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ABSTRACT. GRASP is a multi-start metaheuristic for combinatorial optimiza-
tion problems, in which each iteration consists basically of two phases: con-
struction and local search. The construction phase builds a feasible solution,
whose neighborhood is investigated until a local minimum is found during
the local search phase. The best overall solution is kept as the result. In
this chapter, we first describe the basic components of GRASP. Successful
implementation techniques are discussed and illustrated by numerical results
obtained for different applications. Enhanced or alternative solution construc-
tion mechanisms and techniques to speed up the search are also described:
alternative randomized greedy construction schemes, Reactive GRASP, cost
perturbations, bias functions, memory and learning, local search on partially
constructed solutions, hashing, and filtering. We also discuss implementation
strategies of memory-based intensification and post-optimization techniques
using path-relinking. Hybridizations with other metaheuristics, parallelization
strategies, and applications are also reviewed.

1. INTRODUCTION

We consider in this chapter a combinatorial optimization problem, defined by a
finite ground set E = {1,...,n}, a set of feasible solutions F' C 2 and an objective
function f : 2 — R. In its minimization version, we search an optimal solution
S* € F such that f(S*) < f(5), VS € F. The ground set F, the cost function
f, and the set of feasible solutions F' are defined for each specific problem. For
instance, in the case of the traveling salesman problem, the ground set E is that of
all edges connecting the cities to be visited, f(S) is the sum of the costs of all edges
in S, and F is formed by all edge subsets that determine a Hamiltonian cycle.

GRASP (Greedy Randomized Adaptive Search Procedure) [68, 69] is a multi-
start or iterative metaheuristic, in which each iteration consists of two phases:
construction and local search. The construction phase builds a solution. If this
solution is not feasible, then it is necessary to apply a repair procedure to achieve
feasibility. Once a feasible solution is obtained, its neighborhood is investigated
until a local minimum is found during the local search phase. The best overall
solution is kept as the result. Extensive literature surveys are presented in [78,
79, 80, 154, 155, 158]. The pseudo-code in Figure 1 illustrates the main blocks
of a GRASP procedure for minimization, in which Max_Iterations iterations are
performed and Seed is used as the initial seed for the pseudo-random number
generator.
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procedure GRASP(Max Iterations,Seed)
Read_Input();
for k=1,...,Max_Iterations do
Solution « Greedy_Randomized Construction(Seed);
if Solution is not feasible then
Solution «— Repair(Solution);

Solution « Local_Search(Solution);
Update_Solution(Solution,Best_Solution);
end;
0 return Best_Solution;
end GRASP.
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FIGURE 1. Pseudo-code of the GRASP metaheuristic.

Figure 2 illustrates the construction phase with its pseudo-code. At each iter-
ation of this phase, let the set of candidate elements be formed by all elements of
the ground set E that can be incorporated into the partial solution being built,
without impeding the construction of a feasible solution with the remaining ground
set elements. The selection of the next element for incorporation is determined by
the evaluation of all candidate elements according to a greedy evaluation function.
This greedy function usually represents the incremental increase in the cost func-
tion due to the incorporation of this element into the solution under construction.
The evaluation of the elements by this function leads to the creation of a restricted
candidate list (RCL) formed by the best elements, i.e. those whose incorporation
to the current partial solution results in the smallest incremental costs (this is the
greedy aspect of the algorithm). The element to be incorporated into the partial
solution is randomly selected from those in the RCL (this is the probabilistic aspect
of the heuristic). Once the selected element is incorporated into the partial solu-
tion, the candidate list is updated and the incremental costs are reevaluated (this
is the adaptive aspect of the heuristic). The above steps are repeated while there
exists at least one candidate element. This strategy is similar to the semi-greedy
heuristic proposed by Hart and Shogan [95], which is also a multi-start approach
based on greedy randomized constructions, but without local search.

Not always is a randomized greedy construction procedure able to produce a
feasible solution. In case this occurs, it may be necessary to apply a repair procedure
to achieve feasibility. Examples of repair procedures can be found in [60, 61, 127].

The solutions generated by a greedy randomized construction are not necessar-
ily optimal, even with respect to simple neighborhoods. The local search phase
usually improves the constructed solution. A local search algorithm works in an
iterative fashion by successively replacing the current solution by a better solution
in its neighborhood. It terminates when no better solution is found in the neighbor-
hood. The pseudo-code of a basic local search algorithm starting from the solution
Solution constructed in the first phase (and possibly made feasible by the repair
heuristic) and using a neighborhood N is given in Figure 3.

The speed and the effectiveness of a local search procedure depend on several
aspects, such as the neighborhood structure, the neighborhood search technique,
the strategy used for the evaluation of the cost function value at the neighbors,
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procedure Greedy Randomized Construction(Seed)

1  Solution « {;

2 Initialize the set of candidate elements;

3 Evaluate the incremental costs of the candidate elements;
4 while there exists at least one candidate element do
5 Build the restricted candidate list (RCL);

6 Select an element s from the RCL at random;

7 Solution « SolutionU {s};

8 Update the set of candidate elements;

9 Reevaluate the incremental costs;

10 end;

11  return Solution;

end Greedy Randomized Construction.

FIGURE 2. Pseudo-code of the construction phase.

procedure Local_Search(Solution)

1 while Solution is not locally optimal do

2 Find s’ € N(Solution) with f(s") < f(Solution);
3 Solution « s';

4 end;

5 return Solution;

end Local_Search.

F1GURE 3. Pseudo-code of the local search phase.

and the starting solution itself. The construction phase plays a very important
role with respect to this last aspect, building high-quality starting solutions for the
local search. Simple neighborhoods are usually used. The neighborhood search
may be implemented using either a best-improving or a first-improving strategy.
In the case of the best-improving strategy, all neighbors are investigated and the
current solution is replaced by the best neighbor. In the case of a first-improving
strategy, the current solution moves to the first neighbor whose cost function value
is smaller than that of the current solution. In practice, we observed on many
applications that quite often both strategies lead to the same final solution, but
in smaller computation times when the first-improving strategy is used. We also
observed that premature convergence to a bad local minimum is more likely to
occur with a best-improving strategy.

2. CONSTRUCTION OF THE RESTRICTED CANDIDATE LIST

An especially appealing characteristic of GRASP is the ease with which it can be
implemented. Few parameters need to be set and tuned. Therefore, development
can focus on implementing appropriate data structures for efficient construction
and local search algorithms. GRASP has two main parameters: one related to the
stopping criterion and the other to the quality of the elements in the restricted
candidate list.
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The stopping criterion used in the pseudo-code described in Figure 1 is deter-
mined by the number Max_Iterations of iterations. Although the probability of
finding a new solution improving the incumbent (current best solution) decreases
with the number of iterations, the quality of the incumbent may only improve with
the latter. Since the computation time does not vary much from iteration to it-
eration, the total computation time is predictable and increases linearly with the
number of iterations. Consequently, the larger the number of iterations, the larger
will be the computation time and the better will be the solution found.

For the construction of the RCL used in the first phase we consider, without
loss of generality, a minimization problem as the one formulated in Section 1. We
denote by c(e) the incremental cost associated with the incorporation of element
e € E into the solution under construction. At any GRASP iteration, let ¢™" and
c™* be, respectively, the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of the elements e € E with the
best (i.e., the smallest) incremental costs c(e). This list can be limited either by
the number of elements (cardinality-based) or by their quality (value-based). In the
first case, it is made up of the p elements with the best incremental costs, where p
is a parameter. In this chapter, the RCL is associated with a threshold parameter
a € [0,1]. The restricted candidate list is formed by all elements e € E which can be
inserted into the partial solution under construction without destroying feasibility
and whose quality is superior to the threshold value, i.e., c(e) € [¢™™ ™ +
a(cmar — ¢mi)] The case a = 0 corresponds to a pure greedy algorithm, while
a = 1 is equivalent to a random construction. The pseudo code in Figure 4 is a
refinement of the greedy randomized construction pseudo-code shown in Figure 2.
It shows that the parameter a controls the amounts of greediness and randomness
in the algorithm.

procedure Greedy Randomized Construction(q, Seed)

1 Solution « {;

2 Initialize the candidate set: C «— E;

3 Evaluate the incremental cost c(e) for all e € C;

4 while C # () do

5 ™"« min{c(e) | e € C};

6 ™ — max{c(e) | e € C};

7 RCL « {e € C | c(e) < ™™ + afcme® — ¢min)},
8 Select an element s from the RCL at random;

9 Solution « SolutionU {s};

10 Update the candidate set C;

11 Reevaluate the incremental cost ¢(e) for all e € C;
12 end;

13 return Solution;

end Greedy Randomized Construction.

FIGURE 4. Refined pseudo-code of the construction phase.

GRASP may be viewed as a repetitive sampling technique. Each iteration pro-
duces a sample solution from an unknown distribution, whose mean and variance
are functions of the restrictive nature of the RCL. For example, if the RCL is
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restricted to a single element, then the same solution will be produced at all iter-
ations. The variance of the distribution will be zero and the mean will be equal
to the value of the greedy solution. If the RCL is allowed to have more elements,
then many different solutions will be produced, implying a larger variance. Since
greediness plays a smaller role in this case, the average solution value should be
worse than that of the greedy solution. However, the value of the best solution
found outperforms the average value and very often is optimal. It is unlikely that
GRASP will find an optimal solution if the average solution value is high, even if
there is a large variance in the overall solution values. On the other hand, if there is
little variance in the overall solution values, it is also unlikely that GRASP will find
an optimal solution, even if the average solution is low. What often leads to good
solutions are relatively low average solution values in the presence of a relatively
large variance, such as is the case for a = 0.2.

Another interesting observation is that the distances between the solutions ob-
tained at each iteration and the best solution found increase as the construction
phase moves from more greedy to more random. This causes the average time
taken by the local search to increase. Very often, many GRASP solutions may be
generated in the same amount of time required for the local search procedure to
converge from a single random start. In these cases, the time saved by starting the
local search from good initial solutions can be used to improve solution quality by
performing more GRASP iterations.

These results are illustrated in Table 1 and Figure 5, for an instance of the
MAXSAT problem where 1000 iterations were run. For each value of a rang-
ing from 0 (purely random construction for maximization problems) to 1 (purely
greedy construction for maximization problems), we give in Table 1 the average
Hamming distance between each solution built during the construction phase and
the corresponding local optimum obtained after local search, the average number
of moves from the first to the latter, the local search time in seconds, and the total
processing time in seconds. Figure 5 summarizes the values observed for the total
processing time and the local search time. We notice that both time measures
considerably decrease as « tends to 1, approaching the purely greedy choice. In
particular, we observe that the average local search time taken by o = 0 (purely
random) is approximately 2.5 times that taken in the case & = 0.9 (almost greedy).
In this example, two to three greedily constructed solutions can be investigated in
the same time needed to apply local search to one single randomly constructed solu-
tion. The appropriate choice of the value of the RCL parameter « is clearly critical
and relevant to achieve a good balance between computation time and solution
quality.

