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In this paper, an ant colony optimization (ACO) algorithm is proposed for operations of steady flow gas
pipeline. The system is composed of compressing stations linked by pipelegs. The decisions variables are
chosen to be the operating turbocompressor number and the discharge pressure for each compressing
station. The objective function is the power consumed in the system by these stations. Until now, essen-
tially gradient-based procedures and dynamic programming have been applied for solving this no convex
problem. The main original contribution proposed, in this paper, is that we use an ACO algorithm for this
problem. This method was applied to real life situation. The results are compared with those obtained
by employing dynamic programming method. We obtain that the ACO is an interesting way for the gas
pipeline operation optimization.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The gas pipelines are wide complex systems in length (several
hundred kilometers, and even of the thousands) intended for the
transport of natural gas by pipe. There are three different kinds of
topologies: linear (i.e., gun barrel), tree (i.e., branched) and cyclic.
A gas pipeline is composed of compressing stations (CSs) intended
to provide the energy of pressure necessary to transport gas via a
pipeline. A number of turbocompressors (TCs) located in parallel are
the principal equipments of the CS. A part of the gas crossing through
the station is used as fuel gas for the TCs.

In natural gas pipeline operations, the station operator is re-
sponsible for making two important decisions: increase or decrease
compression in the pipelines, and start-up or shut down of TC units.
Incorrect decisions made by the operator increases energy cost or
may cause customer dissatisfaction. The main objective of this study
is to provide a decision aid tool that assists operators to make the
most appropriate decision within a short time.

The objective function is non-linear and non-convex, and all con-
straints are non-linear. The gas pipeline operations involve com-
binatorial aspects: compressor stations are constituted of several
non-identical TCs, built in parallel, which could be stopped or started.
In the stations, one can decide inwhich combinations several TC units
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should be run. The problem is time dependent as pipelines function
with different flows to adapt at the request of the customers. A
system is said to be in steady state when the gas flow values in
the system are independent of time. As described, the problem is
intractable today [1]. In the present paper, as our systemwill operate
for a relative large amount of time, we can assume that the problem
is in steady state. In this study, we focus on gun barrel case composed
of CSs constituted of several identical TCs. The objective function is
the power consumed in the system by these stations. The decisions
variables are chosen to be the operating TC number and the discharge
pressure for each CS.

Several methods were developed and none of them have consid-
ered all aspects of the problem. The majority of them are based on
the dynamic programming (DP) [2–7] or gradient search techniques
[8,9].

The work of Batey et al. [10] represents one of the early attempts
to develop a rational control policy. Wong and Larson [3] applied
the DP technique for the first time to the linear systems in 1968,
and then Wong and Larson [4] used it for the ramified networks.
Peretti and Toth [5] used a DP formulation, which uses dominance
properties and lower bounds. In 1987, Percell and Ryan [8] applied
a methodology based on a generalised reduced gradient (GRG) non-
linear optimization technique for non-cyclic structures. The most
significant work on cyclic networks is due to Carter [6] who used a
non-sequential DP algorithm, but limited to a set of flows. Wu et al.
[9] presented two model relaxations, one for the feasible operating
domain of compressor and another in the fuel cost function, and de-
rive a lower bounding scheme. Cobos-Zaleta and Ríos-Mercado [11]

http://www.sciencedirect.com/science/journal/cor
http://www.elsevier.com/locate/cor
file:chebouba@yahoo.fr
roger
Sticky Note
No 6



A. Chebouba et al. / Computers & Operations Research 36 (2009) 1916 -- 1923 1917

presented a method based on an outer approximation with equality
relaxation and augmented penalty algorithm (OA/ER/AP) for solving
a MINLP problem. Chebouba and Smati [7] proposed a model based
on DP for operating compressor unit choice. Ríos-Mercado et al. [2]
recently used a two stage iterative procedure. At the first stage, gas
flow variables are fixed and optimal pressure variables are found
via dynamical programming. At the second stage, they search a new
set of flow variables that improve objective function. Martin et al.
[1] applied a technique for a piece-wise linear approximation of the
model non-linearities. The use of metaheuristic, for gas pipeline fuel
consumption minimization problem (GPFCMP), is generally limited
until now to the genetic algorithms [12]. In Goldberg's work, not all
the constraints of the problem (operation range of the compressors)
have been considered.

