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Preface

This primer on greedy randomized adaptive search procedures, or simply GRASP, is

intended to serve a complementary material for a four-hour short course on GRASP

given at the 39th annual meeting of the Brazilian Operational Research Society (XXXIX

Simpósio Brasileiro de Pesquisa Operacional) in Fortaleza, Ceará, Brazil from August

28 to 31, 2007.

The book is made up of four parts in 13 chapters. Each chapter has been adapted

from a previously published paper. In the first part, the chapters cover a general intro-

duction to GRASP, GRASP with path-relinking and evolutionary path-relinking, and

GRASP with perturbations. In the second part, we cover parallel GRASP. Chapters

there focus on an introduction to parallel GRASP, TTT plots and its use in the analysis

of algorithms, parallel GRASP with path-relinking, probability distribution of running

time in GRASP, and an application of parallel GRASP to job shop scheduling. The

third part of the book illustrates efficient implementations of GRASP. We focus on

two location problems and show, in three chapters, how GRASP can be used to find

high-quality solutions to these problems. Finally, the last part of the book is a single

chapter with an annotated bibliography.

I would like to acknowledge and thank by long time collaborators who coauthored

these chapters with me. They are Renata Aiex (Chapters 5, 6, 8, and 9), Diogo An-

drade (Chapter 4), Silvio Binato (Chapter 9), Suzana Canuto (Chapter 3), Paola Festa

(Chapter 13), Celso Ribeiro (Chapters 1, 2, 3, 5, 6, and 7), and Renato Werneck (10,

11, and 12).

Mauricio G. C. Resende

Florham Park

August 2007
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Abstract: GRASP is a multi-start metaheuristic for combinatorial problems, in which

each iteration consists basically of two phases: construction and local search. The con-

struction phase builds a feasible solution, whose neighborhood is investigated until a local

minimum is found during the local search phase. The best overall solution is kept as the

result. In this chapter, we first describe the basic components of GRASP. Successful

implementation techniques and parameter tuning strategies are discussed and illustrated

by numerical results obtained for different applications. Enhanced or alternative solution

construction mechanisms and techniques to speed up the search are also described: Re-

active GRASP, cost perturbations, bias functions, memory and learning, local search on

partially constructed solutions, hashing, and filtering. We also discuss in detail imple-

mentation strategies of memory-based intensification and post-optimization techniques

using path-relinking. Hybridizations with other metaheuristics, parallelization strategies,

and applications are also reviewed.

Keywords: GRASP, metaheuristic, local search, greedy randomized search.

1.1 INTRODUCTION

We consider in this chapter a combinatorial optimization problem, defined by a finite

ground set E = {1, . . . ,n}, a set of feasible solutions F ⊆ 2E , and an objective function

f : 2E → R. In the minimization version, we search an optimal solution S∗ ∈ F such

that f (S∗) ≤ f (S), ∀S ∈ F . The ground set E, the cost function f , and the set of

3



4 AN INTRODUCTION TO GRASP

feasible solutions F are defined for each specific problem. For instance, in the case of

the traveling salesman problem, the ground set E is that of all edges connecting the

cities to be visited, f (S) is the sum of the costs of all edges e ∈ S, and F is formed by

all egde subsets that determine a Hamiltonian cycle.

The GRASP (Greedy Randomized Adaptive Search Procedure) metaheuristic (Feo

and Resende, 1989; 1995) is a multi-start or iterative process, in which each iteration

consists of two phases: construction and local search. The construction phase builds a

feasible solution, whose neighborhood is investigated until a local minimum is found

during the local search phase. The best overall solution is kept as the result. An

extensive survey of the literature is given in Festa and Resende (2002). The pseudo-

code in Figure 1.1 illustrates the main blocks of a GRASP procedure for minimization,

in which Max Iterations iterations are performed and Seed is used as the initial seed

for the pseudorandom number generator.

procedure GRASP(Max Iterations,Seed)

1 Read Input();

2 for k = 1, . . . ,Max Iterations do

3 Solution← Greedy Randomized Construction(Seed);

4 Solution← Local Search(Solution);

5 Update Solution(Solution,Best Solution);

6 end;

7 return Best Solution;

end GRASP.

Figure 1.1 Pseudo-code of the GRASP metaheuristic.

Figure 1.2 illustrates the construction phase with its pseudo-code. At each iteration

of this phase, let the set of candidate elements be formed by all elements that can be

incorporated to the partial solution under construction without destroying feasibility.

The selection of the next element for incorporation is determined by the evaluation of

all candidate elements according to a greedy evaluation function. This greedy function

usually represents the incremental increase in the cost function due to the incorpora-

tion of this element into the solution under construction. The evaluation of the ele-

ments by this function leads to the creation of a restricted candidate list (RCL) formed

by the best elements, i.e. those whose incorporation to the current partial solution re-

sults in the smallest incremental costs (this is the greedy aspect of the algorithm). The

element to be incorporated into the partial solution is randomly selected from those in

the RCL (this is the probabilistic aspect of the heuristic). Once the selected element is

incorporated to the partial solution, the candidate list is updated and the incremental

costs are reevaluated (this is the adaptive aspect of the heuristic). This strategy is sim-

ilar to the semi-greedy heuristic proposed by Hart and Shogan (1987), which is also

a multi-start approach based on greedy randomized constructions, but without local

search.

The solutions generated by a greedy randomized construction are not necessarily

optimal, even with respect to simple neighborhoods. The local search phase usu-
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procedure Greedy Randomized Construction(Seed)

1 Solution← /0;

2 Evaluate the incremental costs of the candidate elements;

3 while Solution is not a complete solution do

4 Build the restricted candidate list (RCL);

5 Select an element s from the RCL at random;

6 Solution← Solution∪{s};
7 Reevaluate the incremental costs;

8 end;

9 return Solution;

end Greedy Randomized Construction.

Figure 1.2 Pseudo-code of the construction phase.

ally improves the constructed solution. A local search algorithm works in an iterative

fashion by successively replacing the current solution by a better solution in the neigh-

borhood of the current solution. It terminates when no better solution is found in the

neighborhood. The pseudo-code of a basic local search algorithm starting from the

solution Solution constructed in the first phase and using a neighborhood N is given

in Figure 1.2.

procedure Local Search(Solution)

1 while Solution is not locally optimal do

2 Find s′ ∈ N(Solution) with f (s′) < f (Solution);
3 Solution← s′;
4 end;

5 return Solution;

end Local Search.

Figure 1.3 Pseudo-code of the local search phase.

The effectiveness of a local search procedure depends on several aspects, such as

the neighborhood structure, the neighborhood search technique, the fast evaluation of

the cost function of the neighbors, and the starting solution itself. The construction

phase plays a very important role with respect to this last aspect, building high-quality

starting solutions for the local search. Simple neighborhoods are usually used. The

neighborhood search may be implemented using either a best-improving or a first-

improving strategy. In the case of the best-improving strategy, all neighbors are in-

vestigated and the current solution is replaced by the best neighbor. In the case of a

first-improving strategy, the current solution moves to the first neighbor whose cost

function value is smaller than that of the current solution. In practice, we observed

on many applications that quite often both strategies lead to the same final solution,

but in smaller computation times when the first-improving strategy is used. We also



6 AN INTRODUCTION TO GRASP

observed that premature convergence to a non-global local minimum is more likely to

occur with a best-improving strategy.

1.2 CONSTRUCTION OF THE RESTRICTED CANDIDATE LIST

An especially appealing characteristic of GRASP is the ease with which it can be

implemented. Few parameters need to be set and tuned. Therefore, development can

focus on implementing efficient data structures to assure quick iterations. GRASP has

two main parameters: one related to the stopping criterion and another to the quality

of the elements in the restricted candidate list.

The stopping criterion used in the pseudo-code described in Figure 1.1 is deter-

mined by the number Max Iterations of iterations. Although the probability of find-

ing a new solution improving the currently best decreases with the number of itera-

tions, the quality of the best solution found may only improve with the latter. Since the

computation time does not vary much from iteration to iteration, the total computation

time is predictable and increases linearly with the number of iterations. Consequently,

the larger the number of iterations, the larger will be the computation time and the

better will be the solution found.

For the construction of the RCL used in the first phase we consider, without loss

of generality, a minimization problem as the one formulated in Section 1.1. We de-

note by c(e) the incremental cost associated with the incorporation of element e ∈ E

into the solution under construction. At any GRASP iteration, let cmin and cmax be,

respectively, the smallest and the largest incremental costs.

The restricted candidate list RCL is made up of elements e ∈ E with the best (i.e.,

the smallest) incremental costs c(e). This list can be limited either by the number of

elements (cardinality-based) or by their quality (value-based). In the first case, it is

made up of the p elements with the best incremental costs, where p is a parameter. In

this chapter, the RCL is associated with a threshold parameter α∈ [0,1]. The restricted

candidate list is formed by all “feasible” elements e∈ E which can be inserted into the

partial solution under construction without destroying feasibility and whose quality

is superior to the threshold value, i.e., c(e) ∈ [cmin,cmin + α(cmax− cmin)]. The case

α = 0 corresponds to a pure greedy algorithm, while α = 1 is equivalent to a random

construction. The pseudo code in Figure 1.4 is a refinement of the greedy randomized

contruction pseudo-code shown in Figure 1.2. It shows that the parameter α controls

the amounts of greediness and randomness in the algorithm.

GRASP may be viewed as a repetitive sampling technique. Each iteration produces

a sample solution from an unknown distribution, whose mean and variance are func-

tions of the restrictive nature of the RCL. For example, if the RCL is restricted to a

single element, then the same solution will be produced at all iterations. The variance

of the distribution will be zero and the mean will be equal to the value of the greedy

solution. If the RCL is allowed to have more elements, then many different solutions

will be produced, implying a larger variance. Since greediness plays a smaller role in

this case, the mean solution value should be worse. However, the value of the best so-

lution found outperforms the mean value and very often is optimal. The histograms in

Figure 1.5 illustrate this situation on an instance of MAXSAT with 100 variables and

850 clauses, depicting results obtained with 1000 independent constructions using the
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procedure Greedy Randomized Construction(α,Seed)

1 Solution← /0;

2 Initialize the candidate set: C← E;

3 Evaluate the incremental cost c(e) for all e ∈C;

4 while C 6= /0 do

5 cmin←min{c(e) | e ∈C};
6 cmax←max{c(e) | e ∈C};
7 RCL←{e ∈C | c(e)≤ cmin +α(cmax− cmin)};
8 Select an element s from the RCL at random;

9 Solution← Solution∪{s};
10 Update the candidate set C;

11 Reevaluate the incremental costs c(e) for all e ∈C;

12 end;

13 return Solution;

end Greedy Randomized Construction.

Figure 1.4 Refined pseudo-code of the construction phase.

first phase of the GRASP described in Resende et al. (1997) and Resende et al. (2000).

Since this is a maximization problem, the purely greedy construction corresponds to

α = 1, whereas the random construction occurs with α = 0. We notice that when the

value of α increases from 0 to 1, the mean solution value increases towards the purely

greedy solution value, while the variance approaches zero.

For each value of α, we present in Figure 1.6 histograms with the results obtained

by applying local search to each of the 1000 constructed solutions. Figure 1.7 sum-

marizes the overall results of this experiment in terms of solution diversity, solution

quality, and computation time. We first observe that the larger the variance of the solu-

tion values obtained in the construction phase, the larger is the variance of the overall

solution values, as shown in the top graph. The graph in the middle illustrates the re-

lationship between the variance of the solution values and the average solution values,

and how this affects the best solution found. It is unlikely that GRASP will find an

optimal solution if the average solution value is low, even if there is a large variance

in the overall solution values, such as is the case for α = 0. On the other hand, if there

is little variance in the overall solution values, it is also unlikely that GRASP will find

an optimal solution, even if the average solution is high, as is the case for α = 1. What

often leads to good solutions are relatively high average solution values in the presence

of a relatively large variance, such as is the case for α = 0.8. The middle graph also

shows that the distance between the average solution value and the value of the best

solution found increases as the construction phase moves from more greedy to more

random. This causes the average time taken by the local search to increase, as shown

in the graph in the bottom. Very often, many GRASP solutions are generated in the

same amount of time required for the local optimization procedure to converge from a

single random start.
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(d) RCL parameter alpha = 0.6
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(e) RCL parameter alpha = 0.8
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(f) RCL parameter alpha = 1.0 (greedy con-

struction)

Figure 1.5 Distribution of construction phase solution values as a function of the RCL

parameter α (1000 repetitions were recorded for each value of α).
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(d) RCL parameter alpha = 0.6
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(e) RCL parameter alpha = 0.8
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(f) RCL parameter alpha = 1.0 (greedy)

Figure 1.6 Distribution of local search phase solution values as a function of the RCL

parameter α (1000 repetitions for each value of α).
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These results are illustrated in Table 1.1 and Figure 1.8, for another instance of

MAXSAT where 1000 iterations were run. For each value of α ranging from 0 (purely

random construction) to 1 (purely greedy construction), we give in Table 1.1 the av-

erage Hamming distance between each solution built at the end of the construction

phase and the corresponding local optimum obtained after local search, the average

number of moves from the first to the latter, the local search time in seconds, and the

total processing time in seconds. Figure 1.8 summarizes the values observed for the

total processing time and the local search time. We notice that both time measures

considerably decrease as α tends to 1, approaching the purely greedy choice. In par-

ticular, we observe that the average local search time taken by α = 0 (purely random)

is approximately 2.5 times that taken in the case α = 0.9 (almost greedy). In this

example, two to three greedily constructed solutions can be investigated in the same

time needed to apply local search to one single randomly constructed solution. The

appropriate choice of the value of the RCL parameter α is clearly critical and relevant

to achieve a good balance between computation time and solution quality.

Table 1.1 Average number of moves and local search time as a function of the RCL

parameter α.

α avg. distance avg. moves local search time (s) total time (s)

0.0 12.487 12.373 18.083 23.378

0.1 10.787 10.709 15.842 20.801

0.2 10.242 10.166 15.127 19.830

0.3 9.777 9.721 14.511 18.806

0.4 9.003 8.957 13.489 17.139

0.5 8.241 8.189 12.494 15.375

0.6 7.389 7.341 11.338 13.482

0.7 6.452 6.436 10.098 11.720

0.8 5.667 5.643 9.094 10.441

0.9 4.697 4.691 7.753 8.941

1.0 2.733 2.733 5.118 6.235

Prais and Ribeiro (2000a) have shown that using a single fixed value for the value

of RCL parameter α very often hinders finding a high-quality solution, which even-

tually could be found if another value was used. They proposed an extension of the

basic GRASP procedure, which they call Reactive GRASP, in which the parameter α
is self-tuned and its value is periodically modifed according with the quality of the so-

lutions obtained recently. In particular, computational experiments on the problem of

traffic assignment in communication satellites (Prais and Ribeiro, 2000b) have shown

that Reactive GRASP found better solutions than the basic algorithm for many test

instances. These results motivated the study of the behavior of GRASP for different

strategies for the variation of the value of the RCL parameter α:

(R) α self tuned according with the Reactive GRASP procedure;
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Figure 1.7 Standard deviation of the solution values found, best and average solution val-

ues found, and total processing time as a function of the RCL parameter α (1000 repetitions

were recorded for each value of α).
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Figure 1.8 Total CPU time and local search CPU time as a function of the RCL parameter

α (1000 repetitions for each value of α).

(E) α randomly chosen from a uniform discrete probability distribution;

(H) α randomly chosen from a decreasing non-uniform discrete probability distri-

bution; and

(F) fixed value of α, close to the purely greedy choice.

We summarize the results obtained by the experiments reported in Prais and Ribeiro

(1999) and Prais and Ribeiro (2000a). These four strategies were incorporated into the

GRASP procedures developed for four different optimization problems: (P-1) matrix

decomposition for traffic assignment in communication satellite (Prais and Ribeiro,

2000b), (P-2) set covering (Feo and Resende, 1989), (P-3) weighted MAX-SAT (Re-

sende et al., 1997; 2000), and (P-4) graph planarization (Resende and Ribeiro, 1997;

Ribeiro and Resende, 1999). Let Ψ = {α1, . . . ,αm} be the set of possible values for the

parameter α for the first three strategies. The strategy for choosing and self-tuning the

value of α in the case of the Reactive GRASP procedure (R) is described later in Sec-

tion 1.3. In the case of the strategy based on using the discrete uniform distribution (E),

all choice probabilities are equal to 1/m. The third case corresponds to the a hybrid

strategy (H), in which we typically consider p(α = 0.1) = 0.5, p(α = 0.2) = 0.25,

p(α = 0.3) = 0.125, p(α = 0.4) = 0.03, p(α = 0.5) = 0.03, p(α = 0.6) = 0.03,

p(α = 0.7) = 0.01, p(α = 0.8) = 0.01, p(α = 0.9) = 0.01, and p(α = 1.0) = 0.005.

Finally, in the last strategy (F), the value of α is fixed as recommended in the original

reference where this parameter was tuned for each problem. A subset of the literature

instances was considered for each class of test problems. The results reported in Prais

and Ribeiro (2000a) are summarized in Table 1.2. For each problem, we first list the

number of instances considered. Next, for each strategy, we give the number of times

it found the best solution (hits), as well as the average CPU time (in seconds) on an

IBM 9672 model R34. The number of iterations was fixed at 10,000.
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Table 1.2 Computational results for different strategies for the variation of parameter α.

R E H F

Problem Total hits time hits time hits time hits time

P-1 36 34 579.0 35 358.2 32 612.6 24 642.8

P-2 7 7 1346.8 6 1352.0 6 668.2 5 500.7

P-3 44 22 2463.7 23 2492.6 16 1740.9 11 1625.2

P-4 37 28 6363.1 21 7292.9 24 6326.5 19 5972.0

Total 124 91 85 78 59

Strategy (F) presented the shortest average computation times for three out the

four problem types. It was also the one with the least variability in the constructed

solutions and, in consequence, found the best solution the fewest times. The reactive

strategy (R) is the one which most often found the best solutions, however, at the

cost of computation times that are longer than those of some of the other strategies.

The high number of hits observed by strategy (E) also illustrates the effectiveness of

strategies based on the variation of the RCL parameter.

1.3 ALTERNATIVE CONSTRUCTION MECHANISMS

One possible shortcoming of the standard GRASP framework is the independence of

its iterations, i.e., the fact that it does not learn from the history of solutions found in

previous iterations. This is so because the basic algorithm discards information about

any solution encountered that does not improve the incumbent. Information gathered

from good solutions can be used to implement memory-based procedures to influ-

ence the construction phase, by modifying the selection probabilities associated with

each element of the RCL. In this section, we consider enhancements and alternative

techniques for the construction phase of GRASP. They include Reactive GRASP, cost

perturbations in place of randomized selection, bias functions, memory and learning,

and local search on partially constructed solutions.

1.3.1 Reactive GRASP

A first possible strategy to incorporate a learning mechanism in the memoryless con-

struction phase of the basic GRASP is the Reactive GRASP procedure introduced in

Section 1.2. In this case, the value of the RCL parameter α is not fixed, but instead is

selected at each iteration from a discrete set of possible values. This selection is guided

by the solution values found along the previous iterations. One way to accomplish this

is to use the rule proposed in Prais and Ribeiro (2000b). Let Ψ = {α1, . . . ,αm} be

the set of possible values for α. The probabilities associated with the choice of each

value are all initially made equal to pi = 1/m, i = 1, . . . ,m. Furthermore, let z∗ be

the incumbent solution and let Ai be the average value of all solutions found using

α = αi, i = 1, . . . ,m. The selection probabilities are periodically reevaluated by taking

pi = qi/∑m
j=1 q j, with qi = z∗/Ai for i = 1, . . . ,m. The value of qi will be larger for
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values of α = αi leading to the best solutions on average. Larger values of qi corre-

spond to more suitable values for the parameter α. The probabilities associated with

these more appropriate values will then increase when they are reevaluated.

The reactive approach leads to improvements over the basic GRASP in terms of

robustness and solution quality, due to greater diversification and less reliance on pa-

rameter tuning. In addition to the applications in Prais and Ribeiro (1999), Prais and

Ribeiro (2000a), and Prais and Ribeiro (2000b), this approach has been used in power

system transmission network planning (Binato and Oliveira, 2002) and in a capacitated

location problem (Delmaire et al., 1999).

1.3.2 Cost perturbations

The idea of introducing some noise into the original costs is similar to that in the so-

called “noising method” of Charon and Hudry (1993; 2002). It adds more flexibility

into algorithm design and may be even more effective than the greedy randomized

construction of the basic GRASP procedure, in circumstances where the construction

algorithms are not very sensitive to randomization. This is indeed the case for the

shortest-path heuristic of Takahashi and Matsuyama (1980), used as one of the main

building blocks of the construction phase of the hybrid GRASP procedure proposed

by Ribeiro et al. (2002) for the Steiner problem in graphs. Another situation where

cost perturbations can be effective appears when no greedy algorithm is available for

straight randomization. This happens to be the case of the hybrid GRASP developed

by Canuto et al. (2001) for the prize-collecting Steiner tree problem, which makes

use of the primal-dual algorithm of Goemans and Williamson (1996) to build initial

solutions using perturbed costs.

In the case of the GRASP for the prize-collecting Steiner tree problem described

in Canuto et al. (2001), a new solution is built at each iteration using node prizes

updated by a perturbation function, according to the structure of the current solution.

Two different prize perturbation schemes are used:

Perturbation by eliminations: To enforce search diversification, the primal-dual

algorithm used in the construction phase is driven to build a new solution with-

out some of the nodes appearing in the solution constructed in the previous

iteration. This is done by changing to zero the prizes of some persistent nodes,

which appeared in the last solution built and remained at the end of the local

search. A parameter α controls the fraction of the persistent nodes whose prizes

are temporarily set to zero.

Perturbation by prize changes: Another strategy to enforce the primal-dual al-

gorithm to build different, but still good solutions, consists in introducing some

noise into the node prizes, similarly to what is proposed in Charon and Hudry

(1993; 2002), so as to change the objective function. For each node i, a pertur-

bation factor β(i) is randomly generated in the interval [1−a,1+a], where a is

an implementation parameter. The prize associated with node i is temporarily

changed to π(i) = π(i) ·β(i), where π(i) is its original prize.

The cost perturbation methods used in the GRASP for the minimum Steiner tree

problem described in Ribeiro et al. (2002) incorporate learning mechanisms associated
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with intensification and diversification strategies, originally proposed in the context of

tabu search. Let we denote the weight of edge e. Three distinct weight randomization

methods (D, I, U) are applied. At a given GRASP iteration i, the modified weight

wi
e of each edge e is randomly selected from a uniform distribution between we and

ri(e) ·we, where the coefficient ri(e) depends on the selected weight randomization

method applied at iteration i. Let ti−1(e) be the number of locally optimal solutions

in which edge e appeared, after i−1 iterations of the hybrid GRASP procedure have

been performed. Clearly, 0 ≤ ti−1(e)≤ i−1. Table 1.3 displays how the coefficients

ri(e) are computed by each randomization method.

Table 1.3 Maximum randomization coefficients.

Method ri(e)
D 1.25+0.75 · ti−1(e)/(i−1)
I 2−0.75 · ti−1(e)/(i−1)
U 2

In method D, values of the coefficients ri(e) are larger for edges which appeared

more frequently in previously found local optima. This scheme leads to a diversifica-

tion strategy, since more frequently used edges are likely to be penalized with stronger

augmentations. Contrarily, method I is an intensification strategy penalizing less fre-

quent edges with larger coefficients ri(e). Finally, the third randomization method U

uses a uniform penalization strategy, independent of frequency information. The orig-

inal weights without any penalization are used in the first three iterations, combined

with three different construction heuristics. The weight randomization methods are

then cyclically applied, one at each of the remaining iterations, starting with method

I, next D, then U , then I again, and so on. The alternation between diversifying

(method D) and intensifying (method I) iterations characterizes a strategic oscillation

approach (Glover, 2000). The experimental results reported in Ribeiro et al. (2002)

show that the strategy combining these three perturbation methods is more robust than

any of them used isolated, leading to the best overall results on a quite broad mix of

test instances with different characteristics. The hybrid GRASP with path-relinking

using this cost perturbation strategy is among the most effective heuristics currently

available for the Steiner problem in graphs.

1.3.3 Bias functions

In the construction procedure of the basic GRASP, the next element to be introduced

in the solution is chosen at random from the candidates in the RCL. The elements of

the RCL are assigned equal probabilities of being chosen. However, any probabil-

ity distribution can be used to bias the selection toward some particular candidates.

Another construction mechanism was proposed by Bresina (1996), where a family of

such probability distributions is introduced. They are based on the rank r(σ) assigned
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to each candidate element σ, according to its value of the greedy function. Several

bias functions are introduced, such as:

random bias: bias(r) = 1;

linear bias: bias(r) = 1/r;

log bias: bias(r) = log−1(r +1);

exponential bias: bias(r) = e−r; and

polynomial bias of order n: bias(r) = r−n.

Let r(σ) denote the rank of element σ and let bias(r(σ)) be one of the bias function

defined above. Once these values have been evaluated for all elements of the RCL, the

probability π(σ) of selecting element σ is

π(σ) =
bias(r(σ))

∑σ′∈RCLbias(r(σ
′))

. (1.1)

The evaluation of these bias functions may be restricted to the elements of the RCL.

Bresina’s selection procedure restricted to elements of the RCL was used in Binato

et al. (2002). Note that the standard GRASP uses a random bias function.

1.3.4 Intelligent construction: memory and learning

Fleurent and Glover (1999) observed that the basic GRASP does not use long-term

memory (information gathered in previous iterations) and proposed a long-term mem-

ory scheme to address this issue in multi-start heuristics. Long-term memory is one of

the fundamentals on which tabu search relies.

Their scheme maintains a pool of elite solutions to be used in the construction

phase. To become an elite solution, a solution must be either better than the best

member of the pool, or better than its worst member and sufficiently different from

the other solutions in the pool. For example, one can count identical solution vector

components and set a threshold for rejection.

A strongly determined variable is one that cannot be changed without eroding the

objective or changing significantly other variables. A consistent variable is one that

receives a particular value in a large portion of the elite solution set. Let I(e) be a

measure of the strongly determined and consistent features of solution element e ∈ E.

Then, I(e) becomes larger as e appears more often in the pool of elite solutions. The

intensity function I(e) is used in the construction phase as follows. Recall that c(e) is

the greedy function, i.e. the incremental cost associated with the incorporation of ele-

ment e∈E into the solution under construction. Let K(e) = F(c(e), I(e)) be a function

of the greedy and the intensification functions. For example, K(e) = λc(e)+ I(e). The

intensification scheme biases selection from the RCL to those elements e ∈ E with a

high value of K(e) by setting its selection probability to be p(e) = K(e)/∑s∈RCL K(s).
The function K(e) can vary with time by changing the value of λ, e.g. initially λ

may be set to a large value that is decreased when diversification is called for. Proce-

dures for changing the value of λ are given by Fleurent and Glover (1999) and Binato

et al. (2002).
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1.3.5 POP in construction

The Proximate Optimality Principle (POP) is based on the idea that “good solutions at

one level are likely to be found ‘close to’ good solutions at an adjacent level” (Glover

and Laguna, 1997). Fleurent and Glover (1999) provided a GRASP interpretation of

this principle. They suggested that imperfections introduced during steps of GRASP

construction can be “ironed-out” by applying local search during (and not only at the

end of) the GRASP construction phase.

Because of efficiency considerations, a practical implementation of POP to GRASP

is to apply local search during a few points in the construction phase and not during

each construction iteration. In Binato et al. (2002), local search is applied after 40%

and 80% of the construction moves have been taken, as well as at the end of the

construction phase.

1.4 PATH-RELINKING

Path-relinking is another enhancement to the basic GRASP procedure, leading to sig-

nificant improvements in solution quality. Path-relinking was originally proposed by

Glover (1996) as an intensification strategy exploring trajectories connecting elite so-

lutions obtained by tabu search or scatter search (Glover, 2000; Glover and Laguna,

1997; Glover et al., 2000). Starting from one or more elite solutions, paths in the

solution space leading towards other elite solutions are generated and explored in the

search for better solutions. This is accomplished by selecting moves that introduce

attributes contained in the guiding solutions. Path-relinking may be viewed as a strat-

egy that seeks to incorporate attributes of high quality solutions, by favoring these

attributes in the selected moves.

The use of path-relinking within a GRASP procedure, as an intensification strat-

egy applied to each locally optimal solution, was first proposed by Laguna and Martı́

(1999). It was followed by several extensions, improvements, and successful applica-

tions (Aiex et al., 2000; Canuto et al., 2001; Resende and Ribeiro, 2001; Ribeiro et al.,

2002). Two basic strategies are used:

path-relinking is applied as a post-optimization step to all pairs of elite solutions;

and

path-relinking is applied as an intensification strategy to each local optimum

obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum seems

to be more effective than simply using it as a post-optimization step. In this context,

path-relinking is applied to pairs (x1,x2) of solutions, where x1 is the locally optimal

solution obtained after local search and x2 is one of a few elite solutions randomly cho-

sen from a pool with a limited number Max Elite of elite solutions found along the

search. The pool is originally empty. Each locally optimal solution obtained by local

search is considered as a candidate to be inserted into the pool if it is sufficiently differ-

ent from every other solution currently in the pool. If the pool already has Max Elite

solutions and the candidate is better than the worst of them, then the former replaces

the latter. If the pool is not full, the candidate is simply inserted.
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The algorithm starts by computing the symmetric difference ∆(x1,x2) between x1

and x2, resulting in the set of moves which should be applied to one of them (the initial

solution) to reach the other (the guiding solution). Starting from the initial solution,

the best move from ∆(x1,x2) still not performed is applied to the current solution,

until the guiding solution is attained. The best solution found along this trajectory is

also considered as a candidate for insertion in the pool and the incumbent is updated.

Several alternatives have been considered and combined in recent implementations:

do not apply path-relinking at every GRASP iteration, but only periodically;

explore two different trajectories, using first x1, then x2 as the initial solution;

explore only one trajectory, starting from either x1 or x2; and

do not follow the full trajectory, but instead only part of it (truncated path-

relinking).

All these alternatives involve the trade-offs between computation time and solution

quality. Ribeiro et al. (2002) observed that exploring two different trajectories for

each pair (x1,x2) takes approximately twice the time needed to explore only one of

them, with very marginal improvements in solution quality. They have also observed

that if only one trajectory is to be investigated, better solutions are found when path-

relinking starts from the best among x1 and x2. Since the neighborhood of the initial

solution is much more carefully explored than that of the guiding one, starting from

the best of them gives the algorithm a better chance to investigate in more detail the

neighborhood of the most promising solution. For the same reason, the best solutions

are usually found closer to the initial solution than to the guiding solution, allowing

pruning the relinking trajectory before the latter is reached.

Detailed computational results illustrating the trade-offs between these strategies

for the problem of routing private virtual circuits in frame-relay services are reported

by Resende and Ribeiro (2001). In this case, the set of moves corresponding to the

symmetric difference ∆(x1,x2) between any pair (x1,x2) of solutions is the subset of

private virtual circuits routed through different routes (i.e., using different edges) in

x1 and x2. We summarize below some of these results, obtained on an SGI Challenge

computer (with 28 196-MHz MIPS R10000 processors) with 7.6 Gb of memory. We

considered four variants of the GRASP and path-relinking schemes previously dis-

cussed:

G: This variant is a pure GRASP with no path-relinking.

GPRf: This variant adds to G a one-way (forward) path-relinking starting from

a locally optimal solution and using a randomly selected elite solution as the

guiding solution.

GPRb: This variant adds to G a one way (backwards) path-relinking starting

from a randomly selected elite solution and using a locally optimal solution as

the guiding solution.

GPRfb: This variant combines GPRf and GPRb, performing path-relinking in

both directions.
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Figure 1.9 Empirical distributions of time to target solution value for GRASP, GRASP

with forward path-relinking, GRASP with backwards path-relinking, and GRASP with back

and forward path-relinking for instance att.

These variants are evaluated and compared in terms of their tradeoffs between com-

putation time and solution quality.

To study the effect of path-relinking on GRASP, we compared the four variants

on two instances: att and fr750a, see Resende and Ribeiro (2001) for details. Two

hundred independent runs for each variant were performed for each problem. Exe-

cution was terminated when a solution of value less than or equal to a given param-

eter value look4 was found. The sub-optimal values chosen for this parameter were

such that the slowest variant could terminate in a reasonable amount of computation

time. Empirical probability distributions for the time to target solution value are plot-

ted in Figures 1.9 and 1.10. To plot the empirical distribution for each algorithm

and each instance, we associate with the i-th smallest running time ti a probability

pi = (i− 1
2
)/200, and plot the points zi = (ti, pi), for i = 1, . . . ,200. Due to the time

taken by the pure GRASP procedure, we limited its plot in Figure 1.10 to 60 points.

These plots show a similar relative behavior of the four variants on the two in-

stances. Since instance fr750a is harder for all variants and the associated computa-

tion times are longer, its plot is more discerning. For a given computation time, the

probability of finding a solution at least as good as the target value increases from G to

GPRf, from GPRf to GPRfb, and from GPRfb to GPRb. For example, there is a 9.25%

probability for GPRfb to find a target solution value in less than 100 seconds, while

this probability increases to 28.75% for GPRb. For G, there is a 8.33% probability of

finding a target solution value within 2000 seconds, while for GPRf this probability in-
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Figure 1.10 Empirical distributions of time to target solution value for GRASP, GRASP

with forward path-relinking, GRASP with backwards path-relinking, and GRASP with back

and forward path-relinking for instance fr750a.

creases to 65.25%. GPRb finds a target solution value in at most 129 seconds with 50%

probability. For the same probability, this time increases to 172, 1727, and 10933 sec-

onds, respectively, for variants GPRfb, GPRf, and G. In accordance with these results,

variant GPRb, which does path-relinking backwards from an elite solution to a locally

optimal solution, seems to be the most effective, confirming the preliminary findings

reported in Ribeiro et al. (2002). To further illustrate the behavior of GRASP and

path-relinking, we depict in Figure 1.11 four plots representing the behavior of variant

GPRb (GRASP with backwards path-relinking) on instance att with the variation of

the target solution value. As before, 200 runs were performed for each target value

decreasing from 126,600 to 126,000 by steps of 200. A similar behavior was observed

for all other variants, with or without path-relinking, as well as for other instances and

classes of test problems.

As a final experiment, once again we made use of the different GRASP variants for

the problem of routing private virtual circuits to illustrate the effect of path-relinking

in improving the solutions obtained by a pure GRASP approach, with only the con-

struction and local search phases. This experiment was also performed using the same

SGI Challenge computer (with 28 196-MHz MIPS R10000 processors) with 7.6 Gb

of memory. For each of ten different seeds, we ran twice each variant for instance

att, enforcing two different time limits: 10 seconds and 100 seconds of processing

time. The numerical results are reported in Table 1.4. For each variant and for each

time limit, we give the average and the best solution values over the ten runs. We first
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Figure 1.11 Empirical distributions of time to target solution value for GRASP with back-

wards path-relinking for instance att and different target values (look4).

note that both versions with backwards path-relinking performed systematically bet-

ter, since they found better solutions for both time limits. Variants GPRb (GRASP with

backwards path-relinking) and GPRfb (GRASP with path-relinking in both directions)

showed similar behaviors, as it could be anticipated from the empirical probability

distributions depicted in Figure 1.9. Variant GPRb obtained better results (in terms of

both the average and the best solution values found) within the time limit of 10 sec-

onds, while variant GPRfb performed better for the time limit of 100 seconds. In the

first case, GPRb found the best solution among the two variants in seven runs, while

GPRfb did better for only two runs. However, when the time limit was increased to

100 seconds, GPRb found the best solutions in four runs, while GPRfb did better for

five runs.

Table 1.4 Solution values within fixed time limits over ten runs for instance att.

10 seconds 100 seconds

Variant best average best average

GPR 126602.883 126694.666 126227.678 126558.293

GPRf 126301.118 126578.323 126082.790 126228.798

GPRb 125960.336 126281.156 125665.785 125882.605

GPRfb 125961.118 126306.736 125646.460 125850.396
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Path-relinking is a quite effective strategy to introduce memory in GRASP, lead-

ing to very robust implementations. The results reported above can be further illus-

trated by those obtained with the hybrid GRASP with path-relinking algorithm for the

Steiner problem in graphs described in Ribeiro et al. (2002), which in particular im-

proved the best known solutions for 33 out of the 41 still open problems in series i640

of the SteinLib repository (Voss et al., 2001) on May 1st, 2001.

1.5 EXTENSIONS

In this section, we comment on some extensions, implementation strategies, and hy-

brids of GRASP.

The use of hashing tables to avoid cycling in conjunction with tabu search was

proposed by Woodruff and Zemel (1993). A similar approach was later explored by

Ribeiro et al. (1997) in their tabu search algorithm for query optimization in relational

databases. In the context of GRASP implementations, hashing tables were first used

by Martins et al. (2000) in their multineighborhood heuristic for the Steiner problem in

graphs, to avoid the application of local search to solutions already visited in previous

iterations.

Filtering strategies have also been used to speed up the iterations of GRASP, see

e.g. Feo et al. (1994), Martins et al. (2000), and Prais and Ribeiro (2000b). In these

cases, local search is not applied to all solutions obtained at the end of the construction

phase, but instead only to some promising unvisited solutions, defined by a threshold

with respect to the incumbent.

Almost all randomization effort in the basic GRASP algorithm involves the con-

struction phase. Local search stops at the first local optimum. On the other hand,

strategies such as VNS (Variable Neighborhood Search), proposed by Hansen and

Mladenović Hansen and Mladenović (2002); Mladenović and Hansen (1997), rely al-

most entirely on the randomization of the local search to escape from local optima.

With respect to this issue, GRASP and variable neighborhood strategies may be con-

sidered as complementary and potentially capable of leading to effective hybrid meth-

ods. A first attempt in this direction was done by Martins et al. Martins et al. (2000).

The construction phase of their hybrid heuristic for the Steiner problem in graphs fol-

lows the greedy randomized strategy of GRASP, while the local search phase makes

use of two different neighborhood structures as a VND procedure Hansen and Mlade-

nović (2002); Mladenović and Hansen (1997). Their heuristic was later improved

by Ribeiro et al. Ribeiro et al. (2002), one of the key components of the new algo-

rithm being another strategy for the exploration of different neighborhoods. Ribeiro

and Souza Ribeiro and Souza (2002) also combined GRASP with VND in a hybrid

heuristic for the degree-constrained minimum spanning tree problem. Festa et al. Festa

et al. (2001) studied different variants and combinations of GRASP and VNS for the

MAX-CUT problem, finding and improving the best known solutions for some open

instances from the literature.

GRASP has also been used in conjunction with genetic algorithms. Basically, the

greedy randomized strategy used in the construction phase of a GRASP is applied to

generate the initial population for a genetic algorithm. We may cite e.g. the genetic

algorithm of Ahuja et al. Ahuja et al. (2000) for the quadratic assignment problem,
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which makes use of the GRASP proposed by Li et al. Li et al. (1994) to create the

initial population of solutions. A similar approach was used by Armony et al. Armony

et al. (2000), with the initial population made up by both randomly generated solutions

and those built by a GRASP.

The hybridization of GRASP with tabu search was first studied by Laguna and

González-Velarde Laguna and González-Velarde (1991). Delmaire et al. Delmaire

et al. (1999) considered two approaches. In the first, GRASP is applied as a pow-

erful diversification strategy in the context of a tabu search procedure. The second

approach is an implementation of the Reactive GRASP algorithm presented in Sec-

tion 1.3.1, in which the local search phase is strengthened by tabu search. Results

reported for the capacitated location problem show that the hybrid approaches per-

form better than the isolated methods previously used. Two two-stage heuristics are

proposed in Abdinnour-Helm and Hadley (2000) for solving the multi-floor facility

layout problem. GRASP/TS applies a GRASP to find the initial layout and tabu search

to refine it.

1.6 PARALLEL GRASP

Even though parallelism is not yet systematically used to speed up or to improve the

effectiveness of metaheuristics, parallel implementations are very robust and abound

in the literature; see e.g. Cung et al. Cung et al. (2002) for a recent survey.

Most parallel implementations of GRASP follow the multiple-walk independent

thread strategy, based on the distribution of the iterations over the processors Alvim

(1998); Alvim and Ribeiro (1998); Feo et al. (1994); Li et al. (1994); Martins et al.

(1999; 1998); Murphey et al. (1998); Pardalos et al. (1995; 1996). In general, each

search thread has to perform Max Iterations/p iterations, where p and Max Iterations

are, respectively, the number of processors and the total number of iterations. Each

processor has a copy of the sequential algorithm, a copy of the problem data, and an

independent seed to generate its own pseudorandom number sequence. To avoid that

the processors find the same solutions, each of them must use a different sequence of

pseudorandom numbers. A single global variable is required to store the best solution

found over all processors. One of the processors acts as the master, reading and dis-

tributing problem data, generating the seeds which will be used by the pseudorandom

number generators at each processor, distributing the iterations, and collecting the best

solution found by each processor. Since the iterations are completely independent and

very little information is exchanged, linear speedups are easily obtained provided that

no major load imbalance problems occur. The iterations may be evenly distributed

over the processors or according with their demands, to improve load balancing.

Martins et al. Martins et al. (1998) implemented a parallel GRASP for the Steiner

problem in graphs. Parallelization is achieved by the distribution of 512 iterations

over the processors, with the value of the RCL parameter α randomly chosen in the

interval [0.0,0.3] at each iteration. The algorithm was implemented in C on an IBM

SP-2 machine with 32 processors, using the MPI library for communication. The 60

problems from series C, D, and E of the OR-Library Beasley (1990) have been used

for the computational experiments. The parallel implementation obtained 45 optimal

solutions over the 60 test instances. The relative deviation with respect to the optimal
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value was never larger than 4%. Almost-linear speedups observed for 2, 4, 8, and 16

processors with respect to the sequential implementation are illustrated in Figure 1.12.
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Figure 1.12 Average speedups on 2, 4, 8, and 16 processors.

Path-relinking may also be used in conjunction with parallel implementations of

GRASP. In the case of the multiple-walk independent-thread implementation described

by Aiex et al. Aiex et al. (2000) for the 3-index assignment problem, each processor

applies path-relinking to pairs of elite solutions stored in a local pool. Computational

results using MPI on an SGI Challenge computer with 28 R10000 processors showed

linear speedups.

Alvim and Ribeiro Alvim (1998); Alvim and Ribeiro (1998) have shown that multiple-

walk independent-thread approaches for the parallelization of GRASP may benefit

much from load balancing techniques, whenever heterogeneous processors are used

or if the parallel machine is simultaneously shared by several users. In this case,

almost-linear speedups may be obtained with a heterogeneous distribution of the iter-

ations over the p processors in q ≥ p packets. Each processor starts performing one

packet of ⌈Max Iterations/q⌉ iterations and informs the master when it finishes its

packet of iterations. The master stops the execution of each slave processor when there

are no more iterations to be performed and collects the best solution found. Faster or

less loaded processors will perform more iterations than the others. In the case of the

parallel GRASP implemented for the problem of traffic assignment described in Prais

and Ribeiro (2000b), this dynamic load balancing strategy allowed reductions in the

elapsed times of up to 15% with respect to the times observed for the static strategy,

in which the iterations were uniformly distributed over the processors.
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The efficiency of multiple-walk independent-thread parallel implementations of

metaheuristics, based on running multiple copies of the same sequential algorithm,

has been addressed by some authors. A given target value τ for the objective function

is broadcasted to all processors which independently execute the sequential algorithm.

All processors halt immediately after one of them finds a solution with value at least

as good as τ. The speedup is given by the ratio between the times needed to find a

solution with value at least as good as τ, using respectively the sequential algorithm

and the parallel implementation with p processors. Some care is needed to ensure that

no two iterations start with identical random number generator seeds. These speedups

are linear for a number of metaheuristics, including simulated annealing Dodd (1990);

Osborne and Gillett (1991); iterated local search algorithms for the traveling salesman

problem Eikelder et al. (1996); tabu search, provided that the search starts from a lo-

cal optimum Battiti and Tecchiolli (1992); Taillard (1991); and WalkSAT Selman et al.

(1994) on hard random 3-SAT problems Hoos and Stützle (1999). This observation

can be explained if the random variable time to find a solution within some target value

is exponentially distributed, as indicated by the following proposition Verhoeven and

Aarts (1995):

Proposition 1: Let Pρ(t) be the probability of not having found a given target solution

value in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ IR+,

corresponding to an exponential distribution, then Pρ(t) = e−ρt/λ.

This proposition follows from the definition of the exponential distribution. It im-

plies that the probability 1− e−ρt/λ of finding a solution within a given target value

in time ρt with a sequential algorithm is equal to the probability of finding a solution

at least as good as that in time t using ρ independent parallel processors. Hence, it is

possible to achieve linear speedups in the time to find a solution within a target value

by multiple independent processors. An analogous proposition can be stated for a two

parameter (shifted) exponential distribution:

Proposition 2: Let Pρ(t) be the probability of not having found a given target solution

value in t time units with ρ independent processors. If P1(t) = e−(t−µ)/λ with λ ∈ IR+

and µ ∈ IR+, corresponding to a two parameter exponential distribution, then Pρ(t) =

e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two-parameter ex-

ponential distribution. It implies that the probability of finding a solution within a

given target value in time ρt with a sequential algorithm is equal to 1− e−(ρt−µ)/λ,

while the probability of finding a solution at least as good as that in time t using ρ
independent parallel processors is 1− e−ρ(t−µ)/λ. If µ = 0, then both probabilities

are equal and correspond to the non-shifted exponential distribution. Furthermore, if

ρµ≪ λ, then the two probabilities are approximately equal and it is possible to ap-

proximately achieve linear speedups in the time to find a solution within a target value

using multiple independent processors.

Aiex et al. Aiex et al. (2002) have shown experimentally that the solution times

for GRASP also have this property, showing that they fit a two-parameter exponential

distribution. Figure 1.13 illustrates this result, depicting the superimposed empirical

and theoretical distributions observed for one of the cases studied along the compu-

tational experiments reported by the authors, which involved 2400 runs of GRASP
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Figure 1.13 Superimposed empirical and theoretical distributions (times to target values

measured in seconds on an SGI Challenge computer with 28 processors).

procedures for each of five different problems: maximum independent set Feo et al.

(1994); Resende et al. (1998), quadratic assignment Li et al. (1994); Resende et al.

(1996), graph planarization Resende and Ribeiro (1997); Ribeiro and Resende (1999),

maximum weighted satisfiability Resende et al. (2000), and maximum covering Re-

sende (1998). The same result still holds when GRASP is implemented in conjunction

with a post-optimization path-relinking procedure Aiex et al. (2000).

In the case of multiple-walk cooperative-thread strategies, the search threads run-

ning in parallel exchange and share information collected along the trajectories they

investigate. One expects not only to speed up the convergence to the best solution but,

also, to find better solutions than independent-thread strategies. The most difficult as-

pect to be set up is the determination of the nature of the information to be shared or ex-

changed to improve the search, without taking too much additional memory or time to

be collected. Cooperative-thread strategies may be implemented using path-relinking,

by combining elite solutions stored in a central pool with the local optima found by

each processor at the end of each GRASP iteration. Canuto et al. Canuto et al. (2001)

used path-relinking to implement a parallel GRASP for the prize-collecting Steiner

tree problem. Their strategy is truly cooperative, since pairs of elite solutions from a

centralized unique central pool are distributed to the processors which perform path-

relinking in parallel. Computational results obtained with an MPI implementation

running on a cluster of 32 400-MHz Pentium II processors showed linear speedups,

further illustrating the effectiveness of path-relinking procedures used in conjunction

with GRASP to improve the quality of the solutions found by the latter.
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1.7 APPLICATIONS

The first application of GRASP described in the literature concerns the set covering

problem Feo and Resende (1989). The reader is referred to Festa and Resende Festa

and Resende (2002) for an annotated bibliography of GRASP and its applications.

We conclude this chapter by summarizing below some references focusing the main

applications of GRASP to problems in different areas:

routing Argüello et al. (1997); Atkinson (1998); Bard et al. (1998); Carreto and

Baker (2002); Kontoravdis and Bard (1995);

logic Deshpande and Triantaphyllou (1998); Pardalos et al. (1996); Resende and

Feo (1996); Resende et al. (1997);

covering and partition Areibi and Vannelli (1997); Argüello et al. (1996); Feo

and Resende (1989); Ghosh (1996); Hammer and Rader, Jr. (2001);

location Abdinnour-Helm and Hadley (2000); Delmaire et al. (1999); Klincewicz

(1992); Urban (1998); Urban et al. (2000);

minimum Steiner tree Canuto et al. (1999); Martins et al. (1999; 2000; 1998);

Ribeiro et al. (2002);

optimization in graphs Abello et al. (1999); Feo et al. (1994); Laguna et al.

(1994); Pardalos et al. (1999); Resende (1998); Resende and Ribeiro (1997);

Ribeiro and Resende (1999);

assignment Feo and González-Velarde (1995); Fleurent and Glover (1999); Li

et al. (1994); Liu et al. (2000); Mavridou et al. (1998); Murphey et al. (1998);

Pardalos et al. (1995); Pitsoulis et al. (2001); Prais and Ribeiro (2000b);

timetabling, scheduling, and manufacturing Bard and Feo (1989; 1991); Bard

et al. (1996); Binato et al. (2002); De et al. (1994); Drexl and Salewski (1997);

Feo and Bard (1989a;b); Feo et al. (1995; 1996; 1991); Klincewicz and Rajan

(1994); Rı́os-Mercado and Bard (1998; 1999); Yen et al. (2000);

transportation Argüello et al. (1997); Feo and Bard (1989a); Feo and González-

Velarde (1995);

power systems Binato and Oliveira (2002);

telecommunications Abello et al. (1999); Armony et al. (2000); Klincewicz

(1992); Liu et al. (2000); Prais and Ribeiro (2000b); Resende (1998); Resende

and Ribeiro (2001);

graph and map drawing Fernández and Martı́ (1999); Laguna and Martı́ (1999);

Resende and Ribeiro (1997); Ribeiro and Resende (1999); and

VLSI Areibi and Vannelli (1997), among other areas of application.
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Figure 1.14 Performance of GW and successive variants of local search for Series C prob-

lems.

1.8 CONCLUDING REMARKS

The results described in this chapter reflect successful applications of GRASP to a

large number of classical combinatorial optimization problems, as well as to those that

arise in real-world situations in different areas of business, science, and technology.

We underscore the simplicity of implementation of GRASP, which makes use of

simple building blocks: solution construction procedures and local search methods,

which often are readily available. Contrary to what occurs with other metaheuristics,

such as tabu search or genetic algorithms, which use a large number of parameters in

their implementations, the basic version of GRASP requires the adjustment of a single

parameter.

Recent developments, presented in this chapter, show that different extensions to

the basic procedure allow further improvement to the solutions found by GRASP.

Among these, we highlight: reactive GRASP, which automates the adjustments of the

restricted candidate list parameter; variable neighborhoods, which permit accelerated

and intensified local search; and path-relinking, which beyond allowing the imple-

mentation of intensification strategies based on the memory of elite solutions, opens

the way for development of very effective cooperative parallel strategies.

These and other extensions make up a set of tools that can be added to simpler

heuristics to find better-quality solutions. To illustrate the effect of additional ex-

tensions on solution quality, Figure 1.14 shows some results obtained for the prize-
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collecting Steiner tree problem, as discussed in Canuto et al. (2001). We consider the

40 instances of series C. The lower curve represents the results obtained exclusively

with the primal-dual constructive algorithm (GW) of Goemans and Williamson Goe-

mans and Williamson (1996). The second curve shows the quality of the solutions

produced with an additional local search (GW+LS), corresponding to the first itera-

tion of GRASP. The third curve is associated with the results obtained after 500 it-

erations of GRASP with path-relinking (GRASP+PR). Finally, the top curve shows

the results found by the complete algorithm, using variable neighborhood search as a

post-optimization procedure (GRASP+PR+VNS). For a given relative deviation with

respect to the optimal value, each curve indicates the number of instances for which

the corresponding algorithm found a solution within that quality range. For exam-

ple, we observe that the number of optimal solutions found goes from six, using only

the constructive algorithm, to a total of 36, using the complete algorithm described in

Canuto et al. (2001). The largest relative deviation with respect to the optimal value

decreases from 36.4% in the first case, to only 1.1% for the complete algorithm. It is

easy to see the contribution made by each additional extension.

Parallel implementations of GRASP are quite robust and lead to linear speedups

both in independent and cooperative strategies. Cooperative strategies are based on

the collaboration between processors using path-relinking and a global pool of elite

solutions. This allows the use of more processors to find better solutions in less com-

putation time.
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Abstract: Path-relinking is a major enhancement to the basic greedy randomized adap-

tive search procedure (GRASP), leading to significant improvements in solution time and

quality. Path-relinking adds a memory mechanism to GRASP by providing an intensifi-

cation strategy that explores trajectories connecting GRASP solutions and the best elite

solutions previously produced during the search. This paper reviews recent advances and

applications of GRASP with path-relinking. A brief review of GRASP is given. This

is followed by a description of path-relinking and how it is incorporated into GRASP.

Several recent applications of GRASP with path-relinking are reviewed. The paper con-

cludes with a discussion of extensions to this strategy, concerning in particular parallel

implementations and applications of path-relinking with other metaheuristics.

Keywords: GRASP, metaheuristic, path-relinking.

2.1 INTRODUCTION

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic for find-

ing approximate solutions to combinatorial optimization problems formulated as

min f (x) subject to x ∈ X ,

where f (·) is an objective function to be minimized and X is a discrete set of feasible

solutions. It was first introduced by Feo and Resende (1989) in a paper describing a

probabilistic heuristic for set covering. Since then, GRASP has experienced continued

development (Feo and Resende, 1995; Resende and Ribeiro, 2003c) and has been

applied in a wide range of problem areas (Festa and Resende, 2002).

39
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2.1.1 Multi-start local search

GRASP can be thought of as a search method that repeatedly applies local search from

different starting solutions in X . At each step of local search, the neighborhood N(x)
of the current solution x is searched for a solution y ∈ N(x) such that f (y) < f (x). If

such an improving solution is found, it is made the current solution and another step

of local search is done. If no improving solution is found, the procedure stops with x

as a locally optimal solution.

An obvious initial solution for local search is a solution generated by a greedy al-

gorithm. Greedy algorithms construct a solution one element at a time. For example,

a tree is built one edge at a time; a schedule is built one operation at a time; a ver-

tex partition is built one vertex at a time. At each step of a greedy algorithm, a set

of candidate elements C contains all elements that can be added to extend the par-

tial solution. Greedy algorithms make use of a greedy function g(e) that measures

the incremental cost of adding element e ∈ C to the current partial solution. For a

minimization problem, the element e∗ = argmin{g(e) : e ∈ C} is chosen to be added

to the partial solution. The addition of e∗ to the partial solution usually restricts the

set of candidates elements, which is reflected by the reduction of its cardinality. The

procedure ends when a complete solution is built, i.e. when C = /0.

The drawback of using a greedy algorithm as an initial solution for local search

is that if a deterministic rule is used to break ties, a greedy algorithm will produce

a single solution and therefore local search can only be applied once. Even when

a probabilistic tie breaking rule is used, the diversity of purely greedy solutions is

usually low.

The other extreme is to repeatedly start local search from randomly generated so-

lutions. Though this approach produces a high level of diversity in the starting solu-

tions, the average quality of these random solutions is usually much worse than that

of a greedy solution. Furthermore, the time local search takes to converge to a locally

optimal solution is, on average, much longer than when a greedy initial solution is

used.

GRASP blends greedy and random construction either by using greediness to build

a restricted candidate list (RCL) and randomness to select an element from the list, or

by using randomness to build the list and greediness for selection. Candidate elements

e ∈C are sorted according to their greedy function value g(e). In a cardinality-based

RCL, the latter is made up by the k top-ranked elements. In a value-based construction,

the RCL consists of the elements in the set {e ∈ C : g∗ ≤ g(e) ≤ g∗+ α · (g∗− g∗)},
where g∗ = min{g(e) : e∈C}, g∗ = max{g(e) : e∈C}, and α is a parameter satisfying

0≤ α≤ 1. Since the best value for α is often difficult to determine, it is often assigned

a random value for each GRASP iteration.

Algorithm 1 shows the pseudo-code for a pure greedy randomized adaptive search

procedure. The value of the best solution is stored in f ∗ and imax GRASP iterations

are done. Each iteration consists of a greedy randomized construction phase, followed

by a local search phase, starting from the greedy randomized solution. If the solution

resulting from the local search improves the best solution so far, it is stored in x∗.
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Data : Number of iterations imax

Result : Solution x∗ ∈ X

f ∗← ∞;

for i = 1, . . . , imax do
x← GreedyRandomizedConstruction();

x← LocalSearch(x);
if f (x) < f ∗ then

f ∗← f (x);
x∗← x;

end

end

Algorithm 1: A basic GRASP for minimization.

Figure 2.1 displays results for an instance of the maximum covering problem (Re-

sende, 1998), showing the distribution of objective function values for the construction

phase and the local search phase of a purely random multi-start algorithm (followed

by local search) and a GRASP with the parameter α fixed at 0.85. In both plots, the

iterates have been sorted by the objective function value of the solution found by local

search. The plots show that the GRASP construction achieves a reasonably amount

of diversity in terms of solution values, while producing starting solutions for local

search that have much better objective function values. The objective function values

are situated around 3.5 for the random construction and 9.7 for GRASP construction,

while the value obtained by local search are around 9.9. Consequently, the local search

times are much smaller for GRASP than for the purely random multi-start algorithm.

Figure 2.2 shows, with results for 100 runs on the same instance of a maximum sat-

isfiability problem, the benefit of using GRASP instead of repeatedly restarting local

search with a randomly generated solution and a greedy solution. Two curves compare

objective function value (best and average over the 100 runs) for different values of

the RCL parameter α. Two other curves compare solution times (average total time

and average local search time) for different values of α. Since this is a maximiza-

tion problem, α = 0 corresponds to random construction, while α = 1 corresponds to

greedy construction. While the average solution improves as we move from random to

greedy, the best solution (what we are really interested in) improves as we move away

from random construction, but reaches a maximum before reaching α = 1, and then

decreases after that. As the mean solution increases, the spread of solutions decreases.

The combination of the increase in mean solution value and the presence of enough

spread contribute to produce the best solution with α = .8. Solution times decrease as

one moves from random to greedy and this is mainly due to the decrease in time for

local search.

2.1.2 Memory-based mechanisms

If GRASP iteration i uses the random number generator seed si, then the iterations are

memoryless, i.e. they produce the same result independently of the order in which

they are run. In the remainder of this section, we review how the use of memory was

introduced into GRASP.
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Figure 2.1 Random multi-start vs. GRASP on an instance of maximum covering problem.

Memory can be used to avoid doing redundant work. For example, one can store

in a hash table all solutions constructed and used as initial solutions for local search

(Martins et al., 1999). Every time a new solution is constructed, it will only be used

as an initial solution in the local search phase if it is not present in the hash table.
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Filtering of constructed solutions (Feo et al., 1994; Martins et al., 1999; Prais

and Ribeiro, 2000) avoids applying local search to low-quality solutions, where lo-

cal search will probably take long to converge to a low-quality local optimum.

Fleurent and Glover (1999) introduced a long-term memory mechanism in GRASP

construction that makes use of a set of elite solutions found during the GRASP itera-

tions. Their mechanism favors (strongly determined) variables that cannot be changed

without eroding the objective or changing significantly other variables and (consistent)

variables that receive a particular value in a large portion of the elite solutions.

Prais and Ribeiro (2000) introduced another learning mechanism for GRASP con-

struction, which they named reactive GRASP. Recall that in a value-based restricted

candidate list a parameter α determines the level of randomness or greediness used

to make up the RCL. Instead of using a fixed value for α, reactive GRASP selects a

value, at random, from a discrete set of values {α1,α2, . . . ,αm}. Each value αi has

associated with it a probability pi that it will be selected (∑m
i=1 pi = 1). The idea in re-

active GRASP is to change these probabilities as the iterations proceed, to favor values

that have led to better solutions in previous GRASP iterations.

Laguna and Martı́ (1999) introduced another strategy for using long-term memory

consisting of a set of elite solutions. At each GRASP iteration, this strategy com-

bines the GRASP solution with a randomly selected elite solution, using path-relinking

(Glover, 1996). This is the subject of the next section.
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2.2 PATH-RELINKING

Path-relinking was originally proposed by Glover (1996) as an intensification strat-

egy exploring trajectories connecting elite solutions obtained by tabu search or scatter

search (Glover, 2000; Glover and Laguna, 1997; Glover et al., 2000). Starting from

one or more elite solutions, paths in the solution space leading toward other elite solu-

tions are generated and explored in the search for better solutions. To generate paths,

moves are selected to introduce attributes in the current solution that are present in the

elite guiding solution. Path-relinking may be viewed as a strategy that seeks to incor-

porate attributes of high quality solutions, by favoring these attributes in the selected

moves.

Algorithm 2 illustrates the pseudo-code of the path-relinking procedure applied to

a pair of solutions xs (starting solution) and xt (target solution).

Data : Starting solution xs and target solution xt

Result : Best solution x∗ in path from xs to xt

Compute symmetric difference ∆(xs,xt);
f ∗←min{ f (xs), f (xt)};
x∗← argmin{ f (xs), f (xt)};
x← xs;

while ∆(x,xt) 6= /0 do
m∗← argmin{ f (x⊕m) : m ∈ ∆(x,xt)};
∆(x⊕m∗,xt)← ∆(x,xt)\{m∗};
x← x⊕m∗;
if f (x) < f ∗ then

f ∗← f (x);
x∗← x;

end

end

Algorithm 2: Path-relinking.

The procedure starts by computing the symmetric difference ∆(xs,xt) between the

two solutions, i.e. the set of moves needed to reach xt (target solution) from xs (initial

solution). A path of solutions is generated linking xs and xt . The best solution x∗ in

this path is returned by the algorithm. At each step, the procedure examines all moves

m ∈ ∆(x,xt) from the current solution x and selects the one which results in the least

cost solution, i.e. the one which minimizes f (x⊕m), where x⊕m is the solution

resulting from applying move m to solution x. The best move m∗ is made, producing

solution x⊕m∗. The set of available moves is updated. If necessary, the best solution

x∗ is updated. The procedure terminates when xt is reached, i.e. when ∆(x,xt) = /0.

We notice that path-relinking may also be viewed as a constrained local search

strategy applied to the initial solution xs, in which only a limited set of moves can

be performed and where uphill moves are allowed. Several alternatives have been

considered and combined in recent implementations of path-relinking (Aiex, 2002;
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Aiex et al., 2003; 2000; Binato et al., 2001; Ribeiro and Rosseti, 2002; Ribeiro et al.,

2002; Rosseti, 2003):

periodical relinking: path-relinking is not systematically applied, but instead

only periodically;

forward relinking: path-relinking is applied using the worst among xs and xt as

the initial solution and the other as the target solution;

backward relinking: the roles of xs and xt are interchanged, path-relinking is

applied using the best among xs and xt as the initial solution and the other as the

target solution;

back and forward relinking: two different trajectories are explored, the first

using xs as the initial solution and the second using xt in this role;

mixed relinking: two paths are simultaneously explored, the first emanating

from xs and the second from xt , until they meet at an intermediary solution

equidistant from xs and xt ;

randomized relinking: instead of selecting the best yet unselected move, ran-

domly select one from among a candidate list with the most promising moves

in the path being investigated; and

truncated relinking: the full trajectory between xs and xt is not investigated, but

instead only part of it.

All these alternatives involve trade-offs between computation time and solution

quality. Ribeiro et al. (2002) observed that exploring two different trajectories for each

pair (xs,xt) takes approximately twice the time needed to explore only one of them,

with very marginal improvements in solution quality. They have also observed that if

only one trajectory is to be investigated, better solutions are found when the relinking

procedure starts from the best among xs and xt . Since the neighborhood of the initial

solution is much more carefully explored than that of the guiding one, starting from

the best of them gives the algorithm a better chance to investigate in more detail the

neighborhood of the most promising solution. For the same reason, the best solutions

are usually found closer to the initial solution than to the guiding solution, allowing

the pruning of the relinking trajectory before the latter is reached.

2.3 GRASP WITH PATH-RELINKING

Path-relinking is a major enhancement to the basic GRASP procedure, leading to sig-

nificant improvements in solution time and quality.

The use of path-relinking within a GRASP procedure, as an intensification strat-

egy applied to each locally optimal solution, was first proposed by Laguna and Martı́

(1999). It was followed by several extensions, improvements, and successful appli-

cations (Aiex et al., 2000; Canuto et al., 2001; Resende and Ribeiro, 2003c; Resende

and Werneck, 2002b; Ribeiro et al., 2002). Two basic strategies are used:
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path-relinking is applied to all pairs of elite solutions, either periodically during

the GRASP iterations or after all GRASP iterations have been performed as a

post-optimization step; and

path-relinking is applied as an intensification strategy to each local optimum

obtained after the local search phase.

Applying path-relinking as an intensification strategy to each local optimum seems

to be more effective than simply using it only as a post-optimization step. In general,

combining intensification with post-optimization results in the best strategy. In the

context of intensification, path-relinking is applied to pairs (x,y) of solutions, where x

is a locally optimal solution produced by each GRASP iteration after local search and

y is one of a few elite solutions randomly chosen from a pool with a limited number

Max Elite of elite solutions found along the search. Uniform random selection is

a simple strategy to implement. Since the symmetric difference is a measure of the

length of the path explored during relinking, a strategy biased toward pool elements

y with high symmetric difference with respect to x is usually better than one using

uniform random selection (Resende and Werneck, 2002b).

The pool is originally empty. Since we wish to maintain a pool of good but diverse

solutions, each locally optimal solution obtained by local search is considered as a

candidate to be inserted into the pool if it is sufficiently different from every other

solution currently in the pool. If the pool already has Max Elite solutions and the

candidate is better than the worst of them, then a simple strategy is to have the former

replaces the latter. Another strategy, which tends to increase the diversity of the pool,

is to replace the pool element most similar to the candidate among all pool elements

with cost worse than the candidate’s. If the pool is not full, the candidate is simply

inserted.

Post-optimization is done on a series of pools. The initial pool P0 is the pool P

obtained at the end of the GRASP iterations. The value of the best solution of P0 is

assigned to f ∗0 and the pool counter is initialized k = 0. At the k-th iteration, all pairs of

elements in pool Pk are combined using path-relinking. Each result of path-relinking

is tested for membership in pool Pk+1 following the same criteria used during the

GRASP iterations. If a new best solution is produced, i.e. f ∗k+1 < f ∗k , then k← k + 1

and a new iteration of post-optimization is done. Otherwise, post-optimization halts

with x∗ = argmin{ f (x) | x ∈ Pk+1} as the result.

Algorithm 3 illustrates such a procedure. Each GRASP iteration has now three

main steps:

Construction phase: a greedy randomized construction procedure is used to

build a feasible solution;

Local search phase: the solution built in the first phase is progressively im-

proved by a neighborhood search strategy, until a local minimum is found; and

Path-relinking phase: the path-relinking algorithm using any of the strategies

described in Section 2.2 is applied to the solution obtained by local search and

to a randomly selected solution from the pool. The best solution found along
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this trajectory is also considered as a candidate for insertion in the pool and the

incumbent is updated.

At the end of the GRASP iterations, a post-optimization phase combines the elite

solutions in the pool in the search for better solutions..

Data : Number of iterations imax

Result : Solution x∗ ∈ X

P← /0;

f ∗← ∞;

for i = 1, . . . , imax do
x← GreedyRandomizedConstruction();

x← LocalSearch(x);
if i≥ 2 then

Choose, at random, pool solutions Y ⊆ P to relink with x;

for y ∈ Y do
Determine which (x or y) is initial xs and which is

target xt ;

xp← PathRelinking(xs,xt);
Update the elite set P with xp;

if f (xp) < f ∗ then
f ∗← f (xp);
x∗← xp;

end

end

end

end

P = PostOptimize{P};
x∗ = argmin{ f (x),x ∈ P};

Algorithm 3: A basic GRASP with path-relinking heuristic for minimization.

Aiex (2002) and Aiex et al. (2002) have shown experimentally that the solution

times for finding a target solution value with a GRASP heuristic fit a two-parameter

exponential distribution. Figure 2.3 illustrates this result, depicting the superimposed

empirical and theoretical distributions observed for one of the cases studied in the

computational experiments reported by the authors, which involved 2400 runs of

GRASP procedures for each of five different problems: maximum independent set (Feo

et al., 1994; Resende et al., 1998), quadratic assignment (Li et al., 1994; Resende et al.,

1996), graph planarization (Resende and Ribeiro, 1997; Ribeiro and Resende, 1999),

maximum weighted satisfiability (Resende et al., 2000), and maximum covering (Re-

sende, 1998). The same result still holds when GRASP is implemented in conjunction

with a path-relinking procedure (Aiex et al., 2003).
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measured in seconds on an SGI Challenge computer with 28 processors).

2.4 APPLICATIONS

Path-relinking has been successfully used together with GRASP in a variety of appli-

cations, such as the three index assignment problem (Aiex, 2002; Aiex et al., 2000), the

problem of routing private circuits in communication networks (Resende and Ribeiro,

2003a), the 2-path network design problem (Ribeiro and Rosseti, 2002), the p-median

problem (Resende and Werneck, 2002a), the Steiner problem in graphs (Ribeiro et al.,

2002), the job-shop scheduling problem (Aiex, 2002; Aiex et al., 2003), the prize-

collecting Steiner tree problem (Canuto et al., 2001), the quadratic assignment prob-

lem (Oliveira et al., 2003), the MAX-CUT problem (Festa et al., 2002), and the capaci-

tated minimum spanning tree problem (Souza et al., 2003). Some of these applications

will be reviewed in the remainder of this section.

Before we review some of these applications, we first describe a plot used in several

of our papers to experimentally compare different randomized algorithms or different

versions of the same randomized algorithm (Aiex, 2002; Aiex et al., 2002). This plot

shows empirical distributions of the random variable time to target solution value. To

plot the empirical distribution, we fix a solution target value and run each algorithm

T independent times, recording the running time when a solution with cost at least

as good as the target value is found. For each algorithm, we associate with the i-th

sorted running time (ti) a probability pi = (i− 1
2
)/T , and plot the points zi = (ti, pi),

for i = 1, . . . ,T . Figure 2.4 shows one such plot comparing a pure GRASP with a

GRASP with path-relinking for MAX-CUT instance G11 with target solution value of

552. The figure shows clearly that GRASP with path-relinking (GRASP+PR) is much

faster than pure GRASP to find a solution with weight 552 or more. For instance,
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Figure 2.4 Empirical distributions of the random variables time to target solution for

a pure GRASP and a GRASP with path-relinking for MAX-CUT instance G11 with target

value of 552 (Festa et al., 2002). Two hundred independent runs of each algorithm were

used to make the plots.

the probability of finding such a solution in less than 5 seconds is over 80% with

GRASP with path-relinking, while it is about 2% with pure GRASP. Similarly, with

probability 50% GRASP with path-relinking finds such a target solution in less than

2.5 seconds, while for pure GRASP, with probability 50% a solution is found in less

than 122 seconds.

2.4.1 Private virtual circuit routing

A frame relay service offers virtual private networks to customers by provisioning a

set of long-term private virtual circuits (PVCs) between customer endpoints on a large

backbone network. During the provisioning of a PVC, routing decisions are made

without any knowledge of future requests. Over time, these decisions can cause in-

efficiencies in the network and occasional offline rerouting of the PVCs is needed.

Resende and Ribeiro (2003c) formulate the offline PVC routing problem as an inte-

ger multi-commodity flow problem with additional constraints and with an objective

function that minimizes propagation delays and/or network congestion. They propose

variants of a GRASP with path-relinking heuristic for this problem. Experimental re-

sults for realistic-size problems show that GRASP benefits greatly from path-relinking

and that the proposed heuristics are able to improve the solutions found with standard

routing techniques.

Let G = (V,E) be an undirected graph representing the frame relay network. De-

note by V = {1, . . . ,n} the set of backbone nodes where switches reside, while E is



50 AN INTRODUCTION TO GRASP

set of trunks (or edges) that connect the backbone nodes, with |E|= m. Parallel trunks

are allowed. Since G is an undirected graph, flows through each trunk (i, j) ∈ E have

two components to be summed up, one in each direction. However, for modeling

purposes, costs and capacities will always be associated only with the ordered pair

(i, j) satisfying i < j. For each trunk (i, j) ∈ E, denote by bi j its maximum allowed

bandwidth (in kbits/second), while ci j denotes the maximum number of PVCs that can

be routed through it and di j is the propagation, or hopping, delay associated with the

trunk. Each commodity k ∈ K = {1, . . . , p} is a PVC to be routed, associated with an

origin-destination pair and with a bandwidth requirement (or demand, also known as

its effective bandwidth) rk. The latter takes into account the actual bandwidth required

by the customer in the forward and reverse directions, as well as an overbooking factor.

Let xk
i j = 1 if and only if edge (i, j)∈ E is used to route commodity k ∈K. The cost

function φi j(x
1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji) associated with each trunk (i, j) ∈ E with i < j is

the linear combination of a trunk propagation delay component and a trunk congestion

component. The propagation delay component is defined as

φd
i j(x

1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji) = di j · ∑

k∈K

ρk(x
k
i j + xk

ji), (2.1)

where coefficients ρk are used to model two plausible delay functions:

If ρk = 1, then this component leads to the minimization of the number of hops

weighted by the propagation delay on each trunk.

If ρk = rk, then the minimization takes into account the effective bandwidth

routed through each trunk weighted by its propagation delay.

Let yi j = ∑k∈K rk(x
k
i j + xk

ji) be the total flow through trunk (i, j) ∈ E with i < j.

The trunk congestion component depends on the utilization rates ui j = yi j/bi j of each

trunk (i, j) ∈ E with i < j. It is taken as the piecewise linear function proposed by

Fortz and Thorup (2000) and depicted in Figure 2.5, which increasingly penalizes

flows approaching or violating the capacity limits:

φb
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p
i j,x
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p
ji) =

= bi j ·
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(2.2)

For PVC routing, Resende and Ribeiro used the cost function
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Figure 2.5 Piecewise linear congestion cost component associated with each trunk.

associated with each trunk (i, j) ∈ E with i < j, where weights (1− δ) and δ corre-

spond respectively to the propagation delay and the network congestion components,

with δ ∈ [0,1].
In the construction phase of GRASP, the routes are determined, one at a time. A

new PVC is selected to be routed in each iteration. To reduce the computation times,

we used a combination of the strategies usually employed by GRASP and heuristic-

biased stochastic sampling. We create a restricted candidate list with a fixed number

of elements nc. At each iteration, it is formed by the nc unrouted PVC pairs with the

largest demands. An element ℓ is selected at random from this list with probability

π(ℓ) = rℓ/∑k∈RCL rk.
Once a PVC ℓ∈K is selected, it is routed on a shortest path from its origin to its des-

tination. The bandwidth capacity constraints are relaxed and handled via the penalty

function introduced by the trunk congestion component (2.2) of the edge weights.

The constraints on the limit of PVCs routed through each trunk are explicitly taken

into account by forbidding routing through trunks already using its maximum number

of PVCs. The weight ∆φi j of each edge (i, j) ∈ E is given by the increment of the cost

function value φi j(x
1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji), associated with routing rℓ additional units

of demand through edge (i, j).
More precisely, let K ⊆ K be the set of previously routed PVCs and Ki j ⊆ K be the

subset of PVCs that are routed through trunk (i, j)∈ E. Likewise, let K = K∪{ℓ}⊆K

be the new set of routed PVCs and Ki j = Ki j ∪{ℓ} ⊆ K be the new subset of PVCs

that are routed through trunk (i, j). Then, define xh
i j = 1 if PVC h ∈ K is routed

through trunk (i, j) ∈ E from i to j, xh
i j = 0 otherwise. Similarly, define xh

i j = 1 if

PVC h ∈ K is routed through trunk (i, j) ∈ E from i to j, xh
i j = 0 otherwise. According
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to (2.3), the cost associated with each edge (i, j) ∈ E in the current solution is given

by φi j(x
1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji). In the same manner, the cost associated with each edge

(i, j)∈ E after routing PVC ℓ will be φi j(x
1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji). Then, the incremental

edge weight ∆φi j associated with routing PVC ℓ ∈ K through edge (i, j) ∈ E, used in

the shortest path computations, is given by

∆φi j = φi j(x
1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji)−φi j(x

1
i j, . . . ,x

p
i j,x

1
ji, . . . ,x

p
ji). (2.4)

The enforcement of the constraints that limit the number of PVCs routed through

each trunk may lead to unroutable demand pairs. In this case, the current solution is

discarded and a new construction phase starts.

