
i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page i � #1 i

i

i

i

i

i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Metaheuristic algorithms for
multi-objective scheduling

problems
Michele Ciavotta

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page ii � #2 i

i

i

i

i

i

Metaheuristic algorithms for multi-objective scheduling problems

A thesis presented by
Michele Ciavotta

in partial ful�llment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering
Roma Tre University

Dept. of Informatics and Automation
February 2008

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page iii � #3 i

i

i

i

i

i

Committee:
Prof. Dario Pacciarelli

Reviewers:
Prof. Alessandro Agnetis
Prof. Rubén Ruiz

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page iv � #4 i

i

i

i

i

i

Alla mia Famiglia tutta ed a Valeria, senza il loro supporto nulla del mio
lavoro avrebbe un senso

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page v � #5 i

i

i

i

i

i

v

Abstract

Production optimization methods are widely used in manufacturing envi-
ronments but very often just one optimization criterion is taken into account.
Multi-objective optimization is without a doubt a very important research topic
because of the multi-objective nature of most real-world problems and because
there are still many open questions in this area.
It has been proved that exact approaches rarely work well for complex real-
world cases because they often belong to the class ofNP-hard problems. There-
fore the aim of this Ph.D thesis is to prove the e�ectiveness, adaptability and
modularity of several metaheuristics applied to di�erent real world di�cult
scheduling problems.
A large bibliographical section dealing with the problem of multi-objective per-
mutation �owshop and parallel machines is presented.
Many algorithms described in literature have been re-implemented and new
ones are presented. Finally computational campaigns have been performed
and all results have been evaluated by means of statistical tools.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page vi � #6 i

i

i

i

i

i

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page vii � #7 i

i

i

i

i

i

Acknowledgments

I am very grateful to all the people who have directly or indirectly contributed
to the birth of this Ph.D. thesis. Special thanks to my tutor Prof. Dario
Pacciarelli, to Prof. Carlo Meloni of �Politecnico di Bari� and Prof. Marco
Pranzo �Università di Siena� colleagues and friends. I would also like to thank
the members of AUTORI laboratory of the department of computer science
and automation of university �Roma Tre� Rome. At last, I would like to thank
Prof. Rubén Ruiz of �Universidad Politécnica de Valencia�, Gerardo Minella
an all the members of SOA group of �Instituto Tecnológico de Informática� of
Valencia.

vii

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page viii � #8 i

i

i

i

i

i

Contents

Contents viii

List of Tables x

List of Figures xii

1 Multi-objective scheduling optimization: an introduction 1
1.1 Introduction to Scheduling . 1
1.2 Optimality Criteria . 4
1.3 Scheduling with setups . 5
1.4 Parallel Machine Scheduling problem 6
1.5 Flowshop scheduling problem 6
1.6 Single-objective vs Multi-objective optimization 7

2 Metaheuristics 15
2.1 Introduction to Metaheuristic algorithms 15
2.2 Simulated Annealing . 17
2.3 Evolutionary Algorithms . 18
2.4 Iterated Local Search . 20
2.5 Iterated Greedy . 22
2.6 Tabu Search . 23
2.7 Variable Neighborhood Descent 25
2.8 Rollout / Pilot Method . 27

3 Literature 29
3.1 Introduction . 29
3.2 Flowshop scheduling problems 29
3.3 Multi-objective parallel machines scheduling problems 43

viii

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page ix � #9 i

i

i

i

i

i

ix

3.4 Conclusions . 46

4 Case Study 1: PFSP 49
4.1 Introduction . 49
4.2 Implemented algorithms . 51
4.3 Multi-objective quality measures 57
4.4 Benchmark and computational evaluation details 59
4.5 Computational Evaluation . 61
4.6 Comments and Conclusions . 66

5 Case Study 2: PFSP with sequence-dependent setup times 81
5.1 Introduction . 81
5.2 Problem Description . 82
5.3 Iterated Pareto Greedy . 84
5.4 Experimental evaluation of the algorithm 89
5.5 Conclusions and future research 96

6 Case Study 3: Two-stage production system with 0-1 setups 117
6.1 Introduction . 118
6.2 Literature and applications . 119
6.3 Problem description and formulation 120
6.4 Algorithms . 127
6.5 Computational experiments . 134
6.6 Conclusions and future research 138

7 Case Study 4: PMS problem with real-life constraints 139
7.1 Introduction . 139
7.2 Pharmaceutical manufacturing systems 141
7.3 Problem description . 143
7.4 Solution methods . 146
7.5 Computational results . 151
7.6 Conclusions . 158

8 Conclusions 161

Bibliography 165

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page x � #10 i

i

i

i

i

i

List of Tables

3.1 Reviewed papers for the multi-objective �owshop. 42

4.1 Re-implemented methods for the multi-objective �owshop. 68

4.2 Details, operators and parameter values of the algorithms. 70

4.3 Results for the makespan and total tardiness criteria. Average qual-
ity indicator values for the 23 algorithms tested under the three
di�erent termination criteria. Each value is averaged across 110
instances and 10 replicates per instance (1,100 values). For each
termination criteria level, the methods are sorted according to IH . 71

4.4 Results for the total completion time and total tardiness criteria.
Average quality indicator values for the 23 algorithms tested un-
der the three di�erent termination criteria. Each value is averaged
across 110 instances and 10 replicates per instance (1,100 values).
For each termination criteria level, the methods are sorted according
to IH . 72

4.5 Results for the makespan and total completion time. Average qual-
ity indicator values for the 23 algorithms tested under the three
di�erent termination criteria. Each value is averaged across 110
instances and 10 replicates per instance (1,100 values). For each
termination criteria level, the methods are sorted according to IH . 73

5.1 Re-implemented methods for the SDST multi-objective �owshop. . 92

5.2 Details and parameter of IPG algorithm. 93

x

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page xi � #11 i

i

i

i

i

i

List of Tables xi

5.3 Results for the makespan and total weighted tardiness criteria. Av-
erage quality indicator values for the 12 algorithms tested under
the two di�erent termination criteria. Instance group where setup
times length is 50% that of the processing times. Each value is
averaged across 110 instances and 10 replicates per instance (1,100
values). For each termination criteria level, the methods are sorted
according to IH . 98

5.4 Results for the makespan and total weighted tardiness criteria. Av-
erage quality indicator values for the 12 algorithms tested under
the two di�erent termination criteria. Instance group where setup
times length is 125% that of the processing times. Each value is
averaged across 110 instances and 10 replicates per instance (1,100
values). For each termination criteria level, the methods are sorted
according to IH . 107

6.1 Results of the three algorithms (60 seconds runs). 135
6.2 Results of the three algorithms (300 seconds runs). 135
6.3 Rank sum of (a) median computation times and (b) Pareto optimal

front coverage. 137

7.1 Dispensing department: Instances with deadlines (H and H+LS) . 154
7.2 Dispensing department: Instances with deadlines (RH and RH+LS) 154
7.3 Counting department: Instances with deadlines (H and H+LS) . . 154
7.4 Counting department: Instances with deadlines (RH and RH+LS) 154
7.5 Dispensing department: Instances without deadlines (H and H+LS) 155
7.6 Dispensing department: Instances without deadlines (RH and RH+LS)155
7.7 Counting department: Instances without deadlines (H and H+LS) 156
7.8 Counting department: Instances without deadlines (RH and RH+LS)156

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page xii � #12 i

i

i

i

i

i

List of Figures

1.1 Gantt chart for a multiple machines scheduling problem 3
1.2 Example of Pareto dominance . 12
1.3 Example of a Pareto set . 13

2.1 Basic SA Algorithm . 18
2.2 Basic EA Algorithm . 20
2.3 Basic ILS Algorithm . 21
2.4 Basic IG Algorithm . 23
2.5 Basic TS Algorithm . 25
2.6 Basic VND Algorithm . 26
2.7 Basic Rollout/Pilot Algorithm . 28

4.1 Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon
indicator response variable and 100 CPU time stopping criterion.
Makespan and total tardiness criteria. 74

4.2 Means plot and MSD con�dence intervals (αs = 0.01, α = 0.05) for
the Friedman Rank-based test. Epsilon indicator response variable
and 100 CPU time stopping criterion. Makespan and total tardiness
criteria. 75

4.3 Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Hyper-
volume response variable and 100 CPU time stopping criterion.
Makespan and total tardiness criteria. 76

4.4 Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon
indicator response variable and 200 CPU time stopping criterion.
Makespan and total tardiness criteria. 77

xii

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page xiii � #13 i

i

i

i

i

i

List of Figures xiii

4.5 Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment for the
instance group 50× 5. Epsilon indicator response variable and 200
CPU time stopping criterion. Makespan and total tardiness criteria. 78

4.6 Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon
indicator response variable and 200 CPU time stopping criterion.
Total completion time and total tardiness criteria. 79

4.7 Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon
indicator response variable and 200 CPU time stopping criterion.
Makespan and total completion time criteria. 80

5.1 The �gure represents a schematic �ow chart of IPG 86
5.2 Modi�ed Crowding Distance Assignment Procedure(MCDA) . . . 87
5.3 The �gure represents an asymmetric neighbour for the LS. 89
5.4 Local Search procedure (LS). 90
5.5 First instance set where setup times length is 50% the length of

processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Epsilon indicator
response variable and 150 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 99

5.6 First instance set where setup times length is 50% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Hypervolume
response variable and 150 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 100

5.7 First instance set where setup times length is 50% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Epsilon indicator
response variable and 200 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 101

5.8 First instance set where setup times length is 50% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Hypervolume
response variable and 200 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 102

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page xiv � #14 i

i

i

i

i

i

xiv List of Figures

5.9 First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA
experiment. Epsilon indicator response variable and 150 CPU time
stopping criterion. Makespan and total weighted tardiness criteria. 103

5.10 First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA exper-
iment. Hypervolume response variable and 150 CPU time stopping
criterion. Makespan and total weighted tardiness criteria. 104

5.11 First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA
experiment. Epsilon indicator response variable and 200 CPU time
stopping criterion. Makespan and total weighted tardiness criteria. 105

5.12 First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA exper-
iment. Hypervolume response variable and 200 CPU time stopping
criterion. Makespan and total weighted tardiness criteria. 106

5.13 Second instance set where setup times length is 125% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Epsilon indicator
response variable and 150 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 108

5.14 Second instance set where setup times length is 125% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Hypervolume
response variable and 150 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 109

5.15 Second instance set where setup times length is 125% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Epsilon indicator
response variable and 200 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 110

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page xv � #15 i

i

i

i

i

i

List of Figures xv

5.16 Second instance set where setup times length is 125% the length of
processing times. Means plot and MSD con�dence intervals (αs =
0.01, α = 0.05) for the Friedman Rank-based test. Hypervolume
response variable and 200 CPU time stopping criterion. Makespan
and total weighted tardiness criteria. 111

5.17 Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA
experiment. Epsilon indicator response variable and 150 CPU time
stopping criterion. Makespan and total weighted tardiness criteria. 112

5.18 Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA exper-
iment. Hypervolume response variable and 150 CPU time stopping
criterion. Makespan and total weighted tardiness criteria. 113

5.19 Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA
experiment. Epsilon indicator response variable and 200 CPU time
stopping criterion. Makespan and total weighted tardiness criteria. 114

5.20 Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals
(αs = 0.01, α = 0.05) for the algorithm factor in the ANOVA exper-
iment. Hypervolume response variable and 200 CPU time stopping
criterion. Makespan and total weighted tardiness criteria. 115

6.1 Geometric aspects of the feasible region of the SUM -MAX problem.124
6.2 Geometric aspects of the solution space of the NC-NS problem. . 125
6.3 Bounds for the Pareto front for the NC-NS problem. 126
6.4 The COVER procedure. 130
6.5 The Sweep procedure. 132
6.6 The Fill procedure. 133

7.1 The main production phases in the secondary pharmaceutical man-
ufacturing. 143

7.2 Algorithmic scheme of the Modi�ed Jackson Schedule. 147
7.3 The scheme of the Algorithm Delta (∆). 148
7.4 Algorithmic scheme of Pilot/Rollout 149
7.5 An illustration of the three moves. 150

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page xvi � #16 i

i

i

i

i

i

xvi List of Figures

7.6 Algorithmic scheme of Variable Neighborhood Descent (VND). . . 151
7.7 Average improvements in the dispensing department 157
7.8 Average improvements in the counting department 158

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 1 � #17 i

i

i

i

i

i

Chapter 1

Multi-objective scheduling
optimization: an introduction

1.1 Introduction to Scheduling
Scheduling theory was introduced in the 50's [92] [98]. Since that time, more
and more complex models, theorems and algorithms have been published.
In a nutshell a scheduling problem consists in the allocation of tasks (jobs) to
resources (machines) in such a way that constraints are satis�ed and certain
goals are achieved.
Hence the elements that characterize a scheduling problem are :

• J, the set of n jobs that have to be processed

• M, the set of m machines

• C, the set of constraints that have to be satis�ed

• F, the set of k (often k = 1) criteria to optimize

Depending on the type and number of machines, on the characteristics of jobs,
constraints and criteria to optimize, di�erent models of scheduling problems
arise.
A job Ji consists of a number ni of operation oij with j = 1, . . . , ni and it is
associated to a set of information, for example:

1

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 2 � #18 i

i

i

i

i

i

2
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

• Release time, ri

• Processing time, pij

• Due date, di

• Deadline, Di

• Weight, wi

• Set of compatible machines for each operation oij of a job Ji, Mij

Such information describes constraints and characteristics of the job. For ex-
ample, a job Ji can not be scheduled before its release time and its operations
can not be processed by machines not in M ij . Processing times instead, de-
scribe how much time a process needs in a certain machine.
Solving a scheduling problem means �nding the best feasible schedule accord-
ing to a set of criteria and in turn, to �nd a feasible schedule means to assign
to each operation oij of Ji, a time interval on a suitable machine, so that all
constraints are satis�ed.
Common constraints are, for example, observing release times and deadlines.
This means the time interval assigned to a job on a machine can not start before
the job release time and can not �nish after the deadline. Another important
constraint is preserving precedence relations among the jobs. Such relations
mainly depend on technological constraints in the production and assembly of
goods.
Schedules are represented by means of Gantt charts as shown in �gure 1.1.
The machine environment is characterized by the type and number of ma-
chines, e. g.:

• Single machine

• Parallel machines (Identical, Uniform, Unrelated)

• Shop environment (Flowshop, Jobshop, Openshop)

The single machine case has been the subject of extensive research over since
the early work of Jackson [92] in 1955. It can be considered the simplest class
of scheduling problems. All jobs in J must be processed on the same machine.
A classical example is the scheduling of several programs on the same CPU in
a computer.
For some �lucky� cases a large number of theorems and properties have been

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 3 � #19 i

i

i

i

i

i

1.1. INTRODUCTION TO SCHEDULING 3

Figure 1.1: Gantt chart for a multiple machines scheduling problem

found and hence very e�ective algorithms have been developed but despite of
the simplicity of the model many problems turn out to be NP-hard and no
e�cient algorithm is known to solve them.
In the parallel machines case jobs have only one operation. Machines in M
may be identical and this means that they need the same time to process the
same operation, uniform processing times are di�erent but dependent on the
machine �speed�, and unrelated i.e. processing times are di�erent without any
scale factor (see 1.4).
In the shop environment each job has more than one operation and for each
operation generally a di�erent machine is employed. Di�erence arises in the
way the machine set M is visited. In the �owshop case each job has to visit all
machines in the same order (see 1.5) while in jobshop a di�erent but �a priori�
known visit sequence is assigned to each job. In the openshop production is
�exible and each job can be completed using whatever sequence of machines.
In this chapter, a basic description for the scheduling models for problems
treated in this thesis will be provided in sections 1.4 and 1.5. More detailed
models are presented for real-world case-studies addressed in chapters 4, 5, 6
and 7.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 4 � #20 i

i

i

i

i

i

4
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

1.2 Optimality Criteria
Let denote the completion time of job Ji by Ci and its associated cost by
fi(Ci), there exist essentially two types of total cost functions

fmax(C) := maxi{fi(Ci)|i = 1, . . . , n}
and

∑
fi(C) :=

n∑

i=1

fi(Ci)

called bottleneck and sum objective respectively (see [26]).
The most common objective functions are:

makespan : maxi{Ci|i = 1, . . . , n} fi(Ci) = Ci

total �ow time : ∑n
i=1 Ci fi(Ci) = Ci

total weighted �ow time : ∑n
i=1 wiCi fi(Ci) = wiCi

Other examples of cost functions fi(Ci) associated to Ji are:

lateness Li:= Ci − di

earliness Ei:= max{0, di − Ci}

tardiness Ti:= max{0, Ci − di}

unit penalty Ui:=
{

1 if Ci ≤ di

0 otherwise

As for fi(Ci) = Ci also with these functions we get at least three objectives.
Common objective functions are:

maximum lateness Lmax:= maxi{Li}

total (weighted) tardiness T (W)T :=
∑n

i=1(wi)Ti

total number of tardy jobs U :=
∑n

i=1 Ui

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 5 � #21 i

i

i

i

i

i

1.3. SCHEDULING WITH SETUPS 5

An objective function which is nondecreasing with respect to all variables Ci

is called regular . Notice that functions dealing with Ei are usually not regu-
lar. Regular functions have often properties that can lead to e�ective solution
methods.

1.3 Scheduling with setups

Setup includes tooling, handling work-in-process, cleaning machines and work
spaces, loading programs into machines and inspecting materials [141].
The majority of scheduling research assumes setups are negligible or included
into processing times. Such assumption clearly simpli�es the analysis and some-
times it is justi�ed by the presence of long processing times and short setup
times. On the contrary it adversely a�ects the solution quality for many prob-
lems that require treating explicitly setup times or costs.
The setup operations have for long been considered negligible and hence ig-
nored, considered, for example, as part of the processing time. Although this
may be somewhat justi�ed for some scheduling problems, other situations call
for explicit setup consideration.
Approaching a problem with setup means, above all, to understand how the
presence of setups a�ect the production costs. In many cases it is su�cient
consider only setup times. This occurs when setup cost is directly proportional
to setup time. This is typically true when the cost is limited only to machine
idle time. However, there are other situations, where the cost is relatively high
for switching between certain jobs even though their switching time is relatively
low.
A �rst classi�cation highlights two classes of setup. In the �rst class, setup de-
pends only on the job to be processed, hence it is called sequence-independent.
In the second, setup depends on both the job to be processed and the imme-
diately preceding one, hence it is called sequence-dependent. While in several
cases sequence-independent setup times could be included in the processing
times, the case of sequence-dependent setup times calls for an explicit treat-
ment in models and algorithms.
A second possible classi�cation looks at the possibility to anticipate a setup on
a machine. Hence there exist anticipatory setups when it is possible to antic-
ipate the execution of the setup with respect to the job and not anticipatory
setups otherwise. Cleaning operations are a clear example of an anticipatory
setup because the machine might remain idle after the cleanup. Time required
to position a job on the machines is instead a obvious case of not anticipatory

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 6 � #22 i

i

i

i

i

i

6
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

setup.
The importance of setup times has been investigated in several studies. In
a survey of industrial management, Panwalker et al. [143] discovered that
about three quarters of the managers reported at least some operations they
schedule require sequence-dependent setup times. Worthman [214] underlines
the importance of considering sequence-dependent setup times for the e�ective
management of manufacturing capacity.
For a comprehensive literature review dealing with setups see [10] and [11] .

1.4 Parallel Machine Scheduling problem
In the classical Parallel Machine Scheduling (PMS) problem, there are n jobs
andm machines. Each job must be executed on one of the machines. the aim is
to �nd the schedule that optimizes certain performance measure (in the single
objective optimization) or to �nd a solution set which in some sense �optimize�
a set of criteria (Weighted sum, Lexicographical order, Pareto optimization).
This scheduling problem involves two kinds of decisions, job-machine assign-
ment (deciding on what machine a job must be processed), and sequencing
(deciding the position in the queue).
Machines may be all identical, i.e. they would employ the same time to process
the same job, uniform when they would employ times dependent on the own
�speed� to process the same job otherwise they are unrelated.
The complexity usually grows exponentially with the number m of machines,
making the problem intractable. This problem belongs to the class of Com-
binatorial Optimization problems, many of which are known to be NP-hard
[42], [100], [65] and [144]. What this means is that it is not likely that there
exist polynomial time algorithms to solve them.
Many real-life problems can be modeled as PMS ones. On production lines,
it is common to �nd more than one machine of each kind carrying out the
production tasks. The PMS also constitutes an important issue in the �eld
of Computer Science, due to the increments in use multiprocessor computers,
which require procedures for assigning to a CPU tasks and then establish its
priority.

1.5 Flowshop scheduling problem
A Flowshop Scheduling Problem (FSP) is characterized by n jobs and m ma-
chines. Each job must be processed by all machines. This model represents an

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 7 � #23 i

i

i

i

i

i

1.6. SINGLE-OBJECTIVE VS MULTI-OBJECTIVE OPTIMIZATION 7

unidirectional �ow of work within a production environment. In fact every job
has to visit machines in the same sequence. This is the case, for instance, of
production lines where similar products are manufactured.
In the general FSP each machine in the line may process a di�erent sequence of
jobs. This occurs when between two consecutive production stages there exists
a temporary storage area and handling systems which can change the sequence
of jobs. Hence the number of possible solutions of this problem is (n!)m and
like PMS it becomes intractable even with a few jobs and machines.
In Permutation FSP (PFSP) each machine must process the same sequence
of jobs. This is a clear simpli�cation of the general problem which leads to a
solution space of cardinality n!. Although the solution space is reduced respect
to the general model, this problem remains still intractable for real-life instance
sizes. This calls for an heuristic or metaheuristic approach. For more details
see [75], [153] and [197].

1.6 Single-objective vs Multi-objective optimization

In the scheduling literature, most of the research works only deal with single ob-
jective problems, but many real-world scheduling problems are multi-objective
by nature, i.e. several objectives should be optimized at the same time [15], [48].
Examples of such objectives are optimization of two or more of the following
measures simultaneously, i.e. makespan (Cmax), total �owtime (F), maximum
tardiness (Tmax), total tardiness (TT) as well as number of tardy jobs (U).
Makespan (Cmax) and total �owtime (F) are related to maximization of sys-
tem utilization and minimization of work-in-process inventories respectively,
while the remaining measures are related to job due dates. In this research we
use makespan, total �owtime and total tardiness as the multiple objectives for
a �owshop scheduling problem.
Since the early 50's, scheduling models have became more and more complex
in order to better describe di�erent practical situations. Although many real
world problems have been well characterized, such models often employ a sim-
pli�cation: evaluation a solutions with respect to only one criterion. In fact,
the vast majority of the papers on scheduling deals with problems in which the
quality of a solution is estimated in terms of a single objective.
In production planning and scheduling, however, quality is a multidimensional
concept. A decision maker, for instance, must evaluate production schedules
on the basis of a number of criteria, as e.g. work-in-progress inventories and
observance of due dates. If just one objective is taken into account, the the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 8 � #24 i

i

i

i

i

i

8
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

outcome is likely to be unbalanced, independently of what criterion is consid-
ered. If he or she decides to maintain low work-in-progress inventory levels,
some products are likely to be completed far beyond their due dates, while if
the main goal is to have a production which respects due dates as much as
possible, the consequence is that large work-in-progress inventories have to be
handled. Hence in order to reach an reasonable trade-o�, one has to measure
the quality of a solution on the basis of more than one important criterion.
An important drawback of considering such problems lies in the di�culty of
de�ning an appropriate notion of optimality and, given such notion, �nding
an optimal solution. Obviously, the situation becomes more complicated when
more criteria are involved, unless the criteria are not in con�ict with each other;
roughly speaking, two criteria are not in con�ict if a solution that performs well
on one criterion is likely to perform well on the other one. If the objectives
con�ict, then the di�erent solutions have to be weighted against each other.
To that end, various options exist. The �rst one is to specify an upper bound
on the value of the most important criterion: a solution is then selected that
performs well on the other criteria while satisfying the bound. The second
option is to aggregate the criteria into a single objective function; a solution
in chosen that is optimal for this objective function. The third option is based
upon an interactive version of decision making: an analyst determines a candi-
date solution and presents it to a decision maker, who either decides to accept
it or tells the analyst on which criterion the score should be improved. Un-
fortunately, the determination of n candidate solutions takes more time than
solving n times one of the basic single-criterion problems; sometimes it is not
even possible to guarantee that one reasonable candidate solution is found In
a reasonable amount of time. It is of great importance to know beforehand
what the consequences are of taking extra criteria into account. If it is di�cult
to �nd a good set of candidate solutions, then one might prefer to look for a
solution of somewhat lesser quality that is more easily obtained.
An important issue concerns the question of what constitutes a representative
set of candidate solutions. An obvious choice is the set of all nondominated
solutions. A solution is said to be nondominated if it outperforms any other
solution on at least one criterion. If the number of nondominated solutions is
large, then an analyst may impose extra restrictions upon the set of candidate
solutions; for example, he or she can impose an upper bound on the value of a
criterion. Over the years there have been several approaches used to deal with
the multi-objective problems. Traditionally, the most common approach has
been to aggregate functions according to the preferences set by the decision
makers and then to �nd a solution that satis�es these preferences. In the re-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 9 � #25 i

i

i

i

i

i

1.6. SINGLE-OBJECTIVE VS MULTI-OBJECTIVE OPTIMIZATION 9

mainder of the chapter three multi-objective approaches, useful to understand
my research work, are presented.

Weighted sum optimization
This is the simplest way to tackle a multi-objective problem and it uniquely
consists in reducing the objective vector into a new single performance measure.
This is an �a priori� approach because the Decision Maker �rst has to establish
the relative importance of each objective function. He or she has to assign to
each criterion a weight λi with

∑
i λi = 1 and a combination (often linear see

1.1) of the objective functions is optimized using a single-objective method.

fsingle(s) =
∑

i

λifi(s) (1.1)

Hence for a solution the objective vector is calculated and then each criterion
is multiplied by its weight and summed with the others, attaining in this way
an unique objective to minimize.
This approach, in some cases, can be converted in a Pareto search by slightly
modifying the weights and repeating the search. By running several times
the solution procedure (changing each time the search direction), in fact, it is
possible to approximate the global Pareto optimum set.
This method may lead to some problem if objectives have di�erent magnitudes
and notice, however, that it turns out often to be less e�ective and much slower
when compared to multi-objective Pareto methods.

Lexicographical optimization
Another simple way to bring a multi-objective problem back to a single-objective
one is the so-called lexicographical optimization. Like the weighted sum opti-
mization this is an �a priori� approach to solve multi-criteria problems. Also
this time the Decision Maker has to establish priorities among criteria. No
weights are employed but only he or she imposes a priority ordering on the
objective set.
Using this approach there does not exist any incomparability among solutions.
Let s and s

′ be two di�erent solutions for a certain Multi-Objective Opti-
mization Problem (MOOP) and V (s) and V (s

′
) vectors containing in a �xed

lexicographical order the values of each criterion for s and s′ . We say s is better
than s′ if ∃ i| V [i](s) / V [i](s

′
) and for all j < i V [i](s) = V [i](s

′
).

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 10 � #26 i

i

i

i

i

i

10
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

Employing this comparison technique it is possible to use a single-objective op-
timization method. In such a way the algorithm optimizes the �rst and most
important criterion and when solutions with the same value of such objective
are found, it selects as new best solution the one having the best value for the
second criterion; in case of parity the third one is considered and so on.

Pareto optimization
Single and multi-objective scheduling problems have been studied extensively.
However, in the multi-objective case, the majority of studies use the simpler �a
priori� approach where multiple objectives are weighted into a single one. As
mentioned, the main problem in this method is that the weights or a priority
for each objective must be given. The �a posteriori� multi-objective approach
is more complex since in this case, there is no single optimum solution, but
rather lots of �optimum� solutions. For example, given two solutions x1 and
x2 for a given problem with two minimization objectives f1 and f2 and being
f1(·) and f2(·) the objective values for a given solution. Is x1 better than x2

if f1(x1) < f1(x2) but at the same time f2(x1) > f2(x2)? It is clear than in
a multi-objective scenario, neither solution is better than the other. However,
given a third solution x3 we can say than x3 is worse than x1 if f1(x1) < f1(x3)
and f2(x1) < f2(x3). In order to properly compare two solutions in a MOOP
some de�nitions are needed. Without loss of generality, let us suppose that
there are M minimization objectives in a MOOP. We use the operator / as
�better than�, so that the relation x1 / x2 implies that x1 is better than x2 for
any minimization objective.
[225] present a much more extensive notation which is later extended in [145]
and more recently in [104]. For the sake of completeness, some of this notation
is also introduced here:

Strong (or strict) domination: A solution x1 is said to strongly dominate a
solution x2 (x1 ≺≺ x2) if:

fj(x1) / fj(x2) ∀j = 1, 2, . . . ,M ;

i.e. x1 is better than x2 for all the objective values.

Domination: A solution x1 is said to dominate a solution x2 (x1 ≺ x2) if
the following conditions are satis�ed:

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 11 � #27 i

i

i

i

i

i

1.6. SINGLE-OBJECTIVE VS MULTI-OBJECTIVE OPTIMIZATION 11

(1)fj(x1) 6 . fj(x2) for j = 1, 2, . . . ,M ;
x1 is not worse than x2 for all objective values

(2)fj(x1) / fj(x2) for at least one j = 1, 2, . . . ,M

Weak domination: A solution x1 is said to weakly dominate a solution x2

(x1 ¹ x2) if:
fj(x1) 6 .fj(x2) for all j = 1, 2, . . . ,M ;

x1 is not worse than x2 for all objective values.

Incomparable solutions: Solutions x1 and x2 are incomparable (x1‖x2 or
x2‖x1) if:

fj(x1) 6¹ fj(x2) nor fj(x2) 6¹ fj(x1) for all j = 1, 2, . . . ,M

These de�nitions can be extended to sets of solutions. Being A and B two sets
of solutions for a given MOOP, we further de�ne:

Strong (or strict) domination: Set A strongly dominates set B (A ≺≺ B)
if:

Every xi ∈ B ÂÂ by at least one xj ∈ A
Domination: Set A dominates set B (A ≺ B) if:

Every xi ∈ B Â by at least one xj ∈ A
Better: Set A is better than set B (A / B) if:

Every xi ∈ B º by at least one xj ∈ A and A 6= B

Weakly domination: A weakly dominates B (A º B) if:

Every xi ∈ B º by at least one xj ∈ A

Incomparability: Set A is incomparable with set B (A‖B) if:

Neither A º B nor B º A

Non-dominated set: Among a set of solutions A, we refer to the non-
dominated subset A′ such as xA′ ∈ A′ ≺ xA with xA′ 6= xA and A′ ⊂ A.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 12 � #28 i

i

i

i

i

i

12
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

Figure 1.2: Example of Pareto dominance

Pareto global optimum solution: a solution x ∈ A (being A a set of all
feasible solutions of a problem) is a Pareto global optimum solution if and only
if there is no x′ ∈ A such that f(x′) ≺ f(x).

Pareto global optimum set: a set A′ ∈ A (being A a set of solutions of
a problem) is a Pareto global optimum set if and only if it contains only and
all Pareto global optimum solutions This set is commonly referred to as Pareto
front.
Examples of dominance and Pareto set are given in �gures 1.2 and 1.3.
Solving a MOOP means to �nd out the Pareto global optimum set or at least
a nondominated solution set which approximates it adequately. The most im-
portant element in such process is time employed for �nding optimal solutions.
It might be extremely large and hence usually one choose a more functional
trade-o� between time and solution set quality This occurs because the hard-
ness of an optimization problem mostly depends on solution space size if it is

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 13 � #29 i

i

i

i

i

i

1.6. SINGLE-OBJECTIVE VS MULTI-OBJECTIVE OPTIMIZATION 13

Figure 1.3: Example of a Pareto set

discrete and �nite or on objective functions and constraints characteristics if
such space has an in�nite number of elements. Hence in several cases �nding
in an analytical way a solution is not possible and neither a full enumerative
approach is conceivable. Consider for example, a scheduling problem where
one has to sequence n elements, solution space in this case has n! possible per-
mutations. Such a problem quickly becomes intractable. Consider for example,
n = 20 the number of possible solutions is 20! ≈ 2, 43∗1018. Hence to sequence
a small number of jobs one has to deal with a huge solution space.
Notice that comparing two Pareto sets which cross each other is not straightfor-
ward. In the last years this topic has been widely studied and several quality
measures have been proposed [225], [145] and [104]. In section 4.3 quality

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 14 � #30 i

i

i

i

i

i

14
CHAPTER 1. MULTI-OBJECTIVE SCHEDULING OPTIMIZATION: AN

INTRODUCTION

measures employed in this thesis are explained.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 15 � #31 i

i

i

i

i

i

Chapter 2

Metaheuristics

2.1 Introduction to Metaheuristic algorithms
The name combines the Greek pre�x meta ("beyond", here in the sense of
"higher level") and heuristic (heuriskein, "to �nd") and it suggests a class of
algorithms that are able, for a large class of optimization problems, to �nd
near-optimal solutions working on a more general level.
In fact, while heuristic methods are invented and developed (when possible) to
e�ciently tackle a speci�c problem (usually exploiting a deep knowledge about
it), metaheuristic algorithms are in many cases able, just holding a minimal
understanding, to solve such a problem. In this sense, those methods are con-
stituted by a framework, or a general resolving scheme, that can be hopefully
applied to a wide set of optimization problems with relatively good results.
Beside the great advantage of being easily adaptable to many di�erent prob-
lems, due to their scarce speci�c-problem information requirements (thus re-
ducing design and implementation times), the main drawback of such methods
consists in the fact that they are often much slower and less e�cient with
respect to ad hoc algorithms. For this reason, metaheuristics are generally
applied to problems for which there is not any satisfactory known problem-
speci�c exact algorithm or heuristic. This is why often metaheuristics use
within their framework heuristic methods as black-boxes in order to have a
trade-o� between generality and performance. Moreover, for the same reason
such algorithms are often hybridized with local search procedures.

15

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 16 � #32 i

i

i

i

i

i

16 CHAPTER 2. METAHEURISTICS

Most commonly used metaheuristics are targeted to combinatorial optimiza-
tion problems where the search space is extremely large and generally heuristic
methods return solutions of low quality. All the scheduling problems consid-
ered during my Ph.D. experience fall into that class.
For the majority of the most e�ective metaheuristic approaches presented in
literature it is possible to identify clearly the following two main phases:

• Intensi�cation, that is the phase that tries to improve actual solution(s)

• Diversi�cation, that is the phase that guide the search towards the explo-
ration of di�erent zones of the search space. In this way the algorithms
can easily escape from local optima

In the following sections the main elements of the algorithms used in this Ph.D.
thesis are discussed. Metaheuristics often belong to the class of stochastic
methods. We implemented and employed the multiobjective versions of the
following methods:

• Simulated Annealing

• Evolutionary Algorithms

• Iterated Local Search

• Iterated Greedy (an Iterated Pareto Greedy has been developed and pre-
sented for the �rst time in this Ph.D. thesis)

but we made use also of deterministic metaheuristic procedures:

• Tabu Search

• Rollout/Pilot Method

• Variable Neighborhood Search

Notice here that stochastic algorithms may potentially present di�erent solu-
tions in di�erent runs. That is why it is a very common procedure to average
results when using this class of procedures and why probabilities of success,
percentages of search extension, normalized mean error, etc... are normally
used for describing their behavior.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 17 � #33 i

i

i

i

i

i

2.2. SIMULATED ANNEALING 17

2.2 Simulated Annealing

Simulated Annealing (SA) is a generic stochastic metaheuristic algorithm. It
was independently presented by Kirkpatrick et al. in 1983 [102], and by �erný
in 1985 [32]. It originated as a generalization of a Monte Carlo method invented
by Metropolis et al in 1953 [130]. This algorithm aims to emulate the annealing
process in metallurgy, i.e. a technique that makes use of a heating phase fol-
lowed by a cooling phase to produce crystals of bigger sizes and less defects. In
fact the heating process allows the atoms to leave their initial positions in the
crystals (a local minimum of the internal energy) and move randomly, the slow
cooling phase gives them the possibility of �nding con�gurations with lower
internal energy respect to their initial status.
SA is commonly considered the �rst developed metaheuristic algorithm, more-
over it was one of the �rst algorithms that proposed an e�ective scheme to avoid
to get stuck in local minima. The basic idea consists in allowing moves which
result in solutions of worse quality than the actual solution (uphill moves) in
order to run away from local minima. Moreover the probability of doing such
moves is not constant but it decreases during the search.
In �gure 2.1 a simple pseudocode for a generic SA algorithm is presented .
It starts by generating an initial random or heuristically constructed solution.
The so-called temperature parameter T is then initialized; T will control the
acceptance probability of worse quality solutions. The main loop consists in the
random sampling of a candidate solution s′ from the neighborhood Neigh(s)
of the actual solution s. s′ is evaluated and it is accepted as new actual so-
lution depending on the values of f(s), f(s

′
) and T . In fact s′ replaces s if

f(s
′
) < f(s) i.e. it has a better quality or, in case f(s

′
) >= f(s), with a

probability that is generally computed following the Boltzmann distribution
e
−(f(s

′
)−f(s))
T . Finally T is updated.

The main loop ends when a termination condition is met.
The temperature T decreases at the search process evolves, thus at the begin-
ning the probability of accepting uphill moves is high and it gradually decreases,
converging to a simple iterative improvement algorithm. Notice that the prob-
ability of accepting uphill moves depends also on the di�erence of the objective
functions between the candidate and actual solution, in fact at �xed tempera-
ture, the higher the di�erence f(s

′
)− f(s), the lower the probability to accept

a move from s to s′ thus avoiding to accept actual solutions of very low quality
even during the iterations of the algorithm.
It is easy to show how the e�ectiveness and the success of SAs was due to two

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 18 � #34 i

i

i

i

i

i

18 CHAPTER 2. METAHEURISTICS

procedure Simulated Annealing Algorithm

s := Generate_Initial_Solution()
T := T0

while termination conditions not met
s
′
:= Rand(Neigh(s)) % candidate solution

iff(s
′
) < f(s)

s := s′

else
Accept s′ as new solution with probability e−(f(s

′
)−f(s))
T

end if
Update(T)

end while

Figure 2.1: Basic SA Algorithm

di�erent strategies, random walk and iterative improvement, incorporated in
the search process, Indeed during the �rst phase of the search, when T is high
the algorithm permits a large exploration of the search space. This compo-
nent slowly decreases with T thus leading the search to became an iterative
improvement search and to converge to a possibly good local minimum.
Main advantages of this technique can be found in its proven capacity to con-
verge to an optimum solution of a problem as well as in the easiness to transform
a local search method in a simulated annealing algorithm usually having much
better results. The main drawback consists in fact that SAs usually converge
slower than other classes of algorithms. For more details see [1], [102],[96], [209]
and [122].

2.3 Evolutionary Algorithms
The aim of evolutionary algorithms (EAs) is to mimic the the basic elements
that are at the base of natural evolution. During the last decade they demon-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 19 � #35 i

i

i

i

i

i

2.3. EVOLUTIONARY ALGORITHMS 19

strated that their general framework is able to tackle and e�ectively solve many
di�erent class of problems. Although the deepest patterns of biological evolu-
tion are not completely understood, experimental evidence demonstrated how
at the base of natural evolution there are the concepts of chromosome, natural
selection and reproduction[131]. The evolution process operates over chromo-
somes rather than over organisms; chromosomes are encoding structures con-
taining all the information essential for development and regulation of a living
being. There exists a strict relation between chromosomes and the e�ciency
of the entity they represent. Natural selection is such a mechanism that allows
those e�cient organisms which are better adapted to the environment to repro-
duce more often than those which are not. The bulk of the evolutionary process
consists in the reproduction stage. Faithful to the aim of Nature imitation, EAs
coded a wide set of reproductive mechanisms. Most common ones are muta-
tion that from a single individual (parent) produces an o�spring with small
di�erences in the chromosome and recombination that combines the chromo-
somes of the parents to generate o�-springs. Based upon the features described
above a large number of di�erent EA have been developed. In a nutshell, an
EA may be described as an iterative stochastic process that operates on a set
of individuals often called population where each individual represents a pos-
sible solution for the considered optimization problem. An encoding/decoding
mechanism transforms a possible solution into a chromosome. Frequently, the
starting population is randomly generated but sometimes construction heuris-
tics are employed to generate some good solutions with the aim of speeding up
the evolutionary process.
The selection phase is performed using a �tness function which measures the
degree of goodness of each individual in the population with respect to the
problem under consideration. EA uses such quantitative information to guide
the search towards promising zone of the search space. The most general struc-
ture of an EA is sketched in �gure 2.2.
It can be noticed that the algorithm roughly is made up by three main phases:
selection, reproduction and replacement.
The aim of the selection stage is to create a population set for reproduction
where the �ttest individuals (those corresponding to the solutions with better
values of the �tness function) have a higher number of instances than the oth-
ers in this way their promising genetic information have a greater probability
to be preserved in future populations.
During the reproduction phase reproductive operators (crossover, mutation,
etc...) are applied to the individuals in this population yielding a new popula-
tion. Finally, during the last stage individuals of the the new created individ-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 20 � #36 i

i

i

i

i

i

20 CHAPTER 2. METAHEURISTICS

procedure Evolutionary Algorithm

Generate initial population P (0)
t = 0
while termination conditions not met do
Evaluate(P (t))
P
′
(t) = Selection(P (t))

P
′′
(t) = Reproduction(P

′
(t))

P (t+ 1) = Replacement(P (t), P ′′(t))
t = t+ 1

end while
return best solution(s) found

Figure 2.2: Basic EA Algorithm

uals replace (partially or totally) those belonging to the previous generation.
Usually the best individuals of the preceding population are maintained to
avoid stochastic lose of promising chromosomes (elitism).
The whole process is repeated until a certain termination criterion is achieved,
usually after a given number of iterations, after a certain amount of time or
when reaching a solution near enough to a lower (upper) bound.
Notice that the EAs which have showed the best performances establishes a
trade-o� between intensi�cation (selection phase) and diversi�cation during
the reproduction and replacement phases mechanisms are often used to keep a
certain degree of genetic di�erence in the working population).
More details are reported in [86] [85] and [29]

2.4 Iterated Local Search

The Iterated Local Search algorithm (ILS) is a stochastic metaheuristic that
holds tree desired characteristics: simplicity, generality and e�ectiveness.
The essence of the ILS metaheuristic can be described in a nutshell: one itera-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 21 � #37 i

i

i

i

i

i

2.4. ITERATED LOCAL SEARCH 21

procedure Iterated Local Search Algorithm

s0= GenerateInitialSolution
s∗ =LocalSearch(s0)
while termination condition is not met
do
s
′ = Perturbation(s∗, history)
s∗
′ = LocalSearch(s′)

s∗ = AcceptanceCriterion(s∗,s∗′ ,history)
end do
return s∗

Figure 2.3: Basic ILS Algorithm

tively builds a sequence of solutions generated by a local search, leading to far
better solutions than using repeated random restart of the same procedure.
This simple idea has a long history, and its rediscovery by many authors has
lead to many di�erent names like iterated descent [21] [22] [188], large-step
Markov chains [126], iterated Lin-Kernighan [95] and chained local optimiza-
tion [125]. Readers interested in the historical developments of these ideas
should consult the review [97], while for a more detailed description of ILS see
[119].
Figure 2.3 is an attempt to describe an ILS through is basic components. The
algorithm starts generating an initial solution.
A Local search is then applied and an improved solution is attained. At this
point the main loop begins. A condition is tested and a set of operations are
repeated while a stopping criterion is not met. As in other metaheuristics
this criterion is generally related to either the time elapsed or to the total
number of iterations. Within this loop the �rst pass is the perturbation of the
actual solution followed by a local search phase. In such a way the ILS tries
to escape from local optima alternating an intensi�cation (local search) and
diversi�cation phases (perturbation procedure).

