing strategy op-
tions. A hierarchical approach is proposed. First, the ex-
change rates are modeled by multinomial approxima-
tions. Then, options for alternative product and SC net-
work designs are determined based on the firm’s global
manufacturing strategy. Finally, anMIP model for each
exchange rate within every period is solved and the
value of several manufacturing options is determined.
The expected profit for each policy option is found by
solving a stochastic DP using the values of the manu-
facturing policies.

In [11] the problem of operating a network of plants
that are partially-owned subsidiaries of a multinational
corporation is analyzed. Using real data, a model of
three subsidiaries and four countries is developed for
one industry and the effects of coordination under var-
ious macroeconomic conditions are discussed.

In [10] optimal policies for operating a network
of plants located in different countries is studied. It
is assumed that production costs are stochastic and
are influenced by factors such as exchange rates, infla-
tion, taxes, and tariffs. There is a one-time charge for
switching (production volume changes between coun-
tries) and variable production costs are either concave
or piecewise linear convex at each plant. It is also as-
sumed that demand is deterministic and stationary.
Under these assumptions a two-country, single market
stochastic DP model is developed. The authors show
that the optimal policy is always a barrier policy when
switching costs are linear or step functions. (A barrier
policy is a policy in which each plant operates either at
a minimum or a maximum output level.)

The literature on GSC management is quite re-
cent and the models developed usually do not consider
most of the uncertainties that international corpora-

tions face. Each model addresses a limited number of
the aspects of managing a GSC. There is an ongoing ef-
fort to develop more comprehensive and practical GSC
design models that will accommodate the needs of the
rapidly changing global economy.

See also

� Inventory Management in Supply Chains
� Nonconvex Network Flow Problems
� Operations Research Models for Supply Chain

Management and Design
� Piecewise Linear Network Flow Problems
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Introduction

Global terrain methods [5,6,7] are a class of methods
for solving nonlinear programming problems that are
based on the simple concept of intelligently following
valleys up and down on the terrain or landscape of three
times continuously differentiable or C3 objective func-
tion surfaces. They belong to the class of integral path
or path following methods [1,2,3,4,8] and can also be
used to solve systems of nonlinear equations formu-
lated as nonlinear least-squares problems. The overall
approach is based on the reliable and efficient computa-
tion of minima, saddle points, and singular points and
a terrain-following algorithm to efficiently move from
one stationary point to another or to a boundary of the
feasible region. What makes global terrain methods su-
perior to other path following methods is the Newton-
based predictor-corrector method used to move uphill
on the objective function landscape.

Formulation

The problem under consideration is that of finding
a number of minima, saddle points, and singular points
of a C3 objective function, � D �(z), defined on Rn

subject to bounds on variables, c(z), where z are the op-
timization variables. Let F D F(z) denote the gradient
of ' and J(z) denote the n � n symmetric Jacobian ma-
trix of F (or Hessian matrix of ').

Problem Statement

The problem can be stated in the form

Find fz�k g : z
�
k � c(z�) such that O(FTF) D 0 ; (1)
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where fz�k g denotes a set of minima, saddle points,
and/or singular points, and the constraints are given by

� z�i � zLi and z�i � zUi ; (2)

where zLi and z
U
i are the lower and upper bounds on the

variable zi .
Note that O(FTF) D JTF D 0 implies that either

F(z�k ) D 0 ; (3)

det J D 0 with null space vector F ¤ 0 : (4)

If z�k
 satisfies Eq. (3), it is either a minimum or a saddle
point of ' whereas if z�k satisfies Eq. (4), it is a singular
point of J. To distinguish between minima and saddle
points, the Hessian matrix of FTF is required, which is

H D JT J C˙FiGi ; (5)

where Fi is the ith element function of F and where Gi

is the corresponding element Hessian matrix of Fi . If all
eigenvalues of H are positive, z�k is a minimum of '. If
at least one eigenvalue of H is negative, z�k is a saddle
point of '.

Geometrical Foundation

Figure 1 shows the contours of FTF along with the ter-
rain path for a simple two dimensional reactor example.
To understand the underlying geometric foundation on
which global terrain methods are built, consider two
neighboring contours or level curves along the curved
valley shown in Fig. 1. Note that the distance, �, be-
tween any two neighboring level curves in the normal-
ized gradient direction is largest exactly in the valley
and that this distance decreases in magnitude as points
move out of the valley along the same neighboring level
curves (i. e., the contours become more tightly packed
together). Therefore the norm of JTFmust be smaller at
any point in the valley than at any neighboring point on
any given level curve since the same change in the least-
squares function results from the largest change in dis-
tance. Thus the valley connecting the stationary points
shown in Fig. 1 can be characterized as the collection
of local minima in the norm of JTF over a set of level
curves. This same constrained extremum in the gradi-
ent norm also characterizes ridges, ledges and other dis-
tinct features of the objective function landscape in any
n-dimensional space.

Global Terrain Methods, Figure 1
Contours of a least squares surface

Valleys, ridges, ledge, etc. can be defined mathemat-
ically by a set of solutions, V , to a sequence of general
nonlinearly, constrained optimization problems

V D fmin gT g such that FTF D L ; for all L 2 �g ;

(6)

where F and J are defined as before and where
g D 2JTF, L is any given value (or level) of the least-
squares objective function, and � is some collection of
contours. That is, for any given level curve, we find the
point on L that corresponds to a local minimum in gT g.
The collection of minima for all levels gives all (or part)
of a valley, ridge, or ledge. Equation (6) forms the geo-
metrical backbone for global terrain methods and plays
an important role in the development of predictor-
corrector algorithms used to implement those ideas.
Moreover, � is actually a computational by-product of
the terrain-following approach.

It is useful to simultaneously monitor behavior on
the landscape of FTF and the objective function land-
scape, noting that minima and saddle points on ' are
minima on FTF while singular points on ' are saddle
points on FTF. Valleys on both surfaces closely align.

Methods

Terrain-following methods are comprised of a se-
quence of sub-problems that unfold dynamically dur-
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ing the course of solving a nonlinear programming
problem. Since global terrain methods move up and
down the landscape of FTF, these sub-problems in-
clude
1) Reliable downhill equation solving.
2) Reliable and efficient computation of singular

points.
3) Efficient uphill movement comprised of predictor-

corrector calculations.
4) Reliable and efficient eigenvalue-eigenvector com-

putations.
5) Effective bookkeeping.
6) A termination criterion to decide when the compu-

tations have finished.
7) Advanced techniques to deal with bifurcations and

non-differentiable points.

1) Moving Downhill

Downhill computations use a trust region method and
are capable of finding minima, saddle points, and some-
times singular points on an objective function surface.
In finding the first point, say z�1 , initiation of down-
hill computations is arbitrary. On subsequent downhill
sub-problems, calculations always begin in the direc-
tion of the smallest negative eigenvalue of H.

The basic downhill iteration is defined as follows

� D �ˇ�N C (ˇ � 1)g ; (7)

where �N D J�1F is the Newton direction and
ˇ 2 [0; 1] is determined by the following simple rules.
If jj�N jj � R, then ˇ D 1, where R is the trust region
radius. If jj�N jj > R and jjFjj � R, then ˇ D 0. Other-
wise, ˇ is the unique value in Eq. (7) on [0,1] that satis-
fies jj�jj D R. The new iterate is accepted if it reduces
jjFjj. Otherwise, the new iterate is rejected, the trust re-
gion radius is reduced and the calculations are repeated
until a reduction in jjFjj occurs. Downhill movement is
terminated when either jjFjj � ", where " is a conver-
gence tolerance, or jjFjj / jj�N jj � �, where � is some
small number (typically 10�6). This latter condition im-
plies that the Newton step is very large in compari-
son to the gradient and the computations are converg-
ing to a singular point. The algorithm then switches to
quadratic acceleration.

2) Acceleration to Singular Points

During downhill movement, quadratic acceleration is
used if jjFjj/jj�N jj � �. Quadratic acceleration is also
used during uphill calculations to converge to singular
points and is defined by

� D �H�1 JTF : (8)

During acceleration, norm reduction in F is not en-
forced because H can have eigenvalues of mixed sign.

3) Moving Uphill

Uphill movement is initiated in the eigen-direction as-
sociated with the smallest positive eigenvalue of the
Hessian matrix H and consists of two basic parts –
Newton predictor steps and successive quadratic pro-
gramming (SQP) corrector steps.

Uphill Predictor Steps Predictor steps follow a valley
uphill but will ‘drift’ from the valley – as shown in the
slight zigzag in the terrain path in Fig. 1, which shows
this ‘drift’ (followed by corrector steps). Uphill Newton
steps are defined by

�p D ˛�N ; (9)

where�N D J�1F and the step size ˛ 2 (0; 1].

Uphill Corrector Steps Corrector steps (again see
Fig. 1) are used intermittently to force iterates back to
a valley and are invoked when the condition

� D 57:295 arccos
��
�T

N c
�
/(jj�N jj jjvjj)

�
� 
 ; (10)

is satisfied, where v is the current estimate of the eigen-
vector associated with the smallest positive eigenvalue
ofH and
 is 5 degrees. Corrector steps are formulated
as

min gT g such that FTF D L ; (11)

where L is the current value of FTF. Corrector steps are
iterative and are considered converged when the neces-
sary conditions

FTF � L D 0 ; (12)

Hg � �g D 0 ; (13)
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are satisfied. Corrector steps are computed using a suc-
cessive quadratic programming (SQP) method; how-
ever, other methods can be used for this purpose. The
SQP formulation for the problem defined by Eq. (11) is
given by

min gTH�c C
1
2
�T

c M�c such that

gT�c D �(FTF � L) ;
(14)

where M is the Hessian matrix of the Lagrangian
function. The Lagrangian function is defined by
L D gT g � �(FTF � L), where � is a Lagrange mul-
tiplier and where M is approximated by the rule
M D HTH � �H.

4) Eigenvalue-Eigenvector Computations

It is not always necessary to find all eigenvalues and
eigenvectors of H to decide whether to begin the next
phase of the computations uphill or downhill – partic-
ularly for problems with large n. Often it is sufficient
to compute a subset of eigenvalues and eigenvectors,
which can be conveniently performed using the inverse
power method. The inverse power method solves the
inverse form of

Hv � �v D 0 ; (15)

by constructing the iteration

vkC1 D �kH�1vk ; (16)

�kC1 D
vTkC1vkC1

vTkC1H�1vkC1
; (17)

where the calculations alternate between Eqs. (16)
and (17) until jjvkC1 � �kH�1vk jj < ", where " is some
pre-specified tolerance. Note that an estimate of v is
necessary to begin the inverse power method. Once the
first eigenvalue, say �1, and its corresponding eigen-
vector, v1, have been determined, the Hessian matrix
is deflated using symmetric orthonormal projection to
give an (n � 1) � (n � 1) symmetric matrix whose ba-
sis spans the space orthogonal to v1. The inverse power
method is used to find the next eigenvalue, �2, and its
associated eigenvector, v2, and then v2 is lifted to Rn .
This procedure of deflation by orthonormal projection
to form an (n � j) � (n � j) symmetric matrix whose

basis spans the space orthogonal to {v1; v2; : : : ; v j} fol-
lowed by the inverse power method and the lifting of
vjC1 to Rn is continued until as many eigenvalues and
eigenvectors as desired are determined.