Prais and Ribeiro [140] have shown that using a single fixed value for the value
of the RCL parameter « very often hinders finding a high-quality solution, which
could be found if another value was used. They proposed an extension of the basic
GRASP procedure, which they call Reactive GRASP, in which the parameter «
is self-tuned and its value is periodically modified according with the quality of
the solutions obtained along the search. In particular, computational experiments
on the problem of traffic assignment in communication satellites [141] have shown
that Reactive GRASP found better solutions than the basic algorithm for many
test instances. These results motivated the study of the behavior of GRASP for
different strategies for the variation of the value of the RCL parameter a:
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TABLE 1. Average number of moves and local search time as a
function of the RCL parameter o for a maximization problem.

! avg. distance avg. moves local search time (s) total time (s)
0.0 12.487 12.373 18.083 23.378
0.1 10.787 10.709 15.842 20.801
0.2 10.242 10.166 15.127 19.830
0.3 9.777 9.721 14.511 18.806
0.4 9.003 8.957 13.489 17.139
0.5 8.241 8.189 12.494 15.375
0.6 7.389 7.341 11.338 13.482
0.7 6.452 6.436 10.098 11.720
0.8 5.667 5.643 9.094 10.441
0.9 4.697 4.691 7.753 8.941
1.0 2.733 2.733 5.118 6.235
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FIGURE 5. Total CPU time and local search CPU time as a func-
tion of the RCL parameter « for a maximization problem (1000
repetitions for each value of «).

(R) « self tuned according with the Reactive GRASP procedure;
(E) a randomly chosen from a uniform discrete probability distribution;
(H) « randomly chosen from a decreasing non-uniform discrete probability dis-

tribution; and

(F) fixed value of «, close to the purely greedy choice.

We summarize the results obtained by the experiments reported in [139, 140].
These four strategies were incorporated into the GRASP procedures developed for
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four different optimization problems: (P-1) matrix decomposition for traffic assign-
ment in communication satellite [141], (P-2) set covering [68], (P-3) weighted MAX-
SAT [151, 152], and (P-4) graph planarization [153, 159]. Let ¥ = {a1,...,am}
be the set of possible values for the parameter « for the first three strategies. The
strategy for choosing and self-tuning the value of a in the case of the Reactive
GRASP procedure (R) is described later in Section 3. In the case of the strategy
(E) based on using the discrete uniform distribution, all choice probabilities are
equal to 1/m. The third case corresponds to the a hybrid strategy (H), in which
the authors considered p(a = 0.1) = 0.5, p(a = 0.2) = 0.25, p(aw = 0.3) = 0.125,
pla = 0.4) = 0.03, p(a = 0.5) = 0.03, p(aw = 0.6) = 0.03, p(aw = 0.7) = 0.01,
p(a = 0.8) = 0.01, p(a = 0.9) = 0.01, and p(a = 1.0) = 0.005. Finally, in the last
strategy (F), the value of « is fixed as recommended in the original reference where
this parameter was tuned for each problem. A subset of the literature instances
was considered for each class of test problems. The results reported in [140] are
summarized in Table 2. For each problem, we first list the number of instances
considered. Next, for each strategy, we give the number of times it found the best
solution (hits), as well as the average CPU time (in seconds) on an IBM 9672 model
R34. The number of iterations was fixed at 10,000.

TABLE 2. Computational results for different strategies for the
variation of parameter a.

R E H F
Problem Instances hits time hits time hits time hits time
P-1 36 34 579.0 35 358.2 32 612.6 24 642.8
P-2 7 7 1346.8 6 1352.0 6  668.2 5 500.7
P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2
P-4 37 28 6363.1 21 72929 24 6326.5 19 5972.0
Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the
four problem types. It was also the one with the least variability in the constructed
solutions and, in consequence, found the best solution the fewest times. The reactive
strategy (R) is the one which most often found the best solutions, however, at the
cost of computation times that are longer than those of some of the other strategies.
The high number of hits observed by strategy (E) also illustrates the effectiveness
of strategies based on the variation of the RCL parameter.

3. ALTERNATIVE CONSTRUCTION MECHANISMS

A possible shortcoming of the standard GRASP framework is the independence
of its iterations, i.e., the fact that it does not learn from the search history or
from solutions found in previous iterations. This is so because the basic algorithm
discards information about any solution previously encountered that does not im-
prove the incumbent. Information gathered from good solutions can be used to
implement memory-based procedures to influence the construction phase, by mod-
ifying the selection probabilities associated with each element of the RCL or by
enforcing specific choices. Another possible shortcoming of the greedy randomized
construction is its complexity. At each step of the construction, each yet unselected
candidate element has to be evaluated by the greedy function. In cases where the
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difference between the number of elements in the ground set and the number of
elements that appear in a solution large, this may not be very efficient.

In this section, we consider enhancements and alternative techniques for the
construction phase of GRASP. They include random plus greedy, sampled greedy,
Reactive GRASP, cost perturbations, bias functions, memory and learning, and
local search on partially constructed solutions.

3.1. Random plus greedy and sampled greedy construction. In Section 2,
we described the semi-greedy construction scheme used to build randomized greedy
solutions that serve as starting points for local search. Two other randomized greedy
approaches were proposed in [156], with smaller worst-case complexities than the
semi-greedy algorithm.

Instead of combining greediness and randomness at each step of the construction
procedure, the random plus greedy scheme applies randomness during the first p
construction steps to produce a random partial solution. Next, the algorithm com-
pletes the solution with one or more pure greedy construction steps. The resulting
solution is randomized greedy. One can control the balance between greediness and
randomness in the construction by changing the value of the parameter p. Larger
values of p are associated with solutions that are more random, while smaller values
result in greedier solutions.

Similar to the random plus greedy procedure, the sampled greedy construction
also combines randomness and greediness but in a different way. This procedure
is also controlled by a parameter p. At each step of the construction process, the
procedure builds a restricted candidate list by sampling min{p, |C|} elements of the
candidate set C. Each element of the RCL is evaluated by the greedy function. The
element with the smallest greedy function value is added to the partial solution.
This two-step process is repeated until there are no more candidate elements. The
resulting solution is also randomized greedy. The balance between greediness and
randomness can be controlled by changing the value of the parameter p, i.e. the
number of candidate elements that are sampled. Small sample sizes lead to more
random solutions, while large sample sizes lead to greedier solutions.

3.2. Reactive GRASP. The first strategy to incorporate a learning mechanism in
the memoryless construction phase of the basic GRASP was the Reactive GRASP
procedure introduced in Section 2. In this case, the value of the RCL parameter
« is not fixed, but instead is randomly selected at each iteration from a discrete
set of possible values. This selection is guided by the solution values found along
the previous iterations. One way to accomplish this is to use the rule proposed in
[141]. Let ¥ = {aq,...,amn} be a set of possible values for a. The probabilities
associated with the choice of each value are all initially made equal to p; = 1/m,
for ¢ = 1,...,m. Furthermore, let z* be the incumbent solution and let A; be
the average value of all solutions found using @ = «y, for ¢« = 1,...,m. The
selection probabilities are periodically reevaluated by taking p; = ¢;/ ET:1 qj, with
qi = z*/A; for i = 1,...,m. The value of ¢; will be larger for values of @ = «;
leading to the best solutions on average. Larger values of g; correspond to more
suitable values for the parameter . The probabilities associated with the more
appropriate values will then increase when they are reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of
robustness and solution quality, due to greater diversification and less reliance on
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parameter tuning. In addition to the applications in [139, 140, 141], this approach
has been used in power system transmission network planning [41], job shop sched-
uling [40], channel assignment in mobile phone networks [91], rural road network
development [169], capacitated location [57], strip-packing [11], and a combined
production-distribution problem [43].

3.3. Cost perturbations. The idea of introducing some noise into the original
costs is similar to that in the so-called “noising” method of Charon and Hudry [48,
49]. Tt adds more flexibility into algorithm design and may be even more effec-
tive than the greedy randomized construction of the basic GRASP procedure in
circumstances where the construction algorithms are not very sensitive to random-
ization. This is indeed the case for the shortest-path heuristic of Takahashi and
Matsuyama [173], used as one of the main building blocks of the construction phase
of the hybrid GRASP procedure proposed by Ribeiro et al. [163] for the Steiner
problem in graphs. Another situation where cost perturbations can be very effective
appears when no greedy algorithm is available for straightforward randomization.
This happens to be the case of the hybrid GRASP developed by Canuto et al. [46]
for the prize-collecting Steiner tree problem, which makes use of the primal-dual al-
gorithm of Goemans and Williamson [90] to build initial solutions using perturbed
costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described
in [46], a new solution is built at each iteration using node prizes updated by a
perturbation function, according to the structure of the current solution. Two
different prize perturbation schemes were used. In perturbation by eliminations,
the primal-dual algorithm used in the construction phase is driven to build a new
solution without some of the nodes that appeared in the solution constructed in
the previous iteration. In perturbation by prize changes, some noise is introduced
into the node prizes to change the objective function, similarly to what is proposed
in [48, 49].

The cost perturbation methods used in the GRASP for the minimum Steiner
tree problem described in [163] incorporate learning mechanisms associated with
intensification and diversification strategies. Three distinct weight randomization
methods were applied. At a given GRASP iteration, the modified weight of each
edge is randomly selected from a uniform distribution from an interval which de-
pends on the selected weight randomization method applied at that iteration. The
different weight randomization methods use frequency information and may be used
to enforce intensification and diversification strategies. The experimental results re-
ported in [163] show that the strategy combining these three perturbation methods
is more robust than any of them used in isolation, leading to the best overall results
on a quite broad mix of test instances with different characteristics. The hybrid
GRASP with path-relinking heuristic using this cost perturbation strategy is among
the most effective heuristics currently available for the Steiner problem in graphs.

3.4. Bias functions. In the construction procedure of the basic GRASP, the next
element to be introduced in the solution is chosen at random from the candidates in
the RCL. The elements of the RCL are assigned equal probabilities of being chosen.
However, any probability distribution can be used to bias the selection toward some
particular candidates. Another construction mechanism was proposed by Bresina
[44], where a family of such probability distributions is introduced. They are based
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on the rank r(o) assigned to each candidate element o, according to its greedy
function value. Several bias functions were proposed, such as:

random bias: bias(r) = 1;
linear bias: bias(r) =1/r;
log bias: bias(r) = log ™" (r + 1);
exponential bias: bias(r) = e "; and
polynomial bias of order n: bias(r) =r~".

Let r(o) denote the rank of element o and let bias(r(o)) be one of the bias
functions defined above. Once these values have been evaluated for all elements of
the RCL, the probability w(o) of selecting element o is

bias(r(o))
Y orerer, bias(r(o’))
The evaluation of these bias functions may be restricted to the elements of the

RCL. Bresina’s selection procedure restricted to elements of the RCL was used in
[40]. The standard GRASP uses a random bias function.

