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A Tabu Search Approach to Hybrid Flow Shops Scheduling
with Sequence-Dependent Setup Times

M.B. Abiri, 2M. Zandieh and ?A. Alem-Tabriz
'Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran
*Department of Industrial Management, Faculty of Management and Accounting,
Shahid Beheshti University, G.C., Tehran, Iran

Abstract: This study describes a Tabu Search (TS) algorithm approach to the scheduling of a sequence-
dependent setup times hybrid flow shop. The details of a TS approach are described and implemented. The
results obtained are compared with those computed by Random Key Genetic Algorithm (RKGA) presented
earlier. From the results, it was established that TS outperformed RKGA.
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INTRODUCTION

A hybrid flow shop model, commonly known as
flexible flow line, allows us to represent most of the
production systems. The process industry such as
chemical, pharmaceutical, o1l, food, tobacco, textile, paper
and metallurgical industry can be modeled as a hybrid
flow shop. In the literature, the notion of hybrid flow shop
has emerged mn the 70s (Zandieh et af., 2006). A hybrid
flow shop consists of a series of production stages, each
of which has several facilities in parallel (Kurz and Askin,
2004). Some stages may have only one facility, but for the
plant to be qualified as a hybrid flow shop, at least one
stage must have several facilities. The flow of products in
the plant is unidirectional. Each product is processed at
only one facility in each stage and at one or more stages
before it exits the plant. Each stage may have multiple
parallel identical machmes. These machines can be
identical, uniform, or unrelated. Each job is processed by
at most one machine at each stage.

Pmedo (2002) cited machine setup tune 1s a sigmficant
factor for production scheduling mn all flow patterns and
it may easily consume more than 20% of available machine
capacity if not well handled. Also the completion time of
production and machine setups are influenced by
production mix and production sequence. On the one
hand, processing in large batches may increase machine
utilization and reduce the total setup time. On the other
hand, large batch processing mcreases the flow time.
Scheduling problems with sequence-dependent setup
times are among the most difficult classes of scheduling
problems. A single-machine sequence-dependent setup

scheduling problem 15 equivalent to a traveling-salesman
problem and 1s NP-hard (Pinedo, 2002). Even for a small
system, the complexity of this problem is beyond the
reach of existing theories (Luh ez al., 1998).

Sequence-dependent setup scheduling of a hybnd
flow shop system 18 even more challenging.
Although, there has been some progress reported,
but the understanding of sequence-dependent setups,
however, 1s still believed to be far from bemng complete
(Luh et al., 1998).

Gupta and Tunc (1994) presented four heuristic
algorithms to minimize makespan for a two stage hybrid
flow shop problem with separable setup and removal
times. In which, sequencing of jobs can be done using
one of Sule's (1982) rule or Szwarc and Gupta's (1987)
algorithm while assigmng jobs to multiple machines at the
second stage is done by attempting to minimize the
job-waiting time at the second stage.

Robust local search improvement techniques for
flexible flow-line scheduling were considered by T.eon and
Ramamoorthy (1997). Kochhar and Morris (1987) model
flexable flow lines in a more complete manner in that they
allow for setups between jobs, finite buffers which may
cause blocking and starvation, machine down-time and
current and subsequent state of the system.

Rios-Mercado and Bard (1998) also considered the
sequence-dependent setup time flow shop and developed
several valid inequalities for models based on the
traveling salesman problem and the Srikar-Ghosh model.

Hung and Cling (2003) addressed a scheduling
problem taken from a label sticker manufacturing company
which is a two-stage hybrid flow shop with the
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characteristics of sequence-dependent setup time at
stage 1, dedicated machines at stage 2 and two due dates.
The objective was to schedule one day’s mix of label
stickers through the shop such that the weighted maximal
tardiness is minimized. They proposed a heuristic to
find the near-optimal schedule for the problem. The
performance of the heuristic was evaluated comparing its
solution with both the optimal solution for small-sized
problems and the solution obtained by the scheduling
method used in the shop.