5) Effective Bookkeeping

Another important aspect of global terrain methods
is that it is possible to avoid calculating the same z�k
more than once by effective bookkeeping. This is ac-
complished by storing solution information that in-
cludes the set of solutions, the solution types (i. e., min-
imum, saddle point, or singular point), corresponding
values of ' and FTF, and the current set of eigen-
connections (i. e., the smallest positive eigenvalue and
associated eigenvector for minima and saddles, and the
largest negative eigenvalue and associated eigenvector
for singular points). Following the determination of the
first stationary or singular point, z�1 , uphill movement
proceeds in theC/� eigen-direction associated with the
smallest positive eigenvalue of H. Assume that two new
stationary or singular points, z�2 and z�3 , have been de-
termined by these uphill calculations. The next move
will be downhill from z�2 in the eigen-directions, v2, as-
sociated with the largest negative eigenvalue, �2, ofH at
z�2 . However since z�2 and z�3 are connected by path to
z�1 , care must be exercised so as not follow the path back
to z�1 . To do this, nearest neighbors are determined by
finding k such that

jjz�2 � z�k jj is minimum for all k ¤ 2 : (18)

Let j be the index for which Eq. (18) is satisfied. Fol-
lowing this, the direction d2 D z�2 � z�j is defined. Cor-
rect downhill movement away from z�2 is defined by
whichever inequality

vT2 d2 < 0 or � vT2 d2 < 0 ; (19)

is satisfied. Note that the selection of the proper condi-
tion in Eq. (19) guarantees that initial movement from
z�2 will be in the direction away from the nearest solu-
tion z�j . Equations (18) and (19) can be easily general-
ized to give

jjz�i � z�k jj is minimum for all k ¤ K ; (20)

vTi di < 0 or � vTi di < 0 ; (21)

where d2 D z�i � z�j , j is the index that satisfies Eq. (20),
and K is the current number of solutions.
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6) Termination

Termination occurs when either the desired number of
points {z�k } have been calculated or a certain number
of bounds are encountered. The first termination cri-
terion is straightforward. In the normal case, termina-
tion occurs when two bounds have been encountered.
When bifurcations have been detected, then the num-
ber of bounds that must be encountered for termination
to occur is nb C 2, where nb is the number of distinct
bifurcations.

7) Advanced Techniques

For any global terrain method to be effective it must
also to address issues such as parametric disconnected-
ness, integral path bifurcations, and non-differentiable
points or manifolds.

Parametric Disconnectedness

Following solutions parametrically is the basis for many
homotopy-continuation methods. However, when
parametric solutions exist on disconnected branches
of solution curves, continuation methods can have
difficulties. Global terrain methods are completely un-
affected by parametric disconnectedness since they
operate in variable and not parameter space.

Non-differentiable Points and Manifolds

There are many engineering applications that ex-
hibit non-differentiable points and/or manifolds as
a consequence of inherent switching contained in
the objective function. At the ‘switch’ points, non-
differentiability can occur and there can be families of
‘switch’ points that form manifolds. Non-differentiable
points or manifolds are easily detected because they of-
ten exhibit retrograde curvature as well as other quali-
tative changes in model behavior that can be readily
monitored.

Figure 2 illustrates a case in which there is a non-
differentiable manifold. In this figure, z1 D C10; z2 D
C18; z3 D C21; z1Cz2Cz3 D 1, which is why the feasible
region is triangular shaped, and 0 � zi � 1; i D 1; 2; 3.
This curved manifold of non-differentiable points de-
notes the boundary between qualitatively different
types of behavior for the case where � D min[�1; �2]

at each z and is usually not mentioned in discussions of
optimization of physical models. However, it is impor-
tant in computations. The global terrain methodology
has no difficulties finding stationary and singular points
on FTF in this case because it monitors all aspects of the
' thereby allowing switching take place on the fly and
the correct stationary and singular points to be easily
found.

Integral Path Bifurcations

There are many applications in which integral paths
either split into two or become tangent to a contour.
These occurrences are called integral path bifurcations
and can significantly impact the reliability of global ter-
rain methods. Fortunately, Gauss curvature can pro-
vide a deterministic measure of the presence of bifur-
cation points.

It is often easier to understand integral bifurcations
from a geometrical perspective. Consider Fig. 3 where
z1 D C18; z2 D C19; z3 D C22; z1 C z2 C z3 D 1,
and 0 � zi � 1; i D 1; 2; 3. Note that there is a pitch-
fork bifurcation at the point denoted by the point b
on the integral path that runs from the two minima
and the saddle point of FTF in the center of the trian-
gle toward the saddle point and minimum very close
to the hypotenuse of the triangular region. If the inte-
gral path bifurcation at b goes undetected, then the sad-
dle point and minimum closest to the hypotenuse will
not be found because corrector iterations will force it-
erates to turn toward the left or right hand branches of
the pitchfork that end at the corners of the hypotenuse.
Note, however, that the level curves begin to flatten in
the neighborhood of the bifurcation point as the path
moves toward the hypotenuse. This flattening, together
with an eigenvector exchange from JTF to a vector in
the tangent subspace of the level constraint, is a neces-
sary condition for integral path pitchfork bifurcations,
like the one that occurs at b. Moreover, flattening is rel-
atively easy to measure by calculating (Gauss) curvature
along a contour.

Gauss Curvature

To measure Gauss or Gauss–Kronecker curvature, it is
necessary to calculate eigenvalues of the Hessian ma-
trix, H, projected onto the tangent subspace of the level
constraint, which is orthogonal to the gradient at any
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Global Terrain Methods, Figure 2
An Objective Function & Gradient Surface with a Non-Differentiable Manifold (left) b (FT1F1); (right) a Composite FTF

Global Terrain Methods, Figure 3
Integral Path Bifurcation on Objective Function & Gradient Surfaces (left) Landscape of'; (right) Landscape of FTF

given point along the integral path. Gauss–Kronecker
curvature corresponds to the determinant of this pro-
jected Hessian matrix. When the number of unknowns
is two, this curvature is called Gauss curvature. De-

creasing Gauss or Gauss–Kronecker curvature in a par-
ticular part of the feasible region indicates that the level
curves are flattening and provides a strong reason to
check for an exchange in the ‘minimum’ eigenvector of
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H and, if warranted, to search for an integral path bi-
furcation.

Current implementation of these ideas measures
flattening by calculating a few of the smallest eigen-
values (and eigenvectors) of the projection of H onto
the tangent subspace at each iteration of the calcula-
tions. Without a theoretical basis that defines how of-
ten Gauss curvature should be measured, intermittent
measurement seems ad hoc at best since very small re-
gions of decreasing Gauss curvature could go unde-
tected.

Finding Integral Path Tangent Bifurcations

This type of bifurcation point can be detected by mea-
suring Gauss curvature and by comparing vectors along
the flow of an integral path and vectors in the tan-
gent subspace of the level sets for points on the path.
When Gauss curvature decreases and the flow of the
integral path becomes collinear to the tangent subspace,
a tangent bifurcation point has occurred. Generally, this
shows up as a ‘jump’ in the path to a point a con-
siderable distance away on a neighboring level curve.
Between these two points the value of the constrained
minimum defining the path is degenerate andH has re-
peated eigenvalues.

Finding Integral Path Pitchfork Bifurcations

When flattening occurs but the flow of the integral path
is not collinear to the tangent subspace of the level
constraint, an eigenvalue exchange is sought. This ex-
change in the minimum eigenvalue ofH from one asso-
ciated with JTF to one associated with the tangent sub-
space of a level curve is easily determined by monitor-
ing the eigenvalue associated with the terrain path and
the smallest eigenvalue of the matrix H projected onto
the tangent subspace. Once an eigenvalue exchange is
detected, the algorithm searches for a possible bifur-
cation point by locating a maximum in the norm of
JTF on the level curve, say L�, where the eigenvalue ex-
change has been detected. This is because as contours
flatten, the distance between these level curves becomes
smaller and smaller, which is an indication that the na-
ture of jjJTFjj on L� has changed from a constrained
minimum to a constrained maximum. See the discus-
sion in [7]. Therefore, an approximate bifurcation point

is calculated by solving the NLP problem

max gT g such that FTF D L� : (22)

Note that Eq. (22) is very similar to Eq. (11). Thus
the numerical methodology needed to solve Eq. (22)
already exists in the form of the corrector algorithm.
However, it is important to note that predictor iter-
ates rarely land exactly on the contour corresponding to
a pitchfork bifurcation because finite step sizes are used
in the predictor-corrector calculations. They generally
land close and thus the solution to Eq. (22) is usually
a very good approximation of the bifurcation point –
since all that is really needed to follow all branches of
a pitchfork bifurcation is knowledge at a point follow-
ing the eigenvector exchange. Moreover, because con-
tours in the neighborhood of a pitchfork bifurcation
point can be very flat, solving Eq. (22) can be challeng-
ing in some cases. Extreme flatness creates numerical
problems because it implies that the Kuhn–Tucker con-
ditions for Eq. (22) have a near singular coefficient ma-
trix. Therefore, good step size control should be used
when solving Eq. (22).

Finding All Branches Associated
with a Bifurcation Point

Once a bifurcation point is located, all branches from
the bifurcation must be followed in order to increase
the probability of finding all relevant solution informa-
tion. Locating these branches is reasonably straightfor-
ward. Tangent bifurcation points are characterized by
collinearity and provide only a single branch for further
exploration that, as noted, manifests itself by a ‘jump’ to
a widely different point on a neighboring level curve.
Pitchfork bifurcation points, on the other hand, pro-
vide three branches of further exploration defined by
the gradient to the level curve L�, and C/� the ‘mini-
mum’ eigenvector ofH projected onto the tangent sub-
space at the bifurcation on L�. Each of these vectors is
easily computed. The gradient vector at a bifurcation,
which corresponds to the middle part of the pitchfork,
is a readily available byproduct of the calculations. The
‘minimum’ eigenvector ofH on the tangent subspace at
L� is also easily determined. What is difficult is locating
the valleys that correspond to the pair of minima of gT g
on L�. For this a careful initialization of our corrector
algorithm is required to solve Eq. (11) with L D L�.
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Cases

There are several problem cases that are encompassed
by the global terrain-following formulations and meth-
ods presented in earlier sections. These cases include
1) Nonlinear objective functions with simple bounds

on variables.
2) Systems of nonlinear algebraic equations.
3) Nonlinear objective functions with simple bounds

and linear constraints.

1) Nonlinear Objective Functions
with Simple Bounds

This is the case on which the developments in the for-
mulation and methods sections are based and no fur-
ther discussion is necessary.

2) Systems of Nonlinear Algebraic Equations

For a system of algebraic equations, F D 0 is usually
given and ' is irrelevant. The function of interest be-
comes the traditional nonlinear least squares function,
FTF, and the terrain methodology follows the strategies
outlined in previous sections.

3) Nonlinear Objective Functions
with Simple Bounds and Linear Constraints

Nonlinear programming problems that involve linear
equality constraints are easily handled by global ter-
rain methods by using the linear constraints to elimi-
nate optimization variables. Form linear constraints, m
optimization variables can be eliminated. However, it
is important to understand that the gradient and Hes-
sian matrix of ' must be adjusted to accommodate this
variable elimination. This can be done by either using
projection methods or by explicitly doing the elimina-
tion before formulating the optimization problem to be
solved by the terrain methodology.

If projection is used then F is replaced by PTF,
where P is the n � m orthonormal projection matrix
whose columns are orthogonal to all rows of the Jaco-
bian matrix of the linear constraints. That is, if JLEQ is
the m � n Jacobian of the m linear equality constraints,
then the projection matrix P satisfies JLEQP D 0. Addi-
tionally, the Hessian matrix of �; J, must reflect implicit
elimination and is easily computed to be PT JP. These
projections of F and J permit the use of the terrain

methodology in Rn�m while still allowing any bounds
on all variables to be enforced.
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A graphG = (V , E) consists of a vertex set V and an edge
set E � V × V . If e = (i, j) ( 2 E) is an edge of G, then e
is incident to i and j, and i and j are adjacent. Similarly,
if two edges are incident to the same vertex, they are
adjacent.
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A vertex coloring of G = (V , E) is an assignment
of k colors to members of V (a coloring) so that ad-
jacent vertices have different colors (G is k-colorable).
The graph coloring problem (GC) is to find the mini-
mum number k such that G is k-colorable.

When a positive integer weight wi is associated with
every i 2 V and a color assignment satisfies:
� every vertex i gets wi different colors,
� 8(i, j) 2 E, i and j get wi + wj different colors,
then this color assignment is a weighted coloring. The
weighted graph coloring problem asks for the minimum
number of colors needed for a weighted coloring of G.

An edge coloring and a total coloring of a given
graph can be defined in a similar way:
� An edge coloring assigns colors to edges so that ad-

jacent edges have different colors.
� A total coloring assigns colors to vertices and edges

so that any pair of adjacent vertices, adjacent edges,
and a vertex and any incident edge will have differ-
ent colors.

The edge coloring problem or the total coloring prob-
lem asks for the minimum number of colors needed
for an edge coloring or a total coloring, respectively
[12,28,30]. Although the weighted graph coloring, edge
coloring, and total coloring problems seem different
from GC, they can be transformed into a GC [33,42].
Further generalizations of GC tend to change the struc-
ture of a coloring solution, and they move closer to
other well-known combinatorial optimization prob-
lems [16,37].