(1) (o) =

3.5. Intelligent construction: memory and learning. Fleurent and Glover
[82] observed that the basic GRASP does not use long-term memory (informa-
tion gathered in previous iterations) and proposed a long-term memory scheme
to address this issue in multi-start heuristics. Long-term memory is one of the
fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction
phase. To become an elite solution, a solution must be either better than the best
member of the pool, or better than its worst member and sufficiently different from
the other solutions in the pool. For example, one can count identical solution vector
components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding
the objective or changing significantly other variables. A consistent variable is one
that receives a particular value in a large portion of the elite solution set. Let I(e)
be a measure of the strong determination and consistency features of a solution
element e € E. Then, I(e) becomes larger as e appears more often in the pool
of elite solutions. The intensity function I(e) is used in the construction phase as
follows. Recall that c(e) is the greedy function, i.e. the incremental cost associated
with the incorporation of element e € E into the solution under construction. Let
K(e) = F(c(e), I(e)) be a function of the greedy and the intensification functions.
For example, K (e) = Ac(e) + I(e). The intensification scheme biases selection from
the RCL to those elements e € E with a high value of K (e) by setting its selection
probability to be p(e) = K(e)/ > creor K(5).

The function K (e) can vary with time by changing the value of A. For example,
A may be set to a large value that is decreased when diversification is called for.
Procedures for changing the value of A are given by Fleurent and Glover [82] and
Binato et al. [40].

3.6. POP in construction. The Proximate Optimality Principle (POP) is based
on the idea that “good solutions at one level are likely to be found ‘close to’ good
solutions at an adjacent level” [88]. Fleurent and Glover [82] provided a GRASP
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interpretation of this principle. They suggested that imperfections introduced dur-
ing steps of the GRASP construction can be “ironed-out” by applying local search
during (and not only at the end of) the GRASP construction phase.

Because of efficiency considerations, a practical implementation of POP to GRASP
consists in applying local search a few times during the construction phase, but not
at every construction iteration. Local search was applied by Binato et al. [40] after
40% and 80% of the construction moves have been taken, as well as at the end of
the construction phase.

4. PATH-RELINKING

Path-relinking is another enhancement to the basic GRASP procedure, leading to
significant improvements in both solution quality and running times. This technique
was originally proposed by Glover [86] as an intensification strategy to explore
trajectories connecting elite solutions obtained by tabu search or scatter search [87,
88, 89].

We consider the undirected graph associated with the solution space G = (S, M),
where the nodes in S correspond to feasible solutions and the edges in M correspond
to moves in the neighborhood structure, i.e. (i,5) € M if and only if i € S,
j€S8,j€N(),and i € N(j), where N(s) denotes the neighborhood of a node
s € S. Path-relinking is usually carried out between two solutions: one is called
the initial solution, while the other is the guiding solution. One or more paths in
the solution space graph connecting these solutions are explored in the search for
better solutions. Local search is applied to the best solution in each of these paths,
since there is no guarantee that the latter is locally optimal.

Let s € S be anode on the path between an initial solution and a guiding solution
g € S. Not all solutions in the neighborhood N (s) are allowed to be the next on
the path from s to g. We restrict the choice only to those solutions that are more
similar to g than s. This is accomplished by selecting moves from s that introduce
attributes contained in the guiding solution g. Therefore, path-relinking may be
viewed as a strategy that seeks to incorporate attributes of high quality solutions
(i.e. the guiding elite solutions), by favoring these attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-
egy applied to each locally optimal solution, was first proposed by Laguna and
Mart{ [104]. It was followed by several extensions, improvements, and successful
applications [6, 7, 18, 46, 75, 128, 144, 154, 156, 157, 161, 163, 169]. A survey of
GRASP with path-relinking can be found in [155].

Enhancing GRASP with path-relinking almost always improves the performance
of the heuristic. As an illustration, Figure 6 shows time-to-target plots for GRASP
and GRASP with path-relinking implementations for four different applications.
These time-to-target plots show the empirical cumulative probability distributions
of the time-to-target random variable when using pure GRASP and GRASP with
path-relinking, i.e., the time needed to find a solution at least as good as a prespeci-
fied target value. For all problems, the plots show that GRASP with path-relinking
is able to find target solutions faster than GRASP.

GRASP with path-relinking makes use of an elite set to collect a diverse pool of
high-quality solutions found during the search. This pool is limited in size, i.e. it
can have at most Max_Elite solutions. Several schemes have been proposed for the
implementation of path-relinking, which may be applied as:
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e an intensification strategy, between each local optimum obtained after the
local search phase and one or more elite solutions;

e a post-optimization step, between every pair of elite solutions;

e a post-optimization phase, submitting the pool of elite solutions to an evo-
lutionary process;

e an intensification strategy, periodically submitting the pool of elite solutions
to an evolutionary process; or

e any other combination of the above schemes.

The pool of elite solutions is initially empty. Each locally optimal solution ob-
tained by local search and each solution resulting from path-relinking is considered
as a candidate to be inserted into the pool. If the pool is not yet full, the candidate
is simply added to the pool. Otherwise, if the candidate is better than the incum-
bent, it replaces an element of the pool. In case the candidate is better than the
worst element of the pool but not better than the best element, then it replaces
some element of the pool if it is sufficiently different from every other solution cur-
rently in the pool. To balance the impact on pool quality and diversity, the element
selected to be replaced is the one that is most similar to the entering solution among
those elite solutions of quality no better than the entering solution [156].

Given a local optimum s; produced at the end of a GRASP iteration, we need
to select at random from the pool a solution s to be path-relinked with s;. In
principle, any pool solution could be selected. However, we may want to avoid
pool solutions that are too similar to s;, because relinking two solutions that are
similar limits the scope of the path-relinking search. If the solutions are repre-
sented by |E|—dimensional incidence vectors, we should privilege pairs of solutions
whose symmetric difference is high. A strategy introduced in [156] is to select a
pool element so at random with probability proportional to the cardinality of the
symmetric difference between the pool element and the local optimum s;. Since
the number of paths between two solutions grows exponentially with the cardinality
of the symmetric difference between them, this strategy favors pool elements that
that have a large number of paths connecting them to and from s;.

After determining which solution (s; or s2) will be designated the initial solution
i and which will be the guiding solution g, the algorithm starts by computing the
symmetric difference A(7, g) between ¢ and g, resulting in the set of moves which
should be applied to i to reach g. Starting from the initial solution, the best move
in A(Z,g) still not performed is applied to the current solution, until the guiding
solution is reached. By best move, we mean the move that results in the highest
quality solution in the restricted neighborhood. The best solution found along this
trajectory is submitted to local search and returned as the solution produced by
the path-relinking algorithm.

Several alternatives have been considered and combined in recent implemen-
tations. These include forward, backward, back and forward, mixed, truncated,
greedy randomized adaptive, and evolutionary path-relinking. All these alterna-
tives involve trade-offs between computation time and solution quality.

4.1. Forward path-relinking. In forward path-relinking, the GRASP local opti-
mum is designated as the initial solution and the pool solution is made the guiding
solution. This is the original scheme proposed by Laguna and Mart{ [104].
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4.2. Backward path-relinking. In backward path-relinking, the pool solution is
designated as the initial solution and the GRASP local optimum is made the guiding
one. This scheme was originally proposed in Aiex et al. [7] and Resende and Ribeiro
[154]. The main advantage of this approach over forward path-relinking comes from
the fact that, in general, there are more high-quality solutions near pool elements
than near GRASP local optima. Backward path-relinking explores more thoroughly
the neighborhood around the pool solution, whereas forward path-relinking explores
more the neighborhood around the GRASP local optimum. Experiments in [7,
154] have shown that backward path-relinking usually outperforms forward path-
relinking.

4.3. Back and forward path-relinking. Back and forward path-relinking com-
bines forward and backward path-relinking. As shown in [7, 154], it finds solutions
at least as good as forward path-relinking or backward path-relinking, but at the ex-
pense of taking about twice as long to run. The reason that back and forward path-
relinking often finds solutions of better quality than simple backward or forward
path-relinking stems from the fact that it thoroughly explores the neighborhoods
of both solutions s; and ss.

4.4. Mixed path-relinking. Mized path-relinking shares the benefits of back and
forward path-relinking, i.e. it thoroughly explores both neighborhoods, but does
so in about the same time as forward or backward path-relinking alone. This is
achieved by interchanging the roles of the initial and guiding solutions at each step
of the path-relinking procedure. Therefore, two paths are generated, one starting
at s; and the other at so. The paths evolve and eventually meet at some solution
about half way between s; and ss. The joined path relinks these two solutions.
Mixed path-relinking was suggested by Glover [86] and was first implemented and
tested by Ribeiro and Rosseti [161], where it was shown to outperform forward,
backward, and back and forward path-relinking. Figure 7 shows a comparison of
pure GRASP and four variants of path-relinking: forward, backward, back and
forward, and mixed. The time-to-target plots show that GRASP with mixed path-
relinking has the best running time profile among the variants compared.

4.5. Truncated path-relinking. Since good-quality solutions tend to be near
other good-quality solutions, one would expect to find the best solutions with path-
relinking near the initial or guiding solution. Indeed, Resende et al. [149] showed
that this is the case for instances of the max-min diversity problem, as shown in
Figure 8. In that experiment, a back and forward path-relinking scheme was tested.
The figure shows the average number of best solutions found by path-relinking taken
over several instances and several applications of path-relinking. The 0-10% range
in this figure corresponds to subpaths near the initial solutions for the forward path-
relinking phase as well as the backward phase, while the 90-100% range are subpaths
near the guiding solutions. As the figure indicates, exploring the subpaths near the
extremities may produce solutions about as good as those found by exploring the
entire path. There is a higher concentration of better solutions close to the initial
solutions explored by path-relinking.

Truncated path-relinking can be applied to either forward, backward, backward
and forward, or mixed path-relinking. Instead of exploring the entire path, i.e.
taking a number of steps equal to the size of the symmetric difference, truncated
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path-relinking takes only a fraction of those steps and consequently takes a fraction
of the time to run. Truncated path-relinking has been applied in [18, 149].

4.6. Greedy randomized adaptive path-relinking. In path-relinking, the best
move in the symmetric difference A(3, g) still not performed is applied to the current
solution, until the guiding solution is reached. If ties are broken deterministically,
this strategy will always produce the same path between the initial and guiding
solutions. Since the number of paths connecting ¢ and g is exponential in |A(, g)],
exploring a single path can be somewhat limiting.

Greedy randomized adaptive path-relinking, introduced by Binato et al. [39], is
a semi-greedy version of path-relinking. Instead of taking the best move in the
symmetric difference still not performed, a restricted candidate list of good moves
still not performed is set up and a randomly selected move from the latter is applied.
By applying this strategy several times between the initial and guiding solutions,
several paths can be explored. Greedy randomized adaptive path-relinking has been
applied in [18, 63, 149].

4.7. Evolutionary path-relinking. GRASP with path-relinking maintains a pool
of elite solutions. Applying path-relinking between pairs of pool solutions may re-
sult in an even better pool of solutions. Aiex et al. [7] applied path-relinking
between all pairs of elite solutions as an intensification scheme to improve the qual-
ity of the pool and as a post-optimization step. The application of path-relinking
was repeated until no further improvement was possible.