Each solution built in the first phase may be viewed as a set of routes, one for

each PVC. The local search procedure seeks to improve each route in the current

solution. For each PVC k ∈ K, start by removing rk units of flow from each edge

in its current route. Next, compute incremental edge weights ∆φi j associated with

routing this demand through each trunk (i, j) ∈ E according to (2.4). A tentative new

shortest path route is computed using the incremental edge weights. If the new route

improves the solution, it replaces the current route of PVC k. This is continued until

no improving route can be found.

In the proposed path-relinking strategy, the set of moves corresponding to the

symmetric difference ∆(x1,x2) between any pair {x1,x2} of solutions is the subset

Kx1,x2
⊆ K of PVCs routed through different routes in x1 and x2. Without loss of gen-

erality, suppose that path-relinking starts from any elite solution z in the pool and uses

the locally optimal solution y as the guiding solution.

The best solution y along the new path to be constructed is initialized with z. For

each PVC k ∈Ky,z, the same shortest path computations described for construction and

local search are used to evaluate the cost of the new solution obtained by rerouting the

demand associated with PVC k through the route used in the guiding solution y instead

of that used in the current solution originated from z. The best move is selected and

removed from Ky,z. The new solution obtained by rerouting the above selected PVC is

computed, the incumbent y is updated, and a new iteration resumes. These steps are

repeated, until the guiding solution y is reached. The incumbent y is returned as the

best solution found by path-relinking and inserted into the pool if it is better than the

worst solution currently in the pool.

Figure 2.6 illustrates the comparison of the four algorithms: pure GRASP (GRASP),

GRASP with forward path-relinking (GRASP+PRf, in which a locally optimal solution

is used as the initial solution), GRASP with backward path-relinking (GRASP+PRb, in

which an elite solution is used as the initial solution), and GRASP with backward and

forward path-relinking (GRASP+PRfb, in which path-relinking is performed in both di-

rections) on PVC routing instance fr750a (60 nodes, 498 arcs, and 750 commodities).

For a given computation time, the probability of finding a solution at least as good as

the target value increases from GRASP to GRASP+PRf, from GRASP+PRf to GRASP+PRfb,

and from GRASP+PRfb to GRASP+PRb. For example, there is 9.25% probability for

GRASP+PRfb to find a target solution in less than 100 seconds, while this probability

increases to 28.75% for GRASP+PRb. For GRASP, there is a 8.33% probability of finding

a target solution within 2000 seconds, while for GRASP+PRf this probability increases
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Figure 2.6 Empirical distributions of time to target solution for GRASP, GRASP with

forward path-relinking, GRASP with backward path-relinking, and GRASP with back and

forward path-relinking for private virtual circuit routing instance fr750a. Two hundred

independent runs were done for each algorithm. Target solution value used was 479000.

to 65.25%. GRASP+PRb finds a target solution in at most 129 seconds with 50% prob-

ability. For the same probability, this time increases to 172, 1727, and 10933 seconds,

respectively, for variants GRASP+PRfb, GRASP+PRf, and GRASP.

These results suggest that variant GRASP+PRb, which performs path-relinking back-

ward from an elite solution to a locally optimal solution, is the most effective.

Another experiment comparing the four variants was done on PVC routing instance

att (90 nodes, 274 trunks, 272 commodities). Ten independent runs of each algorithm

were done for 100 seconds on a 196 MHz SGI Challenge computer. Table 2.1 sum-

marizes these results. For each variant, this table lists the best and average solution

values found after 10 seconds and after 100 seconds. The results point to GRASP+PRb

and GRASP+PRfb as the two best heuristics. It is interesting to note that even if given

100 seconds, GRASP finds solutions of worse quality than those found by GRASP+PRb

and GRASP+PRfb in only 10 seconds.

2.4.2 2-path network design

Let G = (V,E) be a connected undirected graph, where V is the set of nodes and E

is the set of edges. A k-path between nodes s,t ∈ V is a sequence of at most k edges

connecting them. Given a non-negative weight function w : E → R+ associated with

the edges of G and a set D of pairs of origin-destination nodes, the 2-path network

design problem (2PNDP) consists in finding a minimum weighted subset of edges

E ′ ⊆ E containing a 2-path between every origin-destination pair. Applications can
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Table 2.1 Comparison of GRASP, GRASP with forward path-relinking, GRASP with back-

ward path-relinking, and GRASP with back and forward path-relinking for private virtual

circuit routing instance att. Ten independent runs of 100 seconds were done for each

algorithm.

10 runs 10 seconds 100 seconds

Variant best average best average

GRASP 126603 126695 126228 126558

GRASP+PRf 126301 126578 126083 126229

GRASP+PRb 125960 126281 125666 125883

GRASP+PRfb 125961 126307 125646 125850

be found in the design of communication networks, in which paths with few edges

are sought to enforce high reliability and small delays. Dahl and Johannessen (2000)

proved that the decision version of 2PNDP is NP-complete.

Rosseti (2003) and Ribeiro and Rosseti (2002) described sequential and parallel

implementations of GRASP with path relinking for the 2-path network design. The

construction of a new solution begins by the initialization of modified edge weights

with the original edge weights. Each iteration of the construction phase starts by the

random selection of an origin-destination pair still in D. A shortest 2-path between the

extremities of this pair is computed, using the modified edge weights. The weights of

the edges in this 2-path are set to zero until the end of the construction procedure, the

origin-destination pair is removed from D, and a new iteration resumes. The construc-

tion phase stops when 2-paths have been computed for all origin-destination pairs.

The local search phase seeks to improve each solution built in the construction

phase. Each solution may be viewed as a set of 2-paths, one for each origin-destination

pair in D. To introduce some diversity by driving different applications of the local

search to different local optima, the origin-destination pairs are investigated at each

GRASP iteration in a circular order defined by a different random permutation of their

original indices. Each 2-path in the current solution is tentatively eliminated. The

weights of the edges used by other 2-paths are temporarily set to zero, while those

which are not used by other 2-paths in the current solution are restored to their orig-

inal values. A new shortest 2-path between the extremities of the origin-destination

pair under investigation is computed, using the modified weights. If the new 2-path

improves the current solution, then the latter is modified; otherwise the previous 2-

path is restored. The search stops if the current solution was not improved after a

sequence of |D| iterations along which all 2-paths have been investigated. Otherwise,

the next 2-path in the current solution is investigated for substitution and a new itera-

tion resumes.

Each GRASP iteration performs an intensification phase using path-relinking, in

which the newly generated solution obtained at the end of the local search phase is

combined with a randomly selected solution from the pool of elite solutions. Path-

relinking starts by determining all origin-destination pairs whose associated 2-paths
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are different in the two solutions. These computations amount to determining the set

of moves which should be applied to the initial solution to reach the guiding one.

Each move is characterized by a pair of 2-paths, one to be inserted and the other to

be eliminated from the current solution. At each path-relinking iteration the best yet

unselected move is applied to the current solution and the best solution found along the

path connecting the two solutions is updated. The incumbent best solution found along

the path-relinking step is inserted into the pool if it is better than the worst solution

currently in the pool.

Several strategies for the implementation of the path-relinking step have been in-

vestigated in Ribeiro and Rosseti (2004, in preparation); Rosseti (2003): pure GRASP

(GRASP), GRASP with forward path-relinking (GRASP+PRf, in which a locally opti-

mal solution is used as the initial solution), GRASP with backward path-relinking

(GRASP+PRb, in which an elite solution is used as the initial solution), GRASP with

backward and forward path-relinking (GRASP+PRfb, in which path-relinking is per-

formed twice, once in each direction), and GRASP with mixed path-relinking (GRASP+

PRm, in which two paths in opposite directions are simultaneously explored).

The results displayed in Table 2.2 illustrate the behavior of these five variants on

randomly generated instances (Rosseti, 2003) on complete graphs with 100, 200, 300,

400, and 500 nodes. For each instance, we give the best and average solution val-

ues found over ten independent runs of each algorithm. For each problem size, the

processing time is limited at that observed for 200 iterations of the pure GRASP pro-

cedure on the first instance in the group. Algorithms GRASP+PRfb and GRASP+PRm per-

formed better than the other variants, as far as together they found the best solutions

and the best average solutions for all instances in the table. GRASP with backward

path-relinking usually performs better than the forward path-relinking variant, due to

the fact that it starts from an elite solution that is often better than the current local

optimum, fully exploring the neighborhood of the former.

The results observed for variant GRASP+PRm are very encouraging: this algorithm

found better solutions than the other variants for 40% of the instances.

To further illustrate and compare these five variants, we display in Figure 2.7 a plot

of the empirical probability distribution of the time to target solution value for each

algorithm, computed from 200 independent runs. These plots show that the proba-

bility of finding a solution at least as good as a target value increases from GRASP to

GRASP+PRf to GRASP+PRb to GRASP+PRfb, and finally to GRASP+PRm. These results

confirms an observation first noticed by Ribeiro et al. (2002) and later by Resende

and Ribeiro (2003b), suggesting that the backward strategy performs a major role in

successful implementations of path-relinking. Moreover, they also indicate that the

mixed path-relinking strategy proposed by Rosseti (2003) is very effective.

2.4.3 p-median problem

In the p-median problem, we are given a set F of m potential facilities, a set U of n

users (or customers), a distance function d : U ×F → R, and a constant p ≤ m, and

want to determine which p facilities to open so as to minimize the sum of the distances

from each user to its closest open facility. It is a well-known NP-hard problem (Kariv

and Hakimi, 1979).
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Table 2.2 Results for ten runs of each algorithm on randomly generated instances of

2-path network design problems with limited processing time.

GRASP GRASP+PRf GRASP+PRb GRASP+PRfb GRASP+PRm

|V | best avg. best avg. best avg. best avg. best avg.

779 784.3 760 772.8 763 769.3 749 762.7 755 765.3

762 769.6 730 749.4 735 746.0 729 741.7 736 745.7

100 773 779.2 762 769.3 756 766.1 757 763.6 754 765.1

746 752.0 732 738.4 723 736.7 719 730.4 717 732.2

756 762.3 742 749.7 739 746.5 737 742.9 728 743.7

1606 1614.7 1571 1584.4 1540 1568.0 1526 1562.0 1538 1564.3

1601 1608.8 1557 1572.8 1559 1567.9 1537 1558.9 1545 1563.3

200 1564 1578.2 1523 1541.9 1516 1531.9 1508 1519.9 1509 1528.7

1578 1585.6 1531 1553.3 1518 1538.1 1510 1532.2 1513 1534.7

1577 1599.6 1567 1575.4 1543 1563.5 1529 1556.3 1531 1556.1

2459 2481.9 2408 2425.0 2377 2401.3 2355 2399.2 2366 2393.6

2520 2527.7 2453 2469.7 2419 2449.1 2413 2438.9 2405 2439.4

300 2448 2463.5 2381 2403.1 2339 2373.8 2356 2375.3 2338 2370.3

2462 2482.1 2413 2436.2 2373 2409.3 2369 2400.9 2350 2401.0

2450 2458.8 2364 2402.5 2328 2368.6 2347 2373.9 2322 2365.4

3355 3363.8 3267 3285.5 3238 3257.0 3221 3239.4 3231 3252.2

3393 3417.5 3324 3338.2 3283 3306.8 3220 3292.2 3271 3301.4

400 3388 3394.4 3311 3322.4 3268 3291.9 3227 3275.1 3257 3273.2

3396 3406.0 3316 3326.5 3249 3292.0 3256 3284.8 3246 3287.9

3416 3429.3 3335 3365.5 3267 3327.7 3270 3313.9 3259 3323.5

4338 4350.1 4209 4247.1 4176 4207.6 4152 4196.1 4175 4206.2

4353 4369.6 4261 4278.6 4180 4233.7 4166 4219.6 4175 4226.3

500 4347 4360.7 4239 4257.8 4187 4224.8 4170 4201.9 4187 4217.9

4317 4333.8 4222 4238.6 4157 4197.4 4156 4182.2 4159 4197.1

4362 4370.4 4263 4292.0 4203 4294.0 4211 4236.8 4200 4240.2

Resende and Werneck (2002b) describe a GRASP with path-relinking for the p-

median problem. Empirical results on instances from the literature show that the algo-

rithm is robust and that it performs at least as well as other methods, and often better

in terms of both running time and solution quality. In all cases the solutions obtained

by the GRASP with path-relinking were within 0.1% of the best known upper bounds.

For a large number of instances new best known solutions were produced by the new

algorithm.

The standard greedy algorithm for the p-median problem (Cornuejols et al., 1977;

Whitaker, 1983) starts with an empty solution and adds facilities one at a time, choos-

ing the most profitable in each iteration (the one whose insertion causes the greatest

drop in solution cost). The construction procedure proposed in Resende and Werneck

(2002b) is similar to the greedy algorithm, but instead of selecting the best among all

possible options, it only considers q < m possible insertions (chosen uniformly at ran-
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Figure 2.7 Empirical distributions of time to target solution for GRASP, GRASP with

forward path-relinking, GRASP with backward path-relinking, GRASP with back and forward

path-relinking, and GRASP with mixed path-relinking for a 2-path network design instance

with 80 nodes. Two hundred independent runs were done for each algorithm. Target solution

value used was 588.

dom) in each iteration. The most profitable among those is selected. The running time

of the algorithm is O(m + pqn). The idea is to make q small enough so as to signif-

icantly reduce the running time of the algorithm (when compared to the pure greedy

one) and to ensure a fair degree of randomization. In tests, the value q = ⌈log2(m/p)⌉
was determined to be suitable.

The standard local search procedure for the p-median problem, originally proposed

by Teitz and Bart (1968), is based on swapping facilities. Given an initial solution S,

the procedure determines, for each facility f 6∈ S, which facility g ∈ S (if any) would

improve the solution the most if f and g were interchanged (i.e., if f were opened and g

closed). If there is one such improving move, f and g are interchanged. The procedure

continues until no improving interchange can be made, in which case a local minimum

will have been found. The complexity of this swap-based local search is O(pmn)
per iteration. Whitaker (1983) proposed an efficient implementation of this method,

which he called fast interchange, for which the bound on the running time of each

iteration is reduced to O(mn). Resende and Werneck (2003a) have recently proposed

an alternative implementation. Although it has the same worst-case complexity as

Whitaker’s, it can be substantially faster in practice. The speedup (of up to three

orders of magnitude) results from the use of information gathered in early iterations of

the algorithm to reduce the amount of computation performed in later stages. Though

this implementation can require a greater amount of memory, with the use of some
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programming techniques (e.g. sparse matrix representation and cache), the additional

memory requirements can be minimized.

Intensification (via path-relinking) occurs in two different stages. First, every GRASP

iteration contains an intensification step, in which the newly generated solution is com-

bined with a solution from the pool. Then, in the post-optimization phase, solutions in

the pool are combined among themselves.

Let S1 and S2 be two valid solutions, interpreted as sets of (open) facilities. The

path-relinking procedure starts with one of the solutions (say, S1) and gradually trans-

forms it into the other (S2) by swapping in elements from S2 \ S1 and swapping out

elements from S1 \ S2. The total number of swaps made is |S2 \ S1|, which is equal

to |S1 \ S2|. The choice of which swap to make in each stage is greedy: the most

profitable (or least costly) move is made.

The outcome of path-relinking is the best local minimum in the path. A local min-

imum in this context is a solution that is both succeeded (immediately) and preceded

(either immediately or through a series of same-value solutions) in the path by strictly

worse solutions. If the path has no local minima, one of the original solutions (S1 or

S2) is returned with equal probability. When there is an improving solution in the path,

this criterion matches the traditional one exactly: it simply returns the best element in

the path. It is different only when the standard path-relinking is unsuccessful, in which

case it tries to increase diversity by selecting a solution other than the extremes of the

path.

Note that path-relinking is very similar to the local search procedure described

earlier, with two main differences. First, the number of allowed moves is restricted:

only elements in S2 \ S1 can be inserted, and only those in S1 \ S2 can be removed.

Second, non-improving moves are allowed. These differences are easily incorporated

into the basic implementation of the local search procedure.

The intensification procedure is augmented by performing a full local search on the

solution produced by path-relinking. Because this solution is usually very close to a

local optimum, this application tends to be much faster than on a solution generated

by the randomized constructive algorithm. A side effect of applying local search at

this point is increased diversity, since one is free to use facilities that did not belong to

any of the original solutions.

The plots in Figure 2.8 compare GRASP with path-relinking and pure GRASP on

the 1400-facility, 1400-user TSPLIB instance fl1400. The plot on the left shows qual-

ity of the best solution found as a fraction of the average value of the first solution for

GRASP with path-relinking and pure GRASP for p = 500. Times are given as multi-

ples of the average time required to perform one multi-start iteration. Smaller values

are better. The plot on the right shows ratios between partial solutions found with and

without path-relinking for different values of p. Ratios smaller than 1.000 favor the

use of path-relinking. The plots show that GRASP benefits from path-relinking, in

particular for large values of p.

2.4.4 Three index assignment problem

The three-index assignment problem (AP3) was introduced by Pierskalla (1967) as an

extension of the classical two-dimensional assignment problem. Consider a complete
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Figure 2.8 GRASP with path-relinking versus pure GRASP on TSPLIB instance fl1400.

tripartite graph Kn,n,n = (I ∪ J ∪K,(I× J)∪ (I×K)∪ (J×K)),where I,J, and K are

disjoint sets of size n. If a cost ci, j,k is associated with each triplet (i, j,k) ∈ I×J×K,

then the AP3 consists of finding a subset A ∈ I× J×K of n triplets such that every

element of I∪ J∪K occurs in exactly one triplet of A, and the sum of the costs of the

chosen triplets is minimized. The AP3 is NP-hard (Frieze, 1983; Garey and Johnson,
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1979). A permutation-based formulation for AP3 is

min
p,q∈πN

n

∑
i=1

cip(i)q(i),

where πN denotes the set of all permutations of the set of integers N = {1,2, . . . ,n}.
Aiex (2002) and Aiex et al. (2000) describe a GRASP with path-relinking for AP3.

Computational results show clearly that this GRASP for AP3 benefits from path-

relinking and compares well with previously proposed heuristics for this problem.

GRASP with path-relinking was able to improve the solution quality of heuristics pro-

posed by Balas and Saltzman (1991), Burkard et al. (1996), and Crama and Spieksma

(1992) on all instances proposed in those papers.

The GRASP construction phase builds a feasible solution S by selecting n triplets,

one at a time. The solution S is initially empty and the set C of candidate triplets is

initially the set of all triplets. To select the pth triplet (p = 1, . . . ,n−1) to be added to

the solution, a restricted candidate list C′ is defined to include all triplets (i, j,k) in the

candidate set C having cost ci jk ≤ c+α(c− c), where

c = min{ci jk

∣

∣ (i, j,k) ∈C} and c = max{ci jk

∣

∣ (i, j,k) ∈C}.

Triplet (ip, jp,kp) ∈ C′ is chosen at random and is added to the solution, i.e. S =
S∪ {(ip, jp,kp)}. Once (ip, jp,kp) is selected, the set of candidate triplets must be

adjusted to take into account that (ip, jp,kp) is part of the solution. Any triplet (i, j,k)
such that i = ip or j = jp or k = kp is removed from the current set of candidate triplets.

After n−1 triplets have been selected, the set C of candidate triplets contains one last

triplet which is added to S, thus completing the construction phase.

In the local search procedure, the current solution is improved by searching its

neighborhood for a better solution. The solution of the AP3 can be represented by a

pair of permutations (p,q). For a solution p,q ∈ πN , the 2-exchange neighborhood is

N2(p,q) = {p′,q′ | d(p, p′)+d(q,q′) = 2}, where d(s,s′) = |{i | s(i) 6= s′(i)}|.
In the local search, each cost of a neighborhood solution is compared with the

cost of the current solution. If the cost of the neighbor is lower, then the solution is

updated, the search is halted, and a search in the new neighborhood is initialized. The

local search ends when no neighbor of the current solution has a lower cost than the

current solution.

Path-relinking is done between an initial solution

S = {(1, jS
1,k

S
1),(2, jS

2,k
S
2), . . . ,(n, jS

n,k
S
n)}

and a guiding solution

T = {(1, jT
1 ,kT

1 ),(2, jT
2 ,kT

2 ), . . . ,(n, jT
n ,kT

n )}.

Let the symmetric difference between S and T be defined by the following two sets of

indices:

δJ = {i = 1, . . . ,n
∣

∣ jS
i 6= jT

i }
and

δK = {i = 1, . . . ,n
∣

∣ kS
i 6= kT

i }.
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An intermediate solution of the path is visited at each step of path-relinking. Two

elementary types of moves can be carried out. In a type-one move, triplets

{(i1, j1,k1),(i2, j2,k2)}
are replaced by triplets

{(i1, j2,k1),(i2, j1,k2)}.
In a type-two move, triplets

{(i1, j1,k1),(i2, j2,k2)}
are replaced by

{(i1, j1,k2),(i2, j2,k1)}.
Set δJ guides type-one moves, while δK guides type-two moves. For all i ∈ δJ, let

q be such that jT
q = jS

i . A type-one move replaces triplets

{(i, jS
i ,k

S
i ),(q, jS

q,k
S
q)}

by

{(i, jS
q,k

S
i ),(q, jS

i ,k
S
q)}.

For all i ∈ δK, let q be such that kT
q = kS

i . A type-two move replaces triplets

{(i, jS
i ,k

S
i ),(q, jS

q,k
S
q)}

by

{(i, jS
i ,k

S
q),(q, jS

q,k
S
i )}.

At each step, the move that produces the least costly solution is selected and the cor-

responding index is deleted from either δJ or δK. This process continues until there

are only two move indices left in one of the sets δJ or δK. At this stage, any of these

two moves results in the guiding solution and, therefore, are not carried out. The best

solution found in the path is returned by the procedure.

The plots in Figure 2.9 illustrate how GRASP with path-relinking compares with

pure GRASP and how different variants of GRASP with path-relinking compare. The

variants of GRASP with path-relinking tested were: random selection of one guiding

solution [GPR(RAND)]; random selection of one guiding solution and periodic re-

linking of all elements in pool [GPR(RAND,INT)]; selection of all pool elements as

guiding solutions [GPR(ALL)]; and selection of all pool elements as guiding solutions

with periodic relinking of all elements in pool [GPR(ALL,INT)]. The algorithms were

run 200 times (using different initial seeds for the random number generator) on in-

stance 24.1 of Balas and Saltzman (1991), stopping when a solution value better than

a given target value was found. The experiment comparing pure GRASP with GRASP

with path-relinking used a target value of 17, while the one comparing the different

variants of GRASP with path-relinking used a more difficult target value of 7. The

plot on the left shows the benefit of using path-relinking in GRASP. The plot on the

right shows that the variants using path-relinking with all elite solutions have a higher

probability of finding a target solution in a given amount of time than the variants that

use path-relinking with a single randomly selected elite solution. The use of periodic

intensification does not appear to influence the distributions as much.
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Figure 2.9 The plot of the left shows empirical probability distributions of time to target

value for GRASP and GRASP with path-relinking (random selection of one guiding solution

from elite set). The plot of the right shows empirical probability distributions of time to

target value for different variants of GRASP with path-relinking.

2.5 CONCLUSIONS AND EXTENSIONS

This paper reviewed recent advances and applications of GRASP with path-relinking.

By providing a short discussion of each component of GRASP with path-relinking and

showing examples of how such heuristics can be implemented for combinatorial opti-

mization problems such as PVC routing, 2-path network design, 3-index assignment,
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and p-median, we hope this paper will serve as a guide for the reader to put together

other GRASP with path-relinking heuristics.

Path-relinking is a major enhancement to the basic greedy randomized adaptive

search procedure (GRASP), leading to significant improvements in both solution time

and quality. It adds an effective memory mechanism to GRASP by providing an inten-

sification strategy that explores trajectories connecting GRASP solutions and the best

elite solutions previously produced during the search. The numerical results summa-

rized for the four problems listed above clearly illustrate the benefits obtained by the

combination of GRASP with path relinking.

In evolutionary path-relinking used in the post-optimization intensification phase,

a new generation of elite solutions is generated from the current population in the

pool of elite solutions by applying path-relinking between all pairs of solutions in

this population. Solutions obtained by each path-relinking operation are tested for

inclusion in the population of the next generation following the usual rules used in

pool management. This strategy was successfully used for the Steiner problem in

graphs by Ribeiro et al. (2002), for the p-median problem by Resende and Werneck

(2002a), and for the uncapacitated facility location problem by Resende and Werneck

(2003b).

Path-relinking may also be used as a solution extractor for population methods. In

particular, path-relinking was recently successfully applied as a generalized crossover

strategy to generate optimized offsprings in the context of a genetic algorithm for the

phylogeny problem (Ribeiro and Vianna, 2003).

The fact that the computation time to find a target solution value using GRASP with

path-relinking fits a two-parameter exponential distribution (cf. Section 2.3, see (Aiex,

2002; Aiex et al., 2003; 2002)) has a major consequence in parallel implementations

of GRASP with path-relinking: linear speedups proportional to the number of pro-

cessors can be easily observed in parallel independent strategies. Additionally, path-

relinking offers a very effective mechanism for the implementation of parallel co-

operative strategies (Cung et al., 2002). In this case, inter-processor cooperation is

enforced by a master processor which stores and handles a common pool of elite solu-

tions which is shared by all slave processors performing GRASP with path-relinking.

Careful implementations making appropriate use of the computer resources may lead

to even larger speedups and to very robust parallel algorithms, see e.g. (Martins et al.,

2004; Ribeiro and Rosseti, 2002; 2004, in preparation; Rosseti, 2003). Results ob-

tained for the 2-path network design problem are illustrated in Figure 2.10, showing

the speedup obtained by the cooperative strategy with respect to the independent one

on a cluster of eight processors. Much larger improvements can be obtained with more

processors.

Finally, we notice that path-relinking can also be successfully used in conjunction

with implementations of other metaheuristics such as VNS and ant colonies, as re-

cently reported e.g. in Aloise et al. (2003); Festa et al. (2002).
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Figure 2.10 Probability distributions of time-to-target-value on an instance of the 2-path

network design problem for cooperative and independent parallel implementations of GRASP

with path-relinking on a Linux cluster with eight processors.
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Abstract: Given an undirected graph with prizes associated with its nodes and weights

associated with its edges, the prize-collecting Steiner tree problem consists of finding a

subtree of this graph which minimizes the sum of the weights of its edges plus the prizes

of the nodes not spanned. In this paper, we describe a multi-start local search algorithm

for the prize-collecting Steiner tree problem, based on the generation of initial solutions

by a primal-dual algorithm using perturbed node prizes. Path-relinking is used to im-

prove the solutions found by local search and variable neighborhood search is used as a

post-optimization procedure. Computational experiments involving different algorithm

variants are reported. Our results show that the local search with perturbations approach

found optimal solutions on nearly all of the instances tested.

Keywords: Local search, prize collecting, Steiner problem, graphs, path-relinking, vari-

able neighborhood search, network design.
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3.1 INTRODUCTION

Let G = (V,E) be a connected undirected graph, where V is the set of nodes and E

denotes the set of edges, together with a nonnegative weight function w : E → R+

associated with its edges and a nonnegative prize function π : V →R+ associated with

its nodes. In the prize-collecting Steiner tree problem (PCSTP), one wants to find a

subtree of G = (V,E) which minimizes the sum of the weights of its edges plus the

prizes of the nodes not spanned.

The prize-collecting Steiner tree problem has an important application in telecom-

munication local access network design, so as to balance the potential revenue that

can be obtained by providing service to customers and the cost to build the network.

In this application, a fiber-optic network that provides local service to customers is

to be built. In the associated graph, edges are street segments where fiber can be

laid. Edge weights are the costs associated with laying the fiber cable along street

segments. Nodes in the graph are street intersections and the locations of customer

premises, which one can assume are on or near the streets. Node prizes are estimates

of the potential revenue to be obtained by providing service to the customers on that

node.

We notice that if the subset of nodes X to be spanned is known, we have the Steiner

tree problem, which consists of finding a minimum weighted connected subtree of G

spanning all nodes in X . The Steiner problem in graphs is a classical combinatorial

optimization problem, whose decision version has been shown to be NP-complete by

Karp (1972). Since the Steiner problem in graphs is a particular case of the PCSTP in

which all terminal nodes have infinite prizes and the others have null prizes, then the

decision version of PCSTP is also NP-complete.

Construction heuristics and lower bounds based on Lagrangian relaxation for the

PCSTP have been proposed by Segev (1987) and Engevall et al. (1998). Both pa-

pers report limited computational experience for small graphs having 5 to 100 nodes.

More recently, Johnson et al. (2000) described an implementation of the primal-dual

2-approximation algorithm of Goemans and Williamson (1996), for which extensive

computational results on large instances are reported.

In this paper, we propose a local search approach with perturbations for finding

approximate solutions to the prize-collecting Steiner tree problem and report compu-

tational results for large graphs with up to 1000 nodes and 25,000 edges. The approach

is based on a neighborhood defined by the set of nodes spanned by the current solu-

tion. In the next section, we define the neighborhood structure and the basic iterative

improvement algorithm used for local search. The multi-start perturbation algorithm

is described in Section 3.3. In Section 3.4 we describe a path-relinking scheme for

search intensification and solution improvement. The full algorithm, combining the

previous local search with perturbations algorithm and path-relinking with a variable

neighborhood search procedure is described in Section 3.5. Computational results are

reported in Section 3.6. Concluding remarks are drawn in the last section.
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3.2 LOCAL SEARCH AND NEIGHBORHOOD STRUCTURE

Given the graph G = (V,E) together with cost functions w(·) and π(·), we associate

a solution T (X) of the prize-collecting Steiner tree problem to each subset X ⊆ V of

nodes, defined by a minimum spanning tree of the graph induced in G by X . The

characteristic vector associated with the solution defined by the subset X of nodes is

vX ∈ {0,1}|V |, such that vX(i) = 1 if i∈ X ; vX (i) = 0 otherwise. We define Tp(X) to be

the tree obtained from T (X) by recursively eliminating from T (X) all degree-1 nodes

whose incident arc has weight greater than its prize. The cost c(X) of solution T (X)
is given by the sum of the weights of all edges in Tp(X) plus the sum of the prizes of

all nodes not spanned by Tp(X).
We illustrate in Figures 3.1–?? the peeling procedure leading from tree T (X) to

Tp(X). In each figure, nodes in black are those spanned by the current solution using

the edges drawn in black. Dashed edges and empty (white) nodes are not part of the

solution. Numbers on the edges are edge weights, while the numbers in the nodes

are node prizes. Figure 3.1 represents the current solution T (X) whose sum of edge

weights and non-spanned node prizes is 15. Since the leaf with node prize two is

connected by an incident edge with weight three, it can be removed leading to the tree

in Figure 3.2. Once again, the node with prize equal to four in this figure is connected

by an edge with larger weight (five) and can then be also removed. The solution Tp(X)
obtained by the peeling procedure has cost c(X) = 13 and is illustrated in Figure ??.

The neighborhood N(1)(X) of a solution T (X) is formed by all minimum span-

ning trees T (X ′) whose sets X ′ of nodes differ from X by exactly one node, i.e.,

∑
i=|V |
i=1 |vX ′(i)− vX(i)|= 1.

A local search approach based on neighborhood structure N(1) starts from some

solution T (X) associated with a set X of terminal nodes and progressively replaces it

by the first improving move it finds within neighborhood N(1)(X). The algorithmic

description of this basic iterative improvement approach used for local search is given

in Figure 3.4. The loop from lines 2 to 15 is performed until no further improvement

is possible. Lines 3 to 7 control the neighborhood search, which investigates all pos-

sible insertions and eliminations of nodes. To speed up the search, the neighborhood

investigation starts from the node following that which led to the improving move ob-
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Figure 3.2 Solution after first peeling iteration.
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Figure 3.3 Solution Tp(X) after peeling.

tained in the previous iteration (circularity). The cost c(X ′) of neighbor T (X ′) has two

components and is computed in line 8. The first component is the cost of the mini-

mum spanning tree of the graph induced in G by the nodes of Tp(X
′), using Kruskal’s

algorithm (Kruskal, 1956), to which we add the prizes of the nodes not spanned by

this tree. Whenever an improving neighbor is found, it replaces the current solution

and local search resumes from this new solution (lines 9 to 13). Local search stops

when all neighbors have been evaluated and no further reduction in terms of solution

cost is possible.

3.3 PERTURBATION ALGORITHM

The perturbation algorithm described in this section is a multi-start approach, with

initial solutions provided by the primal-dual algorithm GW of Goemans and Williamson

(1996). The algorithm is also similar to a GRASP procedure (Feo and Resende, 1995),

in which the greedy randomized construction is replaced by the construction of initial

solutions using perturbed cost functions.

The basic structure of the local search with perturbations algorithm is presented in

Figure 3.5. At each iteration, a new initial solution is constructed by the primal-dual

algorithm GW. The original node prizes π are used in the first iteration, but they are

modified during the forthcoming iterations to enforce diversification of the solutions
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procedure It Impr(V,E,w,π,X)
1 local improvement← .TRUE.;

2 while local improvement do

3 local improvement← .FALSE.;

4 circfor i = 1, . . . , |V | while .NOT.local improvement do

5 if i ∈ X

6 then X ′← X \{i};
7 else X ′← X ∪{i};
8 Compute T (X ′) and its cost c(X ′);
9 if c(X ′) < c(X)
10 then do

11 X ← X ′;
12 local improvement← .TRUE.;

13 end then;

14 end circfor;

15 end while;

16 return X ;

end It Impr;

Figure 3.4 Pseudo code of the iterative improvement algorithm for local search.

computed by algorithm GW. The spanning tree T (X) associated with the subset X of

nodes spanned by the solution constructed in this way is submitted to the local search

algorithm It Impr described in the previous section. The best solution found is up-

dated if it is improved by the current solution. Next, node prizes are updated by a

perturbation function, according to the structure of the current solution, and a new

initial solution is computed. Two variants of this algorithm are derived, using two

different prize perturbation schemes:

• Perturbation by eliminations: To enforce search diversification, we drive GW to con-

struct a new solution without some of the nodes appearing in the solution obtained in

the previous iteration. This is done by changing to zero the prizes of some persistent

nodes which appeared in the solution built by GW and remained at the end of the local

search in the previous iteration. In our implementation, we consider a parameter α and

we change to zero the prizes associated with a randomly chosen set containing α% of

the persistent nodes observed in the previous iteration.

• Perturbation by prize changes: Another strategy to force GW to build different, but

still good solutions, consists in introducing some noise into node prizes, similarly to

what is proposed by Charon and Hudry (1993), so as to change the objective function.

For each node i ∈ V , a perturbation factor β is randomly generated in the interval

[1− a,1 + a], where a is an implementation parameter, and the prize associated with

node i is changed to π(i) = π(i)×β.
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procedure LS Perturbations(V,E,w,π)

1 best value←+∞;

2 π← π;

3 for i = 1, . . . ,max iterations do

4 X ← GW(V,E,w,π);

5 X̄ ← It Impr(V,E,w,π,X);

6 if c(X̄) < best value

7 then do

8 X∗← X̄ ;

9 best value← c(X̄);
10 end then;

11 Compute perturbations and update π;

12 end for;

13 return X∗;
end LS Perturbations;

Figure 3.5 Pseudo code of the basic local search with perturbations algorithm.

3.4 ELITE SOLUTIONS AND PATH-RELINKING

The path-relinking approach generates new solutions by exploring trajectories that

connect elite solutions (Glover, 1996; Glover and Laguna, 1997). Starting from one

or more of these solutions, paths in the solution space leading towards other elite

solutions are generated and explored in the search for better solutions. This is accom-

plished by selecting moves that introduce attributes contained in the guiding solutions.

Path-relinking may then be viewed as a strategy that seeks to incorporate attributes

of high quality solutions (elite solutions), by favoring these attributes in the selected

moves.

Laguna and Martı́ (1999) adapted the concept of path-relinking for use within a

GRASP. This approach can be naturally applied in our local search with perturbations

algorithm. A pool of up to max pool high-quality diverse elite solutions is stored to

serve as guiding solutions for path-relinking.

Each iteration of algorithm LS Perturbations produces a locally optimal solution

X̄ . A solution Ȳ is chosen at random from the elite set and a path of solutions linking

X̄ to Ȳ is constructed by applying a series of changes to the original solution. We

first compute the symmetric difference between solutions X̄ and Ȳ , i.e., the set of all

nodes appearing in one of them but not in the other. This set defines the moves that

should be applied to X̄ until the guiding elite solution Ȳ is attained. Starting from

X̄ , at each iteration of path-relinking we always perform the best (most decreasing or

least increasing) remaining move still in this list until Ȳ is attained. The best solution

X̃ found along this trajectory replaces the worst solution currently in the pool if it

satisfies either one of the following criteria:

c(X̃) is less than the cost of the best solution currently in the pool;
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c(X̃) is less than the cost of the worst solution currently in the pool and X̃ is suf-

ficiently different from all solutions in the pool. For two solutions to be consid-

ered as sufficiently different, the Hamming distance between their characteristic

vectors must be greater than a specified nonnegative threshold parameter ρ≤ 1

multiplied by the number of vertices in the graph.

3.5 FULL ALGORITHM WITH POST-OPTIMIZATION

In this section, we describe a full algorithm for the PCSTP combining the previous

local search with perturbations algorithm and path-relinking with a variable neighbor-

hood search used as a post-optimization step.

The variable neighborhood search (VNS) metaheuristic, proposed by Mladenović

and Hansen (1997), is based on the exploration of a dynamic neighborhood model.

We use VNS as a post-processing optimization procedure applied to the best solution

found by the local search with perturbations algorithm described in Section 3.3.

The k-th order neighborhood N(k)(X) of a solution T (X) is formed by all minimum

spanning trees T (X ′) whose sets X ′ of nodes differ from X by exactly k nodes, i.e.,

∑
i=|V |
i=1 |vX ′(i)−vX(i)|= k. Let kmax be the order of the highest neighborhood explored.

procedure VNS(V,E,w,π,X)

1 for t = 1, . . . ,max trials do

2 k← 1;

3 while k ≤ kmax do

4 Randomly generate X̂ ∈ N(k)(X);
5 X̄ ← It Impr(V,E,w,π, X̂);

6 if c(X̄) < c(X)
7 then do

8 X ← X̄ ;

9 k← 1;

10 end then;

11 else k← k +1;

12 end while

13 end for

14 return X ;

end VNS;

Figure 3.6 Pseudo code of the VNS post-optimization procedure.

Figure 3.6 describes the VNS post-optimization procedure. Starting from an initial

solution X , the loop from lines 1 to 13 is executed for max trials iterations in which

the sequence of neighborhoods N(1)(X), . . . ,N(kmax)(X) is explored without finding

any improving solution. Each trial starts in line 2 using the first order neighborhood.

The loop from lines 3 to 12 explores a sequence of increasing order neighborhoods.

A subset X̂ of nodes belonging to the k-th order neighborhood leading to a feasible
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solution T (X̂) is randomly generated in line 4. The It Impr procedure described

in Section 3.2 is applied to X̂ in line 5. If the locally optimal solution X̄ improves

upon the current solution X , the latter is updated in line 8 and the algorithm returns to

explore again the first order neighborhood in line 9. Otherwise, the search continues

using the next order neighborhood (line 11). The best solution found is returned in

line 14.

The full algorithm LS PCSTP described in Figure 3.7 incorporates the path-relinking

strategy and the VNS post-optimization procedure to algorithm LS Perturbations,

presented in Section 3.3. A hashing procedure is also incorporated to avoid the inves-

tigation of previously visited solutions. Initializations are performed in lines 1 and 2.

The iterations of this multi-start procedure are done in the loop from lines 3 to 19. For

each iteration, a new initial solution X is constructed by the primal-dual algorithm GW

in line 4 using the current node prizes π̄. In line 5, we use a hashing function to check

if the constructed solution is stored in the list of already visited solutions. In case X

is a new solution, a locally optimal solution X̄ is obtained by the It Impr procedure

given in Section 3.2 starting from X . Solution X̄ is inserted in the pool of elite so-

lutions in line 8 if either one of the membership conditions described in Section 3.4

((i) optimality with respect to the solutions currently in the pool, or (ii) quality and

diversity) is satisfied. Next, a solution Ȳ is randomly selected from the pool of elite

solutions in line 9. The path-relinking scheme described in Section 3.4 is applied to

X̄ using Ȳ as the guiding solution, leading to the best solution X̃ in the trajectory (line

10). The incumbent solution and its value are recorded in lines 11 to 15. Once again,

in line 16 we check for the insertion of solution X̃ in the pool of elite solutions if either

one of the membership conditions is satisfied. In line 18, the node prizes π̄ are updated

for the next iteration, according to a perturbation scheme. Finally, the VNS procedure

is applied in line 20 to the incumbent solution.

3.6 COMPUTATIONAL RESULTS

Since few benchmark instances for the prize-collecting Steiner tree problem are avail-

able, we have generated a set of 80 test problems derived from the Steiner problem

instances of the OR-Library (Beasley, 1990). For each of the 40 problems from series

C and D, we generated two sets of test instances. All original non terminal nodes

receive a null prize. A prize randomly generated in the interval [1,max prize] is as-

sociated with each original terminal node, where max prize = 10 for problems in set

A and max prize = 100 for problems in set B. We also used test instances provided

in Johnson et al. (2000). Instances in this class are labeled starting with a P or K. In

the first group, instances are unstructured and are designed to have constant expected

degree and prize to weight ratio. The second group is comprised of random geometric

instances designed to have a structure somewhat similar to street maps. A detailed

description of the generators for these instances can be found in the above reference.

Algorithm LS PCSTP described in Section 3.5 and all other procedures have been

coded in C and compiled with gcc version 2.7.2.3 under Linux version 2.0.36. Func-

tion elf hash from library libelf version 0.6.4 (Riepe, 1996) was used for string

hashing. All computational experiments were performed on a 400 MHz IBM Pentium

II computer with 64 Mbytes of memory.



LOCAL SEARCH WITH PERTURBATIONS FOR THE PRIZE COLLECTING STEINER TREE PROBLEM 79

procedure LS PCSTP(V,E,w,π)

1 best value← ∞;

2 π̄← π;

3 for i = 1, . . . ,max iterations do

4 X ← GW(V,E,w, π̄);

5 if X was not previously visited

6 then do

7 X̄ ← It Impr(V,E,w,π,X);

8 Insert X̄ in the pool if membership conditions are satisfied;

9 Randomly select a solution Ȳ from the pool of elite solutions;

10 Let X̃ be the best solution found by path-relinking X̄ and Ȳ ;

11 if c(X̃) < best value

12 then do

13 X∗← X̃ ;

14 best value← c(X̃);
15 end then;

16 Insert X̃ in the pool if membership conditions are satisfied;

17 end then;

18 Compute perturbations and update π̄;

19 end for;

20 X∗← VNS(V,E,w,π,X∗);
21 return X∗;
end LS PCSTP;

Figure 3.7 Pseudo code of the full algorithm for PCSTP.

The perturbation scheme used in algorithm LS PCSTP (Figure 3.7, line 18) is based

on alternating in odd and even iterations the two strategies (perturbation by elimina-

tions and perturbation by prize changes) described in Section 3.3. We have used the

following parameter settings in our implementation: α = 20, a = 0.1, max iterations =
500, max trials = 10, kmax = 35, ρ = 0.05, and max pool = 10. The random number

generator of Schrage (1979) is used. We use an early version of the C implementation

of the Goemans and Williamson algorithm developed by Johnson et al. (2000).

We present in Tables 3.1 and 3.2 the computational results for the test problems

derived from the instances in the OR-Library. For each instance, this table shows its

identification, its number of nodes and edges, the value of the initial solution obtained

with the Goemans and Williamson algorithm, the value of the solution obtained with

the original prizes after the first iteration of algorithm LS PCSTP, the value of the solu-

tion obtained with algorithm LS PCSTP without VNS (together with the corresponding

computation time in seconds for the 500 iterations), the value of the solution obtained

with the full algorithm LS PCSTP including the VNS post-optimization step (together

with the additional computation time in seconds corresponding to the variable neigh-

borhood procedure) for all problems for which the procedure without VNS failed to

find a provably optimal solution, a lower bound obtained by solving a linear program-
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ming relaxation of an integer programming formulation of the problem (Lucena and

Resende, 1999), and an indication of whether this bound is tight. We present the same

statistics for the test problems of Johnson et al. (2000) in Table 3.3. On all of these

tables, we indicate with bold face whenever a provably optimal solution is found.

Table 3.1 Run statistics on test instances derived from series C OR-Library problems

Problem Nodes Edges GW It. Impr. LS+PR Time VNS Time LB Opt?

C.01-A 500 625 18 18 18 3 18 y

C.01-B 500 625 89 89 85 58 85 y

C.02-A 500 625 50 50 50 7 50 y

C.02-B 500 625 145 145 141 54 141 y

C.03-A 500 625 414 414 414 87 414 y

C.03-B 500 625 774 749 737 294 737 y

C.04-A 500 625 626 626 618 148 618 y

C.04-B 500 625 1106 1068 1063 387 1063 y

C.05-A 500 625 1090 1086 1080 447 1080 y

C.05-B 500 625 1549 1528 1528 397 1528 y

C.06-A 500 1000 18 18 18 9 18 y

C.06-B 500 1000 61 57 56 90 55 89 55 y

C.07-A 500 1000 50 50 50 34 50 y

C.07-B 500 1000 113 113 103 102 103 65 102 y

C.08-A 500 1000 376 368 361 313 361 y

C.08-B 500 1000 543 506 500 404 500 y

C.09-A 500 1000 541 537 533 475 533 y

C.09-B 500 1000 739 707 694 583 694 y

C.10-A 500 1000 870 860 859 628 859 y

C.10-B 500 1000 1095 1071 1069 474 1069 y

C.11-A 500 2500 18 18 18 128 18 y

C.11-B 500 2500 38 35 32 140 32 y

C.12-A 500 2500 40 39 38 162 38 y

C.12-B 500 2500 50 47 46 156 46 y

C.13-A 500 2500 247 238 237 797 237 253 236 y

C.13-B 500 2500 279 264 258 733 258 y

C.14-A 500 2500 309 295 293 829 293 y

C.14-B 500 2500 332 319 318 766 318 y

C.15-A 500 2500 515 503 501 957 501 y

C.15-B 500 2500 572 551 551 837 551 y

C.16-A 500 12500 15 12 12 429 11 1491 11 y

C.16-B 500 12500 15 12 12 292 11 1466 11 y

C.17-A 500 12500 20 20 18 549 18 y

C.17-B 500 12500 20 20 18 434 18 y

C.18-A 500 12500 130 116 111 3990 111 y

C.18-B 500 12500 131 118 113 3262 113 y

C.19-A 500 12500 165 149 146 3928 146 y

C.19-B 500 12500 167 151 146 3390 146 y

C.20-A 500 12500 271 266 266 3009 266 1302 263 ?

C.20-B 500 12500 274 267 267 2456 267 1344 264 ?

We next make some observations concerning the computational results. We refer

to the instances derived from the Series C and D test problems of the OR-Library
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Table 3.2 Run statistics on test instances derived from series D OR-Library problems

Problem Nodes Edges GW It. Impr. LS+PR Time VNS Time LB Opt?

D.01-A 1000 1250 18 18 18 6 18 y

D.01-B 1000 1250 108 106 106 257 106 y

D.02-A 1000 1250 50 50 50 7 50 y

D.02-B 1000 1250 248 241 228 280 228 206 218 y

D.03-A 1000 1250 815 809 807 734 807 y

D.03-B 1000 1250 1597 1546 1510 1702 1510 482 1509 y

D.04-A 1000 1250 1211 1205 1203 1263 1203 y

D.04-B 1000 1250 1948 1894 1884 1625 1881 608 1881 y

D.05-A 1000 1250 2195 2171 2158 2910 2157 442 2157 y

D.05-B 1000 1250 3194 3142 3136 1874 3135 681 3135 y

D.06-A 1000 2000 18 18 18 20 18 y

D.06-B 1000 2000 75 75 74 401 70 301 67 y

D.07-A 1000 2000 50 50 50 195 50 y

D.07-B 1000 2000 131 118 111 434 105 277 103 y

D.08-A 1000 2000 768 760 755 1727 755 y

D.08-B 1000 2000 1121 1060 1038 2571 1038 604 1036 y

D.09-A 1000 2000 1115 1085 1072 3627 1072 482 1070 ?

D.09-B 1000 2000 1514 1438 1420 2754 1420 y

D.10-A 1000 2000 1735 1684 1671 4193 1671 y

D.10-B 1000 2000 2161 2085 2079 2644 2079 y

D.11-A 1000 5000 18 18 18 540 18 y

D.11-B 1000 5000 31 31 30 611 30 669 29 y

D.12-A 1000 5000 44 42 42 844 42 y

D.12-B 1000 5000 44 42 42 687 42 y

D.13-A 1000 5000 482 453 445 5047 445 y

D.13-B 1000 5000 524 495 486 4288 486 y

D.14-A 1000 5000 648 607 602 6388 602 y

D.14-B 1000 5000 720 681 665 4658 665 1520 664 ?

D.15-A 1000 5000 1083 1045 1042 6366 1042 1474 1040 ?

D.15-B 1000 5000 1158 1109 1108 3770 1108 1450 1105 ?

D.16-A 1000 25000 17 17 13 1397 13 y

D.16-B 1000 25000 18 13 13 1043 13 y

D.17-A 1000 25000 25 23 23 3506 23 y

D.17-B 1000 25000 25 23 23 2089 23 y

D.18-A 1000 25000 261 237 218 30044 218 y

D.18-B 1000 25000 269 240 224 29134 224 7509 223 ?

D.19-A 1000 25000 353 318 308 34038 308 6917 306 ?

D.19-B 1000 25000 362 324 311 31527 311 7073 310 ?

D.20-A 1000 25000 550 537 536 21329 536 6810 529 ?

D.20-B 1000 25000 554 538 537 15038 537 7066 530 ?

as Series C and Series D, respectively. The instances from Johnson et al. (2000) are

referred to as Series JMP.

Table 3.4 summarizes for each algorithm variant and for each series, the number of

test instances, the number of optimal solutions found, the number of solutions within

1%, 5%, and 10% of the linear programming lower bound, and the largest percentage

deviation from this lower bound. We compute percentage deviation of the solution
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Table 3.3 Run statistics on test instances from Johnson et al. (2000).

Problem Nodes Edges GW It. Impr. LS+PR Time VNS Time LB Opt?

P100 100 317 813282 809150 803300 15 803300 y

P100.1 100 284 979080 951458 926238 14 926238 y

P100.2 100 297 419255 401641 401641 5 401641 y

P100.3 100 316 685115 659644 659644 10 659644 y

P100.4 100 284 827789 827419 827419 10 827419 y

P200 200 587 1347847 1325758 1317874 72 1317874 y

P400 400 1200 2567429 2479996 2459904 397 2459904 y

P400.1 400 1212 2914063 2826251 2808440 382 2808440 y

P400.2 400 1196 2584009 2569964 2518577 396 2518577 y

P400.3 400 1175 3060369 2974502 2951725 500 2951725 y

P400.4 400 1144 3003004 2881757 2852956 426 2852956 139 2817438 y

K100 100 351 135511 135511 135511 2 135511 y

K100.1 100 348 124108 124108 124108 2 124108 y

K100.2 100 339 204904 201816 200262 3 200262 y

K100.3 100 407 115953 115953 115953 3 115953 y

K100.4 100 364 88159 88159 88159 2 87498 4 87498 y

K100.5 100 358 119078 119078 119078 2 119078 y

K100.6 100 307 132886 132886 132886 2 132886 y

K100.7 100 315 172457 172457 172457 2 172457 y

K100.8 100 343 212236 210869 210869 2 210869 y

K100.9 100 333 122917 122917 122917 2 122917 y

K100.10 100 319 133567 133567 133567 1 133567 y

K200 200 691 332873 332873 329211 9 329211 y

K400 400 1515 352513 350093 350093 68 350093 y

K400.1 400 1470 494434 492424 491160 87 490771 107 490771 y

K400.2 400 1527 483013 479642 478035 125 477892 109 477073 y

K400.3 400 1492 417421 415328 415328 76 415328 64 401881 y

K400.4 400 1426 409243 398250 389705 92 389451 112 389451 y

K400.5 400 1456 534287 529581 519526 122 519526 y

K400.6 400 1576 375957 374849 374849 60 374849 y

K400.7 400 1442 491539 486533 478220 194 475130 112 474466 y

K400.8 400 1516 419048 419048 418614 42 418614 y

K400.9 400 1500 394026 387142 383105 76 383105 y

K400.10 400 1507 410654 408913 396109 125 395848 106 394191 y

value z from the lower bound lz as 100 · (z− lz)/lz. We first notice that the behavior of

the implementation of the Goemans and Williamson 2-approximation algorithm used

in our study was much better than its worst case guaranteed performance. With this

version of GW, the worst-quality solution found was 38.5% from the optimal value. Re-

cently, Johnson et al. (2000) further developed their implementation, resulting in slight

improvements with respect to the version we used in this study. For example, with their

new implementation, the deviation from the optimal value of the worst-quality solution

was reduced from 38.5% to 18.18%. From the first part of Table 3.4 we observe that

the instances from Series JMP are the easiest for algorithm GW, while those of Series D

are the hardest. Running times for GW are negligible on these instances. The remainder

of Table 3.4 illustrates the effect of adding the following additional components to the
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Table 3.4 Performance of GW and successive variants of local search.

Algorithm Series Instances Optimal ≤ 1% ≤ 5% ≤ 10% Worst

JMP 34 8 15 32 34 6.6%

GW C 40 6 7 24 33 36.4%

D 40 5 7 21 31 38.5%

JMP 34 14 24 34 34 3.7%

It. Impr. C 40 8 17 34 40 11.1%

D 40 11 22 33 37 30.8%

JMP 34 26 32 34 34 3.4%

LS+PR C 40 33 35 38 40 9.1%

D 40 22 34 38 39 10.5%

JMP 34 29 32 34 34 3.3%

VNS C 40 36 38 40 40 1.1%

D 40 25 34 40 40 4.6%

Table 3.5 Improvement of successive variants of local search over GW.

It. Impr. LS+PR VNS

Series Instances # Opt % impr # Opt % impr Time # Opt % impr Time

JMP 26 6 1.2 18 2.3 157.8 21 2.5 94.1

C 34 2 7.8 27 8.6 956.8 30 10.5 796.6

D 35 6 4.7 17 7.0 7668.1 20 7.5 2749.2

full LS PCSTP algorithm: iterative improvement applied to the initial solution given by

GW with the original node prizes, local search with perturbations and path-relinking,

and the full algorithm with the VNS post-optimization step. For all problem series

and levels of precision (with respect to the optimal), we notice that each additional

component always contributed to increase the number of instances having solutions

within that level of precision. This conclusion is further illustrated in Figures 3.8 to

3.10, where the overall results for the three series are depicted. The full algorithm

found 29 out of 34, 36 out of 40, and 25 out of 40 optimal solutions for series JMP,

C, and D, respectively. The worst-quality solutions found by the full algorithm were

3.3%, 1.1%, and 4.6% above the lower bound for series JMP, C, and D, respectively.

Table 3.5 illustrates, for each series of test problems, the effect of each component

of the full LS PCSTP algorithm. For each series, we first give the number of instances

not solved to optimality by GW. For each additional component of the full LS PCSTP

algorithm, the table gives the following statistics for the problems not solved to opti-

mality by GW: number of optimal solutions found, average improvement over the value

of the GW solution, and the average computation time in seconds. Computation times

for iterative improvement are negligible for these instances.

VNS found three additional optimal solutions for each series. The average im-

provement of VNS over LS PCSTP without VNS was about 0.7%. However, the av-

erage running times for VNS alone are almost of the same magnitude as those of
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Figure 3.8 Performance of GW and successive variants of local search for Series JMP

problems.

LS PCSTP without VNS. The use of VNS as a post-optimizer would probably be more

justified in the case of more difficult or larger problems, for which the other compo-

nents LS PCSTP would not be able to find by themselves near-optimal solutions. Note

that the average running times in Table 3.5 are inflated by the running times for the

six last instances in Tables 3.1 and 3.2 which are derived from notably difficult in-

stances of the Steiner problem in graphs. Compared with the time required to find an

optimal solution using the cutting planes algorithm (Lucena and Resende, 1999), the

full LS PCSTP algorithm was in general much faster. For example, instances K400.1

to K400.10 from series JMP required about one day of CPU on a Silicon Graphics

Challenge computer, while the full LS PCSTP algorithm in the worst case took about

five minutes on a 400 MHz Pentium II computer for these same instances.

We also note that the full LS PCSTP algorithm was able to find optimal solutions

for all small size problems having 100 nodes within a few seconds of computation

time. These problems are comparable with the largest ones considered by Engevall

et al. (1998), for which their algorithms did not find optimal solutions in about 9%

of the cases. Segev (1987) reported computational experience only for smaller graphs

having 5 to 40 nodes.
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Figure 3.9 Performance of GW and successive variants of local search for Series C problems.

3.7 CONCLUDING REMARKS

In this paper, we have investigated local search strategies for the prize-collecting

Steiner tree problem: iterative improvement, multi-start with perturbations, path-relinking,

and variable neighborhood search. All strategies have been shown to be effective

in improving solutions constructed by the primal-dual 2-approximation algorithm of

Goemans and Williamson. Optimal solutions have been found for most test instances.

In particular, we stress the effectiveness of path-relinking as an intensification strategy

in metaheuristic implementations.
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Abstract: We propose GRASP with evolutionary path-relinking, a metaheuristic re-

sulting from the hybridization of GRASP, path-relinking, and evolutionary path-relinking.

This metaheuristic is applied to a network migration problem. Experiments show that a

GRASP with evolutionary path-relinking heuristic finds solutions faster than a heuristic

based on GRASP with path-relinking as well as one based on pure GRASP.

Keywords: GRASP, path-relinking, greedy randomized adaptive path-relinking, evolu-

tionary path-relinking.

4.1 GRASP

GRASP, or greedy randomized adaptive search procedure (Feo and Resende, 1989;

1995), is a metaheuristic for combinatorial optimization. It consists of multiple ap-

plications of local search, each starting from a different solution. Starting solutions

are generated using some type of greedy randomized construction procedure, such as

the semi-greedy algorithm of Hart and Shogan (1987), the sample greedy algorithm of

Resende and Werneck (2004), or a perturbation scheme like in Canuto et al. (2001).

89



90 AN INTRODUCTION TO GRASP

4.2 PATH-RELINKING

Path-relinking (PR) is a search strategy that explores trajectories connecting two solu-

tions (Glover, 1996). Given two solutions, their common elements are kept constant

and the space of solutions spanned by these elements is searched with the objective of

finding a better solution. The size of the solution space grows exponentially with the

difference between the two solutions and PR explores only a small portion of the space

by moving between the two solutions in a greedy way. One way of carrying out PR

is to make one of the solutions the initial solution and the other the target and move

from the initial solution to the target. Ribeiro and Rosseti (2002) introduced mixed

PR, where the roles of guiding and target solutions are interchanged at each step of the

procedure. Faria Jr. et al. (2005) introduced greedy randomized adaptive PR, where

instead of moving between the two solutions in a greedy way, the moves are done in a

greedy randomized fashion.

4.3 GRASP WITH PATH-RELINKING

Laguna and Martı́ (2001) proposed integrating GRASP with path-relinking. A pool

of elite solutions found in the search is maintained. Membership in the pool is based

on quality and diversity, i.e. not only do pool solutions have to be of good quality but

they also must be sufficiently different from one another. At the end of each GRASP

iteration, PR is applied between the GRASP iterate and a solution chosen at random

from the pool. The solution resulting from PR is tested for membership in the elite

set. A survey of GRASP with PR is given in Resende and Ribeiro (2005).

4.4 EVOLUTIONARY PATH-RELINKING

Resende and Werneck (2004), introduced evolutionary path-relinking (EvPR) as a

post-processing phase for GRASP with PR. In EvPR, the solutions in the pool are

evolved as a series of populations P1,P2, . . . of equal size. The initial population (P0)

is the pool of elite solutions produced by GRASP with PR. In iteration k of EvPR,

path-relinking is applied between a set of pairs of solutions in population Pk and, with

the same rules used to test for membership in the pool of elite solutions, each result-

ing solution is tested for membership in population Pk+1. This evolutionary process is

repeated until no improvement is seen from one population to the next.

4.5 GRASP WITH EVOLUTIONARY PATH-RELINKING

Figure 4.1 shows pseudo-code for GRASP with evolutionary path-relinking. GRASP

with EvPR is GRASP with PR, where at fixed intervals an intensification of the elite

pool is done by way of EvPR. The pool resulting from the EvPR phase is used as the

elite pool when GRASP with PR resumes.

We highlight a few important implementation issues for the design of effective

EvPR procedures. Since path-relinking between two lower-quality elite solutions is

often unfruitful, we limit each iteration of EvPR to path-relinking between the α best

elite solutions and the β best elite solutions, where α ≤ β. Since EvPR can be re-

peatedly applied on the same pool (in consecutive GRASP with PR iterations), we
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procedure GRASP(imax, EvPRfreq)

1 Initialize pool P← /0
2 for i = 1, . . . , imax do

3 x← GreedyRandomizedConstruction()
4 x← LocalSearch(x)
5 x← PathRelinking(x,P)
6 Test x for membership in pool P;

7 if mod(i,EvPRfreq) = 0 then

8 P← EvPathRelinking(P);
9 end if

10 end for

11 return(x∗← argmin(P));
end GRASP;

Figure 4.1 Pseudo-code for GRASP with EvPR.

make use of greedy randomized adaptive mixed PR with the objective of exploring

different trajectories during different applications of EvPR. Lower-quality solutions

that have been in the pool for a large number of GRASP iterations should be forced

out of the elite pool. To implement this we associate with each elite solution an age.

When the solution enters the elite set, its age is zero. At each call of the procedure

EvPathRelinking in line 8 of the pseudo-code in Figure 4.1 the ages of each pool

member are incremented by one. If an elite solution is among the γ worst elite solu-

tions and its age is above a given threshold, then it is removed from the elite set.

4.6 EXPERIMENTAL RESULTS

We illustrate GRASP with EvPR on a network migration scheduling problem, where

inter-nodal traffic from an outdated telecommunications network is to be migrated

to a new network. Nodes in the old network are deloaded in sequence. All traffic

originating, terminating, or passing through the node in the old network is moved to a

specific node in the new network. The amount of new capacity needed to achieve the

migration depends on the sequence that nodes in the old network are deloaded.

Using real and artificially generated instances, we compare pure GRASP, GRASP

with PR, and several variants of GRASP with EvPR. Time-to-target (TTT) plots (Aiex

et al., 2006) show some numbers to support the conclusions that GRASP with PR

outperforms pure GRASP and that GRASP with EvPR outperforms GRASP with PR.
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Abstract: This chapter describes a perl language program to create time-to-target

solution value plots for measured CPU times that are assumed to fit a shifted exponential

distribution. This is often the case in local search based heuristics for combinatorial

optimization, such as simulated annealing, genetic algorithms, iterated local search, tabu

search, WalkSAT, and GRASP. Such plots are very useful in the comparison of different

algorithms or strategies for solving a given problem and have been widely used as a tool

for algorithm design and comparison. We first discuss how TTT plots are generated. This

is followed by a description of the perl program tttplots.pl.

Keywords: Time-to-target plots, algorithm engineering, Perl.

5.1 INTRODUCTION

It has been observed that in many implementations of local search based heuristics

for combinatorial optimization problems, such as simulated annealing, genetic algo-

rithms, iterated local search, tabu search, WalkSAT, and GRASP (Aiex et al., 2002;
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Battiti and Tecchiolli, 1992; Dodd, 1990; Eikelder et al., 1996; Hoos and Stützle,

1999; Hoos, 1999; Osborne and Gillett, 1991; Selman et al., 1994; Taillard, 1991;

Verhoeven and Aarts, 1995), the random variable time to target solution value is ex-

ponentially distributed or fits a two-parameter shifted exponential distribution, i.e. the

probability of not having found a given target solution value in t time units is given

by P(t) = e−(t−µ)/λ, with λ ∈ R+ and µ ∈ R. Hoos and Stützle (1998b) and Hoos

and Stützle (1999) conjecture that this is true for all local search based methods for

combinatorial optimization.

Time-to-target (TTT) plots display on the ordinate axis the probability that an al-

gorithm will find a solution at least as good as a given target value within a given

running time, shown on the abscissa axis. TTT plots were used by Feo et al. (1994)

and have been advocated by Hoos and Stützle (1998); Hoos and Stützle (1998a) as

a way to characterize the running times of stochastic algorithms for combinatorial

optimization.

This paper describes a perl program to create time-to-target plots for measured

CPU times that are assumed to fit a shifted exponential distribution. Such plots are

very useful in the comparison of different algorithms or strategies for solving a given

problem and have been widely used as a tool for algorithm design and comparison. In

the next section, we discuss how TTT plots are generated, following closely Aiex et al.

(2002). The perl program tttplots.pl is described in Section 5.3. The source code

is available from the Electronic Supplementary Material page of Optimization Letters.

Section 5.4 presents an example and concluding remarks are made in Section 5.5.

5.2 TIME-TO-TARGET PLOTS

The hypothesis here is that CPU times fit a two parameter, or shifted, exponential

distribution. For a given problem instance, we measure the CPU time to find a solution

with an objective function value at least as good as a given target value. The heuristic

is run n times on the fixed instance and using the given target solution value. For

each of the n runs, the random number generator is initialized with a distinct seed and,

therefore, the runs are assumed to be independent. To compare the empirical and the

theoretical distributions, we follow a standard graphical methodology for data analysis

(Chambers et al., 1983). This methodology is used to produce the TTT plots. In the

remainder of this section we describe this methodology.

For each instance/target pair, the running times are sorted in increasing order. We

associate with the i-th sorted running time ti a probability pi = (i− 1/2)/n, and plot

the points zi = [ti, pi], for i = 1, . . . ,n. Figure 5.1 illustrates this cumulative probability

distribution plot for a instance/target pair obtained by repeatedly applying a GRASP

heuristic to find a solution with objective function value at least as good as a given

target value. In this figure, we see that the probability of the heuristic finding a solution

at least as good as the target value in at most 2 seconds is about 50%, in at most 4

seconds is about 80%, and in at most 6 seconds is about 90%.

The plot in Figure 5.1 appears to fit a shifted exponential distribution. We would

like to estimate the parameters of the two-parameter exponential distribution. To do

this, we first draw the theoretical quantile-quantile plot (or Q-Q plot) for the data. To

describe Q-Q plots, we recall that the cumulative distribution function for the two-
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Figure 5.1 Cumulative probability distribution plot of measured data.

parameter exponential distribution is given by F(t) = 1− e−(t−µ)/λ, where λ is the

mean of the distribution data (and also is the standard deviation of the data) and µ is

the shift of the distribution with respect to the ordinate axis.

For each value pi, i = 1, . . . ,n, we associate a pi-quantile Qt(pi) of the theoretical

distribution. For each pi-quantile we have, by definition, that F((Qt(pi)) = pi. Hence,

Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribution, we

have Qt(pi) =−λ ln(1− pi)+µ. The quantiles of the data of an empirical distribution

are simply the (sorted) raw data.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoret-

ical distribution. This involves three steps. First, the data (in our case, the measured

times) are sorted in ascending order. Second, the quantiles of the theoretical exponen-

tial distribution are obtained. Finally, a plot of the data against the theoretical quantiles

is made.

In a situation where the theoretical distribution is a close approximation of the em-

pirical distribution, the points in the Q-Q plot will have a nearly straight configuration.

In a plot of the data against a two-parameter exponential distribution with λ = 1 and

µ = 0, the points would tend to follow the line y = λ̂x + µ̂. Consequently, parameters

λ and µ of the two-parameter exponential distribution can be estimated, respectively,

by the slope λ̂ and the intercept µ̂ of the line depicted in the Q-Q plot.

The Q-Q plot shown in Figure 5.2 is obtained by plotting the measured times in

the ordinate against the quantiles of a two-parameter exponential distribution with

λ = 1 and µ = 0 in the abscissa, given by − ln(1− pi) for i = 1, . . . ,n. To avoid

possible distortions caused by outliers, we do not estimate the distribution mean with

the data mean or by linear regression on the points of the Q-Q plot. Instead, we

estimate the slope λ̂ of the line y = λx + µ using the upper quartile qu and lower

quartile ql of the data. The upper and lower quartiles are, respectively, the Q(1/4) and
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Figure 5.2 Q-Q plot showing fitted line.
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Figure 5.3 Q-Q plot with variability information.

Q(3/4) quantiles. We take λ̂ = [zu− zl]/[qu− ql] as an estimate of the slope, where

zu and zl are the u-th and l-th points of the ordered measured times, respectively. This

informal estimation of the distribution of the measured data mean is robust since it

will not be distorted by a few outliers (Chambers et al., 1983). Consequently, the

estimate for the shift is µ̂ = zl − λ̂ql . To analyze the straightness of the Q-Q plots, we

superimpose them with variability information. For each plotted point, we show plus

and minus one standard deviation in the vertical direction from the line fitted to the

plot. An estimate of the standard deviation for point zi, i = 1, . . . ,n, of the Q-Q plot is
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Figure 5.4 Superimposed empirical and theoretical distributions.

σ̂ = λ̂[pi/(1− pi)n]
1
2 . Figure 5.3 shows an example of a Q-Q plot with superimposed

variability information.

When observing a theoretical quantile-quantile plot with superimposed standard

deviation information, one should avoid turning such information into a formal test.

One important fact that must be kept in mind is that the natural variability of the

data generates departures from the straightness, even if the model of the distribution

is valid. The most important reason for portraying standard deviation is that it gives

us a sense of the relative variability of the points in the different regions of the plot.

However, since one is trying to make simultaneous inferences from many individual

inferences, it is difficult to use standard deviations to judge departures from the refer-

ence distribution. For example, the probability that a particular point deviates from the

reference line by more than two standard deviations is small. However, the probability

that at least one of the data points deviates from the line by two standard deviations is

probably much greater. In order statistics, this is made more difficult by the high cor-

relation that exists between neighboring points. If one plotted point deviates by more

than one standard deviation, there is a good chance that a whole bunch of them will

too. Another point to keep in mind is that standard deviations vary substantially in the

Q-Q plot, as can be observed in the Q-Q plot in Figure 5.3 that the standard deviation

of the points near the high end are substantially larger than the standard deviation of

the other end.

Once the two parameters of the distribution are estimated, a superimposed plot of

the empirical and theoretical distributions can be made. Figure 5.4 shows this plot

corresponding to the Q-Q plot in Figure 5.3.
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Table 5.1 Files produced by tttplots.pl.

empirical exponential distribution data file input filename-ee.dat

theoretical exponential distribution data file input filename-te.dat

empirical QQ-plot data file input filename-el.dat

theoretical QQ-plot data file input filename-tl.dat

theoretical upper 1 standard deviation QQ-plot data input filename-ul.dat

theoretical lower 1 standard deviation QQ-plot data input filename-ll.dat

theoretical vs empirical TTT plot gnuplot file input filename-exp.gpl

theoretical vs empirical QQ-plot gnuplot file input filename-qq.gpl

theoretical vs empirical TTT plot PostScript file input filename-exp.ps

theoretical vs empirical QQ-plot PostScript file input filename-qq.ps

5.3 THE PERL PROGRAM

tttplots.pl 1 is a perl program that takes as input a file with with CPU times. To be

able to produce the plots, tttplots.pl requires that gnuplot 2 be installed.

To run tttplots.pl, simple type: perl tttplots.pl -f input filenamewhere

input filename.dat is the input data file with n CPU time data points, one time

point per line.

Two plots are produced by ttplots.pl:

1. Q-Q plot with superimposed variability information (as in Figure 5.3); and

2. Superimposed empirical and theoretical distributions (as in Figure 5.4).

Besides printing to the standard output some basic statistics of the data file and the

estimated parameters, tttplots.pl also creates some output files. A list of the files

produced by tttplots.pl is shown in Table 5.1. Files of type .dat contain data

points that are plotted by gnuplot with files of type .gpl. Postscript files of type .ps

are generated by gnuplot.

1tttplots.pl can be downloaded from http://www.research.att.com/∼mgcr/tttplots.
2gnuplot can be downloaded from the gnuplot homepage at http://www.gnuplot.info.
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5.4 AN EXAMPLE

In this section, we show an example of the plots produced by tttplots.pl. We

ran the GRASP with path-relinking heuristic for the MAX-CUT problem described in

Festa et al. (2002) on instance G13 with a target solution value of 572. We produce

plots after 10, 20, 30, 50, 75, 100, 125, 150, and 200 runs. These plots are shown in

Figures 5.5, 5.6, and 5.7. These plots were obtained by running tttplots.pl using

as input files with the CPU times that each of the runs took to find a solution with

value at least as good as the target value.

We notice that the larger is the number of runs n (i.e. the number of points plotted),

the closer the empirical distribution is to the theoretical distribution. This be seen in

the time-to-target plots, as well as in the Q-Q plots. We have observed in practice

that using n = 200 gives very good approximations of the theoretical distributions.

Furthermore, we also notice that the use of “easy” target solution values should be

discouraged, since in this case the CPU times are very small in almost all runs and the

exponential distribution degenerates to a step function.

5.5 CONCLUDING REMARKS

In this paper, we described a perl language program to create time-to-target plots from

a set of running times that are exponentially distributed.

Most time-to-target plots seen in the literature are created from a set of repeated

runs of an algorithm on a fixed problem instance. An exception to this was in Feo

et al. (1994), where the time-to-target plots were created by running an algorithm a

single time on many randomly generated instances having a fixed characteristic (e.g.

size and density).