GC is well-known in graph theory and combina-
torial optimization. It starts with the famous four-
coloring conjecture [24,38] which says four colors are
enough to color any geographic map so that every
country gets a color different from those used by its
neighbors. Although the four-coloring conjecture is
now considered a theorem [1,2], the process to prove
or disprove it has inspired many interesting ques-
tions [32], and has helped the development of several
branches of science, for example, the GC and the graph
theory [27]. The interest in GC also comes from its
vast number of applications in solving real world prob-
lems. For example, GC can be used to model problems
in timetabling, scheduling, computer science, informa-
tion systems, telecommunications, and other indus-
trial applications [9,11,39]. Typically, a graph is con-
structed with its vertices representing items of interest

and edges representing some undesirable binary rela-
tionship.

GC has several mathematical programming formu-
lations. For example, one can use an integer variable xik
= 1 to indicate when a vertex i is colored by k, and xik
= 0 otherwise. One can also use an integer variable yk =
1 to indicate color k is assigned to at least one vertex of
G, and yk = 0 otherwise. Then, the solution to the fol-
lowing mathematical programming problem provides
an optimal (minimum) coloring of G:

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

min
jV jX
kD1

yk

s.t.
jV jX
kD1

xik D 1; 8i 2 V ;

xik C x jk � 1; 8(i; j) 2 E;
yk � xik ; yk ; xik 2 f0; 1g;
8i 2 V ; k D 1; : : : ; jV j ;

where |V| is the cardinality of the set V . In this prob-
lem, the objective function equals the number of colors
used. The constraints ensure that every vertex is col-
ored, that no adjacent vertices get the same color, and
that the counting of used colors is correct.

For a feasible coloring, one can group the vertices
into subsets based on their colors. Thus, vertices of each
subset will be mutually nonadjacent. Such a subset of
vertices is called a stable set, a color class, or an indepen-
dent set [5,8,35,41]. Using the concept of a stable set,
one can formulate GC as a set partitioning problem.

Let S1, . . . , St be all the stable sets of G. Let AS be
a 0� 1 matrix whose rows are the characteristic vectors
of the Sjs. One can use a variable sj = 1 to indicate that
all members of Sj have the same color, and sj = 0 oth-
erwise. Then the solution to the following problem also
provides an optimal (minimum) coloring of G:

8̂
ˆ̂̂<
ˆ̂̂̂
:

min
tX

jD1

s j

s.t. sAS D E1;
s j 2 f0; 1g; j D 1; : : : ; t;

where s = (s1, . . . , st), and E1 D (1; : : : ; 1) is of dimension
|V|.
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Other mathematical formulations of GC based
on quadratic programming, semidefinite programming
etc. are also available. Different formulations have their
own distinctive advantages in understanding the prob-
lem structure and in designing solution methods to
solve the problem [22,33,34].

Checking whether G is k-colorable for an arbitrary
integer k is an NP-complete problem [14,23]. It re-
mainsNP-complete even for fixed k� 3 [14,40]. There-
fore, it is unlikely that the solution time of GC can
be bounded by any polynomial function (polynomial
time) [13]. However, GC can be solved in polynomial
time for graphs of some special structures. For example,
polynomial algorithms exist for perfect graphs, Meyniel
graphs, and triangulated graphs [3,4,15,17,19,41].

Let us define the performance guarantee of an ap-
proximation method to be the worst ratio between
the approximation solution value and the correspond-
ing optimal solution value over all graphs of size |V|.
Then, O(|V| log |V|) seems to be the first performance
guarantee provided by a polynomial time GC heuris-
tic [20]. This performance guarantee has being im-
proved over the years. Let k be the optimal (mini-
mum) number of colors needed to color a graph, and
let � be the maximum degree (number of edges inci-
dent to a vertex) among all vertices. The two recent per-
formance guarantees achieved by polynomial approxi-
mation algorithms for GC are O(|V|(log log|V|)2/(log
|V|)3) and min{O(�1� 2/k), O(|V|1� 3 /(k + 1))} [18,22].
On the other hand, it is known that unless P = NP,
it is NP-hard to approximate an optimal graph color-
ing within a performance guarantee of O(|V|�), � > 0
[14,15].

Available solution methods for GC can be divided
into approximation algorithms and exact algorithms.
These methods find a feasible graph coloring and an op-
timal graph coloring, respectively [29].

A popular way to find an approximation solution to
GC is the sequential greedy coloring heuristic (SGCH).
In a SGCH, the vertices are ordered in a sequence and
are colored one at a time according to the sequence. Ev-
ery vertex is colored by the smallest (first) feasible color.
It is not hard to see that the initial vertex sequence de-
cides the resulting graph coloring of a SGCH.

It is also known that there exists at least one se-
quence under which a SGCH will find an optimal col-
oring. However, finding an optimal vertex sequence is

NP-hard. Extensive work aimed at finding ‘good’ ver-
tex sequences can be found in the literature [10,32].
Once a feasible coloring is available, further improve-
ment can be made using various methods, including:
interchange, iterative improvement, and other search-
ing techniques (such as simulated annealing and tabu
search) [36].

To date, the most popular and efficient way to find
an optimal solution to GC is through a branch and
bound (BB), or implicit enumeration, algorithm. A BB
algorithm typically consists of two parts: the forward
phases and the backtrack phases. A forward phase starts
from a partial coloring (e. g. ;) and colors the remain-
ing vertices to find a feasible graph coloring. For exam-
ple, a SGCH can be used in place of a forward phase.
A backtrack phase will decide the starting point of the
next forward phase so that an alternative feasible graph
coloring can be found.

Now let us consider how a simple BB algorithm [7]
finds an optimal coloring of G = (V , E). Let UB be the
value of a current best coloring (initially set UB =1).
Suppose the first forward phase applies a SGCH to ver-
tex sequence (v1, . . . , v|V|) and finds a feasible coloring
ofG. The number of colors used by the feasible coloring
will be the new UB. Apparently, UB is an upper bound
on the value of any feasible coloring that one needs to
search for.

Since SGCH assigns the smallest feasible color to ev-
ery vertex, a backtrack phase can be carried out by scan-
ning the vertices in the reverse order of (v1, . . . , v|V|).
That is, finding the first vertex vj that can be recolored
by an alternative feasible color < UB, not used for vj be-
fore. The new forward phase will start from the partial
coloring of {v1, . . . , vj � 1} and applies a SGCH to (vj,
. . . , v|V|), up to a vi whose smallest feasible color is UB,
or to v|V| that has a feasible color < UB. In the latter
case, a better coloring is found. Then the BB algorithm
will backtrack and repeat the above until it backtracks
to vertex v1 (the algorithm terminates).

Various improvement measurements are designed
and tested for the above basic BB method. They include
‘look ahead’, ‘dynamic reordering’, choosing an appro-
priate feasible color (instead of the ‘smallest’) to color
a vertex, using tighter lower and upper bounds, and
a column generation approach [6,21,26,31,33]. These
improvements have greatly reduced the search tree size
and enhanced our ability to solve GC optimally. The
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state-of-the-art method for solving GC on randomly
generated graphs seems to be limited to graphs of 100
vertices [21,31,42,43].
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A graph is said to be planar if it can be drawn on the
plane in such a way that no two of its edges cross. Given
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a graph G = (V , E) with vertex set V and edge set E, the
objective of graph planarization is to find a minimum
cardinality subset of edges F � E such that the graph G0

= (V , E \ F), resulting from the removal of the edges in
F from G, is planar. This problem is also known as the
maximum planar subgraph problem. A related and sim-
pler problem is that of finding a maximal planar sub-
graph, which is a planar subgraphG0 = (V , E0) of G such
that the addition of any edge e 2 E \ E0 to G0 destroys its
planarity.

Graph planarization is known to be NP-hard [21].
The proof of NP-completeness of its decision version is
based on a transformation from the Hamiltonian path
problem restricted to bipartite graphs. Although ex-
act methods for solving the maximum planar subgraph
problem have been recently proposed, most algorithms
to date attempt to find good approximate solutions.

In this article, we survey graph planarization and re-
lated problems. In the next section, we describe vari-
ants and applications of the basic problem formulated
above. Next, we describe the branch and cut algorithm
of M. Jünger and P. Mutzel [16]. We then review work
on heuristics based on planarity testing and those based
on two- phase procedures. Finally, computational re-
sults are considered.

Variants and Applications

An application of graph planarization arises in the de-
sign of integrated circuits, in which a graph describing
the circuit has to be decomposed into aminimum num-
ber of layers, each of which is a planar graph [19]. Other
applications arise from variants of the basic graph pla-
narization problem.

One such variant is the maximum weighted planar
graph problem, in which positive weights are associ-
ated with the edges of the graph and one seeks a pla-
nar subgraph of maximum weight. Note that the ba-
sic graph planarization problem is a special case of the
maximum weighted planar graph problem, in which all
edge weights are equal to one. An application of this
problem to facility layout is described in [13]. A graph
is built in which the vertices represent the facilities and
the edges define the relationships between them. The
weight of each edge is the desirability that the two fa-
cilities that define the edge be adjacent in the design.
A maximum weighted planar subgraph corresponds to

a feasible layout with maximum benefit. In this paper,
the authors also propose simulated annealing and tabu
search heuristics for the approximate solution of the
maximum weighted planar graph problem. Construc-
tive heuristics based on maintaining a triangulated sub-
graph while making node and edge insertions are given
in [8,11], and [20].

Another related variant is that of drawing a given
graph such that the number of edge crossings is mini-
mized. The crossing number problem has practical ap-
plications in circuit design and graph drawing, such
as in CASE tools [27] and automated graphical dis-
play systems. One particular case is that of minimizing
straight-line crossings in layered graphs. A GRASP and
path relinking approach for the two-layer case is given
in [17], where one can also find a survey of the litera-
ture. Algorithms for graph drawing are reviewed in [6].

In the planar augmentation problem, one wants to
determine the minimum number of edges that need to
be added to a planar graph such that the resulting graph
is still planar and at least k-connected, where k is usu-
ally fixed to two or three. This variant has applications
in automatic graph drawing, as well as in the design of
survivable networks [24].

An Exact Algorithm

An exact branch and bound algorithm for the weighted
graph planarization problem was introduced in [10],
but was limited to small dense graphs. Only recently
(1999) has there been a leap in the performance of ex-
act methods for graph planarization with the Jünger–
Mutzel branch and cut algorithm [16], which we de-
scribe next.

Given a graphG = (V , E), their approach uses facet-
defining inequalities for the planar subgraph polytope
PLS(G). Let xe be a 0–1 variable associated with each
edge e 2 E, such that xe = 1 if and only if edge e appears
in the maximum planar subgraph of G. Furthermore,
let x(F) =

P
e 2 Fxe, for F � E.

Trivial inequalities 0 � xe � 1 are implicitly han-
dled by the linear programming (LP) solver. The in-
equality x(E) � 3|V| � 6 is added to the initial lin-
ear program. Let x be the optimal solution of the LP
relaxation associated with some node of the enumer-
ation tree. For 0 � � � 1, let E� = {e 2 E} xe � 1 �
�} and consider the graph G� = (V , E�), to which the
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Hopcroft–Tarjan planarity-testing algorithm [14] is ap-
plied. The algorithm stops if it finds an edge set F which
induces a nonplanar graph in G. If the inequality x(F)
� |F| � 1 is violated, it is added to the set of con-
straints of the current LP. The back edge of the path
which proved the nonplanarity of the graph induced in
G by F is removed and the planarity-testing algorithm
proceeds, eventually identifying other forbidden sub-
graphs of the graph G� . Although these forbidden sub-
graphs do not necessarily define facets of PLS(G), they
must contain facet-defining subgraphs. Facet-defining
inequalities are identified as follows. Once a forbidden
set F is found, where the inequality x(F) � |F| � 1 is
violated, one successively deletes each edge f 2 F and
applies the planarity-testing algorithm. If the graph in-
duced by F \ {f } is planar, then edge f is returned to
F. In at most |F| steps, F is reduced to a smaller edge
set which induces a minimal planar subgraph, leading
to the facet-defining inequality x(F) � |F| � 1 still vio-
lated by the current LP solution. Another simple heuris-
tic searches for violated Euler facet-defining inequali-
ties x(F) � 3|V 0| � 6 or x(F) � 2|V 0| � 4, where (V 0,
F) is, respectively, a clique or a complete bipartite sub-
graph of G.

