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Abstract: This study mmvestigate the permutation flowshop scheduling problem mn which there are sequence
dependent setup times on each machine, commonly known as the SDST flowshop. The optumization criteria
considered is the minimization of the makespan or C_,. Many heuristics and meta-heuristics have been
successfully applied to this kind of problem before like genetic algorithm, tabu search and greedy algorithm and
the objective of this study is to assess their effectiveness in a more realistic and complex environment. We
present a hybrid electromagnetism-like (HEM) algorithm for the permutation flowshop scheduling with
sequence dependent setup times that have shown superior performance against other meta-heuristics when
applied to proposed problem. The proposed HEM algorithm benefits of a new concept named priority assigning
to calculate electrostatic force and also it implements a new formulation for solution charge. Using a good
approach for acquiring the 1mtial solutions and also some effective local searches to finding neighborhood
solutions are other novelties of the HEM. For evaluating the proposed algorithm we have coded several well-
known algorithms for SDST flowshop. All methods mcluding HEM are tested on the randomly mstances and
results indicate that HEM is very competitive with the existing best-performing algorithms.
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INTRODUCTION

The flowshop scheduling problems (FSP) have been
studied for over five decades. The classical flowshop
problem with the makespan minimization criterion has
always attracted the attention of researchers because of
1ts applications in practice. The flowshop problem 1s easy
to describe and formulate, yet computationally it is rather
challenging. Therefore, this problem has mspired the
development of a number of sclution procedures
(Eksi0glu ef al., 2008).

In an m machine flowshop, there are m stages in
serles, where there exist one or more machines at each
stage. Fach job has to be processed in each of the m
stages in the same order. That is, each job has to be
processed first in stage 1, then in stage 2 and so on.
Processing times for each job in different stages may be
different.

In the flowshop literature, one can find an
overwhelming number of papers for the regular flowshop

problem with the objective of mimmizing the maximum
completion time across all jobs. However, the sequence-
dependent setup time flowshop problem (SDST flowshop
problem in short) has attracted much less attention. Setup
is sequence-dependent if its duration depends on both
the current and the immediately preceding job and is
sequence-mndependent if its duration depends only on the
current job to be processed.

The objective in flowshop scheduling problems 1s to
find a sequence for processing the jobs on the machines
so that a given criterion 1s optimized. This yields a total of
n! possible orderings of the operations on each machine
and a total of (n!)y® possible processmg sequences. In
flowshop scheduling research usually only so called
permutation sequences are considered, where the
processing order of operations is the same for all
machines. Here, we also adopt this restriction. In this
study, we consider sequence dependent flowshop
scheduling problem with the makespan mimmization
criterion.
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Regarding the computational complexity, the SDST
flowshop with the C, .. objective has been shown to be
NP-hard even whenm = 1 and also when m = 2 and setups
are present only on the first or second machine (Ruiz and
Stutzle, 2008). For m =1, the SDST flowshop is known to
be a special case of the traveling salesman problem (TSP)
that 1s also well known to be NP-hard which means that an
efficient algorithm for solving the problem to optimality 1s
unavailable.

Compared to the regular flowshop, on which
hundreds of papers have been published, the hiterature on
the SDST counterpart is scarce. In the pioneering work of
Johnson, he author proposed a simple rule to obtain
optimal sequences for the permutation flowshop problem
(PFSP) with two machines (Rwz ef ol., 2005). This study
raised sigmficant interest in the PFSP and was followed
by several attempts for solving the PFSP with more than
two machines. Due to the NP-completeness of the PFSP,
researchers have mainly focused on the development of
effecive heuristics and meta-heuristics. For a recent
review and evaluation of PFSP heuristics and
metaheuristics, the reader can refer to Ruiz and
Concepelon (2005). Stafford and Tseng (1990) reported
minor corrections to the SG/SDST model and showed that
the revised model (SGST/SDST) was robust with regard to
the triangular inequality relationship of setup times. Rios-
Mercado and Bard (1988) showed that the SGST/SDST
model performed better than their new MILP model for the
SDST flowshop. Tseng and Stafford (2001) extended the
Stafford MILP model to solve both the SDST and the
SDST/NIQ flowshop problems.