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 22 � #38 i

i

i

i

i

i

22 CHAPTER 2. METAHEURISTICS

Finally an acceptance criterion decides if the attained candidate solution, could
be select as new actual solution.
In the most general version of such method a historical information may guide
the search process while the local search procedure can be replaced by any
improving procedure.
Despite the simple structure of an ILS methods it result to be very e�ective
in solving hard optimization problems as, for example, TSP [21] [22] [101],
Single Machine Total Weighted Tardiness Problem (SMTWTP) [40], Single
and parallel machine scheduling [27] [28], Flow shop scheduling [187] [215], Job
shop scheduling [118] [121] [106], Graph bipartitioning [124] [125], MAX-SAT
[20] and Prize-collecting Steiner tree problem [30].

2.5 Iterated Greedy

Often for hard optimization problems heuristic methods have been developed
that are able to �nd feasible solutions in short times. Those procedures, how-
ever, rarely return near optimal solutions. This is why metaheuristic frame-
works as Iterated Greedy (IG) have been conceived.
Greedy procedures belong to the class of constructive methods and they gener-
ates, step by step, a complete solution for a considered problem passing through
incomplete solutions.
The main idea is to use a procedure targeted to guide the search process it-
eratively calling a greedy heuristic. Thus if, for a certain problem, a greedy
procedure is known, implementation of a IG algorithm is straightforward.
In few words, IG generates a sequence of solutions by iterating over greedy
heuristics using two main phases: Destruction and Construction.
During the destruction phase some solution components are removed from a
complete incumbent solution. The construction procedure, instead, applies a
greedy constructive heuristic to reconstruct a new complete candidate solution.
By means of these two phases IG implements in an original fashion the Intensi-
�cation (greedy reconstruction) and Diversi�cation (destruction) phases that
allow the search not be trapped in local optima. In fact the destruction phase
if well designed has the ability to select a new promising zone to explore using
the greedy heuristic.
Notice that if destruction turns out to be too strong the IG is equivalent to a
random restart of the greedy heuristic while if it is too weak the algorithm is
no more able to escape from local optima.
Once a candidate solution has been completed, an acceptance criterion decides

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 23 � #39 i

i

i

i

i

i

2.6. TABU SEARCH 23

procedure Iterated Greedy Algorithm

s= GenerateInitialSolution
while termination condition is not met
do
p
′ = Destruction(s)
s
′ = GreedyConstruction(p′)
s = AcceptanceCriterion(s,s′)

end do
return s∗

Figure 2.4: Basic IG Algorithm

whether the newly constructed solution will replace the incumbent solution.
IG iterates over these steps until some stopping criterion is met. In �gure 2.4
is sketched the general structure of a IG.
IG is closely related to Iterated Local Search (ILS): instead of iterating over a
local search as done in ILS [120], IG iterates in an analogous way over greedy
heuristics. IG is a relatively new method but it has already been applied with
success, for example, to the Set Covering Problem (SCP) [93] [123] and to the
Permutation Flow Shop Problem (PFSP) [170] [171].
Notice �nally, that the IG performances may be improved with the use of a
local search procedures applied after the construction phase. In this way the
di�erence between IG and ILS decreases further on.

2.6 Tabu Search

Tabu Search algorithm (TS) is a optimization method, belonging to the class
of local search techniques. The main idea of TS consists in using memory
structures to enhance the performance of a local search procedure and escape
from local optima.
Although the primal idea of TS goes back to the 1970's, it was presented in

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 24 � #40 i

i

i

i

i

i

24 CHAPTER 2. METAHEURISTICS

its actual form by Glover [69] in 1986. Moreover its basic ideas have also been
suggested by Hansen [79] in the same year. A more precise formalization is
reported in [70], [47] [71] and [73].
Even if there not exists a theoretical proof of its convergence to a global opti-
mum, many computational evidences have shown that TS is one of the most
used and promising metaheuristic techniques, able to compete with more re-
cent and famous algorithms in many �elds.
The general step of an iterative procedure consists in constructing from a cur-
rent solution s a next solutions′ and in checking whether one should stop there
or perform another step.
A Neighborhood Search algorithm (NS) is an iterative procedure where, given
an actual solution s, its neighborhood Neigh(s) is explored and if a solution
s
′ better than s (according to some objective function) is found, s′ replaces s
as new actual solution. This process is repeated until some stopping criterion
is met or no better solution can be found in Neigh(s).
To avoid to get stuck in a local optimum and explore larger regions of the
search space, TS enhances an ordinary NS making use of a modi�ed neigh-
borhood structure that takes into account the search history. The solutions
admitted to Neigh∗(s) are determined through the use of simple or elaborate
memory structures. The search then goes on by iteratively moving from a so-
lution s to a di�erent solution s′ in Neigh∗(s).
Although several types of short and long term memory structures have been
proposed and developed, perhaps the �rst and most important type of short-
term memory, is the so-called tabu list. In its simplest form, a tabu list contains
the solutions that have been visited in the recent past (less than n moves be-
fore, where n is the size of the tabu list). Solutions in the tabu list are excluded
from Neigh∗(s).
Another way to implement the tabu list structure consists of storing only the in-
formation about certain attributes of visited solutions or prevent certain moves.
Selected attributes in solutions recently visited are called tabu-active. Solutions
that contain tabu-active elements are considered tabu. This type of short-term
memory is often called recency-based memory. Tabu lists containing attributes
demonstrated to be much more e�ective, although they su�er of a new draw-
back. When an attribute is forbidden, usually more than one solution turns
out to be tabu, but in this way one prevents promising not yet visited path
during the search.
To overcome this problem, aspiration criteria are introduced which allow over-
riding the tabu state of some solutions and include them in the allowed set
Neigh∗(s).

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 25 � #41 i

i

i

i

i

i

2.7. VARIABLE NEIGHBORHOOD DESCENT 25

A commonly used aspiration criterion consists in admitting in Neigh∗(s). so-
lutions which are better than the currently best known solution. Figure 2.5
presents a simple TS described by means of pseudocode.

procedure Tabu Search Algorithm

k := 1
s := Generate_Initial_Solution()
sbest := s
while the termination criteria not met
Identify Neigh(s). (Neighborhood set)
Identify Tabu(s, k). (Tabu set)
Identify A(s, k). (Aspirant set)
Choose best s′ from N(s, k) = N(s)− T (s, k) +A(s, k)
s := s

′

if f(s
′
) < f(sbest) then

sbest := sbest

end if
k := k + 1

end while

Figure 2.5: Basic TS Algorithm

2.7 Variable Neighborhood Descent
Variable Neighborhood Descent method is a relatively recent and simple meta-
heuristic framework (see [80] [81] which makes use of a set of di�erent neigh-
borhood to enhance the solution quality of a local search algorithm.
VND starts as a simple local search, but when a local optimum is identi�ed a
di�erent neighborhood is selected allowing the algorithm to escape from such
a point.
The basic idea is that a local optimum strictly depends on its neighborhood

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 26 � #42 i

i

i

i

i

i

26 CHAPTER 2. METAHEURISTICS

and by changing it the search may be resumed.
If a better point is found the �rst neighborhood is restored and the search goes
on, otherwise a di�erent neighborhood is considered. The search stops when a
solution that is the optimum for each neighborhood is found.
Steps of the basic VND are presented in Fig. 2.6. Let us denote with Neighk

with (k = 1; ...; kmax), a �nite set of pre-selected neighborhood structures, and
with Neighk(s) the set of solutions in the kth neighborhood of s. The algo-
rithm starts selecting the �rst neighborhood (i.e. k = 1) as long as new better
solutions are found such neighborhood is maintained otherwise the subsequent
is considered.
Notice that every time a new better solutions is encountered the �rst (and less
time consuming) neighborhood is chosen again. Generally in fact the neigh-
borhood structures are ordered in ascending order of their size. In such a way
during the VND method uses more times small and fast neighborhood and only
in few case the larger ones. This results in a fast and e�ective algorithm.

procedure Variable Neighborhood Descent

s = Generate_Initial_Solution()
k = 1
do
s∗ = Neighk(s)
if s∗ is better than s
s = s∗

k = 1
else
k = k + 1

until no improvement is obtained

Figure 2.6: Basic VND Algorithm

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 27 � #43 i

i

i

i

i

i

2.8. ROLLOUT / PILOT METHOD 27

2.8 Rollout / Pilot Method

Combinatorial optimization problems are challenging in terms of �nding opti-
mal or near-optimal solutions. Often these problems turn out to be NP-Hard.
Thus the �rst (often the only) way to tackle them is developing quick heuris-
tic procedures to construct approximate solutions in polynomial time making
use of greedy rules. Such rules may have a myopic behavior making far from
optimal choices. Generally such heuristics return feasible but not near-optimal
solutions.
To enhance the solution quality of an existing heuristic, the so-called pilot
method can be used; pilot method is a metaheuristic method that requires just
little extra implementation e�ort and incorporates the existing heuristic as a
building block.
The basic idea is a look-ahead strategy that exploits multiple iterations of the
existing heuristic �xing, step by step, some elements of the �nal solution.
A similar type of look-ahead strategies has already been studied in the �eld of
arti�cial intelligence. The idea is to examine all possible choices with respect
to their probability to yield a future advantage cutting unpromising decisions,
and choosing decisions that are most promising.
The pilot method was �rst conceived in the early 1990s [56]. Later, similar
ideas were developed under di�erent names. The most famous one is the roll-
out method by Bertsekas et al. in 1997 [25]. Applications are given in [25], and
[129]. The latter paper proves that the rollout/pilot method could perform
very well also in the di�cult area of scheduling problems.
Consider a combinatorial optimization problem de�ned on a �nite set of ele-
ments ElemSet and a cost function c : ElemSet −→ R . The problem is to �nd a
minimum cost feasible solution S∗ ⊂ ElemSet. Let be known a heuristic Heur
producing a solution which often is far from being optimal. Iteratively using
Heur as a pilot heuristic, the algorithm builds up a partial solutionMasterSol,
the master solution.
In order to escape from the greedy trap, the pilot method implements the fol-
lowing look-ahead strategy: Separately for each element e /∈ MasterSol, the
heuristic extends a copy ofMasterSol yielding complete solution in such a way
that e is included.
Let c(S(e)) denote the value of the objective function of the complete solu-
tion obtained by Heur for e ∈ ElemSet\MasterSol, and let e0 be the most
promising element according to the heuristic, that is, c(S(e0)) ≤ c(S(e)) for
all e /∈ MasterSol. Element e0 is included in the master solution MasterSol.
Step by step a complete master solution is built up.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 28 � #44 i

i

i

i

i

i

28 CHAPTER 2. METAHEURISTICS

Di�erent stopping criteria have been proposed, for example, the iterative pro-
cess may stop when no improvements are found in the last iteration. The
described algorithm is sketched in �gure 2.7
The pilot method may be seen as a metaheuristic that proposes a system for
heuristic repetition thus enhancing the quality of the solution returned by a sin-
gle launch of such heuristic. Experiments demonstrated that the pilot method
behaves competitively in comparison with other famous metaheuristics.

procedure Pilot Method

k := |ElemSet|
do

for i = 1 : k
PilotSoli = MasterSol ∪ ElemSet[i] . . .

. . . ∪Heur(ElemSet\ElemSet[i])
end for

(SelectedSol, ElemSet[i]) = Best(PilotSoli)
MasterSol = MasterSol ∪ ElemSet[i]
ElemenSet = Elem\ElemSet[i]

while |ElemSet| = 0 or a termination condition is met

if |ElemSet| > 0 then return SelectedSol
else return MasterSolution

Figure 2.7: Basic Rollout/Pilot Algorithm

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 29 � #45 i

i

i

i

i

i

Chapter 3

Literature

3.1 Introduction
In this thesis we face four case studies belonging to the �owshop and parallel
machines scheduling classes of problems. This chapter contains a complete and
updated review of the literature for multi-objective �owshop problems which
are among the most studied environments in the scheduling research area. No
previous comprehensive reviews exist in the literature. Papers about lexico-
graphical, goal programming, objective weighting and Pareto approaches have
been reviewed. Exact, heuristic and metaheuristic methods have been sur-
veyed. A comprehensive survey of multi-objective parallel machines literature
is also presented.

3.2 Flowshop scheduling problems

Single and Multi-objective optimization
Single optimization criteria for the PFSP are mainly based on the completion
times for the jobs at the di�erent machines which are denoted by Cij , i ∈
M, j ∈ N . Given a permutation π of n jobs, where π(j) denotes the job in
the j-th position of the sequence, the completion times are calculated with the
following expression:

Ci,π(j) = max
{
Ci−1,π(j) , Ci,π(j−1)

}
+ piπ(j) (3.1)

29

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 30 � #46 i

i

i

i

i

i

30 CHAPTER 3. LITERATURE

where C0,π(j) = 0 and Ci,π(0) = 0, ∀i ∈ M, ∀j ∈ N . Additionally, the comple-
tion time of job j equals to Cmj and is commonly denoted as Cj in short.
By far, the most thoroughly studied single criterion is the minimization of the
maximum completion time or makespan, denoted as Cmax = Cm,π(n) . Under
this objective, the PFSP is referred to as F/prmu/Cmax according to [75] and
was shown by [66] to be NP-Hard in the strong sense for more than two ma-
chines (m > 2). Recent reviews and comparative evaluations of heuristics and
metaheuristics for this problem are given in [61, 168] and in [84]. The second
most studied objective is the total completion time or TCT =

∑n
j=1 Cj . The

PFSP with this objective (F/prmu/
∑
Cj) is already NP-Hard for m ≥ 2 ac-

cording to [74]. Some recent results for this problem can be found in [58] or
[163]. If there are no release times for the jobs, i.e., rj = 0, ∀j ∈ N , then the
total or average completion time equals the total or average �owtime, denoted
as F in the literature.
Probably, the third most studied criterion is the total tardiness minimization.
Given a due date dj for job j, we denote by Tj the measure of tardiness of job
j, which is de�ned as Tj = max{Cj−dj , 0}. As with the other objectives, total
tardiness minimization results in a NP-Hard problem in the strong sense for
m ≥ 2 as shown in [55]. A recent review for the total tardiness version of the
PFSP (the F/prmu/

∑
Tj problem) can be found in [208]. In multi-objective

optimization, two goals are usually aimed at. An approximation of the Pareto
global optimum set is deemed good if it is close to this set. Additionally, a
good spread of solutions is also desirable, i.e., an approximation set is good if
the whole Pareto global optimum front is su�ciently covered.
One important question is concerned about the complexity of multi-objective
�owshop scheduling problems. As mentioned above, the PFSP is already NP-
Hard under any of three commented single objectives (makespan, total comple-
tion time or total tardiness). Therefore, in a multi-objective PFSP, no matter
if the approach is �a priori� or �a posteriori�, the resulting problem is also
NP-Hard if it contains one or more NP-Hard objectives.

Literature review on multi-objective optimization
The literature on multi-objective optimization is plenty. However, the multi-
objective PFSP �eld is relatively scarce, specially when compared against the
number of papers published for this problem that consider one single objective.
The few proposed multi-objective methods for the PFSP are mainly based on
evolutionary optimization and some in local search methods like simulated an-
nealing or tabu search.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 31 � #47 i

i

i

i

i

i

3.2. FLOWSHOP SCHEDULING PROBLEMS 31

It could be argued that many reviews have been published about multi-objective
scheduling. However we �nd that little attention has been paid to the �ow-
shop scheduling problem. For example, the review by Nagar el al. (1995)
[137] is mostly centered around single machine problems. As a matter of fact
there are only four survey papers related with �owshop. In another review by
T'Kindt and Billaut (2001) [196] we �nd about 15 �owshop papers reviewed
where most of them are about the speci�c two machine case. Another review
is given by Jones et al. (2002) [99]. However, this is more a quanti�cation
of papers in multi-objective optimization. Finally, the more recent review of
Hoogeveen (2005) [88] contains mainly results for one machine and parallel ma-
chines scheduling problems. The papers reviewed about �owshop scheduling
are all restricted to the two machine case. For all these reasons, in this paper
we provide a complete and comprehensive review about multi-objective �ow-
shop. However, note that we restrict ourselves to the pure �owshop setting,
i.e., with no additional constraints. In the following, we will use the notation
of T'Kindt and Billaut (2002) [197] to specify the technique and objectives
studied by each reviewed paper. For example, a weighted makespan and total
tardiness bi-criteria �owshop problem is denoted as F//Fl(Cmax, T). For more
details, the reader is referred to [196] or [197].

Lexicographical and ε-constraint approaches
Lexicographical approaches have been also been explored in the literature.
Daniels and Chambers (1990) [46] proposed a constructive heuristic for the
m machine �owshop where makespan is minimized subject to a maximum tar-
diness threshold, a problem denoted by F/prmu/ε(Cmax/Tmax). This heuristic
along with the one of Chakravarthy and Rajendran (1999) [33] are compared
with a method recently proposed by Framinan and Leisten (2006) [62]. In this
later paper, the newly proposed heuristic is shown to outperform the methods
of [46] and [33] both on quality and on the number of feasible solutions found.
A di�erent set of objectives is considered in [158] were the authors minimize
total �owtime subject to optimum makespan value in a two machine �owshop.
Such an approach is valid for the PFSP problem since the optimum makespan
can be obtained by applying the well known algorithm of Johnson. Rajendran
proposes a branch and bound (B&B) method together with some heuristics
for the problem. However, the proposed methods are shown to solve 24 jobs
maximum.
In [140] two genetic algorithms were proposed for solving the two machine
bi-criteria �owshop problem also in a lexicographical way as in [158]. The

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 32 � #48 i

i

i

i

i

i

32 CHAPTER 3. LITERATURE

�rst algorithm is based in the VEGA (Vector Evaluated Genetic Algorithm)
of Scha�er (1985) [175]. In this algorithm, two subpopulations are maintained
(one for each objective) and are combined by the selection operator for ob-
taining new solutions. In the second GA, referred to as the weighted criteria
approach, a linear combination of the two criteria is considered. This weighted
sum of objectives is used as the �tness value. The same problem is studied
by Gupta et al. (1999) [78] where a tabu search is employed. This algorithm
is �nely-tuned by means of statistical experiments and shown to outperform
some of the earlier existing methods. Gupta et al. (2002) [76] present some
local search procedures and three metaheuristics for a two machine �owshop.
The methods developed are simulated annealing, threshold accepting and tabu
search. The criteria to optimize are composed of several lexicographic pairs
involving makespan, weighted �owtime and weighted tardiness. The proposed
methods are compared against the GA of Nepalli et al. (1996) [140] and the
results discussed.
Gupta et al. (2001) [77] proposed nine heuristics for the two machine case
minimizing �owtime subject to optimum makespan, i.e., Lex(Cmax, F). The
authors identify some polynomially solvable cases and carry out a comprehen-
sive analysis of the proposed heuristics. Insertion based methods are shown
to give the best results. The same problem is approached by T'Kindt et al.
(2002) [202] where the authors propose an ant colony optimization (ACO) al-
gorithm. The method is compared against a heuristic from [201] and against
other single objective methods form the literature. Although in some cases
is slower, the proposed ACO method is shown to give higher quality results.
T'Kindt et al. (2003) [201] work with the same problem. The authors propose
a B&B method capable of solving instances of up to 35 jobs in a reasonable
time. Some heuristics are also provided.

Weighted objectives
As mentioned, most studies make use of the �a priori� approach. This means
that objectives are weighted (mostly linearly) into a single combined criterion.
After this conversion, most single objective algorithms can be applied.
Nagar et al. (1995) [136] proposed a B&B procedure for solving a two machine
�owshop problem with a weighted combination of �owtime and makespan as
objective. The algorithm initializes the branch and bound tree with an initial
feasible solution and an upper bound, both obtained from a greedy heuristic.
This algorithm was able to �nd the optimal solutions of problems with two
machines and up to 500 jobs but only under some strong assumptions and

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 33 � #49 i

i

i

i

i

i

3.2. FLOWSHOP SCHEDULING PROBLEMS 33

data distributions. The same authors use this branch and bound in [138] as
a tool for providing the initial population in a genetic algorithm. The hybrid
B&B+GA approach is tested for the same two-job bi-criteria �owshop and it
is shown to outperform the pure B&B and GA algorithms. Another genetic
algorithm is presented in [184] for makespan and �owtime, including also idle
time as a third criterion. The algorithm uses e�ective heuristics for initializa-
tion. Cavalieri and Gaiardelli (1998) [31] study a realistic production problem
that they model as a �owshop problem with makespan and tardiness criteria.
Two genetic algorithms are proposed where many of their parameters are adap-
tive. Yeh (1999) [216] proposes another B&B method that compares favorably
against that of Nagar et al. (1995) [136]. For un-structured problems, Yeh's
B&B is able to solve up to 14-job instances in less time than the B&B of [136].
The same author improved this B&B in [217] and �nally proposed a hybrid
GA in [218] showing the best results among all previous work. Note that all
these papers of Yeh deal with the speci�c two machine case only. Lee and
Chou (1998) [108] proposed heuristic methods and a mixed integer program-
ming model for the m machine problem combining makespan and �owtime
objectives. Their study shows that the integer programming approach is only
valid for very small instances. A very similar work and results was given in a
paper by the same authors (see [38]).
Sivrikaya-�erifo�glu and Ulusoy (1998) [181] presented three B&B algorithms
and two heuristics for the two machine �owshop with makespan and �owtime
objectives. All these methods are compared among them in a series of experi-
ments. The largest instances solved by the methods contain 18 jobs. A linear
combination of makespan and tardiness is studied in [33] but in this case a
Simulated Annealing (SA) algorithm is proposed. Chang et al. (2002) [34]
study the gradual-priority weighting approach in place of the variable weight
approach for genetic and genetic local search methods. These two methods
are related to those of Murata et al. (1996) [135] and Ishibuchi and Mu-
rata (1998)[90], respectively. In numerical experiments, the gradual-priority
weighting approach is shown superior. Framinan et al. (2002) [63] proposed
several heuristics along with a comprehensive computational evaluation for the
m machine makespan and �owtime �owshop problem. Allahverdi (2003) [8]
also studies the same objectives. A total of 10 heuristics are comprehensively
studied in a computational experiment. Among the studied methods, three
proposed heuristics from the author outperform the others. Several dominance
relations for special cases are proposed as well.
A di�erent set of objectives, namely makespan and maximum tardiness, are
studied by Allahverdi (2004) [9]. Two variations are tested, in the �rst one, a

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 34 � #50 i

i

i

i

i

i

34 CHAPTER 3. LITERATURE

weighted combination of the two objectives subject to a maximum tardiness
value is studied. In the second, the weighted combination of criteria is exam-
ined. The author proposes a heuristic and compares it against the results of [46]
and [33]. The proposed method is shown to outperform these two according
to the results. Ponnambalam et al. (2004) [154] proposed a genetic algorithm
that uses some ideas from the Traveling Salesman Problem (TSP). The imple-
mented GA is a straightforward one that just uses a weighted combination of
criteria as the �tness of each individual in the population. The algorithm is not
compared against any other method from the literature and just some results
on small �owshop instances are reported. Lin and Wu (2006) [115] focus on the
two machine case with a weighted combination of makespan and �owtime. The
authors present a B&B method that is tested against a set of small instances.
The proposed method is able to �nd optimum solutions to instances of up to
15 jobs in all cases. Lemesre et al. (2007) [111] have studied the m machine
problem with makespan and total tardiness criteria. A special methodology
based on a B&B implementation, called two-phase method is employed. Due
to performance reasons, the method is parallelized. As a result, some instances
of up to 20 jobs and 20 machines are solved to optimality. However, the re-
ported solving times for these cases are of seven days in a cluster of four parallel
computers.

Pareto approaches
When focusing on the �a posteriori� approach the number of existing studies
drops signi�cantly. In the previously commented work of Daniels and Cham-
bers (1990) [46], the authors also propose a B&B procedure for the Cmax and
Tmax objectives that computes the Pareto global front for the case of two ma-
chines. A genetic algorithm was proposed by Murata et al. (1996) [135] which
was capable of obtaining a Pareto front for makespan and total tardiness. This
algorithm, referred to as MOGA, applies elitism by copying a certain number
of individuals in the non-dominated set to the next generation. The non-
dominated solutions are kept externally in an archive. The algorithm selection
is based on a �tness value given to each solution on the basis of a weighted
sum of the objective's values. The weights for each objective are randomly as-
signed at each iteration of the algorithm. The authors also test their proposed
GA with three objectives including �owtime. Later, in [90] the algorithm is
extended by using a local search step that is applied to every new solution,
after the crossover and mutation procedures.
Sayin and Karabat (1999) [174] studied a B&B algorithm that generates the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 35 � #51 i

i

i

i

i

i

3.2. FLOWSHOP SCHEDULING PROBLEMS 35

optimum Pareto front for a two machine �owshop with makespan and �owtime
objectives. The experimental evaluation compares only against heuristics like
those of Johnson (1954) [98] and Rajendran (1992) [158]. Some instances of
up to 24 jobs are solved to optimality. Liao et al. (1997) [114] proposed a
B&B algorithm for the two machine bi-criteria optimization problem, with the
objectives of minimizing makespan and number of tardy jobs and also with the
objectives of makespan and total tardiness. The lower bound values are ob-
tained by means of the Johnson algorithm for makespan, and the Moore's EDD
(Early Due Date) algorithm for the number of tardy jobs. For each node of the
partial schedules, two lower bounds are calculated using the above heuristics.
The accepted non-dominated schedules are kept in an external set. At the
end of the algorithm, this set contains optimal Pareto front for the problem.
Lee and Wu (2001) [109] also study the two machine case with B&B methods
but with a combination of �owtime and total tardiness criteria. The authors
do not compare their proposed approach with the literature and just report
the results of their algorithm. A new type of genetic algorithm is shown by
Bagchi (2001) [16]. This method is based on the NSGA method by Srinivas
and Deb (1994) [185]. Some brief experiments are given for a single �owshop
instance with �owtime and makespan objectives. Murata et al. (2001) [134]
improve the earlier MOGA algorithm of Murata et al. (1996) [135]. This new
method, called CMOGA, re�nes the weight assignment. A few experiments
with makespan and total tardiness criteria are conducted. The new CMOGA
outperforms MOGA in the experiments carried out.
Ishibuchi et al. (2003) [91] present a comprehensive study about the e�ect of
adding local search to their previous algorithm [90]. The local search is only
applied to good individuals and by specifying search directions. This form
of local search was shown to give better solutions for many di�erent multi-
objective genetic algorithms. In [116] many di�erent scheduling problems are
solved with di�erent combinations of objectives. The main technique used is a
multi-objective tabu search (MOTS). The paper contains a general study in-
volving single and parallel machine problems as well. Later, in [117], a similar
study is carried out, but in this case the multi-objective approach employed is
the simulated annealing algorithm (MOSA).
A B&B approach is also shown by Tokta³ et al. (2004) [203] for the two ma-
chine case under makespan and maximum earliness criteria. To the best of our
knowledge, such combination of objectives has not been studied in the liter-
ature before. The procedure is able to solve problems of up to 25 jobs. The
authors also propose a heuristic method. Suresh and Mohanasundaram (2004)
[190] proposed a Pareto-based simulated annealing algorithm for makespan

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 36 � #52 i

i

i

i

i

i

36 CHAPTER 3. LITERATURE

and total �owtime criteria. The proposed method is compared against that of
Ishibuchi et al. (2003) [91] and against an early version of the SA proposed later
by Varadharajan and Rajendran (2005)[210]. The results, shown only for small
problems of up to 20 jobs, show the proposed algorithm to be better on some
speci�c performance metrics. J. Arroyo and Armentano (2004) [13] studied
heuristics for several two and three objective combinations among makespan,
�owtime and maximum tardiness. For two machines, the authors compare the
heuristics proposed against the existing B&B methods of [46] and [114]. For
the general m machine case, the authors compare the results against those of
[63]. The results favor the proposed method that is also shown to improve the
results of the GA of [135] if used as a seed sequence. The same authors devel-
oped a tabu search for the makespan and maximum tardiness objectives in [12].
The algorithm includes several advanced features like diversi�cation and local
search in several neighborhoods. For the two machine case, again the proposed
method is compared against that of Daniels and Chambers (1990) [46] and for
more than two machines against that of Ishibuchi and Murata (1998) [90]. The
proposed method is shown to be competitive in numerical experiments. In a
more recent paper Arroyo and Armentano (2005) [14] carry out a similar study
but in this case using genetic algorithms as solution tools. Although shown
to be better than other approaches, the authors do not compare this GA with
their previous methods.
Makespan and total �owtime are studied by Varadharajan and Rajendran
(2005) [210] with the help of simulated annealing methods. These algorithms
start from heuristic solutions that are further enhanced by improvement schemes.
Two versions of these SA (MOSA and MOSA-II) are shown to outperform the
GA of [90]. Pasupathy et al. (2006) [148] have proposed a Pareto-archived
genetic algorithm with local search and have tested it with the makespan and
�owtime objectives. The authors test this approach against [90] and [34]. Ap-
parently, the newly proposed GA performs better under some limited tests.
Melab et al. (2006) [128] propose a grid-based parallel genetic algorithm aimed
at obtaining an accurate Pareto front for makespan and total tardiness crite-
ria. While the authors do not test their approach against other existing al-
gorithms, the results appear promising. However, the running days are of 10
days in a set of computers operating as a grid. More recently, Rahimi-Vahed
and Mirghorbani (2007) [157] have proposed a complex hybrid multi-objective
particle swarm optimization (MOPS) method. The considered criteria are �ow-
time and total tardiness. In this method, a elite tabu search algorithm is used
as an initialization of the swarm. A parallel local search procedure is employed
as well to enhance the solution represented by each particle. This complex al-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 37 � #53 i

i

i

i

i

i

3.2. FLOWSHOP SCHEDULING PROBLEMS 37

gorithm is compared against the SPEAII multi-objective genetic algorithm of
[223]. MOPS yields better results than SPEAII according to the reported com-
putational experimentation albeit at a higher CPU time requirements. Finally,
Geiger (2007) [67] has published an interesting study where the topology of the
multi-objective �owshop problem search space is examined. Using several local
search algorithms, the author analyzes the distribution of several objectives
and tests several combinations of criteria.

Goal Programming and other approaches
There are some cases of other multi-objective methodologies like goal program-
ming. For example, Selen and Hott (1986) [177] proposed a mixed-integer goal
programming formulation for a bi-objective PFSP dealing with makespan and
�owtime criteria. As with every goal programming method, a minimum de-
sired value for each objective has to be introduced. Later, Wilson (1989) [213]
proposed a di�erent model with fewer variables but a larger number of con-
straints. However, both models have the same number of binary variables. The
comparison between both models results in the one of [177] being better for
problems with n ≥ 15.
Many algorithms in the literature have been proposed that do not explicitly
consider many objectives as in previous sections. For example, Ho and Chang
(1991) [87] propose a heuristic that is speci�cally devised for minimizing ma-
chine idle time in a m machine �owshop. Although the heuristic does not allow
for setting weights or threshold values and does not work with the Pareto ap-
proach either, the authors test it against a number of objectives. A similar
approach is followed by Gangadharan and Rajendran (1994) [64] where a sim-
ulated annealing is proposed for the m machine problem and evaluated under
makespan and �owtime criteria. Along with the SA method, two heuristics are
also studied. Rajendran (1995) [160] proposes a heuristic for the same problem
dealt with in [87]. After a comprehensive numerical experimentation, the new
proposed heuristic is shown to be superior to that of Ho and Chang's. A very
similar study is also presented by the same author in [159]. Ravindran et al.
(2005) [164] present three heuristics aimed at minimizing makespan and �ow-
time. The authors test the three proposed method against the heuristic of [160]
but using only very small instances of 20 jobs and 20 machines maximum. The
three heuristics appear to outperform Rajendran's albeit slightly. It is di�cult
to draw a line in these type of papers since many authors test a given proposed
heuristic under di�erent objectives. However, the heuristics commented above
were designed with several objectives in mind and therefore we have included

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 38 � #54 i

i

i

i

i

i

38 CHAPTER 3. LITERATURE

them in the review.
To sum up, Table 3.1 contains, in chronological order, the reviewed papers
along with the number of machines (2 or m), the multi-objective approach
along with the criteria as well as the type of method used. In total, 54 papers
have been reviewed. Among them, 21 deal with the speci�c two machine case.
From the remaining 33 that study the more general m machines, a total of 16
use the �a posteriori� or Pareto based approach. The results of these methods
are not comparable for several reasons. First, the authors do not always deal
with the same combination of criteria. Second, comparisons are many times
carried out with di�erent benchmarks and against heuristics or older methods.
Last and most importantly, the quality measures employed are not appropriate
as recent studies have shown.

Literature related to SDST �owshop
According to our knowledge there is no one article dealing with the multi-
objective version of the permutation �owshop problem with sequence depen-
dent setup times, hence in the following subsections we present two separated
short reviews related to problems belonging to the class of single objective
SDST �owshop. Compared to the regular �owshop, on which hundreds of pa-
per have been published, the literature on the SDST counterpart is scarce. In a
recent article, Ruiz and Maroto [168] carried out an extensive literature survey
about this problem and here we summarize the outstanding aspects. Exact
techniques for the SDST �owshop have shown rather limited results. Some
heuristics and applications of stochastic local search algorithms to the SDST-
FSP-Cmax have also been proposed. Ríos-Mercado and Bard (1998) [165] pro-
posed a modi�cation of the well known NEH heuristic for the regular �owshop
from [139] that considered setup times and they called NEH-RMB; in the same
article they proposed a GRASP algorithm. In a later work, the same authors
proposed a modi�cation of the heuristics of Simons (1992) [180] resulting in
a new heuristic called HYBRID [167]. Recently, Ruiz et al. [169] proposed
a genetic and a memetic algorithm for the SDST-FSP-Cmax. They carried
out an extensive experimental study and compared these methods that were
proposed for the FSP-Cmax. The result was that both algorithms especially
the memetic algorithm, are clearly superior to all other alternatives. On the
SDST-PSP-WT , little has been published. In two similar articles [146], [147],
a Simulated Annealing heuristic was proposed for the SDST �owshop problem
with the objectives of minimizing the maximum weighted tardiness and the
total weighted tardiness. In a more recent work, Rajendran and Ziegler (2003)

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 39 � #55 i

i

i

i

i

i

3.2. FLOWSHOP SCHEDULING PROBLEMS 39

[162] introduced a new heuristic joined with a local search improvement scheme
for a combined objective of total weighted �ow-time and tardiness. Another
similar work is [161] were only weighted �ow-time is considered. Allahverdi et
al. [11] have put together a much more updated and comprehensive review of
scheduling research with setup times in which no other relevant papers related
to the SDST �owshop can be found.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 40 � #56 i

i

i

i

i

i

40 CHAPTER 3. LITERATURE
Ye

ar
A
ut
ho

r/
s

m
A
pp

ro
ac
h
an

d
Co

m
m
en
ts

ob
je
ct
iv
es

19
86

Se
len

an
d
H
ot
t

m
G
P

(C
m

a
x
,F

)
M
ix
ed

-in
te
ge
rg

oa
lp

ro
gr
am

m
in
g

fo
rm

ul
at
io
n

19
89

W
ils
on

m
G
P

(C
m

a
x
,F

)
M
ix
ed

-in
te
ge
rg

oa
lp

ro
gr
am

m
in
g

fo
rm

ul
at
io
n

19
90

D
an

iel
sa

nd
Ch

am
be

rs
m

ε(
C

m
a
x
/T

m
a
x
)

H
eu

ris
tic

s
D
an

iel
sa

nd
Ch

am
be

rs
2

#
(C

m
a
x
,T

m
a
x
)

B&
B

19
91

H
o
an

d
Ch

an
g

m
(C

m
a
x
,F

)
H
eu

ris
tic

s
19

92
Ra

je
nd

ra
n

2
L
ex

(C
m

a
x
,F

)
B&

B,
he

ur
ist

ics
19

94
G
an

ga
dh

ar
an

an
d
Ra

je
nd

ra
n

m
(C

m
a
x
,F

)
Si
m
ul
at
ed

an
ne

al
in
g.

H
eu

ris
tic

s
Ra

je
nd

ra
n

m
(C

m
a
x
,F

)
H
eu

ris
tic

s
19

95
N
ag

ar
et

al
2

F
l(
C

m
a
x
,F

)
B&

B
Ra

je
nd

ra
n

m
(C

m
a
x
,F

)
H
eu

ris
tic

s
19

96
M
ur
at
a
et

al
.

m
#

(C
m

a
x
,T

)
,

#
(C

m
a
x
,T
,F

)
G
en

et
ic

al
go

rit
hm

s
N
ag

ar
et

al
.

2
F

l(
C

m
a
x
,F

)
G
en

et
ic

al
go

rit
hm

s
N
ep

al
li
et

al
.

2
L
ex

(C
m

a
x
,F

)
G
en

et
ic

al
go

rit
hm

s
#

(C
m

a
x
,T
,F

)
G
en

et
ic

al
go

rit
hm

s
Sr
id
ha

ra
nd

Ra
je
nd

ra
n

m
F

l(
C

m
a
x
,F

)
G
en

et
ic

al
go

rit
hm

s
19

97
Li
ao

et
al
.

2
#

(C
m

a
x
,N

T
),

#
(C

m
a
x
,T

)
B&

B
19

98
Ca

va
lie

ri
an

d
G
ai
ar
de

lli
m

F
l(
C

m
a
x
,T

)
G
en

et
ic

al
go

rit
hm

s
Is
hi
bu

ch
ia

nd
M
ur
at
a

m
#

(C
m

a
x
,T

)
,

#
(C

m
a
x
,T
,F

)
G
en

et
ic

al
go

rit
hm

s
Le

e
an

d
Ch

ou
2

F
l(
C

m
a
x
,F

)
B&

B
Si
vr
ik
ay
a-
�e

rif
o§

lu
an

d
U
lu
so
y

2
F

l(
C

m
a
x
,F

)
B&

B,
he

ur
ist

ics
19

99
Ch

ak
ra
va
rt
hy

an
d
Ra

je
nd

ra
n

m
F

l(
C

m
a
x
,F

)
H
eu

ris
tic

s,
in
te
ge
rp

ro
gr
am

m
in
g

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 41 � #57 i

i

i

i

i

i

3.2. FLOWSHOP SCHEDULING PROBLEMS 41

Ye
ar

A
ut
ho

r/
s

m
A
pp

ro
ac
h
an

d
Co

m
m
en
ts

ob
je
ct
iv
es

Ch
ou

an
d
Le

e
2

F
l(
C

m
a
x
,F

)
B&

B
G
up

ta
et

al
.

2
L
ex

(C
m

a
x
,F

)
Ta

bu
se
ar
ch

Sa
y�
n
an

d
K
ar
ab

at
�

2
#

(C
m

a
x
,F

)
B&

B
Ye

h
2

F
l(
C

m
a
x
,F

)
B&

B
20

00
Lo

uk
il
et

al
.

m
#

(m
a
n
y
)

Ta
bu

se
ar
ch
.

M
an

y
ob

je
ct
iv
es

st
ud

ied
20

01
Ba

gc
hi

m
#

(C
m

a
x
,F

)
G
en

et
ic

al
go

rit
hm

s
G
up

ta
et

al
.

2
L
ex

(C
m

a
x
,F

)
H
eu

ris
tic

s
Le

e
an

d
W
u

2
#

(F
,T

)
B&

B
M
ur
at
a
et

al
.

m
#

(C
m

a
x
,T

)
G
en

et
ic

al
go

rit
hm

s
Ye

h
2

F
l(
C

m
a
x
,F

)
B&

B
20

02
Ch

an
g
et

al
.

m
F

l(
C

m
a
x
,T

),
F

l(
C

m
a
x
,T
,F

)
G
en

et
ic

al
go

rit
hm

s
Fr
am

in
an

et
al
.

m
F

l(
C

m
a
x
,F

)
H
eu

ris
tic

s
G
up

ta
et

al
.

2
L
ex

(F
,C

m
a
x
),

L
ex

(T
,C

m
a
x
),

Va
rio

us
m
et
ho

ds
.