Besides being used to help establish the probability distribution of time-to-target

random variables for various stochastic algorithms (Aiex et al., 2003; 2005; Aiex and

Resende, 2005; Aiex et al., 2002; Czarnowski and Jȩdrzejowicz, 2004; Hoos, 1999;

Hoos and Stützle, 2000; Resende and Gonzalez Velarde, 2003; Resende and Ribeiro,

2003b; 2005; Stützle and Hoos, 2000), TTT plots have been used in a number of

studies to analyze the comparison of

different heuristics (Aiex et al., 2003; 2005; Buriol et al., 2005; Chiarandini and

Stützle, 2002; de Andrade et al., 2005; Fernandes and Ribeiro, 2005; Festa et al.,

2005; 2002; Hoos and Boutilier., 2000; Hoos and Stützle, 2000; Marinho, 2005;

Oliveira et al., 2004; Resende and Ribeiro, 2003b; 2005; Santos et al., 2004a;b;

Silva et al., 2004; Stützle and Hoos, 2000; Tompkins and Hoos, 2003; Tulpan

and Hoos, 2003);

parallel implementations using different number of processors or parallelization

strategies (Aiex et al., 2003; 2005; Aiex and Resende, 2005; Martins et al., 2004;

Resende and Ribeiro, 2003b; 2005);

the same algorithm on several instances (Aiex et al., 2003; 2005; Feo et al.,

1994; Gent et al., 2003; Hoos and Stützle, 1999; Nudelman et al., 2004; Stützle

and Hoos, 2000);
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algorithms using different strategies (Aiex et al., 2005; Martins et al., 2004;

Resende and Ribeiro, 2003a;b; 2005; Shmygelska et al., 2002; Shmygelska and

Hoos, 2003; Stützle and Hoos, 2000; Tulpan and Hoos, 2003; Tulpan et al.,

2003); and

an algorithm using different parameter settings (Buriol et al., 2005; Hutter,

2004; Hutter et al., 2002; Shmygelska et al., 2002; Shmygelska and Hoos, 2003;

Tulpan et al., 2003).
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Figure 5.5 Empirical versus theoretical distributions on left and QQ-plots with variability

information on right: 10, 20, and 30 data points.
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Figure 5.6 Empirical versus theoretical distributions on left and QQ-plots with variability

information on right: 50, 75, and 100 data points.
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Figure 5.7 Empirical versus theoretical distributions on left and QQ-plots with variability

information on right: 125, 150, and 200 data points.
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Appendix: Program listing

#!/usr/bin/perl

##

# --------------------------------------------------------------------------------

##

## tttplots: A Perl program for generating empirical vs

## theoretical distributions of time-to-target-value

## plot and corresponding QQ-plots with variability

## information.

##

## usage: perl tttplots.pl -f <input-file>

##

## where <input-file>.dat is the input file of time to

## target values (one per line).

##

##

## authors: Renata M. Aiex, Mauricio G. C. Resende, and

## Celso C. Ribeiro

##

# --------------------------------------------------------------------------------

##

##

# --------------------------------------------------------------------------------

## Input file name.

# --------------------------------------------------------------------------------

##

$datafilethere=0;

while ($ARGV[0]) {

if ($ARGV[0] eq "-f") {

shift(@ARGV);

$filename = $ARGV[0];

$datafilename = $filename . ".dat";

$datafilethere=1;

shift;

}

}

if ($datafilethere == 0) {

die "Error, data file missing. \nUsage:

perl tttplots.pl -f datafile.dat -o outputfile.out \n";

}

##

# --------------------------------------------------------------------------------

# Name output files.

# --------------------------------------------------------------------------------

##

$emp_lin_filename = $filename . "-el" . ".dat";

$the_lin_filename = $filename . "-tl" . ".dat";

$up_lin_filename = $filename . "-ul" . ".dat";

$lo_lin_filename = $filename . "-ll" . ".dat";
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$gpl_lin_filename = $filename . "-qq" . ".gpl";

$ps_lin_filename = $filename . "-qq" . ".ps";

$emp_exp_filename = $filename . "-ee" . ".dat";

$the_exp_filename = $filename . "-te" . ".dat";

$gpl_exp_filename = $filename . "-exp" . ".gpl";

$ps_exp_filename = $filename . "-exp" . ".ps";

##

# --------------------------------------------------------------------------------

# Open input data file.

# --------------------------------------------------------------------------------

##

open (DATFILE,$datafilename) ||

die "Cannot open file: $datafilename \n";

##

# --------------------------------------------------------------------------------

# Read input data file. Require that data file have one value per line.

# --------------------------------------------------------------------------------

##

$n=0;

while ($line = <DATFILE>){

chomp($line);

@field = split(/\s+/,$line);

$nfields=0; #

foreach $fld (@field){ # count number of fields

$nfields++; #

} #

if ($nfields != 1){

die "Number of fields in data file must be 1 \n";

}

$time_value[$n] = $field[0];

$n++;

}

close (DATFILE);

##

# --------------------------------------------------------------------------------

# Sort times.

# --------------------------------------------------------------------------------

##

@sorted_time_value = sort { $a <=> $b } @time_value;

##

# --------------------------------------------------------------------------------

# Write file information to standard output.

# --------------------------------------------------------------------------------

##

print "\@--------------------------------------------------------@\n";

print " tttplots: TIME TO TARGET (TTT) DISTRIBUTION PLOTS \n\n";

print " Input data set > \n\n";

print " data file : $datafilename \n\n";

print " data points : $n \n";

print " max value : $sorted_time_value[$n-1] \n";

##
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# --------------------------------------------------------------------------------

# Compute and write input data mean to standard output.

# --------------------------------------------------------------------------------

##

$avg=0;

for ($k=0; $k < $n; $k++){

$avg=$avg + $sorted_time_value[$k];

}

$avg=$avg/$n;

print " avg value : $avg \n";

print " min value : $sorted_time_value[0] \n\n";

##

# --------------------------------------------------------------------------------

# Compute probabilities for distribution plot.

# --------------------------------------------------------------------------------

##

$nn = 0;

$np1=$n+1;

while ($nn < $n){

$prob[$nn] = $nn + .5;

$prob[$nn] = $prob[$nn] / $np1;

$nn++;

}

##

# --------------------------------------------------------------------------------

# Compute distribution parameters.

# --------------------------------------------------------------------------------

##

$fq = ($np1 * .25);

$tq = ($np1 * .75);

$fq = int($np1 * .25);

$tq = int($np1 * .75);

$y = $prob[$fq];

$zl = $sorted_time_value[$fq];

$ql = -log(1-$y);

$y = $prob[$tq];

$zu = $sorted_time_value[$tq];

$qu = -log(1-$y);

$lambda = ($zu - $zl)/($qu - $ql);

$mu = $zl - ($lambda * $ql);

##

# --------------------------------------------------------------------------------

# Write distribution parameters to standard output.

# --------------------------------------------------------------------------------

##

print " Estimated parameters (theoretical shifted exponential

distribution) > \n\n";

print " shift (mu) : $mu \n";

print " std. dev. (lambda) : $lambda \n";

$shifted_mean = $mu+$lambda;

print " mean (shifted) : $shifted_mean \n";

##

# --------------------------------------------------------------------------------
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# Compute theoretical plot (400 points).

# --------------------------------------------------------------------------------

##

$tmax = $sorted_time_value[$n-1];

$inv_lambda = 1/$lambda;

$eps = $tmax/400;

$nn = 1;

while ($nn <= 400){

$theory_t[$nn-1]= $eps * $nn;

$theory_p[$nn-1] = 1-exp(-$inv_lambda*($eps * $nn - $mu));

$nn++;

}

##

# --------------------------------------------------------------------------------

# Compute theoretical time values.

# --------------------------------------------------------------------------------

##

$nn = 0;

while ($nn < $n){

$theoretical_time[$nn] = -log(1-$prob[$nn]);

$nn++;

}

##

# --------------------------------------------------------------------------------

# Compute qqplot line, lower and upper error lines.

# --------------------------------------------------------------------------------

##

$nn = 0;

while ($nn < $n){

$pi = $prob[$nn];

$x[$nn] = -log(1-$pi);

$qq_err[$nn] = $lambda * $x[$nn] + $mu;

$dev = $lambda * (sqrt($pi/((1-$pi)*$np1)));

$lo_error_point[$nn] = $qq_err[$nn] - $dev;

$up_error_point[$nn] = $qq_err[$nn] + $dev;

$nn++;

}

##

# --------------------------------------------------------------------------------

# Write output files ...

# --------------------------------------------------------------------------------

##

open (EMP_LIN_FILE,">$emp_lin_filename") ||

die "Cannot open file: $emp_lin_filename \n";

open (UP_LIN_FILE,">$up_lin_filename") ||

die "Cannot open file: $up_lin_filename \n";

open (LO_LIN_FILE,">$lo_lin_filename") ||

die "Cannot open file: $lo_lin_filename \n";

open (EMP_EXP_FILE,">$emp_exp_filename") ||

die "Cannot open file: $emp_exp_filename \n";

open (THE_LIN_FILE,">$the_lin_filename") ||

die "Cannot open file: $the_lin_filename \n";

$nn = 0;
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while ($nn < $n){

print EMP_EXP_FILE

"$sorted_time_value[$nn] $prob[$nn] \n";

print EMP_LIN_FILE

"$theoretical_time[$nn] $sorted_time_value[$nn] \n";

print LO_LIN_FILE "$x[$nn] $lo_error_point[$nn] \n";

print UP_LIN_FILE "$x[$nn] $up_error_point[$nn] \n";

print THE_LIN_FILE "$x[$nn] $qq_err[$nn] \n";

$nn++;

}

close (EMP_EXP_FILE);

##

# --------------------------------------------------------------------------------

# Theoretical exponential distribution file.

# --------------------------------------------------------------------------------

##

open (THE_EXP_FILE,">$the_exp_filename") ||

die "Cannot open file: $the_exp_filename \n";

$nn = 0;

while ($nn < 400){

print THE_EXP_FILE "$theory_t[$nn] $theory_p[$nn] \n";

$nn++;

}

##

# --------------------------------------------------------------------------------

# Create qqplot gnuplot file.

# --------------------------------------------------------------------------------

##

open (GPL_LIN_FILE,">$gpl_lin_filename") ||

die "Cannot open file: $gpl_lin_filename \n";

print GPL_LIN_FILE <<EOF;

set xlabel \’exponential quantiles\’

set size ratio 1

set ylabel \’measured times\’

set key right bottom

set title \’$filename\’

set terminal postscript color \’Helvetica\’

set output \’$ps_lin_filename\’

plot "$emp_lin_filename" t "empirical" w points,

"$the_lin_filename" t "estimated" with lines 3,

"$up_lin_filename" t "+1 std dev range" w lines 4,

"$lo_lin_filename" t "-1 std dev range" w lines 4

quit

EOF

##

# --------------------------------------------------------------------------------

# Create qqplot postscript graphic file.

# --------------------------------------------------------------------------------

##

open (PS_EXP_FILE,">$ps_exp_filename") ||

die "Cannot open file: $ps_exp_filename \n";

system("gnuplot $gpl_lin_filename") == 0 ||

die "gnuplot (needed for plotting) not found \n";

##

# --------------------------------------------------------------------------------
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# Create empirical-theoretical distributions gnuplot file.

# --------------------------------------------------------------------------------

##

open (GPL_EXP_FILE,">$gpl_exp_filename") ||

die "Cannot open file: $gpl_exp_filename \n";

print GPL_EXP_FILE <<EOF;

set xlabel \’time to target solution\’

set size ratio 1

set ylabel \’cumulative probability\’

set yrange [0:1]

set key right bottom

set grid

set title \’$filename\’

set terminal postscript color \’Helvetica\’

set output \’$ps_exp_filename\’

plot "$emp_exp_filename" t "empirical" w points,

"$the_exp_filename" t "theoretical" w lines 3

quit

EOF

##

# --------------------------------------------------------------------------------

# Create empirical-theoretical distributions postscript

# graphic file.

# --------------------------------------------------------------------------------

##

open (PS_EXP_FILE,">$ps_exp_filename") ||

die "Cannot open file: $ps_exp_filename \n";

system("gnuplot $gpl_exp_filename") == 0 ||

die "gnuplot (needed for plotting) not found \n";

##

# --------------------------------------------------------------------------------

# Write file names to standard output.

# --------------------------------------------------------------------------------

##

print "\n Output data files > \n\n";

print " empirical exponential distribution data : $emp_exp_filename \n";

print " theoretical exponential distribution data: $the_exp_filename \n";

print " empirical qq-plot data : $emp_lin_filename\n";

print " theoretical qq-plot data : $the_lin_filename\n";

print " theoretical upper 1 std dev qq-plot data : $up_lin_filename\n";

print " theoretical lower 1 std dev qq-plot data : $lo_lin_filename\n";

print " theor. vs empir. ttt plot gnuplot file : $gpl_exp_filename\n";

print " theor. vs empir. qq-plot gnuplot file : $gpl_lin_filename\n";

print " theor. vs empir. ttt plot postscript file: $ps_exp_filename\n";

print " theor. vs empir. qq-plot postscript file : $ps_lin_filename\n";

print "\n DONE \n";

print "\@--------------------------------------------------------@\n";

print "\n";

##

# --------------------------------------------------------------------------------

# End of program.

# --------------------------------------------------------------------------------

##
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Abstract: A GRASP (greedy randomized adaptive search procedure) is a multi-start

metaheuristic for combinatorial optimization. We study the probability distributions of

solution time to a sub-optimal target value in five GRASPs that have appeared in the

literature and for which source code is available. The distributions are estimated by

running 12,000 independent runs of the heuristic. Standard methodology for graphical

analysis is used to compare the empirical and theoretical distributions and estimate the

parameters of the distributions. We conclude that the solution time to a sub-optimal target

value fits a two-parameter exponential distribution. Hence, it is possible to approximately

achieve linear speed-up by implementing GRASP in parallel.

Keywords: GRASP, probability distribution of running time, time-to-target plots.

6.1 INTRODUCTION

A greedy randomized adaptive search procedure (GRASP) (Feo and Resende, 1989;

1995; Festa and Resende, 2000) is a multi-start or iterative process, in which each

GRASP iteration consists of two phases. In a construction phase, a feasible solution

119
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Table 6.1 CPU time (in seconds) and speed-up on MAX-SAT problems. Average speed-up

is shown for 5, 10, and 15 processors.

1 processor 5 processors 10 processors 15 processors

problem time time speed-up time speed-up time speed-up

jnh201 310.4 62.8 4.9 30.5 10.2 22.2 14.0

jnh202 312.2 59.8 5.2 31.2 10.0 23.4 13.3

jnh203 351.2 72.3 4.9 35.2 10.0 23.2 15.1

jnh205 327.8 63.4 5.2 32.1 10.2 22.5 14.6

jnh207 304.7 56.7 5.4 29.6 10.3 19.8 15.4

jnh208 355.2 65.6 5.4 33.2 10.7 21.0 16.9

jnh209 339.0 60.5 5.6 33.6 10.1 21.6 15.7

jnh210 318.5 57.6 5.5 32.5 9.8 20.8 15.3

jnh301 414.5 85.3 4.9 45.2 9.2 28.3 14.6

jnh302 398.7 88.6 4.5 48.2 8.3 27.0 14.7

average speed-up: 5.2 9.9 15.0

is produced and in a local search phase, a local optimum in the neighborhood of the

constructed solution is sought. The best overall solution is kept as the result.

In the construction phase, a feasible solution is iteratively constructed, one element

at a time. The basic GRASP construction phase is similar to the semi-greedy heuristic

proposed independently by Hart and Shogan (1987). At each construction iteration,

the choice of the next element to be added is determined by ordering all candidate

elements (i.e. those that can be added to the solution) in a candidate list C with respect

to a greedy function g : C→R. This function measures the (myopic) benefit of select-

ing each element. The heuristic is adaptive because the benefits associated with every

element are updated at each iteration of the construction phase to reflect the changes

brought on by the selection of the previous element. The probabilistic component of a

GRASP is characterized by randomly choosing one of the best candidates in the list,

but not necessarily the top candidate. The list of best candidates is called the restricted

candidate list (RCL).

It is almost always beneficial to apply a local search to attempt to improve each

constructed solution. A local search algorithm works in an iterative fashion by suc-

cessively replacing the current solution by a better solution in the neighborhood of the

current solution. It terminates when no better solution is found in the neighborhood.

As with any multi-start heuristic for combinatorial optimization, a GRASP can be

implemented in parallel by dividing the k independent iterations among ρ processors.

Another approach is to give a target value τ of the objective function to each processor

and execute the algorithm until the first processor finds a solution with value at least

as good as τ, at which point all processors halt. Some care is needed to assure that

no two iterations start with identical random number generator seeds (Pardalos et al.,

1996). These are examples of multiple independent walk parallelism (Verhoeven and

Aarts, 1995).
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Many parallel implementations of GRASP using the above strategies have been re-

ported in the literature, e.g. (Martins et al., 2000; 1998; Murphey et al., 1998; Pardalos

et al., 1995; 1996). In most of these papers, a common observation was made. The

speedups in the measured running times were proportional to the number of proces-

sors. A typical example can be seen in Pardalos et al. (1996) where, for a PVM-based

implementation of a parallel GRASP for the MAX-SAT, average speed-ups almost

identical to the number of processors were measured (see Table 6.1).

This observation can be explained if the random variable solution time to target is

exponentially distributed, as indicated by the following proposition (Verhoeven and

Aarts, 1995).

Proposition 1 Let Pρ(t) be the probability of not having found a given (target) solu-

tion in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ R+, i.e. P1

corresponds to an exponential distribution, then Pρ(t) = e−ρt/λ.

The above proposition follows from the definition of the exponential distribution.

It implies that the probability of finding a solution of a given value in time ρt with a

sequential process is equal to the probability of finding a solution at least as good as

that given value in time t with ρ independent parallel processes. Hence, it is possible

to achieve linear speed-up in solution time to target solution by multiple independent

processes.

An analogous proposition can be stated for a two parameter (shifted) exponential

distribution.

Proposition 2 Let Pρ(t) be the probability of not having found a given (target) solu-

tion in t time units with ρ independent processes. If P1(t) = e−(t−µ)/λ with λ ∈ R+

and µ ∈ R, i.e. P1 corresponds to a two parameter exponential distribution, then

Pρ(t) = e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two parameter ex-

ponential distribution. It implies that the probability of finding a solution of a given

value in time ρt with a sequential process is equal to 1−e−(ρt−µ)/λ while the probabil-

ity of finding a solution at least as good as that given value in time t with ρ independent

parallel processes is 1−e−ρ(t−µ)/λ. Note that if µ = 0, then both probabilities are equal

and correspond to the non-shifted exponential distribution. Furthermore, if ρµ≪ λ,

then the two probabilities are approximately equal and it is possible to approximately

achieve linear speed-up in solution time to target solution by multiple independent

processes.

This behavior has been noted in a number of metaheuristics. These include simu-

lated annealing (Dodd, 1990; Osborne and Gillett, 1991); iterated local search algo-

rithms for the traveling salesman problem (Eikelder et al., 1996), where it is shown

that the probability of finding a sub-optimal solution is given by a shifted exponen-

tial distribution, allowing for the time to find the first local optimum; tabu search,

provided that the search starts from a local optimum (Battiti and Tecchiolli, 1992;

Taillard, 1991); and WalkSAT (Selman et al., 1994) on hard random 3-SAT problems

(Hoos and Stützle, 1999).
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The objective of this paper is to determine if the solution times for GRASP also

have this property, i.e., they fit a two parameter exponential distribution. To do this,

we consider five GRASPs that have been reported in the literature and for which we

have source code:

1. maximum independent set (Feo et al., 1994; Resende et al., 1998);

2. quadratic assignment problem (Li et al., 1994; Resende et al., 1996);

3. graph planarization (Resende and Ribeiro, 1997; Ribeiro and Resende, 1999);

4. maximum weighted satisfiability (Resende et al., 1997; 2000);

5. maximum covering (Resende, 1998).

For each GRASP, we selected four test problems from the literature. For each of

these instances, we determined three solution target values spread out between mini-

mum and maximum values produced by GRASP. For each target value, we measured

running times to find a solution at least as good as the target and studied these distri-

butions.

The remainder of this paper is organized as follows. In Section 6.2, we give a brief

overview of each of the five GRASPs used in this study. The experimental design

is described in Section 6.3. The experimental results are reported in Section 6.4. In

Section 6.5, we make concluding remarks.

6.2 FIVE GRASP IMPLEMENTATIONS

In this section, we briefly describe the five GRASPs used in the experiments. For each

GRASP, we define the combinatorial optimization problem it solves, the construction

phase and the local search phase.

6.2.1 GRASP for maximum independent set

A GRASP for maximum independent set was introduced by Feo et al. (1994). Fortran

subroutines that implement this GRASP are found in Resende et al. (1998).

6.2.1.1 Problem definition. Let G = (V,E) be an undirected graph with ver-

tex set V and edge set E. Vertices u,v ∈ V are nonadjacent if (u,v) 6∈ E. A subset of

the vertices S ⊆ V is independent if all vertices in S are pairwise nonadjacent. In the

maximum independent set problem one wants to find an independent set having the

largest cardinality.

6.2.1.2 Construction phase. The algorithm initializes a working graph G̃ =
(Ṽ , Ẽ) to be the original graph, and sets the independent set S empty. The independent

set is built up one vertex at a time. The greedy function that guides the construction is

vertex degree with respect to the working graph. It selects among the working graph

vertices, the one with minimum degree and places that vertex in the independent set.

The greedy function is adaptive, since it changes with the selection of each indepen-

dent vertex.
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Let d and d be, respectively, the minimum and maximum degrees over all working

vertices, i.e.

d = minv∈Ṽ{d(v,G̃)} and d = maxv∈Ṽ{d(v,G̃)},
where d(v,G̃) is the degree of vertex v with respect to G̃. The restricted candidate list

(RCL) is the set of vertices

RCL = {v ∈ Ṽ | d(v,G̃)≤ d +α(d−d)},

where the parameter α controls the size of the RCL and is such that 0 ≤ α ≤ 1. The

vertex selection in the GRASP construction phase is random, restricted to vertices in

the RCL.

6.2.1.3 Local search phase. A (2,1)-exchange local search heuristic for the

maximum independent set problem seeks a larger independent set by removing a sin-

gle vertex x from the independent set S and replacing it by two nonadjacent vertices u

and v, such that u and v are not adjacent to any vertex in S \{x}. If such an exchange

is found, the procedure is recursively applied on the new larger independent set. A

locally optimal solution is detected when no further exchange is possible.

6.2.2 GRASP for quadratic assignment

Li et al. (1994) introduce a GRASP for the quadratic assignment problem (QAP) and

describe Fortran subroutines for this GRASP in (Resende et al., 1996). A specializa-

tion of this GRASP for sparse QAPs together with Fortran subroutines are presented

in (Pardalos et al., 1997). A parallel version of this GRASP can be found in (Pardalos

et al., 1995). Improvements to the construction and local search phases are described

in (Fleurent and Glover, 1999; Rangel et al., 1999; 1998).

6.2.2.1 Problem definition. Given a set N = {1,2, . . . ,n} and n×n matrices

F = ( fi j) and D = (dkl), the quadratic assignment problem (QAP) can be stated as

follows:

min
p∈ΠN

n

∑
i=1

n

∑
j=1

fi jdp(i)p( j),

where ΠN is the set of all permutations of N .

6.2.2.2 Construction phase. The construction phase has two stages. In stage 1,

two assignments are produced, i.e. facility i is assigned to site k and facility j is as-

signed to site l. The idea is to assign facilities with high interaction (having high fi j

values) to nearby sites (site pairs with low dkl values). To do this, the procedure sorts

inter-site distances in increasing order and inter-facility flows in decreasing order. Let

dk1,l1 ≤ dk2,l2 ≤ ·· · ≤ dkp,lp and fi1, j1 ≥ fi2, j2 ≥ ·· · ≥ fip, jp be the sorted values, where

p = n2− n. The products dk1,l1 · fi1, j1 ,dk2,l2 · fi2, j2 , . . . ,dkp,lp · fip, jp are then sorted in

increasing order. Among the smallest dkl · fi j products, one (corresponding to the pair

of stage 1 assignments) is selected at random. Sorting all of the p = n2−n distances

and flows is inefficient and offers little benefit. Instead, only the best nβ = βp values
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are sorted, where β is a parameter such that 0 < β ≤ 1. Among these nβ pairs of as-

signments, a pair is selected at random from the set of αnβ assignments having the

smallest dkl · fi j products, where α is such that 0 < α≤ 1.

In stage 2 of the construction phase, the remaining n− 2 facility-site assignments

are made sequentially. The idea is to favor assignments that have small interaction

cost with the set of previously-made assignments. Let Γ be the set of q assignments

at a given point in the construction phase, i.e. Γ = {(i1,k1),(i2,k2), . . . ,(iq,kq)}. The

cost of assigning facility j to site l, with respect to the already-made assignments, is

defined to be

c jl = ∑
(i,k)∈Γ

fi jdkl .

All costs of unassigned facility-site pairs ( j, l) are sorted in increasing order. Of the

pairs having the least α · |Γ| costs, one is selected at random and is added to the set Γ.

The procedure is repeated until n−1 assignments are made. The remaining facility is

then assigned to the remaining site.

6.2.2.3 Local search phase. In the local search phase of this GRASP, a 2-

exchange neighborhood search is conducted on the constructed solution. There, all

possible 2-swaps of facility-locations are considered. If a swap improves the cost of

the assignment, it is accepted. The procedure continues until no swap improves the

solution value.

6.2.3 GRASP for graph planarization

A GRASP for graph planarization was introduced in Resende and Ribeiro (1997).

Fortran subroutines for their algorithm are described in (Ribeiro and Resende, 1999).

6.2.3.1 Problem definition. A graph is said to be planar if it can be drawn on

the plane in such a way that no two of its edges cross. Given a graph G = (V,E) with

vertex set V and edge set E, the objective of graph planarization is to find a minimum

cardinality subset of edges F ⊆ E such that the graph G′ = (V,E \F), resulting from

the removal of the edges in F from G, is planar. This problem is also known as the

maximum planar subgraph problem.

6.2.3.2 Two phase heuristic. The GRASP described in this section is based

on the separation of the computation into two phases (Goldschmidt and Takvorian,

1994). The first phase consists in devising a linear permutation of the nodes of the

input graph, followed by placing them along a line. The second phase determines two

sets of edges that may be represented without crossings above and below that line,

respectively.

The GRASP construction and local search are applied to the first phase, where a

linear permutation of the nodes is determined.

6.2.3.3 Construction phase. After the first k nodes of the permutation have

been determined, say v1,v2, · · · ,vk, the next node vk+1 is selected at random from the

nodes adjacent to vk in G having the lowest degrees in the subgraph Gk of G induced
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by V \ {v1,v2, · · · ,vk}. If there is no node of Gk adjacent to vk in G, then vk+1 is

selected at random from a set of low degree nodes in Gk.

6.2.3.4 Local search phase. The local search phase explores the neighbor-

hood of the current permutation by swapping the positions of two nodes at a time,

attempting to reduce the number of possible edge crossings.

6.2.3.5 Post-optimization. Each iteration of this GRASP produces three edge

sets: B (blue edges, which are drawn above the line), R (red edges, which are drawn

below the line), and P (the remaining edges, which are referred to as the pale edges).

By construction, B , R , and P are such that no red or pale edge can be colored blue.

Likewise, pale edges cannot be colored red. However, if there exists a pale edge p∈ P

such that all blue edges that cross with p (let B̂p ⊆ B be the set of those blue edges)

do not cross with any red edge r ∈ R , then all blue edges b ∈ B̂p can be colored red

and p can be colored blue. In case this reassignment of colors is possible, then the size

of the planar subgraph is increased by one edge. This post-optimization procedure is

incorporated at the end of each GRASP iteration.

6.2.4 GRASP for MAX-SAT

A GRASP for satisfiability was first proposed in Resende and Feo (1996). This

GRASP was generalized to handle MAX-SAT problems by Resende et al. (1997).

A parallel version of this algorithm is described in (Pardalos et al., 1996) and Fortran

subroutines are presented in (Resende et al., 2000).

6.2.4.1 Problem definition. Let C1,C2, . . . ,Cm be m clauses, involving n Boolean

variables x1, x2, . . ., xn, which can take on only the values true or false (1 or 0). In

addition, for each clause Ci, there is an associated nonnegative weight wi. Define

clause i to be

Ci =
ni
_

j=1

li j,

where ni is the number of literals in clause Ci, and literal li j ∈ {xi, x̄i | i = 1, . . . ,n}.
A clause is said to be satisfied if it evaluates to true. In the weighted Maximum

Satisfiability Problem (MAX-SAT), one is to determine the assignment of truth values

to the n variables that maximizes the sum of the weights of the satisfied clauses.

6.2.4.2 Construction phase. A feasible solution to a MAX-SAT instance is

described by x ∈ {0,1}n. Let w(x) is the sum of the weights of the clauses satisfied by

x. The construction phase solution is built, one element at a time, guided by a greedy

function and randomization. Since in the MAX-SAT problem there are n variables to

be assigned, each construction phase consists of n iterations.

The idea behind the greedy function is to maximize the total weight of yet-unsatisfied

clauses that become satisfied after the assignment of each construction phase iteration.

For i ∈ N, let Γ+
i be the set of unassigned clauses that would become satisfied if vari-

able xi were to be set to true. Likewise, let Γ−i be the set of unassigned clauses that
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would become satisfied if variable xi were to be set to false. Define

γ+
i = ∑

j∈Γ+
i

w j and γ−i = ∑
j∈Γ−i

w j.

The greedy choice is to select the variable xk with the largest γ+
k or γ−k value and set

it to the corresponding truth value. If γ+
k > γ−k , then the assignment xk = 1 is made,

else xk = 0. Note that with every assignment made, the sets Γ+
i and Γ−i change for

all i such that xi is not assigned a truth value, to reflect the new assignment. This

consequently changes the values of γ+
i and γ−i , characterizing the adaptive component

of the heuristic.

Let

γ∗ = max{γ+
i ,γ−i | xi yet unassigned}

and

γ∗ = min{γ+
i ,γ−i | xi yet unassigned},

and let α (0 ≤ α ≤ 1) be the restricted candidate parameter. A new value for α is se-

lected, at random, at each iteration, from the uniform distribution U [0,1]. A candidate

xi = true is inserted into the RCL if γ+
i ≥ γ∗+ α · (γ∗− γ∗). Likewise, a candidate

xi = false is inserted if γ−i ≥ γ∗+α · (γ∗− γ∗).

6.2.4.3 Local search phase. To define the local search procedure, some pre-

liminary definitions have to be made. Given a truth assignment x ∈ {0,1}n, define the

1-flip neighborhood N(x) to be the set of all vectors y∈{0,1}n such that ‖ x−y ‖2 = 1.

If x is interpreted as a vertex of the n-dimensional unit hypercube, then its neighbor-

hood consists of the n vertices adjacent to x. If we denote by w(x) the total weight of

the clauses satisfied by the truth assignment x, then the truth assignment x is a local

maximum if and only if w(x)≥ w(y), for all y ∈ N(x). Starting with a truth assignment

x, the local search finds the local maximum y in N(x). If y 6= x, it sets x = y. This

process is repeated until no further improvement is possible.

6.2.5 GRASP for maximum covering

A GRASP for the maximum covering problem is described in Resende (1998).

6.2.5.1 Problem definition. The maximum covering problem can be stated

as: Let J = {1,2, . . . ,n} denote the set of n potential facility locations. Define n

finite sets P1,P2, . . . ,Pn, each corresponding to a potential facility location, such that

I = ∪ j∈JPj = {1,2, . . . ,m} is the set of the m demand points that can be covered by

the n potential facilities. With each demand point i ∈ I, we associate a weight wi ≥ 0.

A cover J∗ ⊆ J covers the demand points in set I∗ = ∪ j∈J∗Pj and has an associated

weight w(J∗) = ∑i∈I∗ wi. Given the number p > 0 of facilities to be placed, we wish

to find the set J∗ ⊆ J that maximizes w(J∗), subject to the constraint that |J∗|= p.

6.2.5.2 Construction phase. Since in the maximum covering problem there

are p facility locations to be chosen, each construction phase consists of p iterations,

with one location chosen per iteration.
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To define a restricted candidate list, we rank the yet unchosen facility locations

according to an adaptive greedy function. Let J∗ denote the set (initially empty) of

chosen facility locations being built in the construction phase. At any construction

phase iteration, let Γ j be the set of additional uncovered demand points that would

become covered if facility location j (for j ∈ J \J∗) were to be added to J∗. Define the

greedy function

γ j = ∑
i∈Γ j

wi

to be the incremental weight covered by the choice of facility location j ∈ J \ J∗. The

greedy choice is to select the facility location k having the largest γk value. Note that

with every selection made, the sets Γ j, for all yet unchosen facility location indices

j ∈ J \ J∗, change to reflect the new selection. This consequently changes the values

of the greedy function γ j, characterizing the adaptive component of the heuristic.

Let

γ∗ = max{γ j | facility location j is still unselected, i.e. j ∈ J \ J∗}
and α be the restricted candidate parameter (0 ≤ α ≤ 1). We say a facility location j

is a potential candidate, and is added to the RCL, if γ j ≥ α×γ∗. A location is selected

at random from the RCL and is added to the solution.

6.2.5.3 Local search phase. Two solutions (sets of facility locations) J1 and

J2 are said to be neighbors in the 2-exchange neighborhood if they differ by exactly

one element, i.e. | J1∩∆J | = | J2∩∆J | = 1, where ∆J = (J1∪ J2)\ (J1∩ J2). The

local search starts with a set J∗ of p facility locations, and at each iteration attempts

to find a pair of locations s ∈ J∗ and t ∈ J \ J∗ such that w(J∗ \{s}∪{t}) > w(J∗). If

such a pair exists, then location s is replaced by location t in J∗. A solution is locally

optimal with respect to this neighborhood if there exists no pairwise exchange that

increases the total weight of J∗.

6.3 EXPERIMENTAL DESIGN

In this section we describe the experimental design. We analyze five GRASPs that

have appeared in the literature and for which source code is available. For each of

these algorithms, we select four test problems to study the probability distribution of

solution time. The hypothesis of this paper is that CPU times fit a two parameter ex-

ponential distribution. We measure the CPU time to find an objective function value

at least as good as a given target value. This is done for three different target values

for each test problem. These values are spread out between a value far from the op-

timal and the best value produced by GRASP. Each GRASP is run n = 200 times for

all instance/target combinations. For each of the 200 runs of each combination, the

random number generator is initialized with a distinct seed and therefore the runs are

independent. To compare the empirical and the theoretical distributions, we follow

a standard graphical methodology for data analysis (Chambers et al., 1983). In the

remainder of this section we describe this methodology.

For each instance/target pair, the running times are sorted in increasing order. We

associate with the i-th sorted running time (ti) a probability pi = (i− 1
2
)/n, and plot
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Figure 6.1 Cumulative probability distribution plot of measured data.

the points zi = (ti, pi), for i = 1, . . . ,n. We comment on this choice of pi later in this

section. Figure 6.1 illustrates this cumulative probability distribution plot for one of

the instance/target pairs.

To estimate the parameters of the two-parameter exponential distribution, we first

draw the theoretical quantile-quantile plot (or Q-Q plot) for the data. To describe

Q-Q plots, we recall that the cumulative distribution function for the two-parameter

exponential distribution is given by

F(t) = 1− e−(t−µ)/λ,

where λ is the mean of the distribution data (and indicates the spread of the data) and

µ is the shift of the distribution with respect to the ordinate axis.

For each value pi, i = 1, . . . ,n, we associate a pi-quantile Qt(pi) of the theoretical

distribution. For each pi-quantile we have, by definition, that

F((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribu-

tion, we have

Qt(pi) =−λ ln(1− pi)+µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw data.

Note that if we were to use pi = i/n, for i = 1, . . . ,n, then Qt(pn) would be undefined.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoret-

ical distribution. This involves three steps. First, the data (in our case, the measured
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Figure 6.2 Q-Q plot showing fitted line.

times) are sorted in ascending order. Second, the quantiles of the theoretical exponen-

tial distribution are obtained. Finally, a plot of the data against the theoretical quantiles

is made.

In a situation where the theoretical distribution is a close approximation of the em-

pirical distribution, the points in the Q-Q plot will have a nearly straight configuration.

If the parameters λ and µ of the theoretical distribution that best fits the measured data

could be estimated a priori, the points in a Q-Q plot would tend to follow the line

x = y. Alternatively, in a plot of the data against a two-parameter exponential distri-

bution with λ = 1 and µ = 0, the points would tend to follow the line y = λ̂x+ µ̂. This

means that a single theoretical Q-Q plot compares a set of data not just to one theoret-

ical distribution, but simultaneously to a whole family of distributions. Consequently,

parameters λ and µ of the two-parameter exponential distribution can be estimated,

respectively, by the slope λ̂ and intercept µ̂ of the line depicted in the Q-Q plot.

The Q-Q plot shown in Figure 6.2 is obtained by plotting the measured times in the

ordinate against the quantiles of a two-parameter exponential distribution with λ = 1

and µ = 0 in the abscissa, given by − ln(1− pi) for i = 1, . . . ,n. To avoid possible

distortions caused by outliers, we do not estimate the distribution mean with the data

mean or by linear regression on the points of the Q-Q plot. Instead, we estimate the

slope λ̂ of line y = λx + µ using the upper quartile qu and lower quartile ql of the

data. The upper and lower quartiles are, respectively, the Q( 1
4
) and Q( 3

4
) quantiles,

respectively. We take

λ̂ = (zu− zl)/(qu−ql)
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Figure 6.3 Q-Q plot with variability information.

as an estimate of the slope, where zu and zl are the u-th and l-th points of the ordered

measured times, respectively. This informal estimation of the distribution of the mea-

sured data mean is robust since it will not be distorted by a few outliers (Chambers

et al., 1983).

To analyze the straightness of the Q-Q plots, we superimpose them with variability

information. For each plotted point, we show plus and minus one standard deviation

in the vertical direction from the line fitted to the plot. An estimate of the standard

deviation for point zi, i = 1, . . . ,n, of the Q-Q plot is

σ̂ = λ̂

√

pi

(1− pi)n
.

Figure 6.3 shows an example of a Q-Q plot with superimposed variability information.

When observing a theoretical quantile-quantile plot with superimposed standard

deviation information, one should avoid turning such information into a formal test.

One important fact that must be kept in mind is that the natural variability of the

data generates departures from the straightness, even if the model of the distribution

is valid. The most important reason for portraying standard deviation is that it gives

us a sense of the relative variability of the points in the different regions of the plot.

However, since one is trying to make simultaneous inferences from many individual

inferences, it is difficult to use standard deviations to judge departures from the ref-

erence distribution. For example, the probability that a particular point deviates from

the reference line by more than two standard deviations is small. But the probability

that at least one of the data points deviates from the line by two standard deviations is



PROBABILITY DISTRIBUTION OF SOLUTION TIME IN GRASP 131

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12

 p
ro

ba
bi

lit
y

time to sub-optimal

Figure 6.4 Superimposed empirical and theoretical distributions.

probably much greater. In order statistics, this is made more difficult by the high cor-

relation that exists between neighboring points. If one plotted point deviates by more

than one standard deviation, there is a good chance that a whole bunch of them will

too. Another point to keep in mind is that standard deviations vary substantially in the

Q-Q plot, as can be observed in the Q-Q plot in Figure 6.3 that the standard deviations

of the points near the high end are substantially larger then the standard deviation of

the other end.

Once the two parameters of the distribution are estimated, a superimposed plot of

the empirical and theoretical distributions can be made. Figure 6.4 shows this plot

corresponding to the Q-Q plot in Figure 6.2.

6.4 COMPUTATIONAL RESULTS

In this section, we present the computational results. We describe the computer en-

vironment used to conduct the experiments, the instances selected for each of the

five GRASPs, and present for each GRASP/instance/target triplet its Q-Q plot with

variability information, the two estimated parameters, and superimposed plots of the

empirical and theoretical distributions.

6.4.1 Computer environment

The experiments were done on an SGI Challenge computer (28 196 MHz MIPS R10000

processors) with 7.6 Gb of memory. Each run used a single processor.
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Table 6.2 Maximum independent set test problems with best known solutions (bks), target

values, and parameter estimates.

estimates

problem bks target µ̂ λ̂

270002 15 13 0.015 0.146

14 -0.018 1.612

15 25.560 291.715

270003 15 13 0.068 0.147

14 0.142 5.797

15 1.849 223.491

270004 15 13 0.034 0.092

14 -0.035 2.024

15 1.339 30.248

270006 15 13 0.021 0.137

14 -0.013 1.383

15 38.909 516.965

The algorithms were coded in Fortran and were modified minimally to produce the

data needed for the experiments. CPU times were measured with the system func-

tion etime. The codes were compiled with the SGI MIPSpro F77 compiler. The

GRASPs for maximum independent set and quadratic assignment were compiled us-

ing flags -Ofast -u and the GRASP for maximum satisfiability was compiled us-

ing flags -Ofast -static. The GRASP for maximum covering was compiled using

flags -O3 -r4 -64 and the GRASP for planarization was compiled using flags -O3

-static.

6.4.2 Test problems

The test problem names, their best known solutions, and respective target values are

shown in Tables 6.2– 6.6.

The four problems used to study the GRASP for maximum independent set were

chosen from a much studied class of random graphs (Bollobás, 1985), denoted by

Gn,p. Such graphs have n nodes and each edge (i, j), i, j = 1, . . . ,n, i 6= j, exists with

probability p. The experiment consisted in running the algorithm on four random in-

stances of Gn,p (n = 1000, p = 0.5) generated with the Fortran code in the distribution

(Resende et al., 1998).

For the GRASP for QAP, test problems chr25a, kra30b, sko42, and tho40, were

chosen from the suite of QAP test programs QAPLIB (Burkard et al., 1991). The

problems are pure quadratic assignment problems that have at least one symmetric

distance or flow matrix. Their dimensions (n) range from 25 to 42.

The GRASP for graph planarization was tested for four problems (g17, tg100.10,

rg100.1, and rg150.1) chosen from a set of 75 test problems described in the liter-
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Table 6.3 Quadratic assignment problem test problems with best known solutions, target

values, and parameter estimates.

estimates

problem bks target µ̂ λ̂

chr25a 3796 5023 0.016 0.221

4721 0.012 1.147

4418 0.460 8.401

kra30b 91420 94675 0.021 0.076

93590 0.024 0.261

92505 -0.041 2.045

sko42 15812 16389 0.051 0.049

16222 0.044 0.244

16055 0.173 1.955

tho40 240516 247160 0.105 0.419

245396 0.255 2.163

243632 3.397 19.413

Table 6.4 Graph planarization test problems with best known solutions, target values, and

parameter estimates.

estimates

problem bks target µ̂ λ̂

g17 236 222 2.564 8.723

227 -0.738 72.498

231 -19.991 763.081

tg100.10 277 215 0.575 0.690

226 0.747 5.120

236 -10.540 181.038

rg100.1 162 154 0.135 0.563

157 0.062 3.983

159 -0.148 25.954

rg150.1 231 215 0.531 0.722

220 0.368 6.961

225 3.495 286.668

ature (Cimikowski, 1995; Goldschmidt and Takvorian, 1994). The dimensions of the

selected problems range from 100 to 150 vertices and 261 to 742 edges.

The test problems for the MAX-SAT problem were chosen among the instances

reported in Resende et al. (1997). Problems jnh11 and jnh12 have 100 variables and

800 clauses, problem jnh212 has 100 variables and 850 clauses, and problem jnh306

has 100 variables and 900 clauses.
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Table 6.5 Maximum satisfiability test problems with best known solutions, target values,

and parameter estimates.

maximum satisfiability

estimates

problem bks target µ̂ λ̂

jnh11 420753 418851 0.061 0.136

419485 0.063 0.876

420119 0.860 24.903

jnh12 420925 417664 0.053 0.046

418751 0.044 0.233

419838 0.064 2.797

jnh212 394238 393145 0.033 0.707

393506 -0.226 4.148

393866 -0.261 46.058

jnh306 444838 441720 0.059 0.058

442759 0.062 0.219

443798 -0.198 3.509

Table 6.6 Maximum covering test problems with best known solutions, target values, and

parameter estimates.

maximum covering

estimates

problem bks target µ̂ λ̂

r24-500 33343542 33330441 -2.257 109.827

33334808 11.960 229.850

33339175 2.273 669.501

r25-250 20606926 20567005 1.042 3.319

20580312 0.716 14.555

20593619 4.279 101.40

r54-100 39684669 39332719 6.272 42.187

39450036 17.803 272.29

39567352 73.320 3978.427

r55-100 39504338 39037219 6.917 9.063

39192925 3.190 37.672

39348631 -10.888 279.470

The test problems for the GRASP for maximum covering (r24-500, r25-250,

r54-100, and r55-100) were generated randomly using the generator described in

Resende (1998). All instances have 1000 potential location sites and demand points

varying from 7425 to 9996. The number of facilities to be located varies from 100 to

500.
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Figure 6.5 Ratio of error and standard deviation for all repetitions – All instances.

6.4.3 Generating the data points

200 independent runs of each GRASP were done for each instance/target pair. In each

run, the GRASP was halted after a solution at least as good as the target was found

and the total CPU time (in seconds) was recorded. With the 200 data points generated,

a Q-Q plot with variability information and a superimposed plot of the empirical and

theoretical distributions were made.

6.4.4 Q-Q plots and theoretical distributions

In this subsection, we present Q-Q plots with variability information with the corre-

sponding plots of superimposed empirical and theoretical distributions.

Each Q-Q plot figure is composed of 12 Q-Q plots, one for each instance/target

pair. Likewise, each superimposed empirical and theoretical distribution figure has 12

plots, one for each instance/target pair. Each plot is made up of 200 data points. Each

figure has four rows of plots, each corresponding to one of the four instances. For each

instance, three increasingly difficult target values are used. In each row of the figure,

the difficulty of finding a solution with a given target value increases from left to right.

The estimated parameters for all GRASPs are shown in Tables 6.2– 6.6. Parameter

λ̂ is the estimated mean time to target solution and parameter µ̂ is the estimated min-

imum time to target solution. Since the minimum time to target solution is the time

corresponding to one GRASP iterations, µ̂ is an estimate of one GRASP iteration.

Figures A.1 and A.2 show, respectively, the Q-Q plots and superimposed empiri-

cal and theoretical distributions for the maximum independent set instances. For the

quadratic assignment problem instances, the Q-Q plots and superimposed empirical

and theoretical distributions are shown, respectively, in Figures A.3 and A.4. Fig-

ures A.5 and A.6 depict, respectively, the Q-Q plots and superimposed empirical and

theoretical distributions for the graph planarization instances. For the maximum satis-
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fiability instances, the Q-Q plots and superimposed empirical and theoretical distribu-

tions are depicted, respectively, in Figures A.7 and A.8. Figures A.9 and A.10 show,

respectively, the Q-Q plots and superimposed empirical and theoretical distributions

for the maximum covering instances.

We make the following observations regarding the experiments.

12,000 independent runs were carried out, each finding a solution at least as good

as its respective target.

In general, there was no large or systematic departure from straightness in the Q-Q

plots. However, it is well known in statistics that the samples of real data are often

contaminated by a small fraction of abnormal observations that will lie outside the

typical range of data. This can be observed in the experiments reported here.

Straightness generally increased with problem difficulty, i.e. as the target value

approached the optimal, the fit of solution time to the theoretical distribution improved,

implying therefore that the computed parameters were good estimates. This occurs

because the distribution of number of GRASP iterations until target solution is more

spread out. In some of the easier instances, many runs took few iterations. We further

discuss this issue later in this section.

The points in each Q-Q plot can be regarded as order statistics. Due to the high

correlation that exists between neighboring order statistics, the probability that a par-

ticular point deviates from the line by more than two standard deviations is small.

However, as commented in Section 6.3, the probability that at least one of the points

deviates from the line by two standard deviations is undoubtedly much greater. Fig-

ures 6.5 and 6.6 plot the ratios of deviation from the fitted line to one standard de-

viation, for all 2400 instances of each GRASP and all 800 harder instances of each

GRASP, respectively. The harder instances correspond to those in the rightmost col-

umn of the Q-Q plots and superimposed plots of the empirical and theoretical distri-

butions. The ratios are sorted in increasing order. About 75% of all points in the Q-Q

plots fall within one standard deviation of the fitted line and about 88% fall within two

standard deviations. When limited only to hard instance/target pairs, then about 80%

of the all points in the Q-Q plots fall within one standard deviation of the fitted line

and about 93% fall within two standard deviations.

As can be seen in the Q-Q plots, not many points associated with large CPU times

fall outside the one standard deviation bounds. Hence, most of the points that fall

outside the two standard deviation bounds are points associated with small CPU times

which in turn have small standard deviations. In fact, if we only consider the largest

180 (of 200) CPU times for each instance/target pair, we observe that 93% of all points

in the Q-Q plots fall within two standard deviations of the fitted line. Restricting our

sample to only hard instance/target plots, then 98% of the points fall within the bounds.

A quantile-quantile plot with horizontal segments, as observed in Figures A.1 and A.5,

is common in practice (Chambers et al., 1983). This discrete granularity may mean

that the data were rounded at some earlier stage before being plotted. In our experi-

ments, this is observed only for the easiest problem/target pairs. It occurs because in

many runs, the target solution was found in the same GRASP iteration. In these exam-

ples, the i-th horizontal segment depicts the solution times found in the i-th GRASP

iteration. Although this is a departure from normality, if these repetitions were elim-
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Figure 6.6 Ratio of error and standard deviation for repetitions – Only harder instances.

inated and each segment turned into a single point, represented by its median, nearly

straight lines would be observed for all these plots.

6.5 CONCLUDING REMARKS

Though it is clear that distributing the GRASP iterations evenly among parallel pro-

cessors achieves linear speedup for total time (to run all GRASP iterations), it is less

clear why linear speedup in time to a given target value is frequently observed. If

time to a target solution value fits a two-parameter exponential distribution, then the

probability of finding a solution of a given value in time ρt with a sequential process is

equal to the probability of finding a solution at least as good as that given value in time

t with ρ independent parallel processes. Hence, linear speedup would be observed.

In this paper, we reported on an empirical investigation of the distribution of so-

lution time to a target value. 12,000 GRASP runs were done in the experiment. To

analyze the observations, we used a standard graphical methodology for data analy-

sis. Q-Q plots with variability information were used to determine if the empirical

distribution fits its theoretical counterpart. The estimated parameters of the theoretical

distribution were derived from the Q-Q plots.

The main conclusion from the experiments is that time to target value indeed fits

well a two-parameter exponential distribution. The fit tends to improve as the difficulty

to find a solution of a given target value increases.

Though this study was limited to five distinct GRASPs, we believe that this charac-

teristic is present in any GRASP implemented in a straightforward manner. It should

be noted that tricks commonly used to speedup a sequential GRASP, such as hash

tables to avoid repetition of local search from identical starting solutions, can make

speedup in time to target solution be sublinear in the number of processors. An exam-

ple of this can be seen in Martins et al. (2000), where the use of a hash table improves
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the speed of a sequential GRASP in instances in which the construction phase gener-

ates many identical solutions and the parallel GRASP repeats many of these unneces-

sary local searches.
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H.H. Hoos and T. Stützle. Towards a characterisation of the behaviour of stochastic

local search algorithms for sat. Artificial Intelligence, 112:213–232, 1999.

Y. Li, P.M. Pardalos, and M.G.C. Resende. A greedy randomized adaptive search pro-

cedure for the quadratic assignment problem. In P.M. Pardalos and H. Wolkowicz,

editors, Quadratic assignment and related problems, volume 16 of DIMACS Se-

ries on Discrete Mathematics and Theoretical Computer Science, pages 237–261.

American Mathematical Society, 1994.

S.L. Martins, M.G.C. Resende, C.C. Ribeiro, and P.M. Pardalos. A parallel GRASP

for the Steiner tree problem in graphs using a hybrid local search strategy. Journal

of Global Optimization, 2000. To appear.

S.L. Martins, C.C. Ribeiro, and M.C. Souza. A parallel GRASP for the Steiner prob-

lem in graphs. In A. Ferreira and J. Rolim, editors, Proceedings of IRREGULAR’98

– 5th International Symposium on Solving Irregularly Structured Problems in Par-

allel, volume 1457 of Lecture Notes in Computer Science, pages 285–297. Springer-

Verlag, 1998.

R.A. Murphey, P.M. Pardalos, and L.S. Pitsoulis. A parallel GRASP for the data

association multidimensional assignment problem. In P.M. Pardalos, editor, Parallel

processing of discrete problems, volume 106 of The IMA Volumes in Mathematics

and Its Applications, pages 159–180. Springer-Verlag, 1998.

L.J. Osborne and B.E. Gillett. A comparison of two simulated annealing algorithms

applied to the directed Steiner problem on networks. ORSA J. on Computing, 3:

213–225, 1991.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP implementation

for the quadratic assignment problem. In A. Ferreira and J. Rolim, editors, Paral-

lel Algorithms for Irregularly Structured Problems – Irregular’94, pages 111–130.

Kluwer Academic Publishers, 1995.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. A parallel GRASP for MAX-SAT

problems. Lecture Notes in Computer Science, 1184:575–585, 1996.

P.M. Pardalos, L.S. Pitsoulis, and M.G.C. Resende. Algorithm 769: Fortran sub-

routines for approximate solution of sparse quadratic assignment problems using

GRASP. ACM Transactions on Mathematical Software, 23:196–208, 1997.



BIBLIOGRAPHY 141

M.C. Rangel, N.M.M. Abreu, and P.O. Boaventura Netto. GRASP in the QAP: An

acceptance bound for initial solution. In Proc. of the Third Metaheuristics Interna-

tional Conference, pages 381–386, July 1999.

M.C. Rangel, N.M.M. de Abreu, P.O. Boaventura Netto, and M.C.S. Boeres. A modi-

fied local search for GRASP in the quadratic assignment problem. Technical report,

Production Engineering Program, COPPE, Federal University of Rio de Janeiro,

Rio de Janeiro, RJ Brazil, 1998.

M.G.C. Resende. Computing approximate solutions of the maximum covering prob-

lem using GRASP. J. of Heuristics, 4:161–171, 1998.

M.G.C. Resende and T.A. Feo. A GRASP for satisfiability. In D.S. Johnson and M.A.

Trick, editors, Cliques, Coloring, and Satisfiability: The Second DIMACS Imple-

mentation Challenge, volume 26 of DIMACS Series on Discrete Mathematics and

Theoretical Computer Science, pages 499–520. American Mathematical Society,

1996.

M.G.C. Resende, T.A. Feo, and S.H. Smith. Algorithm 787: Fortran subroutines for

approximate solution of maximum independent set problems using GRASP. ACM

Trans. Math. Software, 24:386–394, 1998.

M.G.C. Resende, P.M. Pardalos, and Y. Li. Algorithm 754: Fortran subroutines for

approximate solution of dense quadratic assignment problems using GRASP. ACM

Transactions on Mathematical Software, 22:104–118, 1996.

M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Approximate solution of weighted

MAX-SAT problems using GRASP. In J. Gu and P.M. Pardalos, editors, Satisfia-

bility problems, volume 35 of DIMACS Series on Discrete Mathematics and Theo-

retical Computer Science, pages 393–405. American Mathematical Society, 1997.

M.G.C. Resende, L.S. Pitsoulis, and P.M. Pardalos. Fortran subroutines for computing

approximate solutions of MAX-SAT problems using GRASP. Discrete Applied

Mathematics, 100:95–113, 2000.

M.G.C. Resende and C.C. Ribeiro. A GRASP for graph planarization. Networks, 29:

173–189, 1997.

C.C. Ribeiro and M.G.C. Resende. Algorithm 797: Fortran subroutines for approx-

imate solution of graph planarization problems using GRASP. ACM Transactions

on Mathematical Software, 25:341–352, 1999.

B. Selman, H.A. Kautz, and B. Cohen. Noise strategies for improving local search. In

Proceedings of the AAAI-94, pages 337–343. MIT Press, 1994.

E.D. Taillard. Robust taboo search for the quadratic assignment problem. Parallel

Computing, 17:443–455, 1991.

M.G.A. Verhoeven and E.H.L. Aarts. Parallel local search. J. of Heuristics, 1:43–66,

1995.



142 AN INTRODUCTION TO GRASP

Appendix: TTT plots
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Figure A.1 Q-Q plots for GRASP for maximum independent set
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Figure A.2 Exponential plots for GRASP for maximum independent set
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Figure A.3 Q-Q plots for GRASP for quadratic assignment
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Figure A.4 Exponential plots for GRASP for quadratic assignment
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Figure A.5 Q-Q plots for GRASP for graph planarization
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Figure A.6 Exponential plots for GRASP for graph planarization
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Figure A.7 Q-Q plots for GRASP for maximum weighted satisfiability
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Figure A.8 Exponential plots for GRASP for maximum weighted satisfiability
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Figure A.9 Q-Q plots for GRASP for maximum covering
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Figure A.10 Exponential plots for GRASP for maximum covering
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Abstract: A GRASP (Greedy Randomized Adaptive Search Procedure) is a meta-

heuristic for producing good-quality solutions of combinatorial optimization problems.

It is usually implemented with a construction procedure based on a greedy randomized al-

gorithm followed by local search. In this Chapter, we survey parallel implementations of

GRASP. We describe simple strategies to implement independent parallel GRASP heuris-

tics and more complex cooperative schemes using a pool of elite solutions to intensify

the search process. Some applications of independent and cooperative parallelizations

are presented in detail.

Keywords: Combinatorial optimization, local search, GRASP, path-relinking, parallel

algorithm.

7.1 INTRODUCTION

Metaheuristics are high level procedures that coordinate simple heuristics, such as lo-

cal search, to find solutions that are of better quality than those found by the simple

heuristics alone. One such metaheuristic is GRASP (Greedy Randomized Adaptive

Search Procedure) (Feo and Resende, 1989; 1995; Festa and Resende, 2002; Resende

and Ribeiro, 2002). A GRASP is a multi-start procedure, where each iteration usu-

ally consists of two phases: construction and local search. The construction phase

153



154 AN INTRODUCTION TO GRASP

produces a feasible solution that is used as the starting point for local search. The

multi-start procedure returns the best local optimum found.

In the GRASP construction phase, a feasible solution is built, one element at a time.

For example, a spanning tree is built one edge at a time; a schedule is built one opera-

tion at a time; and a clique is built one vertex at a time. The set of candidate elements is

made up of those elements that can be added to the current solution under construction

without causing infeasibilities. When building a spanning tree, for example, the candi-

date elements are those yet unselected edges whose inclusion in the solution does not

result in a cycle. A candidate element is evaluated by a greedy function that measures

the local benefit of including that element in the partially constructed solution. The

value-based restricted candidate list (RCL) is made up of candidate elements having a

greedy function value at least as good as a specified threshold. The next element to be

included in the solution is selected at random from the RCL. Its inclusion in the solu-

tion alters the greedy function and the set of candidate elements used to determine the

next RCL. The construction procedure terminates when the set of candidate elements

is empty, obtaining a feasible solution. Algorithm 4 shows a GRASP in pseudo-code

form, where the objective function f (x) is minimized over the set X . The GRASP runs

for MaxIterations iterations. The best solution returned is x∗, with f (x∗) = f ∗.

Data : Number of iterations MaxIterations

Result : Solution x∗ ∈ X

f ∗← ∞;

for i = 1, . . . , imax do
x← GreedyRandomizedConstruction();

x← LocalSearch(x);
if f (x) < f ∗ then

f ∗← f (x);
x∗← x;

end

end

Algorithm 4: Pseudo-code of a basic GRASP for minimization.

Local search makes use of the concept of solution neighborhood. A local search

algorithm successively replaces the current solution by a better solution in its neigh-

borhood, if one exists. It terminates with a locally optimal solution when there is

no better solution in the neighborhood. Since the solutions generated by a GRASP

construction phase are usually sub-optimal, local search almost always improves the

constructed solution.

GRASP has been used to find quality solutions for a wide range of combinatorial

optimization problems (Festa and Resende, 2002; 2004). Many extensions and im-

provements with respect to the GRASP introduced in Feo and Resende (1989) and

Feo and Resende (1995) have been proposed. Many of these extensions consist in the

hybridization of the method with other methaheuristics.

Parallel computers have increasingly found their way into metaheuristics (Cung

et al., 2002; Duni et al., 2002). Most of the parallel implementations of GRASP

found in the literature consist in either partitioning the search space or partitioning
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the GRASP iterations and assigning each partition to a processor (Alvim and Ribeiro,

1998; Alvim, 1998; Feo et al., 1994; Drummond et al., 2002; Li et al., 1994; Martins

et al., 1999; 2000; 1998; Murphey et al., 1998; Pardalos et al., 1995; 1996; Resende

et al., 1998). GRASP is applied to each partition in parallel. These implementations

can be categorized as multiple-walk independent-thread (Cung et al., 2002; Verho-

even and Aarts, 1995), where the communication among processors during GRASP

iterations is limited to the detection of program termination,

Recently, there has been much work on hydridization of GRASP and path-relinking

(Resende and Ribeiro, 2005). Parallel approaches for GRASP with path-relinking

can be categorized as multiple-walk independent-thread or multiple-walk cooperative-

thread (Cung et al., 2002; Verhoeven and Aarts, 1995), where processors share in-

formation on elite solutions visited during previous GRASP iterations. Examples of

parallel GRASP with path-relinking can be found in (Aiex et al., 2003; 2005; Canuto

et al., 2001; Martins et al., 2004; Ribeiro and Rosseti, 2002).

In this Chapter, we present a survey of parallel GRASP heuristics. In Section 7.2,

we consider multiple-walk independent-thread strategies. Multiple-walk cooperative-

thread strategies are examined in Section 7.3. Some applications of parallel GRASP

and parallel GRASP with path-relinking are surveyed in Section 7.4. In Section 7.5,

we make some concluding remarks.

7.2 MULTIPLE-WALK INDEPENDENT-THREAD STRATEGIES

Most parallel implementations of GRASP follow the multiple-walk independent-thread

strategy, based on the distribution of the iterations over the processors. In general, each

search thread has to perform MaxIterations/p iterations, where p and MaxIterations

are, respectively, the number of processors and the total number of iterations. Each

processor has a copy of the sequential algorithm, a copy of the problem data, and an

independent seed to generate its own pseudorandom number sequence. To avoid that

the processors find the same solutions, each of them must use a different sequence of

pseudorandom numbers. A single global variable is required to store the best solution

found over all processors. One of the processors acts as the master, reading and dis-

tributing problem data, generating the seeds which will be used by the pseudorandom

number generators at each processor, distributing the iterations, and collecting the best

solution found by each processor. Since the iterations are completely independent and

very little information is exchanged, linear speedups are easily obtained provided that

no major load imbalance problems occur. The iterations may be evenly distributed

over the processors or according with their demands, to improve load balancing.

Pardalos et al. (1995) reported on results of a parallel GRASP for the quadratic

assignment problem on a Kendall Square Research KSR-1 parallel computer with 128

processors. The implementation used the pthread mechanism, a lightweight process

that is the fundamental unit of concurrency on the KSR-1 (Kendall Square Research,

1992). Each pthread executes on a separate processor and has its own memory. Twenty

instances from the QAPLIB (Burkard et al., 1991) were run for 1000 GRASP iterations

on each of 64 single processors. For each instance, the best solution found over all

processors was used as the stopping criterion for solving the instance on 54, 44, 34,
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24, 14, 4, and 1 processors. Speedups were computed by averaging the running times

of all instances.

Pardalos et al. (1996) implemented a parallel GRASP for the MAX-SAT prob-

lem on a cluster of SUN-SPARC 10 workstations, sharing the same file system, with

communication done using the Parallel Virtual Machine (PVM) (Geist et al., 1994)

software package. Each instance was run on a parallel GRASP using 1, 5, 10, and

15 processors, with a maximum number of iterations of 1000, 200, 100, and 66, re-

spectively. The amount of CPU time required to perform the specified number of

iterations, and the best solution found were recorded. Since communication was kept

to a minimum, linear speedups were expected. Figure 7.1 shows individual speedups

as well as average speedups for these runs. Figure 7.2 shows that the average quality

of the solution found was not greatly affected by the number of processors used.
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Figure 7.1 Average speedups on 5, 10, and 15 processors for maximum satisfiability prob-

lems.

Martins et al. (1998) implemented a parallel GRASP for the Steiner problem in

graphs. Parallelization is achieved by the distribution of 512 iterations over the proces-

sors, with the value of the RCL parameter α randomly chosen in the interval [0.0,0.3]
at each iteration. The algorithm was tested on an IBM SP-2 machine with 32 proces-

sors, using the Message Passing Interface (MPI) library (Snir et al., 1998) for commu-

nication. The 60 problems from series C, D, and E of the OR-Library (Beasley, 1990)

were used for the computational experiments. The parallel implementation obtained

45 optimal solutions over the 60 test instances. The relative deviation with respect to

the optimal value was never larger than 4%. Almost-linear speedups observed for 2,
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Figure 7.2 Percentage error on 1, 5, 10, and 15 processors for maximum satisfiability

problems.

4, 8, and 16 processors with respect to the sequential implementation are illustrated in

Figure 7.3.

Path-relinking may also be used in conjunction with parallel implementations of

GRASP. In the case of the multiple-walk independent-thread implementation described

by Aiex et al. (2005) for the 3-index assignment problem and Aiex et al. (2003) for the

job shop scheduling problem, each processor applies path-relinking to pairs of elite

solutions stored in a local pool. Computational results using MPI on an SGI Chal-

lenge computer with 28 R10000 processors showed linear speedups for the 3-index

assignment problem, but sub-linear for the job shop scheduling problem.

Alvim and Ribeiro (1998); Alvim (1998) showed that multiple-walk independent-

thread approaches for the parallelization of GRASP may benefit much from load

balancing techniques, whenever heterogeneous processors are used or if the paral-

lel machine is simultaneously shared by several users. In this case, almost-linear

speedups may be obtained with a heterogeneous distribution of the iterations over

the p processors in q ≥ p packets. Each processor starts performing one packet of

⌈MaxIterations/q⌉ iterations and informs the master when it finishes its packet of

iterations. The master stops the execution of each slave processor when there are no

more iterations to be performed and collects the best solution found. Faster or less

loaded processors will perform more iterations than the others. In the case of the par-

allel GRASP implemented for the problem of traffic assignment described in Prais and

Ribeiro (2000), this dynamic load balancing strategy allowed reductions in the elapsed
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Figure 7.3 Average speedups on 2, 4, 8, and 16 processors on Steiner tree problem in

graphs.

times of up to 15% with respect to the times observed for the static strategy, in which

the iterations were uniformly distributed over the processors.

The efficiency of multiple-walk independent-thread parallel implementations of

metaheuristics, based on running multiple copies of the same sequential algorithm,

has been addressed by some authors. A given target value τ for the objective function

is broadcast to all processors which independently execute the sequential algorithm.

All processors halt immediately after one of them finds a solution with value at least

as good as τ. The speedup is given by the ratio between the times needed to find a so-

lution with value at least as good as τ, using respectively the sequential algorithm and

the parallel implementation with p processors. These speedups are linear for a number

of metaheuristics, including simulated annealing (Dodd, 1990; Osborne and Gillett,

1991); iterated local search algorithms for the traveling salesman problem (Eikelder

et al., 1996); tabu search, provided that the search starts from a local optimum (Bat-

titi and Tecchiolli, 1992; Taillard, 1991); and WalkSAT (Selman et al., 1994) on hard

random 3-SAT problems (Hoos and Stützle, 1999). This observation can be explained

if the random variable time to find a solution within some target value is exponentially

distributed, as indicated by the following proposition (Verhoeven and Aarts, 1995):

Proposition 1: Let Pρ(t) be the probability of not having found a given target solution

value in t time units with ρ independent processes. If P1(t) = e−t/λ with λ ∈ R+,

corresponding to an exponential distribution, then Pρ(t) = e−ρt/λ.

This proposition follows from the definition of the exponential distribution. It im-

plies that the probability 1− e−ρt/λ of finding a solution within a given target value
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in time ρt with a sequential algorithm is equal to the probability of finding a solution

at least as good as that in time t using ρ independent parallel processors. Hence, it is

possible to achieve linear speedups in the time to find a solution within a target value

by multiple independent processors. An analogous proposition can be stated for a two

parameter (shifted) exponential distribution:

Proposition 2: Let Pρ(t) be the probability of not having found a given target solution

value in t time units with ρ independent processors. If P1(t) = e−(t−µ)/λ with λ ∈ R+

and µ ∈ R+, corresponding to a two parameter exponential distribution, then Pρ(t) =

e−ρ(t−µ)/λ.

Analogously, this proposition follows from the definition of the two-parameter ex-

ponential distribution. It implies that the probability of finding a solution within a

given target value in time ρt with a sequential algorithm is equal to 1− e−(ρt−µ)/λ,

while the probability of finding a solution at least as good as that in time t using ρ
independent parallel processors is 1− e−ρ(t−µ)/λ. If µ = 0, then both probabilities

are equal and correspond to the non-shifted exponential distribution. Furthermore, if

ρµ≪ λ, then the two probabilities are approximately equal and it is possible to ap-

proximately achieve linear speedups in the time to find a solution within a target value

using multiple independent processors.

Aiex et al. (2002) showed experimentally that the solution times for GRASP also

have this property, i.e. that they fit a two-parameter exponential distribution. Fig-

ure 7.4 illustrates this result, depicting the superimposed empirical and theoretical dis-

tributions observed for one of the cases studied along the computational experiments

reported by the authors, which involved 2400 runs of GRASP procedures for each of

five different problems: maximum independent set (Feo et al., 1994; Resende et al.,

1998), quadratic assignment (Li et al., 1994; Resende et al., 1996), graph planariza-

tion (Resende and Ribeiro, 1997; Ribeiro and Resende, 1999), maximum weighted

satisfiability (Resende et al., 2000), and maximum covering (Resende, 1998). We ob-

serve that the empirical distribution plots illustrating these conclusions were originally

introduced by Feo et al. (1994). Empirical distributions are produced from experimen-

tal data and corresponding theoretical distributions are estimated from the empirical

distributions. The same result still holds when GRASP is implemented in conjunction

with a post-optimization path-relinking procedure (Aiex et al., 2005).

A quantile-quantile plot (Q-Q plot) and a plot showing the empirical and the the-

oretical distributions of the random variable time to target value for the sequential

GRASP and GRASP with path-relinking for the three-index assignment problem (Aiex

et al., 2005) are shown in Figures 7.5 and 7.6, respectively. Analogously, Figures 7.7

and 7.8 show the same plots for the job-shop scheduling problem (Aiex et al., 2003).

These plots are computed by running the algorithms for 200 independent runs. Each

run ends when the algorithm finds a solution with value less than or equal to a specified

target value. Each running time is recorded and the times are sorted in increasing or-

der. We associate with the i-th sorted running time (ti) a probability pi = (i− 1
2
)/200,

and plot the points zi = (ti, pi), for i = 1, . . . ,200 as the empirical distribution.

Following Chambers et al. (1983), one determines the theoretical quantile-quantile

plot for the data to estimate the parameters of the two-parameter exponential distri-

bution. To describe Q-Q plots, recall that the cumulative distribution function for the
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Figure 7.4 Superimposed empirical and theoretical distributions (times to target values

measured in seconds on an SGI Challenge computer with 28 processors).

two-parameter exponential distribution is given by

F(t) = 1− e−(t−µ)/λ,

where λ is the mean and standard deviation of the distribution data and µ is the shift

of the distribution with respect to the ordinate axis. For each value pi, i = 1, . . . ,200,

we associate a pi-quantile Qt(pi) of the theoretical distribution. For each pi-quantile

we have, by definition, that

F((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribu-

tion, we have

Qt(pi) =−λ ln(1− pi)+µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw data.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoret-

ical distribution. This involves three steps. First, the data (in this case, the measured

times) are sorted in ascending order. Second, the quantiles of the theoretical exponen-

tial distribution are obtained. Finally, a plot of the data against the theoretical quantiles

is made.

When the theoretical distribution is a close approximation of the empirical distri-

bution, the points in the Q-Q plot will have a nearly straight configuration. If the

parameters λ and µ of the theoretical distribution that best fits the measured data could
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Figure 7.5 Q-Q plot and exponential distribution for GRASP for the three-index assign-

ment problem: instance B-S 26.1 with target value of 17.

be estimated a priori, the points in a Q-Q plot would tend to follow the line x = y. Al-

ternatively, in a plot of the data against a two-parameter exponential distribution with

λ′ = 1 and µ′ = 0, the points would tend to follow the line y = λx +µ. Consequently,

parameters λ and µ of the two-parameter exponential distribution can be estimated,

respectively, by the slope and the intercept of the line depicted in the Q-Q plot.

To avoid possible distortions caused by outliers, one does not estimate the distribu-

tion mean by linear regression on the points of the Q-Q plot. Instead, one estimates

the slope λ̂ of line y = λx + µ using the upper quartile qu and lower quartile ql of the

data. The upper and lower quartiles are, respectively, the Q( 1
4
) and Q( 3

4
) quantiles,

respectively. Let

λ̂ = (zu− zl)/(qu−ql)

be an estimate of the slope, where zu and zl are the u-th and l-th points of the or-

dered measured times, respectively. These estimates are used to plot the theoretical

distributions on the plots on the right side of the figures.

The lines above and below the estimated line on the Q-Q plots correspond to plus

and minus one standard deviation in the vertical direction from the line fitted to the

plot. This superimposed variability information is used to analyze the straightness of

the Q-Q plots.

Aiex and Resende (2005) proposed a test using a sequential implementation to

determine whether it is likely that a parallel implementation using multiple indepen-

dent processors will be efficient. A parallel implementation is said to be efficient if it

achieves linear speedup (with respect to wall time) to find a solution at least as good

as a given target value. The test consists in running K (200, for example) independent

trials of the sequential program to build a Q-Q plot and estimate the parameters µ and

λ of the shifted exponential distribution. If ρ|µ| ≪ λ, then we predict that the parallel

implementation will be efficient.

7.3 MULTIPLE-WALK COOPERATIVE-THREAD STRATEGIES

Path-relinking has been implemented with GRASP in multiple-walk independent-

thread strategies (Aiex et al., 2005). In this section, however, we focus on the use
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Figure 7.6 Q-Q plot and exponential distribution for GRASP with path-relinking for the

three-index assignment problem: instance B-S 26.1 with target value of 17.
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Figure 7.7 Q-Q plot and exponential distribution for GRASP for the job shop scheduling

problem: instance orb5 with target value of 910.

of path-relinking as a mechanism for implementing GRASP in the multiple-walk

cooperative-thread strategies framework. We first briefly outline path-relinking and

its hybridization with GRASP. Then, we discuss how cooperation among the threads

can be achieved by using path-relinking.

Path-relinking was originally proposed by Glover (1996) as a strategy to explore

trajectories connecting elite solutions obtained by tabu search or scatter search (Glover,

2000; Glover and Laguna, 1997; Glover et al., 2000). Paths in the solution space con-

necting pairs of elite solutions are explored in the search for better solutions. Each

pair consists of a starting solution and a guiding solution. Paths emanating from the

starting solution are generated by applying moves that introduce in the current solution

attributes that are present in the guiding solution.

Algorithm 5 shows the pseudo-code of the path-relinking procedure applied be-

tween the starting and guiding solutions. The procedure first computes the symmetric

difference ∆(xs,xt) between the two solutions, which defines the moves needed to

reach the guiding solution (xt ) from the initial solution (xs). A path of neighboring



PARALLEL GRASP 163

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 1 2 3 4 5 6

m
ea

su
re

d 
tim

es
 (

s)

exponential quantiles

prob=orb5, look4=895

0

0.2

0.4

0.6

0.8

1

0 1000 2000 3000 4000 5000

 p
ro

ba
bi

lit
y

time to sub-optimal (s)

prob=orb5, look4=895

Figure 7.8 Q-Q plot and exponential distribution for GRASP with path-relinking for the

job shop scheduling problem: instance orb5 with target value of 895.

Data : Starting solution xs and guiding solution xt

Result : Best solution x∗ in path from xs to xt

Compute symmetric difference ∆(xs,xt);
f ∗←min{ f (xs), f (xt)};
x∗← argmin{ f (xs), f (xt)};
x← xs;

while ∆(x,xt) 6= /0 do
m∗← argmin{ f (x⊕m) : m ∈ ∆(x,xt)};
∆(x⊕m∗,xt)← ∆(x,xt)\{m∗};
x← x⊕m∗;
if f (x) < f ∗ then

f ∗← f (x);
x∗← x;

end

end

Algorithm 5: Pseudo-code of path-relinking from starting solution xs to guid-

ing solution xt .

solutions is generated linking xs and xt . The best solution x∗ in this path is returned.

At each step, all moves m ∈ ∆(x,xt) from the current solution x are examined and the

one which results in the least cost solution is selected, i.e. the move that minimizes

f (x⊕m), where x⊕m is the solution resulting from applying move m to solution x.

The best move m∗ is made, producing solution x⊕m∗. This move is taken out of the

set of available moves. If necessary, the best solution x∗ is updated. The procedure

terminates when xt is reached, i.e. when ∆(x,xt) = /0.

The use of path-relinking within a GRASP procedure was first proposed by La-

guna and Martı́ (1999). It was followed by several extensions, improvements, and

successful applications (Aiex, 2002; Aiex et al., 2003; Aiex and Resende, 2005; Aiex

et al., 2005; Binato et al., 2001; Canuto et al., 2001; Faria Jr. et al., 2005; Resende and
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Ribeiro, 2003; 2005; Resende and Werneck, 2002; Ribeiro and Rosseti, 2002; Ribeiro

et al., 2002; Rosseti, 2003).

In its hybridization with GRASP, path-relinking is usually applied to pairs (x,y)
of solutions, where x is a locally optimal solution produced by each GRASP iteration

after local search and y is an elite solution randomly chosen from a pool with a limited

number MaxElite of elite solutions found along the search. Since the symmetric

difference is a measure of the length of the path explored during relinking, a strategy

biased toward pool elements y with high symmetric difference with respect to x is

often better than one using uniform random selection (Resende and Werneck, 2002).

The pool is originally empty. To maintain a pool of good but diverse solutions,

each locally optimal solution obtained by local search is considered as a candidate to

be inserted into the pool if it is sufficiently different from every solution in the pool. If

the pool already has MaxElite solutions and the candidate is better than the worst of

them, then a simple strategy is to have the former replace the latter. Another strategy,

which tends to increase the diversity of the pool, is to replace the pool element most

similar to the candidate among all pool elements with cost worse than the candidate’s.

If the pool is not full, the candidate is simply inserted.