Rios-Mercado and Bard (1999a) addressed the
sequence dependent flowshop problem with makespan
criterion (denoted as F_ /ST /C ). In the first study
(Rios-Mercado and Bard, 1999a), they presented a branch
and bound algorithm, mcorporating lower and upper
bounds and dominance elimination criterion, to solve the
problem. They provided test results for a wide range of
problem instances. In the second study (Rios-Mercado
and Bard, 1999b), they proposed a heuristic for the same
problem, which transforms an mstance of the problem
into an instance of the traveling salesman problem by
introducing a cost function that penalizes both
large setup times and bad fitness of a given schedule.
Ruiz et al. (2005) proposed two genetic algorithms for the
same  problem and showed that their heuristics
outperform that of Rios-Mercado and Bard (1999b) and
others. Ruiz and Stutzle (2008) presented two sumple local
search based iterated greedy algorithms and showed that
their algorithms perform better than those of Ruiz et al.
(2005). Rios-Mercado and Bard (2003) studied the
polyhedral structure of two different MIP formulations for

the same problem. One is related to the asymmetric
traveling salesman problem and the other 15 derived from
an earlier proposed model. The two approaches were
evaluated using a branch and cut algorithm, which
indicated that the approach related to the asymmetric
traveling salesman problem was mferior n terms of the
computational time. Stafford and Tseng (2002) also
proposed two MILP models, which are based on the
study of Tseng and Stafford (2001), for the same problem.
The MIP models proposed by Rios-Mercado and Bard
(2003) and Stafford and Tseng (2002) were independently
developed and hence, remain to be compared to each
other. Tseng et al. (2005) developed a penalty-based
heuristic algorithm for the same problem and compared
their heuristic with an existing index heuristic algorithm.
The F/ST,/C,... problem was studied by Norman
(1999) where there exist buffers with finite capacity
between machines. He proposed a tabu search based
heuristic and compared 1t with some other methods.
Computational experiments showed the effectiveness of
the tabu search approach.

Sun and Hwang (2001) addressed a related problem
of F,/ST,/C, .. where the setup times are present only on
the second machine and the setup time of a job depends
on k (k>1) immediately preceding jobs. They proposed a
dynamic programming formulation and a genetic algorithm
for the problem.

Allahverdi e al. (2008) have put together a much
more updated and comprehensive review of scheduling
research with setup times in which other relevant papers
related to the SDST flowshop can be found.

Recently, EM algorithm has
optimization problems like scheduling. The approach
starts with a randomly selected point from the feasible
region for a given optimization problem. EM employs an
attraction-repulsion mechanism to move points (particles)
towards the optimal solution. Each point (particle) is

been used for

treated as a solution and has a charge. A better solution
contains a stronger charge. The charge of each pomt
relates to the objective function to be optimized A
theoretical study of this EM analysis and a modification
for convergence to the optimal solution are presented in
Birbil et al. (Chang et al., 2007). However, this study
only deals with continuous optimization problems.
Debels et al. (2006) integrated a scatter search with EM
for the selution of resource constramt project scheduling
problems. This 15 the first study that includes an EM type
methodology for the combinatorial optimization problem.
Their experimental results show that the hybrid method of
incorporating EM type analysis outperforms the current
best solution available in literature.
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Though EM algorithm is designed for solving
continuous problems, the algorithm can be extended to
solve scheduling problems. Chang et al. (2007) applied
the random-key approach to represent a schedule
mcorporated with the EM methodology to solve a single
machine scheduling problem and the objective is to
minimize the total sum of earliness and tardiness penalties.
In this study we apply prionty assigning idea to
incorporate  EM  algorithm  for solving  flowshop
scheduling with sequence dependent setups and
makespan criterion.

FORMULATION

We present a MILP model for this SDST flowshop
scheduling problem that has been derived from the
scheduling literature (Das and Canel, 2005 ).

