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Abstract

The flowshop scheduling problem with blocking in-process is addressed in this paper. In this environment, there are no
buffers between successive machines; therefore intermediate queues of jobs waiting in the system for their next operations are
not allowed. Heuristic approaches are proposed to minimize the total tardiness criterion. A constructive heuristic that explores
specific characteristics of the problem is presented. Moreover, a GRASP-based heuristic is proposed and coupled with a path
relinking strategy to search for better outcomes. Computational tests are presented and the comparisons made with an adaptation
of the NEH algorithm and with a branch-and-bound algorithm indicate that the new approaches are promising.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

This paper analyzes the flowshop scheduling problem
with blocking between machines. This environment is
characterized by processing n jobs on m machines in
the same order, that is, the jth operation of every job
must always be conducted on machine j. The processing
times of each job on each machine are known. Since
there is no buffer storage between machines, queues of
jobs waiting in the system for their next operation are
not allowed. A job completed on one machine blocks
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it until the next machine is available for processing.
Note that this environment is different from the no-wait
flowshop environment. In the latter, there is no machine
blocking: once a job is started on the first machine, it
must be continuously processed (without interruption)
until its completion on the last machine.

According to Hall and Sriskandarajah [1], blocking
can be related to the production process itself. Some ex-
amples of blocking can be found in concrete block man-
ufacturing, which does not allow stock in some stages
of the manufacturing process [2], and in a robotic cell,
where a job may block a machine while waiting for the
robot to pick it up and move it to the next stage [3].

The scheduling performance measure considered in
this paper is the minimization of the total tardiness
of jobs. The tardiness criterion is of great importance
in manufacturing systems because certain costs are
incurred when a job is not completed by its due date.

http://www.elsevier.com/locate/omega
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These costs include: penalty clauses in the contract,
loss of goodwill resulting in an increased probability
of losing the customer for some or all future jobs, and
a damaged reputation which will turn other customers
away [4].

The tardiness of a job can be computed using
the recursive equations presenteded by Pinedo [5].
Let t1, t2, . . . , ti , . . . , tn be the sequence to be eval-
uated, where ti represents the job that occupies
the ith position in the considered sequence. Let
M1, M2, . . . , Mj , . . . , Mm be the ordered sequence of
machines, pkj the processing time of job k on machine
Mj , and dk the due date of job k. Let Dti,0 denote
the start time of job ti on the first machine and Dti,j

the departure time of job ti on machine Mj . The de-
parture times of each job on each machine are given
by the following expressions:

Dt1,0 = 0, (1)

Dt1,j =
j∑

q=1

pt1,q , j = 1, . . . , m − 1, (2)

Dti,0 = Dt(i−1),1 i = 2, . . . , n, (3)

Dti,j = max(Dti,j−1 + pti,j , Dt(i−1),j+1)

i = 2, . . . , n, j = 1, . . . , m − 1, (4)

Dti,m = Dti,m−1 + pti,m i = 1, . . . , n. (5)

Since the completion times of the jobs are known
(Dti,j ), the total tardiness is given by

T =
n∑

i=1

max(Dti,m − dti , 0). (6)

The level of difficulty of the problem can be assessed
using the particular case of a single machine, which
is NP-hard for the tardiness criterion [6]. Moreover, it
can be shown that the decision version of the flowshop
problem with blocking and three machines minimizing
the makespan criterion, which is NP-hard in the strong
sense, is reducible to the decision version of this prob-
lem considering the minimization of the total tardiness
(to know whether the makespan is less than or equal to
a threshold value y, one needs to define dk = y for all
k = 1 . . . n and to solve the corresponding tardiness de-
cision problem). See Lenstra et al. [7] for similar cases.