W
eig

ht
ed

fu
nc

tio
ns

T?
ki
nd

te
ta

l.
2

L
ex

(C
m

a
x
,F

)
A
nt

co
lo
ny

op
tim

iza
tio

n
Ye

h
2

F
l(
C

m
a
x
,F

)
H
yb

rid
ge
ne

tic
al
go

rit
hm

20
03

A
lla

hv
er
di

m
F

l(
C

m
a
x
,F

)
H
eu

ris
tic

s
Is
hi
bu

ch
ie

ta
l.

m
#

(C
m

a
x
,T

)
,

#
(C

m
a
x
,T
,F

)
G
en

et
ic

al
go

rit
hm

s
an

d
lo
ca
l

se
ar
ch

T?
ki
nd

te
ta

l.
2

L
ex

(C
m

a
x
,F

)
B&

B,
he

ur
ist

ics
20

04
A
lla

hv
er
di

m
ε(
F

l(
C

m
a
x
,T

m
a
x
),
T

m
a
x
)

F
l(
C

m
a
x
,T

m
a
x
)

H
eu

ris
tic

s

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 42 � #58 i

i

i

i

i

i

42 CHAPTER 3. LITERATURE
Ye

ar
A
ut
ho

r/
s

m
A
pp

ro
ac
h
an

d
Co

m
m
en
ts

ob
je
ct
iv
es

A
rm

en
ta
no

an
d
A
rr
oy
o

m
#

(C
m

a
x
,T

m
a
x
)

Ta
bu

se
ar
ch

A
rr
oy
o
an

d
A
rm

en
ta
no

m
#

(C
m

a
x
,T

m
a
x
,F

)
H
eu

ris
tic

s,
co
m
bi
na

tio
ns

of
th
e

th
re
e
ob

je
ct
iv
es

Po
nn

am
ba

la
m

et
al
.

m
F

l(
C

m
a
x
,F

)
G
en

et
ic

al
go

rit
hm

s
Su

re
sh

an
d
M
oh

an
as
un

da
ra
m

m
#

(C
m

a
x
,F

)
Si
m
ul
at
ed

A
nn

ea
lin

g
To

kt
a³

et
al
.

2
#

(C
m

a
x
,E

m
a
x
)

B&
B,

he
ur
ist

ics
20

05
A
rr
oy
o
an

d
A
rm

en
ta
no

m
#

(C
m

a
x
,T

m
a
x
),

#
(C

m
a
x
,T

)
G
en

et
ic

al
go

rit
hm

s
Lo

uk
il
et

al
.

m
#

(m
a
n
y
)

Si
m
ul
at
ed

an
ne

al
in
g.

M
an

y
ob

-
je
ct
iv
es

st
ud

ied
Ra

vi
nd

ra
n
et

al
.

m
(C

m
a
x
,T

)
H
eu

ris
tic

s
Va

ra
dh

ar
aj
an

an
d
Ra

je
nd

ra
n

m
#

(C
m

a
x
,F

)
Si
m
ul
at
ed

an
ne

al
in
g

20
06

Fr
am

in
an

an
d
Le

ist
en

m
ε(
C

m
a
x
/T

m
a
x
)

H
eu

ris
tic

s
Li
n
an

d
W
u

2
F

l(
C

m
a
x
,F

)
B&

B
M
ela

b
et

al
.

m
#

(C
m

a
x
,T

)
Pa

ra
lle

lg
en

et
ic

al
go

rit
hm

s
Pa

su
pa

th
y
et

al
.

m
#

(C
m

a
x
,F

)
G
en

et
ic

al
go

rit
hm

s
20

07
G
eig

er
20

07
m

#
(m
a
n
y
)

Lo
ca
ls

ea
rc
h

Le
m
es
re

et
al
.

m
F

l(
C

m
a
x
,T

)
B&

B.
Pa

ra
lle

lis
m

Ra
hi
m
i-V

ah
ed

an
d
M
irg

ho
rb
an

i
m

#
(F
,T

)
H
yb

rid
pa

rt
icl

e
sw

ar
m

op
tim

iza
-

tio
n

Ta
bl
e
3.
1:

Re
vi
ew

ed
pa

pe
rs

fo
rt

he
m
ul
ti-

ob
je
ct
iv
e
�o

ws
ho

p.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 43 � #59 i

i

i

i

i

i

3.3. MULTI-OBJECTIVE PARALLEL MACHINES SCHEDULING
PROBLEMS 43

3.3 Multi-objective parallel machines scheduling
problems

Although the parallel machine scheduling problem is one of the most studied in
literature, only few papers concern the multi-objective version of such problem.
In the following subsections we report several papers using the same classi�ca-
tion we employed for FSP. Such papers are well known in literature and more
information can be found in the reviews of T'Kindt and Billaut [196] [197],
Allahverdi et al. [10] [11] and Pfund et al. [149]

Lexicographical and ε-constraint approaches
Lexicographical approaches have been widely explored in the literature. Leung
and Young (1989) [112] proposed a O(n log(n)) algorithm to optimally solve
P/pmtn/Lex(C̄, Cmax) where C̄ represents the average completion time. Such
algorithm can be also used to �nd a lower bound for the problem without pre-
emption that has been demonstrated to be NP-Hard.
In 1995 Mc Cormick and Pinedo [43] proposed a polynomial algorithm (O(m3n))
to solve Q/pmtn/ε(C̄, Cmax). Their procedure computes all the strict Pareto
optimal points that correspond to extreme points of the solution set.
T'Kindt et al. in 1997 [199] propose a pseudo-polynomial time implementa-
tion in O(n4 log2(C∗max)) for P/pmtn, di/Lex(Cmax, Lmax). Other two optimal
algorithm for polynomially solvable parallel machines problems are presented
by Tuzikov et al. in 1998 [206]. Authors study a scheduling problem where
n jobs have to be scheduled on a set of machines with di�erent speeds. In
the �rst problem the aim is minimize fmax = maxi=1,...,n(φi(Ci)) subject to
gmax = maxi=1,...,n(ψi(Ci)) (ε(fmax/gmax)) while in the second one they op-
timize ḡ =

∑n
i=1 ψi(Ci) subject to fmax. Notice that ψi and φi are generic

increasing functions.
Mohri et al. (1999) [132] proposed an exact method to solve in polynomial
time the two identical parallel machines problem where the maximum lateness
is minimized subject to a makespan threshold, P2/pmtn, di/ε(Lmax/Cmax).
In the same paper they extended their approach to polynomially solve the
P3/pmtn, di/ε(Lmax/Cmax) problem.
Sarim and Hariharan (2000) [173] tackle the problem of scheduling n indepen-
dent jobs on two parallel machines, when no preemption is allowed. Maximum
tardiness and the number of tardy jobs are minimized in lexicographical way.
Since P2/di/Tmax is NP-Hard, the bicriteria problem is also. Therefore they
propose an heuristic enumeration algorithm based on a branch and bound

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 44 � #60 i

i

i

i

i

i

44 CHAPTER 3. LITERATURE

scheme to solve it.
The problem P/pmtn, di/Lex(Lw

max, C̄
w) with Lw

max = maxi=i,...,n(wiLi) has
been addressed by T'Kindt et al. (2000) [198]. Such a problem is strongly
NP-Hard and the authors proposed a heuristics approach for it. The same
authors in 2001 [200] are interested in a scheduling problem connected with
the production of glass bottles. The aim is to minimize a linear combination
of Imax = Cmax − Cmin (the maximum di�erence of machines workload) and
M̄ =

∑n
i=1

∑m
j=1 pi,j ×mi,j (Total Margin) where pi,j =

xi,j

ki,j
is the processing

time of job Ji onMj and xi,j is the associated quantity of glass, subject to Cmax

bounded by a date ε. Preemption of jobs occurs at real times.A polynomial
algorithm is presented.

Weighted objectives

The most direct way to consider several criteria is to reduce them in a new
single performance measure. This is an �a priori� approach because Decision
Maker �rst has to establish the relative importance of each objective func-
tion. Geo�rion and Graves (1976) [68] considered the case of identical parallel
machines with sequence dependent setup times and developed a quadratic as-
signment formulation of the problem to minimize the sum of the changeover,
production and time-constraint penalty costs.
The problem P/di = d ≥ ∑n

i=1 pi, nmit/Fl(Ē, T̄) with Fl(Ē, T̄) = Ē + T̄ be-
longs to the class P and Sundararaghavan and Ahmed (1984) [189] presented
an polynomial algorithm for it. A more general version of the same problem
has been tacked by Emmons (1987) [59] were /Fl(Ē, T̄) = αT + βE while the
problem with machines having di�erent non job dependent speed is also tackled
by Emmons, however the complexity of this problem remains open.
Dietrich (1989) [54] considered the unrelated parallel machine problem with
major and minor setups and developed a two-phase to minimize a linear com-
bination of makespan and total �ow time.
Alidaee and Ahmadian (1993) [7] studied Rm/pi,j ∈ [pi,j , p̄i.j]/Fl(C̄, C̄C

w) and
Rm/pi,j ∈ [pi,j , p̄i.j], di = d, d unknown/Fl(T̄ , Ē, C̄C

w) where the objective
function takes into account crashing costs. These problems can be reducted to
the assignment problem and therefore they are polynomially solvable.
The problem P/di = d ≥ ∑n

i=1 pi/max1≤i≤n(wi(Ei + Ti)) is studied by Li
and Cheng [113]. The authors show that this problem is strongly NP-hard
and propose an O(mn2) heuristic. The problem R/di = d, d unknown, pi =
p, nmit/Fl(Ē, T̄ , d) is polynomially solvable. Cheng and Chen [35] present an

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 45 � #61 i

i

i

i

i

i

3.3. MULTI-OBJECTIVE PARALLEL MACHINES SCHEDULING
PROBLEMS 45

algorithm to solve it.
Rm/di = d/

∑
(weEj +wtTj) has been studied by Adamopoulos and Pappis [2].

This problem is NP-Hard, therefore the authors chose to develop a polynomial
time heuristic procedure that provides e�cient solutions.
Heady and Zhu (1998) [83] addressed the P/SDST/

∑
(Ei+Ti) problem, where

some machines may not be able to process some jobs. They proposed a heuris-
tic to minimize the sum of earliness and tardiness costs for the problem. For
small-sized problems, they also compared the performance of the proposed
heuristic with the optimal solution obtained from using integer programming
formulation. Sivrikaya-�erifo§lu and Ulusoy (1999) [182] addressed the problem
of Q/SDST ; rj/wE

∑
Ei + wT

∑
Ti, where there are two types of machines

with di�erent speeds. Here wE

∑
Ei + wT

∑
Ti means that the weights for

earliness and tardiness penalties are common to all the jobs. The authors pre-
sented two types of genetic algorithms, namely one with a crossover operator
and one without crossover operator. They showed that the genetic algorithm
with a crossover operator performs better for di�cult and large-sized prob-
lems. Balakrishnan et al. (1999) [17] considered the general case of uniform
machines with objective function of minimizing

∑
(wiEi + wiTi) . They pre-

sented a mixed integer programming formulation for the problem. Zhu and
Heady (2000) [221] addressed the R/SDST/

∑
(wiEi + wiTi) problem. They

developed a mixed integer programming formulation for the problem, which
can provide an optimal solution in reasonable time for nine jobs and three
machines.Bank and Werner (2001) [18] consider the same problem with the
presence of release dates, they presented several constructive algorithms, an
iterative algorithm and a neighborhood search technique testing them against
simulated annealing.
Radhakrishnan and Ventura (2000) [156] addressed the P/SDST/

∑
(Ei + Ti)

problem, presented a mathematical programming formulation that can be used
for limited-sized problems, and proposed a simulated annealing algorithm for
large-sized problems.
In paper manufacturing, Akkiraju et al. (2001) [5] observed a model general-
izing the R/BatchSDST problem with multiple objectives such as

∑
wiTi ,∑

wiEi, and TST . They suggested a heuristic approach based on the so-called
Asynchronous Team architecture. Initial solutions are �rst generated by di�er-
ent experts and computer programs. Then these solutions are perturbed and
improved. Finally, a set of Pareto optimal solutions is presented to a decision
maker. Yi and Wang (2003) [219] considered the P/BatchSIST/

∑
wiEi +∑

wiTi problem, where the jobs have a common due date. They proposed
a fuzzy logic embedded genetic algorithm (called soft computing) to solve

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 46 � #62 i

i

i

i

i

i

46 CHAPTER 3. LITERATURE

the problem. Recently Feng and Lau (2005) [60] addressed the more gen-
eral P/SDST/

∑
(wiEi +wiTi) problem and proposed a meta-heuristic called

Squeaky Wheel Optimization. The authors showed that their heuristic outper-
forms that of Radhakrishnan and Ventura.

Pareto approaches

In literature we found only few cases using a Pareto optimization approach in
the context of parallel machine scheduling. Shmoys and Tardos (1993) [179]
studied the bicriteria problem of minimizing Cmax and the cost of the schedule
considering the case where there is a range of possible processing times for
each machine-job pair, and the cost linearly increases as the processing time
decreases.
Suresh and Chaudhuri (1996) [191] studied R//Cmax, Tmax problem. They
proposed a tabu search algorithm where the initial solution is found using a
heuristic called GAP/EDD.
The minimization of criteria C̄ and Ū on m identical machines has been tacked
by Ruiz-Torres et al . (1997) [172] who tackle the enumeration of strict Pareto
optima. As the P/di/Ū is NP-hard the bicriteria problem is also and the
authors propose four heuristic to solve it.
Jansen and Porkolab (1999) [94] studied the bicriteria problem of minimizing
Cmax and the cost of the schedule and presented a modi�ed version of their
PTAS algorithm to solve it.
Yu et al. [220] tackle the R//Cmax,

∑
Cj ,

∑
T,

∑
U . This problem arises from

a printed wafer board manufacturing facility's drilling operation. To solve this
problem, the authors developed a two-stage solution procedure, LRH. In the
�rst step a heuristic assigns some jobs to machines while in the second phase
a unimodular integer programming formulation is solved. Pfund et al. [150]
extended this research to determine the robustness of various dispatching rules
for the multi-criteria unrelated parallel-machine scheduling problem in presence
processing time uncertainty and machine breakdowns. Two dispatching rules
are presented in this work.

3.4 Conclusions

In this chapter we have conducted a comprehensive survey of the multi-objective
literature for the �owshop and parallel machines, that are two of the most
common and thoroughly studied problems in the scheduling �eld. This survey

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 47 � #63 i

i

i

i

i

i

3.4. CONCLUSIONS 47

follows and complements others like by those of [137], [196] [197] [88], [10] [11]
and [149].

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 48 � #64 i

i

i

i

i

i

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 49 � #65 i

i

i

i

i

i

Chapter 4

An evaluation of multi-objective
algorithms for PFSP

In this chapter a complete computational evaluation of multi-objective algo-
rithms is carried out. A total of 23 di�erent algorithms including both �owshop-
speci�c methods as well as general multi-objective optimization approaches
have been tested under three di�erent two-criteria combinations with a com-
prehensive benchmark. All methods have been studied under recent state-of-
the-art quality measures. Parametric and non-parametric statistical testing
is profusely employed to support the observed performance of the compared
methods. As a result, we have identi�ed the best performing methods from the
literature which constitutes a reference work for further research.

4.1 Introduction
In the �eld of scheduling, the �owshop problem has been thoroughly studied
for decades. The �owshop problem is de�ned by a set of N = 1, 2, . . . , n jobs
that have to be processed on a set of M = 1, 2, . . . ,m machines. The process-
ing time of each job j ∈ N on each machine i ∈ M is known in advance and
is denoted by pij . All N jobs visit the machines in the same order, which,
without loss of generality, can be assumed to be 1, 2, . . . ,m. The objective is
to �nd a processing sequence of the jobs so that a given criterion is optimized.
In general, the number of possible solutions results from the product of all pos-

49

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 50 � #66 i

i

i

i

i

i

50 CHAPTER 4.

sible job permutations across all machines, i.e. (n!)m solutions or �schedules�.
However, in the �owshop literature it is very common to restrict the solution
space by having the same permutation of jobs for all machines. The resulting
problem is referred to as Permutation Flowshop Problem or PFSP in short
where n! schedules are possible.
The majority of the literature for the PFSP is centered around a single op-
timization criterion or objective. However, a single criterion is deemed as
insu�cient for real and practical applications. Multi-objective optimization
is without a doubt a very important research topic not only because of the
multi-objective nature of most real-world problems, but also because there are
still many open questions in this area. Over the last decade, multi-objective
optimization has received a big impulse in Operations Research. Some new
techniques have been developed in order to deal with functions and real-world
problems that have multiple objectives, and many approaches have been pro-
posed.
The easiest way of dealing with a multi-objective problem is the so called �a pri-
ori� approach where two or more objectives are weighted and combined into a
single measure, usually linear. For example, given two optimization criteria F1

and F2, a single-objective problem is derived with a combined αF1 +(1−α)F2

function, where 0 ≤ α ≤ 1. However, the major drawback in this approach is
that α must be given a priori. If α is not known, an alternative is to obtain
several solutions with varying values of α but even in this case, if F1 and F2

are measured in di�erent scales, this approach might be challenging.
A more desirable approach is the �a posteriori� method. In this case, the aim
is to obtain many solutions with as many associated values as objectives. In
such cases, the traditional concept of �optimum� solution does not apply. A
given solution A might have a better F1 value than another solution B, but at
the same time worse F2 value. In this context, a set of solutions is obtained
where their objective values form what is referred to as the Pareto front. In
the Pareto front all solutions are equally good, since there is no way of telling
which one is better or worse. In other words, all solutions belonging to a Pareto
front are the �best� solutions for the problem in a multi-objective sense.
There are no comprehensive reviews in the literature about multi machine �ow-
shops with several objectives. Hence I carried out this work and presented it
in chapter 3. In the past years a number of interesting algorithms have been
proposed. However, new proposals are hardly validated against the existing
literature and when done, the quality indicators used are not appropriate. Ad-
ditionally, the multi-objective literature is rich on advanced methods that have
not been applied to the PFSP before. Therefore, an objective of this chapter

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 51 � #67 i

i

i

i

i

i

4.2. IMPLEMENTED ALGORITHMS 51

is also to adapt proposed methods from the general multi-objective optimiza-
tion �eld to the PFSP. As we have seen in chapter 3, the literature is marred
with di�erent multi-objective proposals, many of which have not been tested
for scheduling problems. As a result we identify the most promising methods
for the most common criteria combination. We evaluate a total of 23 methods,
from local search metaheuristics such as tabu search or simulated annealing
to evolutionary approaches like genetic algorithms. Furthermore, we use the
latest Pareto-compliant quality measures for assessing the e�ectiveness of the
tested methods. Careful and comprehensive statistical testing is employed to
ensure the accuracy of the conclusions.
This chapter is organized as follows: In section 4.2 there is a short descrip-
tion of all the re-implemented algorithms. The benchmark set and comparison
evaluation details are presented in section 4.4. Section 4.5 deals with the com-
parative evaluation of all the studied algorithms. Finally in section 4.6 some
conclusions and further research topics are given.

4.2 Implemented algorithms
In this work we have implemented not only algorithms speci�cally proposed for
the multi-objective PFSP but also many other multi-objective optimization al-
gorithms. In these cases, some adaptation has been necessary. In the following
we go over the algorithms that have been considered.

Pareto approaches for the �owshop problem
We now detail the algorithms that have been re-implemented and tested among
those proposed speci�cally for the �owshop scheduling problem. These meth-
ods have been already reviewed in section 3.2 and here we extend some details
about them and about their re-implementation.
The MOGA algorithm of [135] was designed to tackle the multi objective �ow-
shop problem. It is a simple genetic algorithm with a modi�ed selection oper-
ator. During this selection, a set of weights for the objectives are generated.
In this way the algorithm tends to distribute the search toward di�erent di-
rections. The authors also incorporate an elite preservation mechanism which
copies several solutions from the actual Pareto front to the next generation.
We will refer to our MOGA implementation as MOGA_Murata. Chakravarthy
[33] presented a simple simulated annealing algorithm which tries to minimize
the weighted sum of two objectives. The best solution between those generated

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 52 � #68 i

i

i

i

i

i

52 CHAPTER 4.

by the Earliest Due Date (EDD), Least Static Slack (LSS) and NEH methods
is selected to be the initial solution. The adjacent interchange scheme (AIS)
is used to generate a neighborhood for the actual solution. Notice that this
algorithm, referred to as SA_Chakravarty, is not a real Pareto approach since
the objectives are weighted. However, we have included it in the comparison
in order to have an idea of how such methods can perform in practice. We
�simulate� a Pareto approach by running SA_Chakravarty 100 times with dif-
ferent weight combinations of the objectives. All the 100 resulting solutions
are analyzed and the best non dominated subset is given as a result.
Bagchi [16] proposed a modi�cation of the well known NSGA procedure (see
next section) and adapted it to the �owshop problem. This algorithm, referred
to as ENGA, di�erentiates from NSGA in that it incorporates elitism. In par-
ticular, the parent and o�spring populations are combined in a unique set,
then a non dominated sorting is applied and the 50% of the non dominated
solutions are copied to the parent population of the following generation.
Murata [134] enhanced the original MOGA of [135]. A di�erent way of dis-
tributing the weights during the run of the algorithm is presented. The pro-
posed weight speci�cation method makes use of a cellular structure which per-
mits to better select weights in order to �nd a �ner approximation of the
optimal Pareto front. We refer to this later algorithm as CMOGA.
Suresh [190] proposed a Pareto archived simulated annealing (PASA) method.
A new perturbation mechanism called �segment-random insertion (SRI)� scheme
is used to generate the neighborhood of a given sequence. An archive contain-
ing the non dominated solution set is used. A randomly generated sequence is
used as an initial solution. The SRI is used to generate a neighborhood set of
candidate solutions and each one is used to update the archive set. A �tness
function that is a scaled weighted sum of the objective functions is used to
select a new current solution. A restart strategy and a re-annealing method
are also implemented. We refer to this method as MOSA_Suresh.
Armentano [12] developed a multi-objective tabu search method called MOTS.
The algorithm works with several paths of solutions in parallel, each with its
own tabu list. A set of initial solutions is generated using a heuristic. A lo-
cal search is applied to the set of current solutions to generate several new
solutions. A clustering procedure ensures that the size of the current solution
set remains constant. The algorithm makes also use of an external archive
for storing all the non dominated solutions found during the execution. After
some initial experiments we found that under the considered stopping criterion
(to be detailed later), less than 12 iterations were carried out. This together
with the fact that the diversi�cation method is not su�ciently clear from the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 53 � #69 i

i

i

i

i

i

4.2. IMPLEMENTED ALGORITHMS 53

original text has resulted in our implementation not including this procedure.
The initialization procedure of MOTS takes most of the allotted CPU time for
large values of n. Considering the large neighborhood employed, this all results
in extremely lengthy computations for larger n values.
Arroyo [14] proposed a genetic local search algorithm with the following fea-
tures: preservation of population's diversity, elitism (a subset of the current
Pareto front is directly copied to the next generation) and usage of a multi-
objective local search. The concept of Pareto dominance is used to assign
�tness (using the non dominated sorting procedure and the crowding measure
both proposed for the NSGAII) to the solutions and in the local search proce-
dure. We refer to this method as MOGALS_Arroyo.
A multi-objective simulated annealing (MOSA) is presented in [210]. The algo-
rithm starts with an initialization procedure which generates two initial solu-
tions using simple and fast heuristics. These sequences are enhanced by three
improvement schemes and are later used, alternatively, as the solution of the
simulated annealing method. MOSA tries to obtain non dominated solutions
through the implementation of a simple probability function that attempts to
generate solutions on the Pareto optimal front. The probability function is var-
ied in such a way that the entire objective space is covered uniformly obtaining
as many non dominated and well dispersed solutions as possible. We refer to
this algorithm as MOSA_Varadharajan.
Pasupathy [148] proposed a genetic algorithm which we refer to as PGA_ALS.
This algorithm uses an initialization procedure which generates four good ini-
tial solutions that are introduced in a random population. PGA_ALS handles
a working population and an external one. The internal one evolves using a
Pareto-ranking based procedure similar to that used in NSGAII. A crowding
procedure is also proposed and used as a secondary selection criterion. The
non dominated solutions are stored in the external archive and two di�erent
local searches are then applied to half of archive's solutions for improving the
quality of the returned Pareto front.
Finally, we have also re-implemented PILS from [67]. This new algorithm is
based on iterated local search which in turn relies on two main principles,
intensi�cation using a variable neighborhood local search and diversi�cation
using a perturbation procedure. The Pareto dominance relationship is used to
store the non dominated solutions. This scheme is repeated through successive
iterations to reach favorable regions of the search space.
Notice that among the 16 multi-objective PFSP speci�c papers reviewed in
section 3.2, we are re-implementing a total of 10. We have chosen not to re-
implement the GAs of [90] and [91] since they were shown to be inferior to

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 54 � #70 i

i

i

i

i

i

54 CHAPTER 4.

the multi-objective tabu search of [12] and some others. Loukil in [116] and
[117] have presented some rather general methods applied to many scheduling
problems. This generality and the lack of details have deterred us from trying
a re-implementation. Arroyo [13] proposed just some heuristics and �nally,
the hybrid Particle Swarm Optimization (PSO) proposed by Rahimi-Vahed
[157] in incredibly complex, making use of parallel programming techniques
and therefore we have chosen not to implement it.

Other general Pareto algorithms
The multi-objective literature is marred with many interesting proposals, mainly
in the form of evolutionary algorithms, that have not been applied to the PFSP
before. Therefore, in this section we review some of these methods that have
been re-implemented and adapted to the PFSP.
Deb [185] proposed the well known non dominated sorting genetic algorithm,
referred to as NSGA. This method di�ers from a simple genetic algorithm only
for the way the selection is performed. The Non Dominated Sorting procedure
(NDS) iteratively divides the entire population into di�erent Pareto fronts.
The individuals are assigned a �tness value that depends on the Pareto front
they belong to. Furthermore, this �tness value is modi�ed by a factor that is
calculated according to the number of individuals crowding a portion of the
objective space. A sharing parameter σshare is used in this case. All other
features are similar to a standard genetic algorithm. Zitzler [224] presented
another genetic algorithm referred to as SPEA. The most important charac-
teristic of this method is that all non dominated solutions are stored in an
external population. Fitness evaluation of individuals depend on the num-
ber of solutions from the external population they dominate. The algorithm
also incorporates a clustering procedure to reduce the size of the non domi-
nated set without destroying its characteristics. Finally, population's diversity
is maintained by using the Pareto dominance relationship. Later, Zitzler [223]
proposed an improved SPEAII version that incorporates a di�erent �ne-grained
�tness strategy to avoid some drawbacks of the SPEA procedure. Other im-
provements include a density estimation technique that is an adaptation of the
k-th nearest neighbor method, and a new complex archive truncation proce-
dure.
Knowles [103] presented another algorithm called PAES. This method employs
local search and a population archive. The algorithm is composed of three
parts, the �rst one is the candidate solution generator which has an archive of
only one solution and generates a new one making use of random mutation. The

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 55 � #71 i

i

i

i

i

i

4.2. IMPLEMENTED ALGORITHMS 55

second part is the candidate solution acceptance function which has the task of
accepting or discarding the new solution. The last part is the non dominated
archive which contains all the non dominated solutions found so far. According
to the authors, this algorithm represents the simplest nontrivial approach to a
multi-objective local search procedure. In the same paper, the authors present
an enhancement of PAES referred to as (µ + λ)−PAES. Here a population of
µ candidate solutions is kept. By using a binary tournament, a single solution
is selected and λ mutant solutions are created using random mutation. Hence,
a µ+ λ population is created and a dominance score is calculated for each in-
dividual. µ individuals are selected to update the candidate population while
an external archive of non dominated solutions is maintained. Another genetic
algorithm is proposed by Corne [45]. This method, called PESA uses an ex-
ternal population EP and an internal one IP to pursuit the goal of �nding a
well spread Pareto front. A selection and replacement procedure based on the
degree of crowding is implemented. A simple genetic scheme is used for the
evolution of IP while EP contains the non dominated solutions found. The
size of the EP is upper bounded and a hyper-grid based operator eliminates
the individuals in the more crowded zones. Later, in [44] a enhanced PESAII
method is provided. This algorithm di�ers from the preceding one only in the
selection technique in which the �tness value is assigned according to a hyper-
box calculation in the objective space. In this technique, instead of assigning
a selective �tness to an individual, it is assigned to the hyperboxes in the ob-
jective space which are occupied by at least one element. During the selection
process, the hyperbox with the best �tness is selected and an individual is cho-
sen at random among all inside the selected hyperbox.
In [49] an evolution of the NSGA was presented. This algorithm, called NS-
GAII, uses a new Fast Non Dominated Sorting procedure (FNDS). Unlike
the NSGA, here a rank value is assigned to each individual of the population
and there is no need for a parameter to achieve �tness sharing. Also, a crowd-
ing value is calculated with a fast procedure and assigned to each element of
the population. The selection operator uses the rank and the crowding values
to select the better individuals for the mating pool. An e�cient procedure
of elitism is implemented by comparing two successive generations and pre-
serving the best individuals. This NSGAII method is extensively used in the
multi objective literature for the most varied problem domains. Later, Deb
[50] introduced yet another GA called CNSGAII. Basically, in this algorithm
the crowding procedure is replaced by a clustering approach. The rationale is
that once a generation is completed, the previous generation has a size of Psize

(parent set) and the current one (o�spring set) is also of the same size. Com-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 56 � #72 i

i

i

i

i

i

56 CHAPTER 4.

bining both populations yields a 2Psize set but only half of them are needed
for the next generation. To select these solutions the non dominated sorting
procedure is applied �rst and the clustering procedure second.
Deb [50] studied another di�erent genetic algorithm. This method, called
ε−MOEA uses two co-evolving populations, the regular one called P and an
archive A. At each step, two parent solutions are selected, the �rst from P
and the second from A. An o�spring is generated, and it is compared with
each element of the population P . If the o�spring dominates at least a sin-
gle individual in P then it replaces this individual. The o�spring is discarded
if it is dominated by P . The o�spring individual is also checked against the
individuals in A. In the archive population the ε−dominance is used in the
same way. For example, and using the previous notation, a solution x1 strongly
ε−dominates another solution x2 (x1 ≺ε x2) if fj(x1)− ε / fj(x2).
Zitzler [222] proposed another method called B−IBEA. The main idea in this
method is de�ning the optimization goal in terms of a binary quality mea-
sure and directly using it in the selection process. B-IBEA performs binary
tournaments for mating selection and implements environmental selection by
iteratively removing the worst individual from the population and updating
the �tness values of the remaining individuals. An ε−indicator is used. In the
same work, an adaptive variation called A−IBEA is also presented. An adapted
scaling procedure is proposed with the goal of making the algorithm's behavior
independent from the tuning of the parameter k used in the basic B−IBEA
version. Finally, Kollat [105] proposed also a NSGAII variation referred to as
ε−NSGAII by adding ε−dominance archiving and adaptive population sizing.
The ε parameter establishes the size of the grid in the objective space. In-
side each cell of the grid no more than one solution is allowed. Furthermore,
the algorithm works by alternating two phases. It starts using a very small
population of 10 individuals and several runs of NSGAII are executed. Dur-
ing these runs all the non dominated solutions are copied to an external set.
When there are no further improvements in the current Pareto front, the sec-
ond phase starts. In this second phase the ε−dominance procedure is applied
on the external archive.
The 23 re-implemented algorithms, either speci�c for the PFSP or general
multi-objective proposals, are summarized in Table 4.1.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 57 � #73 i

i

i

i

i

i

4.3. MULTI-OBJECTIVE QUALITY MEASURES 57

4.3 Multi-objective quality measures

As commented in previous chapters, comparing the solutions of two di�er-
ent Pareto approximations coming from two algorithms is not straightforward.
Two approximation sets A and B can be even incomparable. Recent studies
like those of [225], [145] or more recently, [104] are an example of the enormous
e�ort being carried out in order to provide the necessary tools for a better
evaluation and comparison of multi-objective algorithms. However, the multi-
objective literature for the PFSP frequently uses quality measures that have
been shown to be misleading. For example, in the two most recent papers
reviewed (157 and 67) some metrics like generational distance or maximum
deviation from the best Pareto front are used. These metrics, among other
ones are shown to be non Pareto-compliant in the study of [104], meaning that
they can give a better metric for a given Pareto approximation front B and
worse for another front A even in a case where A ≺ B. What is worse, in
the comprehensive empirical evaluation of quality measures given in [104], it is
shown that the most frequently used measures are non Pareto-compliant and
are demonstrated to give wrong and misleading results more often than not.
Therefore, special attention must be given to the choice of quality measures to
ensure sound and generalizable results.
Knowles [104] propose three main approaches that are safe and sound. The
�rst one relies on the Pareto dominance relations among sets of solutions. It
is possible to rank a given algorithm over another based on the number of
times the resulting Pareto approximation fronts dominate (strong, regular or
weakly) each other. The second approach relies on quality indicators, mainly
the hypervolume IH and the Epsilon indicators that were already introduced
in [224] and [225], respectively. Quality indicators usually transform a full
Pareto approximation set into a real number. Lastly, the third approach is
based on empirical attainment functions. Attainment functions give, in terms
of the objective space, the relative frequency that each region is attained by
the approximation set given by an algorithm. These three approaches range
from straightforward and easy to compute in the case of dominance ranking to
the not so easy and computationally intensive attainment functions.
In this paper, we choose the hypervolume (IH) and the unary multiplicative Ep-
silon (I1

ε) indicators. The choice is �rst motivated by the fact that dominance
ranking is best observed when comparing one algorithm against another. By
doing so, the number of times the solutions given by the �rst algorithm strongly,
regularly or weakly dominate those given by the second gives a direct picture of
the performance assessment among the two. The problem is that with 23 algo-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 58 � #74 i

i

i

i

i

i

58 CHAPTER 4.

rithms compared in this chapter (see next Section) the possible two-algorithms
pairs is 253 and therefore this type of analysis becomes unpractical. The same
conclusion can be reached for the empirical attainment functions because these
have to be compared in pairs. Furthermore, the computation of attainment
functions is costly and the outcome has to be examined graphically one by one.
As a result, such type of analysis is not useful in our case.
According to [104], IH and I1

ε are Pareto-compliant and represent the state-
of-the-art as far as quality indicators are concerned. Additionally, combining
the analysis of these two indicators is a powerful approach since if the two
indicators provide contradictory conclusions for two algorithms, it means that
they are incomparable. In the following we give some additional details on how
these two indicators are calculated.
The hypervolume indicator IH , �rst introduced by [224] just measures the area
(in the case of two objectives) covered by the approximated Pareto front given
by one algorithm. A reference point is used for the two objectives in order to
bound this area. A greater value of IH indicates both a better convergence
to as well as a good coverage of the optimal Pareto front. Calculating the
hypervolume can be costly and we use the algorithm proposed in [48]. This
algorithm already calculates a normalized and scaled value.
The binary epsilon indicator Iε proposed initially by [225] is calculated as fol-
lows: Given two approximation sets A and B produced by two algorithms, the
binary multiplicative epsilon indicator Iε(A,B) equals to

max
xB

min
xA

max
1≤j≤M

fj(xA)
fj(xB)

where xA and xB are each of the solutions given by algorithms A and B, re-
spectively. Notice that such a binary indicator would require to calculate all
possible pairs of algorithms. However, in [104], a unary I1

ε version is proposed
where the approximation set B is substituted by the best known Pareto front.
This is an interesting indicator since it tells us how much worse (ε) an approx-
imation set is w.r.t. the best known Pareto front in the best case. Therefore
�ε� gives us a direct performance measure. Note however that in our case some
objectives might take a value of zero (for example tardiness). Also, objectives
must be normalized. Therefore, for the calculation of the I1

ε indicator, we �rst
normalize and translate each objective, i.e., in the previous calculation, fj(xA)

and fj(xB) are replaced by fj(xA)−f−j
f+

j −f−j
+ 1 and fj(xB)−f−j

f+
j −f−j

+ 1, respectively,
where f+

j and f−j are the maximum and minimum known values for a given
objective j, respectively. As a result, our normalized I1

ε indicator will take

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 59 � #75 i

i

i

i

i

i

4.4. BENCHMARK AND COMPUTATIONAL EVALUATION DETAILS59

values between 1 and 2. A value of one for a given algorithm means that its
approximation set is not dominated by the best known one.

4.4 Benchmark and computational evaluation details

Each one of the 23 proposed algorithms is tested against a new benchmark set.
There are no known comprehensive benchmarks in the literature for the multi-
objective PFSP. The only reference we know of is the work of [19] where a small
set of 14 instances is proposed. In order to carry out a comprehensive and sound
analysis, a much larger set is needed. We augment the well known instances of
[193]. This benchmark is organized in 12 groups with 10 instances each. The
groups contain di�erent combinations of the number of jobs n and the num-
ber of machines m. The n ×m combinations are: {20, 50, 100} × {5, 10, 20},
200× {10, 20} and 500× 20. The processing times (pij) in Taillard's instances
are generated from a uniform distribution in the range [1, 99]. We take the
�rst 110 instances and drop the last 10 instances in the 500 × 20 group since
this size is deemed as too large for the experiments. As regards the due dates
for the tardiness criterion we use the same approach of [82]. In this work,
a tight due date dj is assigned to each job j ∈ N following the expression:
dj = Pj × (1 + random · 3) where Pj =

∑m
i=1 pij is the sum of the processing

times over all machines for job j and random is a random number uniformly
distributed in [0, 1]. This method of generating due dates results in very tight
to relatively tight due dates depending on the actual value of random for each
job, i.e., if random is close to 0, then the due date of the job is going to be
really tight as it would be more or less the sum of its processing times. As
a result, the job will have to be sequenced very early to avoid any tardiness.
These 110 augmented instances can be downloaded from http://soa.iti.es.
Each algorithm has been carefully re-implemented following all the explana-
tions given by the authors in the original papers. We have re-implemented all
the algorithms in Delphi 2006. It should be noted that all methods share most
structures and functions and the same level of coding has been used, i.e., all of
them contain most common optimizations and speed-ups. Fast Non-Dominated
Sorting (FNDS) is frequently used for most methods. Unless indicated dif-
ferently by the authors in the original papers, the crossover and mutation
operators used for the genetic methods are the two point order crossover and
insertion mutation, respectively. Unless explicitly stated, all algorithms in-
corporate a duplicate-deletion procedure in the populations as well as in the
non-dominated archives. Table 4.2 shows further implementation details of all

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 60 � #76 i

i

i

i

i

i

60 CHAPTER 4.

compared algorithms, including operators and parameter values.
The stopping criterion for most algorithms and is given by a time limit de-
pending on the size of the instance. The algorithms are stopped after a CPU
running time of n ·m/2 · t milliseconds, where t is an input parameter. Giving
more time to larger instances is a natural way of separating the results from
the lurking �total CPU time� variable. Otherwise, if worse results are obtained
for large instances, it would not be possible to tell if it is due to the limited
CPU time or due to the instance size. Every algorithm is run 10 di�erent
independent times (replicates) on each instance with three di�erent stopping
criteria: t = 100, 150 and 200 milliseconds. This means that for the largest
instances of 200 × 20 a maximum of 400 seconds of real CPU time (not wall
time) are allowed. For every instance, stoping time and replicate we use the
same random seed as a common variance reduction technique.
We run every algorithm on a cluster of 12 identical computers with Intel Core
2 Duo E6600 processors running at 2.4 GHz with 1 Gbyte of RAM. For the
tests, each algorithm and instance replicate is randomly assigned to a single
computer and the results are collected at the end. According to Section 3.2, the
three most common criteria for the PFSP are makespan, total completion time
and total tardiness. All these criteria are of the minimization type. Therefore,
all experiments are conducted for the three following criteria combinations: 1)
makespan and total tardiness, 2) total completion time and total tardiness and
�nally, 3) makespan and total completion time.
A total of 75,900 data points are collected per criteria combination if we con-
sider the 23 algorithms, 110 instances, 10 replicates per instance and three
di�erent stopping time criteria. In reality, each data point is an approximated
Pareto front containing a set of vectors with the objective values. In total there
are 75, 900 · 3 = 227, 700 Pareto fronts taking into account the three criteria
combinations. The experiments have required approximately 5,100 CPU hours.
From the 23·10·3 = 690 available Pareto front approximations for each instance
and criteria combination, a FNDS is carried out and the best non-dominated
Pareto front is stored. These �best� 110 Pareto fronts for each criteria com-
bination are available for future use of the research community and are also
downloadable from http://soa.iti.es. Additionally, a set of best Pareto
fronts are available for the three di�erent stopping time criteria. These last
Pareto fronts are also used for obtaining the reference points for the hypervol-
ume (IH) indicator and are �xed to 1.2 times the worst known value for each
objective. Also, these best Pareto fronts are also used as the reference set in
the multiplicative epsilon indicator (I1

ε).

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 61 � #77 i

i

i

i

i

i

4.5. COMPUTATIONAL EVALUATION 61

4.5 Computational Evaluation
In this section we present a wide analysis of the huge set of experimental data
collected. Statistical parametric and non-parametric tests have been largely
employed to carry out a careful and sound analysis. In the following subsections
three couple of objective functions are considered and for each of them the most
performing algorithms are identi�ed.