The principal advantages of DP are that a global optimum is guar-
anteed and that the non-linearity can be easily treated. The disad-
vantages of DP are that its application is practically limited to the
simple network topologies (linear or ramified) and that computa-
tion increases in an exponential way with problem dimension. The
advantages of GRG method consist of that dimension does not be a
problem and, it could be applied to cyclic network schemes. How-
ever, as GRG method is based on a search gradient method, there is
no guarantee to find a global optimum. In fact, with discrete decision
variables, it can fix with the local optimum.

The main original contribution proposed in this paper, is that we
use, for the first time, the ant colony optimization (ACO) algorithm
for the GPFCMP. The results obtained with the suggested approach
are excellent with a strong computing time saving compared to those
obtained with the DP technique. This will enable us to design a fast,
effective and robust decision aid tool based on the suggestedmethod.
This tool will assist operators to make the most appropriate decision
within a short time.

The results reported in this work have been applied to the gas
transportation pipe “Hassi R'mell-Arzew” of Algerian network.

ACO was inspired by ants behaviour studies [13]. The ant algo-
rithm is a new evolutionary optimization method first proposed by
Dorigo et al. [14] to solve different combinatorial optimization prob-
lems like the travelling salesman problem and the quadratic assign-
ment problem. Dorigo and Di Caro [15] introduced the ant colony
metaheuristic framework. This enables ACO to be applied to other
engineering problems. Abbaspour et al. [16] used ACO algorithms to
estimate hydraulic parameters of unsaturated soil. Maier et al. [17]
developed ACO algorithms to find a near global optimal solution to
a water distribution system. However, no application of ACO was
carried out for gas pipeline operation optimization.

The paper is organized as follows. In Section 2, the description,
the formulation and the assumptions are described. The proposed
methodology is fully described in Section 3. An extensive compu-
tational evaluation of the metaheuristic, including comparison with
DP technique, is presented in Section 4. Finally, we conclude this
work in Section 5.

2. The problem

2.1. Description

The transportation system is defined by the set of all nodes V , the
set of all arcs A, the set of CS arcs AC and the set of pipe leg arcs AP.

The transportation system (Fig. 1) receives at its inlet (D.T.) a
quantity of gas at some pressure conditions. For each station (i, j),
decisions variables are the discharge pressure (pj) and number of
operating TCS (nij). It is necessary to take into account several con-
straints. Some of these are physical and represent the feasible oper-
ating domain for compressor station (the TC speed and flow rate).
Others are management constraints such as the maximum pressure

value inside pipes, the minimum and maximum pressure value at
suction and discharge node of each station, the minimum pressure
value at the outlet of the line (A.T.), the maximum available num-
ber of TCs. The subject of our work is the fuel consumption mini-
mization problem of gas pipeline. The problem can be formulated
in the following way: for a given flow at the input of the line with
certain pressure conditions, and one at the consumer nodes, with a
pre-assigned pressure at the end of the line, what are the optimal
decision variables values for each station?

2.2. Formulation

Objective function:

min
∑

(i,j)∈AC

(
xij

ZiRTi
�

[(pj
pi

)�
− 1

])/
�ij (1)

s.t.

p2i − p2j = Rijx
2
ij, (i, j) ∈ Ap (2)

Pli < pi < P
u
i , i ∈ V (3)

pj�0, (i, j) ∈ Ac (4)

(xij/nij,pi, pj) ∈ Dij, ni,j ∈ {0, 1, 2, . . . ,Nij}, (i, j) ∈ Ac (5)

At each arc (i, j) ∈ AC, pj and pi are, respectively, the discharge pres-

sure and the inlet pressure of station (i, j). Pli and Pui are the pressure
limits at node i, and represent respectively lower limit and upper
limit. Rij represents the resistance of pipeleg (i, j) ((i, j) ∈ Ap). For
each station (i, j), xij, nij and Nij represent, respectively, the mass
flow rate, the operating TCs number and number of available TCs in
the compressor station (i, j). The gas compressibility factor Zi and gas
temperature Ti are defined at suction conditions of station (i, j). �ij is
the TC adiabatic efficiency in station (i, j). The gas constant R and the
gas specific heat ratio � are characteristics of the transported gas. Dij
is the feasible operating domain for a single TC unit in CS (i, j).