After an LP has been solved, its solution is exploited
by the planarity-testing algorithm, to produce a feasi-
ble solution for the graph planarization problem. Such
feasible solutions are used as lower bounds that are used
not only for fathoming nodes in the branch and cut tree,
but also for fixing variables using their reduced costs
during a cutting plane phase. Other heuristics are im-
plemented to enhance the practical performance of the
algorithm.

Branching is done if no cutting plane has been
found for the current infeasible solution. The variable
chosen for branching is one with fractional value clos-
est to 1/2, among those with maximum cost coefficient
in the objective function.

Heuristics Based on Planarity Testing

The first linear time algorithm for planarity testing was
proposed by J. Hopcroft and R.E. Tarjan [14]. T. Chiba,
I. Nishioka and I. Shirakawa [4] used the basic ideas of
this approach to devise an algorithm for finding a max-
imal planar subgraph of G = (V , E) with time com-
plexity O(|V||E|). Later, J. Cai, X. Han and Tarjan [3]

proposed another version of the above planarity testing
algorithm. This new algorithm is based on processing
edges instead of paths. It leads to another algorithm to
find a maximal planar subgraph, with improved O(|E|
log |V|) time complexity.

A. Lempel, S. Even and I. Cederbaum [18] have pro-
posed another approach to planarity testing. Although
its original complexity was O(|V|2), K. Booth and G.
Lueker [2] have shown that it can be implemented in
linear time using PQ-trees. A few algorithms for find-
ing a maximal planar subgraph based on this planarity
testing approach have been proposed in the literature.
However, Jünger, S. Leipert and Mutzel [15] show that
attempts following this strategy are forced to fail.

Another approach for finding a maximal planar
subgraph of a given graph works as follows. Start with
an empty subgraph and successively add the edges of
the original graph, whenever such addition maintains
the planarity of the subgraph under construction. Us-
ing any of the planarity testing algorithms above de-
scribed, such approach can be implemented inO(|V||E)
time complexity. An incremental planarity testing algo-
rithm, based on an O(log|V) time-per-operation strat-
egy for the problem of maintaining a planar graph un-
der edge additions, was proposed by G. Di Battista and
R. Tamassia [7]. Hence, their algorithm leads to a more
efficient implementation of the incremental approach
for finding a maximal planar subgraph with O(|E| log
|V|) time complexity.

Two-Phase Heuristics

The heuristics described in this section are based on
the separation of the computation into two phases. The
first phase consists in devising a linear permutation
of the nodes of the input graph, followed by placing
them along a line. The second phase determines two
sets of edges that may be represented without cross-
ings above and below that line, respectively. Y. Takefuji
and K.C. Lee [25] were the first to propose a heuris-
tic using this idea. They use an arbitrary sequence of
nodes in the first phase and apply a parallel heuristic
using a neural network for the second phase. Takefuji,
Lee, and Y.B. Cho [26] claimed superior performance
of the two-phase approach of Takefuji and Lee [25]with
respect to the heuristics described in the previous sec-
tion.
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Their approach was later extended and improved
by O. Goldschmidt and A. Takvorian [12]. In the first
phase, these authors attempt to use a linear permuta-
tion of the nodes associated with an Hamiltonian cycle
of G. Two strategies are used:
i) a randomized algorithm [1] that almost certainly

finds a Hamiltonian cycle if one exists; and
ii) a greedy deterministic algorithm that seeks a Hamil-

tonian cycle.
In the latter, the first node in the linear permutation is
a minimum degree node in G. After the first k nodes of
the permutation have been determined, say v1, . . . , vk,
the next node vk+1 is selected from the nodes adjacent to
vk in G having the least adjacencies in the subgraph Gk

of G induced by V\{v1, . . . , vk}. If there is no node of Gk

adjacent to vk in G, then vk+1 is selected as a minimum
degree node in Gk.

LetH = (E, I) be a graphwhere each of its nodes cor-
responds to an edge of the input graph G. Nodes e1 and
e2 of H are connected by an edge if the corresponding
edges of G cross with respect to the linear permutation
of the nodes established during the first phase. A graph
is called an overlap graph if its nodes can be placed in
one-to-one correspondence with a family of intervals
on a line. Two intervals are said to overlap if they cross
and none is contained in the other. Two nodes of the
overlap graph are connected by an edge if and only if
their corresponding intervals overlap. Hence, the graph
H as constructed above is the overlap graph associated
with the representation of G defined by the linear per-
mutation of its nodes.

The second phase of the heuristic of Goldschmidt
and Takvorian consists in two-coloring a maximum
number of the nodes of the overlap graph H, such
that each of the two color classes B (blue) and R

(red) forms an independent set. Equivalently, the sec-
ond phase seeks a maximum bipartite subgraph of the
overlap graph H, i. e. a bipartite subgraph having the
largest number of nodes. This problem is equivalent to
drawing the edges of the input graph G above or be-
low the line where its nodes have been placed, accord-
ing to their linear permutation. A greedy algorithm is
used to construct a maximal bipartite subgraph of the
overlap graph. This algorithm finds a maximum inde-
pendent set B � E of the overlap graph H = (E, I), re-
duces the overlap graph by removing from it the nodes
inB and all edges incident to nodes inB, and then finds

a maximum independent set R� E\B in the remaining
overlap graph H0 = (E\B, I0). The two independent sets
so obtained induce a bipartite subgraph of the original
overlap graph, not necessarily with a maximum num-
ber of nodes.

The linear permutation obtained in the first phase
affects the size of the planar subgraph found in the sec-
ond phase of the above heuristic. Moreover, it is not
clear that the permutation produced by the greedy algo-
rithm is the best. To produce possibly better permuta-
tions, randomization and local search have been intro-
duced in the greedy algorithm by M.G.C. Resende and
C.C. Ribeiro [22] in the form of a greedy randomized
adaptive search procedure (GRASP).

A GRASP [9] is an iterative process, in which each
iteration consists of two phases: construction and local
search. The construction phase builds a feasible solu-
tion, whose neighborhood is explored by local search.
The best solution over all GRASP iterations is returned
as the result.

In the construction phase, a feasible solution is built,
one element at a time. At each construction iteration,
the next element to be added is determined by ordering
all elements in a candidate list with respect to a greedy
function that estimates the benefit of selecting each el-
ement. The adaptive component of the heuristic arises
from the fact that the benefits associated with every el-
ement are updated at each iteration of the construction
phase to reflect the changes brought on by the selection
of the previous elements. The probabilistic component
of a GRASP is characterized by randomly choosing one
of the best candidates in the list, but usually not the
top candidate. This way of making the choice allows for
different solutions to be obtained at each iteration, but
does not necessarily jeopardize the power of GRASP’s
adaptive greedy component.

The solutions generated by a GRASP construction
are not guaranteed to be locally optimal, even with re-
spect to simple neighborhood definitions. Hence, it is
almost always beneficial to apply a local search to at-
tempt to improve each constructed solution. A local
search algorithm works in an iterative fashion by suc-
cessively replacing the current solution by a better so-
lution from its neighborhood.

Resende and Ribeiro [22] proposed an extension
of the above described heuristic of Goldschmidt and
Takvorian, in which a GRASP is used for finding



1452 G Graph Planarization

a linear permutation of the nodes. In the construction
phase of this GRASP, the greedy algorithm used in the
first phase by Goldschmidt and Takvorian is random-
ized: instead of selecting the node of minimum degree
among those yet unselected, the selection is made from
a set of low degree nodes. The local search phase of
this GRASP explores the neighborhood of the current
permutation by swapping the positions of two nodes
at a time, attempting to reduce the number of possible
edge crossings.

Incorporating the second phase of the Gold-
schmidt–Takvorian heuristic to the above GRASP for
finding a linear permutation of the nodes results in
a GRASP for graph planarization.

Each iteration of this GRASP produces three edge
sets: B (blue edges), R (red edges), and P (the remain-
ing edges, which are referred to as the pale edges). By
construction, B, R, and P are such that no red or pale
edge can be colored blue. Likewise, pale edges cannot
be colored red. However, if there exists a pale edge p 2
P such that all blue edges that cross with p (letbBp � B
be the set of those blue edges) do not cross with any red
edge r 2 R, then all blue edges b 2 bBp can be colored
red and p can be colored blue. In case this reassignment
of colors is possible, then the size of the planar subgraph
is increased by one edge. This post-optimization proce-
dure is incorporated at the end of each GRASP itera-
tion.

Computational Results

Detailed results on a set of 75 test problems described
in the literature [5,12] are reported in [22]. The de-
scription of the code used can be found in [23]. Here,
we summarize computational results illustrating the ef-
fectiveness of the two-phase heuristics described in the
previous section, as well as that of the exact branch and
cut algorithm. These results are based on a Fortran im-
plementation of the GRASP heuristic of Resende and
Ribeiro [22], on the original code of the branch and
cut algorithm of Jünger and Mutzel [16], and on pub-
lished results for the heuristics of Takefuji and Lee [25]
and Goldschmidt and Takvorian [22] (using the greedy
algorithm for building the linear permutation of the
nodes).

We give, in the table below, results comparing the
four approaches on a subset of the test problems de-

scribed in [12]. For each instance, the table lists the
number of nodes, the number of edges, and the size
of the planar subgraphs produced by each algorithm.
A time limit of 1000 seconds (on a SUN SPARCstation
10/41) was imposed on the runs of the branch and cut
algorithm and the best solution found was returned as
a heuristic solution when optimality was not attained in
that time limit. This time limit was reached on instances
G12–G19.

The results in this table show that the Goldschmidt–
Takvorian algorithm is a substantial improvement over
the neural network approach of Takefuji and Lee. The
GRASP consistently outperforms both other two-phase
heuristics, not only for the problems reported in this
table, but also for all of the remaining instances consid-
ered in [22].

Problem Nodes Edges T-L G-T R-R J-M
G1 10 22 20 20 20 20
G2 45 85 80 80 82 82
G3 10 24 21 21 24 24
G4 10 25 22 21 24 24
G5 10 26 22 21 24 24
G6 10 27 22 21 24 24
G7 10 34 23 22 24 24
G8 25 69 58 60 69 69
G9 25 70 59 60 69 69
G10 25 71 58 59 69 69
G11 25 72 60 59 69 69
G12 25 90 61 62 67 68
G13 50 367 70 131 135 125
G14 50 491 100 136 143 133
G15 50 582 101 142 144 138
G16 100 451 92 180 196 187
G17 100 742 116 219 236 213
G18 100 922 115 237 246 223
G19 150 1064 127 297 311 290

A comparison of GRASP with the branch and cut
algorithm depends heavily on the instances. The results
reported in [22] can be separated into two groups. On
49 of the 55 instances in the first group, the GRASP
either matched or produced better solutions than the
branch and cut algorithm. On 30 of those 55 instances,
the GRASP solution was strictly better than the branch
and cut solution. Note that, on these instances, the
branch and cut algorithm was forced to stop because
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of the 1000 second time limit. However, on all the re-
maining 20 instances, the branch and cut algorithm
performs remarkably well and outperforms all other al-
gorithms.

See also

� Feedback Set Problems
� Generalized Assignment Problem
� Graph Coloring
� Greedy Randomized Adaptive Search Procedures
� Optimization in Leveled Graphs
� Quadratic Assignment Problem
� Quadratic Semi-assignment Problem
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Introduction

Due to its fundamental nature and versatile modelling
power, the Graph Realization Problem is one of the
most well-studied problems in distance geometry and
has received attention in many communities. In that
problem, one is given a graph G D (V ; E) and a set
of non-negative edge weights fdi j : (i; j) 2 Eg, and the
goal is to compute a realization of G in the Euclidean
space Rk for a given dimension k � 1, i. e. to place
the vertices of G in Rk such that the Euclidean dis-
tance between every pair of adjacent vertices vi ; v j is
equal to the prescribed weight di j . The Graph Re-
alization Problem and its variants arise from appli-
cations in very diverse areas, the two most promi-
nent of which being molecular conformation (see,
e. g., [13,15,16,19,32]) and wireless sensor network lo-
calization (see, e. g., [2,8,14,22,24]). In molecular con-
formation, one is interested in determining the spatial
structure of a molecule from a set of geometric con-
straints; in wireless sensor network localization, one is
interested in inferring the locations of sensor nodes in
a sensor network from connectivity-imposed proxim-
ity constraints. Thus, in these contexts, an algorithm
that finds a realization of the vertices in the required
dimension will have interesting biochemical and engi-
neering consequences. Unfortunately, unless P D NP,
there is no efficient algorithm for solving the Graph
Realization Problem for any fixed k � 1 ([23]; see
also [3,4]). Nevertheless, many heuristics have been
developed for the problem over the years, and vari-
ous approaches have been taken to improve their effi-
ciency (see, e. g., [1,2,13,14,15,18,20]). However, these
approaches have their limitations. Specifically, either
they solve the original problem only for a very restricted
family of instances, or it is not clear when the algorithm
would solve the original problem. Thus, an interesting
question arises: given a relaxation of the Graph Realiza-
tion Problem, can one derive reasonably general condi-
tions under which the relaxation is exact?