Makespan and total tardiness results
According to the review carried out in sections 3.2 , makespan and total tardi-
ness are two common criteria. Furthermore, a low makespan increases machine
utilization and throughput. However, the best possible makespan might sac-
ri�ce due dates and therefore both objectives are not correlated. We test all
23 re-implemented methods for these two criteria. Table 4.3 shows the average
hypervolume (IH) and epsilon indicator (I1

ε) values for all the algorithms. No-
tice that the results are divided into the three di�erent stopping criteria. Also,
the methods are sorted in descending order of hypervolume value.
Although later we will conduct several statistical experiments, we proceed now
to comment on the results. First and foremost, both quality indicators are
contradictory in very few cases. We can observe that as hypervolume values
decrease, the epsilon indicator increases. There are just some exceptions and
these occur between consecutive algorithms with very similar hypervolume val-
ues, like for example SPEA and CNSGAII in positions 10 and 11 in the 200ms
time columns. Another interesting result is that the ranking of the algorithms
does not practically change as the allowed CPU time is increased and when it
does it is motivated by small di�erences to start with. However, these are the
observed average values across all instances and as we will mention later, there
are more pronounced di�erences when focusing on speci�c instance sizes.
Since the objective values are normalized and the worst solutions are multiplied
by 1.2, the maximum hypothetical hypervolume is 1.22 = 1.44. As we can see,
MOSA_Varadharajan is very close to this value in all three stopping criteria.
Similarly, the minimum, possible epsilon indicator is one. Most interestingly,
PESA and PESAII algorithms outperform PGA_ALS and MOTS by a notice-
able margin. It has to be reminded that PESA and PESAII have just been
re-implemented and adapted to the PFSP problem since both methods were
proposed in the general multi-objective optimization literature, i.e., they were
not built for the PFSP. GA_ALS and MOTS are PFSP-speci�c algorithms
and in the case of MOTS, even for the same two objectives that have been

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 62 � #78 i

i

i

i

i

i

62 CHAPTER 4.

tested. It is also interesting how MOGA_Murata, is the 7th best performer
in the comparison, although it is more than 10 years old and one of the �rst
multi-objective algorithms proposed for the PFSP. This algorithm manages to
outperform CMOGA, proposed also by the same authors and claimed to be
better to MOGA_Murata. It has to be reminded that our re-implementations
have been carried out according to the details given in all the reviewed papers.
CMOGA might result to be better to MOGA_Murata under di�erent CPU
times or under speci�c optimizations. However, for the careful and compre-
hensive testing in this chapter, this is not the case.
In a much more unfavorable position are the remaining PFSP-speci�c methods
(MOSA_Suresh, SA_Chakravarthy, PILS and ENGA). The bad performance
of SA_Chakravarthy is expected, since it has to be recalled that this method
uses the �a priori� approach by weighting the objectives and here we have run
it for 100 di�erent times with varying weights. Therefore, using this type of
methods in such a way for obtaining a Pareto front is not advisable. ENGA is,
as indicated by the original authors, better than NSGA but overall signi�cantly
worse than earlier methods like MOGA_Murata. Another striking result is the
poor performance of the recent PILS method. Basically PILS is an iterative
improvement procedure and is extremely costly in terms of CPU time. There-
fore, in our experimental setting, it is outperformed by most other methods.
It should be speci�ed that not all methods stop by the allotted CPU time as a
stopping criterion. Some methods carry out some local searches after complet-
ing the iterations and some others just cannot be properly modi�ed to stop at a
given point in time. In any case, all CPU times stay within a given acceptable
interval. For example, for 100 milliseconds stopping time and for the largest
200 × 20 instances tested, all methods should stop at 3.33 minutes. However,
SA_Chakravarty stopped at 1.39 minutes. MOGALS_Arroyo at 3.36, MOTS
at 3.52, PILS at 3.36, MOSA_Suresh at 12.8 and MOSA_Varadharajan at
2.23. For 200 milliseconds stopping time all methods should stop at 6.67 min-
utes for the largest instances. In this case, MOTS required 7.05 minutes, PILS
6.72, SA_Chakravarty 1.39, MOSA_Suresh 12.92 and MOSA_Varadharajan
2.16. Interestingly, MOSA_Varadharajan, the best performer of the test is
actually a fast method and other not so well performers like MOSA_Suresh
take a much longer time. All other methods can be controlled to stop at the
speci�ed time. These discrepancies in stopping times are only important for
the largest instances as for the smallest ones more or less all CPU times are
similar.
Table 4.3 contains just average values and many of them are very similar. Al-
though each average is composed of a very large number of data points, it is still

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 63 � #79 i

i

i

i

i

i

4.5. COMPUTATIONAL EVALUATION 63

necessary to carry out a comprehensive statistical experiment to assess if the
observed di�erences in the average values are indeed statistically signi�cant. A
total of 12 di�erent experiments are carried out. We do design of experiments
(DOE) and parametric ANOVA analyses as well as non-parametric Friedman
rank-based tests on both quality indicators and for the three di�erent stopping
criteria. The utility of showing both parametric as well as non-parametric tests
is threefold. First, in the Operations Research and Computer Science literature
it is common to disregard parametric testing due to the fact that this type of
tests are based on assumptions that the data has to satisfy. Non-parametric
testing is many times preferred since it is �distribution-free�. However, non-
parametric testing is nowhere as powerful as parametric testing. Second, in
non-parametric testing a lot of information is lost since the data has to be
ranked and the di�erences in the values (be these large or small) are trans-
formed into a rank value. Third, ANOVA techniques allow for a much deeper
and richer study of the data. Therefore we also compare both techniques in this
chapter to support these claims. For more information the reader is refereed
to [41] and [133]. We carry out six multi-factor ANOVAS where the type of
instance is a controlled factor with 11 levels (instances from 20×5 to 200×20).
The algorithm is another controlled factor with 23 levels. The response vari-
able on each experiment is either the hypervolume or the epsilon indicator.
Lastly, there is one set of experiments for each stopping time. Considering
that each experiment contains 25,300 data points, the three main hypotheses
of ANOVA: normality, homocedasticity and independence of the residuals are
easily satis�ed. To compare results, a second set of six experiments are per-
formed. In this case, non-parametric Friedman rank-based tests are carried
out. Since there are 23 algorithms and 10 di�erent replicates, the results for
each instance are ranked between 1 and 230. A rank of one represents the best
result for hypervolume or epsilon indicator. We are performing four di�erent
statistical tests on each set of results (for example, for 100 CPU time we are
testing ANOVA and Friedman on both quality indicators). Therefore, a cor-
rection on the con�dence levels must be carried out since the same set of data
is being used to make more than one inference. We take the most conservative
approach, which is the Bonferroni adjustment, and we set the adjusted signif-
icance level αs to α

4 = 0.05
4 ' 0.01. This means that all the tests are carried

out at a 0.01 adjusted con�dence level for a real con�dence level of 0.05.
Figures 4.1 and 4.2 show the means plot for the factor algorithm in the ANOVA
for the epsilon indicator response variable and the means plot for the ranks of
the epsilon indicator, respectively. Both �gures refer to the 100 CPU time
stopping criterion. For the parametric tests we use Tukey's Honest Signi�cant

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 64 � #80 i

i

i

i

i

i

64 CHAPTER 4.

Di�erence (HSD) intervals which counteract the bias in multiple pairwise com-
parisons. Similar Honest Signi�cant Di�erence (HSD) intervals are used for the
non-parametric tests. As can be seen, the non-parametric test is less powerful.
Not only are the intervals much wider (recall that overlapping intervals indicate
a non-statistically signi�cant di�erence) but ranking neglects the di�erences in
the response variables. PILS is shown to be better in rank than MOSA_Suresh
and SA_Chakravarthy when we have already observed that it has worse av-
erage hypervolume and epsilon indicator values. The reason behind this be-
havior is that PILS is better for many small instances with a small di�erence
in epsilon indicator than MOSA_Suresh and SA_Chakravarthy. However, it
is much worse for some other larger instances. When one transforms this to
ranks, PILS obtains a better rank more times and hence it appears to be better,
when in reality it is marginally better more times but signi�cantly worse many
times as well. Concluding the discussion about parametric vs. non-parametric,
if the parametric hypothesis are satis�ed (even if they are not strictly satis�ed,
as thoroughly explained in 133) it is much better to use parametric statistical
testing. Notice that we are using a very large dataset, with medium or smaller
datasets, the power of non-parametric tests drops signi�cantly.
The relative ordering, as well as most observed di�erences of the algorithms are
statistically signi�cant as we can see from Figure 4.1. As a matter of fact, the
only non-statistically signi�cant di�erences are those between (µ + λ)−PAES
and ε−NSGAII and between the algorithms CNSGAII, SPEA and NSGAII.
MOGALS_Arroyo, PESA and PESAII are also equivalent.
Figure 4.3 shows the parametric results also for CPU time of 100 but for the
hypervolume quality indicator. Notice that the Y-axis is now inverted since
a larger hypervolume indicates better results. The relative ordering of the
algorithms is almost identical to that of Figure 4.1, the only di�erence being
MOGALS_Arroyo PESA and PESAII. This means that these algorithms show
a very similar performance and on average are incomparable. A more in depth
instance-by-instance analysis would be needed to tell them apart.
As we have shown, increasing CPU time does not change, on average, the rela-
tive ordering of the algorithms. Figure 4.4 shows the parametric results for the
epsilon indicator and for 200 CPU time. We can observe the slight improvement
on PILS but although there is an important relative decrease on the average
epsilon indicator, it is not enough to improve the results to a signi�cant extent.
More or less all other algorithms maintain their relative positions with little
di�erences.
We commented before that the average performance is not constant for all
instance sizes. For example, PILS can be a very good algorithm for small

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 65 � #81 i

i

i

i

i

i

4.5. COMPUTATIONAL EVALUATION 65

problems. Figure 4.5 shows the parametric results for the epsilon indicator
and for 200ms CPU time but focused on the 50× 5 instances. As we can see,
this group of instances is �easy� in the sense that a large group of algorithms is
able to give very low epsilon indicator values. Most notably, PILS statistically
outperforms MOSA_Varadharajan albeit by a small margin. This performance
however is not consistent. For instances of the size 50 × 10, PILS is the third
best performer and for instances if size 100 × 5 PILS results to be the worst
algorithm in the comparison. A worthwhile venue of research would be to in-
vestigate the strengths of PILS and to speed it up so that the performance is
maintained for a larger group of instances.

Total completion time and total tardiness results

Total completion time criterion is related to the amount of work-in-progress
or WIP. A low total completion time minimizes WIP and cycle time as well.
As it was the case with the makespan criterion, total completion time is not
correlated with total tardiness. Therefore, in this section we report the results
for these two objectives.
Table 4.4 shows the corresponding average hypervolume and epsilon indicator
values.
One should expect that di�erent criteria combinations should result in di�er-
ent performance for the algorithms tested. However, comparing the results
of Tables 4.3 and 4.4 gives a di�erent picture. MOSA_Varadhrajan and MO-
GALS_Arroyo produce the best results with independence of the allowed CPU
time. MOGA_Murata as well as many others keep their relative position and
most other PFSP-speci�c methods are still on the lower positions despite the
new criteria combination. The only noteworthy exception is the (µ+λ)−PAES
method which is ranking 7th where for the other criteria combinations it was
ranking around 12th. As it was the case with the previous makespan and to-
tal tardiness criteria combination, both quality indicators and both parametric
as well as non-parametric statistics give consistent results. For example, Fig-
ure 4.6 shows the parametric results for the epsilon indicator and for 200ms
CPU time across all instances.
As can be seen, most of the observed di�erences from Table 4.4 are indeed
statistically signi�cant.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 66 � #82 i

i

i

i

i

i

66 CHAPTER 4.

Makespan and total completion time results
Finally, we study the combination of makespan and total completion time.
Contrary to the two previous criteria combinations, these two objectives are
correlated. It is straightforward to see that a low makespan value will also
result in a reduced total completion time. However, there are some scheduling
scenarios where this is not true. In our case, the best approximated Pareto
fronts obtained throughout the tests contain several points and in the case of
large instances, Pareto fronts are composed of hundreds of points. Therefore,
it seems that these two objectives are not as correlated as they seem. Table 4.4
shows the observed average values. Once again, the results are remarkably
similar with respect to the other criteria combinations. MOSA_Varadhrajan
and MOGALS_Arroyo are the best performers for the three criteria combina-
tions and the non PFSP-speci�c methods PESA and PESAII are very good
performers as well. As in the other cases, most observed di�erences in the
average values are statistically signi�cant as shown in Figure 4.7.

4.6 Comments and Conclusions
In this chapter we have conducted a comprehensive computational evaluation
of 23 di�erent metaheuristics proposed for the Pareto or �a posteriori� multi-
objective approach. Recent and state-of-the-art quality measures have been
employed in an extensive experiment where makespan, total completion time
and total tardiness criteria have been studied in three di�erent two-criteria
combinations. The comparative evaluation not only includes �owshop-speci�c
algorithms but also adaptations of other general methods proposed in the multi-
objective optimization literature. A new set of benchmark instances, based on
the well known benchmark of [193] has been proposed and is currently available
online along with the best known Pareto fronts for the tested objectives.
A comprehensive statistical analysis of the results has been conducted with
both parametric as well as non-parametric techniques. We have shown the pre-
ferred qualities of the parametric tests over the non-parametric counterparts,
contrary to what is mainstream in the literature. The array of statistical anal-
yses soundly support the observed performances of the evaluated algorithms.
As a result, we have identi�ed the best algorithms from the literature, which,
along with the survey, constitute an important study and reference work for
further research. Overall, the multi-objective simulated algorithm of [210],
MOSA_Varadharajan can be regarded as the best performer under our ex-
perimental settings. Another consistent performer is the genetic local search

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 67 � #83 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 67

method MOGALS_Arroyo of [14]. Our adapted versions of PESA and PE-
SAII from [45] and [44], respectively, have shown a very good performance over
many other �owshop-speci�c algorithms. The recent PILS method from [67]
has shown a promising performance for small instances. In our study we have
also shown that di�erent stopping criteria as well as di�erent criteria combina-
tions result in little changes, i.e., the algorithms that give best results do so in
a wide array of circumstances.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 68 � #84 i

i

i

i

i

i

68 CHAPTER 4.
Ta

bl
es

an
d
�g

ur
es

A
cr
on

ym
Ye

ar
A
ut
ho

r/
s

T
yp

e
N
SG

A
19

94
Sr
in
iv
as

an
d
D
eb

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

M
O
G
A
_
M
ur
at
a

19
96

M
ur
at
a
et

al
.

G
en

et
ic

al
go

rit
hm

.
Sp

ec
i�
c

SP
EA

19
99

Zi
tz
le
r
an

d
T
hi
el
e

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

SA
_
C
ha

kr
av
ar
ty

19
99

C
ha

kr
av
ar
th
y
an

d
R
aj
en

dr
an

Si
m
ul
at
ed

an
ne

al
in
g.

Sp
ec
i�
c

PA
ES

20
00

K
no

w
le
s
an

d
C
or
ne

Po
pu

la
tio

n
lo
ca
ls

ea
rc
h.

G
en

er
al

(µ
+

λ
)−

PA
ES

20
00

K
no

w
le
s
an

d
C
or
ne

Po
pu

la
tio

n
lo
ca
ls

ea
rc
h.

G
en

er
al

PE
SA

20
00

C
or
ne

et
al
.

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

SP
EA

II
20

01
Zi
tz
le
r
et

al
.

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

PE
SA

II
20

01
C
or
ne

et
al
.

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

EN
G
A

20
01

B
ag

ch
i

G
en

et
ic

al
go

rit
hm

.
Sp

ec
i�
c

C
M
O
G
A

20
01

M
ur
at
a
et

al
.

G
en

et
ic

al
go

rit
hm

.
Sp

ec
i�
c

N
SG

A
II

20
02

D
eb

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

C
N
SG

A
II

20
03

D
eb

et
al
.

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

ε
−
M
O
EA

20
03

D
eb

et
al
.

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

B
−
IB

EA
20

04
Zi
tz
le
r
an

d
K
ün

zl
i

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

A
−
IB

EA
20

04
Zi
tz
le
r
an

d
K
ün

zl
i

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

M
O
SA

_
Su

re
sh

20
04

Su
re
sh

an
d
M
oh

an
as
un

da
ra
m

Si
m
ul
at
ed

an
ne

al
in
g.

Sp
ec
i�
c

M
O
T
S

20
04

A
rm

en
ta
no

an
d
A
rr
oy
o

Ta
bu

se
ar
ch
.
Sp

ec
i�
c

ε
−
N
SG

A
II

20
05

K
ol
la
t
an

d
R
ee
d

G
en

et
ic

al
go

rit
hm

.
G
en

er
al

M
O
G
A
LS

_
A
rr
oy
o

20
05

A
rr
oy
o
an

d
A
rm

en
ta
no

G
en

et
ic

al
go

rit
hm

.
Sp

ec
i�
c

M
O
SA

_
Va

ra
dh

ar
aj
an

20
05

Va
ra
dh

ar
aj
an

an
d
R
aj
en

dr
an

Si
m
ul
at
ed

an
ne

al
in
g.

Sp
ec
i�
c

PG
A
_
A
LS

20
06

Pa
su
pa

th
y
et

al
.

G
en

et
ic

al
go

rit
hm

.
Sp

ec
i�
c

PI
LS

20
07

G
ei
ge
r

It
er
at
ed

lo
ca
ls

ea
rc
h.

Sp
ec
i�
c

Ta
bl
e
4.
1:

Re
-im

pl
em

en
te
d
m
et
ho

ds
fo
rt

he
m
ul
ti-

ob
je
ct
iv
e
�o

ws
ho

p.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 69 � #85 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 69

Pa
ra
m
et
er
s

N
SG

A
M
O
G
A
_
M
ur
.

SP
EA

SA
_
C
ha

kr
.

PA
ES

(µ
+

λ
)−

PA
ES

PE
SA

SP
EA

II
In
iP
op

R
R

R
PR

R
R

R
R

P
s

10
0

10
0

10
0

3
10

10
10

0
10

0
Se

le
ct
io
n

T
R

T
-

T
T

R
R

C
ro
ss
ov
er

O
P

T
P

T
P

-
-

-
U
X

O
P

P
c

1
0,
01

0,
01

-
-

-
0

0,
04

M
ut
at
io
n

-
S

S
-

S
S

S
S

P
m

-
0

0
-

0,
04

1
/
n

1
/
n

6
A
rc
hi
ve
_
s

-
-

20
-

50
50

10
0

10
0

#
El
ite

-
5

-
-

-
-

-
-

O
th
er
s

σ
s

h
a

r
e
=
0.
1

-
-

T
i
=
47

5
G

s
=
5

G
s
=
5

G
s

=
3
2
×

3
2

-
α
=
1

T
e
=
5

P
w
=
0.
15

Pa
ra
m
et
er
s

PE
SA

II
EN

G
A

C
M
O
G
A

N
SG

A
II

C
N
SG

A
II

ε
−
M
O
EA

B
−
IB

EA
A
−
IB

EA
In
iP
op

R
R

R
R

R
R

R
R

P
s

i
z

e
10

0
20

0
10

0
10

10
10

0
10

0
10

0
Se

le
ct
io
n

H
R

R
R

T
T

R
T

T
C
ro
ss
ov
er

U
X

O
P

T
P

O
P

T
P

T
P

O
P

O
P

P
c
r

o
s

s
0

0,
01

0,
01

0,
01

0,
04

0,
04

0,
01

0,
01

M
ut
at
io
n

S
-

S
S

S
S

S
S

P
m

u
t

1
/
n

-
0

1
/
n

1
/
n

1
/
n

0
0

A
rc
hi
ve

siz
e

10
0

-
-

-
-

-
-

-
#

El
ite

-
-

3
-

-
-

-
-

O
th
er
s

G
s

=
3
2
×

3
2

σ
s

h
a

r
e
=
0.
2

M
C
D
=
20

-
ε=

0.
00

1
K
=
0.
05

K
=
0.
05

α
=
1

I
+ ε

I
+ ε

M
i
=
10

0
M

n
=
5

P
w
=
0.
8

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 70 � #86 i

i

i

i

i

i

70 CHAPTER 4.
Pa

ra
m
et
er
s

M
O
SA

_
Su

r.
M
O
T
S

ε
−
N
SG

A
II

M
O
G
A
LS

_
A
rr
.
M
O
SA

_
Va

ra
dh

.
PG

A
_
A
LS

PI
LS

In
iP
op

R
H

R
R

H
H

R
P

s
i
z

e
1

10
D
yn

am
ic

10
0

4
10

0
D
yn

am
ic

Se
le
ct
io
n

-
-

T
R

-
R

-
C
ro
ss
ov
er

-
-

T
P

T
P

-
O
P

-
P

c
r

o
s

s
-

-
0,
04

0,
01

-
0,
04

-
M
ut
at
io
n

-
-

S
S

-
S

-
P

m
u

t
-

-
1
/
n

0
-

0
-

A
rc
hi
ve

siz
e

10
-

-
-

50
0

-
-

#
El
ite

-
-

-
20

-
-

-
O
th
er
s

T
i
=
28

5
-

ε=
0.
01

N
P=

10
T

i
=
57

5
-

N
N
=
3

T
e
=
5

T
e
=
20

C
r
=
0.
9

C
r
=
0.
9

M
i
=
30

Ta
bl
e
4.
2:

D
et
ai
ls,

op
er
at
or
sa

nd
pa

ra
m
et
er

va
lu
es

of
th
e
al
go

rit
hm

s.

In
iP
op

=
po

pu
la
ti
on

in
it
ia
liz

at
io
n:

R
=
R
an

do
m
,P

R
=
P
ri
or
it
y
ru
le
s,
H
=
H
eu

ri
st
ic
.

P
s
=
Po

pu
la
ti
on

si
ze
.
Se

le
ct
io
n:

T
=
To

ur
na

m
en
t,
R
=
R
ou

le
tt
e,

H
R
=
H
yp

er
bo

x
ro
ul
et
te
.
C
ro
ss
ov
er
:
O
P
=
O
ne

po
in
to

rd
er

cr
os
so
ve
r,
T
P
=
Tw

o
po

in
to

rd
er

cr
os
so
ve
r,
U
X
=
U
ni
fo
rm

or
de

rc
ro
ss
ov
er
.

P
c
=
C
ro
ss
ov
er

pr
ob

ab
ili
ty
.

P
m
=
M
ut
at
io
n
pr
ob

ab
ili
ty
.
A
rc
hi
ve
_
s=

A
rc
hi
ve

si
ze
.
#

E
lit
e=

N
um

be
r
of

el
it
e
so
lu
ti
on

s.
T

i
=
In
it
ia
lt
em

pe
ra
tu
re

(S
A
),

T
e
=
Fi
na

l
te
m
pe

ra
tu
re

(S
A
),

P
w
=
P
ro
ba

bi
lit
y
of

ac
ce
pt
in
g
w
or
se

so
lu
ti
on

s.
G

s
=
G
ri
d
si
ze
.
M
C
D
=
M
ax

im
um

ce
ll
di
st
an

ce
.

I
+ ε
=
A
di
ti
ve

ep
si
lo
n
in
di
ca
-

to
r.

C
r
=
C
oo

lin
g
ra
te
.

M
i
=
M
ax

im
um

nu
m
be

r
of

it
er
at
io
ns

at
th
e
sa
m
e
te
m
pe

ra
tu
re
.

M
n
=
M
ax

im
um

nu
m
be

r
of

no
n-
im

pr
ov

in
g
it
er
at
io
ns
.

N
P
=
N
um

be
r
of

pa
th
s
to

be
ex
pl
or
ed

.
N

N
=
N
um

be
r
of

ne
ig
hb

ou
rh
oo

ds
.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 71 � #87 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 71
T
im

e
10

0
15

0
20

0
#

M
et
ho

d
I

H
I
1 ε

M
et
ho

d
I

H
I
1 ε

M
et
ho

d
I

H
I
1 ε

1
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
36

6
1.
04

9
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
36

0
1.
05

3
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
35

7
1.
05

6
2

M
O
G
A
LS

_
A
rr
oy
o

1.
29

0
1.
08

9
M
O
G
A
LS

_
A
rr
oy
o

1.
29

9
1.
08

2
M
O
G
A
LS

_
A
rr
oy
o

1.
30

1
1.
08

0
3

PE
SA

1.
28

5
1.
08

6
PE

SA
1.
28

7
1.
08

4
PE

SA
1.
29

1
1.
08

1
4

PE
SA

II
1.
28

0
1.
08

9
PE

SA
II

1.
28

4
1.
08

6
PE

SA
II

1.
28

8
1.
08

4
5

PG
A
_
A
LS

1.
27

3
1.
11

6
PG

A
_
A
LS

1.
26

7
1.
11

6
PG

A
_
A
LS

1.
25

5
1.
11

8
6

M
O
T
S

1.
22

4
1.
13

5
M
O
T
S

1.
23

2
1.
13

1
M
O
T
S

1.
23

5
1.
12

9
7

M
O
G
A
_
M
ur
at
a

1.
17

8
1.
14

8
M
O
G
A
_
M
ur
at
a

1.
18

7
1.
14

3
M
O
G
A
_
M
ur
at
a

1.
19

5
1.
13

8
8

C
M
O
G
A

1.
15

0
1.
16

2
C
M
O
G
A

1.
16

9
1.
15

0
C
M
O
G
A

1.
18

1
1.
14

3
9

N
SG

A
II

1.
14

2
1.
16

8
N
SG

A
II

1.
15

6
1.
16

0
N
SG

A
II

1.
16

5
1.
15

5
10

SP
EA

1.
14

1
1.
16

9
SP

EA
1.
15

4
1.
16

1
SP

EA
1.
16

4
1.
15

5
11

C
N
SG

A
II

1.
13

7
1.
16

9
C
N
SG

A
II

1.
15

3
1.
16

0
C
N
SG

A
II

1.
16

2
1.
15

4
12

ε
−
N
SG

A
II

1.
09

1
1.
19

5
ε
−
N
SG

A
II

1.
10

6
1.
18

7
ε
−
N
SG

A
II

1.
11

5
1.
18

2
13

(µ
+

λ
)−

PA
ES

1.
08

6
1.
19

7
(µ

+
λ
)−

PA
ES

1.
10

1
1.
18

8
(µ

+
λ
)−

PA
ES

1.
11

0
1.
18

3
14

PA
ES

1.
04

9
1.
21

9
ε
−
M
O
EA

1.
05

1
1.
22

2
ε
−
M
O
EA

1.
06

1
1.
21

6
15

ε
−
M
O
EA

1.
04

5
1.
22

5
PA

ES
1.
03

5
1.
22

7
PA

ES
1.
02

8
1.
23

0
16

M
O
SA

_
Su

re
sh

0.
97

6
1.
29

0
M
O
SA

_
Su

re
sh

0.
96

0
1.
30

1
M
O
SA

_
Su

re
sh

0.
95

5
1.
30

3
17

SA
_
C
ha

kr
av
ar
ty

0.
89

4
1.
39

5
SA

_
C
ha

kr
av
ar
ty

0.
88

2
1.
40

2
SA

_
C
ha

kr
av
ar
ty

0.
87

0
1.
41

0
18

PI
LS

0.
80

3
1.
40

9
PI

LS
0.
84

3
1.
37

9
PI

LS
0.
86

6
1.
36

3
19

EN
G
A

0.
58

8
1.
52

2
A
−
IB

EA
0.
59

2
1.
51

8
A
−
IB

EA
0.
59

9
1.
51

4
20

A
−
IB

EA
0.
57

8
1.
52

8
EN

G
A

0.
57

0
1.
53

4
EN

G
A

0.
55

9
1.
54

2
21

SP
EA

II
0.
53

7
1.
54

4
SP

EA
II

0.
52

4
1.
55

0
SP

EA
II

0.
52

2
1.
54

9
22

N
SG

A
0.
52

0
1.
57

1
N
SG

A
0.
50

2
1.
58

4
N
SG

A
0.
49

0
1.
59

3
23

B
−
IB

EA
0.
41

1
1.
64

0
B
−
IB

EA
0.
41

1
1.
64

1
B
−
IB

EA
0.
41

7
1.
63

7

Ta
bl
e4

.3
:R

es
ul
ts

fo
rt

he
m
ak

es
pa

n
an

d
to
ta
lt
ar
di
ne

ss
cr
ite

ria
.A

ve
ra
ge

qu
al
ity

in
di
ca
to
rv

al
ue

sf
or

th
e
23

al
go

rit
hm

st
es
te
d
un

de
rt

he
th
re
ed

i�
er
en
tt

er
m
in
at
io
n
cr
ite

ria
.E

ac
h
va
lu
ei

sa
ve
ra
ge
d
ac
ro
ss

11
0
in
st
an

ce
s

an
d
10

re
pl
ica

te
s
pe

r
in
st
an

ce
(1
,1
00

va
lu
es
).

Fo
r
ea
ch

te
rm

in
at
io
n
cr
ite

ria
lev

el,
th
e
m
et
ho

ds
ar
e
so
rt
ed

ac
co
rd
in
g
to
I H

.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 72 � #88 i

i

i

i

i

i

72 CHAPTER 4.
T
im

e
10

0
15

0
20

0
#

M
et
ho

d
I

H
I
1 ε

M
et
ho

d
I

H
I
1 ε

M
et
ho

d
I

H
I
1 ε

1
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
38

1
1.
03

4
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
37

7
1.
03

6
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
37

5
1.
03

6
2

M
O
G
A
LS

_
A
rr
oy
o

1.
33

0
1.
05

7
M
O
G
A
LS

_
A
rr
oy
o

1.
32

6
1.
06

0
M
O
G
A
LS

_
A
rr
oy
o

1.
32

4
1.
06

1
3

PG
A
_
A
LS

1.
31

1
1.
07

6
PG

A
_
A
LS

1.
31

3
1.
07

5
PG

A
_
A
LS

1.
31

5
1.
07

4
4

M
O
T
S

1.
29

6
1.
07

3
M
O
T
S

1.
30

2
1.
07

1
M
O
T
S

1.
30

9
1.
06

7
5

PE
SA

1.
26

3
1.
08

8
PE

SA
1.
26

2
1.
08

8
PE

SA
1.
26

3
1.
08

8
6

PE
SA

II
1.
26

3
1.
08

8
PE

SA
II

1.
26

1
1.
08

8
PE

SA
II

1.
26

2
1.
08

7
7

(µ
+

λ
)−

PA
ES

1.
19

0
1.
12

6
(µ

+
λ
)−

PA
ES

1.
19

6
1.
12

3
(µ

+
λ
)−

PA
ES

1.
20

0
1.
12

1
8

M
O
G
A
_
M
ur
at
a

1.
18

3
1.
12

8
M
O
G
A
_
M
ur
at
a

1.
19

1
1.
12

4
M
O
G
A
_
M
ur
at
a

1.
19

8
1.
12

0
9

C
M
O
G
A

1.
16

3
1.
13

8
C
M
O
G
A

1.
17

8
1.
13

0
C
M
O
G
A

1.
18

8
1.
12

5
10

N
SG

A
II

1.
15

8
1.
14

3
N
SG

A
II

1.
17

0
1.
13

7
N
SG

A
II

1.
17

6
1.
13

4
11

C
N
SG

A
II

1.
14

8
1.
14

6
C
N
SG

A
II

1.
16

2
1.
13

9
C
N
SG

A
II

1.
17

1
1.
13

5
12

SP
EA

1.
13

7
1.
15

1
SP

EA
1.
14

9
1.
14

5
SP

EA
1.
15

7
1.
14

1
13

ε
−
N
SG

A
II

1.
11

1
1.
16

5
ε
−
N
SG

A
II

1.
13

1
1.
15

5
ε
−
N
SG

A
II

1.
14

4
1.
14

8
14

ε
−
M
O
EA

1.
10

0
1.
17

0
ε
−
M
O
EA

1.
10

7
1.
16

7
ε
−
M
O
EA

1.
11

1
1.
16

4
15

PA
ES

1.
08

1
1.
19

0
PA

ES
1.
07

1
1.
19

5
PA

ES
1.
06

6
1.
19

7
16

M
O
SA

_
Su

re
sh

1.
06

5
1.
20

7
M
O
SA

_
Su

re
sh

1.
05

3
1.
21

4
M
O
SA

_
Su

re
sh

1.
04

8
1.
21

6
17

PI
LS

0.
82

4
1.
38

8
PI

LS
0.
86

5
1.
35

7
PI

LS
0.
90

0
1.
33

4
18

SA
_
C
ha

kr
av
ar
ty

0.
61

2
1.
48

0
SA

_
C
ha

kr
av
ar
ty

0.
59

2
1.
49

3
SA

_
C
ha

kr
av
ar
ty

0.
58

4
1.
49

8
19

SP
EA

II
0.
45

3
1.
57

2
SP

EA
II

0.
44

6
1.
57

7
SP

EA
II

0.
44

5
1.
57

6
20

EN
G
A

0.
42

6
1.
60

9
EN

G
A

0.
40

6
1.
62

8
EN

G
A

0.
39

7
1.
63

5
21

N
SG

A
0.
36

8
1.
65

8
N
SG

A
0.
34

8
1.
67

9
A
−
IB

EA
0.
33

9
1.
67

0
22

A
−
IB

EA
0.
33

3
1.
67

6
A
−
IB

EA
0.
33

7
1.
67

4
N
SG

A
0.
33

8
1.
68

6
23

B
−
IB

EA
0.
33

2
1.
67

6
B
−
IB

EA
0.
33

7
1.
67

3
B
−
IB

EA
0.
33

8
1.
67

1

Ta
bl
e
4.
4:

Re
su
lts

fo
r
th
e
to
ta
lc

om
pl
et
io
n
tim

e
an

d
to
ta
lt

ar
di
ne

ss
cr
ite

ria
.

Av
er
ag

e
qu

al
ity

in
di
ca
to
r

va
lu
es

fo
r
th
e
23

al
go

rit
hm

s
te
st
ed

un
de

r
th
e
th
re
e
di
�e

re
nt

te
rm

in
at
io
n
cr
ite

ria
.
Ea

ch
va
lu
e
is

av
er
ag

ed
ac
ro
ss

11
0
in
st
an

ce
s
an

d
10

re
pl
ica

te
s
pe

r
in
st
an

ce
(1
,1
00

va
lu
es
).

Fo
r
ea
ch

te
rm

in
at
io
n
cr
ite

ria
lev

el,
th
e

m
et
ho

ds
ar
e
so
rt
ed

ac
co
rd
in
g
to
I H

.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 73 � #89 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 73

T
im

e
10

0
15

0
20

0
#

M
et
ho

d
I

H
I
1 ε

M
et
ho

d
I

H
I
1 ε

M
et
ho

d
I

H
I
1 ε

1
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
36

2
1.
05

4
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
35

6
1.
05

8
M
O
SA

_
Va

ra
dh

ar
aj
an

1.
35

0
1.
06

1
2

M
O
G
A
LS

_
A
rr
oy
o

1.
33

7
1.
06

6
M
O
G
A
LS

_
A
rr
oy
o

1.
33

7
1.
06

4
M
O
G
A
LS

_
A
rr
oy
o

1.
33

6
1.
06

4
3

M
O
T
S

1.
30

9
1.
08

7
M
O
T
S

1.
31

2
1.
08

5
M
O
T
S

1.
31

2
1.
08

3
4

PG
A
_
A
LS

1.
27

1
1.
12

0
PE

SA
1.
27

3
1.
09

1
PE

SA
1.
27

5
1.
09

1
5

PE
SA

1.
26

9
1.
09

2
PG

A
_
A
LS

1.
27

2
1.
12

1
PG

A
_
A
LS

1.
27

2
1.
12

2
6

PE
SA

II
1.
26

2
1.
09

5
PE

SA
II

1.
26

7
1.
09

3
PE

SA
II

1.
26

8
1.
09

3
7

M
O
G
A
_
M
ur
at
a

1.
16

0
1.
15

4
M
O
G
A
_
M
ur
at
a

1.
17

1
1.
14

8
M
O
G
A
_
M
ur
at
a

1.
17

6
1.
14

6
8

C
M
O
G
A

1.
13

4
1.
16

7
C
M
O
G
A

1.
15

5
1.
15

5
C
M
O
G
A

1.
16

7
1.
14

9
9

C
N
SG

A
II

1.
11

1
1.
18

0
C
N
SG

A
II

1.
12

6
1.
17

1
C
N
SG

A
II

1.
13

3
1.
16

8
10

N
SG

A
II

1.
10

6
1.
18

4
N
SG

A
II

1.
12

1
1.
17

7
N
SG

A
II

1.
12

8
1.
17

3
11

SP
EA

1.
09

9
1.
18

6
SP

EA
1.
11

6
1.
17

6
SP

EA
1.
12

2
1.
17

3
12

(µ
+

λ
)−

PA
ES

1.
05

9
1.
20

6
(µ

+
λ
)−

PA
ES

1.
07

1
1.
19

9
(µ

+
λ
)−

PA
ES

1.
07

7
1.
19

6
13

ε
−
N
SG

A
II

1.
05

1
1.
21

3
ε
−
N
SG

A
II

1.
06

8
1.
20

4
ε
−
N
SG

A
II

1.
07

7
1.
19

9
14

ε
−
M
O
EA

1.
02

7
1.
23

3
ε
−
M
O
EA

1.
03

6
1.
22

8
ε
−
M
O
EA

1.
04

0
1.
22

6
15

PA
ES

1.
00

5
1.
23

8
PA

ES
0.
99

2
1.
24

4
PA

ES
0.
98

0
1.
25

2
16

M
O
SA

_
Su

re
sh

0.
95

0
1.
29

6
M
O
SA

_
Su

re
sh

0.
93

6
1.
30

3
M
O
SA

_
Su

re
sh

0.
92

2
1.
31

4
17

SA
_
C
ha

kr
av
ar
ty

0.
81

3
1.
41

0
PI

LS
0.
83

6
1.
38

3
PI

LS
0.
86

1
1.
36

7
18

PI
LS

0.
79

4
1.
41

3
SA

_
C
ha

kr
av
ar
ty

0.
79

8
1.
42

2
SA

_
C
ha

kr
av
ar
ty

0.
78

1
1.
43

1
19

EN
G
A

0.
51

2
1.
57

5
EN

G
A

0.
49

2
1.
59

0
EN

G
A

0.
47

7
1.
60

4
20

SP
EA

II
0.
47

5
1.
58

6
SP

EA
II

0.
46

7
1.
59

0
SP

EA
II

0.
45

8
1.
60

0
21

N
SG

A
0.
44

6
1.
62

5
A
−
IB

EA
0.
42

6
1.
62

6
B
−
IB

EA
0.
42

5
1.
63

1
22

A
−
IB

EA
0.
41

6
1.
63

4
N
SG

A
0.
42

6
1.
64

2
A
−
IB

EA
0.
42

4
1.
63

1
23

B
−
IB

EA
0.
41

6
1.
63

4
B
−
IB

EA
0.
42

3
1.
62

9
N
SG

A
0.
40

9
1.
65

8

Ta
bl
e
4.
5:

Re
su
lts

fo
rt

he
m
ak

es
pa

n
an

d
to
ta
lc

om
pl
et
io
n
tim

e.
Av

er
ag

e
qu

al
ity

in
di
ca
to
rv

al
ue

sf
or

th
e
23

al
go

rit
hm

st
es
te
d
un

de
rt

he
th
re
ed

i�
er
en
tt

er
m
in
at
io
n
cr
ite

ria
.E

ac
h
va
lu
ei

sa
ve
ra
ge
d
ac
ro
ss

11
0
in
st
an

ce
s

an
d
10

re
pl
ica

te
s
pe

r
in
st
an

ce
(1
,1
00

va
lu
es
).

Fo
r
ea
ch

te
rm

in
at
io
n
cr
ite

ria
lev

el,
th
e
m
et
ho

ds
ar
e
so
rt
ed

ac
co
rd
in
g
to
I H

.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 74 � #90 i

i

i

i

i

i

74 CHAPTER 4.

MOSA_VaradharajanPESAPESAIIMOGALS_ArroyoPGA_ALSMOTSMOGA_MurataCMOGANSGAIISPEACNSGAIIε−NSGAII(µ+λ)−PAESPAESε−MOEAMOSA_SureshSA_ChakravartyPILSENGAA− IBEASPEAIINSGAB− IBEA

1.1 1.2 1.3 1.4 1.5 1.6Epsilon quality indicator
Figure 4.1: Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 100 CPU time stopping criterion. Makespan and total

tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 75 � #91 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 75

MOSA_VaradharajanPESAMOGALS_ArroyoPESAIIPGA_ALSMOTSMOGA_MurataCMOGANSGAIICNSGAIISPEAε−NSGAIIPAES(µ+λ)−PAESε−MOEAPILSMOSA_SureshSA_ChakravartyENGAA− IBEASPEAIINSGAB− IBEA

50 100 150 200Epsilon rank quality indicator
Figure 4.2: Means plot and MSD con�dence intervals (αs = 0.01, α = 0.05)
for the Friedman Rank-based test. Epsilon indicator response variable and 100

CPU time stopping criterion. Makespan and total tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 76 � #92 i

i

i

i

i

i

76 CHAPTER 4.

B− IBEANSGASPEAIIA− IBEAENGAPILSSA_ChakravartyMOSA_Sureshε−MOEAPAES(µ+λ)−PAESε−NSGAIICNSGAIISPEANSGAIICMOGAMOGA_MurataMOTSPGA_ALSPESAIIPESAMOGALS_ArroyoMOSA_Varadharajan

0.4 0.6 0.8 1.0 1.2 1.4Hypervolume quality indicator
Figure 4.3: Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Hypervolume
response variable and 100 CPU time stopping criterion. Makespan and total

tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 77 � #93 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 77

MOSA_VaradharajanMOGALS_ArroyoPESAPESAIIPGA_ALSMOTSMOGA_MurataCMOGACNSGAIISPEANSGAIIε−NSGAII(µ+λ)−PAESε−MOEAPAESMOSA_SureshPILSSA_ChakravartyA− IBEAENGASPEAIINSGAB− IBEA

1.1 1.2 1.3 1.4 1.5 1.6Epsilon quality indicator
Figure 4.4: Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 200 CPU time stopping criterion. Makespan and total

tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 78 � #94 i

i

i

i

i

i

78 CHAPTER 4.

PILSMOSA_VaradharajanPESAPESAIIMOGALS_ArroyoMOGA_MurataCMOGAPGA_ALSNSGAIISPEACNSGAIIMOTSε−NSGAII(µ+λ)−PAESε−MOEAPAESMOSA_SureshSA_ChakravartyENGASPEAIIA− IBEANSGAB− IBEA

1.2 1.4 1.6Epsilon quality indicator
Figure 4.5: Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment for the instance
group 50× 5. Epsilon indicator response variable and 200 CPU time stopping

criterion. Makespan and total tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 79 � #95 i

i

i

i

i

i

4.6. COMMENTS AND CONCLUSIONS 79

MOSA_VaradharajanMOGALS_ArroyoMOTSPGA_ALSPESAIIPESAMOGA_Murata(µ+λ)−PAESCMOGANSGAIICNSGAIISPEAε−NSGAIIε−MOEAPAESMOSA_SureshPILSSA_ChakravartySPEAIIENGAA− IBEAB− IBEANSGA

1.2 1.4 1.6Epsilon quality indicator
Figure 4.6: Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 200 CPU time stopping criterion. Total completion time

and total tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 80 � #96 i

i

i

i

i

i

80 CHAPTER 4.

MOSA_VaradharajanMOGALS_ArroyoMOTSPESAPESAIIPGA_ALSMOGA_MurataCMOGACNSGAIINSGAIISPEA(µ+λ)−PAESε−NSGAIIε−MOEAPAESMOSA_SureshPILSSA_ChakravartySPEAIIENGAA− IBEAB− IBEANSGA

1.1 1.2 1.3 1.4 1.5 1.6Epsilon quality indicator
Figure 4.7: Means plot and Tukey HSD con�dence intervals (αs = 0.01, α =
0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 200 CPU time stopping criterion. Makespan and total

completion time criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 81 � #97 i

i

i

i

i

i

Chapter 5

Pareto Iterated Greedy Algorithm
for PFSP with setups

In this chapter we extend the model presented in chapter 4 considering the
presence of sequence dependent setup times.
In the literature, many papers have faced the �owshop scheduling problem with
setups, but according to our knowledge, nothing has been published dealing
with both the optimization of more than one objective and sequence dependent
setup times, although it is de�nitely a relevant topic. Here we tackle such a
problem by means of an innovative algorithm (IPG). We compare this new
approach with the highest performig classical approaches, proposed for multi-
objective �owshop problem or general purpose. Finally, statistical techniques
are employed to prove that IPG widely outperforms all other approaches.