For measuring total power consumed by all the pipeline compres-
sor stations, we use Eq. (1), the TC adiabatic efficiency �ij is obtained
from Eq. (7). Eq. (2) defines the gas flow dynamics in each pipe leg
(i, j). Constraint (3) bounds the pressure in the pipeline. Eq. (4) de-
fines the pressure as non-negative variable. Constraint (5) represents
the feasible operating domain for a single TC unit. This equation de-
fines that the operating point of the TC must belong to the feasible
operating domain which is bounded by inequalities (8) and (9).

The compressor stations are constituted of several identical TCs,
built in parallel, which could be stopped or started. Fig. 2. shows CS
representation with two parallel identical TCs.

The operation range of a TC in CS (i, j) as a function of the variables
qij (flow through the TC unit), pi (suction pressure) and pj (discharge
pressure) is given by the following equations:

hij

s2ij
= AH + BH

(
qij
sij

)
+ CH

(
qij
sij

)2
+ DH

(
qij
sij

)3
(6)

�ij =
⎛
⎝CE

(
qij
sij

)2
+ BE

(
qij
sij

)
+ AE

⎞
⎠/100 (7)

Smin < sij < Smax (8)

Surge < qij/sij < Stonewall (9)

where AH , BH , CH , DH , AE, BE and CE are constants which depend
on the compressor unit and are typically estimated by applying the
least squares method to a set of collected data of the quantities qij,
sij, hij et �ij [18]. Surge is lower bound of qij/sij and Stonewall is upper
bound of qij/sij.
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Fig. 1. The transportation system.
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Fig. 2. Schematic of compressor station (i, j).

The relationships between (hij, qij) and (xij, pi,pj) are the follow-
ing:

hij = ZiRTi
�

[(pj
pi

)�
− 1

]
(10)

qij = ZiRTi
xij
pinij

(11)

The minimum TC speed Smin and the maximum TC speed Smax are
the values which bound the TC speed sij in station (i, j) (Eq. (8)). The
TC adiabatic head hij in station (i, j) is obtained from Eq. (10).

3. ACO algorithm

3.1. Introduction

The graph G(D, L,C) [19] of the GPFCMP can be represented as a set
of nodes D= {1, 2, . . . ,n+1}. Each node i�n (n: number of compres-
sor stations) is linked to the next via a set of edges �(i, S′

i)={l(i, j, S′
i) :

j=1, 2, . . . ,NOi}, where l(i, j, S′
i) is the jth edge (station discharge pres-

sure) connecting node i to node i + 1. NOi is the number of edges
connecting node i to node i+1 with the preceding semi-constructed
tour S′

i and the set of all edges is L = {s : s ∈ ⋃n
i=1�(i, S

′
i)}. A feasi-

ble tour through this graph is then an element of the solution space
S={S : S={s(1, S′

1), . . . , s(n, S
′
n)}, s(i, S′

i) ∈ �(i, S′
i), i=1, . . . ,n}. C={c(i, j, S′

i)}
is the set of costs associated with edge l(i, j, S′

i).
In what follows, for the clearness of the text, we omit to add the

preceding semi-constructed tour S′ in the formulas.

A set of finite constraints �(D, L) may be assigned over the ele-
ments of D and L.

The m ants are placed at the starting node. Ants build a solution
to solve GPFCMP, while moving from a node to another one to all
them visit.

During an iteration t, each ant k carries out a tour Tk(t), and
during this tour, the choice of edge li,j connecting node i to node
i + 1, depends on the followings:

1. The inverse of cost cij, called visibility �ij (�ij=1/cij). This heuristic
value is calculated once at the start of the algorithm and is not
changed during the computation.

2. The concentration of pheromone �ij(t) on edge lij at iteration t. The
pheromone trail takes into account the ant's current history per-
formance. The amount of pheromone trail �ij(t) associated with
edge lij is indented to represent the learned desirability of choos-
ing jth edge at node i. The pheromone trail information is changed
during problem solution to reflect the experience acquired by ants
during problem solving.