We begin by examining a semidefinite program-
ming (SDP) relaxation proposed by [10] in Section
Formulation. We introduce the notion of unique k-
realizability and show that the SDP relaxation is exact
if and only if the input instance is uniquely k-realizable,
where k is the given dimension. The notion of unique k-
realizability is attractive, as it has a straightforward ge-
ometric interpretation and is also very suitable for the
algorithmic treatment of the Graph Realization Prob-
lem.

Although we have formulated the Graph Realiza-
tion Problem as a feasibility problem, it is clear that
one can also formulate various optimization versions
of it. One particularly useful objective is to maximize
the sum of the distances between certain pairs of non-
adjacent vertices. Such an objective essentially stretches
apart pairs of non-adjacent vertices, and is more likely
to flatten a high-dimensional realization into a lower di-
mensional one. Indeed, such a device has been proven
to be very useful for finding low-dimensional real-
izations both in theory (see, e. g., [6,7]) and in prac-
tice (see, e. g., [9,29,30]). In Section Applications, we
show how these ideas can be incorporated into the SDP
model and demonstrate a connection between SDP the-
ory and tensegrity theory in discrete geometry.

Formulation

We begin by introducing the semidefinite program-
ming (SDP) relaxation proposed by [10]. Let G D

(V ; E) be a graph, and let k � 1 be an integer. Let
V1 D f1; : : : ; ng and V2 D fnC1; : : : ; nCmg be a par-
tition of V . The vertices in V1 (resp. V2) are said to be
unpinned (resp. pinned). Specifically, let a D (ai)i2V2

be given, where ai 2 Rk for all i 2 V2. Then, the
vertex i 2 V2 is constrained to be at ai, while there
are no such restrictions on the vertices in V1. For our
purposes, we may assume that V2 6D ;, since we can
always pin one vertex at the origin. We may also as-
sume that E0 D f(i; j) : i; j 2 V2g � E, since the
distance between any two pinned vertices is trivially
known. Now, let E1 D f(i; j) 2 E : i; j 2 V1g be
the set of edges between two unpinned vertices, and let
E2 D f(i; j) 2 E : i 2 V2; j 2 V1g be the set of
edges between a pinned and an unpinned vertex. Let
d D (d2i j)(i; j)2E1 (resp. d̄ D (d̄2i j)(i; j)2E2 ) be a set of
weights on the edges in E1 (resp. E2). We are then in-
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terested in finding vectors x1; : : : ; xn 2 Rk such that:

kxi � x jk
2 D d2i j for (i; j) 2 E1

kai � x jk
2 D d̄2i j for (i; j) 2 E2

(1)

Here, k � k is the Euclidean norm, i. e. kxk D�Pk
iD1 x

2
i
�1/2 for x 2 Rk . We say that p D (p1; : : : ;

pn) 2 Rkn is a realization of (G; (d; d̄); a) inRk if it sat-
isfies (1). One may obtain a semidefinite relaxation of
(1) as follows. Let X D [x1 x2 : : : xn] be the k�nmatrix
that needs to be determined. Then, for all (i; j) 2 E1, we
have:

kxi � x jk
2 D (ei � e j)TXTX(ei � e j)

D (ei � e j)(ei � e j)T � (XTX)

and for all (i; j) 2 E2, we have:

kai � x jk
2 D

�
ai
�e j

�T

[Ik X]T[Ik X]
�

ai
�e j

�
D

�
ai
�e j

��
ai
�e j

�T

�

�
Ik X
XT XTX

�

Here, ei is the ith standard basis vector of Rn , Ik is
the k-dimensional identity matrix, and � is the Frobe-
nius inner product on the space of symmetric matrices,
i. e. A � B D tr(ATB) D

Pn
i; jD1 ai jbi j for symmetric

n�nmatrices A and B. Thus, problem (1) becomes that
of finding a symmetric matrix Y 2 Rn�n and a matrix
X 2 Rk�n that satisfy the following system:

(ei � e j)(ei � e j)T � Y D d2i j
for (i; j) 2 E1�

ai
�e j

��
ai
�e j

�T

�

�
Ik X
XT Y

�
D d̄2i j

for (i; j) 2 E2

Y D XTX

(2)

By relaxing Y D XTX to Y � XTX and using
Schur’s complement (see, e. g., [11]), we obtain the fol-
lowing relaxed problem:

sup 0

subject to Ei j � Z D d2i j for (i; j) 2 E1

Ēi j � Z D d̄2i j for (i; j) 2 E2

Z � 0; Z1:k;1:k D Ik
(3)

where Z1:k;1:k is the k � k principal submatrix of Z in-
dexed by the first k rows (columns),

Ei j D

�
0

ei � e j

��
0

ei � e j

�T

and Ēi j D

�
ai
�e j

��
ai
�e j

�T

Note that this formulation forces any feasible solu-
tion matrix to have rank at least k. To derive the dual of
(3), let (�i j)(i; j)2E1 and (wi j)(i; j)2E2 be the dual multipli-
ers of the constraints on E1 and E2, respectively. Then,
the dual of (3) is given by:

inf Ik � V C
X

(i; j)2E1

�i jd2i j

C
X

(i; j)2E2

wi j d̄2i j

subject to U �
�

V 0
0 0

�
C

X
(i; j)2E1

�i jEi j

C
X

(i; j)2E2

wi j Ēi j � 0

�i j 2 R for all (i; j) 2 E1;
wi j 2 R for all (i; j) 2 E2

(4)

Note that the dual is always feasible, as V D 0,
�i j D 0 for all (i; j) 2 E1 and wi j D 0 for all (i; j) 2 E2

is a feasible solution. Moreover, this solution has a dual
objective value of 0. Thus, by the SDP strong duality
theorem, if the primal is also feasible, then there is no
duality gap between (3) and (4). Moreover, if Z is fea-
sible for (3) and U is optimal for (4), then by comple-
mentarity, we have rank(Z)Crank(U) � kCn. In par-
ticular, since rank(Z) � k, we must have rank(U) � n.

We are interested in deriving the conditions under
which the relaxation (3) is exact for (2). Towards that
end, let us first introduce a definition:

Definition 1 We say that an instance (G; (d; d̄); a) is
uniquely k-realizable if (i) there is a unique realization
p D (p1; : : : ; pn) of (G; (d; d̄); a) in Rk , and (ii) there
does not exist p01; : : : ; p0n 2 Rl , where l > k, such that:

kp0i � p0jk
2 D d2i j for (i; j) 2 E1






�

ai
0

�
� p0j






2

D d̄2i j for (i; j) 2 E2

p0i 6D
�

pi
0

�
for some 1 � i � n
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For the motivation of this definition, see [25]. We re-
mark that Definition 1 can be viewed as a new notion of
rigidity which takes into account both the combinato-
rial and the geometric aspects of the Graph Realization
Problem.

At this point it is fair to ask whether Definition 1
is vacuous, i. e. whether uniquely k-realizable instances
exist at all. It is not hard to see that they do exist for
all k � 1. In fact, there exists a family of uniquely k-
realizable instances in which the number of edges scales
linearly with the number of vertices ([25]). This refutes
a common belief in the literature (see, e. g., [2,5]) that
the graph of any uniquely k-realizable instance must
have ˝(n2) edges.

Having established the existence of uniquely k-re-
alizable instances, we are now ready to state the main
theorem of this section. For a proof, see [25,27].

Theorem 1 Let G D (V ; E) be connected, and let d, d̄
and a be given. Then, the following are equivalent:
(1) The instance (G; (d; d̄); a) is uniquely k-realizable.
(2) The max-rank solution matrix of (3) has rank k.
(3) The solution matrix of (3) satisfies Y D XTX.

Although unique k-realizability is a useful notion in de-
termining the solvability of the Graph Realization Prob-
lem, it is not stable under perturbation. Indeed, there
exist instances that are uniquely k-realizable, but may
no longer be so after small perturbation of the un-
pinned vertices; see [27]. This motivates us to define
another notion called strong k-realizability:

Definition 2 We say that an instance (G; (d; d̄); a) is
strongly k-realizable if (4) has a rank–n optimal dual
slack matrix.

Note that if an instance is strongly k-realizable, then it
is uniquely k-realizable by complementarity and Theo-
rem 1, since the rank of any solution to (3) is equal to k.

Given an instance I D (G; (d; d̄); a), we say that the
instance (G0; (d0; d̄0); a) is a sub–instance of I if G0 is
a subgraph of G that includes all the pinned vertices,
and (d0; d̄0) is the restriction of (d; d̄) on G0 . As indi-
cated by the following theorem, the notion of strong
k-realizability is very useful in identifying the uniquely
k-realizable sub–instances of a given instance. Its proof
can be found in [25,27].

Theorem 2 Suppose that a given instance I contains
a sub–instance I 0 that is strongly k-realizable. Then, in

any solution to (3), the submatrix that corresponds to I 0
has rank k.

Applications

It is often observed in practice that by “stretching apart”
pairs of non-adjacent vertices, one is more likely to flat-
ten a high-dimensional realization into a lower dimen-
sional one. We now formalize this observation using
elements of tensegrity theory (see, e. g., [12,21]).We be-
gin with some definitions:

Definition 3 A tensegrity G(p) is a graph G D (V ; E)
together with a configuration p D (p1; : : : ; pn) 2 Rkn

such that each edge is labelled as a cable, strut, or bar;
each vertex is labelled as pinned or unpinned; and ver-
tex i 2 V is assigned the coordinates pi 2 Rk for
1 � i � n.

The label on each edge is intended to indicate its func-
tionality. Cables (resp. struts) are allowed to decrease
(resp. increase) in length (or stay the same length),
but not to increase (resp. decrease) in length. Bars are
forced to remain the same length. As before, a pinned
vertex is forced to remain where it is. Given a graph
G D (V ; E) and a set d of weights on the edges, if
(i; j) is a cable (resp. strut), then di j will be the upper
(resp. lower) bound on its length. If (i; j) is a bar, then
di j will simply be its length.

An important concept in the study of tensegrities is
that of an equilibrium stress:

Definition 4 An equilibrium stress for G(p) is an as-
signment of real numbers !i j D ! ji to each edge
(i; j) 2 E such that for each unpinned vertex i of G,
we have:

X
j:(i; j)2E

!i j(pi � p j) D 0 (5)

Furthermore, we say that the equilibrium stress
! D f!i jg is proper if !i j D ! ji � 0 (resp. � 0) if
(i; j) is a cable (resp. strut).

Clearly, the zero stress ! D 0 is a proper equilibrium
stress, but it is not too interesting. On the other hand,
suppose that G(p) has a non-zero equilibrium stress,
and that at least one of the incident edges of vertex i has
a non-zero stress. Then, Eq. (5) implies that the set of
vectors fp j � pi : (i; j) 2 Eg is linearly dependent, and
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hence those vectors span a lower dimensional space.
Thus, it would be nice to have conditions that guarantee
the existence of a non-zero proper equilibrium stress. It
turns out that the concept of an unyielding tensegrity is
useful for that purpose.

Definition 5 Let G D (V ; E) be a graph, and let p
and q be two configurations of G. We say that G(p)
dominates G(q) (denoted by G(p) D G(q)) if for every
pinned vertex i, we have pi D qi , and for every edge
(i; j) 2 E, we have:

kpi � p jk

8<
:
�

D

�

9=
; kqi � q jk if (i; j) is a

8<
:

cable
bar
strut

9=
;

We call G(p) an unyielding tensegrity and p an un-
yielding configuration if any other configuration q with
G(p) D G(q) satisfies kpi � p jk D kqi � q jk for all
(i; j) 2 E.

We are now ready to state the following theorem due
to [6], which plays a crucial role in the characterization
of the so-called 3-realizable graphs (informally, a graph
G is 3-realizable if, given any set d of edge weights,
whenever (G; d) is realizable at all, then it can also be
realized inR3; for further details, see [7]):

Theorem 3 If G(p) is an unyielding tensegrity with ex-
actly one strut or cable, then G(p) has an equilibrium
stress that is non-zero on at least one edge.