5.1 Introduction
The aim of this chapter is to introduce the problem of multi-objective permu-
tation �owshop with sequence dependent setup times, to present a new, highly
e�ective, algorithm and to demonstrate its superiority when compared with
the best published approaches.
The well known �owshop scheduling problem (FSP) is considered. In the multi-
objective version of this problem the target is to �nd a set of processing se-
quences of jobs so that a given set of di�erent criteria is optimized. In this

81

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 82 � #98 i

i

i

i

i

i

82 CHAPTER 5.

chapter we consider two well known independent objectives, the Maximum
Completion Time also called Makespan (Cmax) and the Total Weighted Tar-
diness (TWT). In addition, in real life production environments it is often
required to consider the presence of setup times. We can roughly classify them
in two main categories. In the �rst one there are those which are Sequence
Independent (SIST) i.e. the changeover time for a machine only depends on
the current job in execution. In the second category there are the Sequence
Dependent setup times (SDST). In this case setup time for a machine depends
either on the actual job in process and on the preceding one. Since the second
group is more general, more often present in real cases and less studied, we
limited our investigation to this �eld. The presence of setup times a�ects with
delay the completion time cj,k of each job j on each machine k and hence the
objectives considered.
Although in some cases it is possible to consider the setup costs, in terms of
money and time, included in the processing costs, in the majority of industrial
contexts it is not possible to ignore them. In the last decade the relevance
of both multi-objective and setup topics has been increasing. This is why we
decided to face with this more general and complex problem, using an algo-
rithm of new conception. We proved its e�ectiveness against the set of the
best multi-objective algorithms, general purpose or proposed expressly for the
PFSP, modi�ed for handling setup times. Furthermore, we carefully selected
and employed basic as well as advanced e�ectiveness measures. Careful and
comprehensive statistical testing is carried out to ensure the con�dence of the
conclusions.
The remainder of this chapter is organized as follows: section 5.2 presents a
mathematical model and an accurate description of the considered problem.
In section 5.3 we give a careful description of the proposed algorithm. In sec-
tion 5.4 results of a wide campaign of experiments are shown and analyzed.
Finally in section 5.5 some conclusions and further research topics are given.

5.2 Problem Description

Let J = {J1, J2 . . . Jn} the set of jobs to be processed in a production envi-
ronment that consists in the set M = {M1,M2 . . .Mm} machines and let pi,j ,
the processing time of job i on machine j for each i ∈ N = {1, 2 . . . n} and
j ∈ M = {1, 2 . . .m}, be known in advance. Each job Ji has assigned a due
date di, that represents the delivery date agreed with the costumer, it deals
with the completion time of the job on the last machine. If a job is terminated

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 83 � #99 i

i

i

i

i

i

5.2. PROBLEM DESCRIPTION 83

after this time, then it is considered late. For each couple of jobs in J and for
each machine inM a setup time value si,j,k is given. Without loss of generality
we rearranged indexes of machines in such a way that the �rst machine in the
line has index 1, the second has index 2 and so on.
In the most general version of the �owshop scheduling problem (FSP) each
machine processes a possibly di�erent sequence of jobs, but in this paper we
consider only the case a single sequence is processed by all the machines in
the production line. PFSP has been demonstrated to belong to the NP-hard
class for many optimization criteria as shown in chapter 3. And the presence
of setup times makes PFSP also more di�cult to solve. Setups in fact have to
be added to processing times in order to calculate the completion time of each
job on each machine, furthermore in our model they are sequence dependent
(SDST) i.e the time needed for a setup on a machine depends on both the
actual job in process and the preceding one. Hence a permutation that is the
optimum for the classical PFSP might be far from the optimum for the same
criterion but considering setup times. In this chapter we face a bi-objective
version of PFSP with SDST where optimization criteria are: the minimization
of the maximum completion time of every job on the last machine (Makespan
or Cmax) (eq. 5.2) and the minimization of the Total Weighted Tardiness (eq.
5.3). Hereinafter we denote our problem as PSP-SDST-(Cmax, TWT). In what
follows a short description of this problem is presented.

PFSP-SDST-(Cmax,WT) : min
Pareto

(Cmax,WT) (5.1)

with
Cmax = max

i=1...n
ci,m (5.2)

WT =
n∑

i=1

wi × Ti =
n∑

i=1

[wi ×max (0, ci,m − di)] (5.3)

subject to

ci,j = max(ci,j−1, ci−1,j + si−1,i,j) + pi,j , (i, j) ∈ N ×M (5.4)

c0,j = 0, ci,0 = 0, s0,i = 0

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 84 � #100 i

i

i

i

i

i

84 CHAPTER 5.

Expression 5.1 indicates the problem type, i.e the minimization of criteria
presented in 5.2 and 5.3 according to Pareto relationship. Finally equation
5.4 shows how to calculate the completion time of job i on machine j, notice
that such value depends either on the completion time of the same job on the
previous machine and on the one of the previous job on the same machine.

5.3 Iterated Pareto Greedy
A new algorithm named Iterated Pareto Greedy (IPG) is presented in this sec-
tion. As can be deduced form the name, a greedy strategy is iteratively applied
over an archive of nondominated solutions. Such procedure, presented for the
�rst time in this chapter, is an evolution of the NEH heuristic of Nawaz et al.
[139] making use of the Pareto relationship to generate a set of solutions which
do not dominate each other.
The Iterated Greedy (IG) algorithm is a rather new metaheuristic approach
which has recently demonstrated to be the state-of-the-art for single objective
optimization of PFSP with [171] and without setups [170]. The IPG is a par-
ticular IG where the greedy procedure returns a set of nondominated solutions.
The main idea is very simple, a greedy procedure is iteratively invoked to gen-
erate a set of complete nondominated solutions starting from a partial solution.
Roughly it is possible to subdivide it into four phases. in the �rst phase (Initial-
ization) an initial set of possibly good solutions is generated using an heuristic
approach. Each heuristic employed is able to attain good values for only a
single criterion. The remaining three phases are iteratively repeated and con-
stitute the bulk of the algorithm. The second phase called Selection provides
one or more solutions of the current archive to the next phase. The Pareto im-
provement phase is applied on a selected solution. During this phase a current
solution is disrupted (Destruction) eliminating some jobs from the sequence
and a greedy procedure (Construction) is applied, it reinserts the eliminated
jobs into partial sequences returning hopefully a set of improved nondominated
solutions. Finally the Local search phase is applied on a solution of the solu-
tion archive. Figure 5.1 is a �ow chart of IPG algorithm. Following subsections
describe in details each phase

Algorithm Initialization
In order to obtain a good initial solution set (ISS) for IPG we used an ini-
tialization procedure proposed in [210] which attained good results. It makes

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 85 � #101 i

i

i

i

i

i

5.3. ITERATED PARETO GREEDY 85

use of NEH heuristic of Nawaz et al. [139] and of a di�erent one presented
by Rajendran in [160] both designed for the optimization of a single criterion.
Two distinct solutions for each objective to optimize are generated. Each solu-
tion is then subjected to three di�erent improvement scheme called Job-index
insertion, Overall-seed sequence insertion and Job-index swapping. For more
details see [210].

Selection phase
In the �rst iteration all the sequences in the initial solution set (ISS) are se-
lected for the improvement phase. In the remaining iterations, only a single
solution is selected. Such di�erent behavior avoids that, by selecting always a
single sequence, a great improvement during the �rst iteration could generate
a set of solutions which dominates all the sequences in ISS. This could com-
promise the search toward other promising regions of the objective space.
A modi�ed version of the Crowding Distance Assignment procedure, originally
presented in [49], has been developed in order to carry on the selection process.
Such procedure assigns to each element of the solution set a value (Crowding
distance) depending on the distance between it and the nearest solutions of the
same dominance level. The main di�erence consists in the fact that the mod-
i�ed procedure considers the number of times each solution has been selected
in the preceding iterations and uses this information calculating a modi�ed
crowding distance (MCD). The element with the highest value of MCD is se-
lected as current solution and used as a starting point in the Pareto improving
phase. The goal purpose of this procedure consists in selecting a candidate
solution which at the same time belongs to a less crowded region of the Pareto
front and possibly selected a lower number of times. The use of this measure
should improve the Pareto front in terms of quality and spread of its solutions.
The pseudocode of this procedure is presented in �gure 5.2.

Pareto Improving phase
This is a complex phase that, for a better understanding, can be subdivided in
two sub-phases that are respectively called Destruction and Construction.
During the Destruction, k positions of the sequence are selected and the respec-
tive jobs are removed. Jobs may be selected in a totally random way i.e. each
position is randomly generated without repetition. A di�erent case is when a
block of k consecutive positions is selected starting from a random generated
point of the sequence. The set of the removed items (RI) is then rearranged in

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 86 � #102 i

i

i

i

i

i

86 CHAPTER 5.

Figure 5.1: The �gure represents a schematic �ow chart of IPG

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 87 � #103 i

i

i

i

i

i

5.3. ITERATED PARETO GREEDY 87

Modi�ed-crowding-distance-assignment(ParetoSet)

DimSet := |ParetoSet|;

for all i := 1 . . . DimSet

ParetoSet[i]dist. = 0;

for all objective m

ParetoSet := sort(ParetoSet, m);

ParetoSet[1]dist. := −1;

ParetoSet[DimSet]dist. := −1;

for all i := 2 . . . DimSet− 1

ParetoSet[i]dist. := ParetoSet[i]dist. +
(ParetoSet[i+1]Obji

−ParetoSet[i−1]Obji
)

(fmax
m −fmin

m)
;

for all i := 1 . . . DimSet

if ParetoSet[i]dist. = −1 then

ParetoSet[i]dist. := maxi=1...DimSet (ParetoSet[i]dist.);

for all i := 1 . . . DimSet

ParetoSet[i]dist. := ParetoSet[i]dist. + mini=1...DimSet(ParetoSet[i]dist. > 0);

ParetoSet[i]distance := ParetoSet[i]dist.
ParetoSet[i]numEval+1

;

Figure 5.2: Modi�ed Crowding Distance Assignment Procedure(MCDA)

a new order. It can be totally random or using an heuristic rule which tries to
minimize one objective. Hence two new sequences are created, the incomplete
solution and the sequence of the removed elements.
For the Construction phase a variation of the NEH insertion scheme is used.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 88 � #104 i

i

i

i

i

i

88 CHAPTER 5.

The main di�erence from the NEH heuristic is the use of Pareto dominance
relationship to maintain not just one incomplete sequence at each iteration,
but the whole set of nondominated sequences generated during the insertion
process. More precisely, this procedure begins trying to insert the �rst job of
sequence of the removed elements in each possible position of the incomplete
current sequence. Let n be the initial sequence length and k the cardinality of
the removed job set, we have n− k + 1 possible insertion points and n− k + 1
incomplete solutions of length n− k + 1. Hence those sequences are evaluated
and the dominated ones are removed, �nally only m1 ≤ n − k + 1 incomplete
sequences are stored and used during the second iteration. At ith iteration
a set of mi ≤ (n − k + i − 1) partial sequences are generated. This means
that (n− k+ i− 1) is an upper bound for the number of generated incomplete
sequences at iteration i. Hence the total number of subsequences to evaluate
in this phase is bounded by:

Boundeval =
k∏

i=1

(n− k + i− 1)

Anyway this bound is very far to be strict because at each iteration all the
dominated incomplete sequences are removed. Anyway individuals with the
same values of the objective functions but with di�erent sequences of jobs are
considered as distinct and kept in the current incomplete sequence set. Ac-
cording to our experience we observed that this Pareto greedy heuristic is very
fast and e�ective.
The Improvement phase returns an archive of solutions which do not dominate
each other. This archive is joined into the current solution set and the dom-
inated solutions are removed. The �st time the improving phase is executed
all the solutions in ISS are processed and the respective generated archives
are joined before they are inserted into the current set of solutions. After-
wards, only one current solution is selected to be improved. This avoids that
great improvements in the �rst iterations could dominate the seed solutions
and compromise their promising search directions.

The local search phase
A simple and fast local search procedure has been demonstrated to be very use-
ful to improve the quality of the solutions in single as well as in multi-objective
framework. A swap or insertion move is used to implement the neighborhood
for the local search. In the sequence of the current solution nsel jobs are ran-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 89 � #105 i

i

i

i

i

i

5.4. EXPERIMENTAL EVALUATION OF THE ALGORITHM 89

Figure 5.3: The �gure represents an asymmetric neighbour for the LS.

domly selected and swapped with (or inserted in the positions of) nneigh jobs
chosen between its direct precursors and followers in the sequence. Depend-
ing on the position of the chosen job its neighborhood may or may not be
symmetric. An example of an asymmetric neighborhood is depicted in �gure
5.3. During the local search phase a small archive of nsel × nneigh solutions
is generated, evaluated and joined at the working set. At each iteration the
job with the best value of modi�ed crowding is selected to be improved in the
local search phase. To each nondominated individual is assigned a value of
nsel ∈ [1 . . . N/2] where N is the number of jobs of the current instance. Each
time a sequence is selected for the local search procedure such a number is
increased by one. Notice that when a new nondominated individual is found
its value of nsel is set to 1. The pseudocode of the local search prodecure is
presented in �gure 5.4

5.4 Experimental evaluation of the algorithm

Benchmark and performance measures
In all the experiments presented along this chapter we made use of two di�erent
sequence dependent instance sets based on the original instances of Taillard

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 90 � #106 i

i

i

i

i

i

90 CHAPTER 5.

LS(Seq,nsel,nneigh)

% Seq is the solution selected for the Local search.
% nneigh is the maximum number of positions a job
% could be moved to the left or to the right.

Pos = rand_V ett(1, Length(Seq));
% A vector of di�erent positions is randomly selected.

for all i := 1 . . . nsel

for all j := i . . . nneigh_left

% Copying the current sequence.
Copy(OutSet[i][j], Sol);

% Swapping the job in position Pos[i] with that one in Pos[i]− j.
SWAP (Pos[i], Pos[i]− j, OutSet[i][j]);

for all j := 1 . . . nneigh_right

% Copying the current sequence.
Copy(OutSet[i][j], Sol);

% Swapping the job in position Pos[i] with that one in Pos[i]− j.
SWAP (Pos[i], Pos[i] + j, OutSet[i][j]);

return OutSet

Figure 5.4: Local Search procedure (LS).

[193] and presented in [207] and used for the �rst time in [169]. Each set
contains instances with several combinations of the number of jobs n and and
number of machinesm. The n×m combinations are: {20, 50, 100}×{5, 10, 20},
200 × {10, 20}. Setup times are selected to be respectively the 50% and the
125% of processing times (pij). So for example, if the pij in Taillard's instances
are generated from a uniform distribution in the range [0− 99] in the �rst set
called SSD50 setup times are uniformly distributed in range [0 − 49] while in
the second set (SSD125) their range is [0 − 124]. Such benchmark sets are

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 91 � #107 i

i

i

i

i

i

5.4. EXPERIMENTAL EVALUATION OF THE ALGORITHM 91

�nally augmented by adding weights and due dates for each job. The weights
are drawn from a uniform U [1, 10] distribution. As regards the due dates
for the tardiness criterion we use the same approach of [82]. In this work,
a tight due date dj is assigned to each job j ∈ N following the expression:
dj = Pj × (1 + random · 3) where Pj =

∑m
i=1 pij is the sum of the processing

times over all machines for job j and random is a random number uniformly
distributed in [0, 1]. This method of generating due dates results in very tight
to relatively tight due dates depending on the actual value of random for each
job, i.e., if random is close to 0, then the due date of the job is going to be
really tight as it would be more or less the sum of its processing times. A total
of 220 instances are used to carry out our experiments. These instances can be
downloaded from http://soa.upv.es.
As regards the performance measures, all considerations made in the previous
chapter remain valid. In particular measures so-called �Pareto-compliant �
[224, 225] seem the most appropriate to be used. Among these we selected
the hypervolume (IH) and the multiplicative Epsilon (I1

ε) indicators which
represents the state-of-the-art as far as quality indicators are concerned. For
more details see 4.3.

Adaptation of existing metaheuristics
In capther 3 we reviewed a large number of papers dealing with multi-objective
�owshop. In chapter 4 the most performing among them have been reim-
plemented. We compared them with the best known general purpose multi-
objective algorithms. In this way we could rank those algorithms identifying
the best ones. To do this we needed a huge number of hours of computing
due to the high number of algorithms to evaluate . In this chapter we follow
a di�erent strategy. We �rst reduced the number of algorithms by means of a
preliminary test on a reduced set of 110 instances and, depending on the at-
tained results, we selected the best ten algorithms. Note that such algorithms
presented also the best results for permutation �owshop without setups. Seven
of them are speci�cally designed to tackle �owshop problems while the remain-
ing three are generic optimization algorithms. Such algorithm are summarized
in table 5.1.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 92 � #108 i

i

i

i

i

i

92 CHAPTER 5.
Ac

ro
ny

m
Ye

ar
A
ut
ho

r/
s

Ty
pe

M
O
G
A
_
M
ur
at
a

19
96

M
ur
at
a
et

al
.

G
en

et
ic

al
go

-
rit

hm
.S

pe
ci�

c
PE

SA
20

00
Co

rn
e
et

al
.

G
en

et
ic

al
go

-
rit

hm
.G

en
er
al

PE
SA

II
20

01
Co

rn
e
et

al
.

G
en

et
ic

al
go

-
rit

hm
.G

en
er
al

CM
O
G
A

20
01

M
ur
at
a
et

al
.

G
en

et
ic

al
go

-
rit

hm
.S

pe
ci�

c
M
O
TS

20
04

A
rm

en
ta
no

an
d
A
rr
oy
o

Ta
bu

se
ar
ch
.

Sp
ec
i�
c

ε−
N
SG

A
II

20
05

K
ol
la
ta

nd
R
ee
d

G
en

et
ic

al
go

-
rit

hm
.G

en
er
al

M
O
G
A
LS

_
A
rr
oy
o

20
05

A
rr
oy
o
an

d
A
rm

en
ta
no

G
en

et
ic

al
go

-
rit

hm
.S

pe
ci�

c
M
O
SA

_
Va

ra
d.

20
05

Va
ra
dh

ar
aj
an

an
d
R
aj
en

dr
an

Si
m
ul
at
ed

an
-

ne
al
in
g.

Sp
ec
i�
c

PG
A
_
A
LS

20
06

Pa
su
pa

th
y
et

al
.

G
en

et
ic

al
go

-
rit

hm
.S

pe
ci�

c
PI

LS
20

07
G
eig

er
It
er
at
ed

lo
ca
l

se
ar
ch
.S

pe
ci�

c

Ta
bl
e
5.
1:

Re
-im

pl
em

en
te
d
m
et
ho

ds
fo
rt

he
SD

ST
m
ul
ti-

ob
je
ct
iv
e
�o

ws
ho

p.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 93 � #109 i

i

i

i

i

i

5.4. EXPERIMENTAL EVALUATION OF THE ALGORITHM 93

A short description of each algorithm is provided in section 4.2.
During the preliminary phase we noted that the algorithm proposed by Vad-
harajan and Rajendran [210] (MOSA_Varad.) achieved worst positions re-
spect to those attained in the previous chapter regarding the problem without
setups. The presence of sequence dependent setups makes surely the �owshop
problem more di�cult to solve, but we noted that the annealing process em-
ployed in such algorithm makes it stop before the time limit is reached. This is
why we decided to implement an improved version of such procedure (we call it
MOSA_Varad_M) able to entirely exploit the available time. In the original
version such algorithm contains 4 nested loops. The inner one is a simulated
annealing procedure and is repeated a �xed number of times hence, changing
its initial Temperature (T), it is possible to control the algorithm completion
time. Since for each instance we assign a certain amount of time depending on
the number of machines an jobs, it is relatively simple modify T in such a way
that the algorithm is executed exactly within the given time windows.
Implementation details including operators and parameter values are presented
in tables 4.2 and 5.2.

Parameter Values
k 5

Destruction policy a block of k consecutive positions is
selected starting from a random position

RI rearrangement using a heuristic for each objective
LS type Insert
nneig 5

Selection of jobs for local search Random

Table 5.2: Details and parameter of IPG algorithm.

Experimental results
The stopping criterion for all algorithms is given by a time limit depending on
the size of the considered instance. The algorithms are stopped after a CPU
running time of n ·m/2 · t milliseconds, where t is an input parameter. In this
way we assign more time to larger instances that are obviously more di�cult
to solve.
Every algorithm is run 10 di�erent independent times (replicates) on each in-
stance with two di�erent stopping criteria: t = 150 and 200 milliseconds. This

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 94 � #110 i

i

i

i

i

i

94 CHAPTER 5.

means that for the largest instances of 200× 20 a maximum of 400 seconds of
real CPU time are allowed. For every instance, stopping time and replicate we
use the same random seed as a common variance reduction technique.
We run every algorithm on a cluster of 12 identical computers with Intel Core
2 Duo E6600 processors running at 2.4 GHz with 1 Gbyte of RAM. For the
tests, each algorithm and instance replicate is randomly assigned to a single
computer and the results are collected at the end.
A total of 52,800 data points are collected if we consider the 12 algorithms, 220
instances, 10 replicates per instance and two di�erent stopping time criteria.
In reality, each data point is an approximated Pareto front containing a set of
vectors with the objective values.
From the 12 ·10 = 120 available Pareto front approximations for each instance,
the best non-dominated Pareto front is found and stored. Additionally, a set
of best Pareto fronts is stored for each one of the two employed stopping times.
These last Pareto fronts are also used for obtaining the reference points for the
hypervolume (IH) indicator and are �xed to 1.2 times the worst known value
for each objective. Also, these best Pareto fronts are also used as the reference
set in the multiplicative epsilon indicator (I1

ε).
Tables 5.3 and 5.4 contain average values but although each value is attained
by means of a very large number of data points, it is still necessary to carry
out a comprehensive statistical experiment to assess if the observed di�erences
in the average values are statistically signi�cant. A total of 16 di�erent ex-
periments are carried out. We do parametric ANOVA analyses as well as
non-parametric Friedman rank-based tests on both quality indicators and for
the two di�erent stopping criteria. The utility of showing both parametric as
well as non-parametric tests consists in improving the soundness of our con-
clusions. For more information about parametric and non-parametric tests the
reader is refereed to [41] and [133].
We carry out eight multi-factor ANOVAS where the type of instance is a con-
trolled factor with 11 levels (instances from 20× 5 to 200× 20). The algorithm
is another controlled factor with 12 levels. The response variable on each ex-
periment is either the hypervolume or the epsilon indicator. Lastly, there is one
set of experiments for each stopping time. Considering that each experiment
contains 13,200 data points, the three main hypotheses of ANOVA: normality,
homocedasticity and independence of the residuals are easily satis�ed.
To compare results, a second set of eight experiments are performed. In this
case, non-parametric Friedman rank-based tests are carried out. Since there
are 12 algorithms and 10 di�erent replicates, the results for each instance are
ranked between 1 and 120. A rank of one represents the best result for hy-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 95 � #111 i

i

i

i

i

i

5.4. EXPERIMENTAL EVALUATION OF THE ALGORITHM 95

pervolume or epsilon indicator. We are performing four di�erent statistical
tests on each set of results (for example, for 150ms CPU time we are testing
ANOVA and Friedman on both quality indicators). Therefore, a correction on
the con�dence levels must be carried out since the same set of data is being used
to make more than one inference. We take the most conservative approach,
which is the Bonferroni adjustment, and we set the adjusted signi�cance level
αs to α

4 = 0.05
4 ' 0.01. This means that all the tests are carried out at a 0.01

adjusted con�dence level for a real con�dence level of 0.05.

First instance set: SSD50
For the parametric tests we use Tukey's Honest Signi�cant Di�erence (HSD)
intervals which counteract the bias in multiple pairwise comparisons. Similar
Honest Signi�cant Di�erence (HSD) intervals are used for the non-parametric
tests.
Figures 5.5 and 5.9 show the means plot for the ranks of the epsilon indicator
and the means plot for the factor algorithm in the ANOVA for the epsilon in-
dicator response variable, respectively. Both �gures refer to the 150 CPU time
stopping criterion. As can be seen, the non-parametric test is less powerful.
Not only are the intervals much wider (recall that overlapping intervals indicate
a non-statistically signi�cant di�erence) but ranking neglects the di�erences in
the response variables. The considered images show a very similar result, i.e.
that IPG algorithm is far better than any other. Moreover the remaining algo-
rithm maintain the same relative positions in both �gure with the exception of
MOGALS_Arroyo, PESAII and PILS. MOGALS_Arroyo and PESAII in fact,
have inverted positions but however they don't present a signi�cant statistical
di�erence while PILS is shown to be far better in rank than in ANOVA. The
reason behind this behavior is that PILS is better for many small instances
with a small di�erence in epsilon indicator. However, it is much worse for
some other larger instances. When one transforms this to ranks, PILS obtains
a better rank more times and hence it appears to be better, when in reality
it is marginally better more times but signi�cantly worse many times as well.
Almost identical results are presented in �gures 5.7 and 5.11 where are pre-
sented the means plot for ranks and ANOVA for the epsilon indicator response
variable but with the 200 CPU time stopping criterion.
In �gures 5.6, 5.8, 5.10 and 5.12 the hypervolume indicator is considered. They
refer to the 150 and 200 CPU time stopping criteria. Again IPG is far better
than any other and PILS shows to be better in rank than in ANOVA. No-
tice that PESA and PESAII present not observable statistical di�erences while

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 96 � #112 i

i

i

i

i

i

96 CHAPTER 5.

MOSA_Varad_M has a better position in ANOVA test respect its rank posi-
tion. This is due to the fact that it shows to be good only for the subset made
of larger instances. Finally notice that either Friedman and ANOVA return
the same ranking for both stopping criteria.

Second instance set: SSD125
Figures 5.13, 5.15, 5.17 and 5.19 show the means plot for the ranks of the epsilon
indicator and the means plot for the factor algorithm in the ANOVA for the
epsilon indicator response variable, respectively. Figures refer to the 150 and
to the 200 CPU time stopping criteria. As it is easy to see the best algorithm
result to be the IPG with high statistical di�erence from MOGALS_Arroyo
algorithm that is the second in the ranking. For set SSD125 we can make the
same considerations made for set SSD50, the only di�erences consist in the
higher positions MOTS, MOSA_Varad and MOSA_Varad_M that seems to
suggest the presence in them of an embedded strategy able to e�ectively handle
large setup times. Finally �gures 5.14, 5.16, 5.18 and 5.20 show the means plot
for the ranks of the hypervolume indicator and the means plot for the factor
algorithm in the ANOVA for the hypervolume indicator response variable, re-
spectively. Figures refer to the 150 and to the 200 CPU time stopping criteria.
Here again IPG results to be the most performing and in second position we
�nd MOGAL_Arroyo algorithm. A group of algorithms with incomparable
performances is made of PESA, PESAII and MOTS, while MOSA_Varad_M
holds the third positions in ANOVA tests and the sixth in the Friedman one.
Again this is due to the fact that such algorithm achieves very good results in
terms of hypervolume only for larger instances where other algorithms stuck
because of their extensive local searches. Notice that hypervolume and epsilon
indicator express di�erent properties of a Pareto front. This is the reason of
little di�erences in the ranking positions for some algorithms.

5.5 Conclusions and future research
In this chapter we have presented an algorithm of new conception which, com-
pared with the most performing algorithms presented in literature, demon-
strated to be the new state-of-the-art in the �eld of bicriteria permutation
�owshop with sequence dependent setup times.
The comparative evaluation not only includes �owshop-speci�c algorithms but
also adaptations of other general methods proposed in the multi-objective

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 97 � #113 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 97

optimization literature. A set of benchmark instances, based on the well
known benchmark of [193] has been employed and a comprehensive statisti-
cal analysis of the results has been conducted with both parametric as well
as non-parametric techniques. Overall, our Iterated Pareto greedy can be re-
garded as the best performer under our experimental settings. Another con-
sistent performer is the genetic local search method MOGALS_Arroyo of [14].
Our adapted versions of PESA and PESAII from [45] and [44], respectively,
have shown a very good performance over many other �owshop-speci�c al-
gorithms. The recent PILS method from [67] has shown a promising per-
formance for small instances while the multi-objective simulated algorithm of
[210], MOSA_Varad. has shown good performance for the larger ones.

Tables and �gures

Results for the �rst group of instances where setup times are
on average 50% the length of the processing times

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 98 � #114 i

i

i

i

i

i

98 CHAPTER 5.
Ta

bl
e
re
su
lts

Ti
m
e

15
0

20
0

#
M
et
ho

d
I H

I
1 ε

M
et
ho

d
I H

I
1 ε

1
IP

G
1.
19

7
1.
11

9
IP

G
1.
19

0
1.
12

4
2

M
O
G
A
LS

_
A
rr
oy
o

1.
10

2
1.
18

5
M
O
G
A
LS

_
A
rr
oy
o

1.
09

5
1.
18

5
3

PE
SA

II
1.
07

1
1.
18

7
PE

SA
II

1.
06

4
1.
19

1
4

PE
SA

1.
06

6
1.
19

8
PE

SA
1.
05

7
1.
20

3
5

M
O
SA

_
Va

ra
d_

M
1.
01

9
1.
30

8
M
O
SA

_
Va

ra
d_

M
1.
00

8
1.
31

3
6

M
O
TS

1.
01

3
1.
25

5
M
O
TS

1.
00

0
1.
26

3
7

PG
A
_
A
LS

0.
99

4
1.
23

0
PG

A
_
A
LS

0.
97

5
1.
23

8
8

M
O
SA

_
Va

ra
d

0.
93

7
1.
36

1
M
O
SA

_
Va

ra
d

0.
91

0
1.
37

7
9

M
O
G
A
_
M
ur
at
a

0.
87

9
1.
33

9
M
O
G
A
_
M
ur
at
a

0.
87

2
1.
34

4
10

PI
LS

0.
84

0
1.
39

0
PI

LS
0.
86

8
1.
37

5
11

ε−
N
SG

A
II

0.
81

8
1.
34

9
CM

O
G
A

0.
81

4
1.
35

7
12

CM
O
G
A

0.
81

4
1.
35

5
ε−

N
SG

A
II

0.
81

4
1.
34

9

Ta
bl
e
5.
3:

Re
su
lts

fo
rt

he
m
ak

es
pa

n
an

d
to
ta
lw

eig
ht
ed

ta
rd
in
es
sc

rit
er
ia
.A

ve
ra
ge

qu
al
ity

in
di
ca
to
rv

al
ue

s
fo
rt

he
12

al
go

rit
hm

st
es
te
d
un

de
rt

he
tw

o
di
�e

re
nt

te
rm

in
at
io
n
cr
ite

ria
.I

ns
ta
nc

e
gr
ou

p
wh

er
e
se
tu
p
tim

es
len

gt
h
is

50
%

th
at

of
th
e
pr
oc
es
sin

g
tim

es
.
Ea

ch
va
lu
e
is

av
er
ag

ed
ac
ro
ss

11
0
in
st
an

ce
s
an

d
10

re
pl
ica

te
s

pe
ri

ns
ta
nc

e
(1
,1
00

va
lu
es
).

Fo
re

ac
h
te
rm

in
at
io
n
cr
ite

ria
lev

el,
th
e
m
et
ho

ds
ar
e
so
rt
ed

ac
co
rd
in
g
to
I H

.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 99 � #115 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 99

Non-paremetric rank results

Figure 5.5: First instance set where setup times length is 50% the length of
processing times. Means plot and MSD con�dence intervals (αs = 0.01, α =
0.05) for the Friedman Rank-based test. Epsilon indicator response variable
and 150 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 100 � #116 i

i

i

i

i

i

100 CHAPTER 5.

Figure 5.6: First instance set where setup times length is 50% the length
of processing times. Means plot and MSD con�dence intervals (αs = 0.01,
α = 0.05) for the Friedman Rank-based test. Hypervolume response variable
and 150 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 101 � #117 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 101

Figure 5.7: First instance set where setup times length is 50% the length of
processing times. Means plot and MSD con�dence intervals (αs = 0.01, α =
0.05) for the Friedman Rank-based test. Epsilon indicator response variable
and 200 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 102 � #118 i

i

i

i

i

i

102 CHAPTER 5.

Figure 5.8: First instance set where setup times length is 50% the length
of processing times. Means plot and MSD con�dence intervals (αs = 0.01,
α = 0.05) for the Friedman Rank-based test. Hypervolume response variable
and 200 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 103 � #119 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 103

Parametric ANOVA results

Figure 5.9: First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 150 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 104 � #120 i

i

i

i

i

i

104 CHAPTER 5.

Figure 5.10: First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Hypervolume
response variable and 150 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 105 � #121 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 105

Figure 5.11: First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 200 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 106 � #122 i

i

i

i

i

i

106 CHAPTER 5.

Figure 5.12: First instance set where setup times length is 50% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Hypervolume
response variable and 200 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 107 � #123 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 107

Results for the second group of instances where setup times
are on average 125% the length of the processing times
Table results

Time 150 200
Method IH I1

ε Method IH I1
ε

1 IPG 1.215 1.115 IPG 1.211 1.116
2 MOGALS_Arroyo 1.102 1.177 MOGALS_Arroyo 1.101 1.174
3 MOSA_Varad_M 1.048 1.266 MOSA_Varad_M 1.041 1.269
4 MOTS 1.036 1.232 PESAII 1.030 1.209
5 PESAII 1.031 1.211 MOTS 1.028 1.234
6 PESA 1.030 1.220 PESA 1.026 1.220
7 MOSA_Varad 0.953 1.326 PGA_ALS 0.932 1.266
8 PGA_ALS 0.945 1.261 MOSA_Varad 0.930 1.338
9 PILS 0.831 1.394 PILS 0.861 1.373
10 MOGA_Murata 0.817 1.377 MOGA_Murata 0.817 1.376
11 ε−NSGAII 0.745 1.390 ε−NSGAII 0.746 1.388
12 CMOGA 0.735 1.406 CMOGA 0.744 1.401

Table 5.4: Results for the makespan and total weighted tardiness criteria.
Average quality indicator values for the 12 algorithms tested under the two
di�erent termination criteria. Instance group where setup times length is 125%
that of the processing times. Each value is averaged across 110 instances and
10 replicates per instance (1,100 values). For each termination criteria level,

the methods are sorted according to IH .

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 108 � #124 i

i

i

i

i

i

108 CHAPTER 5.

Non-parametric rank results

Figure 5.13: Second instance set where setup times length is 125% the length
of processing times. Means plot and MSD con�dence intervals (αs = 0.01, α =
0.05) for the Friedman Rank-based test. Epsilon indicator response variable
and 150 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 109 � #125 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 109

Figure 5.14: Second instance set where setup times length is 125% the length
of processing times. Means plot and MSD con�dence intervals (αs = 0.01,
α = 0.05) for the Friedman Rank-based test. Hypervolume response variable
and 150 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 110 � #126 i

i

i

i

i

i

110 CHAPTER 5.

Figure 5.15: Second instance set where setup times length is 125% the length
of processing times. Means plot and MSD con�dence intervals (αs = 0.01, α =
0.05) for the Friedman Rank-based test. Epsilon indicator response variable
and 200 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 111 � #127 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 111

Figure 5.16: Second instance set where setup times length is 125% the length
of processing times. Means plot and MSD con�dence intervals (αs = 0.01,
α = 0.05) for the Friedman Rank-based test. Hypervolume response variable
and 200 CPU time stopping criterion. Makespan and total weighted tardiness

criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 112 � #128 i

i

i

i

i

i

112 CHAPTER 5.

Parametric ANOVA results

Figure 5.17: Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 150 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 113 � #129 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 113

Figure 5.18: Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Hypervolume
response variable and 150 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 114 � #130 i

i

i

i

i

i

114 CHAPTER 5.

Figure 5.19: Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Epsilon indicator
response variable and 200 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 115 � #131 i

i

i

i

i

i

5.5. CONCLUSIONS AND FUTURE RESEARCH 115

Figure 5.20: Second instance set where setup times length is 125% the length of
processing times. Means plot and Tukey HSD con�dence intervals (αs = 0.01,
α = 0.05) for the algorithm factor in the ANOVA experiment. Hypervolume
response variable and 200 CPU time stopping criterion. Makespan and total

weighted tardiness criteria.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 116 � #132 i

i

i

i

i

i

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 117 � #133 i

i

i

i

i

i

Chapter 6

A bi-objective coordination setup
problem in a two-stage production
system

This chapter addresses another real life scheduling problem arising in the coor-
dination between two consecutive departments of a production system, where
parts are processed in batches, and each batch is characterized by two distinct
attributes. Due to the lack of interstage bu�ering between the two stages, these
departments have to follow the same batch sequence. In the �rst department,
a setup occurs every time the �rst attribute of a new batch is di�erent from
the one of the previous batch. In the downstream department, there is a setup
when the second attribute changes in two consecutive batches. The problem
consists in �nding a batch sequence optimizing the number of setups paid by
each department. This case results in a particular bi-objective combinatorial
optimization problem. We present a geometrical characterization for the feasi-
ble solution set of the problem, and we propose three e�ective metaheuristics,
as shown by an extensive experimental campaign. The proposed approach can
be also used to solve a class of single-objective problems, in which setup costs in
the two departments are general increasing functions of the number of setups.

117

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 118 � #134 i

i

i

i

i

i

118 CHAPTER 6.

6.1 Introduction

This work deals with a problem of real-life manufacturing interest: The coordi-
nation of two consecutive production departments. Each department consists
of a �exible machine, the �rst one deals with shaping items of raw wooden
panels; the second concerns the painting of the just shaped items. To avoid
unnecessary costs, each department works with batches of jobs, in which every
job has the same shape and color. Due to limited interstage bu�ering between
the two stages, these departments have to follow the same batch sequence.
Hence, this problem belongs to the class of permutation sequencing problems.
When two consecutive jobs with di�erent features have to be processed, at least
one department must pay a setup, in order to recon�gure its own machine, i.e.,
changing tools. The e�ort needed to accomplish a setup (in terms of man-
power, machine recon�guration, etc.) is almost the same in each department.
This implies that the same cost must be paid for a setup in the �rst and in
the second department. Hence, each department have to organize its own op-
erations in order to minimize the number of setups, i.e, the recon�gurations of
cutting and painting tools, respectively. This combinatorial problem is inher-
ently bi-objective [57, 197] because each department has to minimize its setup
costs, while from a global point of view, the minimization of the total setup
cost must be pursued.
Note that, the considered problem can be modeled as a tool switching problem
on a single machine with two classes of tools (cutting and painting tools), in
which a given set of jobs (each of them requiring exactly one tool of each class)
must be sequenced on the machine minimizing the number of tool switching.
In this chapter, a graph based model, �rst introduced in [4], is used to obtain a
lower bound and an upper bound of the number of setups for each department.
At an operational level, the goal is to �nd a, possible large, set of sequences
of batches solving a trade-o� between di�erent objectives (i.e., the number of
setups paid by each department). We tackled this multi-objective problem us-
ing a metaheuristic approach. The basic idea of this approach is to obtain a
good estimation of the Pareto optimal front for the bi-objective problem. At
this aim, �rst the total setup number of the production system is minimized,
then a di�erent procedure is employed to spread the setups over departments
keeping constant the total number of setups. Di�erent procedures to guide
the algorithms toward the discovering of a greater part of the Pareto optimal
front are implemented. The proposed approach returns a set of non-dominated
points achieving a high probability of covering almost all the Pareto optimal
front in an acceptable computation time.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 119 � #135 i

i

i

i

i

i

6.2. LITERATURE AND APPLICATIONS 119

The chapter is organized as follows. In Section 6.2, literature results and ap-
plications are discussed. In Section 6.3, the industrial context is described,
a formal description of the problem and a geometrical characterization of the
feasible solution set are given. Moreover, we also show that these geometrical
properties are also useful to solve a class of single objective problems, in which
the setup costs in the two departments are general increasing functions of the
number of setups. In Section 6.4, three metaheuristic algorithms are presented,
and in Section 6.5 a large sample of experiments are reported, showing the ef-
fectiveness of the proposed approaches. Finally, in Section 6.6, conclusions are
drawn.

