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Abstract

We treat a practical application of packing problems in feeding assembly lines. This study was motivated by a real sit-
uation encountered in the shop floor of a major automobile industry plant in Brazil. The assembly line feed problem (LFP)
consists in how pack the items in the available containers to meet the line work centers’ requirements with a minimum total
cost over the planning horizon. LFP is a variable-sized bin packing problem that has two special features: (i) a cardinality
constraint on each bin’s size; and, (ii) a cost structure such that each bin’s cost varies according to the items that are packed
in it. We propose an integer programming model and a GRASP heuristic for LFP. Numerical results on real-life test

instances are reported.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

High-volume discrete manufacturing systems are
traditionally organized in flow lines to achieve pro-
ductivity gains and cost savings. Such flow lines
have been widely used for assembly operations in
the automobile industries. In these cases, the manu-
facturing systems are composed by independent
parallel lines — each one dedicated to a different
product family — having a serial arrangement of
work centers (see Buzacott and Shanthikumar [5]
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for a comprehensive treatment of flow line systems).
As we are concerned with assembly lines, a feed pro-
cess must supply the work centers with all the neces-
sary purchased or intermediate items to complete
the required operations. Important managerial deci-
sions in controlling assembly line systems are related
therefore to their feed process to meet a time based
(daily for instance) demand. The choice among pos-
sible feeding line policies depends upon their
incurred costs that typically have two components:
(i) holding costs; and, (ii) handling costs. In this
paper, we are interested in modelling and solving
packing problems encountered in assembly line feed
processes.

Packing problems arise in the assembly line feed
process because standardization of work methods
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plays a central role in achieving high productivity
objectives. The materials handling from the storage
area to the assembly line is then done in standard
containers. In order to effectively control the system
the containers should always carry the same quan-
tity of items — as it is actually done in Just-In-Time
systems (see for instance [17]). The use of nonstan-
dard containers or irregularly filled containers dis-
rupts the production flow through the assembly line.

The present study was conducted in a major
automobile industry plant located in Brazil. The
company has currently a remarkable position in
the Brazilian market with a share of 25.3% in
2003. Moreover, it is one of the main exporters
in Brazil. The plant’s capacity is evaluated in 2300
vehicles a day. The whole production process com-
prises five stages: mechanics, presses, body shop,
painting, and final assembly. The final assembly is
composed by four independent lines where vehicles
are aggregated according to its characteristics,
types, and similar assembling pieces. The system
operates in paced lines, this means that a work-in-
process vehicle passes from one work center to
another within a cycle time (the standard specified
amount of time that a product must be turned out
from a work center).

A feed process must supply the work centers with
all the necessary purchased or intermediate items to
complete the required operations within a cycle
time. To allow trade-off policy possibilities between
handling costs and holding costs, a certain number
of different containers may be available. This
includes plastic and metallic recipients and pallets
— each one of these containers being available in dif-
ferent sizes. The problem faced when feeding an
assembly line is how pack the items in the available
containers to meet the work centers’ requirements
with a minimum total cost over the planning
horizon.

This problem — LFP for short — is a variable-sized
bin packing problem that has two special features:
(i) a cardinality constraint on each bin’s size; and,
(ii) a cost structure such that each bin’s cost varies
according to the items that are packed in it. Friesen
and Langston [15] presented, to our knowledge, one
of the first approaches to the variable-sized bin
packing problem. In this case, an unbounded num-
ber of bins from a finite collection of bin sizes are
available to pack a set of items. The objective is to
minimize the total space used in the packing. The
authors proposed three efficient approximation
algorithms — based on the First Fit Decreasing