3.2. Ant Colony System (ACS)

ACS algorithm was introduced to improve the performances of
the basic algorithm [20] on big size problems, the modifications are
as follows [21]:

Firstly, ACS introduces a rule of transition depending on a pa-
rameter q0 (0�q0�1), which determines the relative importance of
exploitation versus exploration: every time an ant at node i selects
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edge lij according to the following transition rule:

j =
{
argmax

u∈Jki
�(�iu(t))	(�iu)
� if q�q0

J otherwise
(12)

No 

Yes 

Start

Initialize Model 

t = 0

t = t + 1

k = 0 

k = k + 1

Ants build their tours 

Apply local updating rule 

Last k ? 

No 

Seek the best tour 

Apply global updating rule 

End
conditions?  

Yes

Print results

Fig. 3. Steps in ACS algorithm.

ArzewStation 5Station 4Station 3Station 2Station 1Hassi R’mell

Fig. 4. Gas pipeline Hassi R'mell-Arzew.

Table 1
.
Pipeleg resistances (Rij) [1.5883 1.4824 1.7154 1.4613

2.1601 2.3296] ∗ 1e8
Gas constant (R) 435 J/(kgK)
Maximum operating pressure (Pu) 72bars
Minimum suction pressure (Pl) 47bars
Arzew delivery pressure (PTA) 42bars

where q is a random variable uniformly distributed over [0, 1] and
J∈Jki a random value selected according to the probability

pkiJ(t) =

⎧⎪⎪⎨
⎪⎪⎩

[�iJ(t)]
	[�iJ]




∑
u∈Jki

[�iu(t)]
	[�iu]


 for J ∈ Jki

0 for J /∈ Jki

(13)

The parameters 	 = 1 [20] and 
�0 control the relative importance
of the pheromone trail and heuristic value referred to as pheromone
and heuristic sensitivity parameters, respectively.

Secondly, in the ACS algorithm, the pheromone trail is changed
both locally and globally.

• Local updating: Every time an edge li,j is chosen by an ant, the
amount of pheromone will change by applying the local trail up-
dating formula:

�ij(t) = (1 − �)�ij(t) + ��0 (14)

where �0 is the initial pheromone value, � evaporation rate.
• Global updating: Upon completion of a tour by all ants in the colony,

the global trail updating is done as follows:

�ij(t + 1) = (1 − �)�ij(t) + ���ij(t), ��ij(t) = 1
L+ (15)

where edge li,j belongs to the best tour within the past total iter-
ation, and L+ value of the objective function for the ant with the
best performance within the past total iteration.

The main steps in the ACS algorithm are shown in Fig. 3 and
include:

1. Ants build their tours as they move from one decision point to
the next until all decision points have been covered.

2. The cost of the tour generated is calculated, pheromone is updated
locally.

3. After the completion of one iteration (t), pheromone is updated
globally.

4. Case study

4.1. Description

The gas pipeline considered in our calculations, in the first part of
this study, is that of “Hassi R' mell-Arzew”. In the second part of this
work, we consider general cases having the same principal data of
Hassi R'mell-Arzew gas pipeline. However, the CS number and the TC
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Fig. 6. Behaviour of parameter 
.

number are different. A name Csx-Nby represents an instance with
x CS and y TC. For example, an instance of Cs5–Nb3 means that we
have five CSs (Cs5) and, in each compressor station, there are three
TCs (Nb3).

Hassi R'mell-Arzew gas pipeline is composed of one source, one
demand and six pipelegs connected in series by five CSs. These
stations are constituted of three identical TCs, built in parallel. A
schematic illustration of this pipeline is provided in Fig. 4.

Hassi R'mell: Gas gathering and treatment centre. Arzew: Lique-
fied natural gas plant.

The principal data for this pipeline are listed in Table 1.

4.2. Tests

The computational tests was developed on a DELL biprocessor
workstation with 1 Giga RAM and 440MHz. The algorithm is coded
using matlab 7.

As with any metaheuristics, many parameters need to be set
to have a good performance of ACO algorithm. The model perfor-
mance was tested against variations of �, 
, q0, m (ant number)
and t_max (number of iterations). To have an idea on the best
possible values of these parameters, a feasible range for each pa-
rameter was first defined. With 
 ∈ {1, 5, 6, 7, 8, 8.5, 9, 9.5}, � ∈
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Fig. 7. Behaviour of parameter q0.