Data : Number of iterations MaxIterations

Result : Solution x∗ ∈ X

P← /0;

f ∗← ∞;

for i = 1, . . . , imax do
x← GreedyRandomizedConstruction();

x← LocalSearch(x);
if i≥ 2 then

Randomly select an elite subset Y ⊆ P to relink with x;

for y ∈ Y do
Set one of solutions x and y as the starting solution;

Set the other as the guiding solution;

xp← PathRelinking(xs,xt);
Update the elite set P with xp;

if f (xp) < f ∗ then
f ∗← f (xp);
x∗← xp;

end

end

end

end

x∗ = argmin{ f (x),x ∈ P};

Algorithm 6: A basic GRASP with path-relinking heuristic for minimization.
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Algorithm 6 shows the pseudo-code for a hybrid GRASP with path-relinking. Each

GRASP iteration has now three main steps. In the construction phase, a greedy ran-

domized construction procedure is used to build a feasible solution. The local search

phase takes the solution built in the first phase and progressively improves it using a

neighborhood search strategy, until a local minimum is found. In the path-relinking

phase, path-relinking is applied to the solution obtained by local search and to a ran-

domly selected solution from the pool. The best solution found along this trajectory is

also considered as a candidate for insertion in the pool and the incumbent is updated.

Two basic mechanisms may be used to implement a multiple-walk cooperative-

thread GRASP with path-relinking heuristic. In distributed strategies (Aiex et al.,

2003; Aiex and Resende, 2005), each thread maintains its own pool of elite solutions.

Each iteration of each thread consists initially of a GRASP construction, followed by

local search. Then, the local optimum is combined with a randomly selected element

of the thread’s pool using path-relinking. The output of path-relinking is finally tested

for insertion into the pool. If accepted for insertion, the solution is sent to the other

threads, where it is tested for insertion into the other pools. Collaboration takes place

at this point. Though there may be some communication overhead in the early itera-

tions, this tends to ease up as pool insertions become less frequent.

The second mechanism is that used in centralized strategies (Martins et al., 2004;

Ribeiro and Rosseti, 2002), in which a single pool of elite solution is used. As before,

each GRASP iteration performed at each thread starts by the construction and local

search phases. Next, an elite solution is requested to and received from the centralized

pool. Once path-relinking has been performed, the solution obtained as the output is

sent to the pool and tested for insertion. Collaboration takes place when elite solu-

tions are sent from the pool to other processors different from the one that originally

computed it.

We notice that, in both the distributed and the centralized strategies, each processor

has a copy of the sequential algorithm and a copy of the data. One processor acts as

the master, reading and distributing the problem data, generating the seeds which will

be used by the pseudo-random number generators at each processor, distributing the

iterations, and collecting the best solution found by each processor. In the case of a

distributed strategy, each processor has its own pool of elite solutions and all available

processors perform GRASP iterations. Contrary to the case of a centralized strategy,

one particular processor does not perform GRASP iterations and is used exclusively to

store the pool and to handle all operations involving communication requests between

the pool and the slaves. In the next section, we describe three examples of parallel

implementations of GRASP with path-relinking.

7.4 SOME PARALLEL GRASP IMPLEMENTATIONS

In this section, we describe a comparison of multiple-walk independent-thread and

multiple-walk cooperative-thread strategies for GRASP with path-relinking for the

three-index assignment problem (Aiex et al., 2005), the job shop scheduling prob-

lem (Aiex et al., 2003), and the 2-path network design problem (Martins et al., 2004;
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Ribeiro and Rosseti, 2002). For each problem, we first state the problem and describe

the construction, local search, and path-relinking procedures. We then show numerical

results comparing the different parallel implementations.

The experiments described in Subsections 7.4.1 and 7.4.2 were done on an SGI

Challenge computer (16 196-MHz MIPS R10000 processors and 12 194-MHz MIPS

R10000 processors) with 7.6 Gb of memory. The algorithms were coded in Fortran

and were compiled with the SGI MIPSpro F77 compiler using flags -O3 -static

-u. The parallel codes used SGI’s Message Passing Toolkit 1.4, which contains a fully

compliant implementation of version 1.2 of the Message-Passing Interface (MPI) (Snir

et al., 1998) specification. In the parallel experiments, wall clock times were measured

with the MPI function MPI WT. This was also the case for runs with a single processor

that are compared to multiple-processor runs. Timing in the parallel runs excludes the

time to read the problem data, to initialize the random number generator seeds, and to

output the solution.

In the experiments described in Subsection 7.4.3, both variants of the parallel

GRASP with path-relining heuristic were implemented in C (version egcs-2.91.66

of the gcc compiler) and the MPI LAM 6.3.2 implementation. Computational ex-

periments were performed on a cluster of 32 Pentium II 400MHz processors with 32

Mbytes of RAM memory each, running under the Red Hat 6.2 implementation of

Linux. Processors are connected by a 10 Mbits/s IBM 8274 switch.

7.4.1 Three-index assignment

7.4.1.1 Problem formulation. The NP-hard (Frieze, 1983; Garey and John-

son, 1979) three-index assignment problem (AP3) (Pierskalla, 1967) is a straightfor-

ward extension of the classical two-dimensional assignment problem and can be for-

mulated as follows. Given three disjoint sets I, J, and K with |I| = |J|= |K| = n and

a weight ci jk associated with each ordered triplet (i, j,k) ∈ I× J×K, find a minimum

weight collection of n disjoint triplets (i, j,k) ∈ I× J×K. Another way to formulate

the AP3 is with permutations. There are n3 cost elements. The optimal solution con-

sists of the n smallest cost elements, such that the constraints are not violated. The

constraints are enforced if one assigns to each set I, J, and K, the numbers 1,2, . . . ,n
and none of the chosen triplets (i, j,k) is allowed to have the same value for indices i,

j, and k as another. The permutation-based formulation for the AP3 is

min
p,q∈πN

n

∑
i=1

cip(i)q(i),

where πN denotes the set of all permutations of the set of integers N = {1,2, . . . ,n}.

7.4.1.2 GRASP construction. The construction phase selects n triplets, one

at a time, to form a three-index assignment S. The usual random choice in the interval

[0,1] for the RCL parameter α is made at each iteration. The value remains constant

during the entire construction phase. Construction begins with an empty solution S.

The initial set C of candidate triplets consists of the set of all triplets. Let c and

c denote, respectively, the values of the smallest and largest cost triplets in C. All

triplets (i, j,k) in the candidate set C having cost ci jk ≤ c + α(c− c) are placed in
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the RCL. Triplet (ip, jp,kp) ∈ C′ is chosen at random and is added to the solution,

i.e. S = S∪{(ip, jp,kp)}. Once (ip, jp,kp) is selected, any triplet (i, j,k) ∈C such that

i = ip or j = jp or k = kp is removed from C. After n−1 triplets have been selected, the

set C of candidate triplets contains one last triplet which is added to S, thus completing

the construction phase.

7.4.1.3 Local search. If the solution of the AP3 is represented by a pair of

permutations (p,q), then the solution space consists of all (n!)2 possible combinations

of permutations. If p is a permutation vector, then a 2-exchange permutation of p is a

permutation vector that results from swapping two elements in p. In the 2-exchange

neighborhood scheme used in this local search, the neighborhood of a solution (p,q)
consists of all 2-exchange permutations of p plus all 2-exchange permutations of q.

In the local search, the cost of each neighbor solution is compared with the cost of

the current solution. If the cost of the neighbor is lower, then the solution is updated,

the search is halted, and a search in the new neighborhood is initialized. The local

search ends when no neighbor of the current solution has a lower cost than the current

solution.

7.4.1.4 Path-relinking. A solution of AP3 can be represented by two permu-

tation arrays of numbers 1,2, . . . ,n in sets J and K, respectively, as follows:

S = {(pS
1, pS

2, . . . , pS
n),(q

S
1,q

S
2, . . . ,q

S
n)}.

Path-relinking is done between an initial solution

S = {(pS
1, pS

2, . . . , pS
n),(q

S
1,q

S
2, . . . ,q

S
n)}

and a guiding solution

T = {(pT
1 , pT

2 , . . . , pT
n ),(qT

1 ,qT
2 , . . . ,qT

n )}.

Let the difference between S and T be defined by the two sets of indices

δS,T
p = {i = 1, . . . ,n

∣

∣ pS
i 6= pT

i },
δS,T

q = {i = 1, . . . ,n
∣

∣ qS
i 6= qT

i }.

During a path-relinking move, a permutation π (p or q) array in S, given by

(. . . ,πS
i ,π

S
i+1, . . . ,π

S
j−1,π

S
j , . . .),

is replaced by a permutation array

(. . . ,πS
j ,π

S
i+1, . . . ,π

S
j−1,π

S
i , . . .),

by exchanging permutation elements πS
i and πS

j , where i ∈ δ
S,T
π and j ∈ {1,2, . . . ,n}

are such that πT
j = πS

i .
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Table 7.1 Estimated exponential distribution parameters µ and λ obtained with 200 in-

dependent runs of a sequential GRASP with path-relinking on AP3 instances B-S 20.1,

B-S 22.1, B-S 24.1, and B-S 26.1, with target values 7, 8, 7, and 8, respectively.

estimated

parameter

Problem µ λ |µ|/λ

B-S 20.1 -26.46 1223.80 .021

B-S 22.1 -135.12 3085.32 .043

B-S 24.1 -16.76 4004.11 .004

B-S 26.1 32.12 2255.55 .014

average .020

Table 7.2 Speedups for multiple-walk independent-thread implementations of GRASP

with path-relinking on instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1, with

target values 7, 8, 7, and 8, respectively. Speedups are computed with the average of 60

runs.

number of processors

2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.

B-S 20.1 1.67 0.84 3.34 0.84 6.22 0.78 10.82 0.68

B-S 22.1 2.25 1.13 4.57 1.14 9.01 1.13 14.37 0.90

B-S 24.1 1.71 0.86 4.00 1.00 7.87 0.98 12.19 0.76

B-S 26.1 2.11 1.06 3.89 0.97 6.10 0.76 11.49 0.72

average 1.94 0.97 3.95 0.99 7.3 0.91 12.21 0.77

7.4.1.5 Parallel independent-thread GRASP with path-relinking for
AP3. We study the parallel efficiency of the multiple-walk independent-thread GRASP

with path-relinking on AP3 instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1

of Balas and Saltzman (1991) using 7, 8, 7, and 8 as target solution values, respec-

tively. Table 7.1 shows the estimated exponential distribution parameters for the

multiple-walk independent-thread GRASP with path-relinking strategy obtained from

200 independent runs of a sequential variant of the algorithm. In addition to the se-

quential variant, 60 independent runs of 2-, 4-, 8-, and 16-thread variants were run

on the four test problems. Average speedups were computed dividing the sum of the

execution times of the independent parallel program executing on one processor by

the sum of the execution times of the parallel program on 2, 4, 8, and 16 processors,

for 60 runs. The execution times of the independent parallel program executing on

one processor and the execution times of the sequential program are approximately

the same. The average speedups can be seen in Table 7.2 and Figure 7.9.

7.4.1.6 Parallel cooperative-thread GRASP with path-relinking for
AP3. We now study the multiple-walk cooperative-thread strategy for GRASP with
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Figure 7.9 Average speedups on 2, 4, 8, and 16 processors for multiple-walk independent-

thread parallel GRASP with path-relinking on AP3 instances B-S 20.1, B-S 22.1,

B-S 24.1, and B-S 26.1.

Table 7.3 Speedups for multiple-walk cooperative-thread implementations of GRASP with

path-relinking on instances B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1, with target

values 7, 8, 7, and 8, respectively. Average speedups were computed over 60 runs.

number of processors

2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.

B-S 20.1 1.56 0.78 3.47 0.88 7.37 0.92 14.36 0.90

B-S 22.1 1.64 0.82 4.22 1.06 8.83 1.10 18.78 1.04

B-S 24.1 2.16 1.10 4.00 1.00 9.38 1.17 19.29 1.21

B-S 26.1 2.16 1.08 5.30 1.33 9.55 1.19 16.00 1.00

average 1.88 0.95 4.24 1.07 8.78 1.10 17.10 1.04

path-relinking on the AP3. As with the independent-thread GRASP with path-relinking

strategy, the target solution values 7, 8, 7, and 8 were used for instances B-S 20.1, B-S

22.1, B-S 24.1, and B-S 26.1, respectively. Table 7.3 and Figure 7.10 show super-

linear speedups on instances B-S 22.1, B-S 24.1, and B-S 26.1 and about 90%

efficiency for B-S 20.1. Super-linear speedups are possible because good elite solu-

tions are shared among the threads and are combined with GRASP solutions, whereas

they would not be combined in an independent-thread implementation.
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Figure 7.10 Average speedups on 2, 4, 8, and 16 processors for multiple-walk cooperative-

thread parallel GRASP with path-relinking on AP3 instances B-S 20.1, B-S 22.1,

B-S 24.1, and B-S 26.1.

Figure 7.11 compares average speedup of the two implementations tested in this

section, namely the multiple-walk independent-thread and multiple-walk cooperative-

thread GRASP with path-relinking implementations using target solution values 7,

8, 7, and 8, on the same instances. The figure shows that the cooperative variant of

GRASP with path-relinking achieves the best parallelization.
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Figure 7.11 Average speedups on 2, 4, 8, and 16 processors for the parallel algorithms

tested on instances of AP3: multiple-walk independent-thread GRASP with path-relinking

and multiple-walk cooperative-thread GRASP with path-relinking.

7.4.2 Job shop scheduling

7.4.2.1 Problem formulation. The job shop scheduling problem (JSP) is an

NP-hard (Lenstra and Rinnooy Kan, 1979) combinatorial optimization problem that

has long challenged researchers. It consists in processing a finite set of jobs on a

finite set of machines. Each job is required to complete a set of operations in a fixed

order. Each operation is processed on a specific machine for a fixed duration. Each

machine can process at most one job at a time and once a job initiates processing on

a given machine, it must complete processing on that machine without interruption.

A schedule is a mapping of operations to time slots on the machines. The makespan

is the maximum completion time of the jobs. The objective of the JSP is to find a

schedule that minimizes the makespan.

A feasible solution of the JSP can be built from a permutation of the set of jobs J on

each of the machines in the set M , observing the precedence constraints, the restriction

that a machine can process only one operation at a time, and requiring that once started,

processing of an operation cannot be interrupted until its completion. Since each set

of feasible permutations has a corresponding schedule, the objective of the JSP is to

find, among the feasible permutations, the one with the smallest makespan.

7.4.2.2 GRASP construction. Consider the GRASP construction phase for

the JSP, proposed in Binato et al. (2002) and Aiex et al. (2003), where a single oper-
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ation is the building block of the construction phase. A feasible schedule is built by

scheduling individual operations, one at a time, until all operations have been sched-

uled.

While constructing a feasible schedule, not all operations can be selected at a given

stage of the construction. An operation σ
j
k can only be scheduled if all prior operations

of job j have already been scheduled. Therefore, at each construction phase iteration,

at most |J | operations are candidates to be scheduled. Let this set of candidate opera-

tions be denoted by Oc and the set of already scheduled operations by Os. Denote the

value of the greedy function for candidate operation σ
j
k by h(σ

j
k).

The greedy choice is to next schedule operation σ
j
k = argmin(h(σ

j
k) | σ

j
k ∈ Oc). Let

σ
j
k = argmax(h(σ

j
k) | σ

j
k ∈Oc), h = h(σ

j
k), and h = h(σ

j
k). Then, the GRASP restricted

candidate list (RCL) is defined as

RCL = {σ j
k ∈ Oc | h≤ h(σ

j
k)≤ h+α(h−h)},

where α is a parameter such that 0≤ α≤ 1.

A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled is

selected from the RCL and is added to the partial schedule, resulting in a new partial

schedule. The selected operation is inserted into the earliest available feasible time

slot on machine M
σ

j
k

. Construction ends when the partial schedule is complete, i.e. all

operations have been scheduled.

The algorithm uses two greedy functions. Even numbered iterations use a greedy

function based on the makespan resulting from the inclusion of operation σ
j
k to the

already-scheduled operations, i.e. h(σ
j
k) = Cmax for O = {Os∪σ

j
k}. On odd numbered

iterations, solutions are constructed by favoring operations from jobs having long re-

maining processing times. The greedy function used is given by h(σ
j
k) =−∑σ

j
l
6∈Os

p
j
l ,

which measures the remaining processing time for job j. The use of two different

greedy functions produce a greater diversity of initial solutions to be used by the local

search.

7.4.2.3 Local search. To attempt to decrease the makespan of the solution pro-

duced in the construction phase, we employ the 2-exchange local search used in (Aiex

et al., 2003; Binato et al., 2002; Taillard, 1991), based on the disjunctive graph model

of Roy and Sussmann (1964). We refer the reader to Aiex et al. (2003) and Binato

et al. (2002) for a description of the implementation of the local search procedure.

7.4.2.4 Path-relinking. Path-relinking for job shop scheduling is similar to

path-relinking for three-index assignment. Where in the case of three-index assign-

ment each solution is represented by two permutation arrays, in the job shop schedul-

ing problem, each solution is made up of |M | permutation arrays of numbers 1,2, . . . , |J |.

7.4.2.5 Parallel independent-thread GRASP with path-relinking for
JSP. We study the efficiency of the multiple-walk independent-thread GRASP with

path-relinking on JSP instances abz6, mt10, orb5, and la21 of ORLib (Beasley, 1990)
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Table 7.4 Estimated exponential distribution parameters µ and λ obtained with 200 in-

dependent runs of a sequential GRASP with path-relinking on JSP instances abz6, mt10,

orb5, and la21, with target values 943, 938, 895, and 1100, respectively.

estimated

parameter

Problem µ λ |µ|/λ

abz6 47.67 756.56 .06

mt10 305.27 524.23 .58

orb5 130.12 395.41 .32

la21 175.20 407.73 .42

average .34

Table 7.5 Speedups for multiple-walk independent-thread implementations of GRASP

with path-relinking on instances abz6, mt10, orb5, and la21, with target values 943,

938, 895, and 1100, respectively. Speedups are computed with the average of 60 runs.

number of processors

2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.

abz6 2.00 1.00 3.36 0.84 6.44 0.81 10.51 0.66

mt10 1.57 0.79 2.12 0.53 3.03 0.39 4.05 0.25

orb5 1.95 0.98 2.97 0.74 3.99 0.50 5.36 0.34

la21 1.64 0.82 2.25 0.56 3.14 0.39 3.72 0.23

average 1.79 0.90 2.67 0.67 4.15 0.52 5.91 0.37

using 943, 938, 895, and 1100 as target solution values, respectively. Table 7.4 shows

the estimated exponential distribution parameters for the multiple-walk independent-

thread GRASP with path-relinking strategy obtained from 200 independent runs of a

sequential variant of the algorithm. In addition to the sequential variant, 60 indepen-

dent runs of 2-, 4-, 8-, and 16-thread variants were run on the four test problems. As

before, average speedups were computed dividing the sum of the execution times of

the independent parallel program executing on one processor by the sum of the exe-

cution times of the parallel program on 2, 4, 8, and 16 processors, for 60 runs. The

average speedups can be seen in Table 7.5 and Figure 7.12.

Compared to the efficiencies observed on the AP3 instances, those for these in-

stances of the JSP were much worse. While with 16 processors average speedups of

12.2 were computed for the AP3, average speedups of only 5.9 were computed for the

JSP. This is consistent with the |µ|/λ values, which were on average .34 for the JSP,

and 0.02 for the AP3.

7.4.2.6 Parallel cooperative-thread GRASP with path-relinking for
JSP. We now study the multiple-walk cooperative-thread strategy for GRASP with

path-relinking on the JSP. As with the independent-thread GRASP with path-relinking
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Figure 7.12 Average speedups on 2, 4, 8, and 16 processors for multiple-walk independent-

thread parallel GRASP with path-relinking on JSP instances abz6, mt10, orb5, and la21.

Table 7.6 Speedups for multiple-walk cooperative-thread implementations of GRASP with

path-relinking on instances abz6, mt10, orb5, and la21, with target values 943, 938, 895,

and 1100, respectively. Average speedups were computed over 60 runs.

number of processors

2 4 8 16

Problem speedup effic. speedup effic. speedup effic. speedup effic.

abz6 2.40 1.20 4.21 1.05 11.43 1.43 23.58 1.47

mt10 1.75 0.88 4.58 1.15 8.36 1.05 16.97 1.06

orb5 2.10 1.05 4.91 1.23 8.89 1.11 15.76 0.99

la21 2.23 1.12 4.47 1.12 7.54 0.94 11.41 0.71

average 2.12 1.06 4.54 1.14 9.05 1.13 16.93 1.06

strategy, the target solution values 943, 938, 895, and 1100 were used for instances

abz6, mt10, orb5, and la21, respectively. Table 7.6 and Figure 7.13 show super-

linear speedups on instances abz6 and mt10, linear speedup on orb5 and about 70%

efficiency for la21. As before, super-linear speedups are possible because good elite

solutions are shared among the threads and these elite solutions are combined with

GRASP solutions whereas they would not be combined in an independent-thread im-

plementation.
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Figure 7.13 Average speedups on 2, 4, 8, and 16 processors for multiple-walk cooperative-

thread parallel GRASP with path-relinking on JSP instances abz6, mt10, orb5, and la21.

Figure 7.14 compares the average speedup of the two implementations tested in

this section, namely implementations of the multiple-walk independent-thread and

multiple-walk cooperative-thread GRASP with path-relinking using target solution

values 943, 938, 895, and 1100, on instances abz6, mt10, orb5, and la21, respec-

tively.

The figure shows that the cooperative variant of GRASP with path-relinking achieves

the best parallelization.

7.4.3 2-path network design problem

7.4.3.1 Problem formulation. Let G = (V,E) be a connected graph, where

V is the set of nodes and E is the set of edges. A k-path between nodes s,t ∈ V is a

sequence of at most k edges connecting them. Given a non-negative weight function

w : E → R+ associated with the edges of G and a set D of pairs of origin-destination

nodes, the 2-path network design problem (2PNDP) consists of finding a minimum

weighted subset of edges E ′ ⊆ E containing a 2-path between every origin-destination

pair.

Applications of 2PNDP can be found in the design of communications networks,

in which paths with few edges are sought to enforce high reliability and small delays.

2PNDP was shown to be NP-hard by Dahl and Johannessen (2004).
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Figure 7.14 Average speedups on 2, 4, 8, and 16 processors for the parallel algorithms

tested on instances of JSP: multiple-walk independent-thread GRASP with path-relinking

and multiple-walk cooperative-thread GRASP with path-relinking.

7.4.3.2 GRASP construction. The construction of a new solution begins by

the initialization of modified edge weights with the original edge weights. Each iter-

ation of the construction phase starts by the random selection of an origin-destination

pair still in D. A shortest 2-path between the extremities of this pair is computed,

using the modified edge weights. The weights of the edges in this 2-path are set to

zero until the end of the construction procedure, the origin-destination pair is removed

from D, and a new iteration resumes. The construction phase stops when 2-paths have

been computed for all origin-destination pairs.

7.4.3.3 Local search. The local search phase seeks to improve each solution

built in the construction phase. Each solution may be viewed as a set of 2-paths, one

for each origin-destination pair in D. To introduce some diversity by driving different

applications of the local search to different local optima, the origin-destination pairs

are investigated at each GRASP iteration in a circular order defined by a different

random permutation of their original indices.

Each 2-path in the current solution is tentatively eliminated. The weights of the

edges used by other 2-paths are temporarily set to zero, while those which are not

used by other 2-paths in the current solution are restored to their original values. A

new shortest 2-path between the extremities of the origin-destination pair under in-

vestigation is computed, using the modified weights. If the new 2-path improves the

current solution, then the latter is modified; otherwise the previous 2-path is restored.
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The search stops if the current solution was not improved after a sequence of |D| iter-

ations along which all 2-paths have been investigated. Otherwise, the next 2-path in

the current solution is investigated for substitution and a new iteration resumes.

7.4.3.4 Path-relinking. A solution to 2PNDP is represented as a set of 2-

paths connecting each origin-destination pair. Path-relinking starts by determining

all origin-destination pairs whose associated 2-paths are different in the starting and

guiding solutions. These computations amount to determining a set of moves which

should be applied to the initial solution to reach the guiding one. Each move is char-

acterized by a pair of 2-paths, one to be inserted and the other to be eliminated from

the current solution.

7.4.3.5 Parallel implementations of GRASP with path-relinking for
2PNDP. As for problems AP3 and JSP, in the case of the independent-thread par-

allel implementation of GRASP with path-relinking for 2PNDP, each processor has

a copy of the sequential algorithm, a copy of the data, and its own pool of elite so-

lutions. One processor acts as the master, reading and distributing the problem data,

generating the seeds which will be used by the pseudo-random number generators at

each processor, distributing the iterations, and collecting the best solution found by

each processor. All the p available processors perform GRASP iterations.

However, in the case of the cooperative-thread parallel implementation of GRASP

with path-relinking for 2PNDP, the master handles a centralized pool of elite solutions,

collecting and distributing them upon request (recall that in the case of AP3 and JSP

each processor had its own pool of elite solutions). The p− 1 slaves exchange the

elite solutions found along their search trajectories. In the proposed implementation

for 2PNDP, each slave may send up to three different solutions to the master at each

iteration: the solution obtained by local search, and the solutions w1 and w2 obtained

by forward and backward path-relinking (Resende and Ribeiro, 2005) between the

same pair of starting and guiding solutions, respectively.

7.4.3.6 Computational results. The results illustrated in this section con-

cern an instance with 100 nodes, 4950 edges, and 1000 origin-destination pairs. We

use the methodology proposed in Aiex et al. (2002) to assess experimentally the be-

havior of randomized algorithms. This approach is based on plots showing empirical

distributions of the random variable time to target solution value. To plot the em-

pirical distribution, we fix a solution target value and run each algorithm 200 times,

recording the running time when a solution with cost at least as good as the target

value is found. For each algorithm, we associate with the i-th sorted running time ti a

probability pi = (i− 1
2
)/200 and plot the points zi = (ti, pi), for i = 1, . . . ,200.

Results obtained for both the independent-thread and the cooperative-thread par-

allel implementations of GRASP with path-relinking on the above instance with the

target value set at 683 are reported in Figure 7.15. The cooperative implementation

is already faster than the independent one for eight processors. For fewer processors

the independent implementation is naturally faster, since it employs all p processors in
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Figure 7.15 Running times for 200 runs of (a) the multiple-walk independent-thread and

(b) the multiple-walk cooperative-thread implementations of GRASP with path-relinking

using two processors and with the target solution value set at 683.

the search (while only p−1 slave processors take part effectively in the computations

performed by the cooperative implementation).

Three different strategies were investigated to further improve the performance of

the cooperative-thread implementation, by reducing the cost of the communication

between the master and the slaves when the number of processors increases:

(1) Each send operation is broken in two parts. First, the slave sends only the cost

of the solution to the master. If this solution is better than the worst solution in

the pool, then the full solution is sent. The number of messages increases, but

most of them will be very small ones with light memory requirements.
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(2) Only one solution is sent to the pool at each GRASP iteration.

(3) A distributed implementation, in which each slave handles its own pool of elite

solutions. Every time a processor finds a new elite solution, the latter is broad-

cast to the others.

Comparative results for these three strategies on the same problem instance are

plotted in Figure 7.16. The first strategy outperformed all others.
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Figure 7.16 Strategies for improving the performance of the centralized multiple-walk

cooperative-thread implementation on eight processors.

Table 7.7 shows the average computation times and the best solutions found over

ten runs of each strategy when the total number of GRASP iterations is set at 3200.

There is a clear degradation in solution quality for the independent-thread strategy

when the number of processors increases. As fewer iterations are performed by each

processor, the pool of elite solutions gets poorer with the increase in the number of

processors. Since the processors do not communicate, the overall solution quality is

worse. In the case of the cooperative strategy, the information shared by the processors

guarantees the high quality of the solutions in the pool. The cooperative implementa-

tion is more robust. Very good solutions are obtained with no degradation in quality

and significant speedups.

7.5 CONCLUSION

Metaheuristics, such as GRASP, have found their way into the standard toolkit of

combinatorial optimization methods. Parallel computers have increasingly found their

way into metaheuristics.

In this chapter, we surveyed work on the parallelization of GRASP. We first showed

that the random variable time to target solution value for GRASP heuristics fits a

two-parameter (shifted) exponential distribution. Under the mild assumption that the

product of the number of processors by the shift in the distribution is small compared

to the standard deviation of the distribution, linear speedups can be expected in parallel
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Table 7.7 Average times and best solutions over ten runs for 2PNDP.

independent cooperative

processors best value avg. time (s) best value avg. time (s)

1 673 1310.1 — —

2 676 686.8 676 1380.9

4 680 332.7 673 464.1

8 687 164.1 676 200.9

16 692 81.7 674 97.5

32 702 41.3 678 74.6

multiple-walk independent-thread implementations. We illustrated with an application

to the maximum satisfiability problem a case where this occurs.

Path-relinking has been increasingly used to introduce memory in the otherwise

memoryless original GRASP procedure. The hydridization of GRASP and path-

relinking has led to some effective multiple-walk cooperative-thread implementations.

Collaboration between the threads is usually achieved by sharing elite solutions, either

in a single centralized pool or in distributed pools. In some of these implementa-

tions, super-linear speedups are achieved even for cases where little speedup occurs in

multiple-walk independent-thread variants.

Parallel cooperative implementations of metaheuristics lead to significant speedups,

smaller computation times, and more robust algorithms. However, they demand more

programming efforts and implementation skills. The three applications described in

this survey illustrate the strategies and programming skills involved in the develop-

ment of robust and efficient parallel cooperative implementations of GRASP.
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Abstract: A Greedy Randomized Adaptive Search Procedure (GRASP) is a meta-

heuristic for combinatorial optimization. It usually consists of a construction procedure

based on a greedy randomized algorithm and a local search. Path-relinking is an in-

tensification strategy that explores trajectories that connect high quality solutions. We

analyze two parallel strategies for GRASP with path-relinking and propose a criterion to

predict parallel speedup based on experiments with a sequential implementation of the al-

gorithm. Independent and cooperative parallel strategies are described and implemented

for the 3-index assignment problem and the job-shop scheduling problem. The compu-

tational results for independent parallel strategies are shown to qualitatively behave as

predicted by the criterion.

Keywords: Combinatorial optimization, job shop scheduling, 3-index assignment, local

search, GRASP, path-relinking, parallel algorithm.

8.1 INTRODUCTION

GRASP (Greedy Randomized Adaptive Search Procedure) is a metaheuristic for com-

binatorial optimization (Feo and Resende, 1989; 1995; Festa and Resende, 2002; Re-

sende and Ribeiro, 2002). A GRASP is an iterative process, where each iteration

usually consists of two phases: construction and local search. The construction phase

187



188 AN INTRODUCTION TO GRASP

builds a feasible solution that is used as the starting solution for local search. The best

solution over all GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time. The set

of candidate elements is made up of those elements that can be added to the current

solution under construction without causing infeasibilities. A candidate element is

evaluated by a greedy function that measures the local benefit of including that element

in the partially constructed solution. The value-based restricted candidate list (RCL)

is made up of candidate elements having a greedy function value at least as good as

a specified threshold. The next element to be included in the solution is selected at

random from the RCL. Its inclusion in the solution alters the greedy functions and the

set of candidate elements used to determine the next RCL. The construction procedure

terminates when the set of candidate elements is empty.

A local search algorithm successively replaces the current solution by a better so-

lution in its neighborhood, if one exists. It terminates with a locally optimal solution

when there is no better solution in the neighborhood. Since the solutions generated

by a GRASP construction phase are usually sub-optimal, local search almost always

improves the constructed solution.

GRASP has been used to find quality solutions for a wide range of combinatorial

optimization problems (Festa and Resende, 2002). Furthermore, many extensions and

improvements have been proposed for GRASP. Many of these extensions consist in

the hybridization of the method with other methaheuristics. We observe that hybrid

strategies usually find better solutions than those obtained using the pure GRASP, hav-

ing in some cases improved the solution for open problems in the literature (Resende

and Werneck, 2002; 2003; Ribeiro et al., 2002).

Hybrid strategies of GRASP with path-relinking have been leading to significant

improvements in solution quality when compared to the solutions obtained by the pure

method. Path-relinking was originally proposed by Glover (1996) as an intensification

strategy exploring trajectories connecting elite solutions obtained by tabu search or

scatter search (Glover, 2000; Glover and Laguna, 1997; Glover et al., 2000). The use

of path-relinking within a GRASP procedure, as an intensification strategy applied

to each locally optimal solution, was first proposed by Laguna and Martı́ (1999). It

was followed by several extensions, improvements, and successful applications (Aiex

et al., 2003; 2000; Canuto et al., 2001; Resende and Ribeiro, 2003; Ribeiro et al.,

2002).

The path-relinking approach consists in exploring trajectories that connect an initial

solution and a guiding solution. This is done by introducing in the initial solution

attributes of the guiding solution. At each step, all moves that incorporate attributes of

the guiding solution are analyzed and the best move is chosen. In GRASP with path-

relinking, one of these solutions is obtained by the local search phase of GRASP and

the other is chosen among the solutions kept in an elite set of solutions found during

the iterations of the algorithm.

Parallel computers have increasingly found their way into metaheuristics (Duni

et al., 2002). A frequent question raised during the development of a parallel strategy

is how the algorithm will behave when implemented in parallel as compared to a se-

quential implementation. The ideal situation is achieving linear speedup, i.e. when the
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execution time of the sequential program divided by the execution time of the parallel

program running in ρ processors is equal to ρ. Methodologies to help analyze the be-

havior of parallel strategies are significant in the development of a parallel application.

Most of the parallel implementations of GRASP found in the literature consist in

either partitioning the search space or partitioning the GRASP iterations and assigning

each partition to a processor. GRASP is applied to each partition in parallel. Examples

of these strategies can be found in (Alvim and Ribeiro, 1998; Alvim, 1998; Feo et al.,

1994; Li et al., 1994; Martins et al., 1999; 2000; 1998; Murphey et al., 1998; Pardalos

et al., 1995; 1996; Resende et al., 1998).

For hybrid strategies of GRASP with path-relinking, two general parallelization ap-

proaches have been proposed. In the first one, named the independent approach, the

communication among processors during GRASP iterations is limited to the detection

of program termination. In the second approach, called the cooperative approach, pro-

cessors share information on elite solutions visited during GRASP iterations. These

strategies are classified according to Verhoeven and Aarts (1995) as multiple inde-

pendent trajectories and multiple cooperative trajectories, respectively. Examples of

parallel GRASP with path-relinking can be found in (Aiex et al., 2003; 2000; Canuto

et al., 2001; Ribeiro and Rosseti, 2002).

In this paper, we analyze two parallel strategies for GRASP with path-relinking and

propose a criterion to predict parallel efficiency based on experiments with a sequential

implementation of the algorithm. Independent and cooperative parallel strategies are

described and implemented for the 3-index assignment problem (AP3) and the job-

shop scheduling problem (JSP).

The remainder of this paper is organized as follows. In Section 8.2, the sequential

implementations of GRASP and of path-relinking are described for both the AP3 and

the JSP. Section 8.3 shows how GRASP and path-relinking are combined. The parallel

approaches are discussed in Section 8.4. The computational results are reported and

analyzed in Section 8.5. Concluding remarks are made in Section 8.6.

8.2 SEQUENTIAL GRASP

In this section, the GRASP implementations developed for the 3-index assignment

problem in Aiex et al. (2000) and for the job-shop scheduling problem in Aiex et al.

(2003) are reviewed in Subsections 8.2.1 and 8.2.2, respectively. Path-relinking is

generalized for these problems in Subsection 8.2.3.

8.2.1 GRASP for the AP3

The three-index assignment problem (AP3) was first stated by Pierskalla (1967) as a

straightforward extension of the classical two-dimensional assignment problem. The

AP3 is NP-Hard (Frieze, 1983; Garey and Johnson, 1979).

A formulation of the AP3 (often called the three-dimensional matching problem)

is the following: Given three disjoint sets I, J, and K, such that |I|= |J|= |K|= n and

a weight ci jk associated with each ordered triplet (i, j,k) ∈ I× J×K, find a minimum

weight collection of n disjoint triplets (i, j,k) ∈ I× J×K.
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The AP3 can also be formulated using permutation functions. There are n3 cost

elements and the optimal solution of the AP3 consists of the n smallest, such that the

constraints are not violated. Assign to each set I, J, and K, the numbers 1,2, . . . ,n.

None of the chosen triplets (i, j,k) is allowed to have the same value for indices i, j,

and k as another. For example, the choice of triplets (1,2,4) and (3,2,5) is infeasible,

since these triplets share index j = 2. The permutation-based formulation for the AP3

is

min
p,q∈πN

n

∑
i=1

cip(i)q(i)

where πN denotes the set of all permutations of the set of integers N = {1,2, . . . ,n}.

8.2.1.1 GRASP for the AP3 – Construction phase. The GRASP con-

struction phase builds a feasible solution S by selecting n triplets, one at a time.

A restricted candidate list parameter α is selected at random from the interval [0,1].
This value is not changed during the construction phase. Solution S is initially empty

and the set C of candidate triplets is initially the set of all triplets. To select the p-

th (1 ≤ p ≤ n− 1) triplet to be added to the solution, a restricted candidate list C′ is

defined to include all triplets (i, j,k) in the candidate set C having cost ci jk ≤ c+α(c−
c), where

c = min{ci jk

∣

∣ (i, j,k) ∈C} and c = max{ci jk

∣

∣ (i, j,k) ∈C}.

Triplet (ip, jp,kp) ∈ C′ is chosen at random and is added to the solution, i.e. S =
S∪{(ip, jp,kp)}.

Once (ip, jp,kp) is selected, the set of candidate triplets must be adjusted to take

into account that (ip, jp,kp) is part of the solution. Any triplet (i, j,k) such that i =
ip or j = jp or k = kp must be removed from the current set of candidate triplets.

This updating procedure is the computational bottleneck of the construction phase. A

straightforward implementation would scan all n3 cost elements n− 1 times in order

to update the candidate list. In Aiex et al. (2000), four doubly linked lists are used

to implement this process more efficiently, reducing the complexity from O(n4) to

O(n3).
After n−1 triplets have been selected, the set C of candidate triplets contains one

last triplet which is added to S, thus completing the construction phase.

8.2.1.2 GRASP for the AP3 – Local search phase. The solution of the

AP3 can be represented by a pair of permutations (p,q). Therefore, the solution space

consists of all (n!)2 possible combinations of permutations.

Let us first define the difference between two permutations s and s′ to be

δ(s,s′) = {i | s(i) 6= s′(i)},

and the distance between them to be

d(s,s′) = |δ(s,s′)|.
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In this local search, a 2-exchange neighborhood is adopted. A 2-exchange neighbor-

hood is defined to be

N2(s) = {s′ | d(s,s′) = 2}.

The definition of the neighborhood N(s) is crucial for the performance of the local

search. In the 2-exchange neighborhood scheme used in this local search, the neigh-

borhood of a solution (p,q) consists of all 2-exchange permutations of p plus all 2-

exchange permutations of q. This means that for a solution p,q ∈ πN , the 2-exchange

neighborhood is

N2(p,q) = {p′,q′ | d(p, p′)+d(q,q′) = 2}.

Hence, the size of the neighborhood is |N2(p)|+ |N2(q)| = 2
(

n
2

)

. In the local search,

the cost of each neighborhood solution is compared with the cost of the current so-

lution. If the cost of the neighbor is lower, then the solution is updated, the search

is halted, and a search in the new neighborhood is initialized. The local search ends

when no neighbor of the current solution has a lower cost than the current solution.

8.2.2 GRASP for the JSP

The job shop scheduling problem (JSP) is a well-studied problem in combinatorial

optimization. It consists in processing a finite set of jobs on a finite set of machines.

Each job is required to complete a set of operations in a fixed order. Each operation

is processed on a specific machine for a fixed duration. Each machine can process at

most one job at a time and once a job initiates processing on a given machine it must

complete processing on that machine without interruption. A schedule is a mapping of

operations to time slots on the machines. The makespan is the maximum completion

time of the jobs. The objective of the JSP is to find a schedule that minimizes the

makespan. The JSP is NP-hard (Lenstra and Rinnooy Kan, 1979) and has also proven

to be computationally challenging.

Mathematically, the JSP can be stated as follows. Given a set M of machines

(where we denote the size of M by |M |) and a set J of jobs (where the size of J

is denoted by |J |), let σ
j
1 ≺ σ

j
2 ≺ ·· · ≺ σ

j

|M | be the ordered set of |M | operations

of job j, where σ
j
k ≺ σ

j
k+1 indicates that operation σ

j
k+1 can only start processing

after the completion of operation σ
j
k. Let O be the set of operations. Each operation

σ
j
k is defined by two parameters: M

j
k is the machine on which σ

j
k is processed and

p
j
k = p(σ j

k) is the processing time of operation σ
j
k. Defining t(σ j

k) to be the starting

time of the k-th operation σ
j
k ∈ O, the JSP can be formulated as follows:
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minimize Cmax

subject to: Cmax ≥ t(σ
j
k)+ p(σ

j
k), for all σ

j
k ∈ O,

t(σ
j
k)≥ t(σ

j
l )+ p(σ

j
l ), for all σ

j
l ≺ σ

j
k, (8.1a)

t(σ
j
k)≥ t(σi

l)+ p(σi
l)∨ (8.1b)

t(σi
l)≥ t(σ

j
k)+ p(σ

j
k), for all σi

l ,σ
j
k ∈ O such that Mσi

l
= M

σ
j
k

,

t(σ
j
k)≥ 0, for all σ

j
k ∈ O,

where Cmax is the makespan to be minimized.

A feasible solution of the JSP can be built from a permutation of J on each of the

machines in M , observing the precedence constraints, the restriction that a machine

can process only one operation at a time, and requiring that once started, processing

of an operation must be uninterrupted until its completion. Since each set of feasible

permutations has a corresponding schedule, the objective of the JSP is to find, among

the feasible permutations, the one with the smallest makespan.

8.2.2.1 GRASP for the JSP – Construction phase. Consider the GRASP

construction phase for the JSP, proposed in Binato et al. (2002) and Aiex et al. (2003),

where a single operation is the building block of the construction phase. That is, a

feasible schedule is built by scheduling individual operations, one at a time, until all

operations have been scheduled.

While constructing a feasible schedule, not all operations can be selected at a given

stage of the construction. An operation σ
j
k can only be scheduled if all prior operations

of job j have already been scheduled. Therefore, at each construction phase iteration,

at most |J | operations are candidates to be scheduled. Let this set of candidate opera-

tions be denoted by Oc and the set of already scheduled operations by Os and denote

the value of the greedy function for candidate operation σ
j
k by h(σ

j
k).

The greedy choice is to next schedule operation σ
j
k = argmin(h(σ

j
k) | σ

j
k ∈ Oc). Let

σ
j
k = argmax(h(σ

j
k) | σ

j
k ∈Oc), h = h(σ

j
k), and h = h(σ

j
k). Then, the GRASP restricted

candidate list (RCL) is defined as

RCL = {σ j
k ∈ Oc | h≤ h(σ

j
k)≤ h+α(h−h)},

where α is a parameter such that 0≤ α≤ 1.

A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled is

selected from the RCL and is added to the partial schedule, resulting in a new partial

schedule. The selected operation is inserted in the earliest available feasible time slot

on machine M
σ

j
k

. Construction ends when the partial schedule is complete, i.e. all

operations have been scheduled.

The algorithm uses two greedy functions. Even numbered iterations use a greedy

function based on the makespan resulting from the inclusion of operation σ
j
k to the

already-scheduled operations, i.e. h(σ
j
k) = Cmax for O = {Os∪σ

j
k}. In odd numbered
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iterations, solutions are constructed by favoring operations from jobs having long re-

maining processing times. The greedy function used is given by h(σ
j
k) =−∑σ

j
l
6∈Os

p
j
l ,

which measures the remaining processing time for job j. The use of two different

greedy functions produce a greater diversity of initial solutions to be used by the local

search.

8.2.2.2 GRASP for the JSP – Local search phase. To attempt to de-

crease the makespan of the solution produced in the construction phase, we employ

the 2-exchange local search used in (Aiex et al., 2003; Binato et al., 2002; Taillard,

1991), that is based on the disjunctive graph model of Roy and Sussmann (1964).

The disjunctive graph G = (V,A,E) is defined such that

V = {O ∪{0, |J | · |M |+1}}

is the set of nodes, where {0} and {|J | · |M |+1} are artificial source and sink nodes,

respectively,

A = {(v,w) | v,w ∈ O,v≺ w}∪
{(0,w) | w ∈ O, 6 ∃v ∈ O ∋ v≺ w}∪

{(v, |J | · |M |+1) | v ∈ O, 6 ∃w ∈ O ∋ v≺ w}

is the set of directed arcs connecting consecutive operations of the same job, and

E = {(v,w) |Mv = Mw}

is the set of edges that connect operations on the same machine. Vertices in the dis-

junctive graph model are weighted. Vertices 0 and |J | · |M |+ 1 have weight zero,

while the weight of vertex i ∈ {1, . . . , |J | · |M |} is the processing time of the operation

corresponding to vertex i. Notice that the edges of A and E correspond, respectively,

to constraints (8.1a) and (8.1b) of the disjunctive programming formulation of the JSP.

An orientation for the edges in E corresponds to a feasible schedule. Given an ori-

entation of E, one can compute the earliest start time of each operation by computing

the longest (weighted) path from node 0 to the node corresponding to the operation.

Consequently, the makespan of the schedule can be computed by finding the critical

(longest) path from node 0 to node |J | · |M |+1. The objective of the JSP is to find an

orientation of E such that the longest path in G is minimized.

Taillard (1994) described an O(|J | · |M |) algorithm to compute the longest path

on G. He also showed that the entire neighborhood of a given schedule, where the

neighborhood is defined by the swap of two consecutive operations in the critical path,

can be examined (i.e. have their makespan computed) in time O(|J | · |M |) given that

the longest path of G was evaluated.

Given the schedule produced in the construction phase, the local search procedure

initially identifies the critical path in the disjunctive graph corresponding to that sched-

ule. All pairs of consecutive operations sharing the same machine in the critical path

are tentatively exchanged. If the exchange improves the makespan, the move is ac-

cepted. Otherwise, the exchange is undone. Once an exchange is accepted, the critical
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path may change and a new critical path must be identified. If no pairwise exchange of

consecutive operations in the critical path improves the makespan, the current sched-

ule is locally optimal and the local search ends.

8.2.3 Path-relinking

Using permutation arrays, we generalize path-relinking in this subsection for both the

AP3 and the JSP.

A solution of the AP3 can be represented by two permutation arrays of numbers

1,2, . . . ,n in sets J and K, respectively, as follows:

S = {( jS
1,1, jS

1,2, . . . , jS
1,n),( jS

2,1, jS
2,2, . . . , jS

2,n)},

where jS
i,k is the k-th number assigned to permutation i in solution S.

Analogously, for the JSP, a schedule can be represented by the permutation of op-

erations in J on the machines in M . The schedule is represented by |M | permutation

arrays, each with |J | operations. Each permutation implies an ordering of the opera-

tions. A solution of the JSP is represented as follows:

S = {( jS
1,1, jS

1,2, . . . , jS
1,|J |),( jS

2,1, jS
2,2, . . . , jS

2,|J |), . . . ,( jS
|M |,1, jS

|M |,2, . . . , jS
|M |,|J |)},

where jS
i,k is the k-th operation executed on machine i in solution S.

A path-relinking strategy for permutation arrays is carried out as follows. For

a problem represented with R permutation arrays of elements from a set E, path-

relinking is done between an initial solution

S = {( jS
1,1, jS

1,2, . . . , jS
1,|E|),( jS

2,1, jS
2,2, . . . , jS

2,|E|), . . . ,( jS
R,1, jS

R,2, . . . , jS
R,|E|)}

and a guiding solution

T = {( jT
1,1, jT

1,2, . . . , jT
1,|E|),( jT

2,1, jT
2,2, . . . , jT

2,|E|), . . . ,( jT
R,1, jT

R,2, . . . , jT
R,|E|)},

where jS′
i,k is the k-th element of permutation i in solution S′.

Let the difference between S and T be defined by the R sets of indices

δ
S,T
k = {i = 1, . . . , |E|

∣

∣ jS
k,i 6= jT

k,i},k = 1, . . . ,R.

During a path-relinking move, a permutation array in S, given by

(. . . , jS
k,i, jS

k,i+1, . . . , jS
k,q−1, jS

k,q, . . .),

is replaced by a permutation array

(. . . , jS
k,q, jS

k,i+1, . . . , jS
k,q−1, jS

k,i, . . .),

by exchanging permutation elements jS
k,i and jS

k,q, where i ∈ δ
S,T
k and q are such that

jT
k,q = jS

k,i.

At each step of the algorithm, the move that produces the lowest cost solution is

selected and its index is removed from the corresponding set δ
S,T
k . This continues until

there are only two move indices left in one of the sets δ
S,T
k . At this point, the move

obtained by exchanging these elements will produce the guiding solution. The best

solution found during the path traversal is returned by the procedure.
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8.3 GRASP WITH PATH-RELINKING

This section describes how path-relinking and GRASP can be combined to form a

hybrid GRASP with path-relinking. We limit this discussion to single processor im-

plementations and consider parallel strategies in the next section. Pseudo-code for the

GRASP with path-relinking is presented in Figure 8.1. Let |P| be the size of the cur-

rent elite set and let maxpool be the the elite set’s maximum size. The first maxpool

GRASP iterations contribute one solution to the elite set per GRASP iteration (line

16). Path-relinking is not done until the pool of elite solutions is full.

In lines 3 and 4, GRASP construction and local search phases are carried out. Each

of these phases can be replaced by more elaborated mechanisms, as for example, the

construction phase developed for the JSP that alternates between two different greedy

functions.

Once the pool of elite solutions is full, solution S produced by the local search phase

of GRASP is tested to verify its quality (line 6). This is done to avoid relinking low-

quality solutions. If S passes the quality test used, bidirectional path-relinking is done

between S and all elements of a subset P′ ⊆ P (lines 7 to 15). In bidirectional path-

relinking (Aiex et al., 2000), two paths are analyzed: one from the GRASP solution

to the selected solution from the pool; another from the selected pool solution to the

GRASP solution. The degree of restrictiveness of the quality test is a function of

the computational time necessary to do path-relinking. For the AP3, the cost of a

solution in the neighborhood of S can be computed from the cost of S in O(1) time and

therefore, path-relinking is applied to all solutions obtained in the local search phase

of GRASP. For the JSP, on the other hand, the cost of each solution visited by path-

relinking is computed in O(|J | · |M |) using the algorithm proposed in Taillard (1994).

Therefore, it is computationally expensive to apply path-relinking after each GRASP

iteration, and path-relinking is applied only when the GRASP solution satisfies a given

quality criterion (Aiex et al., 2003). After each path-relinking phase, the best solution

traversed during path-relinking is tested for inclusion in the elite pool (lines 11 and

13).

Every ifreq GRASP iterations, an intensification procedure is carried out (lines 17

to 19). The intensification procedure (Aiex et al., 2000) is accomplished by applying

path-relinking to each pair of elite solutions in P and updating the pool when neces-

sary. The procedure is repeated until no further change in P occurs.

The GRASP with path-relinking loop from line 2 to 24 continues for at most maxitr

iterations, but can be terminated when a solution having a cost less than or equal to

look4 is found (lines 21 to 23).

Finally, a path-relinking post optimization is done on the elite set (line 25). Path-

relinking as a post-optimization step was introduced in Aiex et al. (2000) and Ribeiro

et al. (2002) and has been also used in Resende and Werneck (2002; 2003). After

applying path-relinking between all pairs of elite solutions without any change in the

elite set, the local search procedure is applied to each elite solution, as the solutions

produced by path-relinking are not always local optima. The local optima found are

candidates for insertion into the elite set. If a change in the elite set occurs, the entire

post-processing step is repeated.
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procedure GRASP PR(seed, look4,maxitr,maxpool,ifreq, problem data)
1 P = /0;

2 for i = 1, . . . ,maxitr do

3 CONSTRUCTION(seed,S, problem data);
4 LOCAL(S, problem data);
5 if |P|== maxpool then

6 accepted = VERIFY QUALITY(S);
7 if accepted then

8 select P′ ⊆ P;

9 for T ∈ P′ do

10 Sgmin = PATH RELINKING(costS,S,T, problem data);
11 UPDATE POOL(Sgmin,costgmin,P);
12 Sgmin = PATH RELINKING(costT ,T,S, problem data);
13 UPDATE POOL(Sgmin,costgmin,P);
14 rof;

15 fi;

16 else P = P∪{S} fi;

17 if mod (i,ifreq) == 0 then

18 INTENSIFY(P);

19 fi;

20 Sbest = argmin(P);
21 if costbest ≤ look4 then

22 break;

23 fi;

24 rof;

25 POSTOPT(P);

26 Sbest = argmin(P);
27 return (Sbest );

end GRASP PR;

Figure 8.1 GRASP with path-relinking.

8.4 PARALLEL GRASP STRATEGIES

In this section, two parallel strategies for the GRASP with path-relinking algorithm

shown in Figure 8.1 are described. The first scheme, called independent, limits com-

munication between processors only to problem input, detection of process termina-

tion, and determination of best overall solution. In addition to the communication

allowed in the independent scheme, the second scheme, called cooperative, allows

processes to exchange information about their elite sets.

8.4.1 Independent parallel strategy

We revisit a basic parallelization scheme for GRASP with path-relinking used in Aiex

et al. (2000). Figure 8.2 shows pseudo-code for this multiple independent walks

scheme.

Our implementations use message passing for communication among processors.

This communication is limited to program initialization and termination. When ρ pro-

cessors are used, a single process reads the problem data and passes it to the remaining

ρ− 1 processes. Processes send a message to all others when they either stop upon
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finding a solution at least as good as the target value look4 or complete the maximum

number of allotted iterations.

procedure INDEPENDENT GRASP PR(seed, look4,maxitr,maxpool,ifreq, problem data)
1 my rank = GET RANK(); ρ = GET NUM PROCS();

2 for i = 1, . . . ,(maxitr/ρ)∗my rank do

3 seed = rand(seed);

4 rof;

5 P = /0; num proc stop = 0;

6 for i = 1, . . . ,∞ do

7 CONSTRUCTION(seed,S, problem data);
8 LOCAL(S, problem data);
9 if |P|== maxpool then

10 accepted = VERIFY QUALITY(S);
11 if accepted then

12 select P′ ⊆ P;

13 for T ∈ P′ do

14 Sgmin = PATH RELINKING(costS,S,T, problem data);
15 UPDATE POOL(Sgmin,costgmin,P);
16 Sgmin = PATH RELINKING(costT ,T,S, problem data);
17 UPDATE POOL(Sgmin,costgmin,P);
18 rof;

19 fi;

20 else P = P∪{S} fi;

21 if mod (i,ifreq) == 0 then INTENSIFY(P); fi;

22 Sbest = argmin(P);
23 if costbest ≤ look4 then SEND ALL(look4 stop) fi;

24 if i == maxitr/ρ then

25 num proc stop = num proc stop+1;

26 SEND ALL(maxitr stop);

27 fi;

28 received = VERIFY RECEIVING( f lag);

29 if received then

30 if f lag == look4 stop then break;

31 else if f lag == maxitr stop then

32 num proc stop = num proc stop+1;

33 fi;

34 fi;

35 if num proc stop == ρ then break fi;

36 rof;

37 POSTOPT(P);

38 SGlobalBest = GET GLOBAL BEST(Sbest );

39 return (SGlobalBest );

end INDEPENDENT GRASP PR;

Figure 8.2 Pseudo-code for the independent parallel GRASP with path-relinking.

The independent parallel GRASP with path-relinking is built upon the sequential

algorithm of Figure 8.1. Each process executes a copy of the program. We discuss

the differences between the sequential algorithm and this parallel variant. In line 1

of Figure 8.2, the rank my rank of the process and the number ρ of processes are

determined. Each GRASP construction phase is initialized with a random number

generator seed. To assure independence of processes, identical seeds of the random
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number generator (rand()) must not be used by more than one process to initiate

a construction phase. The initial seed for process my rank is computed in lines 2

to 4. We attempt, this way, to increase the likelihood that each process has a disjunct

sequence of maxitr/ρ initial seeds.

The for loop from line 6 to line 36 executes the iterations. The construction, local

search, and path-relinking phases are identical to the those of the sequential algorithm.

In line 23, if a process finds a solution with cost less than or equal to look4, it sends

a flag to each of the other processes indicating that it has found the solution. Like-

wise, when a process completes maxitr/ρ iterations, it sends a different flag to each

of the other processes indicating that it has completed the preset number of iterations

(lines 24 to 27). In line 28, the process checks if there are any status flags to be re-

ceived. If there is a flag indicating that a solution with cost not greater than look4 has

been found, the iterations are terminated in line 30. If a flag indicating that some pro-

cess has completed the preset number of iterations has been received, then a counter

num proc stop of the number of processes that are ready to be terminated is incre-

mented (line 32). If all processes have completed their iterations, the execution of the

main for loop is terminated (line 35).

Each process, upon terminating the for loop going from line 6 to line 36, runs

the post-optimization phase on the pool of elite solutions (line 37). A reduce operator

(GET GLOBAL BEST) determines the global best solution among all processes in line 38.

A pure GRASP parallel algorithm can be obtained from the algorithm in Figure 8.2

by skipping the execution of lines 9 to 19. As in a basic GRASP, it is necessary to keep

track of the best solution found and no pool handling operations are necessary. There-

fore, intensification and post-optimization are not defined in a parallel implementation

of pure GRASP.

8.4.2 Cooperative parallel strategy

In the cooperative parallel GRASP with path-relinking, processes share elite set infor-

mation. We now describe this scheme, whose pseudo-code is presented in Figure 8.3.

This algorithm is built on top of the independent scheme presented in the previous sub-

section. We limit our discussion to the differences between the two schemes, which

occur in the path-relinking phase.

Before doing path-relinking between solutions S and T , each process checks if one

or more other processes have sent it new elite solutions. If there are new elite solutions

to be received, RECEIVE SOLUTIONS (in lines 14 and 18) receives the elite solutions,

tests if each elite solution can be accepted for insertion into its local elite set, and

inserts any accepted elite solution. Upon termination of each path-relinking leg, if the

local elite set is updated, then (in lines 17 and 21) the process writes the new elite

solutions to a local send buffer. In line 23, if the local send buffer is not empty, the

process sends the buffer’s contents to the other processes.

Another difference between the independent and the cooperative schemes concerns

the INTENSIFY procedure. In the cooperative scheme, whenever the local elite set pool

is updated, the new elite solutions are written to the send buffer. These bufferized solu-

tions will be sent to the other processes the next time that procedure SEND SOLUTIONS

is invoked.
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8.5 COMPUTATIONAL RESULTS

This section reports on computational experiments with the parallel versions of the

pure GRASP and GRASP with path-relinking proposed in Section 8.4. The parallel

strategies have been implemented for both the AP3 and the JSP described in Sec-

tion 8.2.

8.5.1 Computer environment

The experiments were done on an SGI Challenge computer (16 196-MHz MIPS R10000

processors and 12 194-MHz MIPS R10000 processors) with 7.6 Gb of memory. The

algorithms were coded in Fortran and were compiled with the SGI MIPSpro F77 com-

piler using flags -O3 -static -u. The parallel codes used SGI’s Message Passing

Toolkit 1.4, which contains a fully compliant implementation of version 1.2 of the

Message-Passing Interface (MPI) (Snir et al., 1998) specification. In the parallel ex-

periments, wall clock times were measured with the MPI function MPI WT. This is also

the case for runs with a single processor that are compared to multiple-processor runs.

Timing in the parallel runs excludes the time to read the problem data, to initialize the

random number generator seeds, and to output the solution.

The parallel implementations were run on 2, 4, 8, and 16 processors. Load on

the machine was low throughout the experiments, therefore processors were always

available. The average speedups were computed dividing the sum of the execution

times of the independent parallel program executing on one processor by the sum of

the execution times of the parallel program on 2, 4, 8, and 16 processors, for 60 runs.

The execution times of the independent parallel program executing on one processor

and the execution times of the sequential program are approximately the same.

8.5.2 The parallel GRASP strategies

The following parallel algorithms were studied in these experiments:

1. pure GRASP;

2. independent GRASP with path-relinking;

3. cooperative GRASP with path-relinking.

Path-relinking was always applied between the GRASP solution and all solutions

in the elite set.

The parallel GRASP as well as the parallel GRASP with path-relinking used in

the experiments are named GRASP(prob) and GRASP+PR(prob), where prob indicates

the problem type (AP3 or JSP). The parameters of the procedures used in the parallel

approaches of GRASP for the AP3 and for the JSP are the same used for testing

the sequential algorithms in Aiex et al. (2000) and Aiex et al. (2003), respectively.

Intensification and post-optimization are not carried out during the experiments with

the parallel implementations.
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8.5.3 Test problems

For the AP3, we tested one problem of each size n = 20,22,24,26, generated by Balas

and Saltzman (1991). We named these problems B-S 20.1, B-S 22.1, B-S 24.1

and B-S 26.1. For the JSP we tested problems abz6, mt10, orb5, and la21 from

four classes of standard problems for the JSP. These problems were obtained from

Beasley’s OR-Library 1 (Beasley, 1990).

8.5.4 Probability distribution of solution time to target value

Aiex et al. (2002) studied the empirical probability distributions of the random variable

time to target value in GRASP. They showed that, given a target solution value, the

time GRASP takes to find a solution with cost at least as good as the target fits a

two-parameter exponential distribution. Empirical distributions are produced from

experimental data and corresponding theoretical distributions are estimated from the

empirical distributions.

A quantile-quantile plot (Q-Q plot) and a plot showing the empirical and the theo-

retical distributions of the random variable time to target value for sequential GRASP

and GRASP with path-relinking for the AP3 are shown in Figures 8.4 and 8.5, respec-

tively. Analogously, Figures 8.6 and 8.7 show the same plots for the JSP. These plots

are computed by running the algorithms for 200 independent runs. Each run ends

when the algorithm finds a solution with value less than or equal to a specified target

value (look4). Each running time is recorded and the times are sorted in increasing or-

der. We associate with the i-th sorted running time (ti) a probability pi = (i− 1
2
)/200,

and plot the points zi = (ti, pi), for i = 1, . . . ,200 as the empirical distribution.

Following Chambers et al. (1983), we determine the theoretical quantile-quantile

plot for the data to estimate the parameters of the two-parameter exponential distri-

bution. To describe Q-Q plots, recall that the cumulative distribution function for the

two-parameter exponential distribution is given by

F(t) = 1− e−(t−µ)/λ,

where λ is the mean and standard deviation of the distribution data and µ is the shift

of the distribution with respect to the ordinate axis. For each value pi, i = 1, . . . ,200,

we associate a pi-quantile Qt(pi) of the theoretical distribution. For each pi-quantile

we have, by definition, that

F((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribu-

tion, we have

Qt(pi) =−λ ln(1− pi)+µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw data.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoret-

ical distribution. This involves three steps. First, the data (in our case, the measured

1http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.html
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times) are sorted in ascending order. Second, the quantiles of the theoretical exponen-

tial distribution are obtained. Finally, a plot of the data against the theoretical quantiles

is made.

When the theoretical distribution is a close approximation of the empirical distri-

bution, the points in the Q-Q plot will have a nearly straight configuration. If the

parameters λ and µ of the theoretical distribution that best fits the measured data could

be estimated a priori, the points in a Q-Q plot would tend to follow the line x = y. Al-

ternatively, in a plot of the data against a two-parameter exponential distribution with

λ′ = 1 and µ′ = 0, the points would tend to follow the line y = λx +µ. Consequently,

parameters λ and µ of the two-parameter exponential distribution can be estimated,

respectively, by the slope and the intercept of the line depicted in the Q-Q plot.

To avoid possible distortions caused by outliers, we do not estimate the distribution

mean by linear regression on the points of the Q-Q plot. Instead, we estimate the slope

λ̂ of line y = λx +µ using the upper quartile qu and lower quartile ql of the data. The

upper and lower quartiles are, respectively, the Q( 1
4
) and Q( 3

4
) quantiles, respectively.

We take

λ̂ = (zu− zl)/(qu−ql)

as an estimate of the slope, where zu and zl are the u-th and l-th points of the or-

dered measured times, respectively. These estimates are used to plot the theoretical

distributions on the plots on the right side of the figures.

The lines above and below the estimated line on the Q-Q plots correspond to plus

and minus one standard deviation in the vertical direction from the line fitted to the

plot. This superimposed variability information is used to analyze the straightness of

the Q-Q plots.

The following can be stated for a two parameter (shifted) exponential distribution

(Aiex et al., 2002; Verhoeven and Aarts, 1995). Let Pρ(t) be the probability of not

having found a given (target) solution in t time units with ρ independent processes.

If P1(t) = e−(t−µ)/λ with λ ∈ R+ and µ ∈ R, i.e. P1 corresponds to a two parameter

exponential distribution, then Pρ(t) = e−ρ(t−µ)/λ. This follows from the definition of

the two-parameter exponential distribution. It implies that the probability of finding a

solution of a given value in time ρt with a sequential process is equal to 1−e−(ρt−µ)/λ

while the probability of finding a solution at least as good as that given value in time

t with ρ independent parallel processes is 1− e−ρ(t−µ)/λ. Note that if µ = 0, then

both probabilities are equal and correspond to the non-shifted exponential distribution.

Furthermore, since ρ ≥ 1, if ρ|µ| ≪ λ, then the two probabilities are approximately

equal and it is possible to approximately achieve linear speed-up in solution time to

target value using multiple independent processes.

8.5.5 A test to predict speedup of parallel implementations

The observation above suggests a test using a sequential implementation to determine

whether it is likely that a parallel implementation using multiple independent proces-

sors will be efficient. We say a parallel implementation is efficient if it achieves linear

speedup (with respect to wall time) to find a solution at least as good as a given target

value (look4). The test consists in K (200, for example) independent runs of the se-

quential program to build a Q-Q plot and estimate the parameters µ and λ of the shifted
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Table 8.1 Speedup and efficiency for instances of the AP3. Algorithm is the parallel im-

plementation of GRASP. Instances are B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1,

with target values 16, 16, 16, and 17, respectively. The estimated parameters for the expo-

nential distributions are shown for each pair of instance/target value.

estimated number of processors

parameter 2 4 8 16

prob. µ λ |µ|/λ spdup effic. spdup effic. spdup effic. spdup effic.

B-S 20.1 1.28 90.18 .014 2.02 1.01 3.66 .91 6.05 .75 16.30 1.01

B-S 22.1 -2.607 185.21 .014 2.03 1.01 4.58 1.14 10.33 1.29 17.88 1.11

B-S 24.1 -2.890 246.55 .011 2.16 1.08 4.27 1.06 7.89 .98 13.91 .86

B-S 26.1 26.36 252.90 .104 1.62 .81 3.22 .80 6.23 .77 11.72 .73

average: .034 1.95 .97 3.93 .97 7.62 .95 14.95 .93

Table 8.2 Speedups for instances of the AP3. Algorithms are independent and coopera-

tive implementations of GRASP with path-relinking. Instances are B-S 20.1, B-S 22.1,

B-S 24.1, and B-S 26.1, with target values 7, 8, 7, and 8, respectively.

estimated speedup independent speedup cooperative

parameter (number of processors) (number of processors)

prob. µ λ |µ|/λ 2 4 8 16 2 4 8 16

B-S 20.1 -26.46 1223.80 .021 1.67 3.34 6.22 10.82 1.56 3.47 7.37 14.36

B-S 22.1 -135.12 3085.32 .043 2.25 4.57 9.01 14.37 1.64 4.22 8.83 18.78

B-S 24.1 -16.76 4004.11 .004 1.71 4.00 7.87 12.19 2.16 4.00 9.38 19.29

B-S 26.1 32.12 2255.55 .014 2.11 3.89 6.10 11.49 2.16 5.30 9.55 16.00

average: .020 1.935 3.95 7.3 12.21 1.88 4.24 8.78 17.10

exponential distribution. If ρ|µ| ≪ λ, then we predict that the parallel implementation

will be efficient.

8.5.6 The parallel experiments

The goals of the experiments in this subsection are threefold. First, we attempt to ver-

ify computationally the validity of the test to predict speedup of parallel implemen-

tations proposed above. Second, we contrast independent parallel implementations

of pure GRASP with GRASP with path-relinking. Finally, we compare independent

parallel implementations of GRASP with path-relinking with cooperative implementa-

tions. Because of the nature of these experiments, the stopping criterion for maximum

number of iterations was disabled, and the programs terminated only when a solution

with cost as good as the target value was found.

In Aiex et al. (2000) and Aiex et al. (2003), we verified that the times to target so-

lution in the GRASP variants for the AP3 and the JSP fit a two-parameter exponential

distribution.

8.5.6.1 Parallel results for the AP3. To study the parallel implementation

of GRASP(AP3), we tested problems B-S 20.1, B-S 22.1, B-S 24.1, and B-S 26.1

with target values 16, 16, 16, and 17, respectively. The independent and cooperative
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parallel implementations of GRASP+PR(AP3) were studied for problems B-S 20.1,

B-S 22.1, B-S 24.1, and B-S 26.1, with target values 7, 8, 7, and 8, respectively.

The speedups and efficiencies (speedup divided by the number of processors used)

observed for GRASP(AP3) are shown in Table 8.1. We also show the estimates for pa-

rameters µ and λ of the two-parameter exponential distribution, as well as the value of

|µ|/λ for each pair of instance/target value tested. By examining the parameters esti-

mated for GRASP(AP3), we can group the instances into two categories: { B-S 20.1,

B-S 22.1, B-S 24.1 } and { B-S 26.1 }. For instances B-S 20.1, B-S 22.1, and

B-S 24.1, the ratio |µ|/λ is approximately 0.01, while for runs on problem B-S 26.1,

it is about 10 times greater. By our proposed criterion, we would expect that the

runs in the first category present better speedups than the one in the other category,

which indeed is what one observes. The super-linear speedups observed in problem

B-S 22.1 are probably explained by statistical fluctuation. Some negative estimates

for µ observed in the table should be expected whenever the shift in the exponential

distribution is small, since µ is the intercept of the ordinate axis of the line defined by

the first and third quartiles of the Q-Q plot.

The speedups for the independent and cooperative parallel approaches of GRASP+PR(AP3)
are shown in Figure 8.8. In Table 8.2, the speedups observed in the plots of Figure 8.8

are summarized. The estimated values of µ, λ, and |µ|/λ, using 200 independent runs

of the sequential GRASP+PR(AP3) are also shown. An approximately linear speedup

is observed for the independent GRASP+PR(AP3) for up to 8 processors. With 16 pro-

cessors, we observe a reduction in the speedup, although we can still consider that the

program scales well for up to 16 processors. The gradual degradation in speedup as

the number of processors increases is expected and is due to the fact that the number of

processors ρ offsets the ratio |µ|/λ, i.e. |µ|/λ≤ 2|µ|/λ≤ 4|µ|/λ≤ 8|µ|/λ≤ 16|µ|/λ.

For the cooperative parallel GRASP+PR(AP3), we cannot make any prediction

based on the ratio |µ|/λ, since the processors share information and are therefore not

independent. We observe that the cooperative approach benefited more than the in-

dependent approach from the increase in the number of processors. The increase in

sharing of elite solutions compensated for the increase in inter-process communica-

tion. In fact, super-linear speedups can occur for the cooperative approach.

8.5.6.2 Parallel results for the JSP. The parallel GRASP(JSP) was tested

on instances abz6, mt10, orb5, and la21, with target values 960, 960, 920, and 1120,

respectively. The independent and cooperative parallel GRASP+PR(JSP), were also

tested on instances abz6, mt10, orb5, and la21, but with more difficult target values

943, 938, 895, and 1100, respectively.

Table 8.3 lists the values of µ, λ, and |µ|/λ for each tested pair of instance and target

value, as well as the speedups and efficiencies for the 2, 4, 8, and 16-processor runs.

Speedups are, on average, approximately linear, in accordance with the low values

observed for |µ|/λ in the table.

The plots in Figure 8.9 show speedup for both parallel implementations of GRASP+PR(JSP).
Table 8.4 summarizes the speedups in Figure 8.9. The values of µ, λ, and |µ|/λ are

also shown. In accordance with the speedup prediction test, sub-linear speedups are

observed for the independent approach of GRASP+PR(JSP). We notice that the ratios
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Table 8.3 Speedup and efficiency for instances of the JSP. Algorithm is the parallel imple-

mentation of GRASP. Instances are abz6, mt10, orb5, and la21, with target values 960,

960, 920, and 1120, respectively. The estimated parameters for the exponential distributions

are shown for each pair of instance/target value.

estimated number of processors

parameter 2 4 8 16

prob. µ λ |µ|/λ spdup effic. spdup effic. spdup effic. spdup effic.

abz6 .42 15.56 .027 2.04 1.02 4.75 1.18 8.87 1.10 19.17 1.19

mt10 11.72 885.03 013 1.62 .81 4.07 1.01 7.34 .91 14.81 .92

orb5 1.24 38.27 .032 2.12 1.06 3.97 .99 7.63 .95 14.10 .88

la21 -1.01 206.83 .005 1.94 .97 4.98 1.24 8.13 1.01 19.63 1.22

average: .019 1.93 .96 4.44 1.10 7.99 .99 16.92 1.05

Table 8.4 Speedups for instances of the JSP. Algorithms are independent, and cooperative

implementation of GRASP with path-relinking. Instances are abz6, mt10, orb5, and la21,

with target values 943, 938, 895, and 1100, respectively. The estimated parameters for the

exponential distributions are shown for each pair of instance/target value.

estimated speedup independent speedup cooperative

parameter (number of processors) (number of processors)

prob. µ λ |µ|/λ 2 4 8 16 2 4 8 16

abz6 47.67 756.56 .06 2.00 3.36 6.44 10.51 2.40 4.21 11.43 23.58

mt10 305.27 524.23 .58 1.57 2.12 3.03 4.05 1.75 4.58 8.36 16.97

orb5 130.12 395.41 .32 1.95 2.97 3.99 5.36 2.10 4.91 8.89 15.76

la21 175.20 407.73 .42 1.64 2.25 3.14 3.72 2.23 4.47 7.54 11.41

average: .34 1.79 2.67 4.15 5.91 2.12 4.54 9.05 16.93

|µ|/λ are much higher than those in Table 8.3 for GRASP(JSP), as well as for ratios

computed for the AP3 instances. On the other hand, the table shows linear and super-

linear speedups for most of the instances tested with the cooperative approach. These

speedups are considerably higher than those observed for the independent approach.

For example, for 16 processors, the average speedups for the cooperative approach are

almost three times higher than those of the independent approach. These results show

that cooperation is more critical in the JSP than in the AP3. This perhaps is because

path-relinking is applied less frequently in the JSP runs than in the AP3 runs, due to

the criterion used to avoid applying path-relinking to poor quality solutions in the JSP.

Figure 8.10 shows the empirical distributions for the parallel GRASP(JSP), and the

parallel independent and cooperative GRASP+PR(JSP), using 16 processors. The pro-

grams were tested for problems abz6, mt10, orb5 and la21, with target values 943,

938, 895, and 1100, respectively. We notice that for 16 processors, although parallel

GRASP(JSP) scales better than the independent GRASP+PR(JSP), the execution times

of the latter are in general, lower than the execution times of the former. We also

notice that the execution times of the cooperative GRASP+PR(JSP) are considerably

lower than the execution times of the parallel GRASP(JSP) and of the independent

GRASP+PR(JSP).
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8.6 CONCLUSION

Parallel computers have increasingly found their way into metaheuristics. In par-

ticular, many parallel implementations of GRASP have been described in the liter-

ature. Recently, parallel implementations of GRASP with path-relinking have been

proposed. In this paper, we contrast independent and cooperative parallel schemes for

GRASP with path-relinking with a parallel scheme for GRASP. We also propose a

test using a sequential GRASP implementation to predict the speedup of independent

parallel implementations.

Implementations for the 3-index assignment problem and the job-shop scheduling

problem are described. Computational experiments are done on four instances from

each problem.

We conclude that the proposed test is useful for predicting the degree of speedup

expected for parallel implementations of GRASP and GRASP with path-relinking.