GRASP: ADVANCES AND APPLICATIONS 17

Resende and Werneck [156, 157] described an evolutionary path-relinking scheme
applied to pairs of elite solutions and used as a post-optimization step. The pool
resulting from the GRASP with path-relinking iterations is referred to as population
Py. At step k, all pairs of elite set solutions of population Py are relinked and the
resulting solutions made candidates for inclusion in population Pjy; of the next
generation. The same rules for acceptance into the pool during GRASP with path-
relinking are used for acceptance into Pgy1. If the best solution in Py is better
than the best in Py, then k is incremented by one and the process is repeated.

Andrade and Resende [17] used this evolutionary scheme as an intensification
process every 100 GRASP iterations. During the intensification phase, every solu-
tion in the pool is relinked with the two best ones. Since two elite solutions might
be relinked more than once in different calls to the intensification process, greedy
randomized adaptive path-relinking was used.

Resende et al. [149] showed that a variant of GRASP with evolutionary path-
relinking outperformed several other heuristics using GRASP with path-relinking,
simulated annealing, and tabu search for the max-min diversity problem.

5. EXTENSIONS

In this section, we comment on some extensions, implementation strategies, and
hybridizations of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was
proposed by Woodruff and Zemel [176]. A similar approach was later explored
by Ribeiro et al. [160] in their tabu search algorithm for query optimization in
relational databases. In the context of GRASP implementations, hashing tables
were first used by Martins et al. [120] in their multi-neighborhood heuristic for
the Steiner problem in graphs, to avoid the application of local search to solutions
already visited in previous iterations.

Filtering strategies have also been used to speed up the iterations of GRASP,
see e.g. [70, 120, 141]. In these cases, local search is not applied to all solutions
obtained at the end of the construction phase, but instead only to some promising
unvisited solutions, defined by a threshold with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-
struction phase. Local search stops at the first local optimum. On the other hand,
strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and
Mladenovié [94, 123], rely almost entirely on the randomization of the local search
to escape from local optima. With respect to this issue, GRASP and variable
neighborhood strategies may be considered as complementary and potentially ca-
pable of leading to effective hybrid methods. A first attempt in this direction was
made by Martins et al. [120]. The construction phase of their hybrid heuristic for
the Steiner problem in graphs follows the greedy randomized strategy of GRASP,
while the local search phase makes use of two different neighborhood structures
as a VND procedure [94, 123]. Their heuristic was later improved by Ribeiro et
al. [163], one of the key components of the new algorithm being another strategy
for the exploration of different neighborhoods. Ribeiro and Souza [162] also com-
bined GRASP with VND in a hybrid heuristic for the degree-constrained minimum
spanning tree problem. Festa et al. [81] studied different variants and combinations
of GRASP and VNS for the MAX-CUT problem, finding and improving the best
known solutions for some open instances from the literature.
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GRASP has also been used in conjunction with genetic algorithms. Basically, the
greedy randomized strategy used in the construction phase of a GRASP heuristic
is applied to generate the initial population for a genetic algorithm. We may cite
e.g. the genetic algorithm of Ahuja et al. [5] for the quadratic assignment problem,
which makes use of the GRASP heuristic proposed by Li et al. [106] to create the
initial population of solutions. A similar approach was used by Armony et al. [27],
with the initial population made up by both randomly generated solutions and
those built by a GRASP algorithm.

The hybridization of GRASP with tabu search was first studied by Laguna and
Gonzélez-Velarde [103]. Delmaire et al. [57] considered two approaches. In the
first, GRASP is applied as a powerful diversification strategy in the context of a
tabu search procedure. The second approach is an implementation of the Reac-
tive GRASP algorithm presented in Section 3.2, in which the local search phase is
strengthened by tabu search. Results reported for the capacitated location problem
show that the hybrid approaches perform better than the isolated methods previ-
ously used. Two two-stage heuristics are proposed in [1] for solving the multi-floor
facility layout problem. GRASP /TS applies a GRASP to find the initial layout and
tabu search to refine it.

Iterated Local Search (ILS) iteratively builds a sequence of solutions generated by
the repeated application of local search and perturbation of the local optima found
by local search [37]. Lourengo et al. [110] point out that ILS has been rediscovered
many times and is also known as iterated descent [35, 36], large step Markov chains
[118], iterated Lin-Kernighan [98], and chained local optimization [117]. ILS can
be hybridized with GRASP by replacing the standard local search. The GRASP
construction produces a solution which is passed to the ILS procedure. Ribeiro
and Urrutia [164] presented a hybrid GRASP with ILS heuristic for the mirrored
traveling tournament problem, in which perturbations are achieved by randomly
generating solutions in the game rotation ejection chain neighborhood.

6. PARALLEL GRASP

Cung et al. [55] noted that parallel implementations of metaheuristics not only
appear as quite natural alternatives to speed up the search for good approximate
solutions, but also facilitate solving larger problems and finding improved solutions,
with respect to their sequential counterparts. This is due to the partitioning of the
search space and to the increased possibilities for search intensification and diversi-
fication. As a consequence, parallelism can improve the effectiveness and robustness
of metaheuristic-based algorithms. Parallel metaheuristic-based algorithms are less
dependent on time consuming parameter tuning experiments and their success is
not limited to a few or small classes of problems.

Recent years have witnessed huge advances in computer technology and commu-
nication networks. The growing computational power requirements of large scale
applications and the high costs of developing and maintaining supercomputers has
fueled the drive for cheaper high performance computing environments. With the
considerable increase in commodity computers and network performance, cluster
computing and, more recently, grid computing [83, 84] have emerged as real alter-
natives to traditional super-computing environments for executing parallel applica-
tions that require significant amounts of computing power.
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6.1. Cluster computing. A computing cluster generally consists of a fixed num-
ber of homogeneous resources, interconnected on a single administrative network,
which together execute one parallel application at a time.

Most parallel implementations of GRASP follow the multiple-walk independent
thread strategy, based on the distribution of the iterations over the processors [12,
13, 70, 106, 119, 121, 126, 132, 133]. In general, each search thread has to perform
Max_Iterations/p iterations, where p and Max_Iterations are, respectively, the
number of processors and the total number of iterations. Each processor has a copy
of the sequential algorithm, a copy of the problem data, and an independent seed
to generate its own pseudo-random number sequence. A single global variable is
required to store the best solution found over all processors. One of the processors
acts as the master, reading and distributing problem data, generating the seeds
which will be used by the pseudo-random number generators at each processor,
distributing the iterations, and collecting the best solution found by each proces-
sor. Since the iterations are completely independent and very little information is
exchanged, linear speedups are easily obtained provided that no major load imbal-
ance problems occur. The iterations may be evenly distributed over the processors
or according with their demands, to improve load balancing.

Martins et al. [121] implemented a parallel GRASP for the Steiner problem in
graphs. Parallelization is achieved by the distribution of the iterations over the
processors, with the value of the RCL parameter a randomly chosen in the interval
[0.0,0.3] at each iteration. Almost-linear speedups were observed on benchmark
problems from the OR-Library [38] for 2, 4, 8, and 16 processors, with respect to
the sequential implementation. Path-relinking may be used in conjunction with
parallel implementations of GRASP. Almost-linear speedups were also obtained
with the multiple-walk independent-thread implementation of Aiex et al. [7] for the
3-index assignment problem, in which each processor applies path-relinking to pairs
of elite solutions stored in a local pool.

Alvim and Ribeiro [12, 13] have shown that multiple-walk independent-thread
approaches for the parallelization of GRASP may benefit much from load balancing
techniques, whenever heterogeneous processors are used or if the parallel machine
is simultaneously shared by several users. In this case, almost-linear speedups
may be obtained with a heterogeneous distribution of the iterations over the p
processors in g packets, with ¢ > p. Each processor starts performing one packet of
[Max_Iterations/q] iterations and informs the master when it finishes its packet
of iterations. The master stops the execution of each worker processor when there
are no more iterations to be performed and collects the best solution found. Faster
or less loaded processors will perform more iterations than the others. In the case
of the parallel GRASP heuristic implemented for the problem of traffic assignment
described in [141], this dynamic load balancing strategy allowed reductions in the
elapsed times of up to 15% with respect to the times observed for the static strategy,
in which the iterations were uniformly distributed over the processors.

For a given problem instance and a target value look4, let time-to-target be
a random variable representing the time taken by a GRASP implementation to
find a solution whose cost is at least as good as look4 for this instance. Aiex
et al. [8] have shown experimentally that this random variable fits an exponential
distribution or, in the case where the setup times are not negligible, a shifted (two-
parameter) exponential distribution. The probability density function p(t) of the
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random variable time-to-target is given by p(t) = (1/)) - e~*/* in the first case

or by p(t) = (1/X) - e=¢=#/X in the second, with the parameters A € IR™ and
w1 € R being associated with the shape and the shift of the exponential function,
respectively.

Figure 9 illustrates this result, depicting the superimposed empirical and theo-
retical distributions observed for one of the cases studied along the computational
experiments reported in [8], which involved 2400 runs of GRASP procedures for
each of five different problem types: maximum independent set [70, 148], quadratic
assignment [106, 150], graph planarization [153, 159], maximum weighted satisfia-
bility [152], and maximum covering [146].

We now assume that p identical processors are available and used to search in
parallel for the same target value look4. Let X; be the time taken by processor
i=1,...,p to find a solution whose cost is at least as good as look4 and consider
the random variable Y = min{X;y,...,X,}. Since all processors are independent
and fit the same exponential distribution with average equal to A, the random
variable Y fits an exponential distribution whose average is A\/p. Therefore, linear
speedups can be achieved if multiple identical processors are used independently to
search in parallel for the same target value.

However, we notice that if path-relinking is applied as an intensification step
at the end of each GRASP iteration (see e.g. [46, 155]), then the iterations are no
longer independent and the memoryless characteristic of GRASP may be destroyed.
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Consequently, the time-to-target random variable may not fit an exponential dis-
tribution. Aiex et al. [7] have shown experimentally that, even in this case, the
time-to-target random variable may be reasonably approximated by a shifted (two-
parameter) exponential distribution in some circumstances.

In the case of multiple-walk cooperative-thread strategies, the search threads run-
ning in parallel exchange and share information collected along the trajectories they
investigate. One expects not only to speed up the convergence to the best solution
but, also, to find better solutions than independent-thread strategies. The most
difficult aspect to be set up is the determination of the nature of the information to
be shared or exchanged to improve the search, without taking too much additional
memory or time to be collected. Cooperative-thread strategies may be implemented
using path-relinking, by combining elite solutions stored in a central pool with the
local optima found by each processor at the end of each GRASP iteration.

Ribeiro and Rosseti [161] applied this scheme to implement a parallel GRASP
heuristic for the 2-path network design problem. One of the processors acts as the
master and handles a centralized pool of elite solutions, collecting and distributing
them upon request. The other processors act as workers and exchange the elite
solutions found along their search trajectories. Cooperation between the processors
is implemented via path-relinking using the centralized pool of elite solutions. In
this implementation, each worker may send up to three different solutions to the
master at each GRASP iteration: the solution obtained by local search and the
solutions obtained by forward and backward path-relinking. The performance of
the parallel implementation is quite uniform over all problem instances.