The research on flowshop with blocking is not ex-
tensive. An overview of the literature on the makespan
criterion follows. A good review can be found in Hall
and Sriskandarajah [1], who proved that this problem
with three machines is NP-hard in the strong sense. In
a previous work, Leisten [8] presented a more com-
plex proof that the equivalent decision version of this

problem is NP-complete. This author reduced the three-
dimensional matching problem to a special case of the
flowshop problem with blocking and three machines.

Among heuristic approaches, McCormick et al. [9]
developed an algorithm, known as Profile Fitting, which
tries to initially sequence jobs that lead to the minimum
sum of idle times and blocking times on machines. A
more comprehensive approach is presented by Leisten
[10], who compares heuristics adapted from cases of
no-wait, unlimited buffers, limited buffers, and two spe-
cially designed heuristics which attempt to optimize the
utilization of the available buffer storage. The author
concludes that the heuristics allowing job passing did
not lead to good solutions and that the NEH algorithm
proposed by Nawaz et al. [11] performs better. Ron-
coni [12] suggests three constructive heuristics, includ-
ing a combination of the Profile Fitting heuristic and
the enumeration procedure used by the NEH algorithm.
The proposed methods outperform the NEH algorithm
in problems involving up to 500 jobs and 20 machines.

Abadi et al. [13] propose a heuristic for minimizing
the steady state cycle time to repetitively produce a min-
imal part set in an m-machine blocking flowshop. The
key idea is slowing down operations in order to make
a connection between the no-wait flowshop, in which
jobs do not wait between operations, and the block-
ing flowshop. This method can also be applied to min-
imize the makespan. Caraffa et al. [14] used this con-
cept to develop a genetic algorithm (GA) to minimize
this criterion. Computational results indicate that the
proposed method shows a better performance than the
heuristic developed by Abadi et al. [13]. More recently,
Grabowski and Pempera [15] develop a tabu search al-
gorithm that utilizes multimoves to accelerate the con-
vergence of the method. The proposed strategy achieved
better results than the GA proposed by Caraffa et al.
[14]. Furthermore, this methodology was able to im-
prove the reference makespans provided by the branch-
and-bound algorithm (B&B) presented by Ronconi [16].

As far as we know, few studies deal with the to-
tal tardiness criterion in the flowshop environment with
blocking. Armentano and Ronconi [17] suggest a tabu
search-based heuristic with an initial solution given by
the algorithm LBNEH [18], which exploits characteris-
tics of the tardiness criterion. Diversification, intensifi-
cation and neighborhood restriction strategies were also
evaluated. The authors report computational tests with
problems up to 50 jobs. In another work, Ronconi and
Armentano [19] present a B&B algorithm to minimize
total tardiness where fixed jobs are placed at the end
of the complete sequence. They propose a lower bound
for this criterion and, as a by-product, lower bounds for
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the makespan and for the sum of job completion times.
In this paper we propose heuristic approaches for

the minimization of the total tardiness of jobs in a
flowshop with blocking in-process. We present a con-
structive heuristic that explores the non-existence of in-
termediate buffers, as well as the characteristics related
to the tardiness criterion. The small computational effort
of such strategy, which is valuable in some practical ap-
plications, is one of the reasons that motivated this study.
A GRASP-based (greedy randomized adaptive search
procedure) heuristic is also proposed. Furthermore, the
metaheuristic is coupled with a path relinking strategy
to search for better outcomes. We assessed the perfor-
mance of the proposed methods through a comparative
study with other methods described in the literature.

This paper is organized as follows. Section 2 presents
the constructive heuristic, while Section 3 explains how
the GRASP metaheuristic was adapted for the focused
problem. An additional strategy based on path relink-
ing is also described. Section 4 shows computational
experiments with the constructive heuristic, the basic
implementation of GRASP and the inclusion of path re-
linking. The last section summarizes the main results.

2. Constructive heuristic

The proposed heuristic achieves the solution in two
steps. First a dispatch rule (FPD—fitting processing
times and due dates) generates a list of priorities among
the jobs. Then, guided by this list, the insertion proce-
dure of the NEH algorithm [11] is applied to generate
the final scheduling. This heuristic is henceforth called
FPDNEH.