Table 2
Influence of number of iterations and number of ants on objective function.

m t_max

5 10 15 20

10 Mean 1.8095 1.7355 1.7207 1.7208
The best 1.7195 1.7192 1.7188 1.7187
The worst 1.8699 1.8706 1.7244 1.7247

20 Mean 1.7205 1.7194 1.7197 1.7192
The best 1.7184 1.7185 1.7182 1.7181
The worst 1.7245 1.7217 1.7212 1.7210

30 Mean 1.7198 1.7190 1.7190 1.7190
The best 1.7184 1.7182 1.7182 1.7180
The worst 1.7218 1.7203 1.7215 1.7213

50 Mean 1.7192 1.7187 1.7184 1.7182
The best 1.7178 1.7177 1.7177 1.7177
The worst 1.7206 1.7196 1.7190 1.7190

Bold values give the best combination of parameters m and t_max.
	 = 1, 
 = 8, � = 0.1 and q0 = 0.5.

{0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 0.99} and q0 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
objective function values were observed to select the best combina-
tion of these parameters.

A value of 0.1 for the pheromone evaporation rate, one of 8 for

 and one of 0.5 for q0 seem to be the best choice for our problem
as shown in Figs. 5–7.

Results reported in Fig. 5 are based on 10 runs (10 restarts) for

 = 8, 	 = 1 and q0 = 0.5.

Results reported in Fig. 6 are based on 10 runs (10 restarts) for
� = 0.1, 	 = 1 and q0 = 0.5.

Results reported in Fig. 7 are based on 10 runs (10 restarts) for
� = 0.1, 	 = 1 and 
 = 0.8.

Table 2 presents the objective function values for different num-
ber of ants and number of iterations. As expected the quality of the
final solution improves as these numbers increase. Results reported
in Table 2 are based on 10 runs (10 restarts).

ACO algorithms are initially developed for discrete optimiza-
tion as for TSP problem. Even, developments were done for
specifically continuous process as [22,23]. In some cases and under
some considerations we can use the discrete form of the algorithm
even if we deal with a continuous problem. This is our case and the

Table 3
Computing time and objective value for Hassi R'mell-Arzew Gas pipeline.

Flow rate ACO DP CTSP RE

CPU time (s) Objective value CPU time (s) Objective value

950000 209 17182 1727 17178 88 0.02
1000000 203 23602 1170 23591 83 0.05
1050000 199 28426 1446 28409 86 0.06
1100000 195 34257 1544 34254 87 0.009
1150000 185 41811 1766 41803 89 0.02

case of the algorithm developed in this paper. The emphasis of the
paper is to use ACO as a rapid decision aid tool, it is not necessary
to use an increment smaller than the value of �p = 0.01bars. As for
other algorithm parameters, we test different values in no increas-
ing order of �p and we adopt the indicated value. This scheme is
sufficient for our problem according to industrial practice.

All the following results are obtained with 	 = 1, 
 = 8, � = 0.1,
q0 = 0.5, m = 50 and t_max = 10.

Fig. 8 shows the effect of discretization size on the objective
function value. It is seen that objective function value is decreased
for finer discretization.

4.3. Hassi R'mell-Arzew Gas pipeline case

This gas pipeline is a Cs5–Nb3 instance. We have compared the
solution obtained by proposed method (ACO) with that of DP [7] for
different flow rates (Table 3). The two last columns of this table show
the relative error (RE) and the computing time saving in percent
(CTSP) of ACO over DP, given by

RE = |Objective valueACO − Objective valueDP|
Objective valueDP

∗ 100

CTSP = |CPUDP − CPUACO|
CPUDP

∗ 100

From Table 3, we can see that the ACO is still almost good as the DP
and the computing time saving in percent of ACO over DP is bigger
than 83. It becomes 6–9 times faster. We notice also, for some flow
rates (1150000kg/h) (Table 4), that the results of calculation of the
discharge pressures are in agreement with Batey's principle [10].
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Fig. 8. Influence of discretization size �p on objective function values. (	 = 1, 
 = 8, � = 0.1 and q0 = 0.5).