Notation

n : The number of jobs

m : The number of machines

1 1,2, ..., n subscript of the ith job

j 1,2, ..., m, subscript of the jth machine

py © Processing time of job i on machine j

Sy, | Setup time from job 1 to job k on machine j
(i=0 indicates setup time of the job scheduled first)

¢; : The completion time of job i on machine j

Xy o 1, 1f job k follows job 1; 0, otherwise

Objective function: The objective is to minimize the
makespan which 1s given by the completion time of the
last job on the last machine.

Minimize makespan = ¢,

Constraint sets:
Geppi=1,2,...,10 (1)

Constraint (1) is required to ensure that all jobs are
scheduled and that the completion times of any job 1 on
machine 1 is at least as great as the processing time for
that job on the machine.

Grongtpy,i=1,2, ... ,mj=2,3, .., m (2)

Processing of job 1 cannot begin on machine j, unless
its processing is completed on the previous machine (§-1).
Constraint (2) ensures that the completion time of job i on
machine j, must be greater than the completion time of the

same job on the previous machine (j-1), by at least the
processing time required for job i on machine j.

=Gy MK 2 8D (3)

o, — ¢+ MI-x,]=58, +p, (4)
where, k>1z1,
i=12,....n;k=1,2,....n;j=1,2, ..., m;

and M is a very large No.

Constraints (3) and (4) ensure that for any given
sequence of n jobs, only one of the constraints 1s binding.
It assures the precedence relationship between jobs.

Z_nlxikzl,kil,Z,...,n fori =k (5)
=

Zi_lxikzl,izl, 2,...nforizk (6)

Constraints (5) and (6) ensure that only one job can
follow a job in the schedule.

ELECTROMAGNETISM-LIKE
ALGORITHM

Introduction of electromagnetism-like algorithm: Birbil
and Fang propose a so-called electromagnetism-like (EM)
optimization unconstrained  global
optimization problems, i.e. the minimization of non-linear
functions (Chang et af, 2007). In a multi-dimensional
solution space where each point represents a solution, a
charge is associated with each point. This charge is
related to the objective function value associated with the

heuristic  for

solution. As in evolutionary search algorithms, a
population, or set of solutions, is created, in which each
solution point will exert attraction or repulsion on other
points, the magnitude of which is proportional to the
product of the charges and inversely proportional to the
distance between the points (Coulomb's Law). The
principle behind the algorithm is that inferior solution
points will prevent a move in their direction by repelling
other pomts in the population and that attractive poimnts
will facilitate moves in their direction. This can be seen as
a form of local search in Euclidian space in a population-
based frameworl. The main difference with existing
methods 1s that the moves are governed by forces that
obey the rules of electromagnetism (Debels et al., 2006).

EM simulates the attraction-repulsion mechanism of
electromagnetism theory which 1s based on Coulomb’s
law. Each particle represents a solution and the charge of
each particle relates to its solution quality. The higher
charge the particle has the better solution quality of the
particle. Moreover, the electrostatic force between two
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point charges is directly proportional to the magnitude of
each charge and inversely proportional to the square of
the distance between the charges. The fixed charge of
particle 118 shown as follows:

f(x) f(x beSt) vi (7)
(f Xk best )

q' =exp|-n

where, ¢ is the charge of particle i, f{x'),f(x**") and f{x")
denote the objective values of particle 1, the best solution
and particle k, respectively. Finally, m is the population
size. The solution quality or charge of each particle
determines the magnitude of an attraction and repulsion
effect in the population. A better solution encourages
other particles to converge to attractive valleys while a
bad solution discourages particles to move toward this
region. These particles move along with the total force
and so diversified solutions are generated. The followmng
formulation 1s the force of particle 1:
(XJ —x‘) 7q’

HXJ _xi‘ if f(xl)<f(x‘)

(xl_xj)ﬁ Bl £(x))> £(x)
x) - x!