The FPD algorithm works dynamically, i.e., after the
selection of a job for a position on the fixed sequence
(�), the list of priorities is reorganized considering all
jobs that are not yet fixed. The selection of the first job
of this list is of great importance for the performance
of the method, because while the first job is been pro-
cessed on the first machine, the remaining jobs are wait-
ing out of the considered environment, which leads to
low performance levels on the whole system. Several
alternatives were assessed to select this job. Choosing
the job with the smallest value of the sum of its due
date and processing time on the first machine (Ik) is the
strategy that presents the best results.

For the remaining positions, we use a priority mea-
sure Fk composed of two terms. This measure considers
the processing time profile of the last fixed job (ti) in
sequence �, as well as the due dates of candidate jobs.
The first term (fit′k) benefits the jobs that have process-
ing times near the “windows” generated by job ti on

each machine. The main idea is to choose a job that
causes the minimum blocking or idle time on machines.
The second term (dynslack′

k) aims at increasing the pri-
ority of jobs that have a short remaining period of time
to be processed before their due date. A description of
the FPD algorithm is presented below.

Step 1: Set � = �.
Step 2: Compute Ik for all jobs k /∈ �:

Ik = dk + pk1. (7)

Choose the job with the smallest Ik for the first position
on the sequence �. Make next_pos = 2.

Step 3: Compute LBk [18] for all jobs k /∈ � :

LBk = dk −
m∑

j=1

pkj . (8)

Step 4: Compute the departure time of the last job on
�, ti , from each machine Dti,j , j = 1, 2, . . . , m.

Step 5: Compute the available period of time (bj ) on
each machine:

bj = Dti,j+1 − Dti,j , j = 1, 2, . . . , m − 1. (9)

Step 6: Compute for all jobs k /∈ �:

Fk = � fit′k + (1 − �) dynslack′
k , (10)

where

fit′k = fitk − mink /∈�(fitk)

maxk /∈�(fitk) − mink /∈�(fitk)
,

dynslack′
k=

dynslackk−mink /∈�(dynslackk)

maxk /∈�(dynslackk)−mink /∈�(dynslackk)
,

(11)

fitk =
m−1∑
j=1

|bj−pkj | and dynslackk=LBk−Dti,1.

(12)

Step 7: Place the job with the smallest value of Fk

on position next_pos of �.
Step 8: If next_pos = n, stop. Otherwise, make

next_pos = next_pos + 1 and go back to Step 4.
Note that both terms of Fk , fit′ (perfect fit) and

dynslack′ (dynamic slack) take values between 0 and
1. The objective of this normalization is to avoid the
possible distortion caused by the magnitude of the term
values. Parameter � is used to weigh the terms.

The sequence generated by the FPD algorithm is used
as a priority list for the insertion procedure of the NEH
algorithm. The two jobs with the highest priority are
selected from the list and the two possible sequences
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for these jobs are generated. Sequences are evaluated
according to the total tardiness of the jobs and the best
partial sequence is chosen. The relative positions of
those two jobs do not change during the whole algo-
rithm. Then, the job with the third highest priority is
selected and three sequences are generated by position-
ing this job at the beginning, middle and end of the se-
quence generated in the previous step. The best partial
sequence will set the relative positions of these three
jobs. Should there be a tie, the original order in the list
of priorities is followed. This process is repeated until
all jobs are scheduled and the final sequence is found.
An interesting analysis about the good performance of
the NEH algorithm for flowshops with unlimited buffer
can be found in Kalczynski and Kamburowski [20].

3. GRASP metaheuristic

In this section a GRASP-based search heuristic is
proposed as a method to explore the solution space. The
GRASP metaheuristic, developed by Feo and Resende
[21,22], was chosen for this study because it has suc-
cessfully solved several scheduling problems (see for
example [23–25]). Furthermore, GRASP presents spe-
cial characteristics, such as the simplicity of implemen-
tation and a small number of parameters.