The results also show that parallel GRASP with path-relinking outperforms parallel

GRASP and that the cooperative scheme outperforms the independent approach, often

achieving super-linear speedups.
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procedure COOPERATIVE GRASP PR(seed, look4,maxitr,maxpool,ifreq, problem data)
1 my rank = GET RANK(); ρ = GET NUM PROCS();

2 for i = 1, . . . ,(maxitr/ρ)∗my rank do

3 seed = rand(seed);

4 rof;

5 P = /0; num proc stop = 0;

6 for i = 1, . . . ,∞ do

7 CONSTRUCTION(seed,S, problem data);
8 LOCAL(S, problem data);
9 if |P|== maxpool then

10 accepted = VERIFY QUALITY(S);
11 if accepted then

12 select P′ ⊆ P;

13 for T ∈ P′ do

14 RECEIVE SOLUTIONS(P);
15 Sgmin = PATH RELINKING(costS,S,T, problem data);
16 updated = UPDATE POOL(Sgmin,costgmin,P);
17 if (updated) then INSERT SEND BUFFER(Sgmin,costgmin,buffer) fi;

18 RECEIVE SOLUTIONS(P);
19 Sgmin = PATH RELINKING(costT ,T,S, problem data);
20 updated = UPDATE POOL(Sgmin,costgmin,P);
21 if (updated) then INSERT SEND BUFFER(Sgmin,costgmin,buffer) fi;

22 rof;

23 SEND SOLUTIONS(buffer);

24 fi;

25 else P = P∪{S} fi;

26 if mod (i,ifreq) == 0 then INTENSIFY(P) fi;

27 Sbest = argmin(P);
28 if costbest ≤ look4 then SEND ALL(look4 stop) fi;

29 if i == maxitr/ρ then

30 num proc stop = num proc stop+1;

31 SEND ALL(maxitr stop)

32 fi;

33 received = VERIFY RECEIVING( f lag);

34 if received then

35 if f lag == look4 stop then break;

36 else if f lag == maxitr stop then

37 num proc stop = num proc stop+1;

38 fi;

39 fi;

40 if num proc stop == ρ then break fi;

41 rof;

42 POSTOPT(P);

43 SGlobalBest = GET GLOBAL BEST(Sbest );

44 return (SGlobalBest );

end COOPERATIVE GRASP PR;

Figure 8.3 Pseudo-code for the cooperative parallel GRASP with path-relinking.
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Figure 8.4 Exponential distribution and Q-Q plot for GRASP for the AP3: problem B-S

26.1 with target value (look4) of 17.
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Figure 8.5 Exponential distribution and Q-Q plot for GRASP with path-relinking for the

AP3: problem B-S 26.1 with target value (look4) of 17.
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Figure 8.6 Exponential distribution and Q-Q plot for GRASP for the JSP: problem orb5

with target value (look4) of 910.
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Figure 8.7 Exponential distribution and Q-Q plot for GRASP with path-relinking for the

JSP: problem orb5 with target value (look4) of 895.
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Figure 8.8 Speedups for the parallel implementations of independent and cooperative

GRASP with path-relinking for the AP3: problems B-S 20.1, B-S 22.1, B-S 24.1, and

B-S 26.1 with target values 7, 8, 7, and 8, respectively.
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Figure 8.9 Speedups for the parallel implementations of independent and cooperative

GRASP with path-relinking for the JSP: problems abz6, mt10, orb5, and la21 with
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Abstract: In the job shop scheduling problem (JSP), a finite set of jobs is processed

on a finite set of machines. Each job is required to complete a set of operations in a fixed

order. Each operation is processed on a specific machine for a fixed duration. A machine

can process no more than one job at a time and once a job initiates processing on a given

machine it must complete processing without interruption. A schedule is an assignment

of operations to time slots on the machines. The objective of the JSP is to find a schedule

that minimizes the maximum completion time, or makespan, of the jobs. In this paper,

we describe a parallel greedy randomized adaptive search procedure (GRASP) with path-

relinking for the JSP. A GRASP is a metaheuristic for combinatorial optimization. It

usually consists of a construction procedure based on a greedy randomized algorithm

and of a local search. Path-relinking is an intensification strategy that explores trajectories

that connect high quality solutions. Independent and cooperative parallelization strategies

are described and implemented. Computational experience on a large set of standard
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test problems indicates that the parallel GRASP with path-relinking finds good-quality

approximate solutions of the job shop scheduling problem.

Keywords: Combinatorial optimization, job shop scheduling, local search, GRASP,

path-relinking, probabilistic algorithm.

9.1 INTRODUCTION

The job shop scheduling problem (JSP) is a well-studied problem in combinatorial

optimization. It consists in processing a finite set of jobs on a finite set of machines.

Each job is required to complete a set of operations in a fixed order. Each operation

is processed on a specific machine for a fixed duration. Each machine can process at

most one job at a time and once a job initiates processing on a given machine it must

complete processing on that machine without interruption. A schedule is a mapping of

operations to time slots on the machines. The makespan is the maximum completion

time of the jobs. The objective of the JSP is to find a schedule that minimizes the

makespan.

Mathematically, the JSP can be stated as follows. Given a set M of machines

(where we denote the size of M by |M |) and a set J of jobs (where the size of J

is denoted by |J |), let σ
j
1 ≺ σ

j
2 ≺ ·· · ≺ σ

j

|M | be the ordered set of |M | operations

of job j, where σ
j
k ≺ σ

j
k+1 indicates that operation σ

j
k+1 can only start processing

after the completion of operation σ
j
k. Let O be the set of operations. Each operation

σ
j
k is defined by two parameters: M

j
k is the machine on which σ

j
k is processed and

p
j
k = p(σ j

k) is the processing time of operation σ
j
k. Defining t(σ j

k) to be the starting

time of the k-th operation σ
j
k ∈ O, the JSP can be formulated as follows:

minimize Cmax

subject to: Cmax ≥ t(σ
j
k)+ p(σ

j
k), for all σ

j
k ∈ O,

t(σ
j
k)≥ t(σ

j
l )+ p(σ

j
l ), for all σ

j
l ≺ σ

j
k, (9.1a)

t(σ j
k)≥ t(σi

l)+ p(σi
l)∨ (9.1b)

t(σi
l)≥ t(σ

j
k)+ p(σ

j
k), for all σi

l ,σ
j
k ∈ O such that Mσi

l
= M

σ
j
k

,

t(σ
j
k)≥ 0, for all σ

j
k ∈ O,

where Cmax is the makespan to be minimized.

A feasible solution of the JSP can be built from a permutation of J on each of the

machines in M , observing the precedence constraints, the restriction that a machine

can process only one operation at a time, and requiring that once started, processing

of an operation must be uninterrupted until its completion. Once the permutation of J

is given, its feasibility status can be determined in O(|J | · |M |) time. The feasibility-

checking procedure determines the makespan Cmax for feasible schedules (Taillard,

1994). Since, each set of feasible permutations has a corresponding schedule, the

objective of the JSP is to find, among the feasible permutations, the one with the

smallest makespan.
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The JSP is NP-hard (Lenstra and Rinnooy Kan, 1979) and has also proven to be

computationally challenging. Exact methods (Applegate and W.Cook, 1991; Brucker

et al., 1994; Carlier and Pinson, 1989; 1990; Giffler and Thompson, 1960) have been

successful in solving small instances, including the notorious 10× 10 instance of

(Fisher and Thompson, 1963), proposed in 1963 and only solved twenty years later.

Problems of dimension 15×15 are still considered to be beyond the reach of today’s

exact methods. For such problems there is a need for good heuristics. Surveys of

heuristic methods for the JSP are given in (Pinson, 1995; Vaessens et al., 1996). These

include dispatching rules reviewed in French (1982), the shifting bottleneck approach

(Adams et al., 1988; Applegate and W.Cook, 1991), local search (Lourenço, 1995;

Lourenço and Zwijnenburg, 1996; Vaessens et al., 1996), simulated annealing (Van

Laarhoven et al., 1992; Lourenço, 1995), tabu search (Taillard, 1994; Nowicki and

Smutnicki, 1996; Lourenço and Zwijnenburg, 1996), and genetic algorithms (Davis,

1985). Recently, Binato et al. (2001) described a greedy randomized adaptive search

procedure (GRASP) for the JSP. A comprehensive survey of job shop scheduling tech-

niques can be found in Jain and Meeran (1998). In this paper, we present a new parallel

GRASP with path-relinking for the job shop scheduling problem.

The remainder of the paper is organized as follows. In Section 9.2, we describe

the new GRASP, describing two construction mechanisms and a local search algo-

rithm. Path-relinking for the JSP and its incorporation to a GRASP are described in

Section 9.3. Two parallelization schemes are presented in Section 9.4. Computational

results are reported in Section 9.5 and concluding remarks are made in Section 9.6.

9.2 GRASP FOR JSP

GRASP (Feo and Resende, 1989; 1995; Festa and Resende, 2001; Resende and Ribeiro,

2001b) is an iterative process, where each GRASP iteration usually consists of two

phases: construction and local search. The construction phase builds a feasible so-

lution, whose neighborhood is explored by local search. The best solution over all

GRASP iterations is returned as the result.

In the construction phase, a feasible solution is built, one element at a time. The set

of candidate elements is made up of those elements that can be added to the current

solution under construction without causing infeasibilities. A candidate element is

evaluated by a greedy function which measures the local benefit of including that

element in the constructed solution. The restricted candidate list (RCL) is made up

of candidate elements with a greedy function value above a specified threshold. The

next element to be included in the solution is selected at random from the RCL. Its

inclusion in the solution alters the greedy functions and the set of candidate elements

used to determine the next RCL. The construction procedure terminates when the set

of candidate elements is empty.

Since the solutions generated by a GRASP construction phase are not guaranteed

to be locally optimal, it is almost always beneficial to apply a local search to attempt

to improve each constructed solution. A local search algorithm successively replaces

the current solution by a better solution from its neighborhood. It terminates when

there is no better solution found in the neighborhood.
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In the remainder of this section, we describe two construction procedures and a

commonly used local search strategy.

9.2.1 Construction procedures

For the JSP, we consider a single operation to be the building block of the construction

phase. That is, we build a feasible schedule by scheduling individual operations, one

at a time, until all operations are scheduled.

Recall that σ
j
k denotes the k-th operation of job j and is defined by the pair (M

j
k , p

j
k),

where M
j

k is the machine on which operation σ
j
k is performed and p

j
k is the processing

time of operation σ
j
k. While constructing a feasible schedule, not all operations can be

selected at a given stage of the construction. An operation σ
j
k can only be scheduled if

all prior operations of job j have already been scheduled. Therefore, at each construc-

tion phase iteration, at most |J | operations are candidates to be scheduled. Let this set

of candidate operations be denoted by Oc and the set of already scheduled operations

by Os and denote the value of the greedy function for candidate operation σ
j
k by h(σ

j
k).

The greedy choice is to next schedule operation σ
j
k = argmin(h(σ

j
k) | σ

j
k ∈ Oc). Let

σ
j
k = argmax(h(σ

j
k) | σ

j
k ∈Oc), h = h(σ

j
k), and h = h(σ

j
k). Then, the GRASP restricted

candidate list (RCL) is defined as

RCL = {σ j
k ∈ Oc | h≤ h(σ

j
k)≤ h+α(h−h)},

where α is a parameter such that 0≤ α≤ 1.

A typical iteration of the GRASP construction is summarized as follows: a partial

schedule (which is initially empty) is on hand, the next operation to be scheduled is

selected from the RCL and is added to the partial schedule, resulting in a new partial

schedule. The selected operation is inserted in the earliest available feasible time

slot on machine M
σ

j
k

. Let a and b denote the start and end times of an available

time slot on M
σ

j
k

and let e = t(σ
j
k−1)+ p

j
k−1 denote the completion time of operation

σ
j
k−1. Insertion in this time slot at time point max{a,e} is feasible if and only if

b−max{a,e} ≥ p
j
k. Construction ends when the partial schedule is complete, i.e. all

operations have been scheduled.

In Binato et al. (2001), the greedy function h(σ j
k) is the makespan resulting from

the inclusion of operation σ
j
k to the already-scheduled operations, i.e. h(σ

j
k) = Cmax for

O = {Os∪σ
j
k}. We will refer to this greedy function as the makespan greedy function.

In this paper, we propose another greedy function, which, as we will see later, is

used in conjunction with the makespan greedy function. This function favors opera-

tions from jobs having long remaining processing times by using the greedy function

h(σ j
k) = −∑σ

j
l
6∈Os

p
j
l , which measures the remaining processing time for job j. We

refer to it as the time-remaining greedy function.
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9.2.2 Local search phase

Since there is no guarantee that the schedule obtained in the construction phase is

optimal, local search should be applied to attempt to decrease its makespan.

We employ the two exchange local search, based on the disjunctive graph model

of Roy and Sussmann (1964), and used in Binato et al. (2001). The disjunctive graph

G = (V,A,E) is defined such that

V = {O ∪{0, |J | · |M |+1}}

is the set of nodes, where {0} and {|J | · |M |+1} are artificial source and sink nodes,

respectively,

A = {(v,w) | v,w ∈ O,v≺ w}∪
{(0,w) | w ∈ O,∄v ∈ O ∋ v≺ w}∪

{(v, |J | · |M |+1) | v ∈ O,∄w ∈ O ∋ v≺ w}

is the set of directed arcs connecting consecutive operations of the same job, and

E = {(v,w) |Mv = Mw}

is the set of edges that connect operations on the same machine. Vertices in the dis-

junctive graph model are weighted. Vertices 0 and |J | · |M |+ 1 have weight zero,

while the weight of vertex i ∈ {1, . . . , |J | · |M |} is the processing time of the operation

corresponding to vertex i. Notice that the edges of A and E correspond, respectively,

to constraints (9.1a) and (9.1b) of the disjunctive programming formulation of the JSP.

An orientation for the edges in E corresponds to a feasible schedule. Given an ori-

entation of E, one can compute the earliest start time of each operation by computing

the longest (weighted) path from node 0 to the node corresponding to the operation.

Consequently, the makespan of the schedule can be computed by finding the critical

(longest) path from node 0 to node |J | · |M |+ 1. Thus, the objective of the JSP is to

find an orientation of E such that the longest path in G is minimized.

Taillard (1994) describes an O(|J | · |M |) algorithm to compute the longest path on

G and an O(|J | · |M |) procedure to recompute the makespan when two consecutive op-

erations on the same machine in the critical path (on the same machine) are swapped.

He also shows that the entire neighborhood of a given schedule, where the neighbor-

hood is defined by the swap of two consecutive operations in the critical path, can be

examined, i.e. have their makespan computed, in complexity O(|J ·M |) given that the

longest path of G was evaluated. These procedures were implemented in Binato et al.

(2001) and are borrowed in our implementation.

Given the schedule produced in the construction phase, the local search procedure

initially identifies the critical path in the disjunctive graph corresponding to that sched-

ule. All pairs of consecutive operations sharing the same machine in the critical path

are tentatively exchanged. If the exchange improves the makespan, the move is ac-

cepted. Otherwise, the exchange is undone. Once an exchange is accepted, the critical

path may change and a new critical path must be identified. If no pairwise exchange of

consecutive operations in the critical path improves the makespan, the current sched-

ule is locally optimal and the local search ends.
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9.3 PATH-RELINKING FOR JSP

procedure PATH RELINKING (M,J ,O, p, Makespan,S, T )
1 S = {(jS

1,1, jS
1,2, . . . , jS

1,|J |
), (jS

2,1, jS
2,2, . . . , jS

2,|J |
), . . . ,

(jS
|M|,1

, jS
|M|,2

, . . . , jS
|M|,|J |

)};

2 T = {(jT
1,1, jT

1,2, . . . , jT
1,|J |

), (jT
2,1, jT

2,2, . . . , jT
2,|J |

), . . . ,

(jT
|M|,1

, jT
|M|,2

, . . . , jT
|M|,|J |

)};

3 cgmin = Makespan; Sgmin = S;
4 for k = 1, . . . , |M| do

5 δ
S,T
k

= {i = 1, . . . , |J |
∣

∣ jS
k,i

6= jT
k,i

};

6 od;

7 while (
∑|M|

k=1
|δS,T

k
| > 2) do

8 cmin = ∞;
9 for k = 1, . . . , |M| do

10 for i ∈ δ
S,T
k

do

11 Let q be such that jT
k,q

== jS
k,i

;

12 S̄ = S \ {(. . . , jS
k,i

, jS
k,i+1

, . . . , jS
k,q−1

, jS
k,q

, . . . )};

13 S̄ = S̄ ∪ {(. . . , jS
k,q

, jS
k,i+1

, . . . , jS
k,q−1

, jS
k,i

, . . . )};

14 c̄= CALCULATE MAKESPAN (S̄);
15 if c̄ ≤ cmin then

16 cmin = c̄;
17 Smin = S̄;
18 imin = i;
19 kmin = k;
20 fi;
21 rof;
22 rof;
23 S = Smin; Makespan = cmin;

24 δ
S,T

kmin
= δ

S,T

kmin
\ {imin};

25 if Makespan ≤ cgmin then

26 cgmin = Makespan;
27 Sgmin = S;
28 fi;
29 elihw;
30 return (Sgmin);
end PATH RELINKING;

Figure 9.1 Path-relinking between initial solution S and guiding solution T .

Path-relinking is an enhancement to the basic GRASP procedure, leading to sig-

nificant improvements in solution quality. Path-relinking was originally proposed by

Glover (1996) as an intensification strategy exploring trajectories connecting elite so-

lutions obtained by tabu search or scatter search (Glover, 2000; Glover and Laguna,

1997; Glover et al., 2000). The use of path-relinking within a GRASP procedure, as an

intensification strategy applied to each locally optimal solution, was first proposed by

Laguna and Martı́ (1999). It was followed by several extensions, improvements, and

successful applications (Aiex et al., 2000a; Canuto et al., 2001; Resende and Ribeiro,

2001a; Ribeiro et al., 2001).

In this section, we propose a path-relinking strategy for the JSP. In our description,

a schedule is represented by the permutation of operations in J on the machines in M .
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procedure GRASP PR (M,J ,O, p, look4, maxitr, maxpool, freq)
1 P = ∅;
2 for i = 1, . . . , maxitr do

3 if mod (i, 2) == 0 then

4 GREEDY MASKESPAN(S, M, p, |M|, |J |, Makespan);
5 else

6 GREEDY TIME REMAINING(S, M, p, |M|, |J |, Makespan);
7 fi;
8 LOCAL(S,M, p, |M|, |J |, Makespan);
9 if |P | == maxpool then

10 accepted = VERIFY QUALITY(S, i);
11 if accepted then

12 for T ∈ P ′ ⊆ P do

13 Sgmin = PATH RELINKING(M,J ,O, p, Makespan,S, T );
14 UPDATE POOL(Sgmin, cgmin, P );
15 Sgmin = PATH RELINKING(M,J ,O, p, Makespan,T, S);
16 UPDATE POOL(Sgmin, cgmin, P );
17 rof;
18 fi;
19 else P = P ∪ {S} fi;
20 if mod (i, ifreq) == 0 then INTENSIFY(P ) fi;
21 Sbest = POOLMIN(P );
22 if MAKESPAN(Sbest) ≤ look4 then return (Sbest) fi;
23 rof;
24 POST OPTIMIZATION(P );
25 Sbest = POOLMIN(P );
26 return (Sbest);
end GRASP PR;

Figure 9.2 GRASP with bidirectional path-relinking for JSP.

The schedule is represented by |M | permutation arrays, each with |J | operations. Each

permutation implies an ordering of the operations. A solution of the JSP is represented

as follows:

S = {( jS
1,1, jS

1,2, . . . , jS
1,|J |),( jS

2,1, jS
2,2, . . . , jS

2,|J |), . . . ,( jS
|M |,1, jS

|M |,2, . . . , jS
|M |,|J |)},

where jS
i,k is the k-th operation executed on machine i in solution S.

The path-relinking approach consists in exploring trajectories that connect a initial

solution and a guiding solution. This is done by introducing in the initial solution

attributes of the guiding solution. At each step, all moves that incorporate attributes

of the guiding solution are analyzed and the best move is chosen. Usually the guid-

ing solution is of high quality. For the JSP, path-relinking is done between an initial

solution

S = {( jS
1,1, jS

1,2, . . . , jS
1,|J |),( jS

2,1, jS
2,2, . . . , jS

2,|J |), . . . ,( jS
|M |,1, jS

|M |,2, . . . , jS
|M |,|J |)}
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Figure 9.3 Empirical probability distributions of time to target value for GRASP and

GP+PR: problems abz6, mt10, orb5 and la21.

and a guiding solution

T = {( jT
1,1, jT

1,2, . . . , jT
1,|J |),( jT

2,1, jT
2,2, . . . , jT

2,|J |), . . . ,( jT
|M |,1, jT

|M |,2, . . . , jT
|M |,|J |)}.

Pseudo-code for this procedure is shown in Figure 9.1.

Let the symmetric difference between S and T be defined by the |M | sets of indices

δ
S,T
k = {i = 1, . . . , |J |

∣

∣ jS
k,i 6= jT

k,i},k = 1, . . . , |M |.

These sets are computed in lines 4 to 6 in the pseudo-code.

An intermediate solution of the path-relinking trajectory is visited at each step of

the loop from line 7 to 29. During a move, a permutation array in S, given by

(. . . , jS
k,i, jS

k,i+1, . . . , jS
k,q−1, jS

k,q, . . .),

is replaced by a permutation array

(. . . , jS
k,q, jS

k,i+1, . . . , jS
k,q−1, jS

k,i, . . .),

by exchanging operations jS
k,i and jS

k,q, where i ∈ δ
S,T
k and q are such that jT

k,q = jS
k,i.

Note that solutions that violate the precedence constraints can be produced by these

moves. The feasibility of solution S is verified during procedure Calculate Makespan(S)
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Figure 9.4 Empirical probability distributions of time to target value for GRASP and

GP+PR: problem mt10 and target values 970, 960 and 950.

(line 14), which consists in computing the critical path in the disjunctive graph pre-

sented in Section 9.2.2, using the algorithm proposed in Taillard (1994). An infeasible

schedule is detected when a cycle is found in the corresponding graph. The makespans

of infeasible solutions are defined to be infinite so as to avoid visiting them in a path-

relinking trajectory.

At each step of the algorithm, the move that produces the lowest cost solution is

selected and its index is removed from the corresponding set δ
S,T
k (line 24). This con-

tinues until there are only two move indices left in one of the sets δ
S,T
k . At this point,
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Figure 9.5 Empirical probability distributions of time to target value for GP+C-INT and

GP+PR: problems abz6, mt10, orb5 and la21.

the move obtained by exchanging these elements will produce the guiding solution.

The best solution (Sgmin) found during the path traversal is returned by the procedure.

In the implementation proposed for the JSP, a pool P of elite solutions is built with

the GRASP solutions produced during the first |P| GRASP iterations. After this initial

phase, a solution sg produced by GRASP is relinked with one or more elite solutions se

in P. Path-relinking can be applied from GRASP solution sg to pool solution se, from

pool solution se to GRASP solution sg, or in both directions. These two trajectories

very often visit different intermediate solutions.

The hybrid strategy proposed uses an approach developed by Fleurent and Glover

(1999) to incorporate elite solutions to a GRASP. Let cbest and cworst be the values of

the objective functions of the best and the worst solution in P, respectively. Given two

solutions

S = {( jS
1,1, jS

1,2, . . . , jS
1,|J |),( jS

2,1, jS
2,2, . . . , jS

2,|J |), . . . ,( jS
|M |,1, jS

|M |,2, . . . , jS
|M |,|J |)}

and

T = {( jT
1,1, jT

1,2, . . . , jT
1,|J |),( jT

2,1, jT
2,2, . . . , jT

2,|J |), . . . ,( jT
|M |,1, jT

|M |,2, . . . , jT
|M |,|J |)},
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let

∆(S,T ) =
|M |
∑
k=1

|δS,T
k |

be a measure of the non-similarity between S and T .

A solution Sgmin produced by path-relinking is a candidate for insertion in the pool.

Sgmin will be accepted if it satisfies one of the following acceptance criteria:

1. cgmin < cbest , i.e., Sgmin is the best solution found so far;

2. cbest ≤ cgmin < cworst and for all elite solutions Sp ∈ P, ∆(Sgmin,Sp) > ∆min, i.e.,

Sgmin is better then the worst solution in P and differs significantly from all elite

solutions.

Once accepted for insertion in P, Sgmin will replace the worst elite solution, which will

be discarded from P.

Note that if the number of moves needed to traverse the path from S ∈ P to Sgmin

is at most ∆min/2, then path solution Sgmin must satisfy ∆(S,Sgmin)≤ ∆min and there is

no need to compute the symmetric difference since Sgmin can only be included in the

elite set if it is better than the best elite solution.

In the GRASP with path-relinking for the 3-index assignment problem (Aiex et al.,

2000a), the cost of a solution in the neighborhood of S can be computed from the cost

of S in O(1) time. For the JSP, the cost of each solution visited by path-relinking is

computed in O(|J | · |M |), using the algorithm proposed in Taillard (1994). There-

fore, it is computationally expensive to apply path-relinking after each iteration of the

GRASP. Instead, we propose to apply path-relinking only when the GRASP solution

satisfies a given quality criteria.

The quality criteria proposed uses the mean value µn and the standard deviation σn

of the costs of the GRASP solutions produced during the first n iterations. A solution

Si takes part in path-relinking if

1. c(Si)≤ cworst , for i≤ n;

2. c(Si)≤max(cworst ,µn−2∗σn), for i > n.

Path-relinking can also be used in an intensification scheme for the elite set (Aiex

et al., 2000a). This is accomplished by applying path-relinking to each pair of elite

solutions in P and updating the pool when necessary. The procedure is repeated until

no further change in P occurs. This type of intensification can be done in a post-

optimization phase (using the final pool of elite solutions), or periodically during the

optimization (using the the current set of elite solutions).

The intensification procedure is executed after each interval of ifreq iterations

during the optimization. After each intensification phase, if no change in P occurs for

at least ifreq iterations, the costs of the |P|/2 worst solutions in P are set to infinity.

This is done to guarantee that the solutions in P are renewed. The |P|/2 worst solutions

are eventually replaced by solutions generated in the following GRASP with path-

relinking iterations. Hence, solutions with a high makespan, but sufficiently different

from the solutions in P, are accepted for insertion in the pool.
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Table 9.1 Probability estimates of finding a solution at least as good as the target solution,

as a function of maximum solution time for GRASP and GP+PR. Instances are abz6, mt10,

orb5 and la21, with target values 947, 950, 910 and 1110, respectively.

abz6 mt10 orb5 la21

time GRASP GP+PR GRASP GP+PR GRASP GP+PR GRASP GP+PR

100s .09 .39 .03 .01 .42 .67 .10 .10

500s .48 .93 .19 .71 .92 1.00 .36 .92

1000s .74 1.00 .37 .97 .98 1.00 .56 1.00

1500s .84 1.00 .54 1.00 .99 1.00 .69 1.00

Path-relinking as a post-optimization step was introduced in Aiex et al. (2000a).

After applying path-relinking between all pairs of elite solutions and no further change

in the elite set occurs, the local search procedure of Subsection 9.2.2 is applied to each

elite solution, as the solutions produced by path-relinking are not always local optima.

The local optima found are candidates for insertion into the elite set. If a change in the

elite set occurs, the entire post-processing step is repeated.

9.3.1 GRASP with path-relinking

We describe how we combined path-relinking and GRASP to form a hybrid GRASP

with path-relinking. Pseudo-code for the GRASP with path-relinking for JSP is pre-

sented in Figure 9.2. Let maxpool be the size of the elite set. The first maxpool

GRASP iterations contribute one solution to the elite set per GRASP iteration (line

19). Path-relinking is not done until the pool of elite solutions is full.

GRASP alternates between the two construction procedures described in Section 9.2.

Odd numbered iterations use the randomized time-remaining greedy function (line 6),

while even iterations use randomized makespan greedy (line 4). The local search used

is the one proposed by Taillard (1994) (line 8).

Once the pool of elite solutions is full, the solution S produced by the local search

phase of GRASP is tested to verify its quality (line 10), using the quality criteria

described in Section 9.3. If S passes the quality test, bidirectional path-relinking is

done between S and all elements of a subset P′ ⊆ P (lines 11 to 18). After each path-

relinking phase, the best solution obtained by path-relinking is tested for inclusion in

the elite pool (lines 14 and 16).

Every ifreq GRASP iterations the path-relinking intensification process is carried

out (lines 20).

The GRASP with path-relinking loop from line 2 to 23 continues for at most

maxitr iterations, but can be terminated when a schedule having a makespan of at

most look4 is found (line 22).

Finally, path-relinking post optimization is done on the elite set (line 24).

9.4 PARALLEL GRASP WITH PATH-RELINKING FOR THE JSP

In this section, we describe two parallel implementations of GRASP with path-relinking

for the JSP. The first scheme (called non-collaborative) limits communication between
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processors only for problem input, detection of process termination, and determina-

tion of best overall solution. In addition to the communication allowed in the non-

collaborative scheme, the second scheme (called collaborative) allows processes to

exchange information regarding their elite sets.

9.4.1 Non-collaborative scheme

We revisit a basic parallelization scheme for GRASP with path-relinking proposed

in Aiex et al. (2000a). Figure 9.15 shows pseudo-code for this multiple independent

walks scheme (Verhoeven and Aarts, 1995).

Our implementation uses message passing for communication between processors.

This communication is limited to program initialization and termination. A single

process reads the problem data and passes it to the remaining nproc− 1 processes.

Processes send a message to all others when they either stop upon finding a solution

at least as good as the target or complete the maximum number of allotted iterations.

The non-collaborative parallel GRASP with path-relinking is built upon the sequen-

tial algorithm of Figure 9.2. Each process executes a copy of the program. We discuss

the differences between the sequential algorithm and this parallel algorithm. In line 1

of Figure 9.15, the rank of the process and the number of processes are determined.

Each GRASP construction phase is initialized with a random number generator seed.

To assure independence of processes, identical seeds of the random number generator

(rand()) must not be used by more than one process. The initial seed for process

my rank is computed in lines 2 to 4. This way, each process has a sequence of maxitr

initial seeds.

The for loop from line 6 to line 37 executes the iterations. The construction, local

search, and path-relinking phases are identical to the those of the sequential algorithm.

In line 26, if a process finds a schedule with makespan not greater than look4, it

sends a flag to each of the other processes indicating that it has found the solution.

Likewise, when a process completes maxitr iterations, it sends a flag to each of the

other processes indicating that it has completed the preset number of iterations (lines

27 to 30).

In line 31, the process checks if there are any status flags to be received. If there

is a flag indicating that a schedule with makespan not greater than look4 has been

found, then execution of for loop from line 6 to line 37 is terminated (line 33). If

a flag indicating that some process has completed the preset number of iterations, a

counter (num stop) of the number of processes that have completed the iterations is

incremented (line 34). If all processes have completed their iterations, the execution

of the for loop is terminated (line 36).

Each process, upon terminating for loop going from line 6 to line 37, runs the

post-optimization phase on the pool of elite solutions (line 38). A reduce operator

(GET GLOBAL BEST) determines the global best solution among all processes in line 39

and returns this solution.

A parallel pure GRASP can be obtained from the algorithm in Figure 9.15 by skip-

ping the execution of lines 13 to 23. As in a basic GRASP, it is necessary to keep track

of the best solution found and no pool handling operations are necessary. Therefore,
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Table 9.2 Time to find a solution with cost at least as good as the target value, as a

function of probability. Problem mt10 was tested for target values 970, 960 and 950. The

percentage reduction in solution time of GP+PR with respect of GRASP is shown for each

target value.

look4=970 look4=960

prob. GRASP GP+PR red.(%) GRASP GP+PR red.(%)

0.2 44.92s 144.61s -221.92 214.94s 198.75s 7.53

0.5 163.93s 211.66s -29.11 667.41s 295.71s 55.69

0.8 386.94s 292.98s 24.28 1362.65s 416.35s 69.44

look4=950

prob. GRASP GP+PR red.(%)

0.2 546.45s 263.02s 51.86

0.5 1422.20s 394.51s 72.26

0.8 2951.01s 578.53s 80.39

intensification and post-optimization are not carried out during a pure GRASP parallel

approach.

9.4.2 Collaborative scheme

In the collaborative parallel GRASP with path-relinking, processes share elite set in-

formation. We now describe this scheme, whose pseudo-code is presented in Fig-

ure 9.16. This algorithm is built on top of the non-collaborative scheme presented in

the previous subsection. We limit our discussion to the differences between the two

schemes.

The differences between the non-collaborative and collaborative schemes occur in

the path-relinking phase. Before doing path-relinking between solutions S and T , each

process checks if one or more other processes have sent new elite solutions to it. If

there are new elite solutions to be received, RECEIVE SOLUTIONS (in lines 17 and 21)

receives the elite solutions, tests if each elite solution can be accepted for insertion

into its local elite set, and inserts any accepted elite solution. Upon termination of

each path-relinking leg, if the local elite set is updated, then (in lines 20 and 24) the

process writes the new elite set solutions to a local send buffer. In line 26, if the local

send buffer is not empty, the process sends the buffer contents to the other processes.

Another difference between the non-collaborative and the collaborative schemes

concerns the INTENSIFY procedure. In the collaborative scheme, whenever the local

elite set pool is updated, the new elite set solutions are written to the send buffer. These

bufferized solutions will be sent to the other processes the next time that procedure

SEND SOLUTIONS is invoked.

9.5 COMPUTATIONAL RESULTS

This section reports on results of computational experiments done with sequential

and parallel versions of the pure GRASP and GRASP with path-relinking heuristics

proposed in this paper.



PARALLEL GRASP FOR JOB SHOP SCHEDULING 229

Table 9.3 Probability estimates of finding a solution at least as good as the target solution,

as a function of maximum solution time for GP+C-INT and GP+PR. Instances are abz6,

mt10, orb5 and la21, with target values 965, 960, 930 and 1130, respectively.

abz6 mt10 orb5

time GP+C-INT GP+PR GP+C-INT GP+PR GP+C-INT GP+PR

100s .49 1.00 .04 .02 .16 .95

500s .94 1.00 .17 .90 .46 1.00

1000s 1.00 1.00 .27 1.00 .75 1.00

1500s 1.00 1.00 .34 1.00 .86 1.00

la21

time GP+PR GP+C-INT

100s .09 .53

500s .37 1.00

1000s .55 1.00

1500s .69 1.00

Table 9.4 Experimental results on problem classes abz, car, mt, and orb. Table shows

problem name, problem dimension (jobs and machines), the best known solution (BKS), the

best solution found by GP+C-INT, total number of GP+PR iterations performed, CPU time

per 1000 GP+PR iterations, the best solution found by GP+PR, and the relative percentage

error of the GP+PR solution with respect to the BKS.

GP+PR: itrs time sol. error

problem |J | |M | BKS GP+C-INT (×106) (103 iter) (%)

abz5 10 10 1234 1238 1.0 2.53s 1234 0.0

abz6 10 10 943 947 0.3 2.26s 943 0.0

abz7 15 20 665 723 50.0 11.66s 692 4.1

abz8 15 20 670 729 10.0 49.78s 705 5.2

abz9 15 20 691 758 1.0 875.92s 740 7.1

car1 11 5 7038 7038 0.001 15.31s 7038 0.0

car2 13 4 7166 7166 0.001 52.14s 7166 0.0

car3 12 5 7312 7366 50.7 2.08s 7312 0.0

car4 14 4 8003 8003 0.01 2.79s 8003 0.0

car5 10 6 7702 7702 0.5 4.40s 7702 0.0

car6 8 9 8313 8313 0.01 11.85s 8313 0.0

car7 7 7 6558 6558 0.001 16.05s 6558 0.0

car8 7 7 8264 8264 0.02 4.66s 8264 0.0

mt06 6 6 55 55 0.00001 1.74s 55 0.0

mt10 10 10 930 938 2.5 4.05s 930 0.0

mt20 20 5 1165 1169 4.5 46.48s 1165 0.0

orb1 10 10 1059 1070 1.2 46.75s 1059 0.0

orb2 10 10 888 889 1.1 11.45s 888 0.0

orb3 10 10 1005 1021 6.5 33.32s 1005 0.0

orb4 10 10 1005 1031 100.0 1.94s 1011 0.6

orb5 10 10 887 891 20.0 14.61s 889 0.2

orb6 10 10 1010 1013 3.5 43.75s 1012 0.2

orb7 10 10 397 397 0.03 18.72s 397 0.0

orb8 10 10 899 909 1.6 24.26s 899 0.0

orb9 10 10 934 945 11.1 4.38s 934 0.0

orb10 10 10 944 953 0.3 33.25s 944 0.0
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Table 9.5 Experimental results on problem class la (problems la01 to la20). Table

shows problem name, problem dimension (jobs and machines), the best known solution

(BKS), the best solution found by GP+C-INT, total number of GP+PR iterations performed,

CPU time per 1000 GP+PR iterations, the best solution found by GP+PR, and the relative

percentage error of the GP+PR solution with respect to the BKS.

GP+PR: itrs time sol. error

problem |J | |M | BKS GP+C-INT (×106) (103 iter) (%)

la01 10 5 666 666 0.0001 0.82s 666 0.0

la02 10 5 655 655 0.004 2.74s 655 0.0

la03 10 5 597 604 0.01 2.95s 597 0.0

la04 10 5 590 590 0.001 15.71s 590 0.0

la05 10 5 593 593 0.0001 1.09s 593 0.0

la06 15 5 926 926 0.0001 8.00s 926 0.0

la07 15 5 890 890 0.0001 1.58s 890 0.0

la08 15 5 863 863 0.0003 5.49s 863 0.0

la09 15 5 951 951 0.0001 3.40s 951 0.0

la10 15 5 958 958 0.0001 11.50s 958 0.0

la11 20 5 1222 1222 0.0001 3.14s 1222 0.0

la12 20 5 1039 1039 0.0001 2.89s 1039 0.0

la13 20 5 1150 1150 0.0001 3.20s 1150 0.0

la14 20 5 1292 1292 0.0001 5.70s 1292 0.0

la15 20 5 1207 1207 0.0002 122.75s 1207 0.0

la16 10 10 945 946 1.3 2.27s 945 0.0

la17 10 10 784 784 0.02 3.29s 784 0.0

la18 10 10 848 848 0.05 9.07s 848 0.0

la19 10 10 842 842 0.02 15.14s 842 0.0

la20 10 10 902 907 17.0 1.63s 902 0.0

9.5.1 Computer environment

The experiments were done on an SGI Challenge computer (16 196-MHz MIPS R10000

processors and 12 194-MHz R10000 processors) with 7.6 Gb of memory. Each run of

the sequential implementations used a single processor. The parallel implementations

were run on 1, 2, 4, 8, and 16 processors. Load on the machine was low throughout

the experiments and therefore processors were always available.

The algorithms were coded in Fortran and were compiled with the SGI MIPSpro

F77 compiler using flags -O3 -r4 -64. The Message-Passing Interface (MPI) spec-

ification has become a common standard for message-passing libraries for parallel

computations (Snir et al., 1998). The parallel codes used SGI’s Message Passing

Toolkit 1.4, which contains a fully compliant implementation of the MPI 1.2 speci-

fication. CPU times for the sequential implementation were measured with the system

function etime. In the parallel experiments, times measured were wall clock times,

and were done with the MPI function MPI WT. This is also the case for runs with a

single processor that are compared to 2, 4, 8, and 16 parallel processor runs. Timing

in the parallel runs excludes the time to read the problem data, initialize the random

number generator seeds, and to output the solution.
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Table 9.6 Experimental results on problem class la (problems la21 to la40). Table

shows problem name, problem dimension (jobs and machines), the best known solution

(BKS), the best solution found by GP+C-INT, total number of GP+PR iterations performed,

CPU time per 1000 GP+PR iterations, the best solution found by GP+PR, and the relative

percentage error of the GP+PR solution with respect to the BKS.

GP+PR: itrs time sol. error

problem |J | |M | BKS GP+C-INT (×106) (103 iter) (%)

la21 15 10 1047 1091 100.0 3.51s 1057 1.0

la22 15 10 927 960 26.0 3.45s 927 0.0

la23 15 10 1032 1032 0.01 39.39s 1032 0.0

la24 15 10 935 978 125.0 3.26s 954 2.0

la25 15 10 977 1028 32.0 3.29s 984 0.7

la26 20 10 1218 1271 3.5 6.35s 1218 0.0

la27 20 10 1235 1320 10.5 27.51s 1269 2.8

la28 20 10 1216 1293 20.0 17.77s 1225 0.7

la29 20 10 1157 1293 50.0 6.17s 1203 4.0

la30 20 10 1355 1368 3.0 7.61s 1355 0.0

la31 30 10 1784 1784 0.01 267.60s 1784 0.0

la32 30 10 1850 1850 0.0001 12.66s 1850 0.0

la33 30 10 1719 1719 0.001 875.11s 1719 0.0

la34 30 10 1721 1753 0.05 80.33s 1721 0.0

la35 30 10 1888 1888 0.01 348.32s 1888 0.0

la36 15 15 1268 1334 51.0 5.54s 1287 1.5

la37 15 15 1397 1457 20.0 12.51s 1410 0.9

la38 15 15 1196 1267 20.0 32.87s 1218 1.8

la39 15 15 1233 1290 6.0 59.06s 1248 1.2

la40 15 15 1222 1259 2.0 104.18s 1244 1.8

Table 9.7 Experimental results: Overall solution quality by problem class. Sum of all

best known solutions (BKS) for each class is compared with sum of best GP+PR solutions.

Relative error is of GP+PR solution with respect to BKS.

sum of sum of relative

problem BKS GP+PR sol. error (%)

abz 4203 4314 2.64

car 60356 60356 0.00

mt 2150 2150 0.00

orb 9028 9038 0.11

la 44297 44513 0.49

9.5.2 Test Problems

The experiments were done on 66 instances from five classes of standard JSP test

problems: abz, car, la, mt, and orb. The problem dimensions vary from 6 to 30
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Table 9.8 Experimental results: Percentage of GP+PR solutions within a tolerance of the

best known solution (BKS).

tolerance

problem 0% .5% 1% 2% 5% 10%

abz 40.0 40.0 40.0 40.0 60.0 100.0

car 100.0 100.0 100.0 100.0 100.0 100.0

mt 100.0 100.0 100.0 100.0 100.0 100.0

orb 70.0 90.0 100.0 100.0 100.0 100.0

la 72.5 72.5 82.5 95.0 100.0 100.0

jobs and from 4 to 20 machines. All instances tested were downloaded from Beasley’s

OR-Library 1 (Beasley, 1990).

9.5.3 The sequential experiments

The goal of the sequential experiments was to observe the general behavior of the

implementations of the proposed algorithms. In these experiments, we present results

comparing the following heuristics:

1. GRASP: Pure GRASP alternating between makespan and time-remaining ran-

domized greedy constructions;

2. GP+PR: GRASP with path-relinking described in Section 9.3;

3. GP+C-INT: The GRASP with construction intensification and POP, described in

Binato et al. (2001).

We aim to verify how the solutions obtained by GP+PR compare to the best known

solutions for a set of standard test problems. To illustrate the effectiveness of the

proposed hybrid GRASP, the solution times to target solution of GP+PR are compared

to the solution times of GRASP and GP+C-INT.

On all sequential (and parallel) implementations tested in this paper, the restricted

candidate list parameter α is chosen at random from the uniform distribution in the

interval [0,1] at each GRASP iteration and remains fixed throughout the iteration.

For the experiments performed with GP+PR, we used a pool of size |P|=30 and a

differentiation factor for insertion into the pool of dif=25%. In all experiments done

with GP+PR, path-relinking was applied between the solution obtained by GRASP and

all solutions in the pool. The standard deviation used to verify if a solution obtained by

the local search will take part in path-relinking is computed from the costs of the first

n=10,000 GRASP solutions. In the runs of GP+PR, used to generate the plots shown in

this paper, intensification and post-optimization are not applied. In the runs of GP+PR

shown in Tables 9.4, 9.5, and 9.6, the intensification is applied after each interval of

freq=500,000 iterations.

In all experiments performed with GP+C-INT, the program was configured to use

the same parameter values used in the tests reported in Binato et al. (2001). Therefore,

1http://mscmga.ms.ic.ac.uk/jeb/orlib/jobshopinfo.html
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a pool of 30 elite solutions was used in the intensification phase and a differentiation

factor of dif=80% was used to control the insertion into the pool. POP was activated

with a parameter freq= 40, i.e., it was applied after the construction of 40% and 80%

of the partial solution. A linear distribution function was used to bias the selection of

candidate elements in the RCL.

To study the effect of path-relinking on GRASP, we compared GRASP and GP+PR

on problems abz6, mt10, orb5, and la21. Two hundred independent runs of the two

heuristics were done for each of the four problems. Execution was interrupted when

a solution with cost at least as good as look4 was found. The look4 values used for

problems abz6, mt10, orb5, and la21 were 947, 950, 910, and 1110, respectively.

These values are far from the optimal values, and in general, can be obtained after a

few iterations. Figure 9.3 shows the empirical distributions for solution time of GRASP

and GP+PR. To plot these empirical distributions, we associate with the i-th sorted

running time (ti) a probability pi = (i− 1
2
)/200. The points zi = (ti, pi) are then plotted

for i = 1, . . . ,200. We observe in the plots that GP+PR finds the target solution faster

than GRASP. Table 9.1 shows estimated probabilities of finding the target solution as a

function of CPU time for the four instances tested. For example, for a computational

time of at most 500 seconds, the estimated probability of finding a solution at least as

good as the target solution for problem abz6 is 93% for GP+PR, while for GRASP it is

48%. On problem la21, the estimated probability of finding a solution at least as good

as the target solution in time at most 1000 seconds is 56% for GRASP and 100% for

GP+PR. These results illustrate for the JSP, the fact observed in Aiex et al. (2000a), that

although each iteration of a hybrid approach of GRASP with path-relinking takes more

computational time when compared to an iteration of a pure GRASP, it is compensated

by the reduced number of iterations needed to find the target solution.

Figure 9.4 shows a comparison between GRASP and GP+PR for problem mt10, using

three target values: 970, 960, and 950. These target values are 4.3%, 3.2%, and 2.1%

away from the best known value, respectively. The figure is composed of three plots,

where the difficulty of obtaining the target solution grows from top to bottom. The

empirical distributions are plotted the same way as in the plots of Figure 9.3. For

the topmost plot, we observe that GRASP finds the target solution before GP+PR for

probabilities below 68%. This occurs because the target value sought is easy to find

and GRASP iterations are faster than GP+PR iterations. By gradually increasing the

difficulty to find the target values on the two remaining plots (middle and bottom),

we observe that the probabilities for which GRASP still finds the target solution faster

than GP+PR decrease to 19% and 9%, respectively. Table 9.2 shows the computational

times for GRASP and GP+PR to find each of the three target values with probabilities

20%, 50%, and 80%. For each pair of GRASP variant and target value, the table also

shows the percentage reduction in solution time of GP+PR with respect to the solution

time of GRASP, as a function of the probability. The difficulty to obtain the target

solution grows from left to right and top to bottom in the table. We observe, that as

the target value approaches the best known value, the percentage reduction in solution

time of GP+PR grows. For example, for a target value of 960, and a probability of 50%,

the percentage reduction in solution time is 55.6%. Decreasing the target value to 950,
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the percentage reduction in solution time increases to 72.3% for the same probability

of 50%.

Variants GP+PR and GP+C-INT are compared in Figure 9.5. The empirical distribu-

tions are plotted for these GRASPs using the same methodology used to plot the em-

pirical distributions in Figures 9.3 and 9.4. The same test problems, abz6, mt10, orb5,

and la21, are used in this experiment, with target values 965, 960, 930, and 1130, re-

spectively. Notice that the target values used in this experiment are easier to obtain

than the target values used to compare GRASP and GP+PR for the same four instances.

This was necessary because of the high computational time needed for GP+C-INT to

obtain target solutions of quality comparable to the quality of the solutions found in

the first experiment. Table 9.3 shows, for GP+C-INT and GP+PR, estimates of proba-

bilities of finding a solution with cost at least as good as the target value, as a function

of maximum solution time. For example, for problem la21, we observe that the es-

timated probability for GP+C-INT to obtain a solution with cost at most 1130 in less

than 500 seconds is 37%, while for GP+PR this probability is 100%. For problem mt10,

we observe that the estimated probabilities for GP+C-INT and GP+PR to find the target

solution in less than 1000 seconds are 27% and 100%, respectively. Therefore, we

verify that the use of intensification in a GRASP shows better results when this phase

is carried out after the local search phase, i.e., after a pure GRASP iteration. This

happens because a premature intensification, i.e., an intensification phase done during

the GRASP construction phase, might reduce drastically the number of local minima

visited during a run of GRASP.

To verify the behavior of the proposed algorithm in terms of solution quality, GP+PR

was extensively executed for all test problems considered. The number of GRASP it-

erations was frequently in the millions (where each GRASP iteration uses a different

seed of the random number generator). These results are shown in Tables 9.4, 9.5,

and 9.6. Each table shows problem name, problem dimension (number of jobs and ma-

chines), the best known solution (BKS), the cost of the solution found by GP+C-INT,

and, for GP+PR, the total number of GRASP iterations executed, CPU time in seconds

to run 1000 GRASP iterations, the cost of the best solution found, and the percentage

relative error of the GP+PR solution with respect to the BKS.

Of the 66 tested instances, GP+PR found the BKS in 49 cases (74.2%). It found a

solution within 0.5% of the BKS for 50 instances (75.7%). In 56 instances (84.8%),

GP+PR solution was within 1% of the BKS and in 61 cases (92.4%) it was within 2%

of the BKS. GP+PR solution was within 5% of the BKS in 64 instances (97%), while

for all other cases, the solution found was within 7.5% of the BKS.

Tables 9.7 and 9.8 summarizes the results for each problem class. Table 9.7 shows,

for each problem class, its name, the sum of the BKS values, the sum of the values of

the best solutions found by GP+PR, and the percentage relative error of the sum of the

values of the best GP+PR solutions with respect to the sum of the BKS values. Table 9.8

shows, for each problem class, its name, and the percentage of instances for which a

GP+PR solution within 0%, 0.5%, 1%, 2%, 5%, and 10% of the BKS was produced.

From these tables, one can conclude that the easiest classes are car and mt, for which

GP+PR obtained the BKS for all instances. For classes orb and la, the average relative

errors are within 0.5% of the BKS and therefore, GP+PR was capable of producing
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solutions of high quality for most problems in these classes. The most difficult class

was abz, where the average relative error with respect to the BKS achieved 2.64%.

9.5.4 Probability distribution for solution time

Aiex et al. (2000b) studied the empirical probability distributions of the random vari-

able time to target solution in five GRASP implementations. They showed that, given

a target solution value, the time it takes GRASP to find a solution at least as good

as the target fits a two-parameter exponential distribution. Standard methodology for

graphical analysis (Chambers et al., 1983) was used to compute the empirical and the-

oretical distributions and to estimate the parameters of the distributions. We use the

same methodology to study time to target value for GRASP and GP+PR. Our objective

is to show that these variants of GRASP have time to target value distributions that fit

a two-parameter exponential distribution.

The quantile-quantile plots (Q-Q plots) and the plots showing the empirical and

theoretical distributions of the random variable time to target solution for GRASP are

shown in Figures 9.6 and 9.7, respectively. Analogously, Figures 9.8 and 9.9 show the

Q-Q plots and the plots with the empirical and theoretical distributions of the random

variable time to target solution for GP+PR. Three target values are considered for each

of the test problems, abz6, mt10, orb5, and la21, for the two GRASP variants. All

plots are computed with 200 runs of the GRASP variant. For each of the 200 runs of

each combination, the random number generator is initialized with a distinct seed and

therefore the runs are independent.

Figures 9.6 and 9.8 are made up of 12 quantile-quantile plots, one for each pair

of problem instance/target value for GRASP and GP+PR, respectively. Analogously,

Figures 9.7 and 9.9 are made up of 12 plots showing the empirical and theoretical

distributions of the random variable time to target solution, each corresponding to a

pair of problem instance/target value for GRASP and GP+PR, respectively. Each figure

is made up of four rows, each corresponding to a different problem. Each row of the

figure depicts three plots, where the difficulty to find the target value increases from

left to right. Our description of each plot follows Aiex et al. (2000b) closely. For

each instance/variant pair, the running times are sorted in increasing order. To plot the

empirical distribution, we associate with the i-th sorted running time (ti) a probability

pi = (i− 1
2
)/200, and plot the points zi = (ti, pi), for i = 1, . . . ,200.

Tables 9.10 and 9.13 show the target values and the parameters estimated by the

methodology for GRASP and GP+PR, respectively. Following the methodology pro-

posed in Chambers et al. (1983), we first draw the theoretical quantile-quantile plot

for the data to estimate the parameters of the two-parameter exponential distribution.

To describe Q-Q plots, recall that the cumulative distribution function for the two-

parameter exponential distribution is given by

F(t) = 1− e−(t−µ)/λ,

where λ is the mean of the distribution data (and indicates the spread of the data) and

µ is the shift of the distribution with respect to the ordinate axis.
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For each value pi, i = 1, . . . ,200, we associate a pi-quantile Qt(pi) of the theoretical

distribution. For each pi-quantile we have, by definition, that

F((Qt(pi)) = pi.

Hence, Qt(pi) = F−1(pi) and therefore, for the two-parameter exponential distribu-

tion, we have

Qt(pi) =−λ ln(1− pi)+µ.

The quantiles of the data of an empirical distribution are simply the (sorted) raw data.

A theoretical quantile-quantile plot (or theoretical Q-Q plot) is obtained by plotting

the quantiles of the data of an empirical distribution against the quantiles of a theoret-

ical distribution. This involves three steps. First, the data (in our case, the measured

times) are sorted in ascending order. Second, the quantiles of the theoretical exponen-

tial distribution are obtained. Finally, a plot of the data against the theoretical quantiles

is made.

In a situation where the theoretical distribution is a close approximation of the em-

pirical distribution, the points in the Q-Q plot will have a nearly straight configuration.

If the parameters λ and µ of the theoretical distribution that best fits the measured data

could be estimated a priori, the points in a Q-Q plot would tend to follow the line

x = y. Alternatively, in a plot of the data against a two-parameter exponential distri-

bution with λ′ = 1 and µ′ = 0, the points would tend to follow the line y = λx + µ.

Consequently, parameters λ and µ of the two-parameter exponential distribution can

be estimated, respectively, by the slope and intercept of the line depicted in the Q-Q

plot.

To avoid possible distortions caused by outliers, we do not estimate the distribution

mean by linear regression on the points of the Q-Q plot. Instead, we estimate the slope

λ̂ of line y = λx +µ using the upper quartile qu and lower quartile ql of the data. The

upper and lower quartiles are, respectively, the Q( 1
4
) and Q( 3

4
) quantiles, respectively.

We take

λ̂ = (zu− zl)/(qu−ql)

as an estimate of the slope, where zu and zl are the u-th and l-th points of the ordered

measured times, respectively. This informal estimation of the distribution of the mea-

sured data mean is robust since it will not be distorted by a few outliers (Chambers

et al., 1983). These estimates are used to plot the theoretical distributions on the plots

on the left side of the figures.

To analyze the straightness of the Q-Q plots, we superimpose them with variability

information. For each plotted point, we show plus and minus one standard deviation

in the vertical direction from the line fitted to the plot. An estimate of the standard

deviation for point zi, i = 1, . . . ,200, of the Q-Q plot is

σ̂ = λ̂

√

pi

(1− pi)200
.

Figures 9.6 and 9.8 show that there is little departure from straightness in the Q-Q

plots for GRASP, as well as for GP+PR. We also observe that as the difficulty of finding
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Table 9.9 Speedup with respect to a single processor implementation and efficiency

(speedup divided by number of processors). Algorithm is the parallel implementation of

GRASP. Instances are abz6, mt10, orb5, and la21, with target values 960, 960, 920, and

1120, respectively.

number of processors

2 4 8 16

problem speedup eff. speedup eff. speedup eff. speedup eff.

abz6 2.04 1.02 4.75 1.18 8.87 1.10 19.17 1.19

mt10 1.62 .81 4.07 1.01 7.34 .91 14.81 .92

orb5 2.12 1.06 3.97 .99 7.63 .95 14.10 .88

la21 1.94 .97 4.98 1.24 8.13 1.01 19.63 1.22

average: 1.93 .96 4.44 1.10 7.99 .99 16.92 1.05

the target value increases, the plotted points become more fitted to the estimated line.

Therefore, we verify that the distributions fit a two-parameter exponential distribution.

Binato et al. (2001) show that the probability distribution of solution time of GP+C-INT

fits a two-parameter exponential distribution. In this section, we show that the proba-

bility distributions of solution time of a GRASP where the construction phase is com-

puted alternating between two greedy functions (GRASP) and of a GRASP with path-

relinking restricted to iterations where the local search obtained high quality solutions

(GP+PR) also fit a two-parameter exponential distribution. These results reinforce the

conclusions drawn in Aiex et al. (2000b) for pure GRASPs.

The following can be stated for a two parameter (shifted) exponential distribution

(Aiex et al., 2000b; Verhoeven and Aarts, 1995). Let Pρ(t) be the probability of not

having found a given (target) solution in t time units with ρ independent processes.

If P1(t) = e−(t−µ)/λ with λ ∈ R+ and µ ∈ R, i.e. P1 corresponds to a two parameter

exponential distribution, then Pρ(t) = e−ρ(t−µ)/λ. This follows from the definition of

the two-parameter exponential distribution. It implies that the probability of finding a

solution of a given value in time ρt with a sequential process is equal to 1−e−(ρt−µ)/λ

while the probability of finding a solution at least as good as that given value in time

t with ρ independent parallel processes is 1− e−ρ(t−µ)/λ. Note that if µ = 0, then

both probabilities are equal and correspond to the non-shifted exponential distribution.

Furthermore, if ρµ≪ λ, then the two probabilities are approximately equal and it is

possible to approximately achieve linear speed-up in solution time to target solution

by multiple independent processes.

9.5.5 The parallel experiments

The parallel algorithms used in these experiments are:

1. the pure GRASP;

2. the non-collaborative GRASP with path-relinking;

3. the collaborative GRASP with path-relinking.

In these experiments, we disable stopping due to maximum number of iterations, i.e.

the algorithms terminate only when a solution of value at least as good as look4 is
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Table 9.10 Test problems used to study the empirical probability distributions of the

random variable time to target solution of GRASP. Table shows for each tested problem,

cost of the BKS, target value and estimated parameters.

estimated parameters

problem BKS target µ̂ λ̂

abz6 943 970 0.203 3.804

960 0.428 15.567

950 -1.323 68.490

mt10 930 970 -9.403 233.092

960 11.723 885.034

950 109.528 1827.882

orb5 887 930 -0.783 15.757

920 1.249 38.273

910 -1.011 191.111

la21 1047 1130 -4.115 50.343

1120 -1.015 206.836

1110 -87.594 1268.081

Table 9.11 Estimates of probability of finding a solution at least as good as the target

solution in a given running time, as a function of number of processors. Algorithm is the

parallel implementation of GRASP. Instances are abz6, mt10, orb5, and la21, with target

values 960, 960, 920, and 1120, respectively.

probab. parallel GRASP

number of processors

problem time 1 2 4 8 16

abz6 10s .34 .67 .93 1.00 1.00

20s .61 .90 .98 1.00 1.00

50s .90 .98 1.00 1.00 1.00

mt10 10s .04 .02 .04 .07 .19

100s .16 .20 .45 .64 .82

500s .46 .60 .92 1.00 1.00

orb5 10s .20 .37 .62 .87 .99

20s .36 .62 .84 .96 1.00

50s .70 .94 1.00 1.00 1.00

la21 10s .04 .08 .18 .30 .54

100s .29 .57 .87 .96 1.00

500s .89 .97 1.00 1.00 1.00

Table 9.12 Speedup with respect to a single processor implementation. Algorithms are

independent and cooperative implementations of GP+PR. Instances are abz6, mt10, orb5,

and la21, with target values 943, 938, 895, and 1100, respectively.

speedup independent speedup cooperative

(number of processors) (number of processors)

problem 2 4 8 16 2 4 8 16

abz6 2.00 3.36 6.44 10.51 2.40 4.21 11.43 23.58

mt10 1.57 2.12 3.03 4.05 1.75 4.58 8.36 16.97

orb5 1.95 2.97 3.99 5.36 2.10 4.91 8.89 15.76

la21 1.64 2.25 3.14 3.72 2.23 4.47 7.54 11.41

average: 1.79 2.67 4.15 5.91 2.12 4.54 9.05 16.93
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Table 9.13 Test problems used to study the empirical probability distributions of the

random variable time to target solution of GP+PR. Table shows for each tested problem,

cost of the BKS, target value and estimated parameters.

estimated parameters

problem BKS target µ̂ λ̂

abz6 943 950 25.067 40.348

947 30.652 140.487

943 92.220 744.247

mt10 930 950 206.950 249.865

940 255.666 334.774

938 305.281 524.236

orb5 887 910 47.322 44.268

900 82.006 200.680

895 131.435 418.053

la21 1047 1110 140.530 155.441

1105 140.399 248.812

1100 181.539 390.571

Table 9.14 Estimates of probability of finding a solution at least as good as the target

solution in a given running time, as a function of number of processors. Algorithms are

independent and cooperative implementations of GP+PR. Instances are abz6, mt10, orb5,

and la21, with target values 943, 938, 895, and 1100, respectively.

probab. independent probab. cooperative

(number of processors) (number of processors)

problem time 1 2 4 8 16 1 2 4 8 16

abz6 100s .01 .03 .12 .25 .47 .01 .12 .24 .64 .94

500s .30 .59 .79 .95 1.00 .30 .61 .79 1.00 1.00

1000s .57 .85 .97 .99 1.00 .57 .92 .98 1.00 1.00

mt10 100s 0.0 0.0 0.0 .02 0.05 0.0 0.0 .05 .34 .82

500s .17 .32 .55 .82 .98 .17 .49 .95 1.00 1.00

1000s .54 .79 .95 1.00 1.00 .54 .85 1.00 1.00 1.00

orb5 100s 0.0 0.0 .02 .03 .19 0.0 .07 .42 .74 .92

500s .35 .75 .93 1.00 1.00 .35 .80 .97 1.00 1.00

1000s .75 .97 1.00 1.00 1.00 .75 .95 1.00 1.00 1.00

la21 100s 0.0 0.0 0.0 .02 .06 0.0 .02 .08 .44 .87

500s .29 .52 .82 .98 1.00 .29 .79 1.00 1.00 1.00

1000s .75 .98 1.00 1.00 1.00 .75 .98 1.00 1.00 1.00

found. The parallel GRASP was studied for problems abz6, mt10, orb5, and la21,

with look4 values 960, 960, 920, and 1120, respectively. The independent and coop-

erative parallel implementations of GP+PR were also tested for problems abz6, mt10,

orb5, and la21, but with more difficult look4 values 943, 938, 895, and 1100, re-

spectively. The parameters of the procedures used in the parallel approaches were the

same used for testing the sequential algorithm. Intensification and post-optimization

are not carried out during the experiments with the parallel implementations. Fig-

ure 9.10 shows speedup and empirical distributions for the parallel implementations

of GRASP. Analogously, Figures 9.11, 9.12, 9.13, and 9.14 show speedup and empiri-

cal distributions for both parallel implementations of GP+PR. The plots were generated
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with 60 independent runs for each number of processors considered (1, 2, 4, 8, and 16

processors).

Table 9.9 summarizes the speedups shown in the plots. The table also shows effi-

ciency (speedup divided by number of processors) values. Speedups are on average

approximately linear. Table 9.10 shows the values of the parameters µ and λ of the

two-parameter exponential distributions plotted for the pairs of instance/target values

used to study the behavior of GRASP. The parameter µ is an estimate of the minimum

time needed for GRASP to find the target value for the instances. The parameter λ is an

estimate of the spread of the measured times for pair of instance/target value. The sum

µ+λ is an estimate of the average solution time for pair of instance/target value. For a

small value of parameter µ, a two-parameter exponential distributions can be approx-

imated by a simple exponential distribution. Therefore, approximate linear speedups

were expected for the parallel GRASP on this set of instance/target values.

Table 9.11 shows, for given running times, the estimated probability of finding a

solution at least as good as the target solution in that time, as a function of number of

processors. The table shows, for example, that the probability of finding a solution of

value at most 920 on problem orb5 in at most 10 seconds, goes from 20% with one

processor, to 62% with four processors, and to 99% with sixteen processors.

Table 9.12 summarizes the speedups shown in the plots for the independent and

cooperative parallel approaches of GP+PR. Sublinear speedups are observed for the

independent approach. Table 9.13 shows the values of parameters µ and λ of the two-

parameter exponential distributions plotted for the pairs of instance/target values used

to study GP+PR. We notice that the ratios λ/µ computed with the parameters in this

table are much lower than the values of λ/µ, for the parameters estimated for the pairs

of instance/target values used to study GRASP. As stated before, although GP+PR finds

the target solution faster than GRASP, its iterations need higher CPU times, which cor-

responds to higher values of µ. Path-relinking also speedups GRASP, reducing the

spread of the solution time, i.e., the parameter λ. Therefore, µ values are higher and λ
values are lower for GP+PR with respect to GRASP parameters. For these reasons, the

distributions plotted for GP+PR cannot be approximated by a simple exponential distri-

bution. As noted in the observation about the two-parameter exponential distribution,

as the number of used processors ρ increases, the speedup of the algorithm degrades.

That observation does not take into account sharing of information by the processes.

Therefore, no conclusions from the distributions plotted for the sequential GP+PR can

be drawn for the cooperative approach. However, we observe an approximate lin-

ear speedup for all instances tested for the cooperative approach, outperforming the

independent variant.

In Table 9.14, the estimated probability of finding a solution at least as good as the

target solution before a specified time is shown as a function of number of processors.

For example, the table shows, for problem mt10, that the probability of finding a

solution of value at least as good as 938 in at most 500 seconds, goes from 32% with

two processor, to 55% with four processors, and to 98% with 16 processors, on the

independent approach. For the cooperative approach, these values increase to 49%,

95% and 100%, for two, four and sixteen processors, respectively.
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9.6 CONCLUDING REMARKS

We describe a new algorithm for finding approximate solutions to the job shop schedul-

ing problem. This GRASP uses some of the ideas proposed in the GRASP of Binato

et al. (2001). That GRASP applies an intensification strategy during the construction

phase that uses information obtained from “good” solutions to implement a memory-

based procedure to influence the construction phase. In the hybrid GRASP proposed

in this paper, the intensification phase is moved to the end of each GRASP itera-

tion and is done using path-relinking. Due to the high computational requirements

of path-relinking, only solutions accepted by a quality criteria undergo this proce-

dure. Furthermore, the new GRASP alternates between two semi-greedy algorithms

to construct solutions, which produces a higher variety of initial solutions for the local

search. The algorithm was evaluated on 66 standard test problems and was shown to

produce optimal or near-optimal solutions on all instances.

We observe that the hybrid GRASP with path-relinking obtains a solution of a given

quality faster than the pure GRASP. Therefore, the increase in the computational time

of each GRASP iteration due to the computation of path-relinking is compensated

by an increase in the method’s robustness. We also verify that the intensification ap-

plied after each GRASP iteration using path-relinking outperforms the intensification

strategy used in Binato et al., which is applied during the construction phase.

We verify that the time to target sub-optimal solution of the proposed GRASPs

fit well a two-parameter exponential distribution. Two parallelization strategies were

proposed for the GRASP with path-relinking: an independent and a cooperative. The

independent parallel strategy, as expected, shows a sub-linear speedup. The coop-

erative approach shows an approximate linear speedup for all instances tested, thus

attesting that the extra time spent in communication among processes is compensated

by an increase in solution quality.
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Figure 9.10 Speedup and empirical distributions for parallel implementation of GRASP:

problems abz6, mt10, orb5 and la21.
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Figure 9.11 Speedup and empirical distributions for parallel implementations of GP+PR:

problem abz6 with target value 943.
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Figure 9.12 Speedup and empirical distributions for parallel implementations of GP+PR:

problem mt10 with target value 938.
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Figure 9.13 Speedup and empirical distributions for parallel implementations of GP+PR:

problem orb5 with target value 895.
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Figure 9.14 Speedup and empirical distributions for parallel implementations of GP+PR:

problem la21 with target value 1100.
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procedure NON-COLLAB GRASP PR(M,J ,O, p, seed, look4, maxitr, maxpool, freq)
1 my rank = GET RANK(); nprocs = GET NUM PROCS();
2 for i = 1, . . . , (maxitr/nprocs) ∗my rank do
3 seed = rand(seed);
4 rof;
5 P = ∅; num stop = 0;
6 for i = 1, . . . ,∞ do
7 if mod (i, 2) == 0 then
8 GREEDY MASKESPAN(seed, S,M, p, |M|, |J |,Makespan);
9 else
10 GREEDY TIME REMAINING(seed, S,M, p, |M|, |J |,Makespan);
11 fi;
12 LOCAL(S,M, p, |M|, |J |,Makespan);
13 if |P | == maxpool then
14 accepted = VERIFY QUALITY(S, i);
15 if accepted then
16 for T ∈ P ′ ⊆ P do
17 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, S, T );
18 UPDATE POOL(Sgmin, cgmin, P );
19 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, T, S);
20 UPDATE POOL(Sgmin, cgmin, P );
21 rof;
22 fi;
23 else P = P ∪ {S} fi;
24 if mod (i, ifreq) == 0 then INTENSIFY(P ) fi;
25 Sbest = POOLMIN(P );
26 if MAKESPAN(Sbest) ≤ look4 then SEND ALL(look4 stop) fi;
27 if i == maxitr then
28 num stop = num stop + 1;
29 SEND ALL(maxitr stop);
30 fi;
31 received = VERIFY RECEIVING(flag);
32 if received then
33 if flag == look4 stop then break;
34 else if flag == maxitr stop then num stop = num stop + 1 fi;
35 fi;
36 if num stop == nprocs then break fi;
37 rof;
38 POSTOPT(POOL);
39 SGlobalBest = GET GLOBAL BEST(Sbest);
40 return (SGlobalBest);
end NON-COLLAB GRASP PR;

Figure 9.15 Pseudo-code for the non-collaborative parallel GRASP with path-relinking.
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procedure COLLAB GRASP PR(M,J ,O, p, seed, look4, maxitr, maxpool, freq)
1 my rank = GET RANK(); nprocs = GET NUM PROCS();
2 for i = 1, . . . , (maxitr/nprocs) ∗my rank do
3 seed = rand(seed);
4 rof;
5 P = ∅; num stop = 0;
6 for i = 1, . . . ,∞ do
7 if mod (i, 2) == 0 then
8 GREEDY MASKESPAN(seed, S,M, p, |M|, |J |,Makespan);
9 else
10 GREEDY TIME REMAINING(seed, S,M, p, |M|, |J |,Makespan);
11 fi;
12 LOCAL(S,M, p, |M|, |J |,Makespan);
13 if |P | == maxpool then
14 accepted = VERIFY QUALITY(S, i);
15 if accepted then
16 for T ∈ P ′ ⊆ P do
17 RECEIVE SOLUTIONS(P );
18 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, S, T );
19 updated = UPDATE POOL(Sgmin, cgmin, P );
20 if (updated) then INSERT SEND BUFFER(Sgmin, cgmin,buffer) fi;
21 RECEIVE SOLUTIONS(P );
22 Sgmin = PATH RELINKING(M,J ,O, p,Makespan, T, S);
23 updated = UPDATE POOL(Sgmin, cgmin, P );
24 if (updated) then INSERT SEND BUFFER(Sgmin, cgmin,buffer) fi;
25 rof;
26 SEND SOLUTIONS(buffer);
27 fi;
28 else P = P ∪ {S} fi;
29 if mod (i, ifreq) == 0 then INTENSIFY(P ) fi;
30 Sbest = POOLMIN(P );
31 if MAKESPAN(Sbest) ≤ look4 then SEND ALL(look4 stop) fi;
32 if i == maxitr then
33 num stop = num stop + 1;
34 SEND ALL(maxitr stop)
35 fi;
36 received = VERIFY RECEIVING(flag);
37 if received then
38 if flag == look4 stop then break;
39 else if flag == maxitr stop then num stop = num stop + 1 fi;
40 fi;
41 if num stop == nprocs then break fi;
42 rof;
43 POSTOPT(POOL);
44 SGlobalBest = GET GLOBAL BEST(Sbest);
45 return (SGlobalBest);
end COLLAB GRASP PR;

Figure 9.16 Pseudo-code for collaborative parallel GRASP with path-relinking.
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Abstract: We present a new implementation of a widely used swap-based local search

procedure for the p-median problem, proposed in 1968 by Teitz and Bart. Our method

produces the same output as the best alternatives described in the literature and, even

though its worst-case complexity is similar, it can be significantly faster in practice:

speedups of up to three orders of magnitude were observed. We also show that our

method can be easily adapted to handle the facility location problem and to implement

related procedures, such as path-relinking and tabu search.

Keywords: Local search, location theory, p-median, facility location.

10.1 INTRODUCTION

The p-median problem is defined as follows. Given a set F of m facilities, a set U

of n users (or customers), a distance function d : U ×F → R+, and an integer p ≤ m,

determine which p facilities to open so as to minimize the sum of the distances from

each user to the closest open facility. In other words, given p, we want to minimize

the cost of serving all customers.

Since this problem is NP-hard (Kariv and Hakimi, 1979), a polynomial-time al-

gorithm to solve it exactly is unlikely to exist. The most effective algorithms pro-
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posed in the literature (Avella et al., 2003a; Beasley, 1985; Briant and Naddef, 2004;

Cornuéjols et al., 1977; Galvão, 1980; Rosing et al., 1979; Senne et al., 2005) use

branch-and-bound, with lower bounds obtained from some linear programming relax-

ation of the problem. In the worst case, all these methods are exponential, but they can

be quite fast in practice (the recent algorithm by Avella et al. (2003a) is particularly

effective). Also, similar techniques can be made to work as heuristics only, producing

close-to-optimal solutions in reasonable time (Avella et al., 2003b; du Merle et al.,

1999; Senne and Lorena, 2000; 2002).

There are also simpler heuristics that use no duality (linear programming) infor-

mation at all. The most natural options are constructive heuristics, methods that build

solutions from scratch, usually in a greedy fashion (Cornuéjols et al., 1977; Kuehn

and Hamburger, 1963; Whitaker, 1983). A step further is to use a local search proce-

dure, which takes an existing solution as input and tries to improve it (Goodchild and

Noronha, 1983; Hodgson, 1978; Maranzana, 1964; Rosing, 1997; Taillard, 2003; Teitz

and Bart, 1968). It does so in an iterative fashion, examining neighboring solutions,

those that differ from the original one by a small (problem- and algorithm-specific)

modification. Finally, there are metaheuristics, procedures that aim at exploring a large

portion of the search space in an organized fashion to obtain close-to-optimal solu-

tions (possibly using constructive algorithms and local search as subroutines). Recent

examples in the literature include variable neighborhood search (Hansen and Mladen-

ović, 1997), variable neighborhood decomposition search (Hansen et al., 2001), tabu

search (Rolland et al., 1996; Voß, 1996), heuristic concentration (Rosing and ReV-

elle, 1997), scatter search (Garcı́a-López et al., 2003), and a GRASP-based hybrid

algorithm (Resende and Werneck, 2004).

This study concerns the local search proposed by Teitz and Bart (1968), based on

swapping facilities. In each iteration, the algorithm looks for a pair of facilities (one

to be inserted into the current solution, another to be removed) that would lead to an

improved solution if swapped. If such a pair exists, the swap is made and the procedure

is repeated.

Arya et al. (2001) have shown that, in a metric setting, this algorithm always finds

solutions that are within a factor of at most 5 from the optimum. However, for practi-

cal, non-pathological instances the gap is usually much smaller, just a few percentage

points (Rosing, 1997; Whitaker, 1983). This has made the algorithm very popular

among practioners, often appearing as a key subroutine of more elaborate metaheuris-

tics (Garcı́a-López et al., 2003; Hansen and Mladenović, 1997; Resende and Werneck,

2004; Rolland et al., 1996; Rosing and ReVelle, 1997; Voß, 1996).

Our concern in this paper is not solution quality—the reader is referred to Rosing

(1997) and Whitaker (1983) for insights on that matter. Our goal is to obtain the

same solutions Teitz and Bart would, only in less time. We present an implementation

that is significantly (often asymptotically) faster in practice than previously known

alternatives.

The paper is organized as follows. In Section 10.2, we give a precise description of

the local search procedure and a trivial implementation. In Section 10.3, we describe

the best alternative implementation described in the literature, proposed by Whitaker

(1983). Our own implementation is described in Section 10.4. We show how it can
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be adapted to handle the facility location problem and to handle related operations

(such as path-relinking and tabu search) in Section 10.5. Experimental evidence to

the efficiency of our method is presented in Section 10.6. Final remarks are made in

Section 10.7.