F - v (8)

The fundamental proceduwre of EM includes
mitialization, local search, calculating total force and
moving the particles. The generic pseudo-code for the EM
15 as follows (Chang et al., 2007):

Algorlthm 1: EM ()

Initialize ()

Whle (has not met stop criterion) do
Local Search ()

Calculate the total force F ()

Move the particle by F ()

Evaluate the particles ()

End while

‘\JO\U'I-.BU)I\J'—‘

Proposed hybrid electromagnetism-like algorithm:
Flowshop scheduling problem can be regarded as a hard
optimization problem. A simple EM may not perform well
in this situation. Therefore, the EM developed in this
study benefits of a new approach for the imtial solutions,
acceptance criteria and a local search. EM hybridizes with
the modified NEH heuristic proposed by Ruiz ef al. (2005).
Besides the modified NEH, it also hybridizes with the local
optimizer. We use three different search neighborhoods
as pairwise interchange neighborhood, forward insertion

neighborhood and backward insertion neighborhood
{Gupta and Smith, 2006). One step 1n the local search 1s to
decide whether the new sequence is accepted or not as
the ncumbent solution for the next iteration. A pure
descent criterion would be to accept solutions with better
objective fimction values. However, this acceptance
criterion 1s prone to stagnation. As an alternative, we
consider an acceptance criterion that is frequently used in
simulated annealing (SA) algorithms. The hybrid system
starts from determining whether a new solution obtained
from one of imtial solution using local search 1s accepted
by SA or moved by EM.

The algorithm 2 1s the pseudo code of the main
procedure of the hybrid framework.

Algorlthm 2: HEM ()
. Initialize ()

. Priority assignment of mitial solutions
: While (has not met stop criterion) do

. Initialize Max-iterations, Temp-start

: Set Count = 1, T = Temp-start

B - calculates

Dy I Wb —

the average makespan of all
solutions ()

7o x° ~ solution related to the worst makespan
among all solutions ()

g x"™ ~ solution related to the best makespan
among all solutions ()

9 : LocalSearch()

Let the neighboring sequence be called x™

10:  Pricrity assignment of x™

11: Compute C,(x"™)

12 IfCx"<B

13: x*-x™,goto26

14: ElseIfC_(x"™>B

15: Set T= Temp-start/log (1+Count)

16: With probability e ™*set x* —x"®, go to 26

17: With probability 1-e™*7

18: Move x™ by EM () and let the new sclution be
called x™%

19: Pricrity assignment of x™

20 Compute C,(x"™)

21 IfC ™ < B

22: X' -x"™ goto 26

23: Else if C,(x"™>B,goto9

24 End if

25:  Endif

26 Increment Count by 1
27 If Count < Max-iterations, go to step 6
28 : End while

29: Qutput the best sequence or X"

3624



J. Applied Sci., 8 (20): 3621-3629, 2008

By line 9 we mean randomly generate a neighboring
solution of x™° wusing either the interchange
neighborhood, forward insertion neighborhood or
backward insertion neighborhood. According to the
algorithm 2 (algorithm 2, line 1), we mitiate the solutions
in the population. Then, the neighborhood search
procedure is implemented before the EM procedure
(algorithm 2, line 9). To determine which solution 1s good
or inferior one, an average objective value B is calculated.
Then, if the solution is not worse than B, it is accepted
and substituted with the worst solution n the population
(algorithm 2, lines 12-13). Otherwise, this solution is
accepted with probability of e ™7 and substituted with the
worst solution (algorithm 2, line 17) or moved by modified
EM algorithm with probability of 1-e*" {(algarithm 2, line
19). After solutions are obtained, their makespan can be
calculated. The best makespan 1s final solution. Fmally,
the initialization, priority assigning, solution charge,
calculated total force and move are modified. Following
discusses these topics in details.

TInitialization: The initial solution for EM is ideally
generated by a high performance constructive heuristic.
For the sequence dependent flowshop scheduling with
makespan criterion, we use the NEHT-RMB heuristic and
a modified NEHT-RMB heuristic proposed by Ruiz et al.
(2005) for the initialization of the population. Recall that
NEH is an insertion heuristic, where at each step the next
unscheduled job is tentatively inserted in each possible
position of some partial solution. The job is then finally
inserted into the position where the objective function
takes the lowest value. For executing such an imnsertion
heuristic, the jobs need to be ordered in some way. For
more details how this is done in NEHT-RMB and modified
NEHT RMB (Ruiz et al., 2005). We obtain m initial
solutions based on this method.