Belk’s proof of Theorem 3 uses the Inverse Function
Theorem and hence is not constructive. It turns out that
the problem of computing an unyielding configuration
p of a graph G can be formulated as an SDP. What is
even more interesting is that the optimal dual multi-
pliers of the SDP will give rise to a non-zero proper
equilibrium stress for G(p). Consequently, we obtain
a constructive proof of Theorem 3. In fact, the SDP-
based proof yields more information than that offered
by Belk’s proof.

Specifically, let V1;V2; E1; E2 be as before, and set
Ec
1 D f(i; j) 62 E : i; j 2 V1g and Ec

2 D f(i; j) 62 E :
i 2 V2; j 2 V1g. Let C1; S1 be disjoint subsets of Ec

1 ,
and let C2; S2 be disjoint subsets of Ec

2 . The pairs in Ci

are intended to be cables, and those in Si are intended
to be struts. We remark that we do not assume the sets
C1;C2; S1; S2 to be non-empty.

Now, consider the following SDP, where we aug-
ment the formulation (3) with an objective function:

sup
X

(i; j)2S1

Ei j � Z C
X

(i; j)2S2

Ēi j � Z

�
X

(i; j)2C1

Ei j � Z �
X

(i; j)2C2

Ēi j � Z

subject to Ei j � Z D d2i j for (i; j) 2 E1

Ēi j � Z D d̄2i j for (i; j) 2 E2

Z � 0; Z1:k;1:k D Ik
(6)

The dual of (6) is given by:

inf Ik � V C
X

(i; j)2E1

�i jd2i j

C
X

(i; j)2E2

wi jd̄2i j

subject to U � �
X

(i; j)2S1

Ei j �
X

(i; j)2S2

Ēi j

C
X

(i; j)2C1

Ei j C
X

(i; j)2C2

Ēi j

C

�
V 0
0 0

�
C

X
(i; j)2E1

�i jEi j

C
X

(i; j)2E2

wi j Ēi j � 0

(7)

We then have the following theorem due to [26]:

Theorem 4 Let G D (V ; E), d, d̄ and a be given such
that:
(1) there is at least one pinned vertex, and
(2) the graph Gnfn C 2; : : : ; n C mg is connected.

Consider the SDP (6), where we assume that:
(3) it is strictly feasible, and
(4) the objective function is not vacuous, i. e. at least one

of the sets C1;C2; S1; S2 is non-empty.
Let x̄ D (x̄1; : : : ; x̄n) 2 Rl n be the positions of the

unpinned vertices in Rl (for some l � k), obtained from
the optimal primal matrix Z̄, and let f�̄i j; w̄i jg be the op-
timal dual multipliers. Suppose that we assign the stress
�̄i j (resp. w̄i j) to the bar (i; j) 2 E1 (resp. (i; j) 2 E2),
a stress of 1 to all the cables in C1 [ C2, and a stress of
�1 to all the struts in S1 [ S2. Then, the resulting assign-
ment yields a non-zero proper equilibrium stress for the
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tensegrity G0(x̄; ā), where G0 D (V ; E[C1[C2[S1[S2)
and ā D (ānC1; : : : ; ānCm), where:

āi D
�

ai
0

�
2 Rl

The intuition behind the proof of Theorem 4 is sim-
ple. Suppose that (6) and (7) achieve the same optimal
value, and that the common optimal value is attained
by the primal matrix Z̄ and the dual matrix Ū . Then,
the desired result should follow from one of the condi-
tions for strong duality, namely the identity Z̄Ū D 0.
Of course, strong duality for SDP does not necessar-
ily hold, and even when it does, there is no guarantee
that the optimal value is attained by any matrix (see,
e. g., [17] for some examples). Thus, some additional
technical assumptions are needed, and items (2) and (3)
in the statement of Theorem 4 turn out to be sufficient.
In fact, the conclusion of Theorem 4 remains valid if we
replace (3) by the following:

(30) the optimal value of (7) is attained by some dual
feasible matrix

We remark that in most applications of Theorem 4,
there will only be one pinned vertex, namely anC1 D 0.
Thus, primal strict feasibility can be ensured if the given
weights d admit a realization whose vertices are in gen-
eral position, and the connectivity condition is simply
the statement that G is connected. However, the strict
feasibility assumption (or the dual attainment assump-
tion) does weaken the applicability of Theorem 4. In
particular, Theorem 4 is not as general as Theorem 3,
although this can be fixed (see [25] for details).

Besides strict feasibility, it is also assumed that the
given instance has at least one pinned vertex. Such an
assumption is necessary in order to ensure that the en-
tries of Z̄ are bounded, but one can no longer argue
that the net stress exerted on a pinned vertex is zero.
However, if there is only one pinned vertex in the given
instance, then the net stress exerted on it will be zero.
Thus, one may assume without loss of generality that
the given instance has one pinned vertex.

Finally, observe that the assumptions in the state-
ment of Theorem 4 buy us some additional information
that is not offered by Theorem 3. Specifically, the equi-
librium stress obtained in Theorem 4 is non-zero on all
the cables and struts, and the magnitudes of the stress
on all the cables and struts can be prescribed (by assign-

ing appropriate weights to each summand in the primal
objective function).

Relation to the Maximum Variance Unfolding
Method

The idea of stretching apart pairs of non-adjacent ver-
tices has also been used in the artifical intelligence com-
munity to detect and discover low-dimensional struc-
ture in high-dimensional data. For instance, in [29] (see
also [30]), the authors proposed the so-called Maxi-
mum Variance Unfolding (MVU) method for the prob-
lem of manifold learning. The idea is to map a given set
of high-dimensional vectors p1; : : : ; pn 2 Rl to a set
of low-dimensional vectors q1; : : : ; qn 2 Rk (where
1 � k � l are given) with maximum total variance,
while at the same time preserves the local distances.
More precisely, consider an n-vertex connected graph
G D (V ; E), where the set E of edges represents the
set of distances that need to be preserved. The desired
set of low-dimensional vectors can then be obtained by
solving the following quadratic program:

maximize
nX

iD1

kxik2

subject to
nX

iD1

xi D 0

kxi � x jk
2 D kpi � p jk

2

for (i; j) 2 E

xi 2 Rk for 1 � i � n

(8)

To explain the rationale behind the above formu-
lation, we observe that the first constraint centers the
solution vectors at the origin and eliminates the trans-
lational degree of freedom.Moreover, it implies that the
objective function of (8) can be written as:

nX
iD1

kxik2 D
1
2n

nX
i; jD1

kxi � x jk
2

Thus, we see that the MVU method attempts to
“unfold” the manifold by pulling the data points as far
apart as possible while preserving the local distances.
We remark that such a technique has also been used
for the problem of sensor network localization (see,
e. g., [9,31]). Now, using the ideas in Section Formu-
lation, we can formulate a semidefinite relaxation of (8)
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as follows:

sup I � X

subject to eeT � X D 0

Ei j � X D kvi � v jk2 for (i; j) 2 E

X � 0
(9)

Here, e D (1; 1; : : : ; 1), Ei j D (ei � e j)(ei � e j)T ,
and ei is the ith standard basis vector of Rn . It turns
out that problem (9) and its dual are closely related to
the problem of finding the fastest mixing Markov pro-
cess on a graph, as well as to various spectral meth-
ods for dimensionality reduction. We shall not elabo-
rate on these results here and refer the interested reader
to [28,33] for further details. Instead, we will show that
the MVU problem (9) can be viewed as a problem of
finding an unyielding configuration of a certain tenseg-
rity. To begin, suppose that we are given an n-vertex
connected graph G D (f1; : : : ; ng; E) and a configura-
tion p D (p1; : : : ; pn) 2 Rl n of the vertices. Consider
the tensegrity G0(p0), where G0 is obtained from G by
adding a new vertex n C 1 and connecting it to all the
vertices ofG, and p0 D (p; 0) 2 Rl (nC1), i. e. vertex nC1
is located at the origin. Furthermore, we label the edges
in E as bars and the edges in S � f(nC1; i) : 1 � i � ng
as struts. Suppose that we pin vertex nC1 at the origin,
i. e. anC1 D 0. Now, consider the following SDP:

sup
X

i :(nC1;i)2S

ĒnC1;i � Z

subject to Ei j � Z D kpi � p jk
2 for (i; j) 2 E

Z � 0; Z1:k;1:k D Ik
(10)

where:

Ei j D

�
0

ei � e j

��
0

ei � e j

�T

and ĒnC1;i D

�
0
�ei

��
0
�ei

�T

It is clear that (10) is an instance of (6). Moreover,
it can be shown ([25]) that the positions x̄ 2 Rl n of
the unpinned vertices obtained from the optimal pri-
mal matrix Z̄ are automatically centered at the origin,

even though such a constraint is not explicitly enforced.
Thus, we see that problem (10) is equivalent to the
MVU problem (9).

From the above discussion, we see that the formula-
tion (6) is more general than the MVU formulation (9).
Moreover, the flexibility in the formulation (6) often al-
lows one to achieve the desired dimensionality reduc-
tion which the MVU formulation cannot achieve. For
instance, consider the case where the input graph G is
a tree. It is not hard to show that there is a placement
of struts such that all the optimal solutions to (6) have
rank 1 and hence they all give rise to one-dimensional
realizations. On the other hand, the MVU formulation
may yield a two-dimensional realization; see [25] for an
example.
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Optimization problems that involve a large finite num-
ber of alternatives often arise in industry, government
and science. In these problems, one is given a finite
solution set X and a real-valued function f : X ! R,
and one seeks a solution x� 2 X with f (x�) � f (x),
8x 2 X. Common examples include designing efficient
telecommunication networks and constructing cost ef-
fective airline crew schedules. To find the optimal so-
lution in a com binatorial optimization problem it is
theoretically possible to enumerate the solutions and
evaluate each with respect to the stated objective. How-
ever, from a practical perspective, it is infeasible to fol-
low such a strategy of complete enumeration because
the number of combinations often grows exponentially
with the size of problem.

Much work has been done over the last five decades
to develop optimal seeking methods that do not ex-
plicitly require an examination of each alternative. This
research has given rise to the field of combinatorial
optimization (see [55]), and an increasing capability
to solve ever larger real-world problems. Nevertheless,
most problems found in industry and government are
either computationally intractable by their nature, or
sufficiently large so as to preclude the use of exact
algorithms. In such cases, heuristic methods are usu-
ally employed to find good, but not necessarily guar-
anteed optimal solutions. The effectiveness of these
methods depends upon their ability to adapt to a par-
ticular realization, avoid entrapment at local optima,
and exploit the basic structure of the problem, such
as a network or a natural ordering among its compo-
nents. Furthermore, restart procedures, controlled ran-
domization, efficient data structures, and preprocess-
ing are also beneficial. Building on these notions, var-
ious heuristic search techniques have been developed
that have demonstrably improved our ability to obtain

good solutions to difficult combinatorial optimization
problems. The most promising of such techniques in-
clude simulated annealing [35], tabu search [27,28,29],
genetic algorithms [30] and GRASP (greedy random-
ized adaptive search procedures) [21,22].

In this article, we review GRASP. The components
of a basic GRASP heuristic are addressed and enhance-
ments proposed to the basic heuristic are discussed. The
paper concludes with a brief literature review of appli-
cations of GRASP.