and Next Fit strategies — with guaranteed worst-
case performance bounds. Some recent approaches
for the variable-sized bin packing problem include
the particular setting in metal cutting industries
treated by Chu and La [6]. The authors proposed
four greedy approximation algorithms based on
the concept of absolute and relative waste. Kang
and Park [16] presented two greedy algorithms —
based on the First Fit Decreasing and Best Fit
Decreasing — and analyzed then for three special
cases: (1) the sizes of items and bins are divisible,
respectively; (ii) only the sizes of bins are divisible;
and, (iii) the sizes of bins are not divisible. Seiden
and van Stee [24] established new upper and lower
bounds for multidimensional generalizations of bin
packing, which includes the d-dimensional vari-
able-sized bin packing. Alves and Valério de Carv-
alho [1] studied strategies in stabilizing and
accelerating column generation methods designed
for the variable-sized bin packing problem. For this
purpose, the authors introduced new dual-optimal
inequalities and explored the principle of model
aggregation. The online variant has been also trea-
ted in the literature, see for instance [8,9,26].

Industrial applications related to LFP include the
modelling of pull type Just-In-Time systems. Math-
ematical programming approaches to pull type sys-
tems have been proposed by Bitran and Chang [4]
and Watanabe and Hiraki [25], among others, for
the purpose of reducing the in-process inventory
and improving product quality. In these cases, a
mathematical model assists managers in determin-
ing the number of circulating Kanbans in the
system.

In the next section, we formulate the assembly
line feed problem as an integer programming model.
We propose a GRASP heuristic for LFP in Section
3, where we give a description of its construction
and local search phases. In Section 4, we report
numerical results on real practical instances from
the studied automobile industry’s shop floor. Con-
cluding remarks are made in the last section.

2. Assembly line feed problem

For every work center, a production schedule
determines how many of each item is necessary to
complete its operations within specified periods of
a finite horizon. Therefore, we have a demand d,
for item i, i=1,...,I, with which the system must
be supplied in period ¢, t=1,...,T, of the finite
horizon. As mentioned in the previous section, we
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have k =1,..., K different container’s sizes available
to feed the assembly line. A handling cost b is asso-
ciated with a container of size k. This cost is esti-
mated as the ratio that the amount of resources
destined to handling activities, i.e. labor and equip-
ments, has to the total quantity of materials trans-
ported. In the feeding process, a container carries
only one kind of item in order to control the system
with standard work methods. Thus, when we pack
an item 7 in a container k, a work center will be sup-
plied with a fixed quantity ¢; every time the con-
tainer arrives from the storage area. We may
consequently have a holding cost incurred when
the amount supplied exceeds the demand. The hold-
ing cost is ¢; per unity of item i remaining besides the
line at the end of a period.

The assembly line feed problem (LFP) consists in
how pack the items in the available containers to
meet the work centers’ demand with a minimum
total cost over the planning horizon. We will first
consider an unbounded version of the assembly line
feed problem (ULFP) where there is no limit over
the number of containers of size k available.
Because ULFP is then separable over the items,
each item is treated as a different instance (hence
no need for subscript ). As it will be shown, ULFP
is NP-Hard as it has the change-making problem as
a special case. Considering a certain item, a fre-
quency variable f* indicates the number of times
we will feed the line using container k in period z.
A stock variable s, denotes the amount remaining
besides the line at the end of period ¢. We model
ULFP as follows:

min Z <csl+§]<:bkf,k> (1)

K
st s —s+ > qff=d, t=1,....T, (2

k=1

si, /¥ > 0 and integer. (3)

The change-making problem (CMP) is that of a
cashier having to assemble a given change (in our
case d) using the least number of coins of specified
values (in our case ¢;). Lueker [20] has proved that
even in its unbounded version CMP is NP-Hard.
CMP can also be viewed as an unbounded knapsack
problem and has applications in unidimensional
cargo-loading and cutting stock problems (see Mar-
tello and Toth [21]). ULFP has CMP as a special
case by setting 7= 1 and an arbitrary large holding
cost ¢, which means that the optimal solution of this

special case of ULFP will only have strictly positive
stock variables if the corresponding CMP is
unfeasible.