While many study have been written mn the area of
scheduling hybrid and flexible flow lines, many of them
are restricted to special cases of two stages, specific
configurations of machines at stages and to simplify the
problem, setups are seldom considered in the scheduling.
For those ones addressing setups, the setup tumes are
fixed and included in processing times. However, in most
real world cases, the length of the setup time depends on
both jobs, which 1s separable from processing. There
seems to be published only three works addressing
heuristics for flexible flow lines with sequence-dependent
setup times. Kurz and Askin (2003) examined scheduling
rules for SDST flexible flow lines. They explored three
classes of heuristics. The first class of heuristics (cyclic
heuristics) is based on simplistic assignment of jobs to
machines with little or no regard for the setup times. The
second class of heuristics 1s based on the msertion
heuristic for the Traveling Salesman Problem (TSP). The
third class of heuristics is based on Johnson’s Rule. Note
that the second class caters to setup aspects of the
problem while the third derives from standard flow shops.
They proposed eight heuristics (CH, RCH, SPTCH,
FTMIH, CTMIH, MMTIH, 1, g Johnson's Rule, g/2, g/2
Johnson's Rule) and compared the performance of those
on a set of test problems. Moreover, Kurz and Askin
(2004) formulated the SDST flexible flow lines as an
integer programming model. Because of the difficulty in
solving the TP model directly, they developed a Random
Keys Genetic Algorithm (RKGA). Problem data was
generated to evaluate the RKGA with other scheduling
heuristics rules, which they proposed aforetime. They
created a
Zandieh et al. (2006) proposed an immune algorithm and
showed that this algorithm outperforms the random keys
genetic algorithm of Kwrz and Askin (2004).

lower bound to evaluate the heuristics.

PROBLEM DESCRIPTION

Let g be the number of workshops in series. Let n be
the number of jobs to be processed and m' be the number
of machines m parallel at each stage t. We assume that
machines are mutially setup for anominal job O at every

stage. Job ntl exists at every stage only to indicate the
end of the process, if needed. We have the followng
definitions:

P = Processing time for job i at stage t

(1=1,2,..mt=1,2....¢2)
s; = Sequence-dependent setup time from job i to job j at
stage t

(i=1,2,.nmj=1,2,...nt=1,2....8)

pl = Modified processing time for job 1 at stage t
(P =p{ + min s})

(1=1,2,..m;1=1,2,..n;t=1,2...2)

S' = set of jobs that visit workshop stage t

t=1,2,...2)

The processing time of job 0 1s set at 0. The setup
time from job O indicates the time to move from the
nominal set solution state. We assume that all jobs
currently in the system must be completed at each stage
before the jobs under consideration may begin setup. The
completion times of job O at each stage are set to the
earliest setup time may begin at that stage. The setup time
for job n+1 is set at 0; this job only exists to indicate the
end of the schedule. We also include the restriction that
every stage must be visited by at least as many jobs as
there are machines in that stage.

THE PROPOSED TABU SEARCH ALGORITHM

Tabu search algorithm in general: Tabu Search (TS) has
been found to be a remarkably efficient approach for
solving hard combinatorial problems, including traveling
salesman problems, scheduling problems, product
delivery and routing problems and manufacturing cell
design problems. Starting from an mitial solution, TS
generates a new alternative 3' in the neighborhood of the
onginal altemative S with a function that transforms S mto
S'. This is usually called a move, which can be madetoa
neighbor solution even though it 1s worse than the given
solution. This makes a TS escape from a local optimum in
its search for the global optimum. To avoid cycling, TS
defines a set of moves that are tabu (forbidden) and these
moves are stored i a set A, called tabu list. Elements of B
define all tabu moves that cannot be applied to the current
solution. The size of A 1s bounded by a parameter I, called
tabu list size. If |A| = I, before adding a move to A, one
must remove an element in it, the oldest one in general.
Note that a tabu move can be always allowed to be
chosen 1f it creates a solution better than the mcumbent
solution, the best objective value obtained so far. Flow
chart for the algorithm 1s shown in Fig. 1. Glover (1989)
explained a comprehensive description of various aspects
of TS.
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Fig. 1: Flow chart for tabu search. TL: Tabu list, BS: Best
solution, CS: Current solution