Priority assigning: In this step we assign one random
variable ¥, between O and 1 to each job k in each solution
i. For example consider one problem with 4 jobs numbered
1 to 4. Assume the second mitial solution 1s represented
by (1, 4, 3, 2). Tt means job 1 is the first job in the
sequence, job 4 is second, job 3 is third and job 2 is the
last. We assign one random variable between 0.75 and 1
to job 1, one between 0.5 and 0.75 to job 4, one between
0.25 and 0.5 to job 3 and finally one between 0 and 0.25 to
job 2. One of the results can be shown as follows:

%} =089, x; =054, x; =048, x; =011

Therefore x* = (0.89, 0.54, 0.48, 0.11). Also if there are
n jobs in each sequence, one random variable between
(n-1)n and n is assigned to the first job, one between

(n-2)n and (n-1)n to the second and so on. Finally
random variable of the last job i1s between O and 1/n.
Hence if there are m mitial solutions, there are m random
variables for each jobi(i=1,...,n).

Solution charges, electrostatic force and move: In the
previous section it was described that each solution i has
one vector of random variable denoted as x' mcluding n
random variables from x| to x. Therefore C__(x") is
equivalent to C,(solution(i)). Let the force exerted on
neighberhoed solution (denoted as x™ in algorithm 2, line
9) by current solution i use the fixed charge of ¢ (related
to the fixed charge of solution i indicated in 7). We have:

i__ B-CLKYH

=— —, ¥i=1..,m )
2 B G (X))

q

where B is the average makespan of all solutions
1(1=1,...,m). It is clear that

Zia =0

After the g is obtained, we calculate the force on x™ by
other solutions 1. To calculate the electrostatic forces
imposed by all solution for x™, we obtain electrostatic

forces imposed to each particle of ™ (particle means x,™,

%™, x,™) as follows (related to the force of particle 1
indicated in 8):
E*=3"H=3" (xq), ¥k=1..n (10)
Therefore,
it =x" + Y, vk=1...n (1)

i

We can set upper and lower bounds for x,”*%. Tf x,"™
is greater than upper bound or less than lower bound, it
15 substituted with the value of bounds. Hence we have
one x™ with new particles. We sort all jobs i x™ based
on its x,™ in decreasing order and obtain a new sequence
of jobs corresponding x™. Thus solution x™ moves to
x"+F,™. For example if the solution related to x™ is
represented by (2, 1, 4, 3) and new particles of x"™ are
(0.22,0.52,0.43, 0.85), the new solution will be (3, 1, 4, 2).
Therefore to obtain x™" (algorithm 2, line 19), we follow
algorithm 3.

Algorithm 3: Move neighborhood solution by EM ()
1: Fori=1ltom
20 gl

2 B-C &Y
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End for
Fork=1ton

B =B =2 &0d)

Mew Hei el
k - Xk + Fk

End for
Output x
Output new sequence based on x™

X

Mewr

O 0 -1 3 b I W

Finally, in order to maintain the feasibility of each
solution, we check the boundary feasibility by the
algorithm 4.

Algorithm 4: Check boundary ()

1: Fori=1tomdo

2 Fork =1tondo

3 If x,"* > upper bound then

4: %™~ upper bound

5: Else if " < lower bound then
6 .

7

8

9

Mew

X~ lower bound
End if
End for
End for

Stopping criterion: The stopping criterion of the EM
could be a maximum number of iterative cycles, specified
CPU tume limit, or maximum mumber of cycles between two
mnprovements of the global best solution. In this study,
we use a given number of iterative cycles as the stopping
criterion. Therefore, in our experiment setting, the
algorithm will terminate when a given number of cycles
has been executed. This loop 13 executed for Itemax = 2500
iterations.