Computational results illustrating the behavior of the independent and coopera-
tive parallel implementations for an instance with 100 nodes, 4950 edges, and 1000
origin-destination pairs are presented below. The plots in Figure 10 display the
empirical probability distribution of the time-to-target random variable for both
the independent and the cooperative parallel implementations in C and MPI, for
200 runs on 2, 4, 8, and 16 processors of a 32-machine Linux cluster, with the 1look4
target value set at 683. We notice that the independent strategy performs better
when only two processors are used. This is so because the independent strategy
makes use of the two processors to perform GRASP iterations, while the cooper-
ative strategy makes use of one processor to perform iterations and the other to
handle the pool. However, as the number of processors increases, the gain obtained
through cooperation becomes more important than the loss of one processor to
perform iterations. The cooperative implementation is already faster than the in-
dependent one for eight processors. These plots establish the usefulness and the
efficiency of the cooperative implementation. Other implementations of multiple-
walk cooperative-thread GRASP heuristics can be found e.g. in Aiex et al. [6, 7].

6.2. Grid computing. Grids aim to harness available computing power from a
diverse pool of resources available over the Internet to execute a number of appli-
cations simultaneously. Grids aggregate geographically distributed collections (or
sites) of resources which typically have different owners and thus are shared be-
tween multiple users. The fact that these resources are distributed, heterogeneous,
and non-dedicated requires careful consideration when developing grid enabled ap-
plications and makes writing parallel grid-aware heuristics very challenging [83].
Aratjo et al. [22] described some strategies based on the master-worker para-
digm for the parallelization in grid environments of the hybrid GRASP with ILS
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heuristic for the mirrored traveling tournament problem proposed in [164]. In the
best of these strategies, PAR-MP, the master is dedicated to managing a central-
ized pool of elite solutions, including collecting and distributing them upon request.
The workers start their searches from different initial solutions and exchange elite
solutions found along their trajectories. Although it lead to improvements in the
results obtained by the sequential implementation, it was not able to make full use
of the characteristics of grid environments.

Aratijo [21] proposed an autonomic hierarchical distributed strategy for the im-
plementation of cooperative metaheuristics in grids, in which local pools of elite
solutions internal to each site support intensification strategies, while a global pool
is used to ensure diversification. This autonomic strategy is much more adapted
to grid computations and leads to better results with respect to both the master-
worker PAR-MP parallel strategy for the mirrored traveling tournament problem
and the sequential hybrid heuristic combining GRASP and ILS for the diameter
constrained minimum spanning tree problem [112].

Table 3 displays comparative results reported in [21] for large National Football
League instances of the mirrored traveling tournament problem with the number of
teams ranging from 16 to 32. For each instance, we give the costs of the solutions
obtained by the sequential implementation and by the hierarchical strategy run-
ning on ten processors. The running times range from approximately three to ten
hours, as observed for instances nf118 and nf124, respectively. We notice that the
hierarchical strategy improved the solutions obtained by the sequential heuristic for
eight out of the nine test instances.

TABLE 3. Solution costs found by the sequential and grid imple-
mentations of the hybrid GRASP with ILS heuristic for the mir-
rored traveling tournament problem.

Instance Sequential Grid

nfl16 251289 249806
nfl18 299903 299112
nfl20 359748 359748
nfl22 418086 418022
nfl24 467135 465491
nfl26 554670 548643
nfl28 618801 609788
nfl30 740458 739697
nfl32 924559 914620

Figure 11 displays time-to-target plots obtained after 100 runs of the hierarchi-
cal distributed implementation of the GRASP with ILS heuristic for the diameter
constrained minimum spanning tree on a typical instance with 100 nodes, using 15,
30, and 60 processors. The results illustrate that the approach scales appropriately
when the number of processors increase.

7. APPLICATIONS

The first application of GRASP described in the literature concerned the set
covering problem [68]. The reader is referred to Festa and Resende [78] for an an-
notated bibliography of GRASP and its applications. We conclude this chapter by
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constrained minimum spanning tree on an instance with 100 nodes
running on a grid environment using 15, 30, and 60 processors.

listing below some references focusing the main applications of GRASP to problems
in different areas:

routing [25, 29, 34, 45, 47, 53, 101, 108]

logic [58, 75, 133, 147, 151, 152]

covering and partitioning [10, 23, 26, 68, 85, 92]

location [50, 54, 93, 1, 96, 57, 99, 130, 174, 175]

minimum Steiner tree [46, 119, 120, 121, 163]

optimization in graphs [2, 3, 4, 28, 70, 76, 77, 97, 102, 105, 114, 115, 120,
131, 135, 146, 148, 153, 159, 163, 171]

assignment [5, 7, 67, 82, 106, 109, 111, 122, 125, 126, 128, 132, 134, 137,
141, 142, 150, 167]

timetabling, scheduling, and manufacturing [6, 9, 11, 16, 18, 20, 31, 32, 33,
40, 43, 52, 56, 59, 64, 65, 66, 71, 72, 100, 103, 107, 124, 143, 164, 165, 166,
168, 177, 178]

e transportation [25, 30, 64, 67, 170]
e power systems [41, 42, 63|
e telecommunications [2, 15, 14, 16, 18, 27, 51, 99, 109, 136, 138, 141, 145,

146, 154, 172]

o graph and map drawing [54, 73, 104, 113, 114, 116, 129, 153, 159]
e biology [19, 62, 74]
o VLSI [23, 24]
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FIGURE 12. Performance of GW approximation algorithm, a sin-
gle GRASP iteration (GW followed by local search), 500 iterations
of GRASP with path-relinking, and 500 iterations of GRASP with
path-relinking followed by VNS for series C prize-collecting Steiner
tree problems.

8. CONCLUDING REMARKS

The results described in this chapter reflect successful applications of GRASP
to a large number of classical combinatorial optimization problems, as well as to
those that arise in real-world situations in different areas of business, science, and
technology.

We underscore the simplicity of implementation of GRASP, which makes use of
simple building blocks (solution construction procedures and local search methods)
that are often readily available. Contrary to what occurs with other metaheuristics,
such as tabu search or genetic algorithms, which make use of a large number of
parameters in their implementations, the basic version of GRASP requires the
adjustment of a single parameter.

Recent developments, presented in this chapter, show that different extensions of
the basic procedure allow further improvements in the solutions found by GRASP.
Among these, we highlight reactive GRASP, which automates the adjustment of
the restricted candidate list parameter; variable neighborhoods, which permit accel-
erated and intensified local search; and path-relinking, which beyond allowing the
implementation of intensification strategies based on the memory of elite solutions,
opens the way for the development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to sim-
pler heuristics to find better-quality solutions. To illustrate the effect of additional
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extensions on solution quality, Figure 12 shows some results obtained for the prize-
collecting Steiner tree problem, as discussed in [46]. We consider the 40 instances
of series C. The figure shows results for eleven different levels of solution accuracy
(varying from optimal to ten percent from optimal). For each level of solution ac-
curacy, the figure shows the number of instances for which each component found
solutions within the accuracy level. The components were the primal-dual construc-
tive algorithm (GW) of Goemans and Williamson [90], GW followed by local search
(GW+LS), corresponding to the first GRASP iteration, 500 iterations of GRASP
with path-relinking (GRASP+PR), and the complete algorithm, using variable
neighborhood search as a post-optimization procedure (GRASP+PR~+VNS). For
example, we observe that the number of optimal solutions found goes from six, us-
ing only the constructive algorithm, to a total of 36, using the complete algorithm
described in [46]. The largest relative deviation with respect to the optimal value
decreases from 36.4% in the first case, to only 1.1% for the complete algorithm. It
is easy to notice the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups
both in independent and cooperative strategies. Cooperative strategies are based
on the collaboration between processors through path-relinking and a global pool
of elite solutions. This allows the use of more processors to find better solutions in
less computation time.

To conclude, we display in Table 4 some results obtained by the sequential and
the hierarchical distributed implementations of the GRASP with ILS heuristic for
the diameter constrained minimum spanning tree problem. The distributed strat-
egy runs on ten processors. The sequential heuristic is allowed to run by as much as
ten times the time taken by the grid implementation. We give the number of nodes
and edges for each instance, together with the costs of the best solutions found by
each implementation and the time given to the sequential heuristic. These results
illustrate the robustness of the hierarchical distributed strategy (due to the effec-
tiveness of the cooperation through the pools in two different levels), since it was
able to systematically find better solutions than those obtained by the sequential
strategy in computation times ten times larger.

TABLE 4. Best solutions found by the sequential heuristic and by
the grid implementation running on ten processors. The sequential
heuristic is allowed to run by as much as ten times the time taken
by the grid implementation.

Nodes Edges Grid Sequential Time (seconds)

60 600 738.000 740.000 2300.00
60 600 150.000 152.000 400.00
70 2415 6.981 6.983 230.00
70 2415 7.486 7.499 3000.00
70 2415 7.238 7.245 690.00
100 4950 7.757 7.835 1400.00
100 4950 7.930 7.961 5000.00

100 4950 8.176 8.204 3400.00




(1]
2]

(3]

[10]

[11]

[12]

GRASP: ADVANCES AND APPLICATIONS 27

REFERENCES

S. Abdinnour-Helm and S.W. Hadley. Tabu search based heuristics for multi-floor facility
layout. International J. of Production Research, 38:365—-383, 2000.

J. Abello, P.M. Pardalos, and M.G.C. Resende. On maximum clique problems in very large
graphs. In J. Abello and J. Vitter, editors, Ezternal Memory Algorithms and Visualization,
volume 50 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 199-130. American Mathematical Society, 1999.

J. Abello, M.G.C. Resende, and S. Sudarsky. Massive quasi-clique detection. In S. Rajsbaum,
editor, LATIN 2002: Theoretical Informatics, volume 2286 of Lecture Notes in Computer
Science, pages 598-612. Springer-Verlag, 2002.

R.K. Ahuja, J.B. Orlin, and D. Sharma. Multi-exchange neighborhood structures for the
capacitated minimum spanning tree problem. Mathematical Programming, 91:71-97, 2001.
R.K. Ahuja, J.B. Orlin, and A. Tiwari. A greedy genetic algorithm for the quadratic assign-
ment problem. Computers and Operations Research, 27:917-934, 2000.

R.M. Aiex, S. Binato, and M.G.C. Resende. Parallel GRASP with path-relinking for job
shop scheduling. Parallel Computing, 29:393-430, 2003.

R.M. Aiex, P.M. Pardalos, M.G.C. Resende, and G. Toraldo. GRASP with path-relinking
for three-index assignment. INFORMS J. on Computing, 17:224-247, 2005.

R.M. Aiex, M.G.C. Resende, and C.C. Ribeiro. Probability distribution of solution time in
GRASP: An experimental investigation. J. of Heuristics, 8:343-373, 2002.

R. Alvarez-Valdés, E. Crespo, J.M. Tamarit, and F. Villa. GRASP and path relinking for
project scheduling under partially renewable resources. Furopean J. of Operational Research,
189:1153-1170, 2008.