Additional constraints related to the operational
control of the system must be taken into account
when developing a model for LFP. A nonquantita-
tive but nevertheless important issue in practice is
that the chosen feed process’ policy must be easily
enough described to be implemented in the shop
floor. Operational constraints stand that we can
choose only one size of container to feed the line
with a given item in the whole planning horizon
(since most part of the factory’s external suppliers
are required to deliver in the right container to feed
the line). We also have coupling constraints on the
different items because the number of containers
of a given size available for materials handling is
limited.

We make use of a binary variable x;, that indi-
cates if we pack (x; = 1) or not (x; = 0) item i in
container k to feed the line. We have now frequency
and stock variables indexed by item, i.e. /¥ and s,
respectively. To write down the bounding con-
straints on the limit of available containers, we have
to know how many containers of size k& we must
have simultaneously in the process to feed the line
with item i. Note that this number is disassociated
to its frequency (we can have for example a situa-
tion where we feed the line 12 times in a period
employing two containers).

The key to determining how many containers k
are simultaneously required to feed the line with
item 7 is the average lead time r;; expressed in period
time units. This because the number of containers k
we must have simultaneously in period ¢ to feed the

= {d”ﬂ (see for

instance [l7, Chapter 17]). The containers
spend some time to be filled, some time besides
the line, and some time in transit. The first step is
to check, in the main storage area, the item to fill
the container with. The full container is then moved
to the destination work center’s inbound stocking,
and exchanged by the empty one. The latter con-
tainer is carried to cleaning, and sent back to the
main storage area. A full container spends %* time
units to empty. Let us consider, as an 111ustrat1ve
example, the wheel mounting bolt. The demand is
320 units per hour, and let us assume it is packed
in the medium container which filled contains
1000 bolts. The checking and filling operations in
the main storage area take two hours in average.

line with item i is given by w/
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Once the container is filled, it takes 15 minutes to
reach the destination work center. Once the con-
tainer is empty, the cleaning and moving back oper-
ations take 45 minutes Thus the average lead time is
6.125 hours, and we must have [323:635] =2 med-
ium containers to feed the line with wheel mounting
bolts.
We model LFP as follows:

1 K
min Z (C,‘Sl'; + Z bk ,f) (4)
i= k=1

t=1 i=1

K
s.t. Si-n _sit+zqik i]; =dy,
k=1
i=1,....1, t=1,...,T, (5)
K
inkzl, izl,...7], (6)
=1
T
My = fi=0, i=1,....1I,
t=1
k=1,... K, (7)
!
wftx,-kélk, kil,...,K,
=1
t=1,...,T, (8)
xi € {0,1}, s, /¥ > 0 and integer. (9)

The objective function (4) minimizes the total cost
over the planning horizon. In constraint (5) we sat-
isfy the work centers’ demand. Constraints (6) and
(7) are the operational ones due to shop floor con-
trol procedures discussed above. These constraints
enforce that for each item only one size of container
will be employed to feed — in the whole horizon — the
line with it. The parameter M in (7) is an upper
bound on the total number of times a container k
will be moved from the storage area to the line in
the whole horizon. Its value can be given by
M = max {Z,TZI B—ﬂ Q= 1,...,1}, where k is the
smallest size of container. Thus, if we pack item i
in container k to feed the line, constraint (7) permits
as much handling as needed, otherwise, it ensures
that item i will not be transported in container k.
Constraint (8) limits to /; the number of containers
of size k simultaneously in use in a given period.
LFP is a variable-sized bin packing problem with
an additionally cardinality constraint on each bin’s
size. Let us consider for that (i) each size k of con-
tainer as a single bin of capacity /;; and, (ii) each
item / as a one piece item of weight w that depends
on the container in which and on the period when it

is packed. Thus, constraint (8) ensures that the total
weight of the items packed in bin k£ does not exceed
its capacity /, whatever is the period ¢ of the plan-
ning horizon. We have an implicit unitary cardinal-
ity constraint since we aggregate all the available
containers of size k into only one bin of capacity
[. In the maximum cardinality bin packing prob-
lem, given a set of items and a set of bins with the
same capacity, the objective is to maximize the num-
ber of items packed without exceeding bin capaci-
ties. It is a NP-Hard problem, see for instance
Labbé et al. [18]. If we set all holding and handling
costs to zero, solve this LFP special instance is
equivalent to decide whether the given set of items
can or cannot be packed in the given set of capaci-
tated bins. This is the decision problem associated
with the maximum cardinality bin packing problem.
We have therefore that even finding a feasible solu-
tion for LFP is a NP-Complete problem.