A tabu search algorithm approach to hybrid flow shop
scheduling: An application of TS is generally
characterized by several factors. They are:

¢ TInitial solution methods

¢+ Neighborhood generation methods, ie., set of
possible moves applicable to the current solution

»  Definition of tabu moves with the tabu list size

+  Termination condition(s)

In this study, initial solution is created randomly and
termination condition is a specified number of seconds.

First, the solution 1s represented by a random key
representation. The advantage of this representation is its
ease of implementation. This representation was proposed
by Norman and Bean (1999) to avoid mnfeasible solution.
They used the following solution representation for an
identical multiple machine problem. Each job is assigned
a real number whose integer part 1s the machine number to
which the job is assigned and whose fractional part is
used to sort the jobs assigned to each machine. For
example solution shown in Fig. 2, is mterpreted as Fig. 3.

Note that the represented solution schedules jobs
only in first stage. For other stages we use the fallowing
algorithm, witch 15 proposed by Kurz and Askin
(2003, 2004).

| 141 |2.13 | 1.23' 1.65 ] 2.01 | 3.27| 119 | 1.87 | 2.61 | 3.05 |

Fig. 2: Representation of candidate solution in TS

M1 I, I, I I I,
M2 I 1 5
M3 T I,

Fig. 3: Interpreted candidate solution (Fig. 2)
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Fig. 4: Intra-machine move
Foreach staget=2,.. ..g:

(a) Update the ready times in stage t to be the
completion times mn stage t-1

(b) Arrange jobs in increasing order of ready times

(¢) Letbestmc =1

(d) For[i]=1ton,i€S"

s Formc=1tom'

s Place job [i] last on machine mc

»  Find the completion time of job [1]. If this time 18 less
on me than on bestme

»  let bestnc = mc

*  Assign job [i] to the last position on machine bestmc

Neighborhood generation (move): Insert moves and pair
wise exchanges (swaps) are two of the frequently used
move types in permutation problems. An insert move
1dentifies two particular jobs and places the first job in the
location that directly precedes the location of the second
job. A swap move, on the other hand, places each job in
the location earlier occupied by the other. The
neighborhood generation methods suggested in this
study have a hybrid structure with swap and insertion
methods. A schematic description of components of this
hybrid structure is shown in Fig. 4 and 5. As can be
shown from the Fig. 4 and 5, swap move 1s done for a pair
of jobs on the same machine and the mnsertion move 1s
done for jobs on different machines, so they are also
referred as intra-machine and inter-machine moves by
Bilge et al. (2004).
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Fig. 5 Inter-machine move

Candidate list strategy: For situations where the
neighborhood of a solution is large or its elements are
expensive to evaluate, candidate list strategies are
essential to restrict the number of solutions examined on
a given iteration (Laguna ef al., 1991). The purpose of
these rules 13 to screen the neighborhood so as to
concentrate on promising moves at each iteration. In this
study, for better performance of TS, two selection
strategies are considered. For msert move only the one
job with highest makespan 1s chosen while the other
needed job in this move is selected randomly. Selection
strategy in the swap move is a roulette wheel sampling
based on the sequence-dependant setup time of each job
n first level, so the selection probability of the i-th job 1s
as follows.

1
Siow

Pi=s

v 1
2K,

Tabu moves: Tabu moves are defined as follows. In the
swap move, a pair of jobs that have been mterchanged 1s
defined as a tabu move. Also, the insertion method
defines a tabu move as the job to be moved. As an
exceptional case, a tabu move can be allowed to be
chosen if it generates a solution better than the incumbent
solution, the best objective value obtained so far.