R. Alvarez-Valdés, F. Parreno, and J.M. Tamarit. A GRASP algorithm for constrained
two-dimensional non-guillotine cutting problems. J. of the Operational Research Society,
56:414-425, 2005.

R. Alvarez-Valdesa, F. Parreno, and J.M. Tamarit. Reactive GRASP for the strip-packing
problem. Computers & Operations Research, 35:1065—-1083, 2008.

A.C. Alvim. Parallelization strategies for the metaheuristic GRASP. Master’s thesis, De-
partment of Computer Science, Catholic University of Rio de Janeiro, Brazil, 1998. In Por-
tuguese.

A.C. Alvim and C.C. Ribeiro. Load balancing for the parallelization of the GRASP meta-
heuristic. In Proceedings of the X Brazilian Symposium on Computer Architecture, pages
279-282, Buzios, 1998. In Portuguese.

E. Amaldi, A. Capone, and F. Malucelli. Planning UMTS base station location: Optimiza-
tion models With power control and algorithms. IEEE Transactions on Wireless Commu-
nications, 2:939-952, 2003.

E. Amaldi, A. Capone, F. Malucelli, and F. Signori. Optimization models and algorithms
for downlink UMTS radio planning. In Proceedings of Wireless Communications and Net-
working, volume 2, pages 827-831, 2003.

D.V. Andrade and M.G.C. Resende. A GRASP for PBX telephone migration scheduling. In
Proceedings of The Eighth INFORMS Telecommunications Conference, 2006.

D.V. Andrade and M.G.C. Resende. GRASP with evolutionary path-relinking. Technical
Report TD-6XPTS7, AT&T Labs Research, Florham Park, 2007.

D.V. Andrade and M.G.C. Resende. GRASP with path-relinking for network migration
scheduling. In Proceedings of the International Network Optimization Conference, 2007.
A.A. Andreatta and C.C. Ribeiro. Heuristics for the phylogeny problem. J. of Heuristics,
8:429-447, 2002.

C. Andrés, C. Miralles, and R. Pastor. Balancing and scheduling tasks in assembly lines
with sequence-dependent setup times. Furopean J. of Operational Research, 187:1212—1223,
2008.

A.P.F. Araidjo. Autonomic Parallelization of Metaheuristics in Grid Environments. PhD
thesis, Department of Computer Science, Catholic University of Rio de Janeiro, 2008. In
Portuguese.

A.P.F. Araijo, C. Boeres, V.E.F. Rebello, C.C. Ribeiro, and S. Urrutia. Exploring grid
implementations of parallel cooperative metaheuristics: A case study for the mirrored trav-
eling tournament problem. In K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F.



28

37]
[38]

[39

[40

[44]

[45]

M.G.C. RESENDE AND C.C. RIBEIRO

Hartl, and M. Reimann, editors, Metaheuristics: Progress in Complex Systems Optimiza-
tion, pages 297-322. Springer, 2007.

S. Areibi and A. Vannelli. A GRASP clustering technique for circuit partitioning. In J. Gu
and P.M. Pardalos, editors, Satisfiability Problems, volume 35 of DIMACS Series on Dis-
crete Mathematics and Theoretical Computer Science, pages 711-724. American Mathemat-
ical Society, 1997.

S.M. Areibi. GRASP: An effective constructive technique for VLSI circuit partitioning. In
Proc. IEEE Canadian Conference on Electrical and Computer Engineering, 1999.

M.F. Argiiello, J.F. Bard, and G. Yu. A GRASP for aircraft routing in response to ground-
ings and delays. J. of Combinatorial Optimization, 1:211-228, 1997.

M.F. Argtiello, T.A. Feo, and O. Goldschmidt. Randomized methods for the number parti-
tioning problem. Computers and Operations Research, 23:103-111, 1996.

M. Armony, J.C. Klincewicz, H. Luss, and M.B. Rosenwein. Design of stacked self-healing
rings using a genetic algorithm. J. of Heuristics, 6:85-105, 2000.

J.E.C. Arroyo, P.S. Vieira, and D.S. Vianna. A GRASP algorithm for the multi-criteria
minimum spanning tree problem. Annals of Operations Research, 159:125-133, 2008.

J.B. Atkinson. A greedy randomised search heuristic for time-constrained vehicle scheduling
and the incorporation of a learning strategy. J. of the Operatinal Research Society, 49:700—
708, 1998.

J.F. Bard. An analysis of a rail car unloading area for a consumer products manufacturer.
J. of the Operational Research Society, 48:873-883, 1997.

J.F. Bard and T.A. Feo. Operations sequencing in discrete parts manufacturing. Manage-
ment Science, 35:249-255, 1989.

J.F. Bard and T.A. Feo. An algorithm for the manufacturing equipment selection problem.
IIE Transactions, 23:83-92, 1991.

J.F. Bard, T.A. Feo, and S. Holland. A GRASP for scheduling printed wiring board assembly.
IIE Transactions, 28:155-165, 1996.

J.F. Bard, L. Huang, P. Jaillet, and M. Dror. A decomposition approach to the inventory
routing problem with satellite facilities. Transportation Science, 32:189-203, 1998.

E.B. Baum. Iterated descent: A better algorithm for local search in combinatorial optimiza-
tion problems. Technical report, California Institute of Technology, 1986.

E.B. Baum. Towards practical ‘neural’ computation for combinatorial optimization prob-
lems. In AIP Conference Proceedings 151 on Neural Networks for Computing, pages 53-58,
Woodbury, 1987. American Institute of Physics Inc.

J. Baxter. Local optima avoidance in depot location. J. of the Operational Research Society,
32:815-819, 1981.

J.E. Beasley. OR-Library: Distributing test problems by electronic mail. J. of the Opera-
tional Research Society, 41:1069-1072, 1990.

S. Binato, H. Faria Jr., and M.G.C. Resende. Greedy randomized adaptive path relinking.
In J.P. Sousa, editor, Proceedings of the IV Metaheuristics International Conference, pages
393-397, 2001.

S. Binato, W.J. Hery, D. Loewenstern, and M.G.C. Resende. A GRASP for job shop sched-
uling. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages
59-79. Kluwer Academic Publishers, 2002.

S. Binato and G.C. Oliveira. A reactive GRASP for transmission network expansion plan-
ning. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages
81-100. Kluwer Academic Publishers, 2002.

S. Binato, G.C. Oliveira, and J.L. Araijo. A greedy randomized adaptive search procedure
for transmission expansion planning. IEEE Transactions on Power Systems, 16:247-253,
2001.

M. Boudia, M.A.O. Louly, and C. Prins. A reactive GRASP and path relinking for a com-
bined production-distribution problem. Computers and Operations Research, 34:3402—3419,
2007.

J.L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, pages 271-278, Portland, 1996.

A.M. Campbell and B.W. Thomas. Probabilistic traveling salesman problem with deadlines.
Transportation Science, 42:1-21, 2008.



[46]

[47]

[48]

[49]

[50]

[51]

(58]

[59]

[60]

GRASP: ADVANCES AND APPLICATIONS 29

S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the
prize-collecting Steiner tree problem in graphs. Networks, 38:50-58, 2001.

C. Carreto and B. Baker. A GRASP interactive approach to the vehicle routing problem with
backhauls. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys in Metaheuristics,
pages 185-199. Kluwer Academic Publishers, 2002.

I. Charon and O. Hudry. The noising method: A new method for combinatorial optimization.
Operations Research Letters, 14:133—137, 1993.

I. Charon and O. Hudry. The noising methods: A survey. In C.C. Ribeiro and P. Hansen,
editors, FEssays and Surveys in Metaheuristics, pages 245—261. Kluwer Academic Publishers,
2002.

R. Colomé and D. Serra. Consumer choice in competitive location models: Formulations
and heuristics. Papers in Regional Science, 80:439-464, 2001.

C. Commander, C.A.S. Oliveira, P.M. Pardalos, and M.G.C. Resende. A GRASP heuristic
for the cooperative communication problem in ad hoc networks. In Proceedings of the VI
Metaheuristics International Conference, pages 225—-330, 2005.

C.W. Commander, S.I. Butenko, P.M. Pardalos, and C.A.S. Oliveira. Reactive GRASP with
path relinking for the broadcast scheduling problem. In Proceedings of the 40th Annual
International Telemetry Conference, pages 792-800, 2004.

A. Corberan, R. Marti, and J.M. Sanchis. A GRASP heuristic for the mixed Chinese postman
problem. European J. of Operational Research, 142:70-80, 2002.

G.L. Cravo, G.M. Ribeiro, and L.A. Nogueira Lorena. A greedy randomized adaptive search
procedure for the point-feature cartographic label placement. Computers and Geosciences,
34:373-386, 2008.

V.-D. Cung, S.L. Martins, C.C. Ribeiro, and C. Roucairol. Strategies for the parallel imple-
mentation of metaheuristics. In C.C. Ribeiro and P. Hansen, editors, Essays and Surveys
in Metaheuristics, pages 263—308. Kluwer Academic Publishers, 2002.

P. De, J.B. Ghosj, and C.E. Wells. Solving a generalized model for con due date assignment
and sequencing. International J. of Production Economics, 34:179-185, 1994.

H. Delmaire, J.A. Diaz, E. Ferndndez, and M. Ortega. Reactive GRASP and Tabu Search
based heuristics for the single source capacitated plant location problem. INFOR, 37:194—
225, 1999.

A.S. Deshpande and E. Triantaphyllou. A greedy randomized adaptive search procedure
(GRASP) for inferring logical clauses from examples in polynomial time and some extensions.
Mathematical Computer Modelling, 27:75—-99, 1998.

A. Drexl and F. Salewski. Distribution requirements and compactness constraints in school
timetabling. Furopean J. of Operational Research, 102:193-214, 1997.

A. Duarte, C.C. Ribeiro, and S. Urrutia. A hybrid ILS heuristic to the referee assignment
problem with an embedded MIP strategy. Lecture Notes in Computer Science, 4771:82—-95,
2007.

A.R. Duarte, C.C. Ribeiro, S. Urrutia, and E.H. Haeusler. Referee assignment in sports
leagues. Lecture Notes in Computer Science, 3867:158-173, 2007.

C.C. Ribeiro e D.S. Vianna. A GRASP/VND heuristic for the phylogeny problem using a
new neighborhood structure. International Transactions in Operational Research, 12:325—
338, 2005.

H. Faria Jr., S. Binato, M.G.C. Resende, and D.J. Falcdo. Transmission network design
by a greedy randomized adaptive path relinking approach. IEEE Transactions on Power
Systems, 20:43-49, 2005.

T.A. Feo and J.F. Bard. Flight scheduling and maintenance base planning. Management
Science, 35:1415-1432, 1989.

T.A. Feo and J.F. Bard. The cutting path and tool selection problem in computer-aided
process planning. J. of Manufacturing Systems, 8:17-26, 1989.

T.A. Feo, J.F. Bard, and S. Holland. Facility-wide planning and scheduling of printed wiring
board assembly. Operations Research, 43:219-230, 1995.