Another particular feature of LFP is its special
cost structure. We do not have a fixed cost associ-
ated to each bin (usually proportional to its size,
see for instance [15,16]). But each bin’s cost varies
according to the items that are packed in it — due
to more or less materials holding and handling.
Given values of xu, i=1,...,1, k=1,... K, feasi-
ble to constraints (6), (8) and (9) we obtain in
O(T) the values of s, and ff, i=1,...,1
t=1,...,T, k=1,...,K that minimizes (4), since
both the holding cost per unit of item i and the han-
dling cost per transportation of container k are con-
sidered constant over the planning horizon. For a
container k£ and an item 7 such that x; = 1, con-
straints (5) and (7) lead to the following expressions

for the values of s; and f;’;’ t=1,...,T, that mini-
mizes (4) under such a packing policy:
Sit = i) — din + gzt (10)
and
i |da— s
k {’40“-‘ (11)
9ix

Constraints (6), (8), and (9) define thus a variable-
sized bin packing problem with bin’s unitary cardi-
nalities whose objective is a function of the packing
variable x; given by (4), (10), and (11).

3. GRASP for the assembly line feed problem
We developed a GRASP — Greedy Randomized

Adaptive Search Procedure — strategy to obtain fea-
sible solutions to LFP. GRASP is a multi-start
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metaheuristic proposed by Feo and Resende [11,12]
which has been widely used to obtain good quality
solutions for many combinatorial problems.
Resende and Ribeiro [22] provided an in-depth sur-
vey that covers GRASP from basic scheme to recent
enhancements, implementation strategies and
hybridizations. Festa and Resende [13,14] reported
an annotated bibliography containing material such
as: tutorials and surveys, enhancements and hybrid
methods, parallel implementations, and successful
applications in the operational research and com-
puter science domains. In particular, GRASP has
been applied to several managerial problems arising
in manufacturing and scheduling. The reader is
referred to the works of Bard and Feo [3], Feo
et al. [10], Laguna and Gonzélez-Velarde [19],
Rios-Mercado and Bard [23], and Yen et al. [27],
to have an overview of how GRASP has been
employed to address day-to-day industrial planning
problems. Concerning packing, GRASP has been
recently applied by Delorme et al. [7] to set packing
problems arising in railway planning.

A GRASP iteration consists basically of two
phases: (i) construction phase; and, (ii) local search
phase. The construction phase builds a feasible solu-
tion whose neighborhood is investigated until a
local minima in the local search phase. The best
solution found after Max It iterations is returned.
Fig. 1 illustrates the GRASP framework.

3.1. Construction phase

GRASP uses a greedy randomized heuristic in its
construction phase. A feasible solution is iteratively
constructed one element at a time. The selection of
the next element is guided by an evaluation func-
tion. Resende and Ribeiro [22] emphasize the
greedy, probabilistic, and adaptive aspects of such
a function. The greedy one is that the evaluation
function leads to the creation of a restricted candi-

date list (RCL) formed by the best elements, i.e.
those whose incorporation to the current partial
solution results in the smallest incremental costs.
The probabilistic one is that the element to be incor-
porated into the partial solution is randomly
selected from those in the RCL. Finally, the adap-
tive aspect is that, once the selected element is incor-
porated to the partial solution, the candidate list is
updated and the incremental costs are reevaluated.