A Basic GRASP

A GRASP is a multistart or iterative process, in which
each GRASP iteration consists of two phases, a con-
struction phase, in which a feasible solution is produced,
and a local search phase, in which a local optimum in
the neighborhood of the constructed solution is sought.
The best overall solution is kept as the result. The pseu-
docode below illustrates a GRASP procedure for mini-
mization in which maxitr GRASP iterations are done.

x� =1;
FOR k = 1; : : : ;maxitr DO

construct (g(�); ˛; x);
local ( f (�); x);
IF f (x) < f (x�) DO

x� = x;
END IF;

END FOR

Procedure grasp(f (�); g(�);maxitr; x�)

In the construction phase, a feasible solution is it-
eratively constructed, one element at a time. The basic
GRASP construction phase is similar to the semigreedy
heuristic proposed independently by J.P. Hart and A.W.
Shogan [31]. At each construction iteration, the choice
of the next element to be added is determined by order-
ing all candidate elements (i. e. those that can be added
to the solution) in a candidate list C with respect to
a greedy function g: C! R. This function measures the
(myopic) benefit of selecting each element. The heuris-
tic is adaptive because the benefits associated with ev-
ery element are updated at each iteration of the con-
struction phase to reflect the changes brought on by
the selection of the previous element. The probabilistic
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component of a GRASP is characterized by randomly
choosing one of the best candidates in the list, but not
necessarily the top candidate. The list of best candidates
is called the restricted candidate list (RCL). This choice
technique allows for different solutions to be obtained
at each GRASP iteration, but does not necessarily com-
promise the power of the adaptive greedy component
of the method. Let ˛ 2 [0, 1] be a given parameter. The
pseudocode below describes a basic GRASP construc-
tion phase.

x = ;;
Initialize candidate set C;
WHILE C ¤ ; DO

s = minfg(t) : t 2 Cg;
s̄ = maxfg(t) : t 2 Cg;
RCL= fs 2 C : g(s) � s + ˛(s̄ � s)g;
Select s, at random, from the set RCL;
x = x [ fsg;
Update candidate set C;

ENDWHILE

Procedure construct(g(�); ˛; x)

The pseudocode shows that the parameter ˛ con-
trols the amounts of greediness and randomness in the
algorithm. A value ˛ = 0 corresponds a greedy construc-
tion procedure, while ˛ = 1 produces random construc-
tion.

As is the case for many deterministic methods, the
solutions generated by a GRASP construction are not
guaranteed to be locally optimal with respect to sim-
ple neighborhood definitions. Hence, it is almost al-
ways beneficial to apply a local search to attempt to
improve each constructed solution. A local search al-
gorithm works in an iterative fashion by successively
replacing the current solution by a better solution in
the neighborhood of the current solution. It termi-
nates when no better solution is found in the neigh-
borhood. The neighborhood structure N for a problem
P relates a solution s of the problem to a subset of so-
lutions N(s). A solution s is said to be locally optimal
if there is no better solution in N(s). The key to suc-
cess for a local search algorithm consists of the suitable
choice of a neighborhood structure, efficient neighbor-
hood search techniques, and the starting solution.

While such local optimization procedures can re-
quire exponential time from an arbitrary starting point,
empirically their efficiency significantly improves as
the initial solution improves. Through the use of cus-
tomized data structures and careful implementation, an
efficient construction phase can be created which pro-
duces good initial solutions for efficient local search.
The result is that often many GRASP solutions are gen-
erated in the same amount of time required for the local
optimization procedure to converge from a single ran-
dom start. Furthermore, the best of these GRASP so-
lutions is generally significantly better than the single
solution obtained from a random starting point. The
pseudocode below describes a basic local search proce-
dure.

H = fy 2 N(x) : f (y) < f (x)g;
WHILE jHj > 0 DO

Select x 2 H;
H = fy 2 N(x) : f (y) < f (x)g;

ENDWHILE

Procedure local(f (�);N(�); x)

It is difficult to formally analyze the quality of so-
lution values found by using the GRASP methodol-
ogy. However, there is an intuitive justification that
views GRASP as a repetitive sampling technique. Each
GRASP iteration produces a sample solution from an
unknown distribution of all obtainable results. The
mean and variance of the distribution are functions
of the restrictive nature of the candidate list. For ex-
ample, if the cardinality of the restricted candidate
list is limited to one, then only one solution will be
produced and the variance of the distribution will be
zero. Given an effective greedy function, the mean so-
lution value in this case should be good, but prob-
ably suboptimal. If a less restrictive cardinality limit
is imposed, many different solutions will be produced
implying a larger variance. Since the greedy function
is more compromised in this case, the mean solution
value should degrade. Intuitively, however, by order
statistics and the fact that the samples are randomly
produced, the best value found should outperform the
mean value. Indeed, often the best solutions sampled
are optimal.
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An especially appealing characteristic of GRASP is
the ease with which it can be implemented. Few param-
eters need to be set and tuned, and therefore develop-
ment can focus on implementing efficient data struc-
tures to assure quick GRASP iterations. Finally, GRASP
can be trivially implemented in parallel. Each processor
can be initialized with its own copy of the procedure,
the instance data, and an independent random number
sequence. The GRASP iterations are then performed in
parallel with only a single global variable required to
store the best solution found over all processors.

Enhancements to the Basic GRASP

A number of enhancements to the basic GRASP, pre-
sented in the previous section, have been proposed in
the literature. In this section we review the use path re-
linking, long-term memory, the proximate optimality
principle, and bias functions in a GRASP. We discuss
a parallelization scheme and the use of GRASP in hy-
brid metaheuristics.

Path Relinking

M. Laguna and R. Martí [43] adapted the concept of
path relinking for use within a GRASP. To test their
concept, they im plemented a GRASP with path relink-
ing for the 2-layer straight line crossing minimization
problem. A small set of high-quality, or elite, solutions
is stored to serve as guiding solutions for path relink-
ing. Each GRASP iteration produces a locally optimal
solution x�. A solution y� is chosen at random from
the elite set and a path of solutions linking x� to y� is
constructed by applying a series of changes to the orig-
inal solution. For example, let x� = (1, 0, 0, 0) and y� =
(0, 1, 0, 1). A path relinking of x� and y� is x� = (1, 0, 0,
0)! (0, 0, 0, 0)! (0, 1, 0, 0)! (0, 1, 0, 1) = y�. Each
of these path solutions is evaluated for solution qual-
ity. Laguna and Martí report that often improvements
to the incumbent are found in this path relinking.

Long-TermMemory

Long-term memory is the basis for tabu search. Besides
path relinking, which can thought of as a form of long-
term memory, other uses of long term memory have
been proposed for use in a GRASP. C. Fleurent and F.
Glover [26] observe the fact that the basic GRASP does

not make use of information gathered in previous it-
erations and propose a long term memory scheme to
address this issue. M. Prais and C.C. Ribeiro [64] pro-
pose a scheme to learn an appropriate value for the RCL
parameter ˛.

Fleurent and Glover introduced a way to use long-
term memory in multistart heuristics such as GRASP.
Their scheme maintains a set S of elite solutions to
be used in the construction phase. To become an elite
solution a solution s must be either better than the
best member of S, or better than the worst member
of S and sufficiently different from the other elite so-
lutions. For example, one can count identical solution
vector components and set a threshold for rejection.
A strongly determined variable is one that cannot be
changed without eroding the objective or changing sig-
nificantly other variables. A consistent variable is one
that receives a particular value in a large portion of the
elite solution set. Let I(e) be a measure of the strongly
determined and consistent features of choice e, i. e. I(e)
becomes larger as e resembles solutions in elite set S.
The intensity function I(e) is used in the construction
phase as follows. Recall that g(e) is the greedy func-
tion. Let E(e) = F(g(e), I(e)) be a function of the greedy
and the intensification functions. For example, E(e) =
� g(e) + I(e). The intensification scheme biases selec-
tion from the RCL to those elements e with a high
value of E(e) by setting the probability of selecting e
to be p(e) = E(e)/

P
s 2 RCLE(s). The function E(e) can

vary with time by changing the value of �, e. g. ini-
tially � is set to a large value and when diversification
is called for, � is decreased. A procedure for changing
the value of � is given by Fleurent and Glover. See also
[11] for an application of this long-term memory strat-
egy.

Reactive GRASP

The term ‘reactive GRASP’ was introduced by Prais and
Ribeiro [64] for a GRASP that reacts to solutions pro-
duced by different settings of the RCL parameter ˛ and
seeks to adjust ˛ to give the GRASP an appropriate level
of greediness and randomness. At each GRASP itera-
tion, the value of ˛ is chosen from a discrete set of val-
ues {˛1, . . . , ˛m}. The probability of selecting the value
˛k is p(˛k), for k = 1, . . . ,m. Reactive GRASP adaptively
changes the probabilities {p(˛1), . . . , p(˛m)} to favor
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values that produce good solutions. Consider applying
Reactive GRASP to a minimization problem. Initially
the probabilities are set as p(˛k) = 1/m, for i = 1, . . . ,
m, so that the values are selected uniformly. To adap-
tively redefine the probabilities, define F(S�) to be the
value of the best solution found so far and let Ai be the
average value of the solutions obtained with ˛i. Prais
and Ribeiro propose a period of warm-up iterations to
initialize the Ai values. Periodically (say every N˛ itera-
tions) the quantities qi = (F(S�)/Ai)ı are computed for
i = 1, . . . , m and the probabilities are updated to p(˛i)
= qi/

Pm
jD1 qj, for i = 1, . . . , m. Observe that the more

suitable a value ˛i is, the larger the value of qi is and,
consequently, the higher the value of p(˛i), making ˛i
more likely to be selected. The parameter ı can be used
as an attenuation parameter. See also [16] for an appli-
cation of reactive GRASP.

Proximate Optimality Principle

The proximate optimality principal is based on the
idea that ‘good solutions at one level are likely to be
found close to good solutions at an adjacent level’ [29].
Fleurent and Glover [26] provide a GRASP interpreta-
tion of this principle. They suggest that imperfections
introduced during steps of GRASP construction can be
‘ironed-out’ by applying local search during (and not
only at the end of) GRASP construction. Because of ef-
ficiency considerations, a practical implementation of
POP to GRASP is to apply local search during a few
points in the construction phase and not during each
construction iteration. See also [11] for an application
of the proximate optimality principle.

Global Convergence

In [52] it was pointed out that GRASP with a fixed
nonzero RCL parameter ˛ is not asymptotically con-
vergent to a global optimum. During construction,
a fixed RCL parameter may rule out a candidate that is
present in all optimal solutions. Several remedies have
been proposed to get around this problem. The most
straightforward is the use of a randomly selected ˛ [72].
In this approach, the parameter is selected at random
from the continuous interval [0, 1] at the start of each
GRASP iteration. That value is used during the entire it-
eration. Since a subset of the iterations are random, the

algorithm becomes asymptotically globally convergent.
Reactive GRASP, as described above, can also be made
asymptotically globally convergent by making ˛m = 1,
i. e. allowing the choice of a value that produces a ran-
dom GRASP iteration. J.L. Bresina [13] introduced the
concept of a bias function to select a candidate element
to be included in the solution. Bresina’s method, which
is directly applicable to GRASP construction, also al-
lows for purely random construction and is therefore
asymptotically globally convergent. At each construc-
tion step, the elements in the candidate set C are ranked
by their greedy function values. A bias value bias(r)
is assigned to the rth ranked element. Bresina pro-
poses several bias functions. In logarithmic bias, bias(r)
= 1/log(r + 1). In linear bias, bias(r) = 1/r. In poly-
nomial bias of order n, bias(r) = 1/rn. In exponen-
tial bias, bias(r) = 1/er . Finally, in random bias, bias(r)
= 1. During construction, the probability of selecting
the rth ranked candidate is bias(r) /

PjCj
iD1 bias(i). See

also [11] for an application of this bias function strat-
egy.

Parallel GRASP

Parallel implementation of GRASP is straightforward.
Two general strategies have been proposed. In search
space decomposition, the search space is partitioned
into several regions and GRASP is applied to each in
parallel. An example of this is the GRASP formaximum
independent set [23,69] where the search space is de-
composed by fixing two vertices to be in the indepen-
dent set. In iteration parallelization, the GRASP itera-
tions are partitioned and each partition is assigned to
a processor. See [54,56,57,58,67] for examples of par-
allel implementations of GRASP. Some care is needed
so that different random number generator seeds are
assigned to the different iterations. This can be done
by running the random number generator through an
entire cycle, recording all Ng seeds in a seed array. It-
eration i is started with seed(i). GRASP has been im-
plemented on distributed architectures. In [58] a PVM-
based implementation is described. TwoMPI-based im-
plementations are given in [4,50]. A.C.F. Alvim [4]
proposes a general scheme for MPI implementations.
A master process manages seeds for slave processors. It
passes blocks of seeds to each slave processor and awaits
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the slaves to indicate that they have finished processing
the block and need another block. Slaves also pass back
to the master the best solution found for each block of
iterations.