The GRASP metaheuristic is a multi-start or iterative
process, in which each iteration consists of two phases:
construction and local search. The construction phase
builds a feasible solution, whose neighborhood is inves-
tigated until a local minimum is found during the local
search phase. The best overall solution is kept as the re-
sult. A pseudo-code of this metaheuristic can be found
in Resende and Ribeiro [26].

3.1. GRASP basic version

Initially, GRASP was used only with its basic com-
ponents, which will be henceforth called basic version.
The detailed information on how the two GRASP phases
were adapted to the focused problem is given below.

3.1.1. Construction phase
GRASP requires a good constructive heuristic to gen-

erate multiple initial solutions. A feasible solution is
built, adding one element at a time. The element is ran-
domly chosen among the components of a restricted
candidate list (RCL). Once the element is added to the
partial solution, the RCL is updated. This scheme is re-
peated until a complete feasible solution is found. In
this phase, GRASP combines greedy and random con-
struction. The existence of the RCL provides the greedy

feature, while the probabilistic feature is given by the
randomness to select an element from this list. This pro-
cess allows the method to build different initial solu-
tions at each time.

For the construction of the RCL, a set of candi-
date elements C is built with elements that maintain
the feasibility of the partial solution. The cost c(e)

is calculated for each element e ∈ C, but only the
best elements are selected to be part of the RCL.
Function c(e) measures the local benefit of including
an element in the partial solution. The RCL length
can be a function of the desired number of elements
or their quality. Let cmin = mine∈C c(e) and cmax =
maxe∈C c(e). Three strategies described by Pitsoulis
and Resende [27] were analyzed for the selection of
elements:

(i) cardinality_based_scheme: �� ·n� top-ranked can-
didates are placed in the RCL, where � is a pa-
rameter in [0, 1],

(ii) value_based_scheme1: RCL = {e ∈ C|c(e)�cmin

(1 + p)}, where p is a parameter in [0, ∞), and
(iii) value_based_scheme2: RCL={e ∈ C|c(e)�cmin+

�(cmax − cmin)}, where � is a parameter in [0, 1].

In the first case, the RCL length is previously defined,
while in the other cases it can vary from iteration to
iteration. The description of the construction phase fol-
lows:

Step 1: Let x = empty partial sequence.
Step 2: Let C = {all jobs}.
Step 3: Compute c(e) = Ie (7) for the candidate jobs

e ∈ C.
Step 4: Build the RCL using the selected scheme

(cardinality_based_scheme, value_based_scheme1 or
value_based_scheme2).

Step 5: Choose e from the RCL at random.
Step 6: Allocate job e at the end of the partial se-

quence x.
Step 7: Remove the selected job e from C.
Step 8: Compute c(e)=Fe (10) for the candidate jobs

e ∈ C.
Step 9: If x is not complete, go back to Step 4.

3.1.2. Local search phase
The efficiency of a local search depends on several

factors such as the neighborhood definition, the search
strategy and the initial solution. In this study, the neigh-
borhood is defined by the insertion move, which con-
sists of removing a job from its original position and
inserting it on the n−1 remaining positions. This move
generates a neighborhood of size (n − 1)2.
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Two commonly used search techniques were con-
sidered: best improving and first improving. In the best
improving strategy, the entire neighborhood is ana-
lyzed and the current solution is replaced by the best
one, while in the first improving strategy, the current
solution is replaced by the first solution which im-
proves its value. Resende and Ribeiro [28] report that
both strategies lead to the same final solution in many
applications, but the first improving strategy is faster.
Furthermore, according to these authors, a premature
convergence to a non-global local minimum is more
likely to occur with the best improving strategy. For
these reasons, we selected the first improving technique
for this implementation.