COMPUTATIONAL EXPERIMENTS

Here, the proposed hybrid electromagnetism (referred
to as HEM) with the other metaheuristics is compared.
These are: iterated greedy heuristic by Ruiz and Stutzle
(2008) that will be denoted as IG, hybrid genetic algorithm
by Ruiz ef al. (2005) that will be denoted as HGA and the
tabu search algorithm by Eksioglu et al. (2008), which
will be referred to as TS. For evaluating the different
algorithms we used the performance measure stated as:

pu - Bl —Besty, o0 (12)
Best

sol

where, Heu; is the makespan obtained by a given
algorithm and Best,, 1s the makespan of the best solution
obtained by all algorithms. The platform of our
experiments is a personal computer with a Pentium-T1T 1.2

Hz CPU and 256 MB RAM. The programs are coded in
MATLAB. All algorithms are compared using different
problem sizes (n= 10, 20, 30, 40, 50, 100, 200 and m = 5, 10,
15, 20). For each class of the problem defined by given (n,
m), 10 instances of problem are randomly generated. Thus
we obtain a total of 280 problem instances. Processing
time and setup tine are given from Uniform random
U(1, 99) and U(1, 9) discrete distributions, respectively.
The numerical results are averaged through each ten
instances.

The average, mimmum and maximum PM values for all
algorithms are shown m Table 1. The ‘Min’ labeled
columns show, in subscript, the number of instances for
which the algorithm equal to the
corresponding Best,,. In 'Average' column we show two
sub columns including average PM and average time to
solve all 10 instances.

With respect to the solutions gained, Table 1
demonstrates that the algorithms have the rank of: 1.
HEM, 2. IG, 3. HGA and 4. TS. Figure 1 shows the
difference of Heu,-Best, for each heuristics in each

501 sol

solution was

instance.

It 13 noticeable that the fastest algorithm 15 HGA (but
gamed solutions are not so good) and HEM 15 a little
slower than IG.

Now for more detailed comparison, two algorithms of
HEM and IG are considered. In this step, it 13 desired to
stop both algornithms at the same CPU time. The value of
this CPU time has been taken the minimum CPU time
between two algorithms in Table 1. For example the
common CPU time for the first class of problem (n= 10,
m = 5) 18 min (3.5, 2.08) = 2.08. We test the hypothesis that
the population corresponding to the differences has
mean |1 zero. Specifically, we test the (null) hypothesis
=0 against the alternative u > 0. We assume that the

100.00
90.00
§0.00+
70.00
60.00+
50.00
40.00
30.00
20.004
10.004

0.00

Heuristic solution-best solution

0 5 0 15 20
Class No,
Fig. 1: Differences between heuristic solution and the

best solution among all heuristic solutions for
each algorithm m each instance
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Table 1: PM values for comparison studies between algorithms (times are in second)