6.2 Literature and applications

Minimizing the impact of setups (i.e., changeovers) has been widely described
as a main component of modern production management strategies [192]. Pur-
suing high changeover performances is a way to enable agile and responsive
manufacturing processes by improving line productivity and reducing down-
time losses [127]. This aspect of the production management, involving both
organizational and economic points of view, has received an increasing attention
also in �elds as applied mathematics and operations research. In particular,
over the past few decades, there has been a signi�cant e�ort associated with re-
ducing the time required to perform setups and developing suitable changeover
modeling processes. This process can be quite complicated, but yields impor-
tant bene�ts in planning and scheduling a production system [192] improving
both the production capacity and the system manageability. Important sur-
veys on changeovers and setups are proposed in [10, 155] where classi�cations
of setup types are also given. While in [166] a review of heuristics for setup
problems in serial systems is presented.
The problem addressed in this chapter refers to the furniture production case
�rst presented in [4]. The importance of this kind of problems is documented
by the large amount of literature dealing with the minimization of changeover
or setup costs (see, for example, [183, 6, 204], for real world industrial applica-
tions). It is easy to see, that the problem we address can be modeled as a tool
switching problem on a single machine with two classes of tools (cutting and
painting tools), in which a given set of jobs (each of them requiring exactly one
tool of each class) must be sequenced on the machine minimizing the number
of tool switching. Tang and Denardo [194] address a similar problem arising
in the metal working industry. In that context, they propose heuristic algo-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 120 � #136 i

i

i

i

i

i

120 CHAPTER 6.

rithms. For the same problem, Laporte et al.[107] proposed exact approaches
able to solve instances up to 25 jobs. Recently, Agnetis et al. [3] considered
the problem of grouping parts into batches and scheduling them in a single
machine minimizing the total number of tool switches, where at most k parts
may be accommodated in the machine at the same time.

6.3 Problem description and formulation

This chapter addresses a problem arising in the coordination between two con-
secutive production departments of an industrial system [4], in which a large
number of di�erent slabs of wood are cut, painted and assembled to build
kitchen furniture. Due to the lack of interstage bu�ering, departments must
process the batches in the same order. The two departments are the cutting
and the painting departments and batches are characterized only by shapes and
colors. In the cutting department, a setup occurs when a batch has a di�erent
shape from the preceding one (cutting tools and machinery must be recon�g-
ured). Similarly, in the painting station a setup occurs when a new color is
used (the equipment and the pallets must be thoroughly cleaned in order to
eliminate the residuals of the previous color). Since each item to be produced
has its own shape and color, all the items sharing the same shape and color
form a single batch. In fact, there is no convenience, on either side, in splitting
such batches, and the actual cardinality of each batch is of no interest in this
context. Hence, in processing two consecutive batches, at least a department
has to pay a changeover. Therefore this kind of setups are considered as se-
quence dependent [10, 155]. Each given sequence of batches results in a number
of setups to be paid by each department. Since the cost of a setup, in terms
of manpower, machine recon�guration operations, etc., is almost the same in
the two departments, the problem is to �nd a collection of batch sequences
minimizing the costs related to changeovers (i.e., setups). For this reason, the
number of setups is a meaningful index of performance. However, minimizing
the changeover cost for a department often implies the increasing of the setup
costs for the other one. Therefore this problem is inherently multi-objective.
More speci�cally, we analyze a bi-objective version of the described problem,
where the two objectives we consider are the minimization of the setup num-
ber paid by each department. Even if the single-objective problem requiring
to minimize the setup of a single department is clearly an easy task, this bi-
objective problem is NP-hard [4] and it calls for a heuristic solution approach.
Hence, our aim is to �nd a good approximation of the Pareto optimal front

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 121 � #137 i

i

i

i

i

i

6.3. PROBLEM DESCRIPTION AND FORMULATION 121

in a reasonable computation time. Thus, in general, a solution of the problem
is a set of trade-o� solutions, i.e., non-dominated solutions. In this way, it is
possible to o�er to the Decision Maker a wide range of sequences holding the
quality unchanged. In this chapter, we propose three metaheuristic approaches
for the problem which are able to attain, even for large-size instances, a good
compromise between solutions quality and computational e�ort.
The problem we consider can be more formally formulated as follows. Let B
be a set of batches to be produced. The batches must be processed by two
departments of the plant, called DS and DC , in the same order. Each batch
is characterized by two attributes, say shape and color. Let S and C denote
the sets of all possible shapes and colors respectively. We denote the shapes as
si, i = 1, . . . , |S|, and the colors as cj , j = 1, . . . , |C|. Each batch is therefore
de�ned by a pair (si,cj). If batch (si,cj) is processed immediately after batch
(sh,ck), a setup is paid in department DS if sh 6= si, and a setup is paid in
department DC if ck 6= cj . We can represent the input as a bipartite graph,
G = (S,C,B), where nodes in S correspond to shapes, nodes in C to colors,
and each edge of B corresponds to a batch to be produced. The problem is to
sequence the batches in a pro�table way from the viewpoint of the number of
setups. This means that we must �nd some particular ordering σ of the edges
of G. If two consecutive edges (i, j) and (h, k) in σ have no nodes in common,
then both departments have to pay a setup when switching from batch (i, j)
to batch (h, k). We refer to this as a global changeover. On the other hand,
if i = h (j = k), only department DC (DS) pays a setup. This is called lo-
cal changeover. For a given sequence σ, we can therefore easily compute the
number of setups incurred by each department, and we call them NS(σ) and
NC(σ) respectively. In fact, let δih be equal to 1 if i 6= h and 0 otherwise,
and let s(σ(q)) denote the shape of the q-th batch in the sequence σ, and let
c(σ(q)) denote its color. Hence,

NS(σ) = 1 +
|B|−1∑
q=1

δs(σ(q)),s(σ(q+1)) (6.1)

NC(σ) = 1 +
|B|−1∑
q=1

δc(σ(q)),c(σ(q+1)) (6.2)

The two objectives of the problem addressed in this chapter are exactly NS(σ)
and NC(σ) (for sake of simplicity, we use NS and NC when the context does
not require to remark the dependence of σ). The problem we address, denoted

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 122 � #138 i

i

i

i

i

i

122 CHAPTER 6.

as NC-NS problem, consists in �nding a set of non-dominated batch sequences
with respect to the two objectives NS and NC to be minimized.

Geometrical properties of the feasible solution set of the
NC-NS problem

In this section, a geometrical characterization of the feasible solution set of the
NC-NS problem is presented. Such characterization is useful to determine a
good estimation of the Pareto optimal front.
In Detti et al. [53], a heuristic approach for another bi-objective optimization
problem with similar combinatorial structure, but with a di�erent pair of ob-
jective functions has been presented. In particular, in Detti et al. [53] the
minimization of the following criteria is considered: SUM = NS + NC and
MAX = max{NS,NC}. In the following, we refer to this bi-objective prob-
lem as SUM -MAX problem. The above criteria strongly depend on those
considered in the problem under study in this chapter (i.e., NS and NC). The
solution set of the SUM -MAX problem turns out to be strictly related to
the solution set of the NC-NS problem. The computational experiments pre-
sented in Detti et al. [53] carried out on a wide set of instances highlight that
the Pareto optimal front always contains few (often only one) non-dominated
points. This is due to the strong correlation between the objectives SUM and
MAX. Note that, in general, the same point in the space of criteria may
correspond to several distinct batch sequences σ. In the following, we give a
geometric description of the solution set of the NC-NS problem, using also
the characteristics of the solution set of the SUM -MAX problem.
In Detti et al. [52] and Detti et al. [53], the authors proposed a pair of use-
ful lower (upper) bounds LBSUM (UBSUM) and LBMAX (UBMAX) for the
SUM and MAX objective, respectively. The lower bounds de�ne an ideal
point IP = (LBSUM , LBMAX) for the SUM -MAX problem, whereas the up-
per bounds are used to de�ne a nadir point (UBSUM , UBMAX).
The solution space of the SUM -MAX problem has the following geometri-
cal properties. Given a batch sequence σp, let p = (SUMp,MAXp) be the
corresponding point in the solution space of the SUM -MAX problem, where
SUMp = NS(σp) +NC(σp) and MAXp = max{NS(σp), NC(σp)}. It can be
noted that the following relations hold:

SUMp ≤ 2 ∗MAXp (6.3)

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 123 � #139 i

i

i

i

i

i

6.3. PROBLEM DESCRIPTION AND FORMULATION 123

MAXp + η ≤ SUMp (6.4)

where η = minσ{NS(σ), NC(σ)} is a value depending on the instance that can
be easily computed. In fact, the minimum setup cost for a department can be
easily attained ordering the batches in the sequence by colors or shapes.
Obviously, inequality (6.3) holds for all points p representing a feasible solution
for the SUM -MAX problem. In fact, for each solution point, the correspond-
ing value of the objective function SUM is less than twice of the value assumed
by the second objective MAX. Relation (6.4) holds for all the feasible points
of the SUM -MAX problem, too. Hence, inequalities (6.3), (6.4) and the lower
and upper bounds previously referred describe a region containing the whole
solution set of the SUM -MAX problem (see Figure 6.1for an example). It is
important to note that while coordinates SUMp and MAXp depend on the
particular σp, associated to the point p, η is a value which depends only on the
problem's instance.
In the Figure 6.1, N = (UBSUM , UBMAX) is a nadir point, IP is the ideal
point determined by LBSUM and LBMAX ; while the two lines associated to
inequalities (6.3) and (6.4) delimit the solution set, contained in the dark area
of Figure 6.1.
These observations give us some useful information about the solution set of
the NC-NS problem, object of this chapter. Given a batch sequence σp and its
representative point p = (SUMp,MAXp) in the solution space of SUM -MAX
problem, the image of p in the solution space of NC-NS problem is given by
the point π = (NC(σp), NS(σp)), where: SUMp = NS(σp) + NC(σp), and
MAXp = max{NS(σp), NC(σp)}. Thus, several characteristics of one space
can easily be mapped in the other one.
In Figure 6.2, the region containing the solution set of the NC-NS problem is
depicted and, in Figure 6.3, the ideal Pareto front of this problem is shown. In
particular, the case with minσ{NC(σ)} ≤ minσ{NS(σ)} (i.e., η = NC(σ)}) is
considered.
It can be observed that, the lower bound on the SUM objective, LBSUM ,
is quite useful also in the solution space of the NC-NS problem giving an
estimation of the Pareto optimal front. In fact, in this space the relation
SUM ≥ LBSUM can be re-viewed as NS +NC ≥ LBSUM and hence it gives
a lower bound for the Pareto optimal front of the problem. The dark area
of Figure 6.2 contains the solution set of the NC-NS problem. In particular,
every feasible point π = (NCπ, NSπ) for the NC-NS problem belongs to a
region bounded by the following �ve inequalities, namely

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 124 � #140 i

i

i

i

i

i

124 CHAPTER 6.

Figure 6.1: Geometric aspects of the feasible region of the SUM -MAX prob-
lem.

1. NSπ ≤ maxσ{NS(σ)};
2. NCπ ≤ maxσ{NC(σ)};
3. NCπ +NSp ≥ LBSUM ;

4. NCπ ≥ minσ{NC(σ)};
5. NSπ ≥ minσ{NS(σ)}.

The nadir point

Nadir = (max
σ
{NC(σ)},max

σ
{NS(σ)})

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 125 � #141 i

i

i

i

i

i

6.3. PROBLEM DESCRIPTION AND FORMULATION 125

Figure 6.2: Geometric aspects of the solution space of the NC-NS problem.

and the ideal point

IP = (min
σ
{NC(σ)},min

σ
{NS(σ)})

delimit the feasible solution set of the NC-NS problem. The estimation of the
Pareto optimal front is given by integer points on a segment contained in the
line NC +NS = LBSUM .
More information about the solution set of the NC-NS problem can be ob-
tained mapping other geometric objects from the SUM -MAX solution set, as
described in the following and shown in Figure 6.2. Given an estimated Pareto
front de�ned by NS + NC = SUM = LBSUM , in the following expressions,
for sake of simplicity, we indicate with γ the value of SUM . For an instance

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 126 � #142 i

i

i

i

i

i

126 CHAPTER 6.

Nc

Ns

Min(Nc)

Min(Ns)

Ideal Pareto Front
Nc + Ns = SUM = LBSUM

Ns SUMUB γ=

Nc SUM
UB

γ=

Figure 6.3: Bounds for the Pareto front for the NC-NS problem.

of the NC-NS problem, let UBNS |SUM=γ and UBNC |SUM=γ be the upper
bounds on the values of NS and NC, respectively, when SUM is �xed to the
value γ. We have the following relations delimiting the estimated Pareto front:

UBNS |SUM=γ = γ −min
σ
{NC(σ)} (6.5)

UBNC |SUM=γ = γ −min
σ
{NS(σ)} (6.6)

Moreover, using the information given by these geometric observations and the
values of the bounds previously introduced, it is possible to calculate, in closed
form, the cardinality |PFγ | of the set of all points laying on the estimated
Pareto front PFγ described by NS + NC = SUM = γ. In fact, due to the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 127 � #143 i

i

i

i

i

i

6.4. ALGORITHMS 127

geometric properties of the upper bounds (6.5) and (6.6) on the solution space,
the number of integer points contained in the estimated Pareto front clearly is:

|PFγ | = UBNC |SUM=γ −min
σ
{NC(σ)}+ 1, (6.7)

or, equivalently,

|PFγ | = UBNS |SUM=γ −min
σ
{NS(σ)}+ 1. (6.8)

and the position of each point belonging to it can be easily computed. We
will use this geometric characterization in the design and development of the
solution algorithms. In fact, the number and the positions of the integer points
on the estimated Pareto front will be used to guide the algorithms' behavior.

Solving single-objective problems with general setup costs
We next discuss the case in which setup costs of each department are di�erent,
and we show that the single-objective problem of minimizing the sum of the
setup costs is closely related to the NC-NS problem. Let suppose that, the
total costs incurred by departments DC and DS are expressed by increasing
functions of the number of setups cC(NC) and cS(NS), respectively, and that
the global cost to minimize is cS(NS) + cC(NC).
Let x̄ be a solution belonging to the Pareto optimal front of the NC-NS
problem, and let x be a dominated solution. Clearly c(x) ≥ c(x̄) holds. Let
x∗ = (NS∗, NC∗) be a solution on the Pareto optimal front for the NC-NS
problem, with the minimum value of the global cost cS(NS) + cC(NC). Then
x∗ is a solution minimizing the single-objective cS(NS)+ cC(NC). Hence, the
following proposition holds.

Proposition 6.3.1 The Pareto optimal front of the NC-NS problem con-
tains a solution minimizing the objective cS(NS) + cC(NC).

In conclusion, solving the bi-objective NC-NS problem allows also to solve
the class of single-objective problems in which cS(NS) + cC(NC) must be
minimized.

6.4 Algorithms
In this section we describe three metaheuristic algorithms developed to tackle
the problem. A metaheuristic is an iterative solution procedure, combining

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 128 � #144 i

i

i

i

i

i

128 CHAPTER 6.

subordinate heuristic tools into a more sophisticated framework [72, 89]. All
the developed algorithms are based on the same basic subordinate procedures,
namely a constructive heuristic, some improving procedures and an update
routine.
These subordinate procedures are used by some Master procedure to build the
solution front, which contains all the non-dominated points generated by the
algorithms. In the following subsections, �rst we describe in details the tools
that constitute our framework, and next we introduce two Master procedures
employing the described subordinate tools. We conclude this section illustrat-
ing the metaheuristic algorithms developed for the problem under study.

Constructive heuristic
The constructive heuristic is an iterative greedy procedure used to generate
starting solutions, i.e., batch sequences. The heuristic starts from the empty
sequence σ = ∅ and at each step it selects one attribute from a department.
Then it adds to the partial sequence σ all the batches sharing the selected
attribute. This process is repeated until all the batches are sequenced.
More in details, the behavior of the heuristic is guided by a parameter ρ, deter-
mining which department is selected at each iteration. In particular, if ρ > 0
(ρ < 0) then attributes from department DS (department DC) are chosen in
the next |ρ| iterations of the heuristic. At each of these |ρ| iterations, the at-
tribute (of the selected department) with the smaller number of occurrences
among the unsequenced batches is chosen.
In terms of the bipartite graph G = (S,C,B), the heuristic selects either the
node subset S or C according to parameter ρ. At each of the |ρ| iterations,
the node of the selected node set having the smaller degree is chosen. Then,
all edges incident to that node are removed from the graph, and consecutively
added to the sequence under construction. In this way, the graph always rep-
resents the unsequenced batches.

Solution improving procedures
As solution improving tools we consider two di�erent procedures which try to
minimize the objectives SUM and MAX, respectively. The two single objec-
tive problems minimize the overall number of setups and balance of the setup
among the two departments, respectively.
Observe that, minimizing the SUM objective, i.e., minimizing NS +NC, cor-
responds to a move toward the Pareto optimal front of the NC-NS problem.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 129 � #145 i

i

i

i

i

i

6.4. ALGORITHMS 129

In fact, given a solution π = (NS(σp), NC(σp)), the reduction of the SUM
objective by one generates a new solution π′ which is either π′ = (NS(σp) −
1, NC(σp)) or π′ = (NS(σp), NC(σp)−1). On the other hand, since the MAX
objective represents the balance among the setups paid by the departments,
the variation of the MAX objective, while maintaining constant the value of
SUM, allows the exploration of new solutions having the same SUM quality.
Note that, in general, the reduction of the MAX objective generates a new
adjacent solution π′ toward the center of the solution space NC-NS, while the
increase of the MAX objective generates a new adjacent solution π′ toward the
extremity.
More in details, this is done by the following procedures:

• We use an Iterated Local Search (ILS) procedure [120] for minimizing the
SUM objective and to obtain a solution belonging to the Pareto optimal
front or close to it. This ILS algorithm has been introduced by Detti
et al. [51], and given an initial solution it performs a Variable Neigh-
borhood Descent (based on two complex neighborhoods) as local search
step. The Perturbation phase applies random moves to the incumbent
solution. The actual number of perturbing moves is randomly drawn in
the [1; 0.15|B|] interval. A solution is accepted as the new incumbent
solution only if it strictly decreases the SUM objective. Each run of the
ILS is stopped whenever the optimality of the solution is proved or when
the computational bounds (3 seconds or 50 iterations) are reached. The
parameters for the ILS algorithm are as in [51], whereas the lower bound
used to prove the optimality and to stop the search process is described
in details in [52].

• Once a new non-dominated solution is obtained, a diversi�cation pro-
cedure optimizing the MAX objective, called COVER, is used. Given
a solution π the COVER procedure attains all the non-dominated solu-
tions that can be reached by a fast exploration of a simple neighborhood
in the MAX objective [53] starting from π. In particular, given a start-
ing solution π = (NS(σp), NC(σp)), the procedure basically consists in
generating all the adjacent solutions that can be achieved starting from
π either minimizing or maximizing the MAX objective. The COVER
procedure is based on the observation that minimizing or maximizing
the MAX objective produces a solution π′ = (NS(σp) − 1, NC(σp) + 1)
or π′′ = (NS(σp) + 1, NC(σp) − 1) having the same SUM value and
adjacent to π in the NS − NC space. In other words, COVER ap-
plies a local search procedure starting from π minimizing and maxi-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 130 � #146 i

i

i

i

i

i

130 CHAPTER 6.

mizing the MAX objective. Let πmin = (NS(σp) − i,NC(σp) + i) and
πmax = (NS(σp) + j,NC(σp)− j) be the two local minima in the MAX
neighborhood, obtained by applying i and j local search steps, respec-
tively. Due to the particular neighborhood structure it is possible to
generate all the solutions between πmin and πmax. Once πmin and πmax

are reached, a single iteration of the ILS is applied and, if a new solution
on the solution front has been generated COVER is applied again to ex-
plore the solution front. This procedure is applied iteratively until no new
solutions on the solution front are discovered. In Figure 6.4, a graphical
representation of the behavior of the COVER procedure is reported.

Figure 6.4: The COVER procedure.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 131 � #147 i

i

i

i

i

i

6.4. ALGORITHMS 131

Update routine

This function updates the solution front. Since COVER returns a set of non-
dominated solutions that are reachable by the solution found by the ILS phase,
the knowledge of the two extreme solutions is su�cient to calculate the exact
amount of solution front covered in the iteration.

Master procedures

The subordinate procedures are used by Master procedures to guide the search
process. Starting solutions are generated by the constructive greedy and they
are improved by local search procedures previously described. In the following
two Master procedures are introduced:

• The Sweep procedure (Figure 6.5) uses the constructive greedy to gen-
erate an Equally Spaced Initial Solutions Set (ESISS) which is used to
control the search process. In particular, the ESISS contains a set of
solutions (i.e., batch sequences) that are generated by the constructive
heuristic, using di�erent ρ values. Starting from each solution in ESISS
the improving procedures (ILS and COVER) are applied in cascade aim-
ing to reach a Pareto optimal point and consequently covering a portion
of the Pareto optimal front. The number of solutions in the ESISS is
a parameter for the algorithm. After a preliminary campaign of exper-
iments we set ESISS as a function of the size and density of the input
graph. This choice provides a way to take into account the di�erent pos-
sible classes of inputs which are mainly characterized by the size and the
density of the graph.

• The Fill procedure uses a di�erent strategy. Starting from the knowledge
of the coverage of the solution front, a hole is identi�ed, i.e., a portion
of the solution front not yet explored by the algorithm. Given a hole,
Fill pilots the constructive heuristic to build an initial solution having
the same balance of the hole (Figure 6.6). In this way it creates a new
initial solution trying to drive the exploration to �ll up the hole. The
search process, in this case, is guided by the knowledge of the solution
front found during the search process, and no additional parameters are
required.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 132 � #148 i

i

i

i

i

i

132 CHAPTER 6.

sweep

NC

NS

Figure 6.5: The Sweep procedure.

Metaheuristics
Using the two de�ned Master procedures we developed three di�erent meta-
heuristic algorithms.

• TheMulti-Sweep (MS) algorithm repeatedly applies the Sweep procedure.
Once all the solutions of the ESISS are considered, it starts again from
the same sequence of piloting starting solutions. This process is iterated
until the time limit tmax is reached or the whole Pareto optimal front is
covered.

• The Sweep and Fill (SF) algorithm uses a di�erent strategy. Like Multi-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 133 � #149 i

i

i

i

i

i

6.4. ALGORITHMS 133

Pareto
Front

Hole

New
initial
solution

NC

NS

Figure 6.6: The Fill procedure.

Sweep it creates an Equally Spaced Initial Solution Set and it uses it as a
pool of initial solutions. Once all the solutions in the ESISS are considered
the algorithm applies the Fill procedure trying to �ll the holes in the
solution front until the time limit tmax is reached or the whole Pareto
optimal front is covered.

• The Front Fill (FF) algorithm relies only on the Fill procedure. Clearly
at the beginning no solution in the solution front has been yet identi�ed,
therefore it generates the initial solution corresponding to the central
element of the solution front. The Fill procedure is repeated until the
whole Pareto optimal front is identi�ed or the time limit tmax is reached.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 134 � #150 i

i

i

i

i

i

134 CHAPTER 6.

6.5 Computational experiments
In this section we describe the experiments carried out to evaluate the behavior
of the three proposed algorithms.
The algorithms have been tested on one set of 32 real-life instances (GSET)
and on 460 randomly generated problems ([4]). The 32 real-life instances
consist of unbalanced bipartite graphs G = (V1, V2, E) where |V1| = 32 and
|V2| = 14. In these instances |E| ranges from 150 to about 300. The other
sets of randomly generated instances consist of connected balanced bipartite
graphs G = (V1, V2, E), with cardinality n = |V1| = |V2| and graph density
d ∈ {5%, 10%, 20%, 30%, 40%}. In particular, �ve sets with varying n have
been considered (n ∈ {10, 30, 60, 80, 100}), and each set is divided into subsets
having di�erent densities d. For each subset, 20 connected instances have been
randomly generated.
In a preliminary test phase we tuned the proposed algorithms. On the basis
of these tests, the cardinality of the ESISS (i.e., the number of initial solution
considered in the Sweep routine) for MS and SF is set to ((|PF | ∗ d)/2) + 1,
where |PF | is the cardinality of the estimated Pareto front calculated from
Equations 6.7 and 6.8. The knowledge of the cardinality of the ESISS allows
to easily calculate the parameter ρ controlling the constructive heuristic. The
algorithms stop when one of the following conditions holds:(i) the computation
time exceeds tmax (in our tests tmax is set to 60 seconds); (ii) the whole Pareto
optimal front is found. Since the algorithms are stochastic, for each instance
10 runs of each algorithm are executed, in order to obtain a meaningful repre-
sentation of their behavior. All the experiments have been performed on a 3.2
GHz Pentium 4 laptop equipped with 512 MB RAM, and the algorithms are
coded in standard C language.
In Table 6.1, we summarize the results for each algorithm on each test set.
Columns 2 and 3 show the density d and the average cardinality of the es-
timated Pareto front (|PF |), respectively. The remaining columns show, for
each algorithm, the computation time in seconds (time), the number of initial
solutions generated (Iter.) and the Pareto optimal front covering percentage
(%). Each row refers to the average results over 20 instances and 10 repetitions
with the computation time limit set to 60 seconds.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 135 � #151 i

i

i

i

i

i

6.5. COMPUTATIONAL EXPERIMENTS 135
Ta

bl
e
6.
1:

Re
su
lts

of
th
e
th
re
e
al
go

rit
hm

s(
60

se
co
nd

sr
un

s)
.

In
st
an

ce
M
S

SF
FF

se
t

d
|P

F
|

ti
m
e

It
er
.

%
ti
m
e

It
er
.

%
ti
m
e

It
er
.

%
G
SE

T
-

21
1.
31

3
0.
28

1
21

7.
06

6
10

0.
00

0
4.
89

6
11

98
.2
44

99
.9
75

5.
19

4
13

57
.2
91

99
.9
75

R
N
D
10

B
0.
1

2.
75

0
15

.1
01

45
95

9.
01

0
86

.6
67

12
.9
23

37
90

4.
32

5
88

.1
67

13
.2
35

41
27

2.
64

5
88

.1
67

R
N
D
10

C
0.
2

6.
15

0
3.
28

5
96

23
.5
30

95
.0
00

3.
19

6
84

55
.9
60

95
.0
00

3.
37

0
99

83
.9
85

95
.0
00

R
N
D
10

D
0.
3

10
.7
00

0.
43

3
13

17
.1
00

10
0.
00

0
0.
99

6
25

45
.9
10

99
.9
17

1.
06

5
27

97
.7
70

99
.8
33

R
N
D
10

E
0.
4

18
.1
00

0.
00

3
7.
45

0
10

0.
00

0
0.
00

3
6.
69

5
10

0.
00

0
0.
00

2
7.
00

0
10

0.
00

0
R
N
D
30

B
0.
1

39
.0
00

4.
25

2
17

38
.6
05

99
.8
26

6.
50

2
21

56
.5
75

99
.7
07

6.
29

4
20

30
.0
00

99
.7
20

R
N
D
30

C
0.
2

11
8.
10

0
0.
06

7
45

.2
15

10
0.
00

0
0.
11

2
52

.8
70

10
0.
00

0
0.
13

4
87

.0
30

10
0.
00

0
R
N
D
30

D
0.
3

20
7.
40

0
0.
20

6
14

3.
00

0
10

0.
00

0
0.
12

6
82

.2
70

10
0.
00

0
0.
10

3
73

.2
45

10
0.
00

0
R
N
D
30

E
0.
4

29
6.
95

0
0.
33

1
19

9.
77

5
10

0.
00

0
0.
23

7
14

4.
95

5
10

0.
00

0
0.
19

2
12

4.
00

0
10

0.
00

0
R
N
D
60

A
0.
05

78
.4
50

42
.8
99

37
18

.5
30

97
.3
14

47
.5
02

40
47

.0
35

94
.4
22

48
.7
73

42
21

.9
20

93
.2
92

R
N
D
60

B
0.
1

24
1.
55

0
4.
44

9
18

0.
40

0
99

.9
91

13
.0
52

40
3.
56

0
99

.9
29

11
.7
90

37
0.
10

5
99

.9
36

R
N
D
60

C
0.
2

59
4.
75

0
22

.3
72

58
3.
58

5
99

.9
95

15
.2
45

38
5.
87

0
99

.9
98

12
.8
84

33
7.
16

5
10

0.
00

0
R
N
D
60

D
0.
3

94
6.
35

0
45

.3
65

10
09

.9
90

99
.9
57

35
.7
05

77
5.
66

0
99

.9
76

34
.8
83

76
8.
36

0
99

.9
82

R
N
D
60

E
0.
4

12
99

.0
50

54
.8
85

93
2.
37

5
99

.9
27

53
.5
84

83
9.
34

0
99

.9
30

53
.3
37

84
7.
16

5
99

.8
56

R
N
D
80

A
0.
05

16
5.
10

0
19

.3
52

54
2.
29

5
98

.0
73

30
.9
61

81
3.
04

5
97

.7
92

32
.8
44

86
9.
75

0
98

.4
46

R
N
D
80

B
0.
1

48
2.
40

0
15

.9
65

16
7.
03

0
99

.9
96

16
.9
22

15
2.
81

5
99

.9
45

20
.0
29

18
1.
83

0
99

.9
50

R
N
D
80

C
0.
2

11
13

.6
00

59
.7
14

28
4.
18

5
99

.8
56

58
.7
60

28
0.
94

0
99

.8
69

56
.6
40

29
3.
63

5
99

.8
86

R
N
D
80

D
0.
3

17
41

.0
50

60
.3
37

20
9.
49

0
99

.3
19

60
.4
10

20
4.
84

5
99

.5
75

60
.1
05

19
7.
37

5
99

.3
10

R
N
D
80

E
0.
4

23
70

.1
50

60
.5
56

14
5.
29

5
98

.7
07

60
.6
62

14
8.
73

5
98

.8
67

60
.5
61

13
4.
71

5
95

.8
15

R
N
D
10

0A
0.
05

30
0.
25

0
31

.6
23

39
9.
46

0
99

.5
53

49
.3
68

65
2.
94

5
99

.1
91

52
.6
41

71
3.
34

0
99

.0
05

R
N
D
10

0B
0.
1

80
1.
50

0
55

.0
63

17
3.
74

5
99

.8
86

50
.5
63

16
5.
18

5
99

.8
92

47
.3
31

15
2.
89

5
99

.9
12

R
N
D
10

0C
0.
2

17
91

.6
00

60
.6
37

80
.4
50

50
.0
91

60
.5
99

85
.4
65

51
.1
94

60
.5
89

74
.7
50

96
.9
34

R
N
D
10

0D
0.
3

27
82

.8
00

61
.0
50

57
.5
90

43
.9
30

61
.0
24

60
.6
50

44
.7
01

61
.0
87

48
.4
55

82
.7
14

R
N
D
10

0E
0.
4

37
64

.2
00

61
.2
00

61
.4
40

41
.8
41

61
.2
04

59
.2
80

40
.1
86

61
.1
11

46
.4
12

77
.0
05

Ta
bl
e
6.
2:

Re
su
lts

of
th
e
th
re
e
al
go

rit
hm

s(
30

0
se
co
nd

sr
un

s)
.

In
st
an

ce
M
S

SF
FF

se
t

d
|P

F
|

ti
m
e

It
er
.

%
ti
m
e

It
er
.

%
ti
m
e

It
er
.

%
R
N
D
10

0A
0.
05

30
0.
25

0
69

.8
32

60
0.
42

5
99

.9
50

23
3.
52

3
25

97
.7
70

99
.6
03

24
2.
97

4
31

31
.6
85

99
.5
99

R
N
D
10

0B
0.
1

80
1.
50

0
11

5.
03

4
41

5.
88

5
99

.9
93

76
.9
33

27
0.
76

5
10

0.
00

0
75

.2
02

27
5.
72

5
10

0.
00

0
R
N
D
10

0C
0.
2

17
91

.6
00

29
9.
34

8
42

3.
85

5
99

.8
08

29
1.
67

6
43

1.
52

0
99

.8
34

28
4.
43

0
43

0.
49

5
99

.8
02

R
N
D
10

0D
0.
3

27
82

.8
00

30
1.
02

6
30

2.
11

0
97

.6
09

30
0.
13

1
28

8.
77

5
97

.9
49

30
1.
08

1
27

2.
85

5
95

.8
43

R
N
D
10

0E
0.
4

37
64

.2
00

30
1.
06

7
32

8.
25

0
98

.5
07

30
0.
74

9
31

7.
00

0
97

.6
54

30
1.
21

9
29

7.
06

5
93

.8
15

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 136 � #152 i

i

i

i

i

i

136 CHAPTER 6.

It can be observed that, on average a large part of the Pareto optimal
front is covered by all algorithms (%) in a small computation time. In real-life
instances (GSET), which have a relatively low number of nodes and high den-
sity, all the proposed algorithms achieve a covering percentage close to 100%
(≥ 99%). Regarding the balanced and small sets (RND10), the average per-
centage of covering is quite high (≥ 85%), even if a very high number of starting
solutions is generated. After a closer examination of the results on small and
sparse instances, it can be observed that the number of iterations to attain all
the Pareto optimal front is, in general, small; but there are some exceptions,
while the Pareto coverage is smaller than 100%. In fact, the estimated Pareto
front calculated as described in Section 6.3 may even be unreachable, since
LBSUM is only a lower bound on the optimal value.
All the algorithms are able to attain high coverage of the Pareto optimal front
(which results often ≥ 98%) for all the considered tests. For the largest in-
stances we observe a substantial performance di�erence when comparing MS
and SF algorithms with FF. In fact, the coverage of the Pareto optimal front on
instances RND100C, RND100D and RND100E is quite high for FF (about 80%
on average), while it is low for MS and SF (about 45% on average). Therefore,
a second experimental campaign has been carried out on the largest instances
(RND100) to evaluate the behaviour of the algorithms when more computa-
tion time is allowed. In particular, in this second campaign we tackled only the
bipartite graphs with 100 nodes and we set to 300 seconds the computational
time limit. The results are shown in Table 6.2. From this second campaign we
observe that, when more computation time is allowed, all the algorithms are
able to cover more than 90% of the front, and MS and FF algorithms are able
to explore more than 95%.
We also compared the three algorithms on the basis of a statistical analysis. In
particular, we performed two non-parametric tests, namely Friedman T Test
and the Kendall's W Test, which are able to compare multiple tuples of related
data and they neither require the distributions of such data are normal or sym-
metric. In all cases (with α = 0.05), both tests lead to the same conclusions.
In the following, only results related to the Friedman T Test are reported. The
null hypothesis is that an algorithm signi�cantly performs better than others
across the test instances. We consider both the real-life and the randomly
generated instances, six sets in total (recall that each random set contains in-
stances with the same number of nodes and di�erent density values).
In Table 6.3, the results related to algorithms' computational times and cov-
erage are reported. Since the distribution of scores is expected to be neither
normal nor symmetric, we use the median execution time and Pareto opti-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 137 � #153 i

i

i

i

i

i

6.5. COMPUTATIONAL EXPERIMENTS 137

mal front coverage although considering average executing times and Pareto
optimal front coverages leads to the same conclusions. In particular, Table
6.3 reports only on the instance sets for which signi�cant statistical di�er-
ences arise. For each instance, the algorithms are ranked and the ranks are
then summed over all instances in the same set, i.e., with the same number of
nodes. Thus, in Table 6.3 (a) a lower rank sum indicates that an algorithm
tends to be faster; whereas in Table 6.3 (b) a higher rank sum indicates that an
algorithm tends to achieve better Pareto optimal front coverage. Concerning
the execution time of each metaheuristic (Table 6.3 (a)), we observe a statisti-
cal di�erence only when comparing the three algorithms on small instance sets
(GSET, RND10�RND60), in which FF is faster than the other algorithms. No
statistical di�erences arise on larger instances. This is not surprising because,
on larger instances, the algorithms tend to use all the allowed computational
time. On the other hand, for what concerns the percentage of Pareto opti-

Table 6.3: Rank sum of (a) median computation times and (b) Pareto optimal
front coverage.

Instance set MS SF FF Instance set MS SF FF
GSET 76 60 56 RND100 (60 sec.) 175 170 255
RND10 144 170 166 RND100 (300 sec.) 223 211 166
RND30 179 159 142
RND60 226 194 180

mal front covering (Table 6.3 (b)), signi�cant statistical di�erence arises only
on larger instances (set RND100) when considering both one and �ve minutes
runs. On short runs, with the time limit set to 60 seconds, there is a statistical
di�erence according to the Friedman test, and it can be noted that FF per-
forms better (i.e., it exhibits higher sum rank than the others algorithms). On
the other hand, when more computation time is allowed, a statistical di�erence
arises again but, in this case, the best algorithm turns out to be MS. Such be-
haviors can be explained observing that FF generates as starting solution only
promising candidates and, hence, it quickly covers the Pareto optimal front at
the beginning. However, FF algorithm is not able to easily cover all the Pareto
optimal front. On the other hand, MS uses sequentially a huge number of
starting points in ESISS, and thus resulting in a better coverage of the Pareto
optimal front.
From the above discussion, it follows that, although all algorithms perform in
an excellent way with results very similar in time and covering, FF has the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 138 � #154 i

i

i

i

i

i

138 CHAPTER 6.

best performances when a small computation time is considered, while MS is
slower, but more accurate and e�ective in covering every zone of the front.

6.6 Conclusions and future research
In this chapter a two objective setup coordination problem arising in a two
stage serial manufacturing system is addressed. The problem consists in �nd-
ing a common sequence of batches to be produced such that the number of
setup paid on each department is minimized. In particular the case in which
all the setups are identical has been considered. For this problem a geometrical
characterization of the Pareto optimal front is given and it is used to develop
e�ective algorithms. Three heuristic approaches have been proposed and they
have been extensively tested on a wide set of instances. The proposed algo-
rithms are able to cover large portions of the Pareto optimal front on average,
within a reasonable computation time.
An extension of the proposed approach to a class of single-objective problems
is also discussed. Future research directions include:
i) Improve the lower bound procedure and to try to establish a priori that some
points of the estimated Pareto front do not correspond to feasible solutions.
Such improvements could guarantee better performance of the algorithms both
in terms of quality and computation time.
ii) From the decision maker point of view it could be also interesting to �nd
di�erent sequences corresponding to each Pareto point. In fact, our approach
�nds only a solution for each Pareto point.
iii) Adapt and test the algorithmic approach to deal with the case of di�erent
setup costs in each department.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 139 � #155 i

i

i

i

i

i

Chapter 7

Scheduling dispensing and
counting in secondary
pharmaceutical manufacturing

The last case study presented in this thesis is a problem of operations schedul-
ing in dispensing and counting departments of pharmaceutical manufacturing
plants. The departments are modelled as a multi-objective parallel machines
scheduling problem under a number of both standard and realistic constraints,
such as release times, due dates and deadlines, particular sequence-dependent
setup times, machine unavailabilities, and maximum campaign size. Main char-
acteristics of the metaheuristic methodology, presented to solve this problem,
are the modularity of the solution algorithms, the adaptability to di�erent ob-
jectives and constraints to ful�ll production requirements, the easiness of imple-
mentation, and the ability of incorporating human experience in the scheduling
algorithms. Computational experience carried out on two case studies from a
real pharmaceutical plant shows the e�ectiveness of this approach.

7.1 Introduction
The pharmaceutical production systems are called to improve their production
planning and scheduling methods to strive for better utilization of resources
and reduction of the response time. In fact, declining windows of product ex-

139

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 140 � #156 i

i

i

i

i

i

140 CHAPTER 7.

clusivity, competition from generics, and new market entrants from third world
countries are increasing the competitive pressure on pharmaceutical companies
[151], [186]. Pharmaceutical producers need to increase �exibility, and, at the
same time, to obtain a noticeable reduction of production costs preserving the
quality of products and processes.
Maintaining high growth rates requires to increase the number of new products
or the internal e�ciency of the organizations. In fact, there are great margins
for costs reduction in facing time-to-market opportunity costs, research and de-
velopment ine�ciencies, under-developed processes for matching supply with
demand, poor manufacturing cycle e�ciency and discontinuous work�ows [151],
[178].
In this chapter we focus on one of such issues, namely the optimization meth-
ods for production scheduling. Common features of the production processes
are the small size of the lots, strict requirements on product quality and tim-
ing delivery, and the large variety of constraints arising from the shop-�oor
characteristics or from various technological issues. Moreover, the quality of a
schedule may involve several indices, such as the use of shop-�oor resources,
production costs in terms of personnel and energy consumption, the attainment
of production targets, and so on.
Due to the inherent complexity and variety of pharmaceutical scheduling prob-
lems, a large extent of scheduling and related issues are still carried out by
human schedulers, who are able to develop feasible schedules based on their
past experience and intuition.
Developing and implementing e�ective computerized systems for addressing
such operational problems require, therefore, focusing on a number of aspects
that are rarely taken into account jointly in the scheduling theory. Among the
others, we recall the need for general solution algorithms, able to deal with
di�erent objectives and constraints to ful�ll production requirements, and au-
tomated scheduling systems able to easily embed observations and suggestions
arising from the scheduling practice.
In pharmaceutical manufacturing, the production strongly depends on the cus-
tomer demands in terms of products, quantities and delivery times. In this
context, the automation of scheduling activities in non-critical areas allows the
management focalizing on critical areas then propagating solutions and con-
straints to the other areas of the plant. Thus it allows to enlightening promptly
possible infeasibilities under on overall view of the plant, since such areas often
serve di�erent departments or lines. This contributes to a plantwide increase
of scheduling responsiveness.
In this chapter we move in this direction and focus on a general methodology to

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 141 � #157 i

i

i

i

i

i

7.2. PHARMACEUTICAL MANUFACTURING SYSTEMS 141

address scheduling problems arising in two areas of pharmaceutical production
systems. In particular, we apply the method for scheduling the production
in a parallel machine environment, including lot production with setups, due
dates, deadlines and other realistic constraints. Moreover, we report on two
case studies detailing the implementation of the proposed methodology in a
real industrial context. The rationale is developing algorithms easily adaptable
to deal with di�erent constraints and objectives, and suitable for incorporating
human experience in the computerized logic. Such methods are not necessarily
based on strong mathematical properties of the particular problem to solve.
Rather, the search process is guided by several heuristic procedures, called pi-
lot heuristics, so that it is possible to include new procedures suggested by
human experience and/or to modify the behavior of the system by adding, re-
moving or modifying the pilot heuristics. At this aim we apply a metaheuristic
strategy known as rollout method [25] or pilot method [56]. These method-
ologies for the approximate solution of discrete optimization problems have
been independently developed by Bertsekas et al. [25] and Duin and Voÿ [56].
The main idea of a rollout algorithm is to include one or more pilot heuristics
in a larger framework with the purpose of improving their performance. We
also considered general local search techniques for improving the quality of the
schedules, and we focused in particular on variable neighborhood descent tech-
niques [80, 81].
The chapter is organized as follows. Section 7.2 introduces the main issues
of pharmaceutical manufacturing system. In section 7.3 the case studies are
illustrated in detail, and in section 7.4 the proposed algorithmic approaches are
described, while the relative results are reported and discussed in the successive
section 7.5. Finally, conclusions are drawn in Section 7.6.