Our greedy randomized heuristic GRH con-
structs a feasible solution packing one item at a
time. For a given container k and item 7, we define
an evaluation function /4 as

T
Z CiSis +bkfn

=1

where s;, and f¥ are given by (10) and (11), respec-
tively. Thus, all the possible values of /(i, k) can be
calculated in O(IKT) time. For each item i, the
containers are sorted in non-decreasing order of
h(i,k). This preprocessing operation takes time
O(IKlogK).

GRH consists of a main loop executed either
until all items have been packed or until it has been
checked that the procedure will not be able to find a
feasible solution. Initially all containers may be
employed to feed the line with each item. Due to
the bounding constraints (8), while constructing a
feasible solution in a greedy fashion, we may not
have a certain container available to feed the line
with a given item. We denote by L; the set of avail-
able containers to pack item i in an iteration of the
construction procedure. Let J be the set of items
that has not yet been packed, initially including all
items. For each item i€ J, we check whether
L; = (. If this is the case, i.e. no matter the size there
are not enough containers to pack item i, the proce-
dure returns that no feasible solution was found.
Otherwise, the restricted candidate list RCL is
made up with the pairs (i, k) leading to the smallest

Procedure GRASP
1 fori=1,...,Max_It do

S~ oo

5  if (¢ is better than s*) do
6 st

7 return s*

2 Obtain a feasible solution s using a greedy randomized heuristic.
Obtain a feasible solution s’ by applying a local search to s.
Let s* be the best solution found so far.

Fig. 1. GRASP general framework.
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incremental costs. To do this, we insert in RCL the
pairs (i, k) whose incremental cost A(i, k) is within an
interval [k, 4], where A = min{h(i,k) : (i,k) € J x L;},
i.e. the greedy choice. The RCL is then defined by

RCL = {(i,k) € J x L; : h < h(i, k)

where o is a parameter such that 0 < a < 1. To re-
strain the RCL amplitude, we set / to the median
of A(i, l}i), where, for i=1,...,1I, k; is the container
in L; with the least value of (i, k). This allows more
flexibility in tuning parameter o, since often in prac-
tical situations the feed process deals with very dif-
ferent items having heterogeneous demands. We
then select a pair (i*,k") at random from RCL. This
means that, in the solution under construction, item
i* is packed in container k*. The last step is to re-
move item i* from set J and update L; for each
i € J. The main loop is executed O(/) times. Build
the RCL takes O(IK) time, and update each L, takes
O(KT) time. Thus, the main loop’s complexity is
O(PKT).

3.2. Local search phase

GRASP uses local search in attempt to improve a
solution built in the construction phase. Let y
denote a feasible solution for LFP, i.e. values of
Xiew Sy and fr,oi=1,...1, k=1,....K, 1=
1,...,T, feasible to (5)—(9). We define an exchange
neighborhood N(y) as the set of all feasible solutions
that are obtained from y by applying two kinds of
moves: (i) substitution move; and, (ii) swap move.
Given a certain item 7", let us denote by k" the con-
tainer in which i* is currently packed. A substitution
move changes k* for a container k' that we still have
available in sufficient number, ie. such that
B, =wh,t=1,...,T, where I}, denotes, for a solu-
tion y, the number of containers k that are not used
in period 7. A swap move exchanges k™ with a con-
tainer k' that is currently employed to pack another
item 7. This kind of move leads to a feasible solu-
tion only if the number of containers k* (resp. k')
available plus the number of containers k™ (resp.
k') used in feeding the line with item * (resp. i') is
greater than or equal to the number of containers
k* (resp. k') needed to feed the line with item i’ (resp.
i*), ie. only if ., +wK, > wh and B, +wh > wk,
fortr=1,...,T.