GRASP in Hybrid Metaheuristics

GRASP has been used in hybrid metaheuristic schemes.
Laguna and J.L. González-Velarde [41] proposed
a GRASP in which local search is done by tabu search.
See also [16,46] for implementations of GRASP using
tabu search as the local search procedure. Simulated an-
nealing can also be used as a GRASP local search proce-
dure if the initial temperature is low so that it remains
near the neighborhood of the constructed solution. R.K.
Ahuja, J.B. Orlin and A. Tiwari [3] use GRASP con-
struction as a mechanism for generating the initial pop-
ulation in a genetic algorithm. GRASP is used in [45] in
a genetic algorithm to implement a type of crossover
called perfect offspring.

Applications of GRASP

We now turn our attention to a number of GRASP
implementations that have appeared in the literature,
covering a wide range of applications. An early tuto-
rial on GRASP appears in [22]. We group the work
into two categories, applications to operations research
problems and to industrial applications.

Operations Research Problems

Applications of GRASP to operations research prob-
lems can be classified into eight categories: scheduling
problems, routing problems, logic, partitioning prob-
lems, location problems, graph theoretic problems,
assignment problems, and nonconvex network flow
problems.

GRASP has been applied to several scheduling
problems, including operations sequencing in discrete
parts manufacturing [7], flight scheduling [18], just-in-
time scheduling in parallel machines [41], printed wire
assembly scheduling [9,19], single machine schedul-
ing with sequence dependent setup costs and delay
penalties [24], field technician scheduling [79], flow-
shop with setup costs [76,77], and bus-driver schedul-
ing [45].

Applications of GRASP to routing problems include
vehicle routing with time windows [38], vehicle rout-
ing [32], aircraft routing [5], inventory routing prob-
lem with satellite facilities [10], and permanent virtual
circuit (PVC) routing [66].

Problems in logic have been approached with
GRASP. These include the satisfiability problem [68],
maximum satisfiability [58,71,72], and inference of log-
ical clauses from examples [15].

GRASP has been applied to partitioning problems,
including graph two partition [40] and number parti-
tioning [6].

Applications of GRASP to location problems in-
clude p-hub location [36], pure integer capacitated
plant location [14], location with economies of scale
[33], single source capacitated plant location [16], lo-
cation of concentrators in network access design [74],
and maximum covering [67].

GRASP has been used for finding approximate
solutions to a number of graph theoretic problems,
including set covering [21], maximum independent
set [23,69], maximum clique with weighted edges
[48], graph planarization [73,75], 2-layer straight line
crossing minimization [43], sparse graph coloring
[42], maximum weighted edge subgraph [47], the
Steiner tree problem in graphs [49,50], feedback ver-
tex set in directed graphs [60], maximum clique [1,61],
and the capacitated minimum spanning tree prob-
lem [2].

Several assignment problems have been approached
with GRASP. A GRASP was introduced for the
quadratic assignment problem in [44]. A parallel ver-
sion of this GRASP is described in [57]. Fortran subrou-
tines for dense and sparse quadratic assignment prob-
lems can be found respectively in [70] and [59]. A mod-
ified local search for the GRASP for quadratic assign-
ment problems is proposed in [65]. GRASP has been
used to generate the initial population of a genetic algo-
rithm for the quadratic assignment problem [3]. Long
term memory schemes have been adapted to a GRASP
for the quadratic assignment problem in [26]. AGRASP
for the biquadratic assignment problem is described
in [51]. GRASP has been applied to two multidimen-
sional assignment problems [53,78] and to the radio
link frequency assignment problem [62]. A GRASP
for the generalized assignment problem was proposed
in [46].



1466 G Greedy Randomized Adaptive Search Procedures

GRASP has been used for finding approximate so-
lutions to a concave-cost network flow problem [34].

Industrial Applications

Industrial applications of GRASP can be classi-
fied into seven categories: manufacturing, transporta-
tion, telecommunications, automatic drawing, electri-
cal power systems, military, and biology.

GRASP has been applied to several manufactur-
ing problems, including operations sequencing in dis-
crete parts manufacturing [7], cutting path and tool
selection in computer-aided process planning [17],
manufacturing equipment selection [8], component
grouping [37], and printed wire assembly schedul-
ing [9,19].

Applications of GRASP in transportation include
flight scheduling and maintenance base planning [18],
intermodal trailer assignment [20], and aircraft routing
in response to groundings and delay [5].

In telecommunications, GRASP has been applied
to the design of SDH mesh-restorable networks [63],
the Steiner tree problem in graphs [49,50], permanent
virtual circuit (PVC) routing [66], location of concen-
trators in network access design [74], traffic schedul-
ing in satellite switched time division multi-access
(SS/TDMA) systems [64], location of points of pres-
ence (PoPs) [67], and to the multicriteria radio link fre-
quency assignment problem [62].

GRASP has been applied to automatic drawing
problems, including seam drawing in mosaicing of
aerial photographic maps [25], graph planarization
[73,75], and 2-layer straight line crossing minimization
[43].

GRASP has been applied to other industrial prob-
lems. An application to electrical power systems is trans-
mission expansion planning [12]. A military applica-
tion of GRASP is in multitarget multisensor tracking
[53]. GRASP has been applied in biology for protein
structure prediction [39].

Conclusion

We have surveyed the literature on greedy randomized
adaptive search procedures (GRASP) in the 1990s. In
these years many enhancements to the basic GRASP
introduced in 1988 have been proposed. The number

and variety of applications has grown and continues to
grow.

See also

� Feedback Set Problems
� Generalized Assignment Problem
� Graph Coloring
� Graph Planarization
� Heuristics for Maximum Clique and Independent

Set
�Maximum Satisfiability Problem
� Quadratic Assignment Problem
� Quadratic Semi-assignment Problem
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Polynomial equations (in several variables) arise in
many areas connected to management science. They
could describe the feasible set of an optimization prob-
lem, the Karush–Kuhn–Tucker conditions for the same
problem, or maybe constraints on the positions of the
links of a robot arm in a flexible manufacturing system.

There are many analogies between polynomial
equations and their special case, linear equations.
� One might want to solve the equations, i. e. find

one or all solutions, determine whether a solution is
unique or determine whether the system in incon-
sistent.

� One might want to answer more abstract questions,
such as whether a given equation is a consequence
of a given set of equations (cf. � Farkas lemma;
� Farkas lemma: Generalizations).

For linear equations a fundamental concept is that of
a (linear) basis and the fundamental tool is that of Gaus-
sian elimination, by which one can construct a basis
from a given set of vectors. Similarly, for polynomi-
als there is the corresponding concepts of a Gröbner
basis and the Buchberger algorithm, which for a given
set of polynomials constructs a Gröbner basis. In par-
ticular one can convert a system of polynomial equa-
tions to triangular form, which allows for a solution
by back substitution. In Gaussian elimination, the vari-
ables/columns have an ordering that influences the end
result. Similarly, for Gröbner bases we need an order,
not only for the variables, but for monomials, i. e. the
simplest possible polynomials, such as x31x4, that are
products of variables. In this short note we will review
Gröbner basis for polynomial equations.

Before defining a Gröbner base we will give an ex-
ample.

Example 1 Suppose we want to find the local optima of
the following optimization problem ([4, Problem 337];
also used in [3]), by solving the KKT-conditions:

(P)

8̂
ˆ̂̂<
ˆ̂̂̂
:

min f (x) D 9x21 C x22 C 9x23
s.t. g1(x) D 1 � x1x2 � 0

g2(x) D 1 � x2 � 0
g3(x) D x3 � 1 � 0:

The KKT conditions for (P) are:

(KKT)

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

18x1 � �1x2 D 0
2x2 � �1x1 � �2 D 0
18x3 C �3 D 0
�1(1 � x1x2) D 0
�2(1 � x2) D 0
�3(x3 � 1) D 0:

Further suppose we use a lexicographical order of
the monomials such that x1> x2> x3> �1> �2> �3. Then,
computing the Gröbner basis for the set of polynomi-
als in the above system and forming the corresponding
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equation system, we get

8̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

18x1 � x2�1 D 0
x2�1 � 36x3 C 18�2 D 0
x2�2 � �2 D 0
2x2 � �1 � �2 D 0
18x3 � �3 D 0
�31 � 36�1 � 18�22 C 36�2 D 0
�1�2 C �

2
2 � 2�2 D 0

�32 C 14�22 � 32�2 D 0
�23 C 18�3 D 0:

This system has an obvious triangular structure,
that we have tried to display graphically. The last equa-
tion contains only �3. Then comes equations in �2 (and
possibly �3) and so on. In a similar way as in Gaus-
sian elimination, the system can thus be solved by back
substitution. In each step, one then has to solve a sin-
gle variable polynomial equation, giving possibly sev-
eral solutions, each of which is substituted into the pre-
ceding equations. Thus the solution process evolves in
a tree-like structure. It might happen, that one has to
solve for a variable that is already computed. Then of
course the solutions have to agree, else they are dis-
carded.

The above type of structure will always occur if there are
finitely many solutions. It might happen, though, that
the system allows a manifold of solutions. In this case
it might e. g. happen that the last equation contains two
variables or that you in the back substitution process
comes to an equation with two (ormore) undetermined
variables. These equations then give a parametrization
of the manifold.

What is a Gröbner Basis

In Gaussian elimination the variables are ordered and
the basic reduction rule is to replace the equations f =
0, g = 0 by f = 0, g � cf = 0 where the constant c is
chosen so that the leading terms in g and cf coincide.

In systems of polynomial equations we do some-
thing quite similar. First we extend the ordering of the
variables to a total ordering of all monomials in a way
such thatm0 < m00)mm0 <mm00 for all monomialsm,
m0 andm00 and so that 1 is the least one.

The basic reduction rule is now to replace the equa-
tions f = 0, g = 0 by f = 0, g � cmf = 0 where the con-
stant c and the monomialm are chosen so that the lead-
ing terms of g and cmf coincide. This implies that h =
g � cmf is ‘smaller’ than g in the ordering. If such a re-
duction of g with f is possible and h = g � cmf we will
write g!f h.

Definition 2 A finite set G of polynomials is aGröbner
basis if for every polynomial q there exist a unique r and
a finite reduction chain q! g1 q1 ! g2 � � � ! gk qk =
r for some g1, . . . , gk in G and such that r cannot be
reduced further. The unique polynomial r is called the
normal form of qmodulo G.

Given a finite set of vectors we can use Gaussian elimi-
nation to compute a basis of vectors spanning the same
linear space. Given a finite set P of polynomials (and an
admissible monomial ordering), one can use the Buch-
berger algorithm to compute a Gröbner basis G, span-
ning the same ‘space’ of polynomials as P. (By the space
of polynomial spanned by P is meant the ideal gener-
ated by P, i. e. the set of finite linear combinations q1p1
+ � � � + qsps where the pi-s are in P and the qi-s are ar-
bitrary polynomials.) We say that G is a Gröbner basis
for P. Moreover, the common zeros of P are the same
as those of G.

What are Gröbner Bases good for

Roughly speaking, all questions concerning a system of
polynomial equations f 1 = � � � = f s = 0 can be answered
if we have a corresponding Gröbner basis. Here we list
just a few of them.
� Is the system solvable?
� If the system is solvable, how many solutions are

there, and which are they?
� Howmany real solutions are there? (in case the coef-

ficients are real). Here we can also allow for inequal-
ities.

� Is it possible to eliminate some of the variables?
� Given some polynomial f , does f vanish whenever f 1
� � � f s does? This can be used for automated proofs
in geometry.

� Given some polynomial f , does there exist polyno-
mials q1, . . . , qs such that f = q1f 1+ � � � + qsf s?

� Is it possible to describe the algebraic relations be-
tween the f i-s, i. e. the set of polynomials q in s vari-
ables such that q(f 1, . . . , f s) is the zero polynomial.
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� Can a given polynomial f be written as f = q(f 1, . . . ,
f s) for some polynomial q in s variables, and in case
it can, is it possible to compute q?

� Can we compute a vector space basis for the vector
space of polynomials modulo f 1 � � � f s?

Using Gröbner Bases
and Learningmore About them

Essentially all major mathematical computer packages
with symbolic capabilities contain modules for Gröbner
bases. The main examples are Maple and Mathematica.
For a short but more detailed introduction to Gröbner
bases, see [3]. The book [2] gives a rather short intro-
duction to the field. One standard textbook is [1]

See also

� Contraction-mapping
� Fundamental Theorem of Algebra

� Global Optimization Methods for Systems
of Nonlinear Equations

� Interval Analysis: Systems of Nonlinear
Equations

� Nonlinear Least Squares: Newton-type Methods
� Nonlinear Systems of Equations: Application to the

Enclosure
of All Azeotropes
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