3.2. GRASP with path relinking

Path relinking was originally proposed by Glover
[29] as an intensification strategy that explores paths
that connect high-quality solutions (elite solutions)
obtained by tabu search. Laguna and Martí [30] first
presented the use of path relinking associated with
GRASP as an intensification strategy. Other recent
successful applications of this association can be
found in Canuto et al. [31], Aiex et al. [25] and
Festa et al. [32].

According to Resende and Ribeiro [28] the applica-
tion of path relinking as an intensification procedure in
each local optimum seems to be more effective than us-
ing it only as a post-optimization step. Therefore, for
this implementation, a path is evaluated at each local
optimum using an elite solution as an initial solution
and the local optimum as the guide solution. This strat-
egy is known as backward relinking. This strategy was
chosen because, according to Ribeiro et al. [33], if only
one path is to be investigated, the best solutions are
found when the relinking procedure starts from the best
solution. They also observed that exploring two differ-
ent paths for each pair of solutions takes approximately
twice the time required to explore only one of them, with
hardly any improvement in the quality of the solution.
The elite solution used is randomly selected from the
set S, which is stored during the application of GRASP.
Every local optimum is considered to be part of S and
is included in this set if its objective function value is
better than any element of the set.

In order to build the path connecting the initial
solution xi and the guide solution xg, the symmetric
difference between them, given by �(xi, xg), must be
calculated. In this problem, this difference is defined
as the number of jobs that are not at the same absolute
position in the initial solution and in the guide solution.

First, the procedure examines all possible insertion
moves m ∈ �(xi, xg) from the initial solution and se-
lects the lowest cost solution. This move is made and a
new intermediate solution (x) is found. If necessary, the
best solution x∗ is updated. The set of available moves
�(x, xg) is updated and a new iteration of the procedure
begins with the current solution x. A similar search
strategy is described by Resende and Ribeiro [26].

It should be noted that it is possible to connect xi to xg
in up to m moves using insertion moves if each move is
made in an ordered way. However, if the moves are not
ordered, it can be shown that more than m moves could
be necessary because one move can corrupt a previous
one. The steps below show the proposed path relinking
strategy:

Step 1: When a local optimal xls is reached make
xg = xls.

Step 2: Choose the initial solution xi from S and let
iter = 1.

Step 3: Compute �(xi, xg) and make iter_ max
=�(xi, xg), where iter_max is the maximum number
of iterations

Step 4: Evaluate all moves m ∈ �(xi, xg).
Step 5: Choose the move m with lowest cost solution.
Step 6: Set xi =xi ⊕m, where ⊕ defines the insertion

move execution.
Step 7: Let iter = iter + 1.
Step 8: Let x∗ = Best_solution(xi, x

∗), where
Best_solution() compares two feasible solutions and
returns the best one.

Step 9: Compute �(xi, xg).
Step 10: If �(xi, xg) > 0 and iter� iter_ max, go back

to Step 4.

4. Numerical experiments

The codes were written in C + + and the tests were
conducted on a Pentium IV with a 2.3 GHz processor
and 512 Mb RAM. Test problems were generated ac-
cording to Taillard [34]. These instances are commonly
used in the literature (see, e.g. [15,35]). Ten different
matrices of processing times were generated for each
of the 12 sizes in Table 1. For each of those matrices,
four scenarios were built. Processing times were uni-
formly distributed between 1 and 99. All instances are
available at http://www.prd.usp.br/docentes/debora/.