For more effective search, in each iteration we
perform n moves (starting from current position) and the
one with best fitness function 13 selected.

EXPERIMENTAL DESIGN

Data generation and settings: An experiment was
conducted to test the performance of the tabu search
algorithm. Following Kurz and Askin (2003) data required
for a problem consists of the number of jobs, number of
stages, number of machmes in each stage, range of
processing times and the range of sequence-dependent
setup times. The ready times for stage 1 are set to O for all
jobs. The ready times at stage t+1 are the completion
times at stage t, so there 15 no need this data to be

Table 1: Factor levels of the problems
Factor Levels
No. of jobs 6-30-100
No. of machines Constant:1-2-10
Variable: Unitorm [1-4]-Unifornmn [1-10]
No. of stages 2-4-8
Processing times Uniform [50-70]-Uniform[20-100]
Skipping probability 0.00-0.05-0.40

generated. Processing times are distributed uniformly over
two ranges with a mean of 60: [50-70] and [20-100]. Flexible
flow lines are considered by allowing some jobs to skip
some stages. Following Leon and Ramamoorthy (1997),
the probability of skipping a stage is set at 0, 0.05, or 0.40.
The setup times are uniformly distributed from 12 to
24 which are 20 to 40% of the mean of the processing time.
The setup time matrices are asymmetric and satisfy the
triangle inequality. The setup time characteristics follow
Rios-Mercado and Bard (1998).

The problem data can be characterized by 6 factors
and each of these factors can have at least two levels.
These levels are shown in Table 1.

In general, all combinations of these levels will be
tested. However, some further restrictions are mtroduced.
The variable machine distribution factor requires that at
least one stage have a different number of machines than
the others. Also, the largest number of machines in a
stage must be less than the number of jobs. Thus, the
combination with 10 machines at each stage and 6 jobs
will be skipped and the combination of 1-10 machines per
stage with 6 jobs will be changed to 1-6 machines per
stage with 6 jobs. There are 252 test scenarios and 10 data
sets are generated for each one.

Experimental results: Here, we are going to compare the
proposed tabu search algorithm with the RKGA which
proposed by Kurz and Askin (2003) for the SDST flexible
flow lines. The heuristics were implemented in Borland
C++ 5.02 and run on a PC with a Pentium IV 1.8 GHz
processor with 1 GB of RAM. When the C,,. of each
algorithm has been obtamned for its instances, the best
solution obtained for each instance (which is named
Min,;) by any of the two algorithms is calculated. Relative
Percentage Deviation (RPD) 1s obtained by given formula
below:

_Alg ,—Min_,

sol

Min

RPD

where, Alg,; 1s the C,__, obtained for a given algorithm and
instance. RPD of 4% for a given algorithm means that this
algorithm is 4% over the best obtained solution on
average. Clearly, lower values of RPD are preferred.
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0.07 IGA

% 0.05 }TS

Fig. 6: Means plot and LSD intervals (at the 95%
confidence level) for EM and GA algorithms

Table 2: Average RPD of makespan and solution time for the TS and GA
algorithms by nand g

RPD of makespan
Solution

Tnstance TS GA time (sec)
6x2 0.156286 0.177086 5
6x4 0.079722 0.090125

6x8 0.004437 0.006182

6 Job 0.080149 0.091231

30x2 0.17279 0.213516 20
30x4 0.020792 0.022644

30x8 0.010624 0.014327

30Job 0.068069 0.083496

100%2 0.006334 0.020888 45
100=4 0.00842 0.017256

100%8 0.009062 0.016879

100 Job 0.007939 0.018341

Average 0.052052 0.064356

Analysis of makespan and solution time base on RPD:
The results of the experiments for two subsets, averaged
for each one of the n and g configurations (15 data per
average) are shown in Table 2. As it can be seen, TS
algorithm provides better results than GA algorithms.