HEM G HGA TS
Average Average Average Average
Class of Min -—----—---—- Max Min -—--—-— Max Min - Max M - Max
problem  n M PM  PM Time PM PM PM Time PM PM PM Time PM PM PM Time PM
1 10 5 Oy 0.084 350 0844 O 0.656 2.08 1.207 0230 1379 161 2.579 0.141 1.504 0.40 2.907
2 10 10 Oy 0.051 382 0512 O 0495 238 086 0076 0526 1.67 1.533 0.204 0.860 6.61 1.732
3 10 15 O 0.000 4.60 0.000 0122 0425 317 0744 0354 1062 2064 1480 0.161 1.030 2951 1.876
4 10 20 O 0.146 6.69 0.604 O 0.132 510 0345 0058 0648 3.72 1.334 0.040 1.063 92.89 1.753
5 20 5 o7 0.223 353 0911 Oy 0.199 236 0632 0M5 0.683 236 1.218 0439 1.064 0.39 1.862
6 20 10 Oy 0.071 391 0711 O 0.561 2.63 0860 0015 0702 3.03 1.564 0.081 1.056 6.37 1.784
7 20 15 O 0.000 437 0.000 0055 0432 2.85 0787 0.062 0.683 3.23 1.203 0.111 0.833 34.68 1.456
8 20 20 O 0.000 571 0.000 0120 0502 437 0.697 0132 0590 453 1.159 0.051 0.588 97.04 1.296
9 30 5 0g 0.039 4.23 029 O 0.373 290 0766 O 0.653 299 1.224 0.055 0.714 0.41 1.809
10 30 10 Oy 0.027 522 0271 O 0.237 379 0563 0303 0743 3.21 1.129 0.051 0.685 8.92 0.994
11 30 15 o7 0.145 834 0498 O, 0.109 570 0347 0040 0489 4.02 0999 0.094 0.626  51.45 1.307
12 30 20 Oy 0.063 8.82 0627 0366 7.01 0714 0000 0466 6.86 1.068 0.135 0.680 11916 1.247
13 40 5 0g 0.057 564 0518 O 0.278 3.78 0823 0M7 0543 3.84 0.912 0.036 0.724 0.43 1.398
14 40 10 o7 0.108 6.18 0.627 & 0.227 430 0636 O 0.478 4.92 0.809 0.091 0.745 11.11 1.253
15 40 15 g 0.145 8.65 0976 O 0.277  6.59 0646 0098 0.614 577 0999 0171 0.766  54.29 1.353
16 40 20 O 0.000 1309 0.000 0104 0324 981 0487 0025 0343 773 0.645 0.024 0480 13521 1.011
17 50 5 0g 0.091 6.79 0460 O 0.283 4.69 0670 0149 0.515 3.57 0.809 0.038 0.726 0.39 1.007
18 50 10 0g 0.073 744 0394 0 0.252 515 05le O 0.465 4.63 0.865 0.013 0.610 12.57 1.317
19 50 15 O 0.016 11.30 0.095 O 0.248 848 0710 0001 0.280 721 0.721 0.029 0.681 69.05 1.408
20 50 20 Oy 0.020 16.04 0200 O 0.292 13.11 0768 0042 0518 1051 0850 0.242 0.538 204.54 0.907
21 100 5 0g 0.009 946 0.092 O 0.187 7.04 0.587 O 0.409 6.69 0.649 0.004 0.491 0.94 0.751
22 100 10 o7 0.036 18.61 0.259 0.270 14.79 0577 0161 0333 1234 0476 0.139 0.387 17.46 0.774
23 100 15 05 0.062 26,64 0315 O 0.212 21.20 0.528 O 0318 2017 0.632 0.029 0412 9655 1.156
24 100 20 O 0.000 41.87 0.000 0.011 0.186 3233 0359 0101 0373 2507 0.586 0.084 0346 32844 0.640
25 200 5 0g 0.024 1716 0209 O 039 14.91 0876 0.015 0491 1424 1.051 0.174 0.670 4.72 1.011
26 200 10 0g 0.063 3444 0321 @ 0.344 2831 0779 0110 0.582 24.87 0.944 0.183 0.673 30.16 1.465
27 200 15 g 0.066 4951 0388 O 0326 39.61 0701 009 0428 31.93 0927 0102 0.718 23356 1.160
28 200 20 O 0.016 7708 0.161 O 0.234 68.06 0572 0023 0328 60.85 0.779 0.238 0.770 73995 1.120
Table 2: Comparison study of performance between HEM and IG
Ave. MS or () Ave. 8D or (S)
Class of -
problem n m 1G HEM 1G T b t Sig.
1 10 5 762.70 763.20 2.85 3.81 -0.33 17 1.74 No
2 10 10 1107.06 1109.10 1.77 2.92 -1.89 15 1.75 Yes
3 10 15 129543 1290.57 3.01 2.48 3.94 17 1.74 Yes
4 10 20 1613.04 1607.27 5.43 4.06 2.69 17 1.74 Yes
5 20 5 132812 1331.91 2.64 3.70 -2.64 16 1.75 Yes
6 20 10 1586.97 1588.08 4.30 4.61 -0.56 18 1.73 No
7 20 15 1874.37 1871.63 3.29 1.30 245 12 1.78 Yes
8 20 20 2147.92 2143.46 4.24 4.68 2.23 18 1.73 Yes
9 30 5 1801.46 1855.80 541 4.24 2.6 17 1.74 Yes
10 30 10 2168.34 2163.40 5.46 3.61 2.39 16 1.75 Yes
11 30 15 2451.97 2454.12 4.45 2.79 -1.29 15 1.75 No
12 30 20 2713.15 2709.81 6.02 6.77 1.17 18 1.73 No
13 40 5 2426.54 2429.88 2.35 4.47 -2.09 14 1.76 Yes
14 40 10 2702.39 2696.18 6.38 301 2.62 15 1.75 Yes
15 40 15 297892 2974.50 5.75 5.97 1.69 18 1.73 No
16 40 20 3255.00 3246.19 7.20 2.62 3.64 11 1.8 Yes
17 50 5 2961.38 2954.02 5.55 5.19 3.06 18 1.73 Yes
18 50 10 3273.70 3268.55 7.46 6.75 1.62 18 1.73 No
19 50 15 3519.88 3511.87 7.95 6.06 2.53 17 1.74 Yes
20 50 20 3813.90 3807.91 6.84 4.70 2.28 16 1.75 Yes
21 100 5 5759.07 5745.99 12.89 10.70 2.47 17 1.74 Yes
22 100 10 6035.38 6023.19 14.66 10.93 2.11 17 1.74 Yes
23 100 15 6253.90 6265.47 4.22 13.07 -2.66 11 1.8 Yes
24 100 20 6623.50 6608.14 9.10 14.61 2.82 15 1.75 Yes
25 200 5 11263.60 11246.70 26.41 25.33 1.46 18 1.73 No
26 200 10 11655.90 11634.30 29.77 15.09 2.05 13 1.77 Yes
27 200 15 11868.20 11833.20 28.35 28.82 2.74 18 1.73 Yes
28 200 20 12331.10 12298.30 28.00 23.74 2.83 18 1.73 Yes