Due dates are uniformly distributed betweenP(1−T

−R/2) and P(1 − T + R/2) [36], where T and R are
the tardiness factor of jobs and dispersion range of due
dates, respectively, while P is a lower bound of the
makespan on the flowshop with unlimited buffer [34]

http://www.prd.usp.br/docentes/debora/
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Table 1
Improvement percentage of the FPDNEH compared to LBNEH

Size (n × m) Scenario Average

1 2 3 4

20 × 5 18.12 −13.96 0.35 7.64 3.04
20 × 10 3.26 3.03 0.38 1.69 2.09
20 × 20 −1.38 −3.50 −0.44 −0.52 −1.46
50 × 5 24.25 62.70 10.58 2.23 24.94
50 × 10 7.63 11.78 −0.61 1.86 5.17
50 × 20 2.76 1.62 −0.80 −2.38 0.30
100 × 5 39.56 83.94 15.86 −3.48 33.97
100 × 10 17.49 34.35 4.93 1.19 14.49
100 × 20 9.56 6.84 1.92 0.64 4.74
200 × 10 25.85 56.07 10.29 −1.31 22.73
200 × 20 13.88 18.39 4.04 −0.94 8.84
500 × 20 19.04 31.86 7.91 −0.79 14.51

Average 15.00 24.43 4.53 0.49 11.11

defined as

P = max

⎧⎨
⎩ max

1�v �m

⎡
⎣

n∑
k=1

pkv + min
k

v−1∑
q=1

pkq

+ min
k

m∑
q=v+1

pkq

⎤
⎦ , max

k

m∑
v=1

pkv

⎫⎬
⎭ . (13)

The scenarios represent different configurations by
varying T and R, as follows:

• scenario 1: low tardiness factor (T =0.2) and small
due date range (R = 0.6),

• scenario 2: low tardiness factor (T =0.2) and wide
due date range (R = 1.2),

• scenario 3: high tardiness factor (T = 0.4) and
small due date range (R = 0.6),

• scenario 4: high tardiness factor (T = 0.4) and
wide due date range (R = 1.2).

4.1. Performance of the FPDNEH algorithm

The FPDNEH heuristic is evaluated by the relative
percentage improvement with respect to the LBNEH
algorithm proposed by Armentano and Ronconi [16,17].
According to the computational tests conducted by the
authors, LBNEH is the best constructive procedure to
minimize the total tardiness on a flowshop with blocking
and unlimited buffer. The improvement is calculated
using the following expression:

Improvement = TLBNEH − TFPDNEH

TLBNEH
100,

where TLBNEH and TFPDNEH are the values of total tardi-
ness obtained by the LBNEH and FPDNEH algorithm,
respectively. When TLBNEH =TFPDNEH =0 the improve-
ment obtained by FPDNEH in relation to LBNEH is
defined as zero (as in all other cases in which TLBNEH =
TFPDNEH). When TLBNEH = 0 and TFPDNEH > 0, the
above expression suggests an improvement of −∞,
however, this case did not occur in the presented com-
putational experiments.

First, several tests were conducted to select pa-
rameter � of expression (10). The performance of
FPDNEH was analyzed in terms of average improve-
ment and the number of superior solutions for the val-
ues {0, 0.1, 0.2 . . . 1}. The FPDNEH heuristic presents
its best performance in both measures when the pa-
rameter � = 0.3, i.e., when the dynslack term has a
higher weight. Table 1 shows the average percentage
improvement of each class with 10 problems with the
application of the FPDNEH algorithm.

By analyzing Table 1, it can be seen that the FPDNEH
algorithm presents better average results in all scenar-
ios, especially in the scenarios with low tardiness factor.
The proposed algorithm outperforms the LBNEH algo-
rithm in 75% of the classes and the average improve-
ment was superior to 10% in 35.4% of the classes. Con-
sidering the number of superior results, the FPDNEH
algorithm outperformed the LBNEH algorithm in 336
of the 480 test-problems and presented the same total
tardiness value in eight problems. This behavior is prob-
ably due to the fact that, on its first stage, the FPDNEH
algorithm considers a higher number of characteristics
that are inherent to the problem, such as the blocking
situation.

In the largest case, 500 jobs and 20 machines, the
FPDNEH heuristic presented a running time of 15.1 s.
The CPU time was less than 1 s for the all the remaining
problems.