Notation and assumptions.. Before proceeding to the study of the algorithms

themselves, let us establish some notation. As already mentioned, F is the set of

potential facilities and U the set of users that must be served. The basic parameters of

the problem are n = |U |, m = |F|, and p, the number of facilities to open. Although

1 ≤ p ≤ m by definition, we will ignore trivial cases and assume that 1 < p < m and

that p < n (if p≥ n, we just open the facility that is closest to each user). We assume

nothing about the relationship between n and m.

We use u to denote a generic user, and f a generic facility. The cost of serving

u with f is d(u, f ), the distance between them, which is always nonnegative. (We

do not make any other assumption about the distance function; in particular, we do

not assume that the triangle inequality is valid.) A solution S is any subset of F with

p elements, and represents the set of open facilities. Every user u is assigned to the

closest facility f ∈ S (the one that minimizes d(u, f )). This facility will be denoted

by φ1(u). Our algorithm often needs to access the second closest facility to u in S as

well; it will be denoted by φ2(u). To simplify notation, we will abbreviate d(u,φ1(u))
as d1(u), and d(u,φ2(u)) as d2(u).1 We often deal specifically with a facility that is

a candidate for insertion; it will be referred to as fi (by definition fi 6∈ S); similarly, a

candidate for removal will be denoted by fr ( fr ∈ S, also by definition).

Throughout this paper, we assume the distance oracle model, in which the distance

between any customer and any facility can be determined in O(1) time. In this model,

all values of φ1 and φ2 for a given solution S can be straighforwardly computed in

O(pn) total time: for each of the n customers, we explicitly find the distances to the p

open facilities and pick the smallest. Problems defined by a distance matrix clearly fall

into the distance oracle model, but an explicit matrix is not always necessary. If users

and facilities are points on the plane, for example, distances can also be computed in

constant time. There are cases, however, in which that does not happen, such as when

the input is given as a sparse graph, with distances determined by shortest paths. In

such situations, one must precompute the corresponding distance matrix in order to

apply our method with the same worst-case running time.

10.2 THE SWAP-BASED LOCAL SEARCH

Introduced by Teitz and Bart (1968), the standard local search procedure for the p-

median problem is based on swapping facilities. For each facility fi 6∈ S (the current

solution), the procedure determines which facility fr ∈ S (if any) would improve the

solution the most if fi and fr were interchanged (i.e., if fi were inserted and fr removed

from the solution). If any such “improving” swap exists, the best one is performed, and

1More accurate representations of φ1(u), φ2(u), d1(u), and d2(u) would be φS
1(u), φS

2(u), dS
1 (u), and dS

2 (u),
respectively, since each value is a function of S as well. Since the solution will be clear from context, we

prefer the simpler representation in the interest of readability.
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the procedure is repeated from the new solution. Otherwise we stop, having reached

a local minimum (or local optimum). Arya et al. (2001) have recently proven that

this procedure is guaranteed to produce a solution whose value is at most 5 times

the optimum in the metric setting (i.e., when the triangle inequality holds). On non-

pathological instances (those more likely to appear in practice), empirical evidence

shows that the algorithm is often within a few percentage points of optimality (and

often does find the optimal solution), being especially successful when both p and n

are small (Rosing, 1997).

Our main concern is not solution quality, but the time it takes to run each iteration

of the algorithm. Given a solution S, we want to find an improving neighbor S′ (if it

exists) as fast as possible.

A straighforward implementation takes O(pmn) time per iteration. Start by deter-

mining the closest and second closest open facilities for each user; this takes O(pn)
time. Then, for each candidate pair ( fi, fr), compute the profit that would result from

replacing fr with fi. To do that, one can reason about each user u independently. If

the facility that currently serves u is not fr (the facility to be removed), the user will

switch to fi only if this facility is closer, otherwise it will remain where it is. If u is

currently assigned to fr, the user will have to be reassigned, either to φ2(u) (the second

closest facility) or to fi (the facility to be inserted), whichever is closest. The net effect

is summarized by following expression:

profit( fi, fr) =∑
u:φ1(u) 6= fr

max{0, [d1(u)−d(u, fi)]}−∑
u:φ1(u)= fr

[min{d2(u),d(u, fi)}−d1(u)].

The first summation accounts for users that are not currently assigned to fr (these

can only gain from the swap), and the second for users that are (they can gain or lose

something with the swap). In the distance oracle model, the entire expression can be

computed in O(n) time for each candidate pair of facilites. There are p candidates for

removal and m− p for insertion, so the total number of moves to consider is p(m−
p) = O(pm). Each iteration therefore takes O(pmn) time.

Several papers in the literature use this basic implementation, and others avoid us-

ing the swap-based local search altogether mentioning its intolerable running time

(Rolland et al., 1996; Rosing and ReVelle, 1997; Voß, 1996). These methods would

greatly benefit from asymptotically faster implementations, such as Whitaker’s or

ours.

10.3 WHITAKER’S IMPLEMENTATION

Whitaker (1983) describes the so-called fast interchange heuristic, an efficient imple-

mentation of the local search procedure defined above. Even though it was published

in 1983, Whitaker’s implementation was not widely used until 1997, when Hansen

and Mladenović (1997) applied it as a subroutine of a Variable Neighborhood Search

(VNS) procedure. A minor difference between the implementations is that Whitaker

prefers a first improvement strategy (a swap is made as soon as a profitable one is

found), while Hansen and Mladenović prefer best improvement (all swaps are evalu-

ated and the most profitable executed). In our analysis, we assume best improvement

is used, even in references to “Whitaker’s algorithm.”
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function findOut (S, fi,φ1,φ2)
1 gain← 0; /* gain resulting from the addition of fi */

2 forall ( f ∈ S) do netloss( f )← 0; /* loss resulting from removal of f */

3 forall (u ∈U) do

4 if (d(u, fi)≤ d1(u)) then /* gain if fi is close enough to u */

5 gain
+← [d1(u)−d(u, fi)];

6 else /* loss if facility that is closest to u is removed */

7 netloss(φ1(u))
+←min{d(u, fi),d2(u)}−d1(u);

8 endif

9 endforall

10 fr← argmin f∈S{netloss( f )};
11 profit← gain−netloss( fr);
12 return ( fr,profit);
end findOut

Figure 10.1 Function to determine, given a candidate for insertion ( fi), the best candidate

for removal ( fr). Adapted from Hansen and Mladenović (1997).

The key aspect of this implementation is its ability to find in Θ(n) time the best pos-

sible candidate for removal, given a certain candidate for insertion. The pseudocode

for the function that does that, adapted from Hansen and Mladenović (1997), is pre-

sented in Figure 10.1.2 Function findOut takes as input a candidate for insertion ( fi)

and returns fr, the most profitable facility to be swapped out, as well as the profit itself

(profit).

Given a certain candidate for insertion fi, the function implicitly computes profit( fi, fr)
for all possible candidates fr. What makes this procedure fast is the observation (due

to Whitaker) that the profit can be decomposed into two components, which we call

gain and netloss.

Component gain accounts for all users who would benefit from the insertion of

fi into the solution. Each is closer to fi than to the facility it is currently assigned

to. The difference between the distances is the amount by which the cost of serving

that particular user will be reduced if fi is inserted. Lines 4 and 5 of the pseudocode

compute gain.

The second component, netloss, accounts for all other customers, those that would

not benefit from the insertion of fi into the solution. If the facility that is closest to u

is removed, u would have to be reassigned either to φ2(u) (its current second closest

facility) or to fi (the new facility), whichever is closest. In both cases, the cost of

serving u will either increase or remain constant. Of course, this reassignment will

only be necessary if φ1(u) is the facility removed to make room for fi. This explains

why netloss is an array, not a scalar value: there is one value associated with each

2In the code, an expression of the form a
+← b means that the value of a is incremented by b units.
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candidate for removal. All values are initially set to zero in line 2; line 7 adds the

contributions of the relevant users.

Given this O(n)-time function, it is trivial to implement the swap-based local search

procedure in O(mn) time per iteration: simply call findOut once for each of the

m− p candidates for insertion and pick the most profitable one. If the best profit

is positive, perform the swap, update the values of φ1 and φ2, and proceed to the

next iteration. Updating φ1 and φ2 requires O(pn) time in the worst case, but the

procedure can be made faster in practice, as mentioned in (Whitaker, 1983). Since our

implementation uses the same technique, its description is deferred to the next section

(Subsection 10.4.3.1).

10.4 AN ALTERNATIVE IMPLEMENTATION

Our implementation has some similarity with Whitaker’s, in the sense that both meth-

ods perform the same basic operations. However, the order in which they are per-

formed is different, and in our case partial results are stored in auxiliary data structures.

As we will see, with this approach we can use values computed in early iterations of

the local search procedure to speed up later ones.

10.4.1 Additional Structures

Before we present our algorithm, let us analyze Whitaker’s algorithm from a broader

perspective. Its ultimate goal is to determine the pair ( fi, fr) of facilities that maxi-

mizes profit( fi, fr). To do so, it computes gain( fi) for every candidate for insertion,

and netloss( fi, fr) for every pair of candidates. (In the description in Section 10.3,

gain is a scalar and netloss takes as input only the facility to be removed; however,

both are computed inside a function that is called for each fi, which accounts for the

additional dimension.) Implicitly, what the algorithm does is to compute profits as

profit( fi, fr) = gain( fi)−netloss( fi, fr).

Our algorithm defines gain( fi) precisely as in Whitaker’s algorithm: it represents

the total amount gained if fi is added to S, regardless of which facility is removed:

gain( fi) = ∑
u∈U

max{0,d1(u)−d(u, fi)}. (10.1)

Our method differs from Whitaker’s in the computation of netloss. While Whitaker’s

algorithm computes it explicitly, we do it in an indirect fashion. For every facility fr

in the solution, we define loss( fr) as the increase in solution value that results from

the removal of fr from the solution (assuming that no facility is inserted). This is the

cost of transferring every customer assigned to fr to its second closest facility:

loss( fr) = ∑
u:φ1(u)= fr

[d2(u)−d1(u)]. (10.2)

As defined, gain and loss are capable of determining the net effect of a single

insertion or a single deletion, but not of a swap, which is nothing but an insertion and
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a deletion that occur simultaneously. Whitaker’s algorithm can handle swaps because

it computes netloss instead of loss. To compute netloss from loss, we use yet another

function, extra( fi, fr), defined so that the following is true for all pairs ( fi, fr):

netloss( fi, fr) = loss( fr)− extra( fi, fr). (10.3)

From the pseudocode in Figure 10.1, it is clear that netloss( fi, fr) is actually defined

as

netloss( fi, fr) = ∑
u:[φ1(u)= fr ]∧
[d(u, fi)>d1(u)]

[min{d(u, fi),d2(u)}−d1(u)]. (10.4)

Substituting the values in Equations 10.2 and 10.4 into Equation 10.3, we obtain an

expression for extra:

extra( fi, fr) = ∑
u:φ1(u)= fr

[d2(u)−d1(u)]− ∑
u:[φ1(u)= fr ]∧
[d(u, fi)>d1(u)]

[min{d(u, fi),d2(u)}−d1(u)].

It is possible to simplify this expression. First, consider a user u for which min{d(u, fi),d2(u)}=
d2(u). It has no net contribution to extra: whatever is added in the first summation is

subtracted in the second. Therefore, we can write

extra( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)<d2(u)]

[d2(u)−d1(u)]− ∑
u:[φ1(u)= fr]∧

[d1(u)<d(u, fi)<d2(u)]

[d(u, fi)−d1(u)].

Note that the range of the first summation contains that of the second. We can join

both into a single summation,

extra( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)<d2(u)]

[d2(u)−d1(u)−max{0,d(u, fi)−d1(u)}],

which can be further simplified to

extra( fi, fr) = ∑
u:[φ1(u)= fr]∧
[d(u, fi)<d2(u)]

[d2(u)−max{d(u, fi),d1(u)}]. (10.5)

This is our final expression for extra. We derived it algebraically from simpler expres-

sions, but it is possible to get it directly with a bit of case analysis. This alternative

approach was used in an earlier version of our paper (Resende and Werneck, 2003).

Given the expressions of gain, loss, and extra (Equations 10.1, 10.2, and 10.5), we

can find the profit associated with each move in a very simple manner:

profit( fi, fr) = gain( fi)− loss( fr)+ extra( fi, fr). (10.6)

The interesting aspect of this decomposition of profit is that the only term that de-

pends on both the facility to be inserted and the one to be removed is extra. Moreover,

this term is always nonnegative (see Equation 10.5). This will be relevant in the im-

plementation of the local search itself, as the next section will make clear.
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function updateStructures (S,u, loss,gain,extra,φ1,φ2)
1 fr← φ1(u);

2 loss( fr)
+← [d2(u)−d1(u)];

3 forall ( fi 6∈ S) do

4 if (d(u, fi) < d2(u)) then

5 gain( fi)
+←max{0,d1(u)−d(u, fi)};

6 extra( fi, fr)
+← [d2(u)−max{d(u, fi),d1(u)}];

7 endif

8 endfor

end updateStructures

Figure 10.2 Pseudocode for updating arrays in the local search procedure

10.4.2 Local Search

Our implementation of the local search procedure assumes that all necessary values

(loss, gain, and extra) are stored in appropriate data structures: one-dimensional vec-

tors for loss and gain, and a two-dimensional matrix for extra.3 Once these structures

are computed, one can easily find the best swap in O(pm) time: just use Equation 10.6

to determine the profit for each candidate pair of facilities and pick the minimum.

To compute gain, loss, and extra, we note that every entry in these structures is a

summation over some subset of users (see Equations 10.1, 10.2, and 10.5). The contri-

bution of each user can therefore be computed independently. Function updateStructures,

shown in Figure 10.2, does exactly that. Given a user u and its two closest facilities

in solution S (given by φ1 and φ2), it adds u’s contribution to loss, gain, and extra.

The total running time of the procedure is O(m− p) = O(m), since it is essentially a

loop through all the facilities that do not belong to the solution. Given this function,

computing gain, loss, and extra from scratch is straightforward: first reset all entries

in these structures, then call updateStructures once for each user. Together, these

n calls perform precisely the summations defined in Equations 10.1, 10.2, and 10.5.

We now have all the elements necessary to build the local search procedure with

O(mn) operations. In O(pn) time, compute φ1(·) and φ2(·) for all users. In O(pm)
time, reset loss, gain, and extra. With n calls to updateStructures, each taking in

O(m) time, determine their actual values. Finally, in O(pm) time, find the best swap

using Equation 10.6.

10.4.3 Acceleration

At first, our implementation seems to be merely a complicated alternative to Whitaker’s;

after all, both have the same worst-case complexity. Furthermore, our implementation

has the clear disadvantage of requiring an O(pm)-sized matrix, whereas Θ(n + m)

3Note that gain and loss could actually share the same m-sized vector, since they are defined for disjoint

sets of facilities.
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memory positions are enough for Whitaker’s. The additional memory, however, al-

lows for significant accelerations, as this section will show.

When a facility fr is replaced by a new facility fi, certain entries in gain, loss,

extra, φ1, and φ2 become inaccurate. The straighforward way to update them for the

next local search iteration is to recompute φ1 and φ2, reset the other arrays, and then

call updateStructures again for all users.

A downside of this approach is that no information gathered in one iteration is used

in subsequent ones. As a result, unnecessary, repeated computations are bound to

occur. In fact, the actions performed by updateStructures depend only on u, φ1(u),
and φ2(u); no value is read from other structures. If φ1(u) and φ2(u) do not change

from one iteration to another, u’s contribution to gain, loss, and extra will not change

either. This means there is no need to call updateStructures again for u.

To deal with such cases, we keep track of affected users. A user u is affected if

there is a change in either φ1(u) or φ2(u) (or both) after a swap is made. Sufficient

conditions for u to be affected after a swap between fi and fr are:

1. either φ1(u) or φ2(u) is fr, the facility removed; or

2. fi (the facility inserted) is closer to u than the original φ2(u) is.

Contributions to loss, gain, and extra need only be updated for affected users. If

there happens to be few of them (which is often the case, as Section 10.6.2.1 shows)

significant gains can be obtained.

Note, however, that updating the contributions of an affected user u requires more

than a call to updateStructures. This function simply adds new contributions, so

we must first subtract the old contributions made by u. To acomplish this, we use a

function similar to updateStructures, with subtractions instead of additions.4 This

function (undoUpdateStructures) must be called for all affected users before φ1 and

φ2 are recomputed.

Figure 10.3 contains the pseudocode for the entire local search procedure, already

taking into account the observations just made. Apart from the functions already dis-

cussed, three other nontrivial ones appear in the code. Function resetStructures,

sets all entries in gain, loss, and extra to zero. Function findBestNeighbor runs

through these structures and finds the most profitable swap using Equation 10.6. It

returns which facility to remove ( fr), the one to replace it ( fi), and the profit itself

(profit). Finally, updateClosest updates φ1 and φ2, possibly using the fact that the

facility recently opened was fi and the one closed was fr (Section 10.4.3.1 explains

how this is done).

Restricting updates to affected users can result in significant speedups in the algo-

rithm, as Section 10.6.2.1 shows. There are, however, other accelerations to exploit.

The pseudocode reveals that all operations in the main loop run in linear time, with

three exceptions:

updating closeness information (calls to updateClosest);

4This function is identical to the one shown in Figure 10.2, with all occurrences of
+← replaced with

–←:

instead of incrementing values, we decrement them.
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procedure localSearch (S,φ1,φ2)
1 A←U ; /* A is the set of affected users */

2 resetStructures (gain, loss, extra);

3 while (TRUE) do

4 forall (u ∈ A) do updateStructures (S, u, gain, loss, extra, φ1, φ2);

5 ( fr, fi,profit)← findBestNeighbor (gain, loss, extra);

6 if (profit≤ 0) then break; /* no improvement, we are done */

7 A← /0;

8 forall (u ∈U) do /* find out which users will be affected */

9 if ((φ1(u) = fr) or (φ2(u) = fr) or (d(u, fi) < d(u,φ2(u)))) then

10 A← A∪{u}
11 endif

12 endforall;

13 forall (u ∈ A) do undoUpdateStructures (S, u, gain, loss, extra, φ1, φ2);

14 insert(S, fi);
15 remove(S, fr);
16 updateClosest(S, fi, fr,φ1,φ2);
17 endwhile

end localSearch

Figure 10.3 Pseudocode for the local search procedure

finding the best swap to be made (calls to findBestNeighbor);

updating the auxiliary data structures (calls to updateStructures and undoUpdateStructures).

These are the potential bottlenecks of the algorithm, since they all run in quadratic

time in the worst case. The next three subsections analyze how each of them can be

dealt with.

10.4.3.1 Closeness. Updating closeness information, in our experience, has

proven to be a relatively cheap operation. Deciding whether the newly inserted fa-

cility fi becomes either the closest or the second closest facility to each user is trivial

and can be done in O(n) total time. A more costly operation is updating closeness in-

formation for customers who had fr (the facility removed) as either the closest or the

second closest element. With a straighforward implementation, updating each such

affected user takes O(p) time. Since there are usually few of them, the total time spent

tends to be a small fraction of the entire local search procedure.

The whole update procedure could actually be performed in O(n log p) worst-case

time. It suffices to keep, for each user u, the set of open facilities in a heap with

priorities given by their distances to u. Since this solution requires O(np) additional

memory positions and is not significantly faster, we opted for using the straighforward

implementation in our code.

It is also important to mention that finding the set of closest and second closest ele-

ments from scratch is itself a cheap operation in some settings, even in the worst case.

For example, when distances between customers and facilities are given by shortest
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paths on an underlying graph, this can be accomplished in Õ(|E|) time (Thorup, 2001),

where |E| is the number of edges in the graph.5

In practice, the generic approach above seems to be good enough. Section 10.6.2.5

shows that there is not much to gain from accelerating this part of the algorithm; to-

gether, other procedures already dominate the running time of the local search. We

therefore do not use specialized routines in this paper; we always assume we are deal-

ing with arbitrary distance matrices.

10.4.3.2 Best Neighbor. Given a solution, the straighforward way to find the

most profitable swap is to compute profit( fi, fr) (as defined in Equation 10.6) for all

candidate pairs of facilities and pick the best. Since each profit computation takes

constant time and there are p(m− p) potential swaps, the entire procedure requires

Θ(pm) operations. In practice, however, the best move can be found in less time.

It is convenient to think of extra( fi, fr) as a measure of the interaction between

the neighborhoods of fr and fi. After all, Equation 10.5 shows that only users that

have fr as their current closest facility and are also close to fi (i.e., have fi closer than

the second closest open facility) contribute to extra( fi, fr). In particular, if there are

no users in this situation, extra( fi, fr) will be zero. Section 10.6.2.2 shows that this

occurs rather frequently in practice, especially when p is large (and hence the average

number of users assigned to each fr is small).

Therefore, instead of storing extra as a full matrix, one may consider representing

only nonzero elements explicitly: each row becomes a linked list sorted by column

number. A drawback of this sparse representation is the impossibility to make random

accesses in O(1) time. Fortunately, this is not necessary for our purposes. All three

functions that access the matrix (updateStructures, undoUpdateStructures, and

bestNeighbor) can be implemented so as to go through each row sequentially.

In particular, consider the implementation of bestNeighbor. First, it determines

the facility f ∗i that maximizes gain( fi) and the facility f ∗r that minimizes loss( fr).
Since all values in extra are nonnegative, the pair ( f ∗i , f ∗r ) is at least as profitable as

any pair ( fi, fr) for which extra( fi, fr) is zero. Then, the procedure computes the exact

profits (given by Equation 10.6) for all nonzero elements in extra.

The whole procedure takes O(m+λpm) time, where λ is the fraction of pairs whose

extra value is nonzero. As already mentioned, this value tends to be smaller as p

increases, thus making the algorithm not only faster, but also more memory-efficient

(when compared to the “full matrix” representation).

10.4.3.3 Updates. As we have seen, keeping track of affected users can reduce

the number of calls to updateStructures. We now study how to reduce the time

spent in each of these calls.

Consider the pseudocode in Figure 10.2. Line 5 represents a loop through all m− p

facilities outside the solution, but line 6 shows that we can actually restrict ourselves to

facilities that are closer to u than φ2(u) is. This is often a small subset of the facilities,

especially when p is large.

5The Õ(·) notation hides polylogarithmic terms.



270 AN INTRODUCTION TO GRASP

This suggests a preprocessing step that builds, for each user u, a list of all facilities

sorted by increasing distance to u. During the local search, whenever we need the set

of facilities whose distance to u is less than d2(u), we just take the appropriate prefix

of the precomputed list, potentially with much fewer than m− p elements.

Building these lists takes O(nm logm) time, but it is done only once, not in every it-

eration of the local search procedure. This is true even if local search is applied several

times within a metaheuristic (such as in Hansen and Mladenović (1997); Resende and

Werneck (2003); Rosing and ReVelle (1997)): a single preprocessing step is enough.

A more serious drawback of this approach is memory usage. Keeping n lists of size

m in memory requires Θ(mn) space, which may be prohibitive. An alternative is to

keep only relatively small prefixes, not the full list. They would act as a cache: when

d2(u) is small enough, we just take a prefix of the candidate list; when d2(u) is larger

than the largest distance represented, we explicitly look at all possible neighbors (each

in constant time).

In some circumstances, the “cached” version may be faster than the “full” version

of the algorithm, since preprocessing is cheaper. After all, instead of creating sorted

lists of size m, we create smaller ones of size k (for some k < m). Each list can be

created in O(m + k logk) time: first we find the k smallest elements among all m in

O(m) time (Cormen et al., 2001), then we sort them in O(k logk) time. For small

values of k, this is an asymptotic improvement over the O(m logm) time required (per

list) in the “full” case.

10.4.3.4 The Reordering Problem. There is a slight incompatibility be-

tween the accelerations proposed in Sections 10.4.3.2 and 10.4.3.3. On the one hand,

the sparse matrix data structure proposed in Section 10.4.3.2 guarantees efficient queries

only when each row is accessed sequentially by column number (facility label). Sec-

tion 10.4.3.3, on the other hand, assumes that facilites are accessed in nondecreasing

order of distance from the user. Functions updateStructures and undoUpdateStructures

use both data structures: they take a list of facilities sorted by distance, but must pro-

cess them in nondecreasing order of label. We need to make these two operations

compatible.

The simplest solution is to take the list of facilities sorted by distance and sort it

again by label. If the list has size k, this takes O(k logk) time. In the worst case k

is O(m), so this introduces an extra logm factor in the complexity of the algorithm.

In practice, however, k is rather small, and the overhead hardly noticeable. In fact,

we used this approach in a preliminary version of our paper (Resende and Werneck,

2003).

Even so, one would like to do better. Recall that the original list is actually a prefix

of the list of all facilities (sorted by distance). Even though the prefix varies in size,

the underlying sorted list does not: it is a fixed permutation of facility labels. This

means we need to solve the following generic problem:

Let π be a fixed permutation of the labels {1,2, . . .,m}, and let πk be the size-k

prefix of π, for 1≤ k ≤ n (πn = π, by definition). Given any k, sort πk by label in

O(k) time. At most O(m) preprocessing time is allowed.
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To solve this, we use an algorithm that mimics insertion sort on a list, but takes

advice from an “oracle” built during preprocessing. Assume we need to sort πk, for

some k. One way to do it is to take each element of πk and insert it into a new list,

ordered by label. With standard insertion sort, this would take O(k2) time. However,

if we knew in advance where to insert each element, the procedure would take O(k)
time. The oracle will give us exactly that.

Let π(i) be the i-th element of π. We define pred(i) to be the predecessor of π(i),
the element after which π(i) should be inserted during the algoritm above. The oracle

will give us pred(i) for every i.

The values of pred(i) are set in the preprocessing step. Initially, it creates an aux-

iliary doubly-linked list L containing 0,1,2, . . . ,m, in this order (element 0 will act

as a sentinel). This can be trivially done in O(m) time. Then, it removes elements

from L one by one in reverse order with respect to π. In other words, the first element

removed from L is π(m), then π(m−1), and so on, until π(1) is removed; in the end,

only 0 (the sentinel) will remain in L. Upon removing element π(i) from L, the algo-

rithm sets pred(i) to be the predecessor of π(i) (in L itself) at that particular moment.

This procedure takes O(m) time for each of the n lists.

Note that this procedure is in fact a simulation of insertion sort, but in reverse order.

List L originally has all the elements of πm; after one removal, we are left with πm−1,

and so on. At all times, L is sorted by label; if it has size k, it represents what the

sequence looks like after the k-th element is inserted during insertion sort.

Given all the pred(·) values, sorting πk is simple. We start with a list L′ containing

only a sentinel (0); it can be singly-linked, with forward pointers only. We then access

the first i elements of π (following π’s own order), inserting each element π(i) into L′

right after pred(i). Eventually, L′ will contain all the elements of π(k) sorted by label,

as desired. The running time is only O(k).

10.5 GENERALIZATION

Section 10.4 presented our algorithm as a local search procedure for the p-median

problem. In fact, with slight modifications, it can also be applied to the facility location

problem. Moreover, the ideas suggested here are not limited to local search: they can

also be used to accelerate other important routines, such as path-relinking and tabu

search. This section details the adaptations that must be made in each case.

10.5.1 Facility Location

The input of the facility location problem consists of a set of users U , a set of potential

facilities F , a distance function d : U×F→R+, and a setup cost function c : F→R+.

The first three parameters are the same as in the p-median problem. The difference is

that here the number of facilities to open is not fixed; there is, instead, a cost associated

with opening each facilty, the setup cost. The more facilities are opened, the greater the

setup cost will be. The objective is to minimize the total cost of serving all customers,

considering the sum of the setup and service cost (distances).

Any valid solution to the p-median problem is a valid solution to the facility lo-

cation problem. To use the local search procedure suggested here for this problem,
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we have to adjust the algorithm to compute the cost function correctly. As it is, the

algorithm computes the service costs correctly, but assumes that the setup costs are

zero. But including them is trivial: the service cost depends only on whether a facil-

ity is open or not; it does not depend on other facilities. Consider a facility fi that

is not in the solution; when evaluating whether it should be inserted or not, we must

account for the fact that its setup cost will increase the solution value by c( fi). Sim-

ilarly, simply closing a facility fr that belongs to the solution saves us c( fr). To take

these values into account, if suffices to initialize gain and loss with the symmetric of

the corresponding setup costs, and not with zero as we do with the p-median problem.

In other words, we initialize gain( fi) with −c( fi), and loss( fr) with −c( fr).
This is enough to implement a swap-based local search for the facility location

problem. Note, however, that there is no reason to limit ourselves to swaps—we could

allow individual insertions and deletions as well. This is not possible with the p-

median problem because the number of facilities is fixed, but there is no such con-

straint in the facility location problem.

No major change to the algorithm is necessary to support individual insertions and

deletions. As already mentioned, gain( fi) is exactly the amount that would be saved if

facility fi were inserted into the solution (with no corresponding removal). Similarly,

loss( fr) represents how much would be lost if the facility were removed (with no

corresponding insertion). Positive values of gain and negative values of loss indicate

that the corresponding move is worth making. The greater the absolute value, the

better, and we can find the maximum in O(m) time. Furthermore, we can continue

to compute the costs associated with swaps if we wish to. In every iteration of the

local search, we could therefore choose the best move among all swaps, insertions,

and deletions. So we essentially gain the ability to make insertions and deletions with

barely any changes to the algorithm.

We observe that the idea of a swap-based local search for the facility location prob-

lem is, of course, not new; it was first suggested in the literature by Kuehn and Ham-

burger (1963).

10.5.2 Other Applications

It is possible to adapt the algorithm to perform other routines, not only local search.

(In this discussion, we will always deal with the p-median problem itself, although the

algorithms suggested here also apply to facility location with minor adaptations.)

Consider the path-relinking operation (Glover, 1996; Glover et al., 2000; Laguna

and Martı́, 1999; Resende and Ribeiro, 2005). It takes two solutions as inputs, S1

and S2, and gradually transforms the first (the starting solution) into the second (the

guiding solution). It does so by swapping out facilities that are in S1 \S2 and swapping

in facilities from S2 \S1. In each iteration of the algorithm, the best available swap is

made. The goal of this procedure is to discover some promising solutions on the path

from S1 to S2. The precise use of these solutions varies depending on the metaheuristic

using this procedure.

This function is remarkably similar to the swap-based local search procedure. Both

are based on the same kind of move (swaps), and both make the cheapest move on

each round. There are two main differences:
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1. Candidate moves: In path-relinking, only a subset of the facilities in the solution

are candidates for removal, and only a subset of those outside the solution are

candidates for insertion—and these subsets change (i.e., get smaller) over time,

as the algorithm advances into the path.

2. Stopping criterion: Whereas the local search procedure stops as soon as a lo-

cal minimum is found, non-improving moves are allowed in path-relinking: it

continues until the guiding solution is reached.

As long as we take these differences into account, the implementation of the local

search procedure can also handle path-relinking. We need to define two functions: one

to return the appropriate set of candidates for insertion and deletion, another to check

if the move chosen by bestNeighbor should be made or not (i.e., to determine if the

stopping criterion was met). In Section 10.4, these functions were defined implicitly:

the candidates for insertion are all facilities outside the solution, the candidates for

deletion are those in the solution, and the stopping criterion consists of testing whether

the profit associated with a move is positive. Defining them explicitly is trivial for both

local search and path-relinking.

In fact, by redefining these two functions appropriately, we can implement other

routines, such as a simple version of tabu search. At all times, we could have two

lists: one for elements that are forbidden to be inserted into the solution, another for

elements that cannot be removed. The candidate lists would contain the remaining

facilities, and the stopping criterion could be any one used for tabu search (number of

iterations, for instance).

10.6 EMPIRICAL ANALYSIS

This section has two main goals. One is to present some empirical data to back up

some of the claims we have made to guide our search for a faster algorithm. The

other goal is to demonstrate that the algorithms suggested here are indeed faster than

previously existing implementations of the local search procedure for the p-median

problem. To keep the analysis focused, we will not deal with the extensions proposed

in Section 10.5.

10.6.1 Instances and Methodology

We tested our algorithm on four classes of problems. Three of them, TSP, ORLIB and

ODM, have been previously studied in the literature for the p-median problem. The

fourth, RW, is introduced here as a set of instances that benefit less from our methods.

Class TSP contains three sets of points on the plane (with cardinality 1400, 3038,

and 5934), originally used in the context of the traveling salesman problem (Reinelt,

1991). In the p-median problem, each point is both a user to be served and a potential

facility, and distances are Euclidean. Following Hansen et al. (2001), we tested several

values of p for each instance, ranging from 10 to approximately n/3, when comparing

our algorithm to Whitaker’s.

Class ORLIB, originally introduced in Beasley (1985), contains 40 graphs with 100

to 900 nodes, each with a suggested value of p (ranging from 5 to 200). Each node
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is both a user and a potential facility, and distances are given by shortest paths in the

graph.

The instances in class ODM, proposed by Briant and Naddef (2004), model the

optimal diversity management problem. In this problem, one must assemble a certain

product that appears in a large number of configurations, each defined by the presence

or absence of a certain number of features. Briant and Naddef give as an example the

electrical wiring in cars. Assuming that setting up an assembly line for every possible

configuration is not economically viable, only p configurations are actually produced.

Requests for other configurations will be fulfilled by the least costly alternative that

is compatible (i.e., contains all the necessary features) among those produced. The

goal is to decide which p configurations to produce, given the demand and the unit

cost for each existing configuration. To model this as a p-median problem, we make

each configuration both a user and a facility. The cost of serving user u with facility

f is the demand of u times the unit cost of f , as long as configuration f is compatible

with configuration u; otherwise, the cost is infinity. We tested our algorithm on the

four instances cited in Briant and Naddef (2004), with 535, 1284, 3773, and 5535

configurations. As in Briant and Naddef (2004), we tested values of p from 5 to 20 in

each case.6

In class RW, each instance is a square matrix in which entry (u, f ) is an integer

taken uniformly at random from the interval [1,n] and represents the cost of assigning

user u to facility f . Four values of n were tested (100, 250, 500, and 1000), each with

values of p ranging from 10 to n/2, totaling 27 combinations.7 The random number

generator we used when creating these instances (and in the algorithm itself) was

Matsumoto and Nishimura’s Mersenne Twister (Matsumoto and Nishimura, 1998).

Recall that the algorithms tested here use the distance oracle model, which assumes

that retrieving the distance between any user and any facility takes O(1) time. This

can be trivially achieved for intances in RW (with a table look-up) and TSP (from

the Euclidean coordinates). For ORLIB, we compute the all-pairs shortest paths in

advance, as it is usually done in the literature (Hansen and Mladenović, 1997; Hansen

et al., 2001). These computations are not included in the running times reported in this

section, since they are the same for all methods (including Whitaker’s). For ODM, to

compute the distance between a user and a facility we need to know whether the user is

covered by that facility or not. To answer this question in O(1) time, we precompute an

n×m boolean incidence matrix with this information. The same expected complexity

could be achieved with a hash table, which potentially uses less space but has higher

overhead for accessing each element. The time to build the incidence matrix is also

not included in the times reported here.

All tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000

processors (with each execution of the program limited to one processor) and 7.6 GB

of memory. All algorithms were coded in C++ and compiled with the SGI MIPSpro

6In Briant and Naddef (2004), the authors do not show results for p greater than 16 in the instance with

3773 nodes. We include results for 17 to 20 as well, for symmetry.
7More precisely: for n = 100, we used p = 10, 20, 30, 40, and 50; for n = 250, p = 10, 25, 50, 75, 100, and

125; for n = 500, p = 10, 25, 50, 100, 150, 200, and 250; and for n = 1000, p = 10, 25, 50, 75, 100, 200,

300, 400, and 500.
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C++ compiler (v. 7.30) with flags -O3 -OPT:Olimit=6586. The source code is avail-

able from the authors upon request, as are the RW instances.

All running times shown in this paper are CPU times, measured with the getrusage

function, whose precision is 1/60 second. In some cases, actual running times were too

small for this precision, so each algorithm was repeatedly run for at least 5 seconds.

Overall times were measured, and averages reported here.

When comparing different local search methods, we applied them to the same ini-

tial solutions. These were obtained by two different algorithms. The first is greedy

(Whitaker, 1983): starting from an empty solution, we insert one facility at a time,

always picking the one that reduces the solution cost the most. The second algorithm

is random: we just pick a set of p facilities uniformly at random as the initial solution.

All tests with random solutions were repeated five times for each method, using five

different random seeds.

Running times mentioned in this paper refer to the local search only, and they do

not include the cost of building initial solution (which is the same for all methods).

10.6.2 Results

This section presents an experimental comparison of several variants of our imple-

mentation and Whitaker’s method, fast interchange (we will use FI for short). We

implemented FI based on the pseudocode in Hansen and Mladenović (1997) (obtain-

ing comparable running times); the most important function was presented here in

Figure 10.1.

10.6.2.1 Basic Algorithm (FM). We start with the most basic version of our

implementation, in which extra is represented as a full (non-sparse) matrix. This ver-

sion (called FM, for full matrix) already incorporates some acceleration, since calls to

updateStructures are limited to affected users only. However, it does not include

the accelerations suggested in Sections 10.4.3.2 (sparse matrix) and 10.4.3.3 (prepro-

cessing).

To demonstrate that keeping track of affected users can lead to significant speedups,

we devised the following experiment. We took one instance from each class: odm1284

(class ODM, 1284 nodes), pmed40 (class ORLIB, 900 nodes), fl1400 (class TSP, 1400

nodes), and rw1000 (class RW, 1000 nodes). Note that they all have a similar number

of nodes. Each instance was tested with 99 different values of p, from 1% to 99% of m.

Since for very large values of p the greedy algorithm almost always find local optima

(thus rendering the local search useless), the initial solutions used in this experiment

are random.

For each run, we computed how many calls to updateStructures and to undoUpdateStructures

would have been made if we were not keeping track of affected users, and how many

calls were actually made (in both cases, we did not count calls at the start of the first it-

eration, which is just the initialization). The ratio between these values, in percentage

terms, is shown in Figure 10.4 (each point is the average of five runs).

It is clear that the average number of affected users is only a fraction of the total

number of users, even for small values of p, and drops significantly as the number of

facilities to open increases. In all four instances, the average number of affected users
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Figure 10.4 Percentage of users affected during a run of the local search as a function of

p (the percentage is taken over the set of all possible users that could have been affected,

considering all iterations). One instance in each class is represented. Vertical axis is in

logarithmic scale.

eventually drops below 1% of n. By exploiting this fact, our implementation definitely

has the potential to be faster than FI.

To test if this is indeed the case in practice, we ran an experiment with all instances

from the four classes, with the values of p listed in Section 10.6.1. We used both

greedy and random initial solutions. For each instance, we computed the speedup

obtained by our method when compared to FI, i.e., the ratio between the running times

of FI and FM. Table 10.1 shows the best, the (geometric) mean, and the worst speedups

thus obtained considering all instances in each class.8 Values greater than 1.0 favor

our method, FM.

The table shows that even the basic acceleration scheme achieves speedups of up

to more than 40. There are cases, however, in which FM is actually slower than

Whitaker’s method. This happens for instances in which the local search procedure

performs very few iterations, insufficent to ammortize the overhead of using a matrix.

This is more common with the greedy constructive heuristic, which is more likely to

find solutions that are close to being local optima, particularly when p is very large or

8Since we are dealing with ratios, geometric (rather than arithmetic) means seem to be a more sensible

choice; after all, if a method takes twice as much time for 50% of the instances and half as much for the

other 50%, it should be considered roughly equivalent to the other method. Geometric means reflect that,

whereas arithmetic means do not.
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Table 10.1 Speedup obtained by FM (full matrix, no preprocessing) over Whitaker’s FI.

SOLUTION CLASS BEST MEAN WORST

random ODM 41.66 12.67 2.95

ORLIB 21.19 5.76 1.64

RW 20.96 7.62 2.51

TSP 28.92 11.29 1.95

greedy ODM 20.10 4.49 0.89

ORLIB 14.20 3.76 1.07

RW 13.99 5.50 1.47

TSP 31.96 10.72 1.96

very small (the worst case among all instances happened with odm535 and p = 6). On

average, however, FM has proven to be from three to more than ten times faster than

FI.

10.6.2.2 Sparse Matrix (SM). We now analyze a second variant of our method.

Instead of using a full matrix to represent extra, we use a sparse matrix, as described in

Section 10.4.3.2. We call this variant SM. Recall that our rationale for using a sparse

matrix was that the number of nonzero elements in the extra matrix is small. Fig-

ure 10.5 suggests that this is indeed true. For each of the four representative instances

and each value of p (from 1% to 99% of m), it shows what fraction of the elements

are nonzero (considering all iterations of the local search). The algorithm was run five

times for each value of p, from five random solutions.

Although the percentage approaches 100% when the number of facilities to open

is small, it drops very fast when p increases, approaching 0.1%. Note that rw1000,

which is random, tends to have significantly more nonzeros for small values of p than

other instances.

It is clear that the algorithm has a lot to benefit from representing only the nonzero

elements of extra. However, the sparse matrix representation is much more involved

than the array-based one, so some overhead is to be expected. Does it really reduce

the running time of the algorithm in practice?

Table 10.2 shows that the answer to this question is “yes” most of the time. It

represents the results obtained from all instances in the four classes, and contains

the best, mean, and worst speedups obtained by SM over FI, for both types of initial

solution (random and greedy).

As expected, SM has proven to be even faster than FM on average and in the best

case (especially for the large instances with large values of p in the RW and TSP

classes). However, some bad cases become slightly worse. This happens mostly for

instances with small values of p: with a relatively large number of nonzero elements

in the matrix, a sparse representation is not the best choice.
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Figure 10.5 Percentage of entries in the extra matrix that have nonzero values as a

function of p. One instance of each class is represented. Vertical axis is in logarithmic scale.

Table 10.2 Speedup obtained by SM (sparse matrix, no preprocessing) over Whitaker’s

FI.

SOLUTION CLASS BEST MEAN WORST

random ODM 26.41 9.28 2.49

ORLIB 46.88 6.66 1.19

RW 114.36 12.47 1.95

TSP 142.84 26.28 1.80

greedy ODM 21.62 5.21 0.99

ORLIB 24.88 4.36 1.00

RW 49.35 8.36 1.22

TSP 132.06 24.03 1.87

10.6.2.3 Sparse Matrix with Preprocessing (SMP). The last accelera-

tion we study is the preprocessing step (Section 10.4.3.3), in which all potential fa-

cilities are sorted according to their distances from each of the users. We call this

variant SMP, for sparse matrix with preprocessing. The goal of the acceleration is to

avoid looping through all m facilities in each call to function updateStructures (and

undoUpdateStructures). We just have to find the appropriate prefix of the ordered

list.
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Figure 10.6 shows the average size of the prefixes (as a percentage of m) that are

actually checked by the algorithm, as a function of p (which varies from 1% to 99%

of n). Initial solutions are random in this experiment.

 0.01

 0.1

 1

 10

 100

99806040201

av
er

ag
e 

pr
ef

ix
 s

iz
e 

(p
er

ce
nt

)

facilities to open (percent)

odm1284
pmed40
rw1000
fl1400

Figure 10.6 Percentage of facilities actually visited when updating structures, for several

values of p. One instance of each class is represented. Vertical axis is in logarithmic scale.

As claimed before, the average prefix size is only tiny a fraction of m, for all but

very small values of p. Considering only those prefixes instead of all facilities can

potentially accelerate the local search. Of course, this does not come for free: the cost

of preprocessing must be accounted for.

To determine the overall effect of these two conflicting factors, we tested SMP on

all instances of our set. Table 10.3 shows the best, mean, and worst speedups obtained

with respect to FI. Columns 3, 4, and 5 consider running times of the local search

procedure only; columns 6, 7, and 8 also include preprocessing times.

The table shows that the entire SMP procedure (including preprocessing) is on av-

erage still much faster than Whitaker’s FI, but often slightly slower than the other

variants studied in this paper (FM and SM). However, as already mentioned, meta-

heuristics often need to run the local search procedure several times, starting from

different solutions. Since preprocessing is run only once, its cost can be quickly amor-

tized. Columns 3, 4, and 5 of the table show that once this happens, SMP can achieve

truly remarkable speedups with respect not only to FI, but also to other variants studied

in this paper. In the best case (instance rl5934 with p = 800), it is roughly 800 times

faster than FI.

To evaluate how fast the amortization is, consider what would happen in a simple

multistart procedure. In each iteration, this algorithm generates a random solution and
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Table 10.3 Speedup obtained by SMP (sparse matrix, full preprocessing) over Whitaker’s

FI.

SOLUTION CLASS LOCAL SEARCH ONLY INCLUDING PREPROCESSING

BEST MEAN WORST BEST MEAN WORST

random ODM 46.18 13.77 3.42 8.26 3.00 0.87

ORLIB 77.44 8.75 1.28 22.42 3.40 0.66

RW 169.59 17.51 1.92 48.37 6.26 1.05

TSP 812.80 186.81 4.63 128.03 31.92 1.89

greedy ODM 33.16 7.21 1.33 3.30 0.67 0.15

ORLIB 43.26 6.40 1.37 6.86 1.10 0.21

RW 91.05 12.59 1.34 9.98 2.14 0.20

TSP 695.57 161.86 5.11 71.42 18.92 1.45
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Figure 10.7 Speedup of a multistart procedure implemented with SMP with respect to

those an implementation using Whitaker’s method (FI).

applies local search to it; the best solution found over all iterations is picked. We

can predict the behavior of such a method (as far as running times are concerned)

from the data used to build Table 10.3. After only one iteration, the mean speedups

obtained when SMP is used instead of FI (Whitaker’s method) will be those shown

in the seventh column of the table. As the number of iterations increases, the mean
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speedups will gradually converge to the values in the fourth column. Figure 10.7

shows exactly what happens as a function of the number of iterations. After only

ten iterations, the speedups are already close to those shown in the fourth column of

Table 10.3: 10.1 for ODM, 7.5 for ORLIB, 14.7 for RW, and 124.0 for TSP.

Apart from the preprocessing time, another important downside of strategy SMP is

memory usage: an array of size m is kept for each of the n customers. As mentioned

in Section 10.4.3.3, one can use less memory by storing a vector with only a fraction

of the m facilities for each customer. Table 10.4 shows what happens when we restrict

the number of elements per vector to 5m/p; we call this version of the local search

SM5. In general, SMq is an algorithm that associates a list with qm/p facilities with

each user. We use m/p as a parameter because this correlates well with the number of

facilities each user has to look at to find an open one.

Table 10.4 Speedup obtained by SM5 (sparse matrix, with preprocessing, cache size

5p/m) over Whitaker’s FI.

SOLUTION CLASS LOCAL SEARCH ONLY INCLUDING PREPROCESSING

BEST MEAN WORST BEST MEAN WORST

random ODM 46.12 13.68 3.42 14.48 4.04 0.86

ORLIB 77.42 8.81 1.29 40.14 4.52 0.66

RW 166.51 17.44 2.01 93.08 9.57 1.13

TSP 774.96 176.42 4.49 283.71 62.97 2.20

greedy ODM 32.65 7.16 1.30 6.23 0.96 0.14

ORLIB 44.31 6.41 1.33 14.51 1.61 0.20

RW 92.93 12.62 1.34 24.73 3.87 0.22

TSP 747.72 160.93 5.07 177.62 40.65 1.73

Tables 10.3 and 10.4 show that using restricted lists (as opposed to m-sized ones)

can make the algorithm significantly faster when preprocessing times are considered.

This is true especially for large instances. On average, SM5 is roughly twice as fast

as SMP. The gains from a faster preprocessing more than offset the potential extra

time incurred during the actual local search. In fact, the table also shows that the time

spent on the main loop is barely distinguishable from SMP; the partial lists are almost

always enough for the algorithm. Local search within SM5 can actually be slightly

faster than within SMP. The possible cause here are cache effects; since less data is

kept in memory, there is more locality to be exploited by the hardware.

10.6.2.4 Overall Comparison. To get a better understanding of the perfor-

mance of all variants proposed in this paper, we study in detail the largest instance

in our set (rl5934, with almost 6000 customers and facilities). Figures 10.8 and 10.9

show the running times of several methods (FI, FM, SM, SM1, SM2, SM3, SM5, and

SMP) for different values of p. Times are averages of five runs from different random

solutions (the same set of initial solutions was given to each method). The first figure
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considers the local search only, whereas the second accounts for preprocessing times

as well.
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Figure 10.8 Instance rl5934: dependency of running times on p for different methods.

Times are in logarithmic scale and do not include preprocessing.

The figures show that for some methods, such as Whitaker’s FI and the full-matrix

variant of our implementation (FM), an increase in p leads to greater running times (al-

though our method is still 10 times faster for p = 1500). For all other methods, which

use sparse matrices, the time spent per iteration tends to decrease as p increases: the

effect of swaps becomes more local, with fewer users affected and fewer neighboring

facilities visited in each call to updateStructures. This latter effect explains why

keeping even a relatively small list of neighboring facilities for each user seems to be

worthwhile. The curves for variants SMP and SM5 are practically indistinguishable in

Figure 10.8, and both are much faster than SM (which keeps no list at all).

As a final note, we observe that, because all methods discussed here implement the

same algorithm, the number of iterations does not depend on the method itself. It does,

however, depend on the value of p: in general, these two have a positive correlation

for p ≤ m/2, and negative from this point on, as Figure 10.10 shows. This correlates

well with the total number of solutions: there are
(

m
p

)

solutions of size p, and this

expression is maximized for p = m/2.

10.6.2.5 Profile. The results for SMP show that the modifications proposed in

this paper can, together, result in significant acceleration. How much further can we

go? Can additional modifications to the algorithm make it even faster?



FAST LOCAL SEARCH FOR LOCATION PROBLEMS 283

16384

8192

4096

2048

1024

512

256

128

64

32

16

8

4

2

1
 1500 1200 900 600 300 10

tim
e 

(s
ec

on
ds

)

facilities to open

FI
FM
SM

SM1
SM2
SM3
SM5
SMP

Figure 10.9 Instance rl5934: dependency of running times on p for different methods.

Times are in logarithmic scale and include preprocessing where applicable.

Table 10.5 Execution profile for method SMP: percentage of time spent on each of the

potential bottlenecks (only the largest instance in each class is shown). Preprocessing times

are not considered.

INSTANCE INIT. UPDATE UPDATE BEST OTHER

NAME n, m p CLOSEST STRUCT. NEIGH. OPER.

odm5535 5535 56 17.7 5.9 62.3 7.8 6.2

1384 6.4 19.7 4.5 30.9 38.5

pmed40 900 9 6.7 1.7 89.8 0.6 1.2

225 13.4 29.4 13.5 11.2 32.5

rw1000 1000 10 3.7 1.4 93.7 0.5 0.7

250 12.1 26.7 15.1 14.5 31.6

rl5934 5934 60 12.2 5.7 74.0 5.0 3.1

1484 10.7 41.0 4.6 22.7 21.0

These are open questions. However, we argue that small modifications are unlikely

to lead to major gains, particularly when p is large. To support this claim, we de-

vised the following experiment. For each class, we took the instance with the greatest

number of users (n) and ran SMP with two values of p (0.01n and 0.25n), from five

random solutions in each case. Table 10.5 shows the percentage of the total local
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Figure 10.10 Number of iterations of the local search procedure as a function of p,

starting from random solutions. One instance from each class is represented.

search time (excluding preprocessing) spent in each section of the algorithm: initial-

ization (which includes allocating the data structures), calls to updateClosest, calls

to updateStructures (and undoUpdateStructures), calls to bestNeighbor, and

other operations (such as determining which users are affected).

Note that calls to updateStructures and undoUpdateStructures dominate the

running time for small values of p. This is to be expected: these functions run in

O(mn) time, while bestNeighbor and updateClosest run in O(pn) and O(pm) op-

erations, respectively. When p increases, the running time for updateStructures and

undoUpdateStructures actually decreases, since a larger fraction of the elements in

the extra matrix will be zero (and therefore will not need to accessed). As a result,

no component took more than 50% of the running time for p = 0.25n. In this case,

even if we could make a component run in virtually no time, the algorithm would be

at most twice as fast. A decent speedup, but not at all comparable to 800, the factor

we were able to achieve in this paper. To obtain better factors, it seems necessary to

work on all bottlenecks at once, or to come up with a different strategy altogether.

10.7 CONCLUDING REMARKS

We have presented a new implementation of the swap-based local search for the p-

median problem introduced by Teitz and Bart. We combine several techniques (using

a matrix to store partial results, a compressed representation for this matrix, and pre-

processing) to obtain speedups of up to three orders of magnitude with respect to the

best previously known implementation, due to Whitaker. Our implementation is es-

pecially well suited to relatively large instances with moderate to large values of p
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and, due to the preprocessing step, to situations in which the local search procedure

is run several times for the same instance (such as within a metaheuristic). When

the local search has very few iterations, Whitaker’s method can still be faster if the

preprocessing time is considered.

An important test to the algorithms proposed here would be to apply them within

more sophisticated metaheuristics. We have done that in Resende and Werneck (2004).

That paper describes a multistart heuristic for the p-median problem that relies heav-

ily on local search and path-relinking, both implemented according to the guidelines

detailed in this paper. The algorithm has proved to be very effective in practice, ob-

taining remarkably good results (in terms of running times and solution quality) when

compared to other methods in the literature.

A possible extension of our work presented would be to apply the methods and

ideas presented here to problems beyond p-median and facility location. Swap-based

local search is a natural procedure to be performed on problems such as maximum set

cover, for example.
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Abstract: Given n customers and a set F of m potential facilities, the p-median prob-

lem consists in finding a subset of F with p facilities such that the cost of serving all

customers is minimized. This is a well-known NP-complete problem with important

applications in location science and classification (clustering). We present a multistart

hybrid heuristic that combines elements of several traditional metaheuristics to find near-

optimal solutions to this problem. Empirical results on instances from the literature attest

the robustness of the algorithm, which performs at least as well as other methods, and

often better in terms of both running time and solution quality. In all cases the solutions

obtained by our method were within 0.1% of the best known upper bounds.

Keywords: p-median, hybrid heuristic, GRASP, path-relinking, metaheuristics, local

search.

11.1 INTRODUCTION

The p-median problem is defined as follows. Given a set F of m potential facilities, a

set U of n users (or customers), a distance function d : U×F→R , and a constant p≤
m, determine which p facilities to open so as to minimize the sum of the distances from

each user to its closest open facility. It is a well-known NP-hard problem (Kariv and

Hakimi, 1979), with numerous applications in location science (Tansel et al., 1983)

and classification (clustering) (Rao, 1971; Vinod, 1969).
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Several algorithms for the p-median problem have been proposed, including ex-

act methods based on linear programming (Beasley, 1985; Cornuejols et al., 1977;

Galvão, 1980; Rosing et al., 1979), constructive algorithms (Cornuejols et al., 1977;

Kuehn and Hamburger, 1963; Taillard, 2003; Whitaker, 1983), dual-based algorithms

(Galvão, 1980; Nauss and Markland, 1981), and local search procedures (Goodchild

and Noronha, 1983; Hodgson, 1978; Maranzana, 1964; Resende and Werneck, 2003;

Rosing, 1997; Taillard, 2003; Teitz and Bart, 1968; Whitaker, 1983). Recently, meta-

heuristics capable of obtaining solutions of near-optimal quality have been devised.

Tabu search procedures have been proposed by Voß (1996) and Rolland et al. (1996).

The latter method was compared by Rosing et al. (1998) with the heuristic concen-

tration method (Rosing and ReVelle, 1997), which obtained comparatively superior

results. Hansen and Mladenović (1997) proposed a VNS (variable neighborhood

search) for the problem, later parallelized by Garcı́a-López et al. (2002). A variation

of this method, VNDS (variable neighborhood decomposition search), was suggested

by Hansen et al. (2001). Heuristics based on linear programming were studied by

du Merle et al. (1999) and by Senne and Lorena (2000) and Senne and Lorena (2002).

In this chapter, we propose a hybrid heuristic for the p-median problem. In essence,

it is a multistart iterative method, each iteration of which consists of the randomized

construction of a solution, which is then submitted to local search. Traditionally, a

multistart algorithm takes the best solution obtained in all iterations as its final result.

Our method enhances this basic approach with some intensification strategies. We

keep a pool with some of the best solutions found in previous iterations, the so-called

elite solutions. In each iteration of our procedure, the solution obtained by local search

is combined with one elite solution through a process called path-relinking (Glover,

1996; Glover et al., 2000; Laguna and Martı́, 1999). Furthermore, after all iterations

of the multistart phase are completed, we have a second, post-optimization phase

in which elite solutions are combined with each other. Figure 12.1 summarizes our

method, to which we will refer as HYBRID.

Note that this algorithm combines elements of several “pure” metaheuristics. Like

GRASP (greedy randomized adaptive search procedure), our method is a multistart

approach in which each iteration consists basically of a randomized greedy proce-

dure followed by local search (Feo and Resende, 1989; 1995; Resende and Ribeiro,

2003). From tabu search and scatter search, our method borrows the idea of path-

relinking (Glover, 1996; Laguna and Martı́, 1999). Moreover, as Section 11.5 shows,

we augment path-relinking with the concept multiple generations, a key feature of

genetic algorithms (Goldberg, 1989; Michalewicz, 1994).

Of course, much remains to be specified to turn the outline in Figure 12.1 into an

actual algorithm. We study each individual component (constructive algorithm, local

search, and intensification) separately in Sections 11.3, 11.4, and 11.5, respectively.

In Section 11.6, we present the results obtained by the final version of our method

and compare them with those obtained by other methods in the literature. But first,

in Section 11.2, we discuss important aspects of the experiments we conducted to

evaluate individual components and to produce the final results.
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function HYBRID (seed,maxit,elitesize)
1 randomize(seed);
2 init(elite,elitesize)
3 for i = 1 to maxit do

4 S← randomizedBuild();
5 S← localSearch(S);
6 S′← select(elite,S);
7 if (S′ 6= NULL) then

8 S′← pathRelinking(S,S′);
9 add(elite,S′);
10 endif

11 add(elite,S);
12 endfor

13 S← postOptimize(elite);
14 return S;

end HYBRID

Figure 11.1 Pseudocode for HYBRID.

11.2 TESTING

11.2.1 Instances

We tested our algorithm on five classes of problems: TSP, ORLIB, SL, GR, and RW.

Instances in class TSP are just sets of points on the plane. Originally proposed for

the traveling salesman problem, they are available from the TSPLIB (Reinelt, 1991).

In the context of the p-median problem, they were first used by Hansen and Mladen-

ović (1997); Hansen et al. (2001). Every point is considered both a potential facility

and a customer, and the cost of assigning customer c to facility f is simply the Eu-

clidean distance between the points representing c and f . Following Hansen et al.

(2001), we consider three instances (fl1400, pcb3038, and rl5934, with 1400, 3038,

and 5934 nodes, respectively), each with several different values for p (number of

facilities to open).

Class ORLIB (short for OR-Library) was introduced by Beasley (1985). Each of

the 40 instances (pmed01, pmed02, . . ., pmed40) in the class is a graph with a corre-

sponding value for p. Every node is a customer and a potential facility, and the cost

of assigning a customer to a facility is the length of the shortest path between the cor-

responding nodes. The number of nodes in this class varies from 100 to 900, and the

value of p from 5 to 200.

The third class we consider is SL, a slight extension to ORLIB proposed by Senne

and Lorena (2000). It contains three new instances, all based on graphs from ORLIB:

sl700 uses the same graph as pmed34, but with p = 233; sl800 is the same as pmed37,

with p = 267; and sl900 is pmed40 with p = 300 (Senne, 2002).

The fourth class studied is GR, introduced by Galvão and ReVelle (1996) and first

used for the p-median problem by Senne and Lorena (2000). This class contains two

graphs, with 100 and 150 nodes (named gr100 and gr150, respectively). Eight values

of p (between 5 and 50) were considered in each case.
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The fifth class we study is RW. Originally proposed by Resende and Werneck

(2003), it corresponds to completely random distance matrices. In every case, the

number of potential facilities (m) is equal to the number of customers (n). The dis-

tance between each facility and each customer has an integer value taken uniformly at

random from the interval [1,n].1 Four different values of n were considered: 100, 250,

500, and 1000 (instance names are rw100, rw250, rw500, and rw1000, respectively).

In each case, several values of p were tested.

Costs are integral in all classes except TSP, in which distances are, in theory, real

values. We did not explicitly round nor truncate values, which were kept with double

precision throughout the algorithm.

Results obtained by the final version of our algorithm on all instances are shown

in Section 11.6. We also conducted experiments with several variants of our method

to assess how each individual component (constructive algorithm, local search, and

path-relinking, among others) affects the overall performance. In those experiments,

however, we used only a restricted set of instances. This set was chosen with two goals

in mind. First, its instances should be hard enough to reveal the differences between

various parameters and components. Some instances, especially in class ORLIB, can

be solved to optimality by local search alone, thus making it pointless to include them

in comparative tests. Our second goal was to keep the set small enough so as to

allow statistically meaningful experiments (i.e., with several pseudorandom number

generator seeds for each instance) on a relatively small amount of CPU time (no more

than a few days per experiment). Given those goals and our experience from early

versions of the algorithm, we defined the restricted set with 10 instances: pmed15 and

pmed40, both from class ORLIB; sl700, from class SL; fl1400 (with p = 150 and p =
500) and pcb3038 (with p = 30 and p = 250), from class TSP; gr150 (with p = 25),

from class GR; and rw500 (with p = 25 and p = 75), from class RW.

11.2.2 Testing Environment

Tests were performed on an SGI Challenge with 28 196-MHz MIPS R10000 proces-

sors (with each execution of the program limited to only one processor), 7.6 GB of

memory, and IRIX 5 as the operating system. The algorithm was coded in C++ and

compiled with the SGI MIPSpro C++ compiler (v. 7.30) with flags -O3 -OPT:Olimit=6586.

All running times shown in this chapter are CPU times, measured with the getrusage

function. Running times do not include the time spent reading instances from disk, but

they do include the computation of all-pairs shortest paths on graph instances (classes

SL and ORLIB).2 The pseudorandom number generator we use is Mersenne Twister

(Matsumoto and Nishimura, 1998).

1In particular, unlike all other classes, the distance from facility i to user i is not zero. Moreover, the distance

between facility i and user j need not be equal to the distance between facility j and user i.
2GR is also a graph-based class, but the instances we obtained, kindly provided by E. Senne, were already

represented as distance matrices.
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11.3 CONSTRUCTIVE ALGORITHMS

The standard greedy algorithm for the p-median problem (Cornuejols et al., 1977;

Whitaker, 1983) starts with an empty solution and adds facilities one at a time, choos-

ing the most profitable in each iteration (the one whose insertion causes the greatest

drop in solution cost). Evidently, this method cannot be used directly in our algorithm:

being completely deterministic, it would yield identical solutions in all iterations. We

considered the following randomized variants in our experiments:

random (random solution): Select p facilities uniformly at random. The selec-

tion itself requires O(m) time, and determining which facility should serve each

customer requires O(pn) operations.3 Therefore, the overall complexity of the

algorithm is O(m+ pn).

rpg (random plus greedy): Select a fraction α (an input parameter) of the p fa-

cilities at random, then complete the solution in a greedy fashion. The algorithm

takes O((m+αpn)+(1−α)(pmn)) time in the worst case, which corresponds

to O(pmn) if α is not very close to 1. In our tests, a value for α was chosen

uniformly at random in the interval [0;1] in every multistart iteration.

rgreedy (randomized greedy): Similar to the greedy algorithm, but in each step i,

instead of selecting the best among all m− i+1 options, choose randomly from

the ⌈α(m− i+1)⌉ best options, where 0 < α≤ 1 is an input parameter. Note that

if α→ 0, this method degenerates into the greedy algorithm; if α→ 1, it turns

into the random algorithm. In our tests, we selected α uniformly at random in

the interval (0;1] in each iteration of the multistart phase. This algorithm takes

O(pmn) time.

pgreedy (proportional greedy): Yet another variant of the greedy algorithm. In

each iteration, compute, for every candidate facility fi, how much would be

saved if fi were added to the solution. Let s( fi) be this value. Then pick a

candidate at random, but in a biased way: the probability of a given facility fi

being selected is proportional to s( fi)−min j s( f j). If all candidates are equally

good (they would all save the same amount), select one uniformly at random.

This method also takes O(pmn) time.

pworst (proportional worst): In this method, the first facility is selected uni-

formly at random. Other facilities are added one at a time as follows. Compute,

for each customer, the difference between how much its current assignment

costs and how much the best assignment would cost; then select a customer at

random, with probability proportional to this value, and open the closest facil-

ity. Customers for which the current solution is particularly bad have a greater

chance of being selected. This method, also used by Taillard (2003), runs in

O(mn) time in the worst case.

3This can be made faster in some settings, like sparse graphs or points on the Euclidean plane. The results

in this chapter, however, do not use any such metric-specific accelerations.
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sample (sample greedy): This method is similar to the greedy algorithm, but

instead of selecting the best among all possible options, it only considers q < m

possible insertions (chosen uniformly at random) in each iteration. The most

profitable among those is selected. The running time of the algorithm is O(m+
pqn). The idea is to make q small enough so as to significantly reduce the

running time of the algorithm (when compared to the pure greedy one) and to

ensure a fair degree of randomization. In our tests, we used q = ⌈log2(m/p)⌉.

We note that a “pure” multistart heuristic would use random as the constructive

algorithm. Method rgreedy, which selects a random element from a restricted list of

candidates, would be the one used by a standard GRASP. All other methods are meant

to be faster variants of rgreedy.

It was not clear at first which of these methods would be most adequate as a building

block of our heuristic. To better analyze this issue, we conducted an experiment on the

restricted set of instances defined in Section 11.2.1. For every instance in the set and

every constructive procedure, we ran our heuristic 10 times, with 10 different seeds.

In every case, the number of iterations was set to 32, with 10 elite solutions, using

up:down as the criterion to determine the direction of path-relinking (this criterion is

defined in Section 11.5.4.2).

To explain the results shown in Table 11.1, we need some additional definitions.

For each instance, we compute the overall average solution value obtained by all 60

executions of HYBRID (6 different methods, each with 10 seeds). Then, for each

method, we determine the relative percentage deviation for that instance: how much

the average solution value obtained by that method is above (or below) the overall

average in percentage terms. By taking the average of these deviations over all 10 in-

stances, we obtain the average relative percentage deviation (%DEV) for each method;

these are the values shown in column 2 of Table 11.1. Column 4 was computed in a

similar fashion, but considering running times instead of solution values.

Columns 3 and 5 were computed as follows. For each instance, the methods were

sorted according to their relative percentage deviations; the best received one point, the

second two points, and so on, until the sixth best method, with six points. When there

was a tie, points were divided equally between the methods involved. For example,

if the deviations were −0.03, −0.02, −0.02, 0.01, 0.03, and 0.03, the corresponding

methods would receive 1,2.5,2.5,4,5.5, and 5.5 points, respectively. The number of

points received by a method according to this process is its rank for that particular

instance. Its normalized rank was obtained by linearly mapping the range of ranks (1

to 6, in this case) to the interval [−1,1]. In the example above, the normalized ranks

would be−1,−0.4,−0.4,0.2,0.8, and 0.8. The normalized ranks must add up to zero

(by definition). If a method is always better than all others, its normalized rank will

be −1; if always worse, it will be 1. What columns 3 and 5 of Table 11.1 show are the

average normalized ranks of each method, taken over the set of 10 instances. Column

3 refers to solution quality, and column 5 to running times.

The correlation between these measures is higher when one method is obviously

better (or worse) than other methods. In general, however, having a lower average

normalized rank does not imply having a better average relative percentage deviation,

as the table shows.
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Table 11.1 HYBRID results with different constructive procedures: Average relative per-

centage deviations (%DEV) and average normalized ranks (NRANK) for solution qualities

and running times (both referring to the entire HYBRID procedure). Smaller values are

better.

METHOD QUALITY TIME

%DEV NRANK %DEV NRANK

pgreedy -0.009 0.160 39.6 0.920

pworst -0.006 -0.400 -18.7 -0.480

rgreedy 0.020 -0.160 35.8 0.400

random 0.015 0.000 -24.9 -0.840

rpg 0.009 0.620 -12.3 -0.300

sample -0.029 -0.220 -19.5 -0.600

It is clear that the methods are distinguishable much more by running time than

by solution quality. As the analysis of their worst case complexities suggests, rgreedy

and pgreedy are much slower than the other methods. In fact, they are so much slower

that, as shown in the table, they make the entire HYBRID heuristic take twice as long

on average than when using faster methods. The other method with O(pmn) worst-

case performance, rpg, while much faster than rgreedy and pgreedy in practice, is still

slower than other methods without finding better solutions on average. We therefore

tend to favor the three relatively fast methods: pworst, sample, and random. Among

those, sample and pworst seem to lead to solutions of slightly better quality. We chose

sample for the final version of our algorithm, although pworst would probably find

very similar results.

This experiment reveals an unusual feature of the p-median problem. In the GRASP

framework (upon which our heuristic is based), the running time of the randomized

greedy algorithm is usually not an issue. The randomized constructive methods should

produce solutions that are as good as possible given the diversity constraints, thus re-

ducing the number of iterations of the generally much slower local search. In our case,

the local search is relatively so fast that investing extra time in building the solution

can actually make the whole algorithm much slower without any significant gain in

terms of solution quality. We could not apply the randomization strategy normally

used in GRASP, represented here by rgreedy. Instead, we had to develop a faster alter-

native based on sampling. That is why we call our method a hybrid heuristic instead

of GRASP.4

11.4 LOCAL SEARCH

The standard local search procedure for the p-median problem, originally proposed

by Teitz and Bart (1968) and studied or used by several authors (Garcı́a-López et al.,

2002; Hansen and Mladenović, 1997; Hansen et al., 2001; Hodgson, 1978; Resende

and Werneck, 2003; Whitaker, 1983), is based on swapping facilities. Given an initial

4An earlier version of this chapter (Resende and Werneck, 2002) did refer to the algorithm as “GRASP with

path-relinking”. We believe that “hybrid heuristic” is a more accurate characterization.
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solution S, the procedure determines, for each facility f 6∈ S, which facility g ∈ S (if

any) would improve the solution the most if f and g were interchanged (i.e., if f were

opened and g closed). If there is one such improving move, f and g are interchanged.

The procedure continues until no improving interchange can be made, in which case a

local minimum will have been found.

Whitaker (1983) proposed an efficient implementation of this method, which he

called fast interchange. A similar implementation was used by Hansen and Mladen-

ović (1997) and, later, in other papers (Garcı́a-López et al., 2002; Hansen et al., 2001).

A minor difference between them is the fact that Whitaker adopts a first improvement

strategy (the algorithm moves to a neighboring solution as soon as it finds an improv-

ing one), while the others prefer best improvement (all neighbors are checked and the

very best is chosen). In either case, the running time of each iteration is bounded by

O(mn).
Resende and Werneck (2003) have recently proposed an alternative implementa-

tion, also using best improvement. Although it has the same worst-case complexity as

Whitaker’s, it can be substantially faster in practice. The speedup (of up to three orders

of magnitude) results from the use of information gathered in early iterations of the

algorithm to reduce the amount of computation performed in later stages. This, how-

ever, requires a greater amount of memory. While Whitaker’s implementation requires

O(n) memory in the worst case (not considering the distance matrix), the alternative

may use up to O(mn) memory positions.

In any case, we believe that the speedup is well worth the extra memory require-

ment. This is especially true for methods that rely heavily on local search proce-

dures. This includes not only multistart methods such as the one described here, but

also VNS (Hansen and Mladenović, 1997) and tabu search (Rolland et al., 1996; Voß,

1996), for example. Furthermore, one should also remember that while the extra mem-

ory is asymptotically relevant when the distance function is given implicitly (as in the

case of Euclidean instances), it is irrelevant when there is an actual O(mn) distance

matrix (as in class RW). Given these considerations, we opted for using in this chapter

the fastest version proposed by Resende and Werneck (2003), even though it requires

Θ(mn) memory positions.

Since the implementation is rather intricate, we abstain from describing it here. The

reader is referred to the original paper (Resende and Werneck, 2003) for details and

for an experimental comparison with Whitaker’s implementation.

11.5 INTENSIFICATION

In this section, we discuss the intensification aspects of our heuristic. We maintain

a pool of elite solutions, high-quality solutions found during the execution. Inten-

sification occurs in two different stages, as Figure 12.1 shows. First, every multistart

iteration contains an intensification step, in which the newly generated solution is com-

bined with a solution from the pool. Then, in the post-optimization phase, solutions in

the pool are combined among themselves. In both stages, the strategy used to combine

a pair of solutions is the same: path-relinking. Originally proposed for tabu search

and scatter search (Glover, 1996; Glover et al., 2000), this procedure was first applied

within the GRASP framework by Laguna and Martı́ (1999), and widely applied ever
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since (Resende and Ribeiro (2003) present numerous examples). Subsection 11.5.1

briefly describes how path-relinking works. Subsection 11.5.2 explains the rules by

which the pool is updated and solutions are taken from it. Finally, Subsection 11.5.3

discusses the post-optimization phase.

11.5.1 Path-relinking

Let S1 and S2 be two valid solutions, interpreted as sets of (open) facilities. The path-

relinking procedure starts with one of the solutions (say, S1) and gradually transforms

it into the other (S2) by swapping in elements from S2 \S1 and swapping out elements

from S1 \S2. The total number of swaps made is |S2 \S1|, which is equal to |S1 \S2|;
this value is known as the symmetric difference between S1 and S2. The choice of

which swap to make in each stage is greedy: we always perform the most profitable

(or least costly) move.

As pointed out by Resende and Ribeiro (2003), the outcome of the method is usu-

ally the best solution found in the path from S1 to S2. Here we use a slight variant:

the outcome is the best local minimum in the path. A local minimum in this context is

a solution that is both succeeded (immediately) and preceded (either immediately or

through a series of same-value solutions) in the path by strictly worse solutions. If the

path has no local minima, one of the original solutions (S1 or S2) is returned with equal

probability. When there is an improving solution in the path, our criterion matches the

traditional one exactly: it simply returns the best element in the path. It is different

only when the stardard path-relinking is unsuccessful, in which case we try to increase

diversity by selecting a solution other than the extremes of the path.

Note that path-relinking is very similar to the local search procedure described

in Section 11.4, with two main differences. First, the number of allowed moves is

restricted: only elements in S2 \ S1 can be inserted, and only those in S1 \ S2 can be

removed. Second, non-improving moves are allowed. Fortunately, these differences

are subtle enough to be incorporated into the basic implementation of the local search

procedure. In fact, both procedures share much of their code in our implementation.

We further augment the intensification procedure by performing a full local search

on the solution produced by path-relinking. Because this solution is usually very close

to a local optimum, this application tends to be much faster than on a solution gener-

ated by the randomized constructive algorithm. A side effect of applying local search

at this point is increased diversity, since we are free to use facilities that did not belong

to any of the original solutions.

We note that this procedure has some similarity with VNS (Mladenović and Hansen,

1997). Starting from a local optimum, VNS obtains a solution in some extended neigh-

borhood and applies local search to it, hoping to find a better solution. The main dif-

ference is that VNS uses a randomized method to find the neighboring solution, while

we use a second local optimum as a guide. The distance from the new solution to the

original one (actually, to both extremes) is at least two in our case.
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11.5.2 Pool Management

An important aspect of the algorithm is managing the pool of elite solutions. Empir-

ically, we observed that an application of path-relinking to a pair of solutions is less

likely to be successful if the solutions are very similar. The longer the path between

the solutions, the greater the probability that an entirely different local minimum (as

opposed to the original solutions themselves) will be found. It is therefore reasonable

to take into account not only solution quality, but also diversity when dealing with the

pool of elite solutions.

The pool must support two essential operations: insertion of new solutions (repre-

sented by the add function in Figure 12.1) and selection of a solution for path-relinking

(the select function in the pseudocode). We describe each of these in turn.

11.5.2.1 Insertion. For a solution S with cost c(S) to be added to the pool, two

conditions must be met. First, its symmetric difference from all solutions in the pool

whose value is less than c(S) must be at least four; after all, path-relinking between

solutions that differ by fewer than four facilities cannot produce solutions that are

better than both original extremes, since they are local optima. Second, if the pool is

full, the solution must be at least as good as the worst elite solution (if the pool is not

full, this is obviously not necessary).