The local search procedure has as input parame-
ter a feasible solution y. We evaluate all the O(K)

possible moves associated with each item, i.e. a sub-
stitution or a swap move for each container. For
each container k # k", we first test if we can per-
form a substitution move replacing k* for k. If this
is not the case, we identify the set J;;, of those items,
if there exists at least one, with which we can
perform a swap move. This set is given by J;; =
{ieJ—{i"}:xy=1,andfort=1,....T,F. +wk, >
w& and £, +wh > wk }. We adopt the best improve-
ment strategy, that is, if the current solution is not a
local optima, it is replaced by the best solution in its
neighborhood. We proceed the search until a local
optima has been found. Each solution has O(IK)
neighbors. The most time consuming operations
are the identification of set J;; and, in case
Jr #0, the item that leads to best swap move.
These two operations take respectively O(IT) and
O(I) time. Thus, investigating once the whole neigh-
borhood takes O(PKT) time.

4. Computational results

We present numerical results obtained by apply-
ing GRASP on real-life LFP instances. The compu-
tational experiments were focused on real test
instances that cover 10 serial work centers’ require-
ments. Each work center has a demand of about
15-20 different items, resulting in instances contain-
ing a total of 191 different items. These items are
handled in plastic containers available in three stan-
dard sizes — small, medium, and large. The opera-
tions planning horizon consists of seven periods
since shop floor managerial decisions are taken
based on a daily demand. An item’s daily demands
vary within an interval defined around a target
value considered for the planning horizon. Thus,
for each item i and period ¢, we have that d;, is an
integer from the interval [(1 —e€)d;, (1 + €)d],
e €[0,1), where d;is a given target value. The feed
process must supply the work centers with all kinds
of necessary items to complete their operations.
This means that the items are heterogeneous, and
that the range of its target values is from some units
to 10,000 (with no particular distribution). The
holding costs per unit also vary in a wide range —
from two cents to 20 monetary units. There is no
relation between quantities required and holding
costs. We have on the one hand some large (resp.
small) demand items incurring in high (resp. low)
holding costs, and on the other hand some large
(resp. small) demand items incurring in low (resp.
high) holding costs.
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The experiments were run on two groups of test
instances distinguished by different scenarios on
how the available containers are distributed among
the standard sizes. In the first group, denoted by
t_groupl, given a container k,/;, is a percentage
of the total number a; of containers needed to feed
the line employing only containers of size k. In the
second group, denoted by t_group?2, there is a pre-
dominance of a certain size in the factory’s contain-
ers park. Therefore, there exits, for the t_groupl

instances, the relation é—i =ufork=1,...,K, where
u 1s a constant value, that is not observed in
t_groupl.

For each group, we vary the following parame-
ters resulting in twelve instances per group: (i) two
values for ¢; (ii) two handling costs policies; and,
(iii) three values for /. Parameters (i) and (ii) are
common to both groups t_groupl and t_group?2
of test instances. We set € = 5% and e = 20% obtain-
ing respectively a more and a less uniform daily
demand. And we consider the following two han-
dling costs policies: a fixed handling cost for all size
of containers and a proportional handling cost. In
the fixed cost policy, a handling cost of 10 monetary
units is incurred every time a container is trans-
ported no matter its size. Let g; be the average num-
ber of ;tems carried when container k is full, i.e.

Zz;]qik

gr = =—. In the proportional cost policy, we have
that g—f is equal to a constant for k =1,...,K. In the
present experiments we fixed this constant by asso-
ciating a handling cost of 10 monetary units to the
medium size container.

Defining values for parameter /, depends on the
characteristics of each group of test instance. For

the t_groupl instances, we first calculate the num-
ber a; needed to feed the line using exclusively con-
tainers of size k, and then we set /, = ya, where
y€[0,1] is a fixed value for k=1,...,K. Let
k=1, k=2, and k=3 denote respectively the
small, the medium, and the large size of container.
For the t_group?2 instances, we set [, =y,
e €[0,1] for k=1,...,K, such that we have a pre-
dominance of a certain container size. Note that
since k =1 is the smallest container, we can have
feasible instances when Y°; 7, < 1. We consider
three different configurations denoted by sm, md,
and 1g. In the sm configuration we have
l] = 500/0611, lz = 50/0611, 13 = 150/0511. For the md con-
figuration these values are [} = 5%a;, I, = 60%ay,
I3 =20%a;. Finally, for the 1g configuration
ll = 50/001, 12 = 50/0(11, 13 = 600/0611.