T.A. Feo and J.L. Gonzéalez-Velarde. The intermodal trailer assignment problem: Models,
algorithms, and heuristics. Transportation Science, 29:330-341, 1995.

T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set
covering problem. Operations Research Letters, 8:67—71, 1989.



30

[69]
[70]

[71]

[72]
(73]
[74]

[75]

(82]
[83]
[84]
[85]

[86]

[87]

M.G.C. RESENDE AND C.C. RIBEIRO

T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. J. of Global
Optimization, 6:109-133, 1995.

T.A. Feo, M.G.C. Resende, and S.H. Smith. A greedy randomized adaptive search procedure
for maximum independent set. Operations Research, 42:860-878, 1994.

T.A. Feo, K. Sarathy, and J. McGahan. A GRASP for single machine scheduling with
sequence dependent setup costs and linear delay penalties. Computers and Operations Re-
search, 23:881-895, 1996.

T.A. Feo, K. Venkatraman, and J.F. Bard. A GRASP for a difficult single machine scheduling
problem. Computers and Operations Research, 18:635—643, 1991.

E. Fernandez and R. Marti. GRASP for seam drawing in mosaicking of aerial photographic
maps. J. of Heuristics, 5:181-197, 1999.

P. Festa. On some optimization problems in molecular biology. Mathematical Bioscience,
207:219-234, 2007.

P. Festa, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. GRASP with path-relinking
for the weighted MAXSAT problem. ACM J. of Experimental Algorithmics, 11:1-16, 2006.
P. Festa, P.M. Pardalos, and M.G.C. Resende. Algorithm 815: FORTRAN subroutines for
computing approximate solution to feedback set problems using GRASP. ACM Transactions
on Mathematical Software, 27:456-464, 2001.

P. Festa, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Randomized heuristics for the
MAX-CUT problem. Optimization Methods and Software, 7:1033—1058, 2002.

P. Festa and M.G.C. Resende. GRASP: An annotated bibliography. In C.C. Ribeiro and
P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 325—367. Kluwer Academic
Publishers, 2002.

P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part I: Algorithms.
International Transactions in Operational Research, 16, 2009. To appear.

P. Festa and M.G.C. Resende. An annotated bibliography of GRASP, Part II: Applications.
International Transactions in Operational Research, 16, 2009. To appear.

P. Festa, M.G.C. Resende, P. Pardalos, and C.C. Ribeiro. GRASP and VNS for Max-Cut. In
Extended Abstracts of the Fourth Metaheuristics International Conference, pages 371-376,
Porto, July 2001.

C. Fleurent and F. Glover. Improved constructive multistart strategies for the quadratic
assignment problem using adaptive memory. INFORMS J. on Computing, 11:198-204, 1999.
I. Foster and C. Kesselman, editors. The GRID: Blueprint for a New Computing Infras-
tructure. Morgan Kaufmann, 2004.

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual
Organizations. International J. of Supercomputer Applications, 15:200-222, 2001.

J.B. Ghosh. Computatinal aspects of the maximum diversity problem. Operations Research
Letters, 19:175-181, 1996.

F. Glover. Tabu search and adaptive memory programing — Advances, applications and chal-
lenges. In R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer
Science and Operations Research, pages 1-75. Kluwer Academic Publishers, 1996.

F. Glover. Multi-start and strategic oscillation methods — Principles to exploit adaptive
memory. In M. Laguna and J.L. Gonzales-Velarde, editors, Computing Tools for Modeling,
Optimization and Simulation: Interfaces in Computer Science and Operations Research,
pages 1-24. Kluwer Academic Publishers, 2000.

F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, 1997.

F. Glover, M. Laguna, and R. Marti. Fundamentals of scatter search and path relinking.
Control and Cybernetics, 39:653—684, 2000.

M.X. Goemans and D.P. Williamson. The primal dual method for approximation algorithms
and its application to network design problems. In D. Hochbaum, editor, Approximation
algorithms for NP-hard problems, pages 144-191. PWS Publishing Co., 1996.

F.C. Gomes, C.S. Oliveira, P.M. Pardalos, and M.G.C. Resende. Reactive GRASP with
path relinking for channel assignment in mobile phone networks. In Proceedings of the 5th
International Workshop on Discrete Algorithms and Methods for Mobile Computing and
Communications, pages 60-67. ACM Press, 2001.

P.L. Hammer and D.J. Rader, Jr. Maximally disjoint solutions of the set covering problem.
J. of Heuristics, 7:131-144, 2001.



(93]

[94]

[98]

[99]
[100]
[101]
[102]
[103]
[104]
[105]

[106]

[107]
[108]

[109

[110]

[111]
[112]
[113]

[114]

GRASP: ADVANCES AND APPLICATIONS 31

B.T. Han and V.T. Raja. A GRASP heuristic for solving an extended capacitated concen-
trator location problem. International J. of Information Technology and Decision Making,
2:597—-617, 2003.

P. Hansen and N. Mladenovié¢. Developments of variable neighborhood search. In C.C.
Ribeiro and P. Hansen, editors, FEssays and Surveys in Metaheuristics, pages 415—439.
Kluwer Academic Publishers, 2002.

J.P. Hart and A.W. Shogan. Semi-greedy heuristics: An empirical study. Operations Re-
search Letters, 6:107-114, 1987.

K. Holmgqvist, A. Migdalas, and P.M. Pardalos. Greedy randomized adaptive search for a
location problem with economies of scale. In I.M. Bomze et al., editor, Developments in
Global Optimization, pages 301-313. Kluwer Academic Publishers, 1997.

K. Holmqvist, A. Migdalas, and P.M. Pardalos. A GRASP algorithm for the single source
uncapacitated minimum concave-cost network flow problem. In P.M. Pardalos and D.-Z.
Du, editors, Network design: Connectivity and facilities location, volume 40 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science, pages 131-142. Amer-
ican Mathematical Society, 1998.

D.S. Johnson. Local optimization and the traveling salesman problem. In Proceedings of the
17th Colloquium on Automata, volume 443 of LNCS, pages 446-461. Springer-Verlag, 1990.
J.G. Klincewicz. Avoiding local optima in the p-hub location problem using tabu search and
GRASP. Annals of Operations Research, 40:283-302, 1992.

J.G. Klincewicz and A. Rajan. Using GRASP to solve the component grouping problem.
Nawal Research Logistics, 41:893-912, 1994.

G. Kontoravdis and J.F. Bard. A GRASP for the vehicle routing problem with time windows.
ORSA J. on Computing, 7:10-23, 1995.

M. Laguna, T.A. Feo, and H.C. Elrod. A greedy randomized adaptive search procedure for
the two-partition problem. Operations Research, 42:677—687, 1994.

M. Laguna and J.L. Gonzalez-Velarde. A search heuristic for just-in-time scheduling in
parallel machines. J. of Intelligent Manufacturing, 2:253-260, 1991.

M. Laguna and R. Marti. GRASP and path relinking for 2-layer straight line crossing min-
imization. INFORMS J. on Computing, 11:44-52, 1999.

M. Laguna and R. Marti. A GRASP for coloring sparse graphs. Computaional Optimization
and Applications, 19:165-178, 2001.

Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search proce-
dure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz, editors,
Quadratic Assignment and Related Problems, volume 16 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 237-261. American Mathematical
Society, 1994.

A. Lim, B. Rodrigues, and C. Wang. Two-machine flow shop problems with a single server.
J. of Scheduling, 9:515-543, 2006.

A. Lim and F. Wang. A smoothed dynamic tabu search embedded GRASP for m-VRPTW.
In Proceedings of ICTAI 2004, pages 704-708, 2004.

X. Liu, P.M. Pardalos, S. Rajasekaran, and M.G.C. Resende. A GRASP for frequency as-
signment in mobile radio networks. In B.R. Badrinath, F. Hsu, P.M. Pardalos, and S. Rajase-
jaran, editors, Mobile Networks and Computing, volume 52 of DIMACS Series on Discrete
Mathematics and Theoretical Computer Science, pages 195-201. American Mathematical
Society, 2000.

H.R. Lourengo, O.C. Martin, and T. Stiitzle. Iterated local search. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 321-353. Kluwer Academic
Publishers, 2003.

H.R. Lourenco and D. Serra. Adaptive approach heuristics for the generalized assignment
problem. Mathware and Soft Computing, 9:209-234, 2002.

A.P. Lucena, C.C. Ribeiro, and A.C. Santos. A hybrid heuristic for the diameter constrained
minimum spanning tree problem, 2007.

R. Marti. Arc crossing minimization in graphs with GRASP. IEE Transactions, 33:913-919,
2001.

R. Marti. Arc crossing minimization in graphs with GRASP. IEEE Transactions, 33:913—
919, 2002.



32

[115]
[116]
[117]
[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

M.G.C. RESENDE AND C.C. RIBEIRO

R. Marti and V. Estruch. Incremental bipartite drawing problem. Computers and Operations
Research, 28:1287-1298, 2001.

R. Marti and M. Laguna. Heuristics and meta-heuristics for 2-layer straight line crossing
minimization. Discrete Applied Mathematics, 127:665-678, 2003.

O. Martin and S.W. Otto. Combining simulated annealing with local search heuristics.
Annals of Operations Research, 63:57-75, 1996.

O. Martin, S.W. Otto, and E.W. Felten. Large-step Markov chains for the traveling salesman
problem. Complex Systems, 5:299-326, 1991.

S.L. Martins, P.M. Pardalos, M.G.C. Resende, and C.C. Ribeiro. Greedy randomized adap-
tive search procedures for the steiner problem in graphs. In P.M. Pardalos, S. Rajasejaran,
and J. Rolim, editors, Randomization Methods in Algorithmic Design, volume 43 of DI-
MACS Series on Discrete Mathematics and Theoretical Computer Science, pages 133-145.
American Mathematical Society, 1999.

S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P. Pardalos. A parallel GRASP for the
Steiner tree problem in graphs using a hybrid local search strategy. J. of Global Optimization,
17:267-283, 2000.

S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner problem
in graphs. In A. Ferreira and J. Rolim, editors, Proceedings of IRREGULAR’98 — 5th
International Symposium on Solving Irreqularly Structured Problems in Parallel, volume
1457 of Lecture Notes in Computer Science, pages 285—297. Springer-Verlag, 1998.

T. Mavridou, P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A GRASP for the bi-
quadratic assignment problem. Furopean J. of Operational Research, 105:613—621, 1998.
N. Mladenovié¢ and P. Hansen. Variable neighborhood search. Computers and Operations
Research, 24:1097-1100, 1997.

S.K. Monkman, D.J. Morrice, and J.F. Bard. A production scheduling heuristic for an
electronics manufacturer with sequence-dependent setup costs. Furopean J. of Operational
Research, 187:1100-1114, 2008.

R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A greedy randomized adaptive search
procedure for the multitarget multisensor tracking problem. In P.M. Pardalos and D.-Z. Du,
editors, Network design: Connectivity and facilities location, volume 40 of DIMACS Se-
ries on Discrete Mathematics and Theoretical Computer Science, pages 277-301. American
Mathematical Society, 1998.