If both conditions are met, the solution is inserted. If the pool is not full and the

new solution is not within distance four of any other elite solution (including worse

ones), it is simply added. Otherwise, it replaces the most similar solution among those

of equal or higher value.

11.5.2.2 Selection. In every iteration of the algorithm, a solution is selected

from the pool (Figure 12.1, line 6) and combined with S, the solution most recently

found. An approach that has been applied to other problems with some degree of suc-

cess is to select a solution uniformly at random (Resende and Ribeiro, 2003). How-

ever, this often means selecting a solution that is too similar to S, thus making the

procedure unlikely to find good new solutions. To minimize this problem, we pick

solution from the pool with probabilities proportional to their symmetric difference

with respect to S. In Section 11.5.4.3, we show empirical evidence that this strategy

does pay off.

11.5.3 Post-optimization

In the process of looking for a good solution, the multistart phase of our heuristic pro-

duces not one, but several different local optima, which are often not much worse than

the best solution found. The post-optimization phase in our algorithm combines these

solutions to obtain even better ones. This phase takes as input the pool of elite solu-

tions, whose construction was described in previous sections. Every solution in the

pool is combined with each other by path-relinking. The solutions generated by this

process are added to a new pool of elite solutions (following the constraints described

in Section 11.5.2), representing a new generation. The algorithm proceeds until it

creates a generation that does not improve upon previous generations. Recently, sim-
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ilar multi-generation path-relinking strategies have been used successfully within the

GRASP framework (Aiex et al., 2003; Ribeiro et al., 2002). The generic idea of com-

bining solutions to obtain new ones is not new, however; it is one of the basic features

of genetic algorithms (Goldberg, 1989; Michalewicz, 1994).

11.5.4 Empirical Analysis

In this section, we analyze empirically some aspects of the intensification strategy.

First, in Section 11.5.4.1, we show how the execution of path-relinking during the

multistart phase (and not only during post-optimization) helps the algorithm find good

solutions faster. Then, in Section 11.5.4.2, we examine the question of which direction

to choose when performing path-relinking between two solutions S1 or S2: from S1 to

S2, from S2 to S1, or both? Finally, Section 11.5.4.3 compares different strategies for

selecting solutions from the pool in the multistart phase.

11.5.4.1 Path-relinking in the Multistart Phase. Our implementation

is such that the randomized constructive solution produced in each multistart iteration

depends only on the initial seed, regardless of whether path-relinking is executed or

not. Therefore, if the number of iterations is the same, the addition of path-relinking

to the multistart phase cannot decrease solution quality. It could be the case, however,

that the extra time spent on path-relinking would lead to even better results if used for

additional iterations instead.

To test this hypothesis, we took a few representative instances and ran both versions

of the heuristic (with and without path-relinking) for a period 100 times as long as the

average time it takes to execute one iteration (construction followed by local search)

without path-relinking. We then compared the quality of the solutions obtained as

the algorithm progressed. The constructive algorithm used was sample. Results in

this test do not include post-optimization. We selected one instance from each class

(fl1400 from TSP, pmed40 from ORLIB, and rw500 from RW), and tested each with

seven values of p, from 10 to roughly one third of the number of facilities (m). The

test was repeated 10 times for each value of p, with 10 different seeds.

Figure 11.2 refers fl1400 with p = 500. The graph shows how solution quality im-

proves over time. Both quality and time are normalized. Times are given in multiples

of the average time it takes to perform one multistart iteration without path-relinking

(this average is taken over all iterations of all 10 runs).5 Solution quality is given

as a fraction of the average solution value found by the first iteration (again, without

path-relinking).

Figures 11.3, 11.4 and 11.5 refer to the same experiment. Each curve in those

graphs represents an instance with a particular value of p. Times are normalized as

before. The quality ratio, shown in the vertical axis, is the ratio between the average

solution qualities obtained with and without path-relinking. Values smaller than 1.000

favor path-relinking.

5Note that the first time value shown in the graph is 2; at time 1, not all ratios are defined because in some

cases the first iteration takes more than average time to execute.
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Figure 11.2 Instance fl1400, p = 500: Quality of the best solution found as a fraction

of the average value of the first solution. Times are given as multiples of the average time

required to perform one multistart iteration. Smaller values are better.

These results confirm what should be expected. If very few iterations are per-

formed, path-relinking is not particularly helpful; solutions of comparable quality (or

even better) can be found using a “pure” multistart approach (construction followed

by local search). However, if more time is to be spent, using path-relinking is a good

strategy, consistently leading to solutions of superior quality within the same time

frame. This is especially true for harder instances, those in which p is large. Instance

rw500 seems to be an exception; as p becomes greater than 75, the problem apparently

becomes easier.

11.5.4.2 Direction. An important aspect of path-relinking is the direction in

which it is performed. Given two solutions S1 and S2, we must decide whether to go

from S1 to S2, from S2 to S1, or both. We tested the following criteria:

random: Direction picked uniformly at random.

up: From the best to the worst solution among the two; this has the potential

advantage of exploring more carefully the most promising vicinity.

down: From the worst to the best solution; by exploring more carefully the

vicinity of the worst solution, it can find good solutions that are relatively far

from the best known solutions, thus favoring diversity.
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Figure 11.3 Instance fl1400 (class TSP): Ratios between partial solutions found with and

without path-relinking. Times are normalized with respect to the average time it takes to

execute one multistart iteration. Values smaller than 1.000 favor the use of path-relinking.

new: Start from the newly generated solution, not from the one already in the

pool (this strategy applies only to the multistart phase of the algorithm, not to the

post-optimization stage). Again, the goal is to obtain greater solution diversity.

none: Do not perform path-relinking during the multistart phase (this strategy

cannot be applied in the post-optimization stage).

both: Perform path-relinking in both directions and return the best result. This

method is guaranteed to find the best solution in each case, but it takes roughly

twice as much time as the other methods.

We tested all valid combinations of these methods on the 10 instances of the re-

stricted set defined in Section 11.2.1, each with 10 different seeds. We ran our al-

gorithm with 32 iterations and 10 elite solutions, using sample as the constructive

method. Tables 11.2, 11.3, and 11.4 show the results obtained in the experiment. (The

definitions of average relative percentage deviation and normalized relative rank, used

in these tables, are given in Section 11.3.)

Note that some strategies can be discarded for being too slow without any clear

improvement in solution quality. That is the case of those that use strategy both in the

post-optimization phase (and also during the first stage of the algorithm, although the

extra time in this case is far less relevant). Furthermore, using path-relinking during
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Figure 11.4 Instance pmed40 (class ORLIB): Ratios between partial solutions found with

and without path-relinking. Times are normalized with respect to the average time it takes

to execute one multistart iteration. Values smaller than 1.000 favor the use of path-relinking.

Table 11.2 Solution quality of HYBRID with different path-relinking strategies: Average

relative percentage deviations. Each value represents how much the average solution value

found by each method is above (or below) the average found by all methods. Smaller values

are better.

MULTISTART POST-OPTIMIZATION METHOD

METHOD both down random up

none 0.056 0.056 0.033 0.024

both 0.005 0.009 -0.030 -0.007

down -0.010 0.007 -0.009 -0.012

random 0.001 0.004 -0.002 0.001

new -0.008 0.004 -0.007 -0.011

up -0.029 -0.032 -0.019 -0.022

the multistart stage is clearly important; even though it is still possible to obtain above-

average solutions eventually if none is used in that phase, this only happens if both is

the strategy used in post-optimization — which results in much longer running times.

Among the remaining strategies, Tables 11.2 and 11.3 show no clearly dominant

one. Several combinations of new, up, down, and random seem like reasonable choices.

Five have better-than-average quality according to both measures used: up:down,

down:random, random:random, new:random, and up:random (in our notation, the first
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Figure 11.5 Instance rw500 (class RW): Ratios between partial solutions found with and

without path-relinking. Times are normalized with respect to the average time it takes to

execute one multistart iteration. Values smaller than 1.000 favor the use of path-relinking.

Table 11.3 Solution quality of HYBRID with different path-relinking strategies: Average

normalized ranks. Smaller values are better.

MULTISTART POST-OPTIMIZATION METHOD

METHOD both down random up

none -0.017 0.565 0.448 0.465

both -0.117 -0.143 -0.270 0.174

down -0.357 0.270 -0.265 0.004

random -0.183 0.209 -0.100 0.161

new -0.387 -0.030 -0.135 0.078

up -0.283 -0.209 -0.061 0.183

Table 11.4 HYBRID running times with different path-relinking strategies: Average rela-

tive percent deviation with respect to the average.

MULTISTART POST-OPTIMIZATION METHOD

METHOD both down random up

none 33.3 -12.2 -7.3 -6.9

both 27.8 -2.3 -0.5 -2.3

down 22.7 -9.4 -7.8 -9.4

random 20.1 -12.0 -9.7 -10.9

new 20.3 -8.7 -8.0 -11.1

up 23.1 -9.3 -10.0 -9.6
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method refers to the multistart phase of the algorithm, the second to the post-optimization

stage). We decided to use up:down in the final version of our algorithm, since this was

the method with the best average relative percentage deviation and a good average

rank. This method has the interesting feature of favoring quality when dealing with

lower-quality solutions (during the multistart phase), and diversity when the overall

solution quality is higher (during the post-optimization phase).

11.5.4.3 Selection Strategy. We have shown that applying path-relinking

during the first stage of the algorithm helps finding good solutions faster. Here, we

analyze the criterion used to choose the elite solution to be combined with S, the solu-

tion obtained after local search. Recall that the usual method is to select the solution

uniformly at random, and that we propose picking solutions with probabilities propor-

tional to their symmetric difference with respect to S. We call these strategies uniform

and biased, respectively.

When performing path-relinking between a pair of solutions, our goal is to obtain

a third solution of lower cost. We consider the combination successful when this hap-

pens. The ultimate goal of the selection scheme is to find, among the elite solutions,

one that leads to a successful combination. Better selection schemes will find one such

solution with higher probability.

To determine which method is better according to this criterion, we performed the

following experiment on each of the 10 instances in the restricted set defined in Sec-

tion 11.2.1. First, run the multistart heuristic (without path-relinking) until a pool of

110 solutions is filled. Then, take the top 10 solutions (call them E1,E2, . . . ,E10) ob-

tained and create a new pool. Denote the remaining 100 solutions by S1,S2, . . . ,S100.

Perform path-relinking between each of these 100 solutions and each solution in the

pool, and decide based on the results which selection method (biased or uniform)

would have a greater probability of success if we had to select one of the 10 instances.

To compute the probability of success of each method, we need some definitions.

Let s(i, j) be 1 if the path-relinking between Si and E j is successful, and 0 otherwise;

also, let ∆(i, j) be the symmetric difference between Si and E j. For a given solution

Si, the probability of success for uniform, if it were applied, would be

ui =
∑10

j=1 s(i, j)

10
.

On the other hand, the probability of success of biased would be

bi =
∑10

j=1[s(i, j) ·∆(i, j)]

∑10
i=1 ∆(i, j)

.

For each of the 10 instances, the procedure described above was executed 10 times,

with 10 seeds, always using sample as the constructive algorithm and up as the path-

relinking direction. Therefore, for each instance, 1,000 selections were simulated (100

for each random seed).

The results are summarized in Table 11.5. For each instance, we show the percent-

age of cases in which one method has greater probability of success than the other

(when the probabilities are equal, we consider the experiment a tie).
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Table 11.5 Comparison between the uniform and biased selection schemes. Values rep-

resent percentage of cases in which one method has greater probability of leading to a

successful relink than the other.

INSTANCE SELECTION METHOD

NAME p uniform TIE biased

fl1400 150 38.7 10.8 50.5

fl1400 500 0.0 99.9 0.1

gr150 25 34.9 5.6 59.5

pcb3038 30 45.2 5.4 49.4

pcb3038 250 0.2 98.5 1.3

pmed15 100 14.5 4.5 81.0

pmed40 90 14.2 5.2 80.6

rw500 25 39.8 10.3 49.9

rw500 75 32.0 11.3 56.7

sl700 233 6.4 56.2 37.4

Note that in all cases biased has superior performance, sometimes by a significant

margin. In two cases the probability of a tie was almost 100%; this is due to the fact

that path-relinking almost always works for those particular instances — any selection

scheme would be successful. In situations where there were “wrong” alternatives,

biased was better at avoiding them.

11.6 FINAL RESULTS

This section presents detailed results obtained by the final version of our algorithm,

built based on the experiments reported in previous sections. It uses sample as the

randomized constructive heuristic (see Section 11.3); path-relinking is executed in

both stages of the algorithm (Section 11.5.4.1): from the best to the worst solution

during the multistart phase, and from the worst to the best during post-optimization

(Section 11.5.4.2); and solutions are selected from the pool in a biased way during

the multistart phase (Section 11.5.4.3). The results reported here refer to runs with 32

multistart iterations and 10 elite solutions — of course, these numbers can be changed

to make the algorithm faster (if they are reduced) or to obtain better solutions (if they

are increased).

We tested our algorithm on all instances mentioned in Section 11.2.1. We ran it nine

times on each instance, with different seeds. Tables 11.6 to 11.12 present the results.

The last three columns refer to the full version of our method, whereas the three that

immediately precede them refer to the multistart phase only. In each case, we present

three different values: first, the median value obtained (which always corresponds to

some valid solution to the problem); second, the average percentage error (%ERR),

which indicates how much the average value obtained by our method is above the best

solution known (in percentage terms); third, the average running time in seconds. All

three measures consider the nine runs of the algorithm.

For reference, the tables also contain the lowest (to the best of our knowledge)

upper bounds on solution values available in the literature at the time of writing for
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each of the instances tested. The optimum values are known for all instances in three

classes: ORLIB (Beasley, 1985), SL (Senne and Lorena, 2000), and GR (Senne and

Lorena, 2000). For class TSP, we list the best upper bounds in the literature, as well

as references to the papers that first presented the bounds shown (they are presented

in the SOURCE column in Tables 11.6, 11.7, and 11.8). The bounds do not necessar-

ily correspond to solutions found by the main heuristics described in those papers —

in some cases, they were found by other, more time-consuming methods. For sev-

eral instances, in at least one of the nine runs our procedure was able to improve the

best bound known. When that was the case, the improved bound is presented, and

the SOURCE column contains a dash (—). These values should not be considered the

“final results” of our method when compared to others, since they refer to especially

successful runs; the truly representative results are the medians and averages listed in

the tables. Because class RW was introduced only recently (Resende and Werneck,

2003), no good upper bounds were available. Therefore, the BEST column in Ta-

ble 11.12 presents the best solution found by the nine runs of our algorithm in each

case.

Table 11.6 Final results for fl1400, an Euclidean instance from class TSP with 1400

nodes: median values, average percentage errors, and running times in seconds. Best results

reported by Hansen and Mladenović (1997) and by Hansen et al. (2001) are denoted by

HMP97 and HMP01, respectively. All other best values were found by HYBRID itself.

BEST KNOWN SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

p VALUE SOURCE MED %ERR TIME MED %ERR TIME

10 101249.47 HMP01 101249.55 0.000 117.1 101249.55 0.000 118.5

20 57857.55 HMP01 57857.94 0.001 76.8 57857.94 0.001 83.5

30 44013.48 — 44013.48 0.003 76.0 44013.48 0.000 106.2

40 35002.52 — 35002.60 0.007 68.6 35002.60 0.003 101.3

50 29089.78 HMP01 29090.23 0.002 58.8 29090.23 0.002 73.9

60 25161.12 — 25166.91 0.028 57.0 25164.02 0.012 91.5

70 22125.53 HMP01 22126.03 0.006 50.6 22126.03 0.002 70.2

80 19872.72 — 19878.45 0.046 49.8 19876.57 0.018 78.1

90 17987.94 HMP01 18006.83 0.091 48.7 17988.60 0.013 74.2

100 16551.20 HM97 16567.01 0.099 47.3 16559.82 0.051 82.4

150 12026.47 — 12059.12 0.264 48.7 12036.00 0.068 132.5

200 9359.15 — 9367.98 0.098 49.4 9360.67 0.017 101.3

250 7741.51 — 7754.50 0.165 54.5 7746.31 0.057 130.3

300 6620.92 — 6637.81 0.258 57.8 6623.98 0.041 167.1

350 5720.91 — 5749.51 0.489 59.6 5727.17 0.097 177.6

400 5006.83 — 5033.96 0.571 64.1 5010.22 0.087 157.5

450 4474.96 — 4485.16 0.226 68.3 4476.68 0.059 170.7

500 4047.90 — 4059.16 0.265 71.9 4049.56 0.044 210.9

The tables show that our method found solutions within at most 0.1% of the previ-

ous best known solutions in all cases. The only exception is class RW, for which there

were greater deviations. Although in these cases they were computed with respect to

solutions found by HYBRID itself, this does suggest that our method obtains better
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Table 11.7 Final results for pcb3038, an Euclidean instance from class TSP with 3038

nodes: median values, average percentage errors, and running times in seconds. Best results

reported by Hansen et al. (2001) and by Taillard (2003) are denoted by HMP01 and Tai03,

respectively. All other best values were found by HYBRID itself.

BEST KNOWN SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

p VALUE SOURCE MED %ERR TIME MED %ERR TIME

10 1213082.03 — 1213082.03 0.000 1115.8 1213082.03 0.000 1806.3

20 840844.53 — 840844.53 0.004 647.9 840844.53 0.003 943.4

30 677306.76 — 678108.52 0.111 426.7 677436.66 0.038 847.0

40 571887.75 — 572012.44 0.054 312.6 571887.75 0.004 492.6

50 507582.13 — 507754.72 0.050 251.7 507663.80 0.013 472.4

60 460771.87 — 461194.61 0.102 218.2 460797.55 0.024 481.4

70 426068.24 — 426933.75 0.198 201.3 426153.31 0.020 470.9

80 397529.25 — 398405.57 0.234 188.5 397585.89 0.018 555.9

90 373248.08 — 374152.75 0.259 182.3 373488.82 0.061 380.8

100 352628.35 — 353576.86 0.289 174.0 352755.13 0.033 448.1

150 281193.96 Tai03 282044.70 0.297 163.3 281316.82 0.041 402.5

200 238373.26 — 238984.42 0.267 162.0 238428.35 0.030 406.9

250 209241.25 Tai03 209699.36 0.204 171.8 209326.83 0.041 407.5

300 187712.12 — 188168.32 0.223 184.4 187763.64 0.029 395.8

350 170973.34 Tai03 171443.87 0.266 200.0 171048.03 0.035 412.0

400 157030.46 Tai03 157414.79 0.251 203.4 157073.20 0.029 436.3

450 145384.18 — 145694.26 0.212 216.3 145419.81 0.023 462.3

500 135467.85 Tai03 135797.08 0.257 231.1 135507.73 0.030 478.5

550 126863.30 — 127207.83 0.267 243.8 126889.89 0.025 514.0

600 119107.99 HMP01 119428.60 0.266 258.3 119135.62 0.026 595.8

650 112063.73 — 112456.15 0.339 271.0 112074.74 0.013 619.0

700 105854.40 — 106248.00 0.360 284.0 105889.22 0.034 637.3

750 100362.55 HMP01 100713.79 0.337 296.4 100391.53 0.034 649.3

800 95411.78 — 95723.00 0.317 286.6 95432.66 0.023 677.8

850 91003.62 — 91268.56 0.298 296.1 91033.10 0.030 689.3

900 86984.10 — 87259.78 0.302 306.4 87022.59 0.037 730.4

950 83278.78 — 83509.58 0.265 314.3 83299.22 0.023 780.5

1000 79858.79 — 80018.33 0.193 321.7 79869.98 0.013 806.2

results in absolute terms on instances with well-defined metrics (graphs and Euclidean

instances), than on random instances (such as class RW).

11.6.1 Other Methods

We now analyze how our algorithm behaves in comparison with other methods in

the literature. We refer to our method (including the post-optimization phase) as HY-

BRID. For reference, we also present the results obtained only by the multistart phase

of the algorithm, called HYB-SS (for “hybrid, single-stage”). The results presented in

this section are averages taken from the %ERR and TIME columns from Tables 11.6

to 11.12.

Other methods considered in the comparison are:
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Table 11.8 Final results for instance rl5934, an Euclidean instance from class TSP with

5934 nodes: median values, average percentage errors, and running times in seconds. Best

results reported by Hansen et al. (2001) are denoted by HMP01. All other best values were

found by HYBRID itself.

BEST KNOWN SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

p VALUE SOURCE MED %ERR TIME MED %ERR TIME

10 9794951.00 HMP01 9794973.65 0.000 5971.1 9794973.65 0.000 8687.1

20 6718848.19 — 6719116.39 0.007 3296.8 6719026.03 0.003 4779.6

30 5374936.14 — 5379979.09 0.131 2049.8 5376040.45 0.017 4515.1

40 4550364.60 — 4550843.75 0.022 1470.4 4550518.95 0.004 2499.3

50 4032379.97 — 4033758.13 0.059 1195.3 4032675.94 0.014 2280.6

60 3642397.88 — 3646198.03 0.089 996.1 3642949.30 0.022 2244.0

70 3343712.45 — 3348834.92 0.164 872.5 3344888.24 0.039 2138.3

80 3094824.49 — 3099917.93 0.150 778.8 3095442.55 0.033 1792.4

90 2893362.39 — 2898721.66 0.169 708.8 2894954.78 0.050 1844.2

100 2725180.81 — 2730313.90 0.180 671.2 2725580.72 0.015 1892.6

150 2147881.53 — 2151985.53 0.182 560.2 2148749.47 0.035 1209.2

200 1808179.07 — 1812249.63 0.209 526.6 1808658.73 0.029 1253.0

250 1569941.34 — 1573800.83 0.229 526.2 1570445.77 0.037 1203.8

300 1394115.39 — 1397064.23 0.229 550.1 1394361.41 0.022 1042.7

350 1256844.04 — 1259733.85 0.226 575.6 1257098.17 0.027 1246.4

400 1145669.38 HMP01 1148386.49 0.224 583.8 1145961.13 0.033 1157.6

450 1053363.64 — 1055756.67 0.226 619.2 1053729.79 0.040 1236.9

500 973995.18 — 975940.78 0.197 641.7 974242.08 0.027 1236.7

600 848283.85 — 849765.46 0.174 703.7 848499.21 0.021 1439.4

700 752068.38 HMP01 753522.21 0.189 767.3 752263.82 0.028 1566.6

800 676795.78 — 678300.99 0.205 782.1 676956.64 0.027 1574.9

900 613367.44 HMP01 614506.49 0.183 834.5 613498.64 0.024 1722.0

1000 558802.38 HMP01 559797.83 0.178 877.7 558943.93 0.024 1705.3

1100 511813.19 HMP01 512793.56 0.203 931.4 511928.86 0.026 1893.4

1200 470295.38 HMP01 471486.76 0.249 988.1 470411.12 0.023 2082.0

1300 433597.44 HMP01 434688.75 0.258 1033.4 433678.02 0.020 2147.8

1400 401853.00 HMP01 402796.80 0.232 1072.4 401934.24 0.020 2288.7

1500 374014.57 — 374803.24 0.207 1029.7 374056.40 0.012 2230.3

VNS: Variable Neighborhood Search, by Hansen and Mladenović (1997). Re-

sults for this method are available for the ORLIB class (all 40 instances were

tested, with running times given for only 22 of them), for fl1400 (all 18 values

of p), and pcb3038 (with only 10 values of p: 50,100,150, . . . ,500). The values

shown here were computed from those reported in Tables 1, 2, and 3 of Hansen

and Mladenović (1997).

VNDS: Variable Neighborhood Decomposition Search, by Hansen et al. (2001).

Results are available for all ORLIB and TSP instances.6

6The authors also tested instances from Rolland et al. (1996); unfortunately, we were unable to obtain these

instances at the time of writing.
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Table 11.9 Final results obtained for class ORLIB, graph-based instances introduced by

Beasley (1985): median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

NAME n p OPT MED %ERR TIME MED %ERR TIME

pmed01 100 5 5819 5819 0.000 0.5 5819 0.000 0.5

pmed02 100 10 4093 4093 0.000 0.4 4093 0.000 0.5

pmed03 100 10 4250 4250 0.000 0.4 4250 0.000 0.5

pmed04 100 20 3034 3034 0.000 0.4 3034 0.000 0.5

pmed05 100 33 1355 1355 0.000 0.4 1355 0.000 0.5

pmed06 200 5 7824 7824 0.000 1.8 7824 0.000 1.8

pmed07 200 10 5631 5631 0.000 1.4 5631 0.000 1.4

pmed08 200 20 4445 4445 0.000 1.2 4445 0.000 1.2

pmed09 200 40 2734 2734 0.000 1.2 2734 0.000 1.5

pmed10 200 67 1255 1255 0.000 1.3 1255 0.000 1.6

pmed11 300 5 7696 7696 0.000 3.5 7696 0.000 3.5

pmed12 300 10 6634 6634 0.000 2.9 6634 0.000 2.9

pmed13 300 30 4374 4374 0.000 2.4 4374 0.000 2.5

pmed14 300 60 2968 2968 0.000 2.9 2968 0.000 3.5

pmed15 300 100 1729 1729 0.013 3.3 1729 0.006 4.3

pmed16 400 5 8162 8162 0.000 8.1 8162 0.000 8.2

pmed17 400 10 6999 6999 0.000 6.1 6999 0.000 6.3

pmed18 400 40 4809 4809 0.005 5.5 4809 0.005 6.7

pmed19 400 80 2845 2845 0.000 6.3 2845 0.000 7.5

pmed20 400 133 1789 1789 0.000 7.1 1789 0.000 8.6

pmed21 500 5 9138 9138 0.000 12.2 9138 0.000 12.2

pmed22 500 10 8579 8579 0.000 10.7 8579 0.000 11.3

pmed23 500 50 4619 4619 0.000 9.4 4619 0.000 11.0

pmed24 500 100 2961 2961 0.000 11.4 2961 0.000 13.1

pmed25 500 167 1828 1828 0.006 13.4 1828 0.000 16.2

pmed26 600 5 9917 9917 0.000 20.5 9917 0.000 20.5

pmed27 600 10 8307 8307 0.000 16.4 8307 0.000 16.4

pmed28 600 60 4498 4498 0.005 14.6 4498 0.000 17.4

pmed29 600 120 3033 3033 0.000 18.0 3033 0.000 21.0

pmed30 600 200 1989 1989 0.028 21.1 1989 0.000 26.9

pmed31 700 5 10086 10086 0.000 28.8 10086 0.000 28.8

pmed32 700 10 9297 9297 0.000 22.8 9297 0.000 22.9

pmed33 700 70 4700 4700 0.000 20.6 4700 0.000 23.7

pmed34 700 140 3013 3013 0.011 25.8 3013 0.000 30.8

pmed35 800 5 10400 10400 0.000 36.7 10400 0.000 36.7

pmed36 800 10 9934 9934 0.000 31.7 9934 0.000 34.4

pmed37 800 80 5057 5057 0.000 28.8 5057 0.000 32.4

pmed38 900 5 11060 11060 0.000 52.9 11060 0.000 52.9

pmed39 900 10 9423 9423 0.000 36.5 9423 0.000 36.5

pmed40 900 90 5128 5129 0.020 36.6 5128 0.011 43.4

LOPT: Local Optimization method, proposed by Taillard (2003). The method

works by heuristically solving locally defined subproblems and integrating them

into a solution to the main problem. The author provides detailed results (in

Table 7) only for instance pcb3038, with nine values of p, all multiples of 50

between 100 to 500.



312 AN INTRODUCTION TO GRASP

Table 11.10 Final results for class SL, graph-based instances introduced by Senne and

Lorena (2000): median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

NAME n p OPT MED %ERR TIME MED %ERR TIME

sl700 700 233 1847 1848 0.060 30.2 1847 0.000 39.5

sl800 800 267 2026 2027 0.033 41.8 2026 0.000 53.2

sl900 900 300 2106 2107 0.037 54.1 2106 0.011 68.2

Table 11.11 Final results for class GR, graph-based instances introduced by Galvão and

ReVelle (1996): median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

NAME p OPT MED %ERR TIME MED %ERR TIME

gr100 5 5703 5703 0.000 0.5 5703 0.000 0.5

10 4426 4426 0.105 0.6 4426 0.070 1.0

15 3893 3893 0.000 0.5 3893 0.000 0.8

20 3565 3565 0.009 0.4 3565 0.000 0.7

25 3291 3291 0.003 0.4 3291 0.000 0.7

30 3032 3032 0.000 0.4 3032 0.000 0.6

40 2542 2542 0.000 0.4 2542 0.000 0.6

50 2083 2083 0.011 0.4 2083 0.005 0.6

gr150 5 10839 10839 0.000 1.3 10839 0.000 1.3

10 8729 8729 0.033 1.1 8729 0.017 2.0

15 7390 7390 0.036 1.0 7390 0.011 1.7

20 6454 6462 0.167 0.9 6462 0.083 1.5

25 5875 5887 0.246 0.9 5875 0.100 1.7

30 5495 5502 0.135 0.8 5495 0.010 1.5

40 4907 4907 0.011 0.8 4907 0.002 1.2

50 4374 4375 0.025 0.8 4375 0.015 1.2

DEC: Decomposition Procedure, also studied by Taillard (2003) and based on

the decomposition of the original problem. Results are provided for the same

nine instances as LOPT.

LSH: Lagrangean-Surrogate Heuristic, described by Senne and Lorena (2000).

Their paper contains results for six ORLIB instances (pmed05, pmed10, pmed15,

pmed20, pmed25, pmed30), for nine values of p for pcb3038 (the same nine

used with LOPT), and for all instances in classes SL and GR. Our comparison

uses values taken from Tables 1, 2, and 3 in the paper.

CGLS: Column Generation with Lagrangean/Surrogate Relaxation, studied by

Senne and Lorena (2002). Results are available for 15 ORLIB instances (pmed01,

pmed05, pmed06, pmed07, pmed10, pmed11, pmed12, pmed13, pmed15, pmed16,

pmed17, pmed18, pmed20, pmed25, and pmed30), for all three SL instances,

and for five values of p on instance pcb3038 (300, 350, 400, 450, and 500). We
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Table 11.12 Final results for class RW, random instances introduced by Resende and

Werneck (2003): median values, average percentage errors, and running times in seconds.

INSTANCE SINGLE-STAGE HYBRID DOUBLE-STAGE HYBRID

NAME p BEST MED %ERR TIME MED %ERR TIME

rw100 10 530 530 0.042 0.7 530 0.000 1.3

20 277 277 0.000 0.5 277 0.000 0.7

30 213 213 0.000 0.4 213 0.000 0.5

40 187 187 0.000 0.3 187 0.000 0.5

50 172 172 0.000 0.3 172 0.000 0.4

rw250 10 3691 3691 0.084 6.1 3691 0.063 10.4

25 1364 1370 0.587 3.3 1364 0.204 5.8

50 713 718 0.701 2.1 713 0.109 3.9

75 523 523 0.064 1.9 523 0.000 2.6

100 444 444 0.000 1.8 444 0.000 2.2

125 411 411 0.000 1.5 411 0.000 2.0

rw500 10 16108 16259 0.813 33.1 16108 0.068 76.9

25 5681 5749 0.974 20.8 5683 0.241 46.9

50 2628 2657 1.120 14.1 2635 0.364 27.7

75 1757 1767 0.746 11.6 1757 0.177 20.5

100 1380 1388 0.515 11.5 1382 0.105 20.4

150 1024 1026 0.174 11.1 1024 0.011 15.4

200 893 893 0.025 11.8 893 0.000 14.4

250 833 833 0.000 9.6 833 0.000 11.6

rw1000 10 67811 68202 0.642 153.6 68136 0.466 256.3

25 24896 25192 1.375 111.1 24964 0.451 293.5

50 11306 11486 1.501 77.7 11360 0.602 169.1

75 7161 7302 1.930 60.2 7207 0.576 160.1

100 5223 5297 1.500 55.5 5259 0.598 109.8

200 2706 2727 0.756 57.5 2710 0.164 100.4

300 2018 2021 0.099 55.2 2018 0.022 71.5

400 1734 1734 0.013 61.8 1734 0.000 73.5

500 1614 1614 0.000 47.9 1614 0.000 55.9

consider here the results found by method CG(t), taken from Tables 1, 2, and 4

in the paper.

Table 11.13 presents, for each of the methods studied, the average percentage devi-

ation with respect to the best solutions known, as given by Tables 11.6 to 11.11 above.

Values for HYBRID and HYB-SS were computed from the %ERR columns in those

tables. Each instance in class TSP is shown separately to allow a more precise analysis

of the algorithms. Values in slanted font indicate that not all instances in the set were

considered in the paper describing the method. A dash (—) is shown when no result

for the class is available. Class RW is not included in this comparison, since the only

results available are those obtained by our method.

The table shows that HYBRID is the only one whose average results are within

0.04% of the best values known for all classes. Furthermore, it obtained the best

results on average in five out of six sets of instances. The only exception is class

ORLIB: LSH found the optima of the six instances on which it was tested, whereas our
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Table 11.13 Average percentage deviations of each method with respect to the best

solution known. Values in slanted font indicate that not all instances in the set were tested

by the method. Smaller values are better.

SERIES HYBRID HYB-SS CGLS DEC LOPT LSH VNDS VNS

GR 0.020 0.049 — — — 0.727 — —

SL 0.004 0.043 0.691 — — 0.332 — —

ORLIB 0.001 0.002 0.101 — — 0.000 0.116 0.007

fl1400 0.032 0.145 — — — — 0.071 0.191

pcb3038 0.026 0.222 0.043 4.120 0.712 2.316 0.117 0.354

rl5934 0.024 0.170 — — — — 0.142 —

method remained within 0.001% of optimality on all 40 instances (if we consider the

median value obtained by HYBRID on each instance, instead of the average, it does

find all 40 optima).

In any case, the difference between HYBRID and other methods is often very small.

Several methods are virtually as good as ours in one or another class: that is the case

of VNDS for all three TSP instances; of VNS and LSH for ORLIB instances; and of

CGLS for pcb3038. This reveals the greatest strength of our method: robustness. It

was able to obtain competitive results for all classes of instances. No other method

among those tested has shown such degree of consistency.

Of course, we also have to consider the running times of the methods involved.

Since we do not have access to all the algorithms compared, we present the running

times reported by their authors. However, because different machines were used in

each case, a direct comparison is impossible. For reference, Table 11.14 presents

rough estimates of the relative speed of the machines involved. It shows the num-

ber of megaflops per second as reported by Dongarra (2003). These values refer to

the number of floating-point operations — not terribly relevant for most algorithms

compared, but they at least give an idea of the relative performance of the machines.

Whenever the exact model reported in a paper (shown in the second column of Ta-

ble 11.14) was not in Dongarra’s list, we show results for a similar machine with the

same processor (third column in the table). We note that “Sun SparcStation 10”. the

computer model mentioned by Hansen and Mladenović (1997) and Taillard (2003),

and “Sun Ultra 30”, mentioned by Senne and Lorena (2000; 2002), do not uniquely

define the processor speed. In these cases, we present a range of values.

For each instance in which a method was tested, we compute the ratio between the

time it required and the running time of HYBRID. Table 11.15 presents the geometric

means of these ratios taken over the instances in each set (once again, only instances

tested by the relevant method are considered). We believe this makes more sense than

the usual arithmetic mean in this case: if a method is twice as fast as another for 50%

of the instances and half as fast for the other 50%, intuitively the methods should be

considered equivalent. The geometric mean reflects that, whereas the arithmetic mean

does not.

One important observation regarding the values presented should be made: for VNS

and VNDS, the times taken into consideration are times in which the best solution was
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Table 11.14 Machines in which the various algorihms were tested.

METHOD MACHINE USED SIMILAR (DONGARRA, 2003) MFLOP/S

CGLS Sun Ultra 30 Sun UltraSparc II 250/300 MHz 114–172

DEC Sun SparcStation 10 Sun Sparc10 or Sun Sparc10/52 10–23

HYBRID SGI Challenge (196 MHz) SGI Origin 2000 195 MHz 114

HYB-SS SGI Challenge (196 MHz) SGI Origin 2000 195 MHz 114

LOPT Sun SparcStation 10 Sun Sparc10 or Sun Sparc10/52 10–23

LS Sun Ultra 30 Sun UltraSparc II 250/300 MHz 114–172

VNDS Sun Ultra I (143 MHz) Sun Ultra 1 mod. 140 63

VNS Sun SparcStation 10 Sun Sparc10 or Sun Sparc10/52 10–23

Table 11.15 Mean ratios between the running times obtained by methods in the literature

and those obtained by HYBRID (on different machines, see Table 11.14). Smaller values are

better. Values in slanted font indicate that there are instances in the set for which times

are not available.

SERIES HYBRID HYB-SS CGLS DEC LOPT LSH VNDS VNS

GR 1.00 0.65 — — — 1.11 — —

SL 1.00 0.78 0.51 — — 24.20 — —

ORLIB 1.00 0.90 55.98 — — 4.13 0.46 5.47

fl1400 1.00 0.55 — — — — 0.58 19.01

pcb3038 1.00 0.46 9.55 0.21 0.35 1.67 2.60 30.94

rl5934 1.00 0.48 — — — — 2.93 —

found (as in the papers that describe these methods (Hansen and Mladenović, 1997;

Hansen et al., 2001)); for all other algorithms (including ours), the total running time

is considered. The values reported for our algorithm also include the time necessary

to precompute all pairwise vertex distances in graph-based classes (ORLIB and SL).

Values greater than 1.00 in the table favor our method, whereas values smaller

than 1.00 favor others. One cannot not take these results too literally, since they were

obtained on different machines (as seen in Table 11.14). Small differences in running

time should not be used to draw any conclusion regarding the relative effectiveness of

the algorithms; in particular, running times within the same order of magnitude should

be regarded as indistinguishable.

Based on rough estimates of the relative running times, the only methods that ap-

pear to be significantly faster than ours are DEC and LOPT, at least for the instances

tested. Even though these methods (especially LOPT) can obtain solutions of reason-

able quality, they are not as close to optimality as those obtained by slower methods

such as ours or CGLS. Clearly, there is a trade-off between time and quality that has

to be taken into account. Another particularly fast method is VNDS, which obtains

solutions that are slightly worse on average than those obtained by our method, but

does so in less time.

As a final note, we observe that the single-stage version of our algorithm (HYB-

SS) is competitive with other methods in the graph-based classes, but lags significantly
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behind for Euclidean instances (though in these cases it takes roughly half the time of

the full HYBRID procedure). This shows that the post-optimization phase plays a

crucial role in the robustness of HYBRID.

11.7 CONCLUDING REMARKS

This chapter presented a hybrid heuristic for the p-median problem that combines

elements of several “pure” metaheuristics. It resembles GRASP in the sense that it is a

multistart method in which a solution is built by a randomized constructive method and

submitted to local search in each iteration. As an intensification strategy, we use path-

relinking, a method originally devised for tabu search and scatter search. Solutions

obtained by path-relinking, if far enough from the original extremes, are also subject

to local search, which has some similarity with VNS. In the post-optimization phase,

our algorithm uses the concept of multiple generations, a characteristic of genetic

algorithms. We have shown that a careful combination of these elements results in

a remarkably robust algorithm, capable of handling a wide variety of instances and

competitive with the best heuristics in the literature.

We stress the fact that all results shown in Section 11.6 were obtained by the final

version of our algorithm, with the same input parameters in all cases. The goal of

the experiments shown in Sections 11.3, 11.4, and 11.5, in which various components

and parameters were analyzed separately, was precisely to identify parameters that

are robust enough to handle different kinds of instances, with no need for extra class-

specific tuning. The tests were presented as a means to justify the decisions we made,

and are not meant to be repeated by the end user. Although some gains could be

obtained by additional tuning, we believe they would be very minor, and not worth the

effort. The only two parameters whose change would significantly alter the behavior of

the algorithm are the number of iterations and of elite solutions (these parameters were

set to 32 and 10, respectively, in Section 11.6). The effect in both cases is predictable:

an increase in any of these parameters would very likely result in better solutions at the

expense of higher running times. Given these considerations, we believe our heuristic

is a valuable candidate to be a general-purpose solver for the p-median problem. As

such, the program is available from the authors upon request, or it can be directly

downloaded from http://www.research.att.com/˜mgcr/popstar/.

We do not claim, of course, that our method is the best in every circumstance.

Other methods described in the literature can produce results of remarkably good

quality, often at the expense of somewhat higher running times. VNS (Hansen and

Mladenović, 1997) is especially successful for graph instances; VNDS (Hansen et al.,

2001) is particularly strong for Euclidean instances, and is often significantly faster

than our method (especially when the number of facilities to open is very small); and

CGLS (Senne and Lorena, 2002), which can obtain very good results for Euclidean in-

stances, has the additional advantage of providing good lower bounds. LOPT (Taillard,

2003) is significantly faster than our method for TSP instances, while still obtaining

reasonably good solutions. After the preliminary version of our paper appeared (Re-

sende and Werneck, 2002), at least two algorithms worthy of notice have been pub-

lished. Garcı́a-López et al. (2003) suggest a parallel scatter search heuristic that ob-

tains excellent results on instance fl1400 (even improving some of the upper bounds
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shown in Table 11.6), but with much higher running times. Avella et al. (2003) devel-

oped a branch-and-cut-and-price algorithm for the p-median problem that can solve

large instances to optimality. Failing to do that, at the very least it can provide very

good approximations. This method is very competitive in terms of both solution qual-

ity and runnning times. The reader is referred to their paper for a direct comparison

with HYBRID.

The goal of our method is to produce close-to-optimal solutions. Therefore, it

should be said that it does not handle well really large instances. If the input is a graph

with millions of vertices, simply computing all-pairs shortest paths would be pro-

hibitively slow. For that purpose, one would probably be better off relying on methods

based on sampling techniques like the one proposed by Thorup (2001). Their aim is to

find solutions that are “good”, not near-optimal, in a reasonable (quasi-linear) amount

of time. However, if one is interested in solving instances large enough to preclude

the application of exact algorithms, but not so large so as to make anything worse than

quasi-linear prohibitive, our method has proven to be a very worthy alternative.

An interesting research topic would be to combine elements in this paper with those

of alternative heuristics for the p-median problem. For example, the fast implemen-

tation of the local search procedure could be used within VNS, LSH, or CGLS. The

combination of elite solutions through path-relinking could be used with any method

that generates a population of solutions, such as VNS, VNDS, or tabu search. LOPT

and DEC, which are significantly faster than our method, could be used instead of the

randomized constructive algorithm in the multistart phase of our algorithm.

Some of the ideas proposed here may even have applications beyond the p-median

and related location problems. In particular, we believe the modifications we proposed

to standard path-relinking are worthy of deeper investigation. Our algorithm benefited

from strategies that improve diversity: selecting solutions from the pool in a biased

way, returning a local minimum in the path if no improving solution is found, and

applying local search to the solution returned. These strategies, combined with multi-

generation path-relinking, can be easily incorporated into traditional metaheuristics

with wide application, such as GRASP, tabu search, and VNS.
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N. Mladenović and P. Hansen. Variable neighbourhood search. Computers and Oper-

ations Research, 24:1097–1100, 1997.



BIBLIOGRAPHY 321

R. M. Nauss and R. E. Markland. Theory and application of an optimizing procedure

for lock box location analysis. Management Science, 27:855–865, 1981.

M. R. Rao. Cluster analysis and mathematical programming. Journal of the American

Statistical Association, 66(335):622–626, 1971.

G. Reinelt. TSPLIB: A traveling salesman problem library. ORSA

Journal on Computing, 3:376–384, 1991. http://www.iwr.uni-

heidelberg.de/groups/comopt/software/TSPLIB95/.

M. G. C. Resende and C. C. Ribeiro. Greedy randomized adaptive search procedures.

In F. Glover and G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–

249. Kluwer, 2003.

M. G. C. Resende and R. F. Werneck. A GRASP with path-relinking for the p-median

problem. Technical Report TD-5E53XL, AT&T Labs Research, 2002.

M. G. C. Resende and R. F. Werneck. On the implementation of a swap-based local

search procedure for the p-median problem. In R. E. Ladner, editor, Proceedings

of the Fifth Workshop on Algorithm Engineering and Experiments (ALENEX’03),

pages 119–127. SIAM, 2003.

C. C. Ribeiro, E. Uchoa, and R. F. Werneck. A hybrid GRASP with perturbations for

the Steiner problem in graphs. INFORMS Journal on Computing, 14(3):228–246,

2002.

E. Rolland, D. A. Schilling, and J. R. Current. An efficient tabu search procedure for

the p-median problem. European Journal of Operational Research, 96:329–342,

1996.

K. E. Rosing. An empirical investigation of the effectiveness of a vertex substitution

heuristic. Environment and Planning B, 24:59–67, 1997.

K. E. Rosing and C. S. ReVelle. Heuristic concentration: Two stage solution construc-

tion. European Journal of Operational Research, 97:75–86, 1997.

K. E. Rosing, C. S. ReVelle, E. Rolland, D. A. Schilling, and J. R. Current. Heuristic

concentration and tabu search: A head to head comparison. European Journal of

Operational Research, 104:93–99, 1998.

K. E. Rosing, C. S. ReVelle, and H. Rosing-Vogelaar. The p-median and its linear pro-

gramming relaxation: An approach to large problems. Journal of the Operational

Research Society, 30(9):815–823, 1979.

E. L. F. Senne, 2002. Personal communication.

E. L. F. Senne and L. A. N. Lorena. Langrangean/surrogate heuristics for p-median

problems. In M. Laguna and J. L. González-Velarde, editors, Computing Tools
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Abstract: We present a multistart heuristic for the uncapacitated facility location prob-

lem, based on a very successful method we originally developed for the p-median prob-

lem. We show extensive empirical evidence to the effectiveness of our algorithm in prac-

tice. For most benchmarks instances in the literature, we obtain solutions that are either

optimal or a fraction of a percentage point away from it. Even for pathological instances

(created with the sole purpose of being hard to tackle), our algorithm can get very close

to optimality if given enough time. It consistently outperforms other heuristics in the

literature.

Keywords: GRASP, location theory, facility location.

12.1 INTRODUCTION

Consider a set F of potential facilities, each with a setup cost c( f ), and let U be a

set of users (or customers) that must be served by these facilities. The cost of serving

user u with facility f is given by the distance d(u, f ) between them (often referred to

as service cost or connection cost as well). The facility location problem consists in

determining a set S⊆ F of facilities to open so as to minimize the total cost (including

323



324 AN INTRODUCTION TO GRASP

setup and service) of covering all customers:

cost(S) = ∑
f∈S

c( f )+ ∑
u∈U

min
f∈S

d(u, f ).

Note that we assume that each user is allocated to the closest open facility, and

that this is the uncapacitated version of the problem: there is no limit to the num-

ber of users a facility can serve. Even with this assumption, the problem is NP-

hard (Cornuéjols et al., 1990).

This is perhaps the most common location problem, having been widely studied in

the literature, both in theory and in practice.

Exact algorithms for this problem do exist (some examples are Conn and Cor-

nueéjols (1990); Körkel (1989)), but the NP-hard nature of the problem makes heuris-

tics the natural choice for larger instances.

Ideally, one would like to find heuristics with good performance guarantees. In-

deed, much progress has been made in terms of approximation algorithms for the

metric version of this problem (in which all distances obey the triangle inequality).

Shmoys et al. (1997) presented the first polynomial-time algorithm with a constant

approximation factor (approximately 3.16). Several improved algorithms have been

developed since then, with some of the latest (Jain et al., 2003; 2002; Mahdian et al.,

2002) being able to find solutions within a factor of around 1.5 from the optimum. Un-

fortunately, there is not much room for improvement in this area. Guha and Khuller

(1999) have established a lower bound of 1.463 for the approximation factor, under

some widely believed assumptions.

In practice, however, these algorithms tend to be much closer to optimality for non-

pathological instances. The best algorithm proposed by Jain et al. (2003), for example,

has a performance guarantee of only 1.61, but was always within 2% of optimality in

their experimental evaluation.

Although interesting in theory, approximation algorithms are often outperformed in

practice by more straightforward heuristics with no particular performance guarantees.

Constructive algorithms and local search methods for this problem have been used for

decades, since the pioneering work of Kuehn and Hamburger (1963). Since then, more

sophisticated metaheuristics have been applied, such as simulated annealing (Alves

and Almeida, 1992), genetic algorithms (Kratica et al., 2001), tabu search (Ghosh,

2003b; Michel and Van Hentenryck, 2003), and the so-called “complete local search

with memory” (Ghosh, 2003b). Dual-based methods, such as Erlenkotter’s dual as-

cent (Erlenkotter, 1978), Guignard’s Lagragean dual ascent (Guignard, 1988), and

Barahona and Chudak’s volume algorithm (Barahona and Chudak, 1999) have also

shown promising results.

An experimental comparison of some state-of-the-art heuristics is presented by

Hoefer (2003) (slightly more detailed results are presented in Hoefer (2002a)). Five al-

gorithms are tested: JMS, an approximation algorithm presented by Jain et al. (2002);

MYZ, also an approximation algorithm, this one by Mahdian et al. (2002); swap-based

local search; Michel and Van Hentenryck’s tabu search (Michel and Van Hentenryck,

2003); and the volume algorithm (Barahona and Chudak, 1999). Hoefer’s conclusion,

based on experimental evidence, is that tabu search finds the best solutions within

reasonable time, and recommends this method for practitioners.
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function HYBRID (seed,maxit,elitesize)
1 randomize(seed);
2 init(elite,elitesize);
3 for i = 1 to maxit do

4 S← randomizedBuild();
5 S← localSearch(S);
6 S′← select(elite,S);
7 if (S′ 6= NULL) then

8 S′← pathRelinking(S,S′);
9 add(elite,S′);
10 endif

11 add(elite,S);
12 endfor

13 S← postOptimize(elite);
14 return S;

end HYBRID

Figure 12.1 Pseudocode for HYBRID, as given in Resende and Werneck (2004).

In this paper, we provide an alternative that can be even better in practice. It is

a hybrid multistart heuristic akin to the one we developed for the p-median problem

in Resende and Werneck (2004). A series of minor adaptations is enough to build

a very robust algorithm for the facility location problem, capable of obtaining near-

optimal solutions for a wide variety of instances of the facility location problem.

The remainder of the paper is organized as follows. In Section 12.2, we describe

our algorithm and its constituent parts. Section 12.3 presents empirical evidence to

the effectiveness of our method, including a comparison with Michel and Van Henten-

ryck’s tabu search. Final remarks are made in Section 12.4.

12.2 THE ALGORITHM

In Resende and Werneck (2004), we introduce a new hybrid metaheuristic and apply it

to the p-median problem. Figure 12.1 reproduces the outline of the algorithm, exactly

as presented there.

The method works in two phases. The first is a multistart routine with intensifica-

tion. In each iteration, it builds a randomized solution and applies local search to it.

The resulting solution (S) is combined, through a process called path-relinking, with

some other solution from a pool of elite solutions (which represents the best solutions

found thus far). This results in a new solution S′. The algorithm then tries to insert

both S′ and S into the pool; whether any of those is actually inserted depends on its

value, among other factors. The second is a post-optimization phase, in which the

solutions in the pool of elite solutions are combined among themselves in a process

that hopefully results in even better solutions.

We call this method HYBRID because it combines elements of several other meta-

heuristics, such as scatter and tabu search (which make heavy use of path-relinking)
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and genetic algorithms (from which we take the notion of generations). A more de-

tailed analysis of these similarities is presented in Resende and Werneck (2004).

Of course, Figure 12.1 presents only the outline of an algorithm. Many details

are left to be specified, including which problem it is supposed to solve. Although

originally proposed for the p-median problem, there is no specific mention to it in

the code, and in fact the same framework could be applied to other problems. In this

paper, our choice is facility location.

Recall that the p-median problem is very similar to facility location: the only dif-

ference is that, instead of assigning costs to facilities, the p-median problem must

specify p, the exact number of facilities that must be opened. With minor adaptations,

we can reuse several of the components used in Resende and Werneck (2004), such as

the constructive algorithm, local search, and path-relinking.

The adaptation of the p-median heuristic shown in this paper is as straightforward

as possible. Although some problem-specific tuning could lead to better results, the

potential difference is unlikely to be worth the effort. We therefore settle for simple,

easy-to-code variations of the original method.

Constructive heuristic.. In each iteration i, we first define the number of facil-

ities pi that will be open. This number is ⌈m/2⌉ in the first iteration; for i > 1, we

pick the average number of facilities in the solutions found (after local search) in the

first i−1 iterations. Now that we have pi, we execute the sample procedure exactly as

described in Resende and Werneck (2004). It adds facilities one by one. In each step,

the algorithm chooses ⌈log2(m/pi)⌉ facilities uniformly at random and selects the one

among those that reduces the total service cost the most.

Local search.. The local search used in Resende and Werneck (2004) is based on

swapping facilities. Given a solution S, we look for two facilities, fr ∈ S and fi 6∈ S,

which, if swapped, lead to a better solution. A property of this method is that it keeps

the number of open facilities constant. This is required for the p-median problem, but

not for facility location, so in this paper we also allow “pure” insertions and deletions

(in addition to swaps). All possible insertions, deletions, and swaps are considered,

and the best among those is performed. The local search stops when no improving

move exists, in which case the current solution is a local minimum (or local optimum).

This local search is known as flip + swap (Kochetov, 2003).

The actual implementation of the local search is essentially the same used in Re-

sende and Werneck (2004) (and described in detail in Resende and Werneck (2003a;b))

for the p-median problem. We briefly recall the main ideas here. Let profit( fi, fr) be

the amount by which the solution value is reduced if fi is the facility inserted and fr

the one removed. The algorithm computes the profit associated to every pair ( fi, fr)
(for all fi ∈ S and all fr 6∈ S). If the maximum profit is positive, we perform the corre-

sponding swap and repeat; otherwise, we stop. The computation is divided into three

components:

save( fi): decrease in solution value due to the insertion of fi (with no associated

removal);
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loss( fr): increase in solution value due to the removal of fr (with no associated

insertion);

extra( fi, fr): a positive correction term that accounts for the fact that the in-

sertion of fi and the removal of fr may not be independent (a user previously

assigned to fr may be reassigned to fi); the definition of extra is such that the

following relation holds:

profit( fi, fr) = save( fi)− loss( fr)+ extra( fi, fr).

Instead of computing these values from scratch in each iteration, our implementa-

tion just updates them from one iteration of the local search to another. To achieve this

goal, save and loss are represented as arrays; extra, being the only term that depends

on both fi and fr, is represented as a matrix.

It can be shown (Resende and Werneck, 2003b) that extra( fi, fr) is nonzero only

when fi and fr are “close” to each other.1 One only has to worry explicitly about

the nonzero terms; all others are determined implicitly. This observation is crucial

for a fast implementation of the local search procedure, since it allows extra to be

represented as a sparse matrix. In instances from the literature, this implementation

has been shown (Resende and Werneck, 2003b) to be up to three orders of magnitude

faster than previous methods (even though its worst-case complexity, O(mn), is the

same) for the p-median problem.

As mentioned in Resende and Werneck (2003a), this algorithm can be adapted to

the facility location problem in a very natural way. First, we must take setup costs into

account, which can be accomplished simply by subtracting them from save and loss.

Second, we must consider that single insertions or deletions are now valid moves (and

not only swaps). But this comes for free: save and loss already represent the profits

obtained with insertions and deletions, respectively. These are the only differences

between the algorithms.

Path-relinking.. Path-relinking is an intensification procedure originally devised

for scatter search and tabu search (Glover, 1996; Glover et al., 2000; Laguna and Martı́,

1999), but often used with other methods, such as GRASP (Resende and Ribeiro,

2003; 2005). In this paper, we apply the variant described in Resende and Werneck

(2004). It takes two solutions as input, S1 and S2. The algorithm starts from S1 and

gradually transforms it into S2. The operations that change the solution in each step

are the same used in the local search: insertions, deletions, and swaps. In this case,

however, only facilities in S2 \ S1 can be inserted, and only those in S1 \ S2 can be

removed. In each step, the most profitable (or least costly) move—considering all

three kinds—is performed. The procedure returns the best local optimum in the path

from S1 to S2. If no local optimum exists, one of the extremes is chosen with equal

probability.

1More precisely, when there is at least one user for which fi is closest than the second closest facility in the

original solution.
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Elite solutions.. The add operation in Figure 12.1 must decide whether a new

solution should be inserted into the pool or not. The criteria we use here are similar

to those proposed in Resende and Werneck (2004). They are based on the notion of

symmetric difference between two solutions Sa and Sb, defined as |Sa \Sb|+ |Sb \Sa|.2
A new solution will be inserted into the pool only if its symmetric difference to each

cheaper solution already there is at least four. Moreover, if the pool is full, the new

solution must also cost less than the most expensive element in the pool; in that case,

the new solution replaces the one (among those of equal or greater cost) it is most

similar to.

Intensification.. After each iteration, the solution S obtained by the local search

procedure is combined (with path-relinking) with a solution S′ obtained from the pool,

as shown in line 8 of Figure 12.1. Solution S′ is chosen at random, with probability

proportional to its symmetric difference to S. Path-relinking is always performed from

S to S′.

Post-optimization.. Once the multistart phase is over, all elite solutions are com-

bined with one another, also with path-relinking (within each pair, path-relinking is

performed from the best to the worst solution). The solutions thus produced are used

to create a new pool of elite solutions (subject to the same rules as in the original

pool), to which we refer as a new generation. If the best solution in the new gener-

ation is strictly better than the best previously found, we repeat the procedure. This

process continues until a generation that does not improve upon the previous one is

created. The best solution found across all generations is returned as the final result of

the algorithm.

Parameters.. As the outline in Figure 12.1 shows, the procedure takes only two

input parameters (other than the random seed): the number of iterations in the multi-

start phase and the size of the pool of elite solutions. In Resende and Werneck (2004),

we set those values to 32 and 10, respectively. In the spirit of keeping changes to a

minimum, we use the same values here for the “standard version” of our algorithm.

Whenever we need versions of our algorithm with shorter or longer running times

(to ensure a fair comparison with other methods), we change both parameters. Re-

call that the running time of the multistart phase of the algorithm depends linearly on

the number of iterations, whereas the post-optimization phase depends quadratically

(roughly) on the number of elite solutions (because all solutions are combined among

themselves). Therefore, if we want to multiply the average running time of the algo-

rithm by some factor x, we just multiply the number of multistart iterations by x and

the number of elite solutions by
√

x (rounding appropriately).

We observe that running time and solution quality are determined by several design

choices, and not only the number of iterations and of elite solutions. Consider the

intensification strategies, for instance. To reduce the running time of the algorithm, we

2This definition is slightly different from the one we used for the p-median problem, since now different

solutions need not have the same number of facilities.
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could decide not to run the post-optimization phase, or not to run path-relinking during

the multistart phase (or not at all). Or, to increase solution quality, we could consider

performing path-relinking between two solutions S1 and S2 in both ways (from S1 to S2

and from S2 to S1) and picking the best. We could also try other constructive heuristics.

These and other variants of the algorithm are studied in the context of the p-median

problem in Resende and Werneck (2004). The variant reported here achieved the

best balance overall between running time and solution quality. The most important

aspects of the algorithm are the fast implementation of the local search and the use

of path-relinking. Other aspects, such as the constructive heuristic, the methods for

maintaining the pool of elite solutions, and the precise criteria for adding and removing

solutions from it played relatively minor roles.

12.3 EMPIRICAL RESULTS

12.3.1 Experimental Setup

The algorithm was implemented in C++ and compiled with the SGI MIPSPro C++

compiler (v. 7.30) with flags -O3 -OPT:Olimit=6586. The program was run on

an SGI Challenge with 28 196-MHz MIPS R10000 processors, but each execution

was limited to a single processor. All times reported are CPU times measured by

the getrusage function with a precision of 1/60 second. The random number gen-

erator we used was Matsumoto and Nishimura’s Mersenne Twister (Matsumoto and

Nishimura, 1998). The source code for the algorithm is available from the authors

upon request.

The algorithm was tested on all classes from the UflLib (Hoefer, 2003) at the time

of writing and on class GHOSH, described in Ghosh (2003b). In every case, the num-

ber of users is the same as the number of potential facilities. The reader is referred

to Hoefer (2002b) and Ghosh (2003b) for detailed descriptions of each class. A brief

overview is presented below:

BK: Generated based on the description provided by Bilde and Krarup (1977).

There are 220 instances in total, with 30 to 100 users. Connection costs are

always picked uniformly at random from [0,1000]. Setup costs are always at

least 1000, but the exact range depends on the subclass (there are 22 of those,

with 10 instances each).

FPP: Class introduced by Kochetov (2003); Kochetov and Ivanenko (2003).

Each instance corresponds to a finite projective plane of order k, with n = k2 +
k + 1 points and n lines. In the UFL instance, the distance between i and j is

an integer between 0 and 4 if point j is on line i, and infinity otherwise; at most

n+1 values are finite. Setup costs are 3000. There are two subclasses, each with

40 instances: FPP11 (with k = 11 and n = 133) and FPP17 (with k = 17 and

n = 307). Although optimal solutions in this class can be found in polynomial

time, the instances are hard for algorithms based on the flip+swap local search,

since each instance has a large number of strong local optima and the distance

between them is at least 2k (Kochetov, 2003).
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GAP: Also designed by Kochetov (2003); Kochetov and Ivanenko (2003), these

instances have large duality gaps, usually greater than 20%. They are hard es-

pecially for dual-based methods. Setup costs are always 3000. The service cost

associated with each facility is infinity for most customers, and between 0 and 5

for the remaining few (the end result resembles a set covering instance). There

are three subclasses (GAPA, GAPB, and GAPC), each with 30 instances. Each

customer in GAPA is covered by 10 facilities (i.e., the service cost for all others

is infinity); each facility in GAPB covers exactly 10 customers; subclass GAPC

(the hardest) combines both constraints: each customer is covered by 10 facili-

ties, and each facility covers 10 customers. On all cases, assignments are made

at random.

GHOSH: Class created by Ghosh (2003b), following the guidelines set up by

in Körkel (1989). There are 90 instances in total, with n = m on all cases.

They are divided into two groups of 45 instances, one symmetric and the other

asymmetric. Each group contains three values of n: 250, 500, and 750.3 Con-

nection costs are integers taken uniformly at random from [1000,2000]. For

each value of n there are three subclasses, each with five instances; they differ

in the range of values from which setup costs are drawn: it can be [100,200]
(range A), [1000,2000] (B) or [10000,20000] (C). Each subclass is named after

its parameters: GS250B, for example, is symmetric, has 250 nodes, and service

costs ranging from 1000 to 2000.

GR: Graph-based instances by Galvão and Raggi (1989). The number of users

is either 50, 70, 100, 150, or 200. There are 50 instances in total, 10 for each

value of n. Connection costs are given by the corresponding shortest paths in the

underlying graph. (Instances are actually given as distance matrices, so there is

no overhead associated with computing shortest paths.)

M*: This class was created with the generator introduced by Kratica et al. (2001).

These instances have several near-optimal solutions, which according the au-

thors makes them close to “real-life” applications. There are 22 instances in this

class, with n ranging from 100 to 2000.

MED: Originally proposed for the p-median problem by Ahn et al. (1998), these

instances were later used in the context of uncapacitated facility location by

Barahona and Chudak (1999). Each instance is a set of n points picked uni-

formly at random in the unit square. A point represents both a user and a po-

tential facility, and connection costs are determined by the corresponding Eu-

clidean distances. All values are rounded up to 4 significant digits and made

integer (Hoefer, 2003). Six values of n were used: 500, 1000, 1500, 2000,

2500, and 3000. In each case, three different setup costs were tested:
√

n/10,√
n/100, and

√
n/1000.

3These are actually the three largest values tested in Ghosh (2003b); some smaller instances are tested there

as well.
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ORLIB: These instances are part of Beasley’s OR-Library (Beasley, 1990). Orig-

inally proposed as instances for the capacitated version of the facility location

problem in Beasley (1993), they can be used in the uncapacitated setting as well

(one just has to ignore the capacities).

All instances were downloaded from the UflLib website (Hoefer, 2002b), with the

exception of those in class GHOSH, created with a generator kindly provided by Ghosh

(2003a). Five of these eight classes were used in Hoefer’s comparative analysis (Hoe-

fer, 2002a; 2003): BK, GR, M*, MED, and ORLIB.

12.3.2 Results

12.3.2.1 Quality Assessment. As already mentioned, the “standard” version

of our algorithm has 32 multistart iterations and 10 elite solutions. It was run ten times

on each instance available, with ten different random seeds (1 to 10).

Although more complete data will be presented later in this section, we start with a

broad overview of the results we obtained. Table 12.1 shows the average deviation (in

percentage terms) obtained by our algorithm with respect to the best known bounds.

All optima are known for FPP, GAP, BK, GR, and ORLIB. We used the best upper

bounds shown in Hoefer (2002b) for MED and M* (upper bounds that are not proved

optimal were obtained either by tabu search or local search). For GHOSH, we used

the bounds shown in Ghosh (2003b); some were obtained by tabu search, others by

complete local search with memory. Table 12.1 also shows the mean running times

obtained by our algorithm. To avoid giving too much weight to larger instances, we

used geometric means for times.

Table 12.1 Average deviation with respect to the best known upper bounds and mean

running times of HYBRID (with 32 iterations and 10 elite solutions) for each class.

CLASS AVG%DEV TIME (S)

BK 0.002 0.28

FPP 33.375 7.66

GAP 5.953 1.64

GHOSH -0.039 34.31

GR 0.000 0.32

M* 0.000 7.86

MED -0.391 369.67

ORLIB 0.000 0.17

In terms of solution quality, our algorithm does exceedingly well for all five classes

tested in Hoefer (2002a). It matched the best known bounds (usually the optimum) on

every single run of GR, M*, and ORLIB. The algorithm did have a few unlucky runs on

class BK, but the average error was still only 0.001%. On MED, the solutions it found

were on average 0.4% better than the best upper bounds shown in Hoefer (2002a).
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Our method also handles very well the only class not in the UflLib, GHOSH. It

found solutions at least as good as the best in Ghosh (2003b). This is especially

relevant considering that we are actually comparing our results with the best among

two algorithms in each case (tabu search and complete local search with memory).

The two remaining classes, GAP and FPP, were created with the intent of being

hard. At least for our algorithm, they definitely are: on average, solutions were within

28% and 6% from optimality, respectively. This is several orders of magnitude worse

than the results obtained for other classes. However, as Subsection 12.3.2.2 will show,

the algorithm can obtain solutions of much better quality if given more time.

Detailed results.. For completeness, Tables 12.2 to 12.8 show the detailed results

obtained HYBRID on each of the eight classes of instances. They refer to the exact

same runs used to create Table 12.1.

Tables 12.2 and 12.3 show the results for M* and ORLIB, respectively. For each

instance, we show the best known bounds (which were matched by our algorithm on

all runs on both classes) and the average running time.

Table 12.2 Results for M* instances. Average solution values for HYBRID and mean

running times (with 32 iterations and 10 elite solutions). All runs matched the best bounds

shown in Hoefer (2002a).

NAME n VALUE TIME (S)

mo1 100 1305.95 0.988

mo2 100 1432.36 1.030

mo3 100 1516.77 0.960

mo4 100 1442.24 0.892

mo5 100 1408.77 0.815

mp1 200 2686.48 3.695

mp2 200 2904.86 4.125

mp3 200 2623.71 3.500

mp4 200 2938.75 3.887

mp5 200 2932.33 4.169

mq1 300 4091.01 8.919

mq2 300 4028.33 7.802

mq3 300 4275.43 9.508

mq4 300 4235.15 9.834

mq5 300 4080.74 10.813

mr1 500 2608.15 27.221

mr2 500 2654.74 27.646

mr3 500 2788.25 26.417

mr4 500 2756.04 27.595

mr5 500 2505.05 26.989

ms1 1000 5283.76 113.395

mt1 2000 10069.80 701.167
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Table 12.3 Results for ORLIB instances. Average running times for HYBRID with 32

iterations and 10 elite solutions. The optimum solution value was found on all runs.

NAME n OPTIMUM TIME (S)

cap101 50 796648.44 0.055

cap102 50 854704.20 0.056

cap103 50 893782.11 0.072

cap104 50 928941.75 0.077

cap131 50 793439.56 0.105

cap132 50 851495.32 0.097

cap133 50 893076.71 0.131

cap134 50 928941.75 0.140

cap71 50 932615.75 0.034

cap72 50 977799.40 0.039

cap73 50 1010641.45 0.053

cap74 50 1034976.97 0.049

capa 1000 17156454.48 7.380

capb 1000 12979071.58 6.245

capc 1000 11505594.33 6.148

Results for class MED are shown in Table 12.4. For each instance, we present the

best known lower and upper bounds, as given in Table 12 of Hoefer (2002a). Lower

bounds were found by the volume algorithm (Barahona and Chudak, 1999), and upper

bounds by either local search or tabu search (Michel and Van Hentenryck, 2003),

depending on the instance. The average solution value obtained by HYBRID in each

case is shown in Table 12.4 in absolute and percentage terms (in the latter case, when

compared with both lower and upper bounds). On average, HYBRID found solutions

that are at least 0.15% better than previous bounds, and sometimes the gains were

upwards of 0.5%. In fact, our results were in all cases much closer to the lower bound

than to previous upper bounds. Average solution values are within 0.178% or less

from optimality, possibly better (depending on how good the lower bounds are).

Since classes BK and GR have more instances (220 and 50, respectively), we ag-

gregate them into subclasses. Each subclass contains 10 instances built with the exact

same parameters (such as number of elements and cost distribution), just with differ-

ent random seeds. Table 12.5 presents the results for BK: for each subclass, we present

the average error obtained by the algorithm and the average running time. Table 12.6

refers to class GR and presents the average running times only, since the optimal solu-

tion was found in every single run.

Table 12.7 shows the results for class GHOSH, which is divided into 5-instance

subclasses. The table shows the best bounds found in Ghosh (2003b), by either tabu

search or complete local search with memory (we picked the best in each case). For

reference, we also show the running times reported in Ghosh (2003b), but the reader
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Table 12.4 Results for MED instances. Columns 2 and 3 show the best known lower and

upper bounds, as given in Tables 11 and 12 of Hoefer (2002a). The next three columns

show the quality obtained by HYBRID: first the average solution value, then the average

percentage deviation from the lower and upper bounds, respectively. The last column shows

the average running times of our method.

NAME LOWER UPPER AVERAGE AVG%L AVG%U TIME (S)

med0500-10 798399 800479 798577.0 0.022 -0.238 33.2

med0500-100 326754 328540 326805.4 0.016 -0.528 32.9

med0500-1000 99099 99325 99169.0 0.071 -0.157 23.6

med1000-10 1432737 1439285 1434185.4 0.101 -0.354 173.9

med1000-100 607591 609578 607880.4 0.048 -0.278 148.8

med1000-1000 220479 221736 220560.9 0.037 -0.530 141.7

med1500-10 1997302 2005877 2001121.7 0.191 -0.237 347.8

med1500-100 866231 870182 866493.2 0.030 -0.424 378.7

med1500-1000 334859 336263 334973.2 0.034 -0.384 387.2

med2000-10 2556794 2570231 2558120.8 0.052 -0.471 717.5

med2000-100 1122455 1128392 1122861.9 0.036 -0.490 650.8

med2000-1000 437553 439597 437690.7 0.031 -0.434 760.0

med2500-10 3095135 3114458 3100224.7 0.164 -0.457 1419.5

med2500-100 1346924 1352322 1347577.6 0.049 -0.351 1128.2

med2500-1000 534147 536546 534426.6 0.052 -0.395 1309.4

med3000-10 3567125 3586599 3570818.8 0.104 -0.440 1621.1

med3000-100 1600551 1611186 1602530.9 0.124 -0.537 1977.6

med3000-1000 643265 645680 643541.8 0.043 -0.331 2081.4

should bear in mind that they were found on a machine with a different processor (an

Intel Mobile Celeron running at 650 MHz).4

The last three columns in the table report the results obtained by HYBRID: the

solution value, the average deviation with respect to the upper bounds, and the running

time (all three values are averages taken over the 50 runs in each subclass).

Finally, average solution qualities and running times are shown to each subclass of

FPP and GAP in Table 12.8.

12.3.2.2 Comparative Analysis. We have seen that our algorithm obtains

solutions of remarkable quality for most classes of instances tested. On their own,

however, these results do not mean much. Any reasonably scalable algorithm should

be able to find good solutions if given enough time.

4From Dongarra (2003), we can infer that this processor and the one we use have similar speeds, or at least

within the same order of magnitude. The machine in Dongarra (2003) that is most similar to Ghosh’s is a

Celeron running at 433 MHz, capable of 160 Mflop/s. According to the same list, the speed of our processor

is 114 Mflop/s (based on an entry for an SGI Origin 2000 at 195 MHz).
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Table 12.5 Results for BK instances: average percent errors with respect to the optima

and average running times of HYBRID (with 32 iterations and 10 elite solutions).

SUBCLASS n AVG%ERR TIME (S)

B 100 0.0000 0.310

C 100 0.0160 0.450

D01 80 0.0001 0.223

D02 80 0.0000 0.211

D03 80 0.0000 0.199

D04 80 0.0000 0.170

D05 80 0.0000 0.162

D06 80 0.0000 0.186

D07 80 0.0000 0.174

D08 80 0.0000 0.166

D09 80 0.0000 0.175

D10 80 0.0000 0.166

E01 100 0.0000 0.476

E02 100 0.0000 0.588

E03 100 0.0188 0.512

E04 100 0.0000 0.464

E05 100 0.0000 0.376

E06 100 0.0000 0.408

E07 100 0.0000 0.416

E08 100 0.0000 0.418

E09 100 0.0000 0.352

E10 100 0.0000 0.353

With that in mind, we compare the results obtained by our algorithm with those ob-

tained by Michel and Van Hentenryck’s tabu search algorithm (Michel and Van Hen-

tenryck, 2003), which achieved the best experimental results among the algorithms

tested in (Hoefer, 2002a). We refer to this method as TABU. Starting from a random

solution, in each iteration it executes a flip operation, i.e., it opens or closes an individ-

ual facility. This defines a neighborhood that is more restricted than the one we use,

which also allows swaps. While the best neighbor can be found considerably faster,

the local search tends to reach local optima sooner. To escape them, the method uses a

tabu list, which forbids facilities recently inserted or removed from being flipped. The

algorithm stops after executing 500 consecutive iterations without an improvement in

the objective function

We downloaded the source code for an implementation of TABU from the UflLib.

To ensure that running times are comparable, we compiled it with the same parame-

ters used for HYBRID and ran the program on the same machine. Since TABU has a

randomized component (the initial solution), we ran it 10 times for each instance in

the class, with different seeds for the random number generator (the seeds were 1 to

10).
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Table 12.6 Results for GR instances: average running times of HYBRID (with 32 itera-

tions and 10 elite solutions) as a function of n (each subclass contains 10 instances). Every

execution found the optimal solution.

n TIME (S)

50 0.098

70 0.163

100 0.308

150 0.602

200 1.123

As suggested in Michel and Van Hentenryck (2003), the algorithm was run with

500 non-improving consecutive iterations as the stopping criterion. However, with

this number of iterations TABU is much faster than the standard version of HYBRID

(with 32 iterations and 10 elite solutions). For a fair comparison, we also ran a faster

version of our method, with only 8 iterations and 5 elite solutions. The results obtained

by this variant of HYBRID and by TABU are summarized in Table 12.9. For each class,

the average solution quality (as the percentage deviation with respect to the upper

bound in Hoefer (2002a)) and the mean running times are shown.

Note that both algorithms have similar running times, much lower than those pre-

sented in Table 12.1. Even so, both algorithms find solutions very close to the optimal

(or best known) on five classes: BK, GHOSH, GR, M*, and ORLIB. Although in all

cases HYBRID found slightly better solutions, both methods performed rather well: on

average, TABU was always within 0.1% of the best previously known bounds, and HY-

BRID was within 0.03%. Our algorithm was actually able to improve the bounds for

GHOSH (presented in Ghosh (2003b)), whereas TABU could only match them (albeit

in slightly less time).

Although there are some minor differences between the algorithms for these five

classes, it is not clear which is best. Both usually find the optimal values in comparable

times. In a sense, these instances are just too easy for either method. We need to look

at the remaining classes to draw any meaningful conclusion.

Consider class MED. Both algorithms run for essentially the same time on average.

TABU almost matches the best bounds presented in Hoefer (2002a). This was expected,

since most of those bounds were obtained by TABU itself (a few were established by

local search). However, HYBRID does much better: on average, the solutions it finds

are 0.364% below the reference upper bounds.