Ave: Average, MS: Makespan, SD: Standard deviation, 8ig: Significant, Each class of problem containg 10 independent instances
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makespan difference is a normal variable and choose the
significance level o = 0.05. If the hypothesis is true, the
random variable:

T = (X1 - X2)/ (87 /) + (53/1,)

has a t distribution with:

Sy )

v= (% /n +8]/n,)* [ - -
1 2

)

degrees of freedom. The critical value of ¢ i1s obtained
from the relation Prob (T > ¢) =« = 0.05. For example,
the first entty in Table 2 corresponds to the sample
size =1, =1, = 10, p, = 0, sample mean for IG and HEM are
X = 76270 and X:= 763.20, respectively. Sample
standard deviation for IG and HEM are S, =2.85and
3, = 3.81, respectively. Since t = 1.74 > T = 0.33, we
conclude that the difference is not statistically significant.
Table 2 displays HEM outperforms IG in all cases except
seven classes of problem (classes 1,2, 5, 6, 11, 13 and 23)
and four of differences are significant (classes 2, 5, 13 and
23). Also in cases that HEM yields better results, all
differences are significant except four classes (12, 15, 18
and 25). In fact HEM outperforms IG m 75% of cases and
significantly outperforms in 61 %o.

CONCLUSIONS

By using priority assigning the EM algorithm 1s able
to be applied in solving the scheduling problem. To
improve the performance of the EM algorithm, a hybrid
method is developed in this research which, the EM
benefits of a new approach for the initial solutions,
acceptance criteria and a local search. The purpose of this
hybrid method is to take advantage of the EM algorithm,
SA algorithm and local search.

We study the flowshop scheduling problem in
sequence dependent condition to challenge a large
number of real world problems. FSP 1s a hard optimization
problem. To problem, HEM is
Computational results demonstrate the performance of our
algorithm compared to some of the strong algorithms

solve this used.

recently developed. It 1s noticeable when the differences
between HEM and GA (strongest algorithm between all
previous algorithms) are concerned, most of them are also
signmficant m the level ¢ = 0.05. It demonstrates the
significant strength of HEM to solve scheduling problems
compared to previous developed algorithm.
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