4.2. Performance of GRASP

4.2.1. Basic version
Several tests were conducted to select the components

of GRASP in its basic version and the following param-
eters were chosen. The construction phase is composed
by the FPD dispatching rule associated with the RCL
constructed by the value_based_scheme1 (p = 0.35)

(see the basic steps in Section 3.1). Before using a local
search, the solution is improved by the insertion proce-
dure of the NEH algorithm. The local search utilizes the
insertion move and the first improving strategy. The al-
gorithm is executed until n local searches are completed
or the maximum CPU time of 1800 s is reached.
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Table 2
Improvement percentage of the GRASP basic version compared to FPDNEH heuristic

Size (n × m) Improvement percentage Improvement by size CPU time (s)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

20 × 5 42.24 27.52 18.29 11.97 25.00 0.10
20 × 10 16.78 19.21 9.76 7.07 13.20 0.19
20 × 20 9.68 9.66 5.91 5.07 7.58 0.31
50 × 5 57.32 97.67 25.87 28.93 52.45 9.48
50 × 10 39.85 61.91 21.22 15.75 34.68 23.71
50 × 20 29.94 27.17 11.67 10.78 19.89 38.11
100 × 5 59.56 68.81 26.21 37.76 48.09 308.84
100 × 10 45.94 87.50 21.84 26.61 45.47 730.46
100 × 20 33.90 69.22 15.51 11.91 32.64 1517.56
200 × 10 40.44 99.28 20.09 21.51 45.33 1705.82
200 × 20 28.76 69.32 14.23 13.57 31.47 1800.02
500 × 20 11.38 36.84 6.09 9.51 15.95 1800.02

Average 34.65 56.18 16.39 16.70 30.98 661.22

Table 3
Improvement percentage of the GRASP with path relinking compared with FPDNEH heuristic

Size (n × m) Improvement percentage Improvement by size CPU time (s)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

20 × 5 44.42 27.00 18.80 12.08 25.57 0.11
20 × 10 17.48 19.71 9.94 6.76 13.47 0.22
20 × 20 9.09 9.78 5.81 5.06 7.44 0.34
50 × 5 60.14 98.00 25.90 29.62 53.42 9.72
50 × 10 40.15 63.19 21.38 16.79 35.37 24.51
50 × 20 30.70 27.16 12.33 10.90 20.27 39.55
100 × 5 59.95 68.73 28.07 37.77 48.63 317.87
100 × 10 46.66 88.02 22.40 26.21 45.82 755.73
100 × 20 34.24 71.04 15.16 12.25 33.17 1576.46
200 × 10 39.75 98.73 19.67 21.53 44.92 1676.97
200 × 20 27.81 69.12 14.18 12.97 31.02 1803.66
500 × 20 9.57 32.92 5.45 8.68 14.15 1800.03

Average 35.00 56.11 16.59 16.72 31.11 667.10

Table 4
Comparison of the GRASP with path relinking and the basic version

Number of successes of
the path relinking

Max (%) Number of successes of
the basic version

Max (%) Even

213 100.0 180 95.5 87

The GRASP metaheuristic is evaluated by the relative
percentage improvement with respect to the FPDNEH
algorithm. Table 2 shows the average percentage im-
provement of each class with 10 problems. An over-
all average improvement of 30.98% was achieved by
GRASP. The Improvement by size column also shows

that, in most cases, the increase in the number of jobs
with the same number of machines benefits the perfor-
mance of the GRASP algorithm. The main exception
is the case of 500 jobs and 20 machines, probably due
the short CPU time allowed to run the algorithm. The
last column of Table 2 shows the average computational
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CPU time of GRASP. Note that the FPDNEH algo-
rithm is faster, although better solutions can be found
by GRASP.

4.2.2. Path relinking
Preliminary tests were conducted to select the dimen-

sion of S, the number of elite solutions, on the GRASP
version with path relinking. Best results were obtained
with |S| = 1. The improved GRASP strategy was run
with the same stopping criterion of the basic version.
Table 3 shows the improvement percentage obtained by
the association of GRASP and path relinking in com-
parison with the FPDNEH heuristic. The numbers in
bold indicate the classes of problems where this version
outperformed the average improvement obtained by the
basic version.