7.2 Pharmaceutical manufacturing systems

The pharmaceutical industrial production mainly consists of at least two man-
ufacturing stages: primary and secondary manufacturing [178, 39]. The former
is dedicated to the production of active ingredients and other basic components
and production is typically a push process (driven by forecast demand) orga-
nized in long campaigns to reduce the impact of long cleaning and setup times
that are necessary to ensure quality and to avoid cross-contamination. Primary
manufacturing is therefore not very sensitive to short-term �uctuations of the
customers demand, and the main issue is a careful lot sizing to avoid shortages
of active ingredients in successive production steps [186] [178]. Secondary man-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 142 � #158 i

i

i

i

i

i

142 CHAPTER 7.

ufacturing production is usually a pull process, driven by wholesalers' orders,
in which active ingredients and other components are dispensed, processed and
packed to compose the �nal products.
In this chapter, we focus on secondary manufacturing systems only, which con-
sist of a set of multi-purpose production facilities that produce a variety of
intermediate and �nished products through multi-stage production processes.
Facilities are linked by supplier-customer relations, and each of them may in-
teract with other external (e.g. suppliers) or internal (e.g. warehouses) enti-
ties. The production processes are commonly devoted to produce solid, liquid,
aerosol or powdered items according to a family of similar recipes [39]. They are
typically organized with three or four main departments (Figure 7.1). These
departments, to a certain extent, can operate independently from each other
because intermediate products can be stored in sealed bins.
The preliminary activities of materials preparation are performed in the dis-
pensing department [39]. These operations attain to weighing, dosage and
preparation of each ingredient in a recipe and represent one of the most impor-
tant steps in the pharmaceutical process. All recipes must be strictly observed
and only approved materials can be used in the operation.
Weighing materials is a time consuming operation requiring workers to pay par-
ticular attention for: containment and separation of product from operators;
possible cross-contamination; cleaning of booth and equipment and gowning
and washing for the operators and separation from the other areas. The main
function of the dispensing department is to test materials and release them to
production lines. The essential requirement is that material released has been
tested and approved by quality controllers for production purposes, and that
only this material is used for manufacturing products. The dispensary handles
several di�erent classes of material some of which require particular care in the
preparation due to their active or dangerous properties. In addition, material
may also have to be passed back to the warehouse when only a partial quantity
is required from a large container. Finally, the dispensing department provides
records that enable a complete audit trail of all the materials dispensed.
The speci�c production process activities, such as binder preparation, bulk ma-
terials granulation and blending, tablet or capsule production, are performed in
the manufacturing department, while activities of counting and packaging are
in charge of the packaging department [211]. However, when counting activi-
ties are relevant, counting and packaging activities are performed in di�erent
departments. This situation frequently arises in Europe due to the many dif-
ferent national speci�c rules and languages requiring to handle a huge number
of di�erent packages in the same plant [151],[178], [39].

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 143 � #159 i

i

i

i

i

i

7.3. PROBLEM DESCRIPTION 143

Counting

Dispensing

Manufacturing

Packaging

Secondary
Manufacturing

Primary Manufacturing

Market

Packaging
materials

Figure 7.1: The main production phases in the secondary pharmaceutical man-
ufacturing.

7.3 Problem description

In this chapter, we report our experience with a practical implementation of a
scheduling system at a pharmaceutical production plant located in Italy. We
consider the production scheduling of two departments: dispensing and count-
ing. They are the simplest departments in secondary pharmaceutical manu-
facturing. The plant supplies di�erent European countries and the production
�ow is organized with the four main phases of Figure 7.1. However, while there
is only one dispensing and one counting department in the plant, manufactur-
ing and packaging activities are organized with several departments. Late and
urgent orders are managed as orders with strict deadlines, to be processed as
soon as possible. Clearly, deadlines make di�cult to organize long campaigns,
and therefore tend to reduce the actual capacity of the departments. This
reduction may cause, in turn, late deliveries at the end of the week and such

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 144 � #160 i

i

i

i

i

i

144 CHAPTER 7.

negative e�ects may propagate over several weeks. All these problems motivate
the need for more coordination among the departments and with the planner.

Dispensing department
In the dispensing department the availability of all raw materials required by
each recipe is checked. Raw materials, picked up from a warehouse, are weighed
and prepared in sealed bins which are sent to bu�ers waiting for processing in
the manufacturing department. The remainders, if any, are sent back to the
warehouse unless the following job requires the same components. The weigh-
ing operations are performed in two independent rooms in parallel.
Cross-contamination issues require one product at a time being processed in
a room and the room cleaned when switching from one product to another.
Minor cleaning is su�cient when two consecutive products need the same raw
materials. The production is organized in groups of products requiring the
same raw materials to be scheduled consecutively, which are called campaigns.
Major cleaning is however necessary after a maximum number of products of
the same type, called the size of a campaign.
From the scheduling point of view each room acts as a single machine with
sequence-dependent setup times and campaigns. For each production order
there may be a release time and a due date or a deadline, when there is a
risk of stock-out for customers. There may be planned temporary room un-
availability, mainly due to lack of personnel, which must be taken into account
when scheduling the production. Note that, while a setup operation can start
before an unavailability and complete after the interruption, ordinary process-
ing operations cannot be interrupted.
A schedule is considered feasible by the dispatchers when all the deadlines, if
any, are respected. Hence, to attain feasibility, one must respect all the dead-
line constraints. Once the feasibility is reached we use as primary objective the
minimization of the maximum lateness, i.e., the maximum over all products
of the di�erence between the product completion time and its due date. As
secondary objectives, in lexicographic order, we consider the makespan mini-
mization and the minimization of the number of late jobs.

Counting department
The counting department prepares materials required for packaging. Pack-
ages, labels and information lea�ets are taken from a warehouse, counted and
prepared for the subsequent packaging operations. This department typically

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 145 � #161 i

i

i

i

i

i

7.3. PROBLEM DESCRIPTION 145

deals with a much larger number of lots with respect to the dispensing depart-
ment, due to the number of di�erent packages that must be used in di�erent
countries and the presence of di�erent packaging departments of the plant.
The counting department is composed of three independent rooms, although
a room may be temporarily unavailable, and there is no signi�cant setup be-
tween two consecutive operations. Also in the counting department there are
release times (when the packages becomes available), deadlines and due dates
(propagated backward from the packaging departments). As in the dispensing
department the main goal is the respect of deadlines and the objectives are in
lexicographic order minimizing maximum lateness, makespan and number of
late jobs.

Scheduling models
The scheduling environment of interest in both departments is the parallel
machines case, i.e., the problem is to decide when to start an operation and
on which machine under a number of realistic constraints. In this context,
industrial examples can be found in [142], while a survey on the parallel machine
scheduling research is available in [36], while the parallel machine scheduling
problem with multiple objectives is discussed by [197]. The version of the
problem with sequence dependent setup times is addressed by [110] and [195]
which considers also the case with minor and major setups. The latter case
is particularly frequent in the pharmaceutical industry in which minor setups
are related to successive processing of jobs belonging to the same family, while
major setups occur when the families of two successive jobs are di�erent and a
more accurate and time/work consuming changeover operation is required.
A formal model for these scheduling problems can be formulated adopting
the three �elds (α/β/γ) classi�cation scheme of Graham et al. [75], where
α indicates the scheduling environment, β describes the job characteristics or
restrictive requirements, and γ de�nes the objective function to be minimized.
With this notation, the dispensing department can be classi�ed as

P2|ri, di, Di, sij ,MCS, unavail|Lex(Lmax, Cmax, U),

in which, P2 indicates identical parallel machines production environment with
2 machines; ri, di, and Di indicate that jobs have release times, due dates,
and deadlines, respectively; sij indicates the presence of sequence-dependent
setup times; MCS represents the constraints on the maximum campaign size;
unavail represents the possible room unavailability constraint; the objectives

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 146 � #162 i

i

i

i

i

i

146 CHAPTER 7.

are (in lexicographic order): Lmax minimization of maximum lateness, Cmax,
makespan minimization, U , minimization of the number of tardy jobs.
Similarly, the counting department can be described as:

P3|ri, di, Di, unavail|Lex(Lmax, Cmax, U).

We notice that, although the dispensing and counting departments are con-
sidered simple departments from the operations practice point of view the
resulting scheduling problems are considered quite di�cult NP-hard problems
in the scheduling literature [65],[152]. Moreover, some constraints as the maxi-
mum size of a campaign or the particular machine unavailability that allows to
resume only cleaning operations are not frequently addressed in the scheduling
literature [186].

7.4 Solution methods
In this section we describe a general approach to design scheduling algorithms
that are easily adaptable, modular and suitable for incorporating human expe-
rience in the computerized methods. Simple heuristics are more easily accepted
and trusted by the human schedulers, who can understand their principles and
suggest modi�cations to improve performance over time. In these methods, the
search process is performed by several heuristic procedures guided by a general
optimization strategy. The method is applied to the cases under study, and
the following subsections are devoted to describe in details the characteristics
of the considered algorithms.

Constructive algorithms for dispensing and counting
We focus on greedy algorithms to produce a solution. Greedy algorithms typi-
cally sort the operations according to a given criterion and then, starting from
the empty solution, build a complete schedule by adding to the partial sched-
ule one operation at a time, according to the order induced by the adopted
criterion.
We introduce two greedy algorithms developed for scheduling the production
in the dispensing and counting departments. We developed a modi�ed version
of the Jackson Schedule [92] algorithm and we refer to it as MJS. Details on the
MJS algorithm are illustrated in Figure 7.2. The heuristic criterion sorts all
the jobs that are available to be scheduled �rst according to their priority (i.e.,

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 147 � #163 i

i

i

i

i

i

7.4. SOLUTION METHODS 147

the presence of a deadline) and second by the smallest due date value. The dis-
patching rule assigns the selected job to the machine which is able to complete
it �rst. Clearly, the completion time of a job takes in account the presence
of sequence-dependent setup times, campaigns and machine availabilities. We
observed that, the schedules produced by hand in the counting department
were quite similar to that of the MJS algorithm.

Modi�ed Jackson Schedule (MJS)
Input: a set P of production orders;
t = min{ri : i ∈ P}, S = ∅
repeat

R = {i ∈ P : ri ≤ t}
if there is a job in R with a deadline then

select a job j ∈ R with the smallest deadline
in case of tie, select a job with the smallest setup

else if there is a job in R with a due date then
select a job j ∈ R with the smallest due date
in case of tie, select a job with the smallest setup

else t = min{ri : i ∈ P}, R = {i ∈ P : ri ≤ t}
if a job has been selected then

assign j to the machine able to complete it �rst, taking into account (if any)
setups, campaigns and machine availability, S = S ∪ {j}, P = P \ {j}
update t to the smallest completion time of all available machines

until P = ∅

Figure 7.2: Algorithmic scheme of the Modi�ed Jackson Schedule.

Algorithm Delta extends the MJS algorithm by dividing processing horizon
into intervals of length ∆, and by replacing the due dates (and deadlines) in
the interval [k∆, (k + 1)∆] with k∆. Then, it schedules jobs according to the
MJS algorithm. This means that in the preprocessing step the production
orders having similar due dates are grouped together. Hence, a larger value of
∆ favors the formation of larger campaigns, whereas setting ∆ = 0 corresponds
to the MJS algorithm. In Figure 7.3 we show the details of the algorithm Delta.
Algorithm Delta surrogates the schedules produced by hand in the dispensing
department. In fact, in the dispensing department the schedulers strive to
obtain large campaigns other than respecting the due dates.
The results of MJS and Delta heuristics were considered feasible, although
not particularly performing, by the schedulers. We used the rollout method

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 148 � #164 i

i

i

i

i

i

148 CHAPTER 7.

Algorithm Delta (∆)
Input: a set P of production orders;
Forall jobs i ∈ P compute modi�ed due dates and deadlines: d̄i = b di

∆
c∆; D̄i =

bDi
∆
c∆

t = min{ri : i ∈ P}, S = ∅
repeat

R = {i ∈ P : ri ≤ t}
if there is a job in R with a deadline then

select a job j ∈ R with the smallest modi�ed deadline,
in case of tie, select a job with the smallest setup

else if there is a job in R with a due date then
select a job j ∈ R with the smallest modi�ed due date,
in case of tie, select a job with smallest the setup

else t = min{ri : i ∈ P}, R = {i ∈ P : ri ≤ t}
if a job has been selected then

assign j to the machine able to complete it �rst, taking into account setups,
campaigns and machine availability, S = S ∪ {j}, P = P \ {j}
update t to the smallest completion time of all available machines

until P = ∅

Figure 7.3: The scheme of the Algorithm Delta (∆).

of Figure 7.4 to improve the performance of these basic heuristics. It is well
known that greedy heuristics may exhibit an erratic behavior, possibly because
(i) locally promising decisions may not lead to good global solutions, and (ii)
wrong choices can not be changed anymore in the solution process. The main
idea of the Rollout algorithm [25].[24] or Pilot method [56],[212] is to overcome
or, at least, mitigate these limitations by means of a look-ahead strategy. More
speci�cally, the partial solution is iteratively enlarged by using one or more
greedy algorithms as a look-ahead strategy. This approach can be viewed also
as an approximated dynamic programming method [23],[37]. These algorithms
have been applied to di�erent problems, such as stochastic vehicle routing
problems [176], test sequencing for fault diagnosis applications [205], general
versions of job shop scheduling problems [129].
We next illustrate the rollout/pilot method for a parallel machine scheduling
problem. A solution S is a schedule of m machines and n jobs. Starting from
the empty solution (with no �xed components), the k-th iteration consists in
evaluating a scoring function p(j) for each job j which can be added to the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 149 � #165 i

i

i

i

i

i

7.4. SOLUTION METHODS 149

Algorithm Pilot/Rollout
begin
for k = 1, . . . , |J | do

begin
p(j0) = +∞
for all j ∈ J do

if (p(j) = H(Sk−1, j)) < p(j0) then j0 = j
Sk = {Sk−1 ∪ j0}, J = J \ {j0}
end

end

Figure 7.4: Algorithmic scheme of Pilot/Rollout

current partial solution Sk−1 and choosing the one having the smallest scoring
function. The iteration is repeated, for k = 1 to n, when a complete solution is
found. Given a partial solution Sk−1, and let j be a possible job to be added
to the schedule, a pilot heuristic H(·) is a constructive algorithm that, starting
from the partial solution Sk in which job j has been added according to the
heuristic dispatching rule, produces a complete solution with objective function
value p(j) = H(Sk−1, j). At the end of the k-th iteration the job j0 associated
to the smallest H(Sk−1, j) is permanently added to the partial solution. Figure
7.4 shows a sketch of the rollout algorithm using a single pilot heuristic applied
to the problem of sequencing a set J of jobs and m machines.

Local search procedures
Another well known technique to improve a given solution is based on the local
search principle. Local search algorithms are based on a neighborhood struc-
ture N . In particular, we considered three neighborhood structures associated
with the following moves, aiming at improving the single machine schedules
independently from each other.

• SWAP: Two adjacent jobs assigned on the same machine Mx, say jk and
jk+1, are swapped. The rest of the schedule remains unchanged.

• INSERT: A job jh is removed from its current position in the schedule
of Mx and it is inserted on the same machine, before or after another
operation jk.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 150 � #166 i

i

i

i

i

i

150 CHAPTER 7.

• EXCHANGE: Two (non-adjacent) jobs assigned on the same machine
Mx, say jh and jk, are swapped, i.e., jh replaces jk and vice versa. The
swap move is therefore a particular exchange move.

Figure 7.5 provides an illustration of the proposed moves.

EXCHANGE

SWAP

INSERT

J1 Jk JnJk+1Jk-1 Jh Jh+1Jh-1

J1 Jk JnJk+1Jk-1 Jh Jh+1Jh-1

J1 Jk JnJk+1Jk-1 Jk+2

Figure 7.5: An illustration of the three moves.

Local search algorithms converge to a local minimum, which may be of poor
quality. To contrast this drawback, a variety of strategies have been proposed
to escape from local minima. The Variable Neighborhood Descent (VND) is a
local search technique focused on systematic neighborhood changes [80],[81].
It is based on the observation that a local minimum for a given neighborhood
is not necessarily a local minimum when other neighborhoods are considered.
More speci�cally, let {N1 . . . Nk} be a set of neighborhood structures. The
VND starts the search process from an initial solution in the �rst neighborhood
i = 1, i.e., N1. In the generic iteration, the algorithm scans the i-neighborhood
looking for an improving move; once an improving move is detected it is per-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 151 � #167 i

i

i

i

i

i

7.5. COMPUTATIONAL RESULTS 151

formed and the VND starts searching again in the �rst neighborhood (N1). If
no such improving move exists, the algorithm starts searching in the (i + 1)-
neighborhood. The search process terminates when no improving moves are
available in all the considered neighborhoods. The sketch of the algorithm is
given in Figure 7.6.
In our implementation we ordered the three neighborhoods are ordered accord-
ing to their size, i.e., SWAP, INSERT and EXCHANGE.

Variable Neighborhood Descent (VND)

Input: a set of neighborhoods: {N1 . . . Nk}, and an initial solution;
i := 1
repeat

search for a pro�table move in Ni

if an improving move is found then
apply the move
i := 1

else i := i + 1

until i ≥ k

Figure 7.6: Algorithmic scheme of Variable Neighborhood Descent (VND).

7.5 Computational results
In what follows we study four di�erent algorithms obtained by combining the
three building blocks previously described:

• Algorithm H consists in the application of a simple greedy heuristic, either
MJS or Delta.

• Algorithm RH is the rollout algorithm using H as pilot heuristic.

• Algorithm H+LS corresponds to improving the solution of the greedy
algorithm by applying the VND procedure.

• Finally, we call RH+LS the rollout algorithm in which the �nal solution
is used as initial solution by the VND algorithm.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 152 � #168 i

i

i

i

i

i

152 CHAPTER 7.

These algorithms have been tested on two sets of 15 randomly generated re-
alistic instances for each department, each instance representing two weeks of
planned production. The instances have been generated respecting a typical
production mix of the plant. Each test instance in the dispensing department
has a number of jobs ranging from 40 to 60. The number of jobs in the dis-
pensing department, for each instance, ranges from 400 to 480. These sizes
represent the typical number of jobs produced in the two departments in a
two-week production horizon. In the �rst set there are some jobs with higher
priority, i.e., having a deadline, whereas in the second set there are no urgent
jobs. In the instances belonging to the �rst set (i.e., having a deadline) 20% of
the jobs has a deadline instead of a due date. The time in which a given job
must be completed, i.e., the di�erence between due date (deadline) and release
time di − ri, ranges from one to three production time shifts (each production
time shift is set to 16 consecutive hours). Besides a few random machine un-
availability have been added. All the algorithms are written in C and run on
a AMD X2 processor with 2.2 GHz with Linux operating system.
In Tables 7.1�7.6 (7.3�7.8) we present the results of the experimental cam-
paign on the dispensing (counting) department, respectively. Each row of the
tables represents the results obtained by applying a di�erent greedy heuristic.
Namely, we report on the results of MJS (which corresponds to setting ∆ = 0
in the Delta algorithm), and two versions of the Delta algorithm obtained by
setting ∆ equals to 8 hours (i.e., half time shift) and to the average processing
time of all the jobs in the instance. We refer to them as ∆8h and ∆avg, respec-
tively. For each algorithm we present the computation time (Time) in seconds,
the objective functions values (maximum lateness Lmax, makespan Cmax and
number of tardy jobs U) and the percentage of feasible instances (%feas), i.e.,
instances in which the deadline constraints are not violated. All the values in
each row of the tables are the average over 15 instances.
In Tables 7.1�7.2 we show the results of the proposed algorithms on the test
instances with deadlines. The computation time never exceeds one second
when a rollout algorithm is applied, and it is negligible when H and H+LS
algorithms are applied. As far as the solution quality is concerned we can see
that MJS heuristic performs worse than Delta variants, although tends to �nd
more feasible solutions. We observe that, when the Delta heuristic is used
it is able to obtain better results than MJS and the two variants (∆8h and
∆avg) yield exactly to the same solutions. However, when studying the e�ects
of the di�erent algorithmic schemes the performance indicators obtained by
RH+LS are greatly improved: The maximum lateness and the makespan are
reduced of about 1000 seconds, the number of late jobs is more than halved and

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 153 � #169 i

i

i

i

i

i

7.5. COMPUTATIONAL RESULTS 153

the solutions obtained are always feasible, i.e., all the deadlines are respected.
From results reported in Table 7.2 it is clear that the main contribution to
these improvements is due to the rollout algorithm.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 154 � #170 i

i

i

i

i

i

154 CHAPTER 7.
H

H
+
LS

H
eu

ris
tic

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

M
JS

<
0.
01

43
13

.8
7

20
81

3.
53

14
.4
7

1.
00

<
0.
01

41
34

.4
7

20
72

5.
40

12
.1
3

1.
00

∆
8

h
<
0.
01

39
65

.4
7

20
79

4.
87

11
.6
0

0.
67

<
0.
01

37
99

.8
7

20
64

3.
93

8.
47

0.
73

∆
a

v
g

<
0.
01

39
65

.4
7

20
79

4.
87

11
.6
0

0.
67

<
0.
01

37
99

.8
7

20
64

3.
93

8.
47

0.
73

Ta
bl
e
7.
1:

D
isp

en
sin

g
de

pa
rt
m
en
t:

In
st
an

ce
sw

ith
de

ad
lin

es
(H

an
d
H
+
LS

)

R
H

R
H
+
LS

H
eu

ris
tic

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

M
JS

0.
53

31
92

.5
3

19
87

8.
40

7.
20

1.
00

0.
53

31
40

.1
3

19
87

8.
40

6.
73

1.
00

∆
8

h
0.
54

29
72

.1
3

19
87

9.
73

4.
73

1.
00

0.
54

29
72

.1
3

19
87

9.
73

4.
67

1.
00

∆
a

v
g

0.
53

29
72

.1
3

19
87

9.
73

4.
73

1.
00

0.
53

29
72

.1
3

19
87

9.
73

4.
67

1.
00

Ta
bl
e
7.
2:

D
isp

en
sin

g
de

pa
rt
m
en
t:

In
st
an

ce
sw

ith
de

ad
lin

es
(R

H
an

d
RH

+
LS

)

H
H
+
LS

H
eu

ris
tic

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

M
JS

0.
04

52
7.
93

17
31

2.
73

3.
00

1.
00

0.
07

50
9.
80

17
31

2.
67

3.
00

1.
00

∆
8

h
0.
04

52
6.
27

17
31

0.
47

4.
07

1.
00

0.
06

52
6.
27

17
31

0.
47

4.
07

1.
00

∆
a

v
g

0.
04

44
7.
00

17
31

9.
13

3.
27

1.
00

0.
06

44
6.
93

17
31

9.
07

3.
00

1.
00

Ta
bl
e
7.
3:

Co
un

tin
g
de

pa
rt
m
en
t:

In
st
an

ce
sw

ith
de

ad
lin

es
(H

an
d
H
+
LS

)

R
H

R
H
+
LS

H
eu

ris
tic

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

T
im

e
L

m
a

x
C

m
a

x
U

%
fe
as

M
JS

21
48

.2
8

45
9.
13

17
25

7.
53

1.
80

1.
00

21
48

.3
1

45
7.
87

17
25

7.
53

1.
80

1.
00

∆
8

h
22

08
.7
2

45
3.
33

17
25

6.
07

2.
67

1.
00

22
08

.7
4

45
3.
33

17
25

6.
07

2.
60

1.
00

∆
a

v
g

22
30

.4
1

35
8.
13

17
28

0.
60

1.
40

1.
00

22
30

.4
3

35
8.
13

17
28

0.
60

1.
40

1.
00

Ta
bl
e
7.
4:

Co
un

tin
g
de

pa
rt
m
en
t:

In
st
an

ce
sw

ith
de

ad
lin

es
(R

H
an

d
RH

+
LS

)

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 155 � #171 i

i

i

i

i

i

7.5. COMPUTATIONAL RESULTS 155

H H+LS
Heuristic Time Lmax Cmax U Time Lmax Cmax U
MJS <0.01 3742.13 20672.47 10.47 <0.01 3664.87 20595.20 9.67
∆8h <0.01 3762.60 20692.93 10.67 <0.01 3685.33 20615.67 9.80
∆avg <0.01 3762.60 20692.93 10.67 <0.01 3685.33 20615.67 9.80

Table 7.5: Dispensing department: Instances without deadlines (H and H+LS)

RH RH+LS
Heuristic Time Lmax Cmax U Time Lmax Cmax U
MJS 0.53 2625.27 19568.07 5.27 0.53 2625.27 19568.07 5.27
∆8h 0.54 2708.93 19651.73 6.67 0.54 2708.93 19651.73 6.07
∆avg 0.54 2708.93 19651.73 6.67 0.54 2708.93 19651.73 6.07

Table 7.6: Dispensing department: Instances without deadlines (RH and
RH+LS)

When tackling instances without deadlines (see Table 7.5 and 7.6) we observe
that the MJS algorithm is able to produce slightly better results. Clearly in
these cases the column %feas is not reported.
In Tables 7.3 and 7.4 we show the results obtained for the counting department
when a deadline is present, whereas in Tables 7.7 and 7.8 we report on the
results for instances without deadline.
When used as stand-alone heuristic (see Table 7.3) ∆avg is the heuristic able
to produce better results. However when tackling instances without deadlines
(Table 7.7) MJS results to be slightly better. In the counting departments
all the algorithms are able to �nd always a solution respecting the deadline
constraints. Regarding the computation times we note that more than half
an hour is needed to terminate the rollout procedure. This is clearly due
to the larger number of jobs in these instances. However such computation
time does not a�ect the applicability of this approach since the amount of
time in which a solution should be produced by the automated scheduling
system is usually larger. Moreover we observe that the LS phase requires
always an almost negligible time. On the other hand, the solution quality
of the rollout algorithms is signi�cant better than the H+LS. We also observe
that no signi�cative di�erence arises when comparing RH and RH+LS, or when
comparing the e�ects of di�erent pilot heuristics.
Finally, regarding the results when no deadline is imposed, the larger in�uence
on the solution quality is again due to the application of the rollout algorithm.
On the other hand, also in this case there is a clear trade-o� between the
computational e�ort and the solution quality.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 156 � #172 i

i

i

i

i

i

156 CHAPTER 7.

H H+LS
Heuristic Time Lmax Cmax U Time Lmax Cmax U
MJS 0.04 924.47 17779.67 5.40 0.04 924.07 17779.27 5.40
∆8h 0.04 1014.13 17786.20 6.20 0.04 1010.80 17782.87 6.07
∆avg 0.04 924.73 17779.93 5.27 0.04 924.33 17779.53 5.13

Table 7.7: Counting department: Instances without deadlines (H and H+LS)

RH RH+LS
Heuristic Time Lmax Cmax U Time Lmax Cmax U
MJS 2214.80 605.13 17571.40 2.40 2214.80 605.13 17571.40 2.40
∆8h 2176.31 716.73 17510.80 3.80 2176.31 716.73 17510.80 3.80
∆avg 2163.06 605.13 17571.40 2.40 2163.07 605.13 17571.40 2.40

Table 7.8: Counting department: Instances without deadlines (RH and
RH+LS)

In Figure 7.7 and Figure 7.8 we plot the improvements over the basic stand-
alone heuristics due to the proposed improvement schemes for the dispensing
and counting department respectively. The percentage improvement is ob-
tained as follows: (1 − xi

v)/xi
H , where i ∈ {Lmax, Cmax, U}, v = {H,H +

LS,RH,RH + LS} and xi
v is the solution quality according to the objective

function i obtained by algorithm v. Hence, percentage improvement on Lmax

possibly gets values > 100% when, starting from Lmax ≥ 0, a new solution
with Lmax < 0 is obtained. In the dispensing department the main contri-
bution is given by the application of the rollout algorithm, although the use
of a VND allows to slightly improve the solution quality without increasing
signi�cantly the computation time. For both departments the algorithms are
able to obtain relevant improvements in Lmax and U objectives. In particular,
Lmax is improved up to 27% on average, and U is improved of about 50%. A
more detailed analysis of the results shows that in about 50% of the instances
no late jobs are present. The main di�erence between the two departments is
that, in the counting department the algorithms are able to improve the Cmax

objective by only 1%, while the reduction in the dispensing department is up
to 5%. This is due to the presence of sequence dependent setups in the dis-
pensing which allow to improve the makespan objective, while in the counting
department the makespan reduction is indeed marginal.
In a �rst step of the algorithms development phase, we implemented several
simple greedy procedures. Some algorithms were simple list schedules such as
the Earliest Due Date, Shortest Processing Time and similar. Other greedy
heuristics were insertion heuristics or more sophisticated algorithms. The pur-

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 157 � #173 i

i

i

i

i

i

7.5. COMPUTATIONAL RESULTS 157

Figure 7.7: Average improvements in the dispensing department

pose of the �rst phase was that of verifying the correctness of the models with
the users, and looking for useful properties of the problem instances to exploit
in the algorithms. Discussion with the users led to validation of the models
described in the previous section and to a description of the behavior of human
scheduler when building a feasible schedule. In fact, the human schedulers in
the plant did not follow any formal procedure to schedule production orders and
even did not use any formal de�nition of quality of a schedule. The schedules
were simply the result of schedulers intuition and past experience. However,
the schedules produced by hand in the counting department were quite similar
to that of the MJS algorithm illustrated in Figure 7.2, a modi�ed version of the
Jackson Schedule [92]. At the dispensing department, the schedulers strived to
obtain large campaigns other than respecting the due dates. Algorithm Delta
in Figure 7.3 is a surrogate of their behavior.
The lack of detailed information on the performance of the previous scheduling
process does not allow a direct and complete comparison with the new system.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 158 � #174 i

i

i

i

i

i

158 CHAPTER 7.

Figure 7.8: Average improvements in the counting department

As far as the dispensing and the counting departments are concerned, the as-
sessment of the new system was based on the feedback from the department
managers. Speci�cally, the solutions provided by the stand-alone greedy al-
gorithms were considered not satisfactory, since it was simple for the users to
improve the solutions with frequent and tedious local changes in the schedules.
On the other hand, the schedules obtained after the rollout and VND phases
were rarely improved by users. The increase of capacity for the dispensing
department has been estimated up to one hour in a day by the department
manager, which approximately corresponds up to the 2% of productivity in-
crease. Similar results were obtained for the counting department.

7.6 Conclusions
In this chapter we described a production scheduling problem arising in sec-
ondary pharmaceutical manufacturing. More speci�cally, we addressed the
automation of the scheduling process for the dispensing and counting depart-
ments. It results in a complex scheduling problem involving both standard and

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 159 � #175 i

i

i

i

i

i

7.6. CONCLUSIONS 159

complex uncommon constraints. Any improvement in these departments is di-
rectly translated into a relaxation of the timing constraints for more critical
departments. We proposed an algorithmic technique that can be e�ectively
used to rapidly automate the production scheduling process and we presented
a practical implementation in a pharmaceutical manufacturing plant. Results
are encouraging and show a substantial improvement over simple heuristic tech-
niques surrogating the schedules produced by hand by the plant schedulers.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 160 � #176 i

i

i

i

i

i

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 161 � #177 i

i

i

i

i

i

Chapter 8

Conclusions

Production optimization methods are widely used in manufacturing environ-
ments. Very often just one criterion is taken into account to be optimized
while nowadays a single criterion is deemed as insu�cient for real and practi-
cal applications. In order to preserve their competitiveness and market share,
companies must keep the production costs low and maximize the quality and
costumer's satisfaction. These factors are contrasting and this means that de-
cisions to take are not straightforward. On the other side, costumers become
more and more exigent and the need to ship orders on time often contrasts with
the need of balancing workload in production lines. Hence it is very important
to have an optimization system which could take into account more than one
objective at a time, providing a wider view over the problem considering both
costs and priorities.
Multi-objective optimization is without a doubt a very important research topic
not only because of the multi-objective nature of most real-world problems,
but also because there are still many open questions in this area. Over the last
decade, multi-objective optimization has received a big impulse in Operations
Research. Some new techniques have been developed in order to deal with
functions and real-world problems that have multiple objectives, and many ap-
proaches have been proposed.
The easiest way of dealing with a multi-objective problem is the so called �a
priori� approach where two or more objectives are weighted and combined into
a single measure, usually linear.

161

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 162 � #178 i

i

i

i

i

i

162 CHAPTER 8. CONCLUSIONS

A more desirable approach is the �a posteriori� method. In this case, the aim
is to obtain many solutions with as many associated values as objectives. In
such cases, the traditional concept of �optimum� solution does not apply. In
this context, a set of solutions is obtained where their objective values form
what is referred to as the Pareto front. In the Pareto front all solutions are
equally good, since there is no way of telling which one is better or worse. In
other words, all solutions belonging to a Pareto front are the �best� solutions
for the problem in a multi-objective sense.
The majority of real life problems arising from classical production environ-
ments (as jobshop, �owshop, parallel machines) belong to the class of NP-hard
problems and indeed it is improbable that could exist an algorithm for solving
them in polynomial time. Hence every exact approach proposed in literature
works well only for small size instances while real-world cases seldom can be
solved using this methods. These problems call for a metaheuristic approach
that allows to tackle large instances. Although not granting the �optimum�,
metaheuristic algorithms are able to �nd in relatively short time good quality
solutions.
In chapter 2 the most important metaheuristic algorithms have been presented
along with a description of the elements that are characteristic of this class of
methods.
In this thesis several production environments belonging to the classes of per-
mutation �owshop (PFSP) and parallel machines have been considered. Such
environments are important both for their practical and theoretical reasons.
Real cases of ceramic and pharmaceutical productions have been reported. Un-
fortunately the majority of the literature for the PFSP is centred on a single
optimization criterion and there are no comprehensive reviews in the literature
about�owshops with several objectives. Hence, we carried out this work and
presented it in chapter 3. In the past years a number of interesting algorithms
have been proposed. However, new proposals are often not validated against
the existing methods and when done, the quality indicators used are not appro-
priate. Additionally, the multi-objective literature is rich on advanced methods
that have not been applied to the PFSP before. Therefore we identi�ed the
most promising methods for the most common criteria combination. We evalu-
ate a total of 23 methods, from local search metaheuristics such as tabu search
or simulated annealing to evolutionary approaches like genetic algorithms. Fur-
thermore, we use the latest Pareto-compliant quality measures for assessing the
e�ectiveness of the tested methods. Careful and comprehensive statistical test-
ing is employed to ensure the accuracy of the conclusions. As a result, we have
identi�ed the best performing methods from the literature which constitutes a

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 163 � #179 i

i

i

i

i

i

163

reference work for further research. Successively we extended the model pre-
sented in the chapter 4 considering the presence of sequence dependent setup
times. In literature many papers have tackled the �owshop scheduling prob-
lem with setups but, although it is de�nitely a relevant topic, according to our
knowledge nothing has been published dealing with both the optimization of
more than one objective and sequence dependent setup times Then we pre-
sented an algorithm (IPG) of new conception and we compared it with the
most performing approaches. Again, statistical techniques are employed to
prove it widely outperforms all other approaches for the bicriteria problem of
Cmax −

∑
i wiTi Pareto optimization.

The comparative evaluation not only includes �owshop-speci�c algorithms but
also adaptations of other general methods proposed in the multi-objective op-
timization literature. A set of benchmark instances, based on the well known
benchmark of [193] has been employed and a comprehensive statistical anal-
ysis of the results has been conducted with both parametric as well as non-
parametric techniques. Overall, our Iterated Pareto greedy can be regarded as
the best performer under our experimental settings.
The second case study tackled in this thesis arises in the coordination between
two consecutive departments of a production system, where parts are processed
in batches, and each batch is characterized by two distinct attributes. Due to
the lack of interstage bu�ering between the two stages, these departments have
to follow the same batch sequence. In the �rst department, a setup occurs
every time the �rst attribute of a new batch is di�erent from the one of the
previous batch. In the downstream department, there is a setup when the
second attribute changes in two consecutive batches. The problem consists in
�nding a batch sequence optimizing the number of setups paid by each depart-
ment. This case results in a particular bi-objective combinatorial optimization
problem. I presented a geometrical characterization for the feasible solution
set of the problem, and three e�ective metaheuristics have been proposed, as
well as an extensive experimental campaign. Such approach can be also used
to solve a class of single-objective problems, in which setup costs in the two de-
partments are general increasing functions of the number of setups. In the last
chapter we have described a general methodology for operations scheduling in
dispensing and counting departments of pharmaceutical manufacturing plants.
The departments are modelled as a multi-objective parallel machines schedul-
ing problem under a number of both standard and realistic constraints, such
as release times, due dates and deadlines, particular sequence-dependent setup
times, machine unavailabilities, and maximum campaign size. Main character-
istics of this methodology (Rollout/Pilot method) are the modularity of the

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 164 � #180 i

i

i

i

i

i

164 CHAPTER 8. CONCLUSIONS

solution algorithms, the adaptability to di�erent objectives and constraints to
ful�ll production requirements, the easiness of implementation, and the ability
of incorporating human experience in the scheduling algorithms. Computa-
tional experience carried out on two case studies from a real pharmaceutical
plant shows the e�ectiveness of this metaheuristic approach.
The aim of this Ph.D thesis is to demonstrate the e�ectiveness, adaptability
and modularity of di�erent metaheuristics applied on real life di�cult schedul-
ing problems. Computational campaigns of test have been performed and all
results are been evaluated by means of statistical tools.
However nowadays not all the basic mechanisms to create high performing
metaheuristics are known. A possible extension of this work consists in deep-
ening the knowledge of such mechanisms in order to identify those elements that
confer e�ectiveness and those that, instead, disturb the solution process. Then
using such know-how acquired with this study it will be possible develop more
e�cient algorithms able to fast solve larger size problems. A second possible
extension of this work is to apply the existing metaheuristics to tackle complex
real life problems with several unusual constraints. As example in many case
the available resources are limited and must be shared among machines. Such
complex cases call for algorithms able to adapt them-self employing a learning
process to select those procedures that are more e�ective for a particular in-
stance.
Finally a future evolution of the methodologies presented in this thesis is the
possibility to manage an on line environment. All the algorithms implemented
here, in fact, work optimizing the production of short time intervals (often no
more than two weeks). In real life, new orders can arrive during such intervals
and it may be convenient to reschedule the production. Di�erent criteria could
be considered in this case as, for example, the minimization of the total number
of changes in schedules due to rescheduling or the workload balancement.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 165 � #181 i

i

i

i

i

i

Bibliography

[1] E. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines.
John Wiley & Sons, 1990.

[2] G. Adamopoulos and C. Pappis. Scheduling under a common due date on
parallel unrelated machines. European Journal of Operational Research,
105:494�501, 1998.

[3] A. Agnetis, A. Al�eri, and G. Nicosia. A heuristic approach to batching
and scheduling a single machine to minimize setup costs. Computers &
Industrial Engineering, 46:793�802, 2004.

[4] A. Agnetis, P. Detti, C. Meloni, and D. Pacciarelli. Setup coordination
between two stages of a supply chain. Annals of Operations Research,
107:15�32, 2001.

[5] R. Akkiraju, P. Keskinocak, S. Marthy, and F. Wu. An agent-based
approach for scheduling multiple machines. Applied Intelligence, 14:135�
144, 2001.

[6] M. H. Al-Haboubi and S. Z. Selim. A sequencing problem in the weaving
industry. European Journal of Operational Research, 66:65�71, 1993.

[7] B. Alidaee and A. Ahmadian. Two parallel machine sequencing prob-
lems involving controllable job processing times. European Journal of
Operational Research, 70:335�341, 1993.

[8] A. Allahverdi. The two- and m-machine �owshop scheduling problems
with bicriteria of makespan and mean �owtime. European Journal of
Operational Research, 147(2):373�396, 2003.

165

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 166 � #182 i

i

i

i

i

i

166 BIBLIOGRAPHY

[9] A. Allahverdi. A new heuristic for m-machine �owshop scheduling prob-
lem with bicriteria of makespan and maximum tardiness. Computers &
Operations Research, 31(2):157�180, 2004.

[10] A. Allahverdi, J. N. D. Gupta, and T. Aldowaisan. A review of scheduling
research involving setup considerations. Omega, 27:219�239, 1999.

[11] A. Allahverdi, C. T. Ng, T. C. E. Cheng, and M. Y. Kovalyov. A survey
of scheduling problems with setup times or costs. European Journal of
Operational Research, 187(3):985�1032, 2008.

[12] V. A. Armentano and J. E. C. Arroyo. An application of a multi-
objective tabu search algorithm to a bicriteria �owshop problem. Journal
of Heuristics, 10(5):463�481, 2004.

[13] J. E. C. Arroyo and V. A. Armentano. A partial enumeration heuristic for
multi-objective �owshop scheduling problems. Journal of the Operational
Research Society, 55(9):1000�1007, 2004.

[14] J. E. C. Arroyo and V. A. Armentano. Genetic local search for multi-
objective �owshop scheduling problems. European Journal of Operational
Research, 167(3):717�738, 2005.