R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A parallel GRASP for the data associa-
tion multidimensional assignment problem. In P.M. Pardalos, editor, Parallel Processing of
Discrete Problems, volume 106 of The IMA Volumes in Mathematics and Its Applications,
pages 159-180. Springer-Verlag, 1998.

M.C.V. Nascimento, M.G.C. Resende, and F.M.B. Toledo. GRASP with path-relinking for
the multi-plant capacitated plot sizing problem. Furopean J. of Operational Research, 2008.
To appear.

C.A. Oliveira, P.M. Pardalos, and M.G.C. Resende. GRASP with path-relinking for the
quadratic assignment problem. In C.C. Ribeiro and S.L. Martins, editors, Proceedings of 111
Workshop on Efficient and Fxperimental Algorithms, volume 3059, pages 356—368. Springer,
2004.

I.LH. Osman, B. Al-Ayoubi, and M. Barake. A greedy random adaptive search procedure
for the weighted maximal planar graph problem. Computers and Industrial Engineering,
45:635-651, 2003.

J.A. Pacheco and S. Casado. Solving two location models with few facilities by using a hybrid
heuristic: A real health resources case. Computers and Operations Research, 32:3075—-3091,
2005.

P. M. Pardalos, T. Qian, and M. G. C. Resende. A greedy randomized adaptive search
procedure for the feedback vertex set problem. J. of Combinatorial Optimization, 2:399—
412, 1999.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implementation for
the quadratic assignment problem. In A. Ferreira and J. Rolim, editors, Parallel Algorithms
for Irregularly Structured Problems — Irreqular’94, pages 115-133. Kluwer Academic Pub-
lishers, 1995.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT prob-
lems. Lecture Notes in Computer Science, 1184:575-585, 1996.



[134]

[135]
[136]
[137]

[138]

[139]

[140]
[141]
[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

GRASP: ADVANCES AND APPLICATIONS 33

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. Algorithm 769: Fortran subroutines
for approximate solution of sparse quadratic assignment problems using GRASP. ACM
Transactions on Mathematical Software, 23:196-208, 1997.

R.A. Patterson, H. Pirkul, and E. Rolland. A memory adaptive reasoning technique for
solving the capacitated minimum spanning tree problem. J. of Heuristics, 5:159—180, 1999.
E. Pinana, I. Plana, V. Campos, and R. Mart{. GRASP and path relinking for the matrix
bandwidth minimization. European J. of Operational Research, 153:200-210, 2004.

L.S. Pitsoulis, P.M. Pardalos, and D.W. Hearn. Approximate solutions to the turbine bal-
ancing problem. Furopean J. of Operational Research, 130:147-155, 2001.

F. Poppe, M. Pickavet, P. Arijs, and P. Demeester. Design techniques for SDH mesh-
restorable networks. In Proceedings of the FEuropean Conference on Networks and Optical
Communications, Volume 2: Core and ATM Networks, pages 94-101, 1997.

M. Prais and C.C. Ribeiro. Parameter variation in GRASP implementations. In Eztended
Abstracts of the Third Metaheuristics International Conference, pages 375-380, Angra dos
Reis, 1999.

M. Prais and C.C. Ribeiro. Parameter variation in GRASP procedures. Investigacion Op-
erativa, 9:1-20, 2000.

M. Prais and C.C. Ribeiro. Reactive GRASP: An application to a matrix decomposition
problem in TDMA traffic assignment. INFORMS J. on Computing, 12:164-176, 2000.
M.C. Rangel, N.M.M. Abreu, and P.O. Boaventura Netto. GRASP in the QAP: An accep-
tance bound for initial solutions. Pesquisa Operacional, 20:45-58, 2000.

M.G. Ravetti, F.G. Nakamura, C.N. Meneses, M.G.C. Resende, G.R. Mateus, and P.M.
Pardalos. Hybrid heuristics for the permutation flow shop problem. Technical report, AT&T
Labs Research Technical Report, Florham Park, 2006.

M. Reghioui, C. Prins, and Nacima Labadi. GRASP with path relinking for the capacitated
arc routing problem with time windows. In M. Giacobini et al., editor, Applications of
Evolutinary Computing, volume 4448 of Lecture Notes in Computer Science, pages 722—
731. Springer, 2007.

L.I.P. Resende and M.G.C. Resende. A GRASP for frame relay permanent virtual circuit
routing. In C.C. Ribeiro and P. Hansen, editors, Fxtended Abstracts of the I1I Metaheuristics
International Conference, pages 397-401, Angra dos Reis, 1999.

M.G.C. Resende. Computing approximate solutions of the maximum covering problem using
GRASP. J. of Heuristics, 4:161-171, 1998.

M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and M.A. Trick,
editors, Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Chal-
lenge, volume 26 of DIMACS Series on Discrete Mathematics and Theoretical Computer
Science, pages 499-520. American Mathematical Society, 1996.

M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines for approx-
imate solution of maximum independent set problems using GRASP. ACM Trans. Math.
Software, 24:386-394, 1998.

M.G.C. Resende, R. Marti, M. Gallego, and A. Duarte. GRASP and path relinking for the
max-min diversity problem. Technical Report TD-7TBSN88, AT&T Labs Research, 2008. To
appear in Computers and Operations Research.

M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for approx-
imate solution of dense quadratic assignment problems using GRASP. ACM Transactions
on Mathematical Software, 22:104-118, 1996.

M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted MAX-
SAT problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfiability Problems,
volume 35 of DIMACS Series on Discrete Mathematics and Theoretical Computer Science,
pages 393—-405. American Mathematical Society, 1997.

M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for computing ap-
proximate solutions of MAX-SAT problems using GRASP. Discrete Applied Mathematics,
100:95-113, 2000.

M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:173—
189, 1997.

M.G.C. Resende and C.C. Ribeiro. A GRASP with path-relinking for private virtual circuit
routing. Networks, 41:104-114, 2003.



34

[155]

[156]
[157]

[158]

[159]

[160]
[161]
[162]
[163]
[164]
[165]
[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173

[174]
[175]
[176]
[177]

[178]

M.G.C. RESENDE AND C.C. RIBEIRO

M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and ap-
plications. In T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as
Real Problem Solvers, pages 29—63. Springer, 2005.

M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. J. of
Heuristics, 10:59-88, 2004.

M.G.C. Resende and R.F. Werneck. A hybrid multistart heuristic for the uncapacitated
facility location problem. European J. of Operational Research, 174:54—68, 2006.

C.C. Ribeiro. GRASP: Une métaheuristique gloutone et probabiliste. In J. Teghem and
M. Pirlot, editors, Optimisation approchée en recherche opérationnelle, pages 153—176.
Hermes, 2002.

C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approximate so-
lution of graph planarization problems using GRASP. ACM Transactions on Mathematical
Software, 25:342-352, 1999.

C.C. Ribeiro, C.D. Ribeiro, and R.S. Lanzelotte. Query optimization in distributed relational
databases. J. of Heuristics, 3:5-23, 1997.

C.C. Ribeiro and I. Rosseti. Efficient parallel cooperative implementations of GRASP heuris-
tics. Parallel Computing, 33:21-35, 2007.

C.C. Ribeiro and M.C. Souza. Variable neighborhood search for the degree constrained
minimum spanning tree problem. Discrete Applied Mathematics, 118:43-54, 2002.

C.C. Ribeiro, E. Uchoa, and R.F. Werneck. A hybrid GRASP with perturbations for the
Steiner problem in graphs. INFORMS J. on Computing, 14:228-246, 2002.

C.C. Ribeiro and S. Urrutia. Heuristics for the mirrored traveling tournament problem.
European J. of Operational Research, 179:775-787, 2007.

R.Z. Rios-Mercado and J.F. Bard. Heuristics for the flow line problem with setup costs.
European J. of Operational Research, pages 76-98, 1998.

R.Z. Rios-Mercado and J.F. Bard. An enhanced T'SP-based heuristic for makespan mini-
mization in a flow shop with setup costs. J. of Heuristics, 5:57-74, 1999.

A.J. Robertson. A set of greedy randomized adaptive local search procedure (GRASP)
implementations for the multidimensional assignment problem. Computational Optimization
and Applications, 19:145-164, 2001.

P.L. Rocha, M.G. Ravetti, and G.R. Mateus. The metaheuristic GRASP as an upper bound
for a branch and bound algorithm in a scheduling problem with non-related parallel machines
and sequence-dependent setup times. In Proceedings of the 4th EU/ME Workshop: Design
and Fvaluation of Advanced Hybrid Meta-Heuristica, volume 1, pages 62—67, 2004.

M. Scaparra and R. Church. A GRASP and path relinking heuristic for rural road network
development. J. of Heuristics, 11:89-108, 2005.

D. Sosnowska. Optimization of a simplified fleet assignment problem with metaheuristics:
Simulated annealing and GRASP. In P.M. Pardalos, editor, Approzimation and complexity
in numerical optimization. Kluwer Academic Publishers, 2000.

M.C. Souza, C. Duhamel, and C.C. Ribeiro. A GRASP heuristic for the capacitated mini-
mum spanning tree problem using a memory-based local search strategy. In M.G.C. Resende
and J. Souza, editors, Metaheuristics: Computer Decision-Making, pages 627—658. Kluwer
Academic Publisher, 2004.

A. Srinivasan, K.G. Ramakrishnan, K. Kumaram, M. Aravamudam, and S. Naqvi. Optimal
design of signaling networks for Internet telephony. In IEEE INFOCOM 2000, volume 2,
pages 707-716, 2000.

H. Takahashi and A. Matsuyama. An approximate solution for the Steiner problem in graphs.
Mathematica Japonica, 24:573-577, 1980.

T.L. Urban. Solution procedures for the dynamic facility layout problem. Annals of Opera-
tions Research, 76:323-342, 1998.

T.L. Urban, W.-C. Chiang, and R.A. Russel. The integrated machine allocation and layout
problem. International J. of Production Research, 38:2913—-2930, 2000.

D.L. Woodruff and E. Zemel. Hashing vectors for tabu search. Annals of Operations Re-
search, 41:123-137, 1993.

J.Y. Xu and S.Y. Chiu. Effective heuristic procedure for a field technician scheduling prob-
lem. J. of Heuristics, 7:495-509, 2001.

J. Yen, M. Carlsson, M. Chang, J.M. Garcia, and H. Nguyen. Constraint solving for inkjet
print mask design. J. of Imaging Science and Technology, 44:391-397, 2000.



GRASP: ADVANCES AND APPLICATIONS 35

(M.G.C. Resende) INTERNET AND NETWORK SYSTEMS RESEARCH, AT&T LABS RESEARCH, 180
PARK AVENUE, RooMm C241, FLorHAM PARK, NJ 07932 USA.
E-mail address, M.G.C. Resende: mgcr@research.att.com

(C.C. Ribeiro) DEPARTMENT OF COMPUTER SCIENCE, UNIVERSIDADE FEDERAL FLUMINENSE,
RUA PASSO DA PATRIA 156, NITEROI, RJ 24210-240, BRAZIL
E-mail address, C.C. Ribeiro: celso@ic.uff.br