Table 4
Optimal policy for a flow rate of 1150000kg/h.

Stations Variables Flow rate (kg/h) 1150000

1 Discharge pressure (bars) 72
Operating turbocompressors 3

2 Discharge pressure (bars) 72
Operating turbocompressors 3

3 Discharge pressure (bars) 72
Operating turbocompressors 3

4 Discharge pressure (bars) 72
Operating turbocompressors 3

5 Discharge pressure (bars) 64.35
Operating turbocompressors 3

This principle very known for gas pipeline engineers can be ex-
pressed as follows: all the compressor station has to work in the most
raised possible pressure (in our case 72bars) except the last one who
has to develop a sufficient just load so that pressure in the arrival is
equal to the acceptable minimal pressure. This principle works only
for flow rates which are near the nominal flow rate.

In Table 4, we present an optimal policy obtained by the proposed
method for a flow rate of 1150000kg/h.

4.4. General cases

To test the algorithm performance in general cases, we consider
different problem sizes. For this, we analyse, for different flow rates,
the influence of both compressor station number and TC number on
the performance of ACO algorithm.

For these various instances, computing times and objective values
were calculated. Tables 5–7 show a comparison between DP and
ACO. These tables share the same format as that of Table 3.

As we can see, from Table 5, the relative error of ACO over DP is
less than 0.22%.

Moreover, the computing time saving in precent of ACO over DP
is bigger than 93. The ACO is 14–27 times faster.

Table 5
Computing time and objective function for a Cs11–Nb6 instance.

Flow rate ACO DP CTSP RE

CPU time (s) Objective value CPU time (s) Objective value

950000 721 49217 10332 49114 93 0.21
1000000 509 61641 11533 61534 96 0.17
1050000 477 73413 11779 73252 96 0.22
1100000 445 87028 11335 86942 96 0.10
1150000 418 103739 11150 103600 96 0.13

Table 6
Computing time and objective function for a Cs17–Nb9 instance.

Flow rate ACO DP CTSP RE

CPU time (s) Objective value CPU time (s) Objective value

950000 1251 81152 28262 81050 96 0.13
1000000 1114 99882 30405 99477 96 0.41
1050000 1069 118311 29886 118122 96 0.16
1100000 977 140230 28560 139705 97 0.38
1150000 649 165888 27522 165397 98 0.30

Table 7
Computing time and objective function for a Cs23–Nb12 instance.

Flow rate ACO DP CTSP RE

CPU time (s) Objective value CPU time (s) Objective value

950000 1869 113390 55168 112985 97 0.36
1000000 1525 137913 57628 137419 97 0.36
1050000 1536 164062 56332 162993 97 0.66
1100000 1405 193297 53409 192469 97 0.43
1150000 895 228550 50786 227194 98 0.60

From Table 6, we first observe that relative error of ACO over DP is
less than 0.41%. On the other hand, we also observe that computing
time saving in percent of ACO over DP is bigger than 96. In fact, the
ACO becomes 23–42 times faster.

As can be seen from Table 7, the relative error of ACO over DP is
less than 0.66%. We can observe also that the computing time saving
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in percent of ACO over DP is bigger than 97. The ACO becomes 30–57
times faster.

Finally, as can be seen from these tables, ACO algorithm gives
quasi-optimal solutions in less computing time for all flow rates and
for different problem sizes. In some instances, ACO becomes 57 times
faster. This shows the effectiveness of the proposed method.

5. Conclusions

In this paper, we use a relevant technique to minimize fuel con-
sumption of gas pipeline. An algorithm based on ant colony meta-
heuristic was very performing compared to dynamic programming
technique. In fact, with the suggested method, we obtain excellent
results with a strong computing time saving. This will enable us to
design a fast, effective and robust decision aid tool based on the
suggested method. This tool will assist operators to make the most
appropriate decision within a short time.

A careful sensibility analysis is required for parameters involved
in the algorithm (�, 
 and q0). In this work, some variations of these
parameters were tested and the values reported are those that gave
us better results.

Finally, obtained results encourage us to study more complex
structures (cyclic network topology), nonstationary problem and
combinatorial aspects (nonidentical turbocompressors).
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