[15] T. P. Bagchi. Multiobjective Scheduling by Genetic Algorithms. Kluwer
Academic Publishers, Norwell, MA, USA, 1999.

[16] T. P. Bagchi. Pareto-optimal solutions for multi-objective produc-
tion scheduling problems. In E. Zitzler, K. Deb, L. Thiele, Carlos A.
Coello Coello, and D. Corne, editors, Evolutionary Multi-Criterion Op-
timization, First International Conference, EMO 2001, Zurich, Switzer-
land, March 7-9, 2001, Proceedings, volume 1993 of Lecture Notes in
Computer Science, pages 458�471. Springer, 2001.

[17] N. Balakrishnan, J.J Kanet, and S. V. Sridharan. Early/tardy scheduling
with sequence dependent setups on uniform parallel machines. Computers
& Operations Research, 26:127�141, 1999.

[18] J. Bank and F. Werner. Heuristic algorithms for unrelated parallel-
machine scheduling with a common due date, release dates, and linear
earliness and tardiness penalties. Mathematical and Computer Modeling,
33:363.383, 2001.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 167 � #183 i

i

i

i

i

i

167

[19] M. Basseur. Conception d'algorithmes coopératifs pour l'optimisation
multi-objectif: Application aux problèmes d'ordonnancement de type
Flow-shop. PhD thesis, Laboratoire d'Informatique Fondamentale de
Lille. Lille, France., 2005. In French.

[20] R. Battiti and M. Protasi. Reactive search, a history-based heuristic for
max-sat. ACM Journal of Experimental Algorithmics, 2, 1997.

[21] E. B. Baum. Iterated descent: A better algorithm for local search in com-
binatorial optimization problems. Technical report, Caltech, Pasadena,
CA� manuscript, 1986.

[22] J. L. Bentley. Fast algorithms for geometric traveling salesman problems.
ORSA Journal on Computing, 4(4):387�411, 1992.

[23] D. P. Bertsekas. Dynamic programming and suboptimal control: A sur-
vey from adp to mpc. European Journal on Control, 11(4�5):310�334,
2005.

[24] D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming.
Athena Scienti�c, 1996.

[25] D. P. Bertsekas, J. N. Tsitsiklis, and C. Wu. Rollout algorithms for
combinatorial optimization. Journal of Heuristics, 3:245�262, 1997.

[26] P. Brucker. Scheduling Algorithms. Springer-Verlag, Berlin, Germany, 4
edition, 2004.

[27] P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics
for some scheduling problems. part i. Discrete Appl. Math., 65(1-3):97�
122, 1996.

[28] P. Brucker, J. Hurink, and F. Werner. Improving local search heuristics
for some scheduling problems. part ii. Discrete Appl. Math., 72(1-2):47�
69, 1997.

[29] P. Calégari, G. Coray, A. Hertz, D. Kobler, and P. Kuonen. A taxon-
omy of evolutionary algorithms in combinatorial optimization. Journal
of Heuristics, 5(2):145�158, 1999.

[30] S. A. Canuto, M. G. C. Resende, and C. C. Ribeiro. Local search with
perturbation for the prize-collecting Steiner tree problems in graphs. Net-
works, 38:50�58, 2001.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 168 � #184 i

i

i

i

i

i

168 BIBLIOGRAPHY

[31] S. Cavalieri and P. Gaiardelli. Hybrid genetic algorithms for a multiple-
objective scheduling problem. Journal of Intelligent Manufacturing,
9(4):361�367, 1998.

[32] V. �erný. A thermodynamical approach to the travelling salesman prob-
lem: an e�cient simulation algorithm. Journal of Optimization Theory
and Applications, 45:41�51, 1985.

[33] K. Chakravarthy and C. Rajendran. A heuristic for scheduling in a �ow-
shop with the bicriteria of makespan and maximum tardiness minimiza-
tion. Production Planning and Control, 10(7):707�714, 1999.

[34] P. C. Chang, J. C. Hsieh, and S. G. Lin. The development of gradual-
priority weighting approach for the multi-objective �owshop scheduling
problem. International Journal of Production Economics, 79(3):171�183,
2002.

[35] T. Cheng and Z.-L. Chen. Parallel-machine scheduling problems with
earliness and tardiness penalties. Journal of the Operational Research
Society, 45:685�695, 1994.

[36] T. C. E. Cheng and C.C.S. Sin. A state-of-the-art review of parallel-
machine scheduling research. European Journal of Operational Research,
47:271�292, 1990.

[37] J. Choi, M. J. Real�, and J. H. Lee. Approximate dynamic program-
ming: Application to process supply chain management. AIChE Journal,
52(7):2473�2485, 2006.

[38] F. D. Chou and C. E. Lee. Two-machine �owshop scheduling with bi-
criteria problem. Computers & Industrial Engineering, 36(3):549�564,
1999.

[39] G. C. Cole. Pharmaceutical production facilities. Design and applications
(2nd edition). CRC Press, 1998.

[40] R. K. Congram, C. N. Potts, and S. van de Velde. An iterated dynasearch
algorithm for the single-machine total weighted tardiness scheduling
problem. INFORMS Journal on Computing, 14(1):52�67, 2002.

[41] W. Conover. Practical Nonparametric Statistics. John Wiley & Sons,
New York, third edition, 1999.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 169 � #185 i

i

i

i

i

i

169

[42] S. A. Cook. The complexity of theorem-proving procedures. In STOC '71:
Proceedings of the third annual ACM symposium on Theory of computing,
pages 151�158, New York, NY, USA, 1971. ACM Press.

[43] S. T. Mc Cormick and M. Pinedo. Scheduling n independant jobs m
uniform machines with both �owtime and makespan objectives: a para-
metric analysis. ORSA Journal on Computing, 7(1):63�77, 1995.

[44] D. W. Corne, Nick R. Jerram, Joshua D. Knowles, and Martin J. Oates.
PESA-II: Region-based selection in evolutionary multiobjective optimiza-
tion. In L. Spector, E. D. Goodman, A. Wu, W. B. Langdon, H. M. Voigt,
M. Gen, S. Sen, M. Dorigo, S. Pezeshk, Max H. Garzon, and E. Burke,
editors, Proceedings of the Genetic and Evolutionary Computation Con-
ference (GECCO-2001), pages 283�290, San Francisco, California, USA,
2001. Morgan Kaufmann.

[45] D. W. Corne, J. D. Knowles, and M. J. Oates. The pareto envelope-based
selection algorithm for multiobjective optimization. In M. Schoenauer,
K. Deb, G. Rudolph, X. Yao, E. Lutton, Juan J. Merelo Guervós, and
H. P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN
VI, 6th International Conference, Paris, France, September 18-20, 2000,
Proceedings, volume 1917 of Lecture Notes in Computer Science, pages
839�848. Springer, 2000.

[46] R. L. Daniels and R. J. Chambers. Multiobjective �ow-shop scheduling.
Naval research logistics, 37(6):981�995, 1990.

[47] D. de Werra and A. Hertz. Tabu-search techniques a tutorial and an
application to neural networks. Operations Research Spektrum, 11:131�
141, 1989.

[48] K. Deb. Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley & Sons, West Sussex, England, 2001.

[49] K. Deb. A fast and elitist multiobjective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation, 6(2):182�197, 2002.

[50] K. Deb, M. Mohan, and S. Mishra. A fast multi-objective evolution-
ary algorithm for �nding well-spread pareto-optimal solutions. Techni-
cal Report 2003002, Kanpur Genetic Algorithms Laboratory (KanGAL),
Kampur, India, February 2002.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 170 � #186 i

i

i

i

i

i

170 BIBLIOGRAPHY

[51] P. Detti, C. Meloni, and M. Pranzo. Local search algorithms for the
minimum cardinality dominating trail set of a graph. Technical report
RT-DIA-84-2003 Dipartimento di Informatica e Automazione, Univer-
sità Roma Tre, Roma, Italy, 2003.

[52] P. Detti, C. Meloni, and M. Pranzo. Simple bounds for the minimum
cardinality dominating trail set problem. Technical report RT-DIA-87-
2004 ipartimento di Informatica e Automazione, Università Roma Tre,
Roma, Italy, 2004.

[53] P. Detti, C. Meloni, and M. Pranzo. Minimizing and balancing setups
in a serial production system. to appear on International Journal of
Production Research, 2006.

[54] B. L. Dietrich. A two-phase heuristic for scheduling on unrelated paral-
lel machines with setup. Technical Report RC 14330, IBM TJ Watson
Research Center, York Town Heights, NY, 1989.

[55] J. Du and J. Y.-T. Leung. Minimizing total tardiness on one machine is
NP-hard. Mathematics of Operations Research, 15(3):483�495, 1990.

[56] C. Duin and S. Voÿ. The pilot method: a strategy for heuristic repetition
with application to the steiner problem in graphs. Networks, 34:181�191,
1999.

[57] M. Ehrgott. Multicriteria optimization. In Springer-Verlag, editor, Lec-
ture Notes in Economics and Mathematical Systems, volume 491, 2000.

[58] A. El-Bouri, S. Balakrishnan, and N. Popplewell. A neural network to en-
hance local search in the permutation �owshop. Computers & Industrial
Engineering, 49(1):182�196, 2005.

[59] H. Emmons. Scheduling to a common due date on parallel uniform pro-
cessors. Naval Research Logistics, 34:803�810, 1987.

[60] G. Feng and H. C. Lau. E�cient algorithm for machine scheduling prob-
lems with earliness and tardiness penalties. Proceedings of the 2nd Multi-
disciplinary International Conference of Scheduling: Theory and Appli-
cations, New York, USA, July 18-21, pages 196�211, 2005.

[61] J M. Framinan, J. N. D. Gupta, and R. Leisten. A review and classi�-
cation of heuristics for permutation �ow-shop scheduling with makespan

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 171 � #187 i

i

i

i

i

i

171

objective. Journal of the Operational Research Society, 55(12):1243�1255,
2004.

[62] J. M. Framinan and R. Leisten. A heuristic for scheduling a permuta-
tion �owshop with makespan objective subject to maximum tardiness.
International Journal of Production Economics, 99(1-2):28�40, 2006.

[63] J. M. Framinan, R. Leisten, and R. Ruiz-Usano. E�cient heuristics
for �owshop sequencing with the objectives of makespan and �owtime
minimisation. European Journal of Operational Research, 141(3):559�
569, 2002.

[64] R. Gangadharan and C. Rajendran. A simulated annealing heuristic
for scheduling in a �owshop with bicriteria. Computers & Industrial
Engineering, 27(1-4):473�476, 1994.

[65] M. R. Garey and D. S. Johnson. Computers and intractability: a guide
to the theory of NP completeness. Freeman, 1979.

[66] M. R. Garey, D. S. Johnson, and R. Sethi. The complexity of �owshop
and jobshop scheduling. Mathematics of Operations Research, 1(2):117�
129, 1976.

[67] M. J. Geiger. On operators and search space topology in multi-objective
�ow shop scheduling. European Journal of Operational Research, 2007.
In press.

[68] A. M. Geo�rion and G. W. Graves. Scheduling parallel production lines
with changeover costs: Practical application of a quadratic assignment/lp
approach. Operations Research, 24:595�610, 1976.

[69] F. Glover. Future paths for integer programming and links to arti�cial
intelligence. Computers and Operations Research, 13(5):533�549, 1986.

[70] F. Glover. Tabu search� part I. ORSA Journal on Computing, 1:190�206,
1989.

[71] F. Glover. Tabu search� part II. ORSA Journal on Computing, 2(1):4�32,
1990.

[72] F. Glover and G. Kochenberger. Handbook of Metaheuristics. Kluwer
Academic Publishers, 2003.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 172 � #188 i

i

i

i

i

i

172 BIBLIOGRAPHY

[73] F. Glover and M. Laguna. Tabu search. In C. Reeves, editor, Mod-
ern Heuristic Techniques for Combinatorial Problems, Oxford, England,
1993. Blackwell Scienti�c Publishing.

[74] T. Gonzalez and S. Sahni. Flowshop and jobshop schedules: Complexity
and approximation. Operations Research, 26(1):36�52, 1978.

[75] R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy
Kan. Optimization and approximation in deterministic sequencing and
scheduling: A survey. Annals of Discrete Mathematics, 5:287�326, 1979.

[76] J. N. D. Gupta, K. Hennig, and F. Werner. Local search heuristics for
two-stage �ow shop problems with secondary criterion. Computers &
Operations Research, 29(2):123�149, 2002.

[77] J. N. D. Gupta, V. R. Neppalli, and F. Werner. Minimizing total �ow
time in a two-machine �owshop problem with minimum makespan. In-
ternational Journal of Production Economics, 69(3):323�338, 2001.

[78] J. N. D. Gupta, N. Palanimuthu, and C. L. Chen. Designing a tabu search
algorithm for the two-stage �ow shop problem with secondary criterion.
Production Planning & Control, 10(3):251�265, 1999.

[79] P. Hansen. The steepest ascent mildest descent heuristic for combinato-
rial programming. Presented at the Congress on Numerical Methods in
Combinatorial Optimization, Capri, Italy, 1986.

[80] P. Hansen and N. Mladenovi¢. Variable neighborhood search: Principles
and applications. European Journal of Operational Research, 130:449�
467, 2001.

[81] P. Hansen and N. Mladenovi¢. A tutorial on variable neighborhood
search. European Les Cahiers du GERAD G�2003, 46, 2003.

[82] S. Hasija and C. Rajendran. Scheduling in �owshops to minimize to-
tal tardiness of jobs. International Journal of Production Research,
42(11):2289�2301, 2004.

[83] R. B. Heady and Z. Zhu. Minimizing the sum of job earliness and tar-
diness in a multimachine system. International Journal of Production
Research, 36, 1619-1632.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 173 � #189 i

i

i

i

i

i

173

[84] S. R. Hejazi and S. Sagha�an. Flowshop-scheduling problems with
makespan criterion: a review. International Journal of Production Re-
search, 43(14):2895�2929, 2005.

[85] A. Hertz and D. kobler. A framework for the description of evolutionary
algorithms. European Journal of Operational Research, 126:1�12, 2000.

[86] A. Hertz and M. Widmer. Guidelines for the use of meta-heuristics in
combinatorial optimization. European Journal of Operational Research,
151(2):247�252, 2003.

[87] J. C. Ho and Y.-L. Chang. A new heuristic for the n-job, M-machine
�ow-shop problem. European Journal of Operational Research, 52:194�
202, 1991.

[88] H. Hoogeveen. Multicriteria scheduling. European Journal of Operational
Research, 167(3):592�623, 2005.

[89] H.H. Hoos and T. Stützle. Stochastic Local Search: Foundations and
Applications. Morgan Kaufmann Publishers, 2004.

[90] H. Ishibuchi and T. Murata. A multi-objective genetic local search algo-
rithm and its application to �owshop scheduling. IEEE Transactions on
Systems Man and Cybernetics, 28(3):392�403, 1998.

[91] H. Ishibuchi, T. Yoshida, and T. Murata. Balance between genetic search
and local search in memetic algorithms for multiobjective permutation
�owshop scheduling. IEEE Transactions on Evolutionary Computation,
7(2):204�223, 2003.

[92] J. R. Jackson. Scheduling a production line to minimize maximum tar-
diness. Technical Report 43, Research Report 43, Management Science
Research Project, University of California, Los Angeles, 1955.

[93] L. W. Jacobs and M. J. Brusco. A local-search heuristic for large set-
covering problems. Naval Research Logistics, 42(7):1129�1140, 1995.

[94] K. Jansen and L. Porkolab. Improved approximation schemes for schedul-
ing unrelated parallel-machines. ACM Symposium on Theory of Comput-
ing, pages 408�417, 1999.

[95] D. S. Johnson. Local optimization and the travelling salesman problem.
volume 443 of LNCS, pages 446�461. Springer Verlag, 1990.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 174 � #190 i

i

i

i

i

i

174 BIBLIOGRAPHY

[96] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Opti-
mization by Simulated Annealing : an Experimental evaluation ; Part I,
Graph Partitioning,. Operations Research, 37:365�892, 1989.

[97] D. S. Johnson and L. A. McGeoch. The travelling salesman problem:
A case study in local optimization, pages 215�310. John Wiley & Sons,
Chichester, England, 1997.

[98] S. M. Johnson. Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1:61�68, 1954.

[99] D. F. Jones, S. K. Mirrazavi, and M. Tamiz. Multi-objective meta-
heuristics: An overview of the current state-of-the-art. European Journal
of Operational Research, 137(1):1�9, 2002.

[100] R. M. Karp. Reducibility among combinatorial problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations.
Plenum Press, New York, 1972.

[101] K. Katayama and N. Narihisa. Iterated local search approach using ge-
netic transformation to the traveling salesman problem. In Proceedings
of GECCO99, volume 1, pages 321�328. Morgan Kaufmann, 1999.

[102] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simu-
lated annealing. Science, 220(4598):671�680, 1983.

[103] J. Knowles and D. W. Corne. Approximating the nondominated front
using the pareto archived evolution strategy. Evolutionary Computation,
8(2):149�172, 2000.

[104] J. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance
assessment of stochastic multiobjective optimizers. Technical Report 214,
Computer Engineering and Networks Laboratory (TIK), ETH Zurich,
Switzerland, February 2006. revised version.

[105] J. B. Kollat and P. M. Reed. The value of online adaptive search: A
performance comparison of nsgaii, ε−nsgaii and ε−moea. In Carlos A.
Coello Coello, A. Hernández Aguirre, and E. Zitzler, editors, Evolution-
ary Multi-Criterion Optimization, Third International Conference, EMO
2005, Guanajuato, Mexico, March 9-11, 2005, Proceedings, volume 3410
of Lecture Notes in Computer Science, pages 386�398. Springer, 2005.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 175 � #191 i

i

i

i

i

i

175

[106] S. Kreipl. A large step random walk for minimizing total weighted tar-
diness in a job shop. Journal of Scheduling, 3(3):125�138, 2000.

[107] G. Laporte, J. J. Salazar, and F. Semet. Exact algorithms for the job
sequencing and tool switching problem. IIE Transactions, 35(1-?9), 2003.

[108] C. E. Lee and F. D. Chou. A two-machine �owshop scheduling heuristic
with bicriteria objective. International Journal of Industrial Engineering,
5(2):128�139, 1998.

[109] W. C. Lee and C. C. Wu. Minimizing the total �ow time and the tardiness
in a two-machine �ow shop. International Journal of Systems Science,
32(3):365�373, 2001.

[110] Y. H. Lee and M. Pinedo. Scheduling jobs on parallel machines with
sequence-dependent setup times. European Journal of Operational Re-
search, 100:464�474, 1997.

[111] J. Lemesre, C. Dhaenens, and E. G. Talbi. An exact parallel method
for a bi-objective permutation �owshop problem. European Journal of
Operational Research, 177(3):1641�1655, 2007.

[112] J. Y.-T. Leung and G. H Young. Minimizing schedule length subject to
minimum �ow time. SIAM Journal of Computing, 18(2):314�326, 1989.

[113] C.-L Li and T. Cheng. The parallel machine min-max weighted absolute
lateness scheduling problem. Naval Research Logistics, 41:33�46, 1994.

[114] C.-J. Liao, W.-C. Yu, and C.-B. Joe. Bicriterion scheduling in the
two-machine �owshop. Journal of the Operational Research Society,
48(9):929�935, 1997.

[115] B. M. T. Lin and J. M. Wu. Bicriteria scheduling in a two-machine
permutation �owshop. International Journal of Production Research,
44(12):2299�2312, 2006.

[116] T. Loukil, J. Teghem, and P. Fortemps. Solving multi-objective pro-
duction scheduling problems with tabu search. Control and Cybernetics,
29(3):819�828, 2000.

[117] T. Loukil, J. Teghem, and D. Tuyttens. Solving multi-objective pro-
duction scheduling problems using metaheuristics. European Journal of
Operational Research, 161(1):42�61, 2005.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 176 � #192 i

i

i

i

i

i

176 BIBLIOGRAPHY

[118] H. R. Lourenço. Computational study of local search and large-step op-
timization methods. European Journal of Operational Research, 83:347�
364, 1995.

[119] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local
search. Economics Working Papers 513, Department of Economics
and Business, Universitat Pompeu Fabra, November 2000. available at
http://ideas.repec.org/p/upf/upfgen/513.html.

[120] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In
F. Glover and G. A. Kochenberger, editors, Handbook of Metaheuristics,
pages 321�353, Boston, 2003. Kluwer Academic Publishers.

[121] H. R. Lourenço and M. Zwijnenburg. Combining the large-step optimiza-
tion with tabu-search: Application to the job-shop scheduling problem,
1996.

[122] M. Lundy and A. Mees. Convergence of an annealing algorithm. Mathe-
matical Programming, 34:111�124, 1986.

[123] E. Marchiori and A. Steenbeek. An evolutionary algorithm for large
scale set covering problems with application to airline crew scheduling.
In S. Cagnoni et al., editors, Real-World Applications of Evolutionary
Computing, EvoWorkshops 2000, volume 1803 of Lecture Notes in Com-
puter Science, pages 367�381. Springer Verlag, Berlin, Germany, 2000.

[124] O. Martin and S. W. Otto. Partitoning of unstructured meshes for load
balancing. . Concurrency: Practice and Experience, 7:303�314, 1995.

[125] O. Martin and S. W. Otto. Combining simulated annealing with local
search heuristics. Annals of Operations Research, 63:57�75, 1996.

[126] O. Martin, S. W. Otto, and E. W. Felten. Large-step Markov chains for
the traveling salesman problem. Complex Systems, 5:299�326, 1991.

[127] R. I. McIntosh, S. J. Culley, A. R. Mileham, and G. W. Owen.
Changeover improvement: A maintenance perspective. International
Journal of Production Economics, 73:153�163, 2001.

[128] N. Melab, M. Mezmaz, and E. G. Talbi. Parallel cooperative meta-
heuristics on the computational grid. a case study: the bi-objective �ow-
shop problem. Parallel Computing, 32(9):643�659, 2006.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 177 � #193 i

i

i

i

i

i

177

[129] C. Meloni, D. Pacciarelli, and M. Pranzo. A rollout metaheuristic for job
shop scheduling problems. Annals of Operations Research, 131:215�235,
2004.

[130] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21(6):1087�1092, June 1953.

[131] Z. Michalewicz. Genetic algorithms + data structures = evolution pro-
grams (2nd, extended ed.). Springer-Verlag New York, Inc., New York,
NY, USA, 1994.

[132] S. Mohri, T. Masuda, and H. Ishii. Bi-criteria scheduling problem on
three identical parallel machines. International Journal of Production,
60-61:529�536, 1999.

[133] D.C. Montgomery. Design and Analysis of Experiments. John Wiley &
Sons, New York, sixth edition, 2004.

[134] T. Murata, H. Ishibuchi, and M. Gen. Speci�cation of genetic search
directions in cellular multi-objective genetic algorithms. In E. Zitzler,
K. Deb, L. Thiele, Carlos A. Coello Coello, and D. Corne, editors, Evo-
lutionary Multi-Criterion Optimization, First International Conference,
EMO 2001, Zurich, Switzerland, March 7-9, 2001, Proceedings, volume
1993 of Lecture Notes in Computer Science, pages 82�95. Springer, 2001.

[135] T. Murata, H. Ishibuchi, and H. Tanaka. Multi-objective genetic algo-
rithm and its applications to �owshop scheduling. Computers & Indus-
trial Engineering, 30(4):957�968, 1996.

[136] A. Nagar, S. S. Heragu, and J. Haddock. A branch-and-bound approach
for a two-machine �owshop scheduling problem. Journal of the Opera-
tional Research Society, 46(6):721�734, 1995.

[137] A. Nagar, S. S. Heragu, and J. Haddock. Mutiple and bicriteria schedul-
ing: A lierature survey. European Journal of Operational Research,
81(1):88�104, 1995.

[138] A. Nagar, S. S. Heragu, and J. Haddock. A combined branch-and-bound
and genetic algorithm based approach for a �owshop scheduling problem.
Annals of Operations Research, 63(3):397�414, 1996.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 178 � #194 i

i

i

i

i

i

178 BIBLIOGRAPHY

[139] M. Nawaz, E. E. Enscore Jr, and I. Ham. A heuristic algorithm for the
m machine, n job �owshop sequencing problem. Omega-International
Journal of Management Science, 11(1):91�95, 1983.

[140] V. R. Neppalli, C.-L. Chen, and J. N. D. Gupta. Genetic algorithms for
the two-stage bicriteria �owshop problem. European Journal of Opera-
tional Research, 95(2):356�373, 1996.

[141] P. F. Ostwald. Cost estimating. Handbook of Industrial Engineering, 2nd
ed.:1263�1288, 1992.

[142] IM. Ovacik and R. Uzsoy. Decomposition methods for complex factory
scheduling problems. Kluwer, 1997.

[143] S. Panwalker, R. Dudek, and M. Smith. Sequencing research anth the
industrial scheduling problem. Symposium on the Theory of Scheduling
and its Applications, pages 29�38, 1973.

[144] C. H. Papadimitriou. Combinatorial Complexity. Addison-Wsley, Ams-
terdam, The Netherlands, The Netherlands, 1994.

[145] L. F. Paquete. Stochastic Local Search Algorithms for Multiobjective
Combinatorial Optimization: Method and Analysis. PhD thesis, Com-
puter Science Department. Darmstadt University of Technology. Darm-
stadt, Germany, 2005.

[146] S. Parthasarathy and C. Rajendran. An experimental evaluation of
heuristics for scheduling in a real-life �owshop with sequence-dependent
setup times of jobs. International Journal of Production Economics,
49(3):255�263, 1997.

[147] S. Parthasarathy and C. Rajendran. A simulated annealing heuristic
for scheduling to minimize mean weighted tardiness in a �owshop with
sequence-dependent setup times of jobs - a case study. Production Plan-
ning & Control, 8(5):475�483, 1997.

[148] T. Pasupathy, C. Rajendran, and R. K. Suresh. A multi-objective ge-
netic algorithm for scheduling in �ow shops to minimize the makespan
and total �ow time of jobs. The International Journal of Advanced Man-
ufacturing Technology, 27(7-8):804�815, 2006.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 179 � #195 i

i

i

i

i

i

179

[149] M. E. Pfund, J. W. Fowler, and J. N. D. Gupta. A survey of algorithms
for single and multi-objective unrelated parallel-machine deterministic
scheduling problems. Journal of Chinese Institute of Industrial Engi-
neers, 21(3):230�241, 2004.

[150] M. E. Pfund, L. Yu, W. M. Carlyle, and J. W. Fowler. The e�ects of
processing time variability and equipment downtimes on various schedul-
ing approaches for a printed wiring board assembly operation. Journal
of Electronics Manufacturing, 11:19�31, 2002.

[151] B. Piachaud. Outsourcing of R&D in the Pharmaceutical Industry: From
Conceptualization to Implementation of the Strategic Sourcing Process.
Palgrave Macmillan, 2005.

[152] M. Pinedo. Theory, algorithms, and systems. Prentice-Hall, 1995.

[153] M. Pinedo. Scheduling: Theory, Algorithms, and Systems. Prentice Hall,
Upper Saddle, N.J, second edition, 2002.

[154] S. G. Ponnambalam, H. Jagannathan, M. Kataria, and A. Gadicherla. A
TSP-GA multi-objective algorithm for �ow-shop scheduling. The Inter-
national Journal of Advanced Manufacturing Technology, 23(11-12):909�
915, 2004.

[155] C. N. Potts and M. Y. Kovalyov. Scheduling with batching: A review.
European Journal of Operational Research, 120:228�249, 2000.

[156] S. Radhakrishnan and J. A. Ventura. Simulated annealing for paral-
lel machine scheduling with earliness-tardiness penalties and sequence-
dependent set-up times. International Journal of Production Research,
38:2233�2252, 2000.

[157] A. R. Rahimi-Vahed and S. M. Mirghorbani. A multi-objective particle
swarm for a �ow shop scheduling problem. Journal of Combinatorial
Optimization, 13(1):79�102, 2007.

[158] C. Rajendran. Two-stage �owshop scheduling problem with bicriteria.
Journal of the Operational Research Society, 43(9):871�884, 1992.

[159] C. Rajendran. A heuristic for scheduling in �owshop and �owline-based
manufacturing cell with multicriteria. International Journal of Produc-
tion Research, 32(11):2541�2558, 1994.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 180 � #196 i

i

i

i

i

i

180 BIBLIOGRAPHY

[160] C. Rajendran. Heuristics for scheduling in �owshop with multiple objec-
tives. European Journal of Operational Research, 82(3):540�555, 1995.

[161] C. Rajendran and H. Ziegler. A heuristic for scheduling to minimize the
sum of weighted �owtime of jobs in a �owshop with sequence-dependent
setup times of jobs. Computers & Industrial Engineering, 33(1-2):281�
284, 1997.

[162] C. Rajendran and H. Ziegler. Scheduling to minimize the sum of weighted
�owtime and weighted tardiness of jobs in a �owshop with sequence-
dependent setup times. European Journal of Operational Research,
149(3):513�522, 2003.

[163] C. Rajendran and H. Ziegler. Two ant-colony algorithms for minimiz-
ing total �owtime in permutation �owshops. Computers & Industrial
Engineering, 48(4):789�797, 2005.

[164] D. Ravindran, A. N. Haq, S. J. Selvakuar, and R. Sivaraman. Flow shop
scheduling with multiple objective of minimizing makespan and total �ow
time. The International Journal of Advanced Manufacturing Technology,
25(9-10):1007�1012, 2005.

[165] R. Z. Ríos-Mercado and J. F. Bard. Computational experience with a
branch-and-cut algorithm for �owshop scheduling with setups. Comput-
ers & Operations Research, 25(5):351�366, 1998.

[166] R. Z. Ríos-Mercado and J. F. Bard. Heuristics for the �ow line problem
with setup costs. European Journal of Operational Research, 110(1):76�
98, 1998.

[167] R. Z. Ríos-Mercado and J. F. Bard. An enhanced TSP-based heuristic
for makespan minimization in a �ow shop with setup times. Journal of
Heuristics, 5(1):53�70, 1999.

[168] R. Ruiz and C. Maroto. A comprehensive review and evaluation of per-
mutation �owshop heuristics. European Journal of Operational Research,
165(2):479�494, 2005.

[169] R. Ruiz, C. Maroto, and J. Alcaraz. Solving the �owshop scheduling prob-
lem with sequence dependent setup times using advanced metaheuristics.
European Journal of Operational Research, 165(1):34�54, 2005.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 181 � #197 i

i

i

i

i

i

181

[170] R. Ruiz and T. Stützle. A simple and e�ective iterated greedy algorithm
for the permutation �owshop scheduling problem. European Journal of
Operational Research, 177(3):2033�2049, 2007.

[171] R. Ruiz and T. Stützle. An iterated greedy heuristic for the se-
quence dependent setup times �owshop problem with makespan and
weighted tardiness objectives. European Journal of Operational Research,
187(3):1143�1159, 2008.

[172] A. J. Ruiz-Torres, E. E. Enscore, and R. R. Barton. Simulated anneal-
ing heuristics for the average �ow-time and the number of tardy jobs
bi-criteria identical parallel machine problem. Computers & Industrial
Engineering, 33(1-2):257�271, 1997.

[173] S. C. Sarin and R. Hariharan. A two machine bicriteria scheduling prob-
lem. International Journal of Production Economics, 65:125�139, 2000.

[174] S. Say�n and S. Karabat�. A bicriteria approach to the two-machine �ow
shop scheduling problem. European Journal of Operational Research,
113(2):435�449, 1999.

[175] J. D. Scha�er. Multiple objective optimization with vector evaluated
genetic algorithms. In Proceedings of the 1st International Conference on
Genetic Algorithms, pages 93�100, Mahwah, NJ, USA, 1985. Lawrence
Erlbaum Associates, Inc.

[176] N. Secomandi. Analysis of a rollout approach to sequencing problems
with stochastic routing applications. Journal of Heuristics, 9:321�352,
2003.

[177] W. J. Selen and D. D. Hott. A mixed-integer goal-programming for-
mulation of the standard �owshop scheduling problem. Journal of the
Operational Research Society, 37(12):1121�1128, 1986.

[178] N. Shah. Pharmaceutical supply chains: key issues and strategies for
optimisation. Computers and Chemical Engineering, 28:929�941, 2004.

[179] D. B. Shmoys and E. Tardos. Scheduling unrelated machines with costs.
Proceedings of the 4th Annual ACM-SIAM Symposiu, Austin, Texas,
pages 448�454, 25-27 January 1993.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 182 � #198 i

i

i

i

i

i

182 BIBLIOGRAPHY

[180] J. V. Simons, Jr. Heuristics in �ow shop scheduling with sequence depen-
dent setup times. Omega-International Journal of Management Science,
20(2):215�225, 1992.

[181] F. Sivrikaya-�erifo§lu and G. Ulusoy. A bicriteria two-machine permu-
tation �owshop problem. European Journal of Operational Research,
107(2):414�430, 1998.

[182] F. Sivrikaya-�erifo§lu and G. Ulusoy. Parallel machine scheduling with
earliness and tardiness penalties. Computers & Operations Research,
26:773�787, 1999.

[183] R. Spina, L. M. Galantucci, and M. Dassisti. A hybrid approach to
the single line scheduling problem with multiple products and sequence-
dependent time. Computers & Industrial Engineering, 45:573�583, 2003.

[184] J. Sridhar and C. Rajendran. Scheduling in �owshop and cellular man-
ufacturing systems with multiple objectives: A genetic algorithmic ap-
proach. Production Planning & Control, 7(4):374�382, 1996.

[185] N. Srinivas and K. Deb. Multiobjective optimization using nondominated
sorting in genetic algorithms. Evolutionary Computation, 2(3):221�248,
1994.

[186] H. Stefansson, N. Shah, and P. Jensson. Multiscale planning and
scheduling in the secondary pharmaceutical industry. AIChE Journal,
52(12):4133�4149, 2006.

[187] T. Stützle. Applying iterated local search to the permutation �ow shop
problem. Technical Report AIDA�98�04, FG Intellektik, FB Informatik,
TU Darmstadt, August 1998.

[188] T. Stützle. Local search algorithms for combinatorial problems�Analysis,
improvements, and new applications. PhD thesis, Darmstadt University
of Technology, 1999.

[189] P. Sundararaghavan and M. Ahmed. Minimizing the sum of absolute
lateness in single-machine and multimachine scheduling. Naval Research
Logistics Quarterly, 31(2):325�333, 1984.

[190] R. K. Suresh and K. M. Mohanasundaram. Pareto archived simulated
annealing for permutation �ow shop scheduling with multiple objectives.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 183 � #199 i

i

i

i

i

i

183

In IEEE Conference on Cybernetics and Intelligent Systems (CIS), Sin-
gapore, December 1-3, 2004, Proceedings, volume 2, pages 712�717, 2004.

[191] V. Suresh and D. Chaudhuri. Bicriteria scheduling problem for unrelated
parallel-machines. Computers & Industrial Engineering, 30:77�82, 1996.

[192] S.Voÿ and D. L. Woodru�. Introduction to computational optimiza-
tion models for production planning in a supply chain. Springer�Verlag,
Berlin, 2003.

[193] E. Taillard. Benchmarks for basic scheduling problems. European Journal
of Operational Research, 64(2):278�285, 1993.

[194] C. S. Tang and E. V. Denardo. Models arising from a �exible manu-
facturing machine, part i: Minimization of the number of tool switches.
Operations Research, 36:767�777, 1988.

[195] C.S. Tang. Scheduling batches on parallel machines with major and minor
set-ups. European Journal of Operational Research, 46:28�37, 1990.

[196] V. T'kindt and J.-C. Billaut. Multicriteria schduling problems: A survey.
RAIRO Recherche opérationnelle - Operations Research, 35(2):143�163,
2001.

[197] V. T'kindt and J.-C. Billaut. Multicriteria scheduling: Theory, models
and algorithms. Springer, Berlin, 2002.

[198] V. T'kindt, J.-C. Billaut, and H. Houngbossa. A multi-criteria heuristic
to solve a 2-stage hybrid �owshop scheduling problem. European Journal
of Automation (JESA), 34:1187�1200, 2000.

[199] V. T'kindt, J.-C. Billaut, S. Laurin, and O. Meslet. Un algorithme
optimal polynomial pour résoundre un problème d'ordonnancement
bricritère à machines parallèles. Conference on Automation-Computers
Engineering-Image-Signal (AGIS'97), pages 179�184, 1997.

[200] V. T'kindt, J.-C. Billaut, and C. Proust. An interactive algorithm to solve
bicriteria scheduling problems on unrelated parallel machines. European
Journal of Operational Research, 135(1):42�49, 2001.

[201] V. T'kindt, J. N. D. Gupta, and J.-C. Billaut. Two-machine �owshop
scheduling with a secondary criterion. Computers & Operations Research,
30(4):505�526, 2003.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 184 � #200 i

i

i

i

i

i

184 BIBLIOGRAPHY

[202] V. T'kindt, N. Monmarche, F. Tercinet, and D. Laugt. An ant colony
optimization algorithm to solve a 2-machine bicriteria �owshop schedul-
ing problem. European Journal of Operational Research, 142(2):250�257,
2002.

[203] B. Tokta³, M. Azizo§lu, and S. Kondakc� Köksalan. Two-machine �ow
shop scheduling with two criteria: Maximum earliness and makespan.
European Journal of Operational Research, 157(2):286�295, 2004.

[204] Y. Tsujimura and M. Gen. Parts loading scheduling in a �exible forg-
ing machine using an advanced genetic algorithm. Journal of Intelligent
Manufacturing, 12(3):413�420, 1999.

[205] F. Tu and K. R. Pattipati. Rollout strategies for sequential fault diag-
nosis. IEEE Transactions on Systems, Man, and Cybernetics � Part A:
Systems and Humans., 33(1):86�99, 2003.

[206] A. Tuzikov, M. Makhaniok, and R. Manner. Bicriterion scheduling of
identical processing time jobs by uniform processors. Computers & Op-
erations Research, 25(1):31�35, 1998.

[207] E. Vallada, R. Ruiz, and C. Maroto. Synthetic and real benchmark for
complex �ow-shop problems. Technical report, Universidad Politecnica
de Valencia, Spain, 2003.

[208] E. Vallada, R. Ruiz, and G. Minella. Minimising total tardiness in
the m-machine �owshop problem: A review and evaluation of heuristics
and metaheuristics. Computers & Operations Research, 35(4):1350�1373,
2008.

[209] P. J. M. van Laarhoven and E. H. L Aaris. Simulated annealing: theory
and application. D. Reidel Publishing Company, Dordrech, 1987.

[210] T.K. Varadharajan and C. Rajendran. A multi-objective simulated-
annealing algorithm for scheduling in �owshops to minimize the
makespan and total �owtime of jobs. European Journal of Operational
Research, 167(3):772�795, 2005.

[211] L. Venditti, C. Meloni, and D. Pacciarelli. A tabu search algorithm for
scheduling pharmaceutical packaging operations. Proceedings of ORP3

2007 conference, Guimarães, Portugal, pages 107�118, 2007.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 185 � #201 i

i

i

i

i

i

185

[212] S. Voÿ and C. Duin. Looking ahead with the pilot method. Annals of
Operations Research, 136:285�302, 2005.

[213] J. M. Wilson. Alternative formulations of a �ow-shop scheduling problem.
Journal of the Operational Research Society, 40(4):395�399, 1989.

[214] D. Wortman. Managing capacity: getting the most from your �rm's
assets. Industrial Engineering, 24:47�49, 1992.

[215] Y. Yang, S. Kreipl, and M. Pinedo. Heuristics for minimizing total
weighted tardiness in �exible �ow shops. Journal of Scheduling, 3(2):89�
108, 2000.

[216] W.-C. Yeh. A new branch-and-bound approach for the
n/2/flowshop/αF + βCmax. Computers & Operations Research,
26(13):1293�1310, 1999.

[217] W.-C. Yeh. An e�cient branch-and-bound algorithm for the two-machine
bicriteria �owshop scheduling problem. Journal of Manufacturing Sys-
tems, 20(2):113�123, 2001.

[218] W.-C. Yeh. A memetic algorithm for the n/2/flowshop/αF + βCmax

scheduling problem. The International Journal of Advanced Manufac-
turing Technology, 20(6):464�473, 2002.

[219] Y. Yi and D. W. Wang. Soft computing for scheduling with batch setup
times and earliness-tardiness penalties on parallel machines. Journal of
Intelligent Manufacturing, 14:311�322, 2003.

[220] L. Yu, H. Shih, M. E. Pfund, W. M. Carlyle, and J. W. Fowler. Scheduling
of unrelated parallel-machines: An application to pwb manufacturing.
IIE Transactions on Scheduling and Logistics, 34:921�931, 2002.

[221] Z. Zhu and R. B. Heady. Minimizing the sum of earliness/tardiness
in multi-machine scheduling: a mixed integer programming approach.
Computers & Industrial Engineering, 38:297�305, 2000.

[222] E. Zitzler and S. Künzli. Indicator-based selection in multiobjective
search. In 8th International Conference on Parallel Problem Solving from
Nature (PPSN VIII), pages 832�842, Birmingham, UK, September 2004.
Springer-Verlag, Berlin, Germany.

i

i

�PhDThesis_Ciavotta� � 2008/2/11 � 18:11 � page 186 � #202 i

i

i

i

i

i

186 BIBLIOGRAPHY

[223] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength
pareto evolutionary algorithm. Technical Report 103, Computer Engi-
neering and Networks Laboratory (TIK), ETH Zurich, Switzerland, May
2001.

[224] E. Zitzler and L. Thiele. Multiobjective evolutionary algorithms: A com-
parative case study and the strength pareto approach. IEEE Transactions
on Evolutionary Computation, 3(4):257�271, 1999.

[225] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, and V. G. da Fonseca.
Performance assessment of multiobjective optimizers: an analysis and
review. IEEE, Transactions on Evolutionary Computation, 7(2):117�132,
2003.