In order to verify the statistical validity of the results
shown in Table 2 and to confirm which the best algorithm
15, we have performed a design of experiments and an
Analysis of Variance (ANOVA) where we consider the
different algorithms as a factor and the response variable
RPD.

The results demonstrate that there 15 a clear
statistically significant difference between performances
of the algorithms. The means plot and LSD intervals
(at the 95% confidence level) for two algorithms are
shown in Fig. 6.

ANALYSIS OF CONTROLLED FACTORS

Analysis of problem size factor (number of jobs): In order
to see the effects of munber of jobs on two algorithms, a
two ways ANOVA is applied Means plot and LSD
intervals (at the 95% confidence level) for the interaction
between the factors type of method and number of jobs
are shown m Fig. 7.

0.107

- TS
0.09 - GA
0.08-
% 0.07
0.06
T 005
o 0.041
2 0.03
0,02
0.011
0.00 . , .
n==6 n=730 n=100

Fig. 7. Means plot and LSD intervals (at the 95%
confidence level) for the mteraction between the
factors type of algorithm and number of jobs

0.064

—-T5
0.05 =GA
g 0041
:g 0.031
E 0.024
0.01
1 1 1
0.00- T 1 1
0.01 T T !
g=2 g=4 g=8

Fig. 8 Means plot and LSD intervals (at the 95%
confidence level) for the interaction between
the factors type of algorithm and magnitude of
stages

0.081 -= T8
0.071 —-—CA

0.06
0.051
0.04+4
0.034
0.021
0.011
0.00 T

RPD makespan

5

" M=10 M=Unif M-=Unif
L4 (1,10)

Fig. 9: Means plot and LSD intervals (at the 95%
confidence level) for the interaction between the
factors type of algorithm and magmtude of
machines

As we can shown in Fig. 7, n the case of n =100,
n=30andn=6 TS works better than GA.

Analysis of g factor (number of stages): Another Two
ways ANOVA and 1.SD test are applied to see the effect
of magnitude of stages on quality of the algorithms. The
results are shown in Fig. 8.
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Table 3: TS Makespan value versus GA
Makespan value

Decrease Similar Tncrease
Problem  Problem Average Problem Problem Average
size (%) decrease (%) (%) increase
Small 42.83 12.07 49.25 7.93 24.99
Medium  66.81 21.78 222 30.96 7.76
Large 77.11 35.31 - 22.89 27.07

As we can shown i Fig. 8, in the total case TS works
better than GA.

Analysis of m factor (number of machines): Another two
ways ANOVA and LSD test are applied to see the effect
of magmtude of machines on quality of the algorithms.
The results are shown in Fig. 9.

As we can shown in Fig. 9, in the case of m = uniform
(1,10), m =uniform (1, 4), m=10,m=2andm =1 TS
worles better than GA.

Final analysis of makespan and solution time: Table 3
shows the makespan value for TS versus RKGA.

CONCLUSIONS AND FUTURE WORK

A TS approach for the scheduling of a hybrid flow
shop has been successfully developed. The approach
incorporates a new selection mechanism as well as a
n-dimensional search mechanism to assist the search for
anear optimal solution. An experiment was carried out to
illustrate the effectiveness of tabu search algorithm in
scheduling. Compared to past GA, the lower makespan
values in many test problems, can be attributed to the fact
that the TS tends to find better solutions.

There are potentially unlimited opportunities for
research in scheduling to mimimize makespan in hybrid
flow shops with sequence-dependent setup times. In this
study, we have addressed only a few areas.

In many researches such as present study, the lower
bounds are typically used to evaluate the performance of
solving optimization
problems. Tn the absence of tight analytical lower bounds,
optimal objective function values may be estimated
statistically. Extreme value theory can be used to
construct confidence-interval estimates of the minimum
makesparn.

Also by creating a general permutation schedule
defimition, we may be able to find a class of schedules that
contains the optimal makespan schedule for some special
cases, such as two stages with one machine at the first
stage and two machines at the second, with sequence-
dependent setup times at both.

heuristics  for combinatorial
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