We report numerical results for t_groupl and
t_group?2 respectively in Tables 1 and 2. The
GRASP heuristic was ran on a SUN BLADE 100
Workstation ULTRASPARC 500 MHz with 1 GB
of RAM memory. It was coded in C and was com-
piled with the gcc compiler version 3.3.2 with no
optimization flags. Parameter Max_It was set to
500 iterations, and, at each GRASP iteration, o
was randomly chosen in the interval [0.1,0.4]. To
analyze whether or not it is easy to find optimal
solutions for practical LFP instances, we ran
CPLEX version 9.0 with no time limit on a Pentium
IV 3 GHz with Hyperthreading, 1 GB of RAM
memory and 1 GB of swap memory.

In order to evaluate the proposed heuristic per-
formance, we compare the GRASP results with
the ones given by the firm’s packing strategy.

Table 1
Computational results for the test instances of t_groupl
€ by Y PGP GRASP CPLEX
UB, UB, r (%) K UB. LB o (%) K
5% f 0.8 397,288 301,239 24.18 26 424,144 106,364 74.92 1277
0.6 386,896 307,551 20.51 26 366,836 106,238 71.04 1071
0.4 410,918 324,428 21.05 27 447,480 106,952 76.10 1081
p 0.8 306,207 293,342 4.20 27 323,195 135,912 57.95 1277
0.6 311,616 297,568 4.51 34 365,207 136,080 62.74 2933
0.4 367,176 300,127 18.26 60 341,868 136,105 60.19 1502
20% f 0.8 426,998 310,867 27.20 26 499,606 111,649 77.65 1436
0.6 423,298 317,445 25.01 26 543,414 110,359 79.69 1398
0.4 435,326 336,429 22.72 28 433,467 110,910 74.41 1555
P 0.8 327,817 308,444 591 26 358,125 145,963 59.24 1615
0.6 332,026 308,554 7.07 28 404,610 146,108 63.89 1399
0.4 383,456 311,041 18.88 90 414,896 146,168 64.77 1312
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Table 2
Computational results for the test instances of t_group2
€ by y PGP GRASP CPLEX
UB, UB, r (%) K UB. LB o (%) s
5% f sm 408,315 303,443 25.68 47 351,923 106,604 69.71 1266
md 586,784 307,361 47.62 146 - 106,431 - 4579
1lg 704,173 309,741 56.01 432 - 108,404 - 5444
P sm 350,126 298,467 14.75 50 353,971 135,982 61.58 1464
md 597,391 326,143 45.41 227 443,317 141,919 67.99 1096
1lg 730,525 337,711 53.77 639 - 143,001 - 5094
20% f sm 409,598 331,144 19.15 34 484,482 120,158 75.20 1256
md 586,189 316,910 45.94 195 493,048 111,600 77.37 982
1lg 701,307 319,356 54.46 640 414,814 112,295 72.93 1278
hs) sm 349,543 310,318 11.22 111 352,109 146,360 58.43 1078
md 596,331 338,280 43.27 286 388,036 153,015 60.57 1086
1lg 728,548 349,552 52.02 774 - 154,467 - 5130

We aim, with such a comparison, to show GRASP
potential in reducing operational costs in assembly
line systems. The actual firm’s packing strategy is
a pure greedy procedure. It consists of the following
steps to each item i sorted in non-decreasing order
of unitary holding cost ¢;. First, the set L; of avail-
able containers to pack item i is built. If L; is an
empty set, the procedure returns that no feasible
solution was found. Otherwise, the procedure con-
tinues by calculating the average demand d; over
the planning horizon. Let us denote by u;;, the number
of items i that exceeds the average demand in a single
period supply employing container k, i.e.
Uy = B—J % g, — d,. Item i is then packed in the larg-
est container k" € L; such that wy < uy for all
ke L;— {k™}. (That is, ties are broken by lesser
handling.)