Note that the application of this strategy leads to bet-
ter solutions in 58.3% of the classes and moderately im-
proves the average improvement in scenarios 1, 3 and 4.
It can also be observed that better results were achieved
in medium-size problems with n�100, where the run-
ning time was not a critical factor. In larger problems,
within the maximum allowed running time, this strategy
presents a slightly lower performance when compared
with the basic version. Although a small overall gain
was achieved, it should be stressed that this strategy
is easy to implement and has almost the same running
time as the basic version.

Table 4 presents an additional analysis. The number
of successes is used to evaluate the basic version of
GRASP against its association with path relinking for
the 480 problems tested. The number of successes is
defined as the total number of times that the analyzed
strategy provided the best solution. “Max”, in columns
2 and 4, represents the largest gain of one version com-
pared with the other. “Even”, in the last column, denotes
the number of problems in which the best solutions of
the versions have the same tardiness values. It can be
observed that the application of GRASP with path re-
linking results in a larger number of successes when
compared to the basic version of GRASP.

4.3. Comparison with B&B

To conduct a better evaluation of the proposed heuris-
tics, a comparative study is presented with the optimal
solutions provided by the B&B algorithm proposed by
Ronconi and Armentano [19]. Given the difficulty in
finding optimal solutions for problems with the sizes
used in the original set of tests, a new set with smaller
sizes was created for the tests. Similar approaches have

been considered in Chen and Wu [37], Yamashita et al.
[38] and Armentano and Scrich [39].

The B&B algorithm was applied to a sample of
five processing time matrices for each size (n�20 and
m�10) and four scenarios for each matrix, that is, in
27×5×4=540 problems. The degree of suboptimality
(tolerance) allowed was 0.5%. Respecting the maxi-
mum CPU time allowed, the B&B algorithm achieved
the optimal solution in 486 problems.

The proposed methods—FPDNEH algorithm,
GRASP basic version and its association with path
relinking—were applied to the problems with known
optimal solutions. Both GRASP versions were executed
until n local searches were completed. The running
time for each problem was less than 0.14 s.

In these size-reduced problems, the basic version of
GRASP has found optimal values in 287 problems,
while the association of GRASP with path relinking has
found optimal values in 297 problems. The FPDNEH
algorithm has found optimal solutions in 61 problems.
In average, the basic version of GRASP has provided
solution values that were 4.7% higher than the B&B
value, while its association with path relinking was, in
average, 4.3% higher than the B&B value.

5. Final remarks

In this paper we studied the minimization of the total
tardiness in a flowshop with blocking scheduling. First,
we proposed a constructive heuristic called FPDNEH.
In a comparison of the FPDNEH against the LBNEH
algorithm, known as the best constructive heuristic for
this problem, the proposed algorithm presented an av-
erage improvement of 11.11% and achieved better re-
sults in 336 of the 480 tested problems. This behav-
ior is probably due to the fact that the dispatch rule
FPD explores the non-existence of intermediate buffers,
as well as the characteristics related to the tardiness
criterion.

Then, we developed a GRASP-based heuristic to
obtain better solutions within a reasonable period of
time. The basic version presented an overall average
improvement of 30.98% in comparison with the con-
structive heuristic, and better results in 475 of the 480
test-problems. Furthermore, the association of GRASP
with a path relinking strategy was able to improve the
performance of the metaheuristic for some problems,
with approximately the same running time. Finally, the
comparison with optimal solutions for small problems
showed that all versions can yield good results, espe-
cially GRASP with path relinking. As a future research
effort, it would be interesting to extend the ideas pre-
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sented in this paper to the flowshop with blocking,
aiming to minimize the total earliness and tardiness
cost.
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