Tables 1 and 2 show in the first two columns the
values of € and if the handling cost policy is the fixed
one (f) or the proportional one (p). The third col-
umn differs accordingly to the test instance group:
for each t_groupl instance (in Table 1), it shows
the value of y constant for k=1,...,K; and, for
each t_group? instance (in Table 2), it shows the
configuration sm, md, or 1g of the factory’s contain-
ers park. The next column gives results obtained by
the firm’s packing strategy, denoted by PGP. The
last columns present the numerical results for
GRASP and CPLEX. The upper bounds obtained
with PGP, GRASP and CPLEX are denoted respec-
tively by UB,, UB, and UB.. We first give, for
GRASP, the cost of the best solution found, the per-
centage reduction gap, and the CPU time in seconds
to perform Max It iterations. The reduction gap

reflects GRASP contribution in reducing actual
managerial costs, and it is given by r = UB{IBUBE %.
We then give, in the next three columns, ﬁpper
and lower bounds and the percentage optimality
gap obtained by CPLEX, i.e. 0 = %];CLB%. The last
column gives CPU time in seconds until CPLEX ran
out of memory.

GRASP was able to significantly reduce actual
operational costs in feeding the studied assembly
line. Over the 24 instances, reduction gaps are in
average 27.87%, going up to 56.01%. Moreover,
upper bounds provided by GRASP, in moderate
computational times, are much better than the ones
provided by CPLEX. It seems that these practical
instances are not easy to solve, since optimality gaps
provided by CPLEX 9.0 running until get out of
memory are at least 57.95%. And indeed CPLEX
was not able to find, after more than 4500 seconds
of computation, feasible solutions for 4 out of 24
instances.

By analyzing Tables 1 and 2, it appears that the
harder instances are the ones where the constant
relation ll)—f for k=1,...,K does not hold. We
remark first that it was precisely for 4 out 12
instances of t_group?2 that CPLEX ran out of
memory without find feasible solutions. Second,
GRASP computational times increase when varying
from the sm to the 1g configuration while it remains
almost constant in the t_groupl instances. The
difference in the GRASP times increasing behaviour
from t_groupl to t_group? Instances is
explained by the number of iterations that the local
search is actually activated. In 6 out of the 12
t_groupl instances the solutions constructed by
the GRH procedure were already a local optima in
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all the 500 GRASP iterations executed. This never
occurred for t_group? instances. On the contrary,
in 8 out of the 12 t_group?2 instances local search
improved the solutions constructed by the GRH
procedure in all the 500 GRASP iterations. This fact
— more room for local search improvements — also
explains why reductions in actual operational costs
are more significant for t_group?2 instances. In
these cases, reduction gaps are in average 39.11%.
And in particular, for instances of the 1g configura-
tion, the ones in which it is observed a predominance
of the largest container in the factory’s park,
GRASP obtains sound reductions in actual opera-
tional costs: always more than 50%. We explain this
performance by a more careful choice of which
items to be packed in the scarce small and medium
containers carried out by the local search.

5. Concluding remarks

We described an important application of pack-
ing problems arising in assembly line feed process.
Particular features of this application such as vari-
able sized containers, cardinality constraints, and
special cost structure were identified. We proposed
two approaches to deal with such an industrial
problem: an integer programming model and a
GRASP heuristic. It seems that these are difficult
practical problems, since realistic instances could
not be solved by a standard optimization package.
Numerical results reported show however that
metaheuristics may be used as valuable tools to
reduce actual managerial costs. In particular, the
proposed GRASP was able to find in moderate
computational times solutions whose reduction gaps
with respect to the firm’s packing policy are in aver-
age 27.87%, going up to 56.01%. Further research
directions are, in our point of view, related to the
weakness of the lower bounds given by standard
packages and to the possibilities in finding better
feasible solutions. One way could be the develop-
ment of hybrid metaheuristics combining lower
bounding strategies with primal heuristics, as it
has been successfully done by Alvim et al. [2] for
the bin packing problem.
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