Even greater differences were observed for GAP and FPP: these instances are meant

to be hard, and indeed they are for both algorithms. On average, the solutions HYBRID

found for GAP instances were almost 10% off optimality; TABU did even worse, with

an average error of 16%. The hardest class is FPP: the average deviation from opti-

mality was almost 70% for our algorithm, and more than 95% for TABU. Even though

HYBRID does slightly better than TABU on both classes, the results it provides are

hardly satisfactory for a method that is supposed to find near-optimal solutions.
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Table 12.7 Results for GHOSH instances. The upper bounds are the best reported by

(Ghosh, 2003b), with the corresponding running times (obtained on a different machine, an

Intel Mobile Celeron running at 650 MHz). The results for HYBRID (with 32 iterations and

10 elite solutions) are shown in the last three columns.

INSTANCE UPPER BOUND (GHOSH, 2003B) HYBRID

NAME n VALUE TIME (S) VALUE AVG%DEV TIME (S)

GA250A 250 257978.4 18.3 257922.1 -0.022 5.7

GA250B 250 276184.2 6.5 276053.6 -0.047 8.2

GA250C 250 333058.4 17.3 332897.2 -0.048 7.4

GA500A 500 511251.6 18.1 511147.4 -0.020 40.3

GA500B 500 538144.0 6.4 537868.2 -0.051 52.2

GA500C 500 621881.8 24.7 621475.2 -0.065 57.4

GA750A 750 763840.4 213.3 763741.0 -0.013 117.5

GA750B 750 796754.2 71.4 796393.5 -0.045 127.1

GA750C 750 900349.8 146.5 900198.6 -0.017 136.5

GS250A 250 257832.6 207.1 257807.9 -0.010 5.3

GS250B 250 276185.2 79.2 276035.2 -0.054 8.0

GS250C 250 333671.6 134.6 333671.6 0.000 8.3

GS500A 500 511383.6 824.3 511203.0 -0.035 43.5

GS500B 500 538480.4 409.4 537919.1 -0.104 52.6

GS500C 500 621107.2 347.4 621059.2 -0.008 50.8

GS750A 750 763831.2 843.2 763713.9 -0.015 112.6

GS750B 750 796919.0 396.0 796593.7 -0.041 126.3

GS750C 750 901158.4 499.7 900183.8 -0.108 130.3

Table 12.8 Results for FPP and GAP instances: average percent errors (with respect to

the optimal solutions) and average running times for each subclass.

SUBCLASS n AVG%ERR TIME (S)

GAPA 100 5.14 1.41

GAPB 100 5.98 1.81

GAPC 100 6.74 1.89

FPP11 133 8.48 2.58

FPP17 307 58.27 25.18

Note, however, that the mean time spent on each instance is around one second,

which is not much. Being implementations of metaheuristics, both algorithms should

behave much better if given more time. To test if this is indeed the case, we performed

longer runs of each method.



338 AN INTRODUCTION TO GRASP

Table 12.9 Average deviation with respect to the best known upper bounds and mean

running times in each class for HYBRID (with 8 iterations and 5 elite solutions) and TABU

(with 500 non-improving iterations as the stop criterion).

CLASS HYBRID TABU

AVG%DEV TIME (S) AVG%DEV TIME (S)

BK 0.028 0.087 0.071 0.155

FPP 69.367 1.741 95.711 0.650

GAP 9.573 0.348 15.901 0.259

GHOSH -0.032 8.816 0.002 4.570

GR 0.000 0.090 0.100 0.160

M* 0.004 2.196 0.011 1.750

MED -0.364 92.387 0.073 92.854

ORLIB 0.000 0.048 0.028 0.160

We tested two different versions of tabu search. In the first variant (TABU), we vary

the number of iterations in the stopping criterion: 500 (the original value), 1000, 2000,

4000, 8000, 16000, 32000, and 64000. The second variant, TABUMS, is a multistart

version of the algorithm. After it reaches 500 non-improving iterations, it starts again

from a new (random) solution. The best solution overall is picked as the final result.

We tested this method with 1 to 128 restarts, corresponding to 500 to 64000 final

non-improving iterations overall.

We also tested three different versions of our algorithm. The first is the standard

version depicted in Figure 12.1, HYBRID. It has two input parameters (number of

iterations and number of elite solutions), so we varied both at the same time. We tested

the following pairs: 4:3, 8:5, 16:7, 32:10 (the original parameters), 64:14, 128:20,

256:28, 512:40, 1024:57, and 2048:80. Note that to move from one pair to the next

we multiply the number of iterations by 2 and the number of elite solutions by
√

2, as

mentioned in Section 12.2.

The second version is MULTISTART+PR, which is similar to HYBRID but does not

execute post-optimization; however, it does execute path-relinking between multistart

iterations, as in the original hybrid. The best solution found after all iterations are com-

pleted is picked as the result. We ran this algorithm with the same set of parameters

(number of iterations and elite solutions) as HYBRID.

The third version we tested (MULTISTART) does not execute path-relinking at any

stage: in each iteration, it finds a greedy randomized solution and executes local search

on it. The best solution found over all iterations is picked as the result. We also ran it

with the same set of parameters as HYBRID, but note that this variant has no use for

the set of elite solutions.

The purpose of MULTISTART and MULTISTART+PR is to assess the importance of

path-relinking to the overall quality of the algorithm.

The results are summarized in Tables 12.10 (for our algorithm) and 12.11 (for tabu

search). For each method and choice of parameters, we present the average percentage
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error and the geometric mean of the running times (in seconds). The same informa-

tion is represented graphically on Figures 12.2 (for GAP) and 12.3 (FPP). Each graph

represents the average solution quality as a function of time. They were built directly

from Tables 12.10 and 12.11: each line in a table became a point in the corresponding

graph, and the points were then linearly interpolated.

Table 12.10 Results on hard classes: average percentage errors and mean running times

(in seconds). HYBRID refers to the full algorithm, MULTISTART+PR refers to the algo-

rithm without post-optimization (but with path-relinking between multistart iterations), and

MULTISTART refers to the version with no path-relinking at all.

MULTISTART MULTISTART+PR HYBRID

CLASS ITER. ELITE %ERR TIME %ERR TIME %ERR TIME

FPP 4 3 90.60 0.19 86.05 0.39 82.79 0.58

8 5 83.17 0.31 76.76 0.72 69.37 1.63

16 7 73.44 0.56 64.19 1.39 53.17 3.41

32 10 62.10 1.04 50.80 2.76 33.37 7.11

64 14 51.38 2.01 38.00 5.47 15.84 13.61

128 20 41.67 3.94 22.23 10.86 4.29 25.15

256 28 33.69 7.80 9.30 21.68 0.02 47.51

512 40 25.23 15.50 0.56 43.72 0.01 91.50

1024 57 14.31 30.89 0.01 88.16 0.00 173.78

2048 80 4.98 61.72 0.00 177.87 0.00 330.88

GAP 4 3 16.39 0.05 14.11 0.10 12.93 0.14

8 5 13.59 0.09 11.46 0.19 9.57 0.35

16 7 11.64 0.17 9.36 0.37 7.47 0.77

32 10 9.73 0.32 7.62 0.73 5.95 1.63

64 14 8.14 0.63 6.21 1.45 4.69 3.27

128 20 7.14 1.26 5.06 2.92 3.83 6.47

256 28 5.95 2.50 3.75 5.90 2.73 12.52

512 40 5.00 4.99 2.65 11.92 1.67 24.75

1024 57 3.81 9.96 1.79 23.62 1.17 48.62

2048 80 2.77 19.89 1.17 46.57 0.82 92.09

For these series, TABUMS seems to be a better choice than TABU. The difference

is particularly noticeable for the FPP instances, where local optima are very far apart.

By restarting the tabu search from random solutions at regular intervals, TABUMS is

able to explore the search space more effectively than TABU, which relies only on

tabu lists to escape local optima. Our method executes even more starts and has the

additional advantage of using a more powerful local search. This helps explain why

all three variants (HYBRID, MULTISTART+PR and MULTISTART) obtained significanly

better results than tabu search, as the pictures show.

Take class GAP. Within 0.25 second, HYBRID can obtain solutions that are more

than 10% off optimality (on average); in 20 seconds, the error is down to 2%. The

behavior of MULTISTART+PR is almost identical. MULTISTART is slightly better than
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Table 12.11 TABU results for hard classes. Two variants are analyzed: TABU starts from

a random solution and executes a “pure” tabu search from there; TABUMS runs tabu with

until it executes 500 consecutive non-improving iterations, then repeats the procedure from

a new random solution. For each method, we show the average percentage error obtained

and the mean running times (in seconds).

TABU TABUMS

CLASS ITER. AVG%ERR TIME (S) AVG%ERR TIME (S)

FPP 500 95.62 0.63 95.62 0.63

1000 94.70 1.07 91.69 1.22

2000 91.03 2.04 87.93 2.43

4000 86.81 3.82 82.41 4.84

8000 83.67 7.26 75.04 9.68

16000 79.32 14.21 66.02 19.47

32000 75.16 27.45 57.75 38.98

64000 71.15 52.08 50.77 77.92

GAP 500 15.98 0.26 15.98 0.26

1000 13.70 0.48 13.21 0.52

2000 11.66 0.94 11.26 1.04

4000 10.62 1.67 9.66 2.03

8000 8.94 3.24 8.07 4.04

16000 7.72 6.19 7.03 8.10

32000 7.02 11.75 6.00 16.21

64000 6.35 22.43 5.06 32.46

both in the beginning, but worse for longer runs, which indicates that path-relinking

is important to ensure the robustness of the algorithm. All three variants, however, are

better than TABU and TABUMS, whose errors ranged from approximately 16% (in 0.25

second) to around 6% (in 20 seconds).

Even more remarkable differences in performance are observed on class FPP. If

given less than one second, all algorithms perform poorly: HYBRID and MULTI-

START+PR find solutions that are almost 80% away from optimality on average; TABU

and TABUMS are even worse, with 90%; MULTISTART is the best overall, with 70%.

However, once longer runs are allowed, HYBRID and (to a lesser degree) MULTI-

START+PR improve at a much faster rate than the other methods. Within 50 seconds,

HYBRID already finds near-optimal solutions on all cases (the average error is below

0.02%), whereas solutions found by TABUMS are still more than 50% off optimality

on average (TABU is even worse, at 70%). Although MULTISTART does significantly

better than tabu-based algorithm, it is still at least 5% away from optimality; once

again, this shows how important path-relinking is to ensure solution quality.

We stress that such large differences in solution quality are not likely to be observed

on “real-world” instances. Classes FPP and GAP are by no means typical, since they

were designed with the specific purpose of being hard to solve. For all other classes

tested, which have no adversarial structure, the performance of TABU was much closer
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Figure 12.2 GAP class. Mean percent deviation obtained by HYBRID and TABU (and

their variants) for several sets of parameters. Data taken from Tables 12.10 and 12.11.

to that of HYBRID. This, however, does not mean the results for FPP and GAP are ir-

relevant. Practical instances are unlikely to be as hard as those, but nothing guarantees

that they will be as well-behaved as the other classes presented here. Since HYBRID

is more robust than TABU in extreme cases, it is more likely be faster in moderately

difficult ones.

12.4 CONCLUDING REMARKS

We have studied a simple adaptation to the facility location problem of Resende and

Werneck’s multistart heuristic for the p-median problem (Resende and Werneck, 2004).

The resulting algorithm has been shown to be highly effective in practice, finding near-

optimal or optimal solutions of a large and heterogeneous set of instances from the

literature. In terms of solution quality, the results either matched or surpassed those

obtained by some of the best algorithms in the literature on every single class, which

shows how robust our method is. The combination of fast local search and path-

relinking within a multistart heuristic has proved once again to be a very effective

means of finding near-optimal solutions for an NP-hard problem.
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Abstract: This chapter presents an annotated bibliography of greedy randomized adap-

tive search procedures (GRASP). The bibliography is current up to early 2004. The bibli-

ography contains: background material; tutorials and surveys; enhancements to the basic

method; hybrid methods; software; parallel GRASP; graph theory; quadratic and other

assignment problems; location, layout, and cutting; covering, clustering, packing, and

partitioning; routing; sequencing and scheduling; logic; manufacturing; transportation;

telecommunications; electrical power systems; biology; VLSI design; drawing; and mis-

cellaneous topics. The collection includes papers published in journals, books, M.Sc.

and Ph.D. dissertations, and unpublished technical reports. Recent publications are listed

in a special section at the end of the chapter. The online version of this bibliography is

updated periodically and can be accessed at http://www.graspheuristic.org.

Keywords: GRASP, metaheuristics, local search, combinatorial optimization.

13.1 INTRODUCTION

Optimization problems that involve a finite number of alternatives often arise in prat-

ice. Given a finite solution set X and a real-valued function f : X → R, one seeks a

solution x∗ ∈X with f (x∗)≤ f (x), ∀ x∈ X . Common examples include designing effi-

cient telecommunication networks, constructing cost effective airline crew schedules,

and producing efficient routes for waste management pickup.
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Much work has been done over the last five decades to develop optimal seeking

methods that do not explicitly require an examination of each alternative. This re-

search has given rise to the field of combinatorial optimization (see Papadimitriou and

Steiglitz (1982)), and an increasing capability to solve ever larger real-world problems.

Nevertheless, most problems found in practice are either computationally intractable

by their nature, or sufficiently large so as to preclude the use of exact algorithms. In

such cases, heuristic methods are usually employed to find good, but not necessarily

guaranteed optimal solutions. The effectiveness of these methods depends upon their

ability to adapt to a particular realization, avoid entrapment at local optima, and ex-

ploit the basic structure of the problem. Building on these notions, various heuristic

search techniques have been developed that have demonstrably improved our ability

to obtain good solutions to difficult combinatorial optimization problems. The most

promising of such techniques include simulated annealing (Kirkpatrick, 1984), tabu

search (Glover, 1989; 1990; Glover and Laguna, 1997), genetic algorithms (Goldberg,

1989), variable neighborhood search (Hansen and Mladenović, 1998), and GRASP

(Greedy Randomized Adaptive Search Procedures) (Feo and Resende, 1989; 1995).

A GRASP is a multi-start or iterative process (Lin and Kernighan, 1973), in which

each GRASP iteration consists of two phases, a construction phase, in which a fea-

sible solution is produced, and a local search phase, in which a local optimum in the

neighborhood of the constructed solution is sought. The best overall solution is kept

as the result.

In the construction phase, a feasible solution is iteratively constructed, one element

at a time. The basic GRASP construction phase is similar to the semi-greedy heuristic

proposed independently by Hart and Shogan (1987). At each construction iteration,

the choice of the next element to be added is determined by ordering all candidate ele-

ments (i.e. those that can be added to the solution) in a candidate list C with respect to

a greedy function g : C→ R. The heuristic is adaptive because the benefits associated

with every element are updated at each iteration of the construction phase to reflect the

changes brought on by the selection of the previous element. The probabilistic com-

ponent of a GRASP is characterized by randomly choosing one of the best candidates

in the list, but not necessarily the top candidate. The list of best candidates is called

the restricted candidate list (RCL).

While local optimization procedures can require exponential time (Johnson et al.,

1988) from an arbitrary starting point, empirically their efficiency significantly im-

proves as the initial solution improves. The result is that often many GRASP solutions

are generated in the same amount of time required for the local optimization procedure

to converge from a single random start. Furthermore, the best of these GRASP solu-

tions is generally significantly better than the single solution obtained from a random

starting point.

An especially appealing characteristic of GRASP is the ease with which it can be

implemented. Few parameters need to be set and tuned, and therefore development

can focus on implementing efficient data structures to assure quick GRASP iterations.

Finally, GRASP can be trivially implemented in parallel. Each processor can be initial-

ized with its own copy of the procedure, the instance data, and an independent random
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number sequence. The GRASP iterations are then performed in parallel with only a

single global variable required to store the best solution found over all processors.

In this article, we provide an annotated bibliography of the GRASP literature up

to early 2004. This document contains references related to GRASP that have either

appeared in the literature or as technical reports. We first look at tutorials and surveys.

Papers that propose enhancements to the basic heuristic are considered next. Follow-

ing that, we examine GRASP as a component of a hybrid metaheuristic. GRASP

source code and parallelization of GRASP follow. The paper concludes with a liter-

ature review of operations research and computer science applications of GRASP as

well as industrial applications. These include graph theory, quadratic and other assign-

ment problems, location, layout, cutting, covering, clustering, packing, partitioning,

routing, sequencing and scheduling, logic, manufacturing, transportation, telecommu-

nications, electrical power systems, biology, VLSI design, drawing, and miscellaneous

topics.

This bibliography is updated periodically and can be also accessed at http://www.

graspheuristic.org. If the reader is aware of any uncited reference, incorrectly

cited reference, or update to a cited reference, please contact the authors.
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13.2 TUTORIALS AND SURVEYS

Introductory materials, such as tutorials and surveys of GRASP, have appeared in

several languages. These papers are listed below.
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combinatoire et l’affectation sous contraintes. Revue d’Intelligence Artifi-
cielle 13(2), 283–324.

353



354 AN INTRODUCTION TO GRASP

Highlights main properties of existing metaheuristics to help researchers to
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Ribeiro, C. (2002). GRASP: Une métaheuristique gloutone et probabiliste.
In J. Teghem and M. Pirlot (Eds.), Optimisation approchée en recherche
opérationnelle, pp. 153–176. Hermès.



BIBLIOGRAPHY 355

This chapter surveys GRASP. The basic method is described and its applica-

tions reviewed. Parallel strategies are discussed and the method’s hybridization
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13.3 ENHANCEMENTS TO BASIC METHOD

The basic GRASP framework repeatedly builds a greedy randomized solution and

applies local improvement to it. Several enhancements to the basic GRASP method

have been proposed. Such enhancements can be found in the following papers.
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13.4 HYBRID METHODS

GRASP has been hybridized with other metaheuristic frameworks, such as tabu search,

simulated annealing, genetic algorithms, variable neighborhood search, and path-relinking.
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to obtain a feasible solution to be hopefully improved with tabu search. See also

page 405.

13.5 SOFTWARE

This section lists papers that describe computer software for implementing the GRASP

framework, as well as codes for solving specific problems.
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A set of ANSI standard Fortran 77 subroutines for approximately solving the

feedback vertex and arc set problems is described.
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approximate solution of dense quadratic assignment problems using GRASP. ACM
Transactions on Mathematical Software 22, 104–118.

A set of ANSI standard Fortran 77 subroutines is proposed for dense quadratic
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is an optimized implementation of the algorithm described in Li, Pardalos, and

Resende (1994). See also page 385.
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13.6 PARALLEL GRASP

GRASP can be easily implemented in parallel. In fact, linear speedup can be expected

from a straightforward implementation on independent processors. The following pa-

pers deal with parallel GRASP.
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See also page 361 and page 401.

Aiex, R. and M. Resende (2003). Parallel strategies for GRASP with path-relinking.
Technical report, Internet and Network Systems Research Center, AT&T Labs Re-
search, Florham Park, NJ.

Independent and cooperative parallel strategies are described and implemented

for the 3-index assignment problem and the job-shop scheduling problem. The

computational results for independent parallel strategies are shown to qualita-

tively behave as predicted by the criterion. See also page 361.

Aiex, R., M. Resende, and C. Ribeiro (2002). Probability distribution of solution time
in GRASP: An experimental investigation. Journal of Heuristics 8, 343–373.

369



370 AN INTRODUCTION TO GRASP

The authors study the probability distributions of solution time to a sub-optimal
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dependent runs of the heuristic. Standard methodology for graphical analysis
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parallel.
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de Ciencias, Cuernavaca, Morelos, Mexico.
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Feo, T., M. Resende, and S. Smith (1994). A greedy randomized adaptive search
procedure for maximum independent set. Operations Research 42, 860–878.

A GRASP for approximately solving the maximum independent set problem is

described. The proposed heuristic can be easily implemented in parallel by de-

composing the problem into smaller subproblems, each defined by conditioning
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on vertices being in the solution. An implementation of this algorithm was tested

on a MIMD computer with up to eight processors. Average linear speedup is

observed. See also page 374.
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Martins, S., M. Resende, C. Ribeiro, and P. Pardalos (2000). A parallel GRASP for
the Steiner tree problem in graphs using a hybrid local search strategy. Journal of
Global Optimization 17, 267–283.

A hybrid parallel GRASP for the Steiner problem in graphs is described. See

also page 376.

Martins, S., C. Ribeiro, and M. Souza (1998). A parallel GRASP for the Steiner prob-
lem in graphs. In A. Ferreira and J. Rolim (Eds.), Proceedings of IRREGULAR’98
– 5th International Symposium on Solving Irregularly Structured Problems in Par-
allel, Volume 1457 of Lecture Notes in Computer Science, pp. 285–297. Springer-
Verlag.

A parallelization of a sequential GRASP for the Steiner minimal tree problem is

proposed. See also page 377.

Murphey, R., P. Pardalos, and L. Pitsoulis (1998). A parallel GRASP for the data
association multidimensional assignment problem. In P. Pardalos (Ed.), Parallel
Processing of Discrete Problems, Volume 106 of The IMA Volumes in Mathematics
and its Applications, pp. 159–180. Springer-Verlag.

A GRASP for finding good solutions for the data association multidimensional

assignment problem is described. The proposed method can be easily paral-

lelized to substantially decrease the running time. See also page 383.

Pardalos, P., L. Pitsoulis, T. Mavridou, and M. Resende (1995). Parallel search for
combinatorial optimization: Genetic algorithms, simulated annealing and GRASP.
In A. Ferreira and J. Rolim (Eds.), Parallel Algorithms for Irregularly Structured
Problems, Proceedings of the Second International Workshop –Irregular’95, Vol-
ume 980 of Lecture Notes in Computer Science, pp. 317–331. Springer-Verlag.

Parallel search techniques for approximating the global optimal solution of com-

binatorial optimization problems are addressed. For large-scale problems, one of

the main limitations of heuristic search is its computational complexity. Efficient

parallel implementation of search algorithms can significantly increase the size

of the problems that can be solved.

Pardalos, P., L. Pitsoulis, and M. Resende (1995). A parallel GRASP implementation
for the quadratic assignment problem. In A. Ferreira and J. Rolim (Eds.), Par-
allel Algorithms for Irregularly Structured Problems – Irregular’94, pp. 115–130.
Kluwer Academic Publishers.

Efficient parallel techniques for large-scale sparse quadratic assignment prob-

lems are discussed. The GRASP iterations are distributed among the processors.
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Each processor is given its own input data and random number sequence and are

run independently. A shared global variable stores the value of the incumbent

solution. see also page 384.

Pardalos, P., L. Pitsoulis, and M. Resende (1996). A parallel GRASP for MAX-SAT
problems. Lecture Notes in Computer Science 1184, 575–585.

A parallel GRASP for weighted maximum satisfiability (MAX-SAT) problem is
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Ribeiro, C. and I. Rosseti (2002). A parallel GRASP for the 2-path network design
problem. Lecture Notes in Computer Science 2004, 922–926.
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Rivera, L. (1998). Evaluation of parallel implementations of heuristics for the course
scheduling problem. Master’s thesis, Instituto Tecnologico y de Estudios Superiores
de Monterrey, Monterrey, Mexico.

This thesis presents several parallel implementations of heuristics for the course

scheduling problem. One of the heuristics is a GRASP. In Spanish. See also

page 404.

13.7 GRAPH THEORETICAL APPLICATIONS

Perhaps the type of problems where GRASP has been most applied to are problems

dealing with graph theory. Below are papers on graph theoretical applications.
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vertex in the current independent set. The neighborhood definition used in the



BIBLIOGRAPHY 375
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73, 1994). See also page 428.

Ribeiro, C. and M. Resende (1999). Algorithm 797: Fortran subroutines for approx-
imate solution of graph planarization problems using GRASP. ACM Transactions
on Mathematical Software 25, 341–352.

A set of Fortran subroutines that implements the GRASP for graph planarization

of Resende and Ribeiro (1997) is described. See also page 368 and page 429.

Ribeiro, C. and I. Rosseti (2002). A parallel GRASP for the 2-path network design
problem. Lecture Notes in Computer Science 2004, 922–926.

A parallel GRASP with path-relinking is proposed for finding approximate so-

lutions to the 2-path network design problem. See also page 372 and page 419.

Ribeiro, C., E. Uchoa, and R. Werneck (2002). A hybrid GRASP with perturbations
for the Steiner problem in graphs. INFORMS Journal on Computing 14, 228–246.

In this hybrid GRASP, an adaptive path-relinking procedure is used as a post-

optimization strategy. The GRASP construction phase is replaced by either one

of several different construction procedures that apply weight perturbation strate-

gies combining intensification and diversification elements. The local search

phase circularly explores two different strategies. The first defines a simple node-

based neighborhood structure. The second one uses a key-path-based neighbor-

hood, where a key-node is a Steiner node with degree at least three and a key-path

is a Steiner tree T whose extremities are either terminals of key-node (if there

are any, intermediate nodes are Steiner node with degree two in T ). See also

page 358 and page 365.

Rosseti, I. (2003). Heurı́sticas para o problema de sı́ntese de redes a 2-caminhos. Ph.
D. thesis, Department of Computer Science, Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil.

This thesis proposes sequential and parallel heuristics for the 2-path network
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13.8 QUADRATIC AND OTHER ASSIGNMENT PROBLEMS

GRASP has been applied to the quadratic assignment problems, as well as other as-

signment problems, such as biquadratic, three index, and multidimensional assign-

ment. The following papers fall into this category.
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13.9 LOCATION AND LAYOUT

Location and layout are another class of problems successfully handled by GRASP.

The following papers show how GRASP is used in this context.
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tiva, Univarsitat Politécnica de Catalunya, Barcelona, Spain.

This thesis proposes several algorithmic alternatives based on both exact and

approximate methods for efficiently solving the single source capacitated plant

location problem. One of the proposals is a reactive GRASP that uses a greedy

function based on a percentage of the sum of the cost associated with opening

a plant and the cost of allocating clients. The local search procedure uses two

neighborhood structures: a client shift neighborhood and a client swap neigh-

borhood.

Gomes, M. and J. da Silva (1999). An experimental evaluation of the GRASP meta-
heuristic applied to the uncapacitated location problem. Technical Report 004/99,
Department of Statistics and Computation, State University of Ceará, Fortaleza,
Ceará, Brazil.

Two GRASP heuristics, one using the ADD heuristic and the other using the

DROP heuristic, are proposed for the uncapacitated location problem. Computa-

tional experiments with instances from Beasley’s OR-Library show that GRASP-

DROP dominates GRASP-ADD, while both GRASP heuristics dominate ADD

and DROP.

Holmqvist, K., A. Migdalas, and P. Pardalos (1997). Greedy randomized adaptive
search for a location problem with economies of scale. In I. B. et al. (Ed.), Devel-
opments in Global Optimization, pp. 301–313. Kluwer Academic Publishers.

A GRASP is proposed for finding approximate solutions to a facility location

problem with concave costs. The greedy function of the construction phase fa-

vors the facilities that give lower cost for a costumer, regarding the effect that

already connected costumers have on the solution. The neighborhood function

is defined as changing facility connection for one costumer. Instead of a time



390 AN INTRODUCTION TO GRASP

consuming computation of the objective function value for each neighborhood

solution, the difference in cost for changing supplier is examined.

Klincewicz, J. (1992). Avoiding local optima in the p-hub location problem using tabu
search and GRASP. Annals of Operations Research 40, 283–302.

Two heuristics are proposed, based on tabu search and GRASP, for the p-hub

location problem. The objective is to overcome the difficulty that local search

algorithms encounter. See also page 417.

Klincewicz, J. (2002). Enumeration and search procedures for a hub location problem
with economies of scale. Annals of Operations Research 110, 107–122.

An optimal enumeration scheme, as well as other heuristics based on tabu search

and GRASP are proposed for locating hubs in a communications or transporta-

tion network. See also page 417.

Kumaran, K., A. Srinivasan, Q. Wang, S. Lanning, and K. Ramakrishnan (2001). Ef-
ficient algorithms for location and sizing problems in network design. In Global
Telecommunications Conference, 2001 (GLOBECOM ’01), Volume 4, pp. 2586–
2590. IEEE.

Algorithms based on linear programming and a slight modified GRASP are

developed. The construction phase is performed at random. Given an initial so-

lution, the local search procedure exhaustively evaluate objective function value

for all possible single location changes. See also page 417.

Resende, M. and R. Werneck (2003). A hybrid multistart heuristic for the uncapac-
itated facility location problem. Technical report, Internet and Network Systems
Research Center, AT&T Labs Research, Florham Park, NJ.

A multistart heuristic is proposed for the uncapacitated facility location prob-

lem, based on an idea proposed for the p-median problem in Resende and Wer-

neck (2004). The algorithm consists in two phases. The first phase is a multistart

procedure that builds a randomized solution from which to apply a local search

routine and a path-relinking. The second is a post-optimization phase realized by

applying path-relinking over the whole elite set. See also page 365.

Resende, M. and R. Werneck (2004). A hybrid heuristic for the p-median problem.
Journal of Heuristics 10, 59–88.

A GRASP with path-relinking as intensification and post-optimization phase is

proposed for the p-median problem. See also page 365.
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13.10 COVERING, CLUSTERING, PACKING, AND PARTITIONING
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been recently successfully applied. The papers below illustrate this.
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Differences are placed back into the list of remaining elements, and the process

of selecting the next element is repeated. The proposed methods are greedy, ran-

domized, and adaptive construction heuristics, but local search is omitted.

Cano, J., R. Cabrera, and J. Vega (2002). Procedimientos constructivos adaptivos
(GRASP) para el problema del empaquetado bidimensional. Revista Iberoameri-
cana de Inteligencia Artificial 15, 26–33.
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To solve the bidimensional packing problem, several constructive adaptive

heuristics are proposed. Some of them only have a GRASP construction phase,

while others apply also a local search phase. Computational results show that in

many cases the proposed heuristics obtain the optimal solution. In Spanish.

Cano, J., O. Cordón, F. Herrera, and L. Sánchez (2002a). A greedy randomized adap-
tive search procedure applied to the clustering problem as an initialization process
using K-means as a local search procedure. Journal of Intelligent and Fuzzy Sys-
tems 12, 235–242.

A GRASP is proposed for cluster analysis using a probabilistic greedy Kaufman

initialization in the construction phase and K-Means as local search procedure.

Cano, J., O. Cordón, F. Herrera, and L. Sánchez (2002b). A GRASP algorithm for
clustering. In F. J. Garijo, J. Santos, and M. Toro (Eds.), Advances in Artificial In-
telligence - IBERAMIA 2002, 8th Ibero-American Conference on AI, Seville, Spain,
November 12-15, 2002, Proceedings, Volume 2527 of Lecture Notes in Computer
Science, pp. 214–223. Springer.

A GRASP for cluster analysis is described. See also page 362 and page 388.

Catalano, M. F. and F. Malucelli (2000). Parallel randomized heuristics for the set
covering problem. Technical report, Transportation and traffic engineering section,
Delft U. of Technology, 2600 AG Delft, The Netherlands. To appear in International
J. of Computer Research.

A general scheme to design heuristics for the set covering problem is proposed.

A first group of procedures randomize the choice of the next element to be added

at the solution under construction in a way similar to ant system, while a second

set of procedures introduces a random perturbation of the costs of the problem

instance. The second set includes also a GRASP.

Chardaire, P., G. McKeown, and J. Maki (2001). Application of GRASP to the multi-
constraint knapsack problem. In E. B. et al. (Ed.), EvoWorkshop 2001, pp. 30–39.
Springer-Verlag Berlin Heidelberg.

Several implementations of GRASP for the multiconstraint knapsack problem

are presented. In all implementations, the greedy functions are based on the profit

per weight unit associated with each element. 1-opt and 2-opt search strategies

are used in the local search phase.

Delorme, X., X. Gandibleux, and J. Rodriguez (2001). GRASP for set packing prob-
lems. In Proceedings of the Operational Research Peripatetic Post-Graduate Pro-
gramme (ORP3).

Two GRASP implementations for the set packing problem are proposed. The

first GRASP is inspired by a GRASP for the set covering problem that appeared

in the literature. The neighborhood structure adopted is a k-p exchange, which

consists in fixing to 0 the value of k variables and to 1 the value of the remaining

p variables. The 0-1, 1-1, 2-1, and 1-2 exchange neighborhoods are investigated.

The second GRASP is inspired by a GRASP for the node packing problem that

appeared in the literature and uses a 1-2 exchange neighborhood.

Delorme, X., X. Gandibleux, and J. Rodriguez (2004). GRASP for set packing prob-
lems. European J. of Operational Research 153(3), 564–580.
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GRASP is applied to solve the set packing problem. Several construction phases

are studied and improvements based on advanced strategies are evaluated. These

include reactive GRASP, path relinking, and a procedure involving the diversifi-

cation of the selection (using a learning process).

Feo, T. and M. Resende (1989). A probabilistic heuristic for a computationally difficult
set covering problem. Operations Research Letters 8, 67–71.

GRASP is proposed for a class of difficult set covering problems that arise in

computing the 1-width of the incidence matrix of Steiner triple systems. A value

based restricted candidate list is used in the construction phase. The local search

is based on the elimination of redundant elements in the cover. See also page 351.

Hammer, P. and D. Rader, Jr. (2001). Maximally disjoint solutions of the set covering
problem. Journal of Heuristics 7, 131–144.

The problem of finding two solutions of a set covering problem that have a min-

imum number of common variables is addressed. It is proved that this problem

is NP-complete and three heuristics are proposed for solving it. Two of these

algorithms find the solutions sequentially. One of them is a GRASP.

Klincewicz, J. and A. Rajan (1994). Using GRASP to solve the component grouping
problem. Naval Research Logistics 41, 893–912.

Two new heuristics are proposed for solving a particular set partitioning problem

that arises in robotics assembly, as well as in a number of other manufacturing

and material logistics application areas. The heuristics are GRASPs involving

two alternate procedures for determining starting i points: component-based and

code-based. See also page 410.

Laguna, M., T. Feo, and H. Elrod (1994). A greedy randomized adaptive search pro-
cedure for the two-partition problem. Operations Research 42, 677–687.

A GRASP for the network 2-partition problem is proposed. The greedy function

of the construction phase minimizes the augmented weight of the partition. For

the local improvement phase, four alternative procedures are considered: best

swap, first swap, slight swap, and slightest swap. The best strategies are slight

and slightest swaps. Slight swap selects a near-minimum gain exchange at each

iteration, while slightest swap chooses the absolute minimum gain.

Pacheco, J. and O. Valencia (2003). Design of hybrids for the minimum sum-of-
squares clustering problem. Computational Statistics and Data Analysis 43, 235–
248.

Several heuristics are proposed for the non-hierarchical clustering problem un-

der the criterion of minimum sum-of-squares clustering. These heuristics incor-

porate genetic operators, local search, and tabu search. They are compared with

other heuristic approaches, including a GRASP, on a set of test problems. See

also page 364.

Resende, M. (1998). Computing approximate solutions of the maximum covering
problem using GRASP. Journal of Heuristics 4, 161–171.

A GRASP for the maximum covering problem is described. For details about

the GRASP implementation, see page 419.
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13.11 ROUTING

Routing problems arise in transportation, telecommunications, and waste manage-

ment. Such applications are contained in the papers below.
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Arakaki, R. (1998). O problema de roteamento de veı́culos e algumas metaheurı́sticas.
Master’s thesis, Instituto Nacional de Pasquisas Espaciais, Brazil.

Several metaheuristics are proposed for the vehicle routing problem, including

a GRASP. In the GRASP construction phase, a distance function is used as the

greedy function, while the local search tries to find a better allocation for a cos-

tumer at a time. In Portuguese.

Argüello, M., J. Bard, and G. Yu (1997). A GRASP for aircraft routing in response to
groundings and delays. Journal of Combinatorial Optimization 1, 211–228.

A GRASP is presented to reconstruct aircraft routings in response to groundings

and delays experienced over the course of the day. The objective is to minimize

the cost of reassigning aircraft to flights taking into account available resources

and other system constraints. See also page 411.

Baker, B. and C. Carreto (2003). A visual interactive approach to vehicle routing.
Computers and Operations Research 30, 321–337.

A graphical-user-interface (with a Microsoft Windows interface) and a GRASP

based heuristic for the basic vehicle routing problem are described. The proposed

visual interactive system, CRUISE, provides high flexibility. Although the best

known results on VRP benchmarks are obtained by tabu search and simulated

annealing algorithms, none of them allows the user any control for combining

their insights and knowledge. See also page 411.

Bard, J., L. Huang, P. Jaillet, and M. Dror (1998). A decomposition approach to
the inventory routing problem with satellite facilities. Transportation Science 32,
189–203.

A methodology is presented that decomposes the inventory routing problem with

satellite facilities over the planning horizon, and then solves daily rather than

multi-day vehicle routing problems. Three heuristics are proposed for solving

the vehicle routing problem with satellite facilities: randomized Clarke-Wright,

GRASP, and modified sweep. See also page 411.

Bard, J., G. Kontoravdis, and G. Yu (2002). A branch-and-cut procedure for the vehi-
cle routing problem with time windows. Transportation Science 36, 250–269.
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A GRASP is proposed to obtain feasible solutions and/or upper bounds used in

a branch-and-cut algorithm for the vehicle routing problem with time windows.

See also page 412.

Carreto, C. and B. Baker (2002). A GRASP interactive approach to the vehicle routing
problem with backhauls. In C. Ribeiro and P. Hansen (Eds.), Essays and surveys in
metaheuristics, pp. 185–200. Kluwer Academic Publishers.

A GRASP for the vehicle routing problem with backhauls is proposed. The

construction phase is implemented in a clustering heuristic that constructs the

routes by clustering the remaining customers according to the vehicles defined

by seeds while applying the 3-opt heuristic to reduce the total distance traveled

by each vehicle. The greedy function takes into account routes with smallest

insertion cost and costumers with biggest difference between the smallest and the

second smallest insertion costs and smallest number of routes they can traverse.

As the local search phase, 3-opt is used. See also page 363.

Chaovalitwongse, W., D. Kim, and P. Pardalos (2003). GRASP with a new local
search scheme for vehicle routing problems with time windows. J. of Combinatorial
Optimization 7, 179–207.

A GRASP is proposed for minimizing the number of needed vehicles and the

travel distances in the vehicle routing problem with time windows. The search

method proposed uses a combination of random and greedy functions.

Corberán, A., R. Martı́, and J. Sanchı́s (2002). A GRASP heuristic for the mixed
Chinese postman problem. European Journal of Operational Research 142, 70–80.

The construction phase of the GRASP proposed to solve the mixed Chinese

postman problem uses a greedy function based on the definition of the degree

of a node in terms of both incident oriented arcs and incident undirected edges.

Each iteration of the local search procedure selects a pair of vertices u,v∈V that

are candidates for the move if they are joined by a path of duplications. See also

page 374.

Hjorring, C. (1995). The vehicle routing problem and local search metaheuristics. Ph.
D. thesis, University of Auckland, Auckland, New Zealand.

Three metaheuristics for effectively searching through the space of cyclic orders

are developed. They are based on GRASP, tabu search, and genetic algorithms.

For tabu search, different schemes are investigated to control the tabu list length,

including a reactive tabu search method. To obtain good solutions when using

the genetic algorithm, specialized crossovers are developed, and a local search

component is added. GRASP is used to construct an initial good solution.

Kontoravdis, G. and J. Bard (1995). A GRASP for the vehicle routing problem with
time windows. ORSA Journal on Computing 7, 10–23.

A GRASP is proposed for minimizing the fleet size of temporarily constrained

vehicle routing problems with two types of service. The greedy function of the

construction phase takes into account both the overall minimum insertion cost

and the penalty cost. Local search is applied to the best solution found every five

iterations of the first phase, rather than to each feasible solution.
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Marinakis, Y. and A. Migdalas (2003). Expanding neighborhood GRASP for the Trav-
eling Salesman Problem. Technical report, Technical University of Crete, Chania
73100, Greece.

A GRASP that includes tour improvement methods is proposed for the traveling

salesman problem. See also page 363 and page 376.

Resende, L. and M. Resende (1999). A GRASP for frame relay PVC routing. In Proc.
of the Third Metaheuristics International Conference, pp. 397–402.

A GRASP is described for routing permanent virtual circuits (PVC) for frame

relay in telecommunications systems. The objective is to minimize PVC delays

while balancing trunk loads. The greedy choice selects from the set of not yet

routed PVCs the one that minimizes the delay while balancing the trunk loads.

See also page 419.

Resende, M. and C. Ribeiro (2003). GRASP with path-relinking for private virtual
circuit routing. Networks 41, 104–114.

A frame relay service offers virtual private networks to customers by provision-

ing a set of long-term private virtual circuits (PVCs) between customer endpoints

on a large backbone network. During the provisioning of a PVC, routing deci-

sions are made without any knowledge of future requests. Over time, these deci-

sions can cause inefficiencies in the network and occasional offline rerouting of

the PVCs is needed. The offline PVC routing problem is formulated as an integer

multicommodity flow problem with additional constraints and with an objective

function that minimizes delays and network overload. Variants of a GRASP with

path-relinking heuristic are proposed for this problem. See also page 364 and

page 419.

13.12 SEQUENCING AND SCHEDULING

GRASP has been applied to numerous sequencing and scheduling problems. The

papers in this section illustrate this.
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Aiex, R. (2002). Uma investigação experimental da distribuição de probabili-
dade de tempo de solução em heurı́sticas GRASP e sua aplicação na análise
de implementações paralelas. Ph. D. thesis, Department of Computer Science,
Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.

A new methodology is described for the analysis of GRASP. Hybrid strategies

with path-relinking are also proposed. These are studied on the 3-index assign-

ment problem as well as the job shop scheduling problem. See also page 369 and

page 381.

Aiex, R., S. Binato, and M. Resende (2003). Parallel GRASP with path-relinking for
job shop scheduling. Parallel Computing 29, 393–430.

A parallel GRASP with path-relinking as an intensification strategy for the job

shop problem is described based on some ideas proposed in the GRASP of Bi-

nato et al. (2002). See also page 361 and page 369.

Akturk, M. and K. Kiliç (1999). Generating short-term observations for space mission
projects. J. of Intelligent Manufacturing 10, 387–404.

Generating short-term observations for space mission projects is basically a

scheduling problem. It consists in generating short-term observation schedules

of Hubble Space Telescope (HST) such that the scientific return is maximized.

A new dispatching rule and a set of local search based algorithms (including a

GRASP) are proposed.

Akturk, M. and D. Ozdemir (2001). A new dominance rule to minimize total
weighted tardiness with unequal release dates. European Journal of Operational
Research 135, 394–412.

A new algorithm that provides sufficient condition for local optimality and that

can be embedded into several heuristic frameworks (including GRASP) is pro-

posed.

Atkinson, J. (1998). A greedy randomised search heuristic for time-constrained vehi-
cle scheduling and the incorporation of a learning strategy. Journal of the Opera-
tional Research Society 49, 700–708.
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Two forms of adaptive search called local and global adaptation are identified.

In both search techniques, the greedy function takes into account a quantity that

measures heuristically the quality of the partial solution. While in local adap-

tation the decisions made within a particular run influence only the subsequent

performance of the heuristic, global adaptation involves making decisions that

affect the performance of the heuristic in subsequent runs. See also page 411.

Bard, J. and T. Feo (1989). Operations sequencing in discrete parts manufacturing.
Management Science 35, 249–255.

A method for efficiently sequencing cutting operations associated with the man-

ufacture of discrete parts is proposed. The problem is modeled as an integer

program. This is relaxed via Lagrangian relaxation into a min-cut problem on a

bipartite network. To obtain lower bounds, a max-flow algorithm is applied and

the corresponding solution is input to a GRASP. See also page 409.

Bard, J., T. Feo, and S. Holland (1996). A GRASP for scheduling printed wiring board
assembly. I.I.E. Transactions 28, 155–165.

The assembly of printed wiring boards (PWBs) typically involves the coordi-

nation of thousands of components and hundreds of part numbers in a job shop

environment with more than 50 different processes and workstations. A GRASP

is proposed for solving the daily scheduling problem that arises in such environ-

ment. See also page 409.

Binato, S., W. Hery, D. Loewenstern, and M. Resende (2002). A greedy randomized
adaptive search procedure for job shop scheduling. In C. Ribeiro and P. Hansen
(Eds.), Essays and surveys in metaheuristics, pp. 58–79. Kluwer Academic Pub-
lishers.

A GRASP is designed, incorporating an intensification strategy and a POP (Prox-

imate Optimality Principle) in the construction phase. The greedy criterion is

to minimize the makespan resulting from the addition of an operation to the

schedule under construction, while the local search procedure uses a 2-exchange

neighborhood.

Casey, S. and J. Thompson (2003). GRASPing the examination scheduling problem.
In E. Burke and P. D. Causmaecker (Eds.), PATAT 2002, Volume 2740 of Lecture
Notes in Computer Science, pp. 232–244. Springer.

Reactive GRASP is applied to the examination scheduling problem. A compar-

ison with other algorithms for this problem shows that GRASP is a powerful

solution method.

Christofoletti, L. (2002). Métodos de reinı́cio aplicados ao seqüenciamento em uma
máquina com tempos de preparação e data de entrega. Master’s thesis, Departa-
mento de Engenharia de Sistemas, Universidade Estadual de Campinas, Brazil.

This thesis considers applications of GRASP and its variants to the problem of

minimizing the total tardiness of jobs on a single machine with sequence depen-

dent setup times. An innovative aspect of this thesis is the introduction in the

multistart framework with some memory strategies for storing a population of

high quality solutions. In Portuguese.
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Christofoletti, L. and V. Armentano (2001). Estratégias de reinı́cio de busca local
baseadas em memória para programação de tarefas em uma máquina. In Proceed-
ings of the XXXIII Brazilian Symposium on Operations Research, pp. 1381–1389.

It is shown that incorporating adaptive memory in multistart random methods

improves their performance. To validate their thesis, the paper addresses the

problem of minimizing total job tardiness on a single machine with sequence

dependent setup times. A GRASP is implemented, combined with some basic

principles of memory utilization during the construction phase. In Portuguese.

De, P., J. Ghosj, and C. Wells (1994). Solving a generalized model for CON due date
assignment and sequencing. International Journal of Production Economics 34,
179–185.

A generalized model for assigning a constant flow allowance (CON) due date to

a set of jobs and sequencing them on a single machine is considered. The prob-

lem is viewed as a 0-1 quadratic problem and a GRASP is proposed to solve the

quadratic problem. The randomization strategy used is inspired by a gradient-

based variable forcing methodology proposed by Pardalos and Rodgers (1990)

for a branch & bound algorithm. The local search procedure is based on a defi-

nition of neighborhood in which two solutions are neighbors if they differ in the

value of exactly one variable.

Feo, T. and J. Bard (1989). Flight scheduling and maintenance base planning. Man-
agement Science 35, 1415–1432.

A model is presented that can be used by planners to both locate maintenance

stations and develop flight schedules that better meet the cyclical demand for

maintenance. See also page 412.

Feo, T., J. Bard, and S. Holland (1995). Facility-wide planning and scheduling of
printed wiring board assembly. Operations Research 43, 219–230.

A decision support system known as INSITES is described. INSITES was de-

signed to assist Texas Instruments in the day-to-day assembly operations of their

printed wiring board (PWB) facilities. A GRASP is used to solve the underlying

multiple machine scheduling problem. See page 410 for details of the GRASP

implementation.

Feo, T., K. Sarathy, and J. McGahan (1996). A GRASP for single machine schedul-
ing with sequence dependent setup costs and linear delay penalties. Computers &
Operations Research 23, 881–895.

A GRASP for single machine scheduling with sequence dependent setup costs

and linear delay penalties is presented. The greedy function of the GRASP con-

struction phase proposed is made up of two components: the switch over cost

and the opportunity cost associated with not inserting a specific job in the next

position and instead, inserting it after half of the unscheduled jobs have been

scheduled. This greedy function tends to lead to a balance between the natural

order and nearest neighbor approaches. The local search uses 2-exchange, inser-

tion exchange, and a combination of the two.

Feo, T., K. Venkatraman, and J. Bard (1991). A GRASP for a difficult single machine
scheduling problem. Computers & Operations Research 18, 635–643.
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GRASP is applied to an unusually difficult scheduling problem with flow time

and earliness penalties. Two greedy functions are developed and tested. The first

is the difference between the flow time and earliness penalties, normalized by

the processing time. The second function evaluates the cost of scheduling a job

next by estimating the cost of the remaining schedule. The local search uses 2-

exchange and insertion exchange.

Garcı́a, J., S. Lozano, K. Smith, and F. Guerrero (2001). A comparison of GRASP
and an exact method for solving a production and delivery scheduling problem.
In First International Workshop on Hybrid Intelligent Systems (HIS’01), Adelaide,
Australia.

An exact approach and a GRASP are proposed to solve a production and delivery

scheduling problem. The greedy criterion takes into account order weights, while

the local search procedure uses an exchange neighborhood. See also page 413.

Laguna, M. and J. González-Velarde (1991). A search heuristic for just-in-time
scheduling in parallel machines. Journal of Intelligent Manufacturing 2, 253–260.

A hybrid GRASP/tabu search metaheuristic is proposed for the weighted earli-

ness penalty problem with deadlines in identical parallel machines.

Lourenço, H., J. Paixão, and R. Portugal (2001). Multiobjective metaheuristics for the
bus-driver scheduling problem. Transportation Sciences 35, 331–343.

Several metaheuristics are presented to solve real driver scheduling problems in

public transportation bus companies. They include a GRASP. See also page 413.

Rı́os-Mercado, R. and J. Bard (1998). Heuristics for the flow line problem with setup
costs. European Journal of Operational Research, 76–98.

Two new heuristics are presented for the flowshop scheduling problem with

sequence-dependent setup times and makespan minimization objective, one of

which is a GRASP.

Rivera, L. (1998). Evaluation of parallel implementations of heuristics for the course
scheduling problem. Master’s thesis, Instituto Tecnologico y de Estudios Superiores
de Monterrey, Monterrey, Mexico.

Several parallel implementations of heuristics are proposed for the course

scheduling problem, including a GRASP. In Spanish. See also page 372.

Rojanasoonthon, S. and J. Bard (2004). A GRASP for parallel machine scheduling
with time windows. INFORMS Journal on Computing. To appear.

A GRASP is designed for a parallel machine scheduling problem with time win-

dows. This extends the GRASP proposed in Rojanasoonthon, Bard, and Reddy

(2003) to solve parallel machine scheduling problems in the presence of time

windows.

Rojanasoonthon, S., J. Bard, and S. Reddy (2003). Algorithms for parallel machine
scheduling: A case study of the tracking and data relay satellite system. Journal of
the Operational Research Society 54, 806–821.

A GRASP is designed for a parallel machine scheduling problem. The greedy

criterion in the construction phase is based on maximizing a flexibility function

that measures how much slack a schedule has after the insertion is made.
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Souza, M., N. Maculan, and L. Ochi (2003). A GRASP-tabu search algorithm for
school timetabling problems. In M. Resende and J. de Sousa (Eds.), Metaheuristics:
Computer decision-making, pp. 659–672. Kluwer Academic Publishers.

A hybrid approach is proposed for school timetabling problems. It uses a greedy

randomized construction phase for obtaining a feasible solution to be possibly

improved applying a tabu search. The greedy choice first takes into account the

number of available teachers and then the activity degree of each teacher. A

timetable is represented as a m× q matrix Q of integer values, such that each

row i represents the weekly schedule of teacher i and qik represents the activity

of teacher i in period k. A neighbor of a timetable Q is a timetable Q′, obtained

from Q simply by changing two different and nonnegative values of a give row

of Q. See also page 365.

Xu, J. and S. Chiu (1996). Solving a real-world field technician scheduling problem.
In Proceedings of the International Conference on Management Science and the
Economic Development of China, pp. 240–248.

The objective of the field technician scheduling problem is to assign a set of jobs

at different locations with time windows to technicians with different job skills.

The greedy choice of the proposed GRASP is to select jobs with the highest unit

weight. See also page 420.

Xu, J. and S. Chiu (2001). Effective heuristic procedure for a field technician schedul-
ing problem. Journal of Heuristics 7, 495–509.

Several heuristics, including a GRASP, are designed and tested for solving the

field technician scheduling problem. See also page 420.

13.13 LOGIC

GRASP has been applied to problems in logic, including SAT, MAX-SAT, and logical

clause inference, as shown by the following papers.
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de Campos, L., J. Fernández-Luna, and J. Puerta (2002). Local search methods for
learning Bayesian networks using a modified neighborhood in the space of DAGs.
In F. J. Garijo, J. Riquelme, and M. Toro (Eds.), Advances in Artificial Intelligence -
IBERAMIA 2002, 8th Ibero-American Conference on AI, Seville, Spain, November
12-15, 2002, Proceedings, Volume 2527 of Lecture Notes in Computer Science, pp.
182–192. Springer.

GRASP is applied to learning Bayesian networks from data. The GRASP con-

struction phase is a randomization of the greedy algorithm of Butine (1991)

and the local search is a hill-climbing algorithm in the space of directed acyclic

graphs (DAGs). The GRASP obtains excellent results in the computational ex-

periments described.

Deshpande, A. and E. Triantaphyllou (1998). A greedy randomized adaptive search
procedure (GRASP) for inferring logical clauses from examples in polynomial time
and some extensions. Mathematical and Computer Modelling 27, 75–99.

Two heuristics (one of which is a GRASP) are presented for inferring a small

size Boolean function from complete and incomplete examples in polynomial

time. Each example can be positive or negative depending on whether it must be

accepted or rejected, respectively, by the target function. Both of the proposed

heuristics are randomized in the sense that instead of choosing the best candidate

element, a candidate list is built whose elements are assigned with evaluative

function values close to the highest one.

Pardalos, P., L. Pitsoulis, and M. Resende (1996). A parallel GRASP for MAX-SAT
problems. Lecture Notes in Computer Science 1184, 575–585.

A parallel GRASP for weighted maximum satisfiability (MAX-SAT) problem

is proposed. The GRASP is based on the serial GRASP presented by Resende,

Pitsoulis, and Pardalos (1997). See also page 372.

Resende, M. and T. Feo (1996). A GRASP for satisfiability. In D. Johnson and
M. Trick (Eds.), Cliques, Coloring, and Satisfiability: The Second DIMACS Imple-
mentation Challenge, Volume 26 of DIMACS Series on Discrete Mathematics and
Theoretical Computer Science, pp. 499–520. American Mathematical Society.
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A GRASP is described for the satisfiability problem. It can be also directly ap-

plied to both the weighted and unweighted versions of the maximum satisfiability

problem. The adaptive greedy function is a hybrid combination of two functions.

One function seeks to maximize the number of yet-unsatisfied clauses that be-

come satisfied after the assignment of each construction iteration, while the other

maximizes the number of yet-unassigned literals in yet-unsatisfied clauses that

become satisfied if opposite assignments were to be made. The local search flips

the assignment of each variable, one at a time, checking if the new truth assign-

ment increases the number of satisfied clauses.

Resende, M., L. Pitsoulis, and P. Pardalos (1997). Approximate solution of weighted
MAX-SAT problems using GRASP. In J. Gu and P. Pardalos (Eds.), Satisfiability
problems, Volume 35 of DIMACS Series on Discrete Mathematics and Theoretical
Computer Science, pp. 393–405. American Mathematical Society.

A GRASP is proposed for finding approximate solutions of weighted MAX-SAT

problems. The greedy adaptive function is to maximize the total weight of yet-

unsatisfied clauses that become satisfied after the assignment of each construc-

tion phase iteration. The local search uses the 1-flip neighborhood of a vector x,

defined as the set of all binary vectors that differ from x in exactly one literal.

Resende, M., L. Pitsoulis, and P. Pardalos (2000). Fortran subroutines for computing
approximate solutions of MAX-SAT problems using GRASP. Discrete Applied
Mathematics 100, 95–113.

A set of Fortran subroutines for computing approximate solutions of MAX-SAT

problems is described. The algorithm implemented was proposed by Resende,

Pitsoulis, and Pardalos (1997). Two versions of the subroutines are distributed.

One version uses a neighborhood data structure in order to speed up the local

search phase, while the second version, since it does not make use of this data

structure, is more memory efficient but less time efficient. Computational results

improve upon those in Resende, Pitsoulis, and Pardalos (1997) using an RCL

parameter α randomly chosen each GRASP iteration from the interval [0,1]. See

also page 368.

Yilmaz, E., E. Triantaphyllou, J. Chen, and T. Liao (2003). A heuristic for mining
association rules in polynomial time. Mathematical and Computer Modelling 37,
219–233.

The problem consisting in mining association rules in a database needs to be

efficiently solved, especially nowadays when modern databases have very large

sizes. The authors propose a heuristic algorithm that incorporates the randomized

idea of the GRASP construction phase.

13.14 MANUFACTURING

GRASP has been used to address several applications in manufacturing. The following

papers are examples of this.
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An integer program is relaxed via Lagrangian relaxation into a min-cut problem

on a bipartite network. To obtain lower bounds, a max-flow algorithm is applied

and the corresponding solution is input to a GRASP. See also page 402.

Bard, J. and T. Feo (1991). An algorithm for the manufacturing equipment selection
problem. IIE Transactions 23, 83–92.

The objective is to determine how many of each machine type to purchase and

what fraction of the time each piece of equipment will be configured for a par-

ticular type of operation. The problem is converted into a MILP and a depth-first

branch & bound algorithm is used, employing the greedy randomized set cover-

ing heuristic of Feo and Resende (1989), to implicitly search for optimality.

Bard, J., T. Feo, and S. Holland (1996). A GRASP for scheduling printed wiring board
assembly. I.I.E. Transactions 28, 155–165.

A GRASP is proposed for solving the daily scheduling problem that arises in

a job shop environment with more than 50 different processes and workstation.

See also page 402.

Bautista, J., R. Suárez, M. Mateo, and R. Companys (2000). Local search heuristics
for the assembly line balancing problem with incompatibilities between tasks. In
Proceedings of the IEEE ICRA-00, Volume 3, pp. 2404–2409.

The assembly line balancing problem with incompatibilities between tasks con-

sists in minimizing the total number of needed workstations and minimizing the

the cycle time for the minimum number of workstations. A GRASP and a genetic

algorithm are proposed for solving the problem. The greedy choice favors tasks

with the best index value, while the local search phase simply changes the order

of elements in the sequence solution.

Feo, T. and J. Bard (1989). The cutting path and tool selection problem in computer-
aided process planning. Journal of Manufacturing Systems 8, 17–26.

A method for minimizing the sum of tool setup and volume removal times asso-

ciated with metal cutting operations on a flexible machine is given. The problem
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is modeled as an integer program, then relaxed into a min-cut problem on a sim-

ple network. After obtaining a tentative solution, a GRASP is used to identify

good feasible points corresponding to alternative process plans. These are seen

to speed convergence during branch & bound.

Feo, T., J. Bard, and S. Holland (1995). Facility-wide planning and scheduling of
printed wiring board assembly. Operations Research 43, 219–230.

A GRASP is used to solve a multiple machine scheduling problem. The schedule

produced at each GRASP iteration is evaluated based on one of five different

optimization criteria. The choice of the criterion to be followed is made by the

user to rank order the schedules provided by multiple GRASP iterations. See

page 403.

Klincewicz, J. and A. Rajan (1994). Using GRASP to solve the component grouping
problem. Naval Research Logistics 41, 893–912.

Two new GRASPs are proposed that involve two alternate procedures for deter-

mining starting points: component-based and code-based. See also page 395.

Yen, J., M. Carlsson, M. Chang, J. Garcia, and H. Nguyen (2000). Constraint solving
for inkjet print mask design. Journal of Imaging Science and Technology 44, 391–
397.

Print masks are used to determine which nozzles on an inkjet printer cartridge

are to spit an ink droplet at each particular instant in a multiple-pass print mode.

A GRASP is proposed for for automatic generation of print masks and has

been used to design the print masks for Hewlett Packard’s wide format print-

ers (DeskJet 2500C and 2500CM).

13.15 TRANSPORTATION

GRASP has been used to find approximate solutions of problems in air, rail, and in-

termodal transportation. The following papers illustrate these applications.
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A neighborhood search technique is proposed that takes as input an initial fea-

sible solution, so that the construction phase is omitted. Two types of partial

route exchange operations are described. The first exchanges flight sequences

with identical endpoints and in the second sequence of flights being exchanged

must have the same origination airport, but the termination airports are swapped.

See also page 397.

Atkinson, J. (1998). A greedy randomised search heuristic for time-constrained vehi-
cle scheduling and the incorporation of a learning strategy. Journal of the Opera-
tional Research Society 49, 700–708.

In both adaptive search techniques proposed and called local and global adap-

tations, respectively, the greedy function takes into account a quantity that mea-

sures heuristically the quality of the partial solution. While in local adaptation

the decisions made within a particular run influence only the subsequent perfor-

mance of the heuristic, global adaptation involves making decisions that affect

the performance of the heuristic in subsequent runs. See also page 402.

Baker, B. and C. Carreto (2003). A visual interactive approach to vehicle routing.
Computers and Operations Research 30, 321–337.

See page 397.

Bard, J. (1997). An analysis of a rail car unloading area for a consumer products
manufacturer. Journal of the Operational Research Society 48, 873–883.

Discussion of design and analysis of the railcar unloading area of Proctor &

Gamble’s principal laundry detergent plant. To solve the problem, four alterna-

tives are proposed and evaluated with the help of a GRASP. See also page 381.

Bard, J., L. Huang, P. Jaillet, and M. Dror (1998). A decomposition approach to
the inventory routing problem with satellite facilities. Transportation Science 32,
189–203.

Three heuristics are proposed for solving the vehicle routing problem with satel-

lite facilities: randomized Clarke-Wright, GRASP, and modified sweep. The
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GRASP proposed is a modified version of the GRASP of Kontoravdis and Bard

(1995). See also page 397.

Bard, J., G. Kontoravdis, and G. Yu (2002). A branch-and-cut procedure for the vehi-
cle routing problem with time windows. Transportation Science 36, 250–269.

A GRASP is proposed to obtain feasible solutions and/or upper bounds used in

a branch-and-cut algorithm for the vehicle routing problem with time windows.

See also page 398.

Campbell, A. and M. Savelsbergh (2002). Decision support for consumer direct gro-
cery initiatives. Technical report, Department of Management Sciences, Tippie
College of Business, University of Iowa.

Business-to-Consumer e-commerce has led to the proposal of new consumer

direct service models and activities, such as grocery delivery services. The seller

has to decide which request to accept and for each accepted request he has to

establish the time slot when the delivery is going to be done. Insertion based

heuristics are proposed. To improve the chances that a delivery request can be

taken, randomization is used as in the GRASP proposed by Kontoravdis and

Bard (1995).

Campbell, A. and M. Savelsbergh (2003). Incentive schemes for consumer direct
delivery. Technical report, Department of Management Sciences, Tippie College of
Business, University of Iowa.

A different aspect of a problem arising in Business-to-Consumer e-commerce

is addressed, i.e the promise of a delivery window. Several approaches are pro-

posed, including a GRASP. The greedy criterion is based on the costs of inserting

a delivery into a feasible schedule.

Delorme, X., J. Rodriguez, and X. Gandibleux (2001). Heuristics for railway infras-
tructure saturation. In C. Zaroliagis (Ed.), Electronic Notes in Theoretical Computer
Science, Volume 50. Elsevier.

To evaluate railway infrastructure capacity, two heuristics approaches are pro-

posed, including a GRASP. The greedy function is defined on the number of

mathematical model constraints concerned by decision variables, while local

search procedure uses a k-p exchange neighborhood.

Feo, T. and J. Bard (1989). Flight scheduling and maintenance base planning. Man-
agement Science 35, 1415–1432.

The problem is formulated as a minimum cost multicommodity flow network

with integral constraints, where each airplane represents a separate commodity

and each arc has an upper and lower capacity of flow. Since obtaining feasible

solutions from the LP relaxation is difficult, the authors propose a GRASP. See

page 403.

Feo, T. and J. González-Velarde (1995). The intermodal trailer assignment problem:
Models, algorithms, and heuristics. Transportation Science 29, 330–341.

The problem is formulated as a set covering problem. A branch-and-bound al-

gorithm and a GRASP are developed for solving it. The greedy strategy of the

construction phase of GRASP consists in selecting at each step a feasible assign-

ment of the most difficult to use available railcar together with the most difficult
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to assign trailer. To improve the constructed solution, a 2-exchange local search

is applied, carrying out a complete enumeration of the solutions in the neighbor-

hood. See also page 382.

Garcı́a, J., S. Lozano, K. Smith, and F. Guerrero (2001). A comparison of GRASP
and an exact method for solving a production and delivery scheduling problem.
In First International Workshop on Hybrid Intelligent Systems (HIS’01), Adelaide,
Australia.

See also page 404.

Lourenço, H., J. Paixão, and R. Portugal (2001). Multiobjective metaheuristics for the
bus-driver scheduling problem. Transportation Sciences 35, 331–343.

To design GRASP, a set N of n duties is defined and a greedy criterion based on

a quantity proportional to the cost associated with the duties is used. The local

search procedure uses a 1-exchange neighborhood. See also page 404.

Milidı́u, R., A. Pessoa, V. Braconi, E. Laber, and P. Rey (2001). Um algoritmo GRASP
para o problema de transporte de derivados de petróleo em oleodutos. In Proceed-
ings of the XXXIII Brazilian Symposium on Operations Research, pp. 237–246.

A GRASP is described for petroleum derivatives transportation in pipelines. The

greedy function is a simple cost function obtained as sum of the total volumes of

the product.

Sosnowska, D. (2000). Optimization of a simplified fleet assignment problem with
metaheuristics: Simulated annealing and GRASP. In P. Pardalos (Ed.), Approxima-
tion and complexity in numerical optimization. Kluwer Academic Publishers.

A simulated annealing and a GRASP are proposed. In GRASP only exchanges

leading to a better solution are permitted and the potentially best part of the

assignment is conserved and the rest is randomly reattributed. The construction

phase does not use a restricted candidate list explicitly, but a solution is built by

simply trying to make the time interval between two flights as small as possible.

See also page 386.

13.16 TELECOMMUNICATIONS

GRASP has been widely applied in the telecommunications field to problems ranging

from network design to facility location and routing. Below are papers describing

applications of GRASP in telecommunications.
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imum clique problem and maximum quasi-clique problem in very large graphs.
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page 373.
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The authors propose a Scatter Search (SS) algorithm for solving a fixed charge

capacitated multicommodity network design problems on undirected networks.

A GRASP-based diversification generation method (DGM) with memory fea-

tures is described. In the GRASP DGM, for each commodity a certain number q

of shortest paths between each origin-destination pair are kept as RCL elements.

The local search consists basically in sorting the chosen paths and possibly ex-

change some of them in order to get a better distribution. See also page 362.

Amaldi, E., A. Capone, and F. Malucelli (2003). Planning UMTS base station location:
Optimization models with power control and algorithms. IEEE Transactions on
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The greedy function takes into account the fraction of traffic covered and the

installation costs. Local search is a swap procedure. See also page 387.
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Amaldi, E., A. Capone, F. Malucelli, and F. Signori (2003). Optimization models and
algorithms for downlink UMTS radio planning. In Wireless Communications and
Networking, 2003 (WCNC 2003), Volume 2, pp. 827–831.

The UMTS base station location problem is addressed. Previously, in Amaldi et

al. (2003), two randomized heuristics were proposed. They are here adapted for

solving a similar problem. See also page 388.

Armony, M., J. Klincewicz, H. Luss, and M. Rosenwein (2000). Design of stacked
self-healing rings using a genetic algorithm. Journal of Heuristics 6, 85–105.

A genetic algorithm for design of stacked self-healing rings is proposed. The

objective is to optimize the trade-off between the cost of connecting nodes to

the ring and the cost of routing demand on multiple rings. The initial population

of the genetic algorithm is made up of randomly generated solutions as well as

solutions generated by a GRASP. Computational comparisons are made with a

commercial integer programming package.

Brunato, M. and R. Battiti (2001). A multistart randomized greedy algorithm for traffic
grooming on mesh logical topologies. Technical report, Department of Mathemat-
ics, University of Trento, Trento, Italy.

A logical topology design problem on Dense Wavelength Division Multiplexing

(DWDM) optical networks is addressed. Traffic is measured at sub-wavelength

resolution and the key factor to determine the fitness of a solution is the number

of lightpaths required. A GRASP-like heuristic for minimizing the number of

lightpaths is described. The greedy choice takes into account the load associated

with each lightpath.

Canuto, S., M. Resende, and C. Ribeiro (2001). Local search with perturbation for the
prize-collecting Steiner tree problems in graphs. Networks 38, 50–58.

The prize collecting Steiner tree problem arises in telecommunications access

network design. See page 357, page 362, and page 374.
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its Applications, University of Minnesota, USA.
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search and GRASP. Annals of Operations Research 40, 283–302.
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A GRASP is proposed for the p-hub location problem. Its local search procedure

is based on a 2-exchange. See also page 390.

Klincewicz, J. (2002). Enumeration and search procedures for a hub location problem
with economies of scale. Annals of Operations Research 110, 107–122.

The greedy function of the GRASP takes into account the amount of originat-

ing and terminating traffic. The local search uses a 1− 1 swap neighborhood

structure. See also page 390.

Kumaran, K., A. Srinivasan, Q. Wang, S. Lanning, and K. Ramakrishnan (2001). Ef-
ficient algorithms for location and sizing problems in network design. In Global
Telecommunications Conference, 2001 (GLOBECOM ’01), Volume 4, pp. 2586–
2590. IEEE.

The problems of location and sizing in network design are considered. Algo-

rithms based on linear programming and a slightly modified GRASP are de-

veloped. In the GRASP, the construction phase is performed at random. See

page 390 for details about the local search.

Li, B., F. Chen, and L. Yin (2000). Server replication and its placement for reliable
multicast. In Proceedings of the IEEE ICCCN-00, pp. 396–401.

In a multicast network, packets are forwarded from a source (server) to group of

receivers along a distribution tree, where the source is the root, the receivers are

the leaves, and the multicast-capable routers are the internal nodes. The prob-

lem consists of placing multiple replicated servers within the multicast-capable

routers. Several heuristics are proposed, including a GRASP. The greedy func-

tion is the router cost function, while the local search phase uses a k-exchange

neighborhood structure with k = 1.

Liu, X., P. Pardalos, S. Rajasekaran, and M. Resende (2000). A GRASP for fre-
quency assignment in mobile radio networks. In S. Rajasekaran, P. Pardalos, and
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also page 382.
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proposed, whose greedy function uses demand flow allocation, while at each

iteration of the local search phase, some selected nodes (or edges) become un-

available if provided and vice versa.

Myslek, A. and P. Karaś (2002). Heuristic methods for topological design of telecom-
munication networks. In Proceedings of PGTS 2002.

Given a list of potential node locations and a list of feasible interconnections be-

tween nodes, the generic topological network design problem consists in finding

a network structure and a demand allocation pattern that minimizes the cost of

the network. A pool of heuristics are proposed for solving the problem, includ-

ing a Simulated Allocation (SAL) and a hybrid GRASP that uses SAL as local

search.

Oliveira, C. and F. Gomes (1999). Two metaheuristics for channel allocation in mo-
bile telephony. Technical report, Artificial Intelligence Laboratory, Universidade
Federal do Ceará, Fortaleza, Brazil.

Two heuristics are proposed: GRASP and Asynchronous Team (A-Team). The

construction phase of the proposed GRASP is realized by a procedure that at each

step chooses the next antenna to which a frequency will be assigned. In the RCL

construction, priority is given to transmitters with fewer options of frequency

assignment. To implement the local search phase, a down hill algorithm is used.

It performs random perturbations in the solution, exchanging the frequency of

one antenna by another randomly chosen. See also age 383.

Pasiliao, E. (1998). A greedy randomized adaptive search procedure for the multi-
criteria radio link frequency assignment problem. Technical report, Department of
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channel from the communication network. See also page 384.

Poppe, F., M. Pickavet, P. Arijs, and P. Demeester (1997). Design techniques for SDH
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proposed: an integer linear programming algorithm (branch-and-cut-and-price),

a GRASP, and a zoom-in approach that combines a genetic algorithm with de-

terministic optimization routines. The greedy choice of the proposed GRASP is

to favor paths having lowest additional cost. The local search iteratively tries to

reroute some paths.

Prais, M. and C. Ribeiro (2000). Reactive GRASP: An application to a matrix de-
composition problem in TDMA traffic assignment. INFORMS Journal on Comput-
ing 12, 164–176.

A geostationary communication satellite has a number of spot beam antennas

covering geographically distributed areas. According to the slot switching con-

figuration on the on-board switch, the uplink traffic received at the satellite has

to be immediately sent to ground areas through a set of transponders. The slot
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switching configurations are determined through the solution of a time slot as-

signment problem, which is equivalent to the decomposition of a nonnegative

traffic matrix into the sum of a family of switching mode matrices. A Reactive

GRASP is proposed. See also page 358 and page 385.

Resende, L. and M. Resende (1999). A GRASP for frame relay PVC routing. In Proc.
of the Third Metaheuristics International Conference, pp. 397–402.

The objective of the problem solved here is to minimize PVC delays while

balancing trunk loads. The local search procedure reroutes each PVC, one at a

time, checking each time if the new route taken together with the remaining fixed

routes improves the objective function. See also page 399.

Resende, M. (1998). Computing approximate solutions of the maximum covering
problem using GRASP. Journal of Heuristics 4, 161–171.

A GRASP for maximum covering is proposed. Maximum covering problems

arise in telecommunications network location applications. See also page 395.

Resende, M. and C. Ribeiro (2003). GRASP with path-relinking for private virtual
circuit routing. Networks 41, 104–114.

Variants of a GRASP with path-relinking heuristic are proposed for the offline

PVC routing problem. See also page 364 and page 399.

Resende, M. and O. Ulular (1997). SMART: A tool for AT&T Worldnet access design
– Location of Cascade 9000 concentrators. Technical report, AT&T Labs Research,
Florham Park, NJ 07932 USA.

This report describes SMART, a software tool for finding low cost configura-

tions of Cascade 9000 concentrators in the AT&T Worldnet backbone access net-

work. The concentrator location problem is stated and cost model is presented for

concentrator configurations. This cost model is used in a GRASP, proposed for

finding approximate solutions to the concentrator location problem. The greedy

choice favors the points-of-presence (POPs) with smallest incremental cost. The

local search implements a simple 2-exchange.

Ribeiro, C. and I. Rosseti (2002). A parallel GRASP for the 2-path network design
problem. Lecture Notes in Computer Science 2004, 922–926.

A parallel GRASP with path-relinking is proposed for solving the 2-path net-

work design problem. See also page 372 and page 378.

Rosseti, I. (2003). Heurı́sticas para o problema de sı́ntese de redes a 2-caminhos. Ph.
D. thesis, Department of Computer Science, Catholic University of Rio de Janeiro,
Rio de Janeiro, Brazil.

The 2-path network design problem (2PNDP) consists in finding a minimum

weighted subset of edges containing a 2-path between the endpoints of every

origin-destination in D, where a 2-path between the pair (s, t) ∈ D is a sequence

of at most two edges connecting s to t. To solve 2PNDP, sequential and paral-

lel heuristics are proposed, included variants and combinations of GRASP. In

Portuguese. See also page 378.
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Srinivasan, A., K. Ramakrishnan, K. Kumaram, M. Aravamudam, and S. Naqvi
(2000). Optimal design of signaling networks for Internet telephony. In IEEE
INFOCOM 2000.

An approach for efficient design of a signaling network for a network of software

switches supporting Internet telephony is proposed. Optimal load balancing for

given demand forecast is formulated as a quadratic assignment problem, which

is solved with a GRASP.

Vieira, C. and P. Gondim (2001). Uma nova estratégia para aplicação do GRASP ao
problema de alocação de canal. Technical Report 070/DE9/01, Departamento de
Engenharia de Sistemas, Instituto Militar de Engenharia, Rio de Janeiro, Brazil.

A special location problem arising in telecommunications is addressed. See

page 386.

Xu, J. and S. Chiu (1996). Solving a real-world field technician scheduling problem.
In Proceedings of the International Conference on Management Science and the
Economic Development of China, pp. 240–248.

The local search implements four different moves, among them the 2-exchange

and a swap that exchanges an assigned job with another job unassigned under

the candidate schedule. See page 405.

Xu, J. and S. Chiu (2001). Effective heuristic procedure for a field technician schedul-
ing problem. Journal of Heuristics 7, 495–509.

The objective of the field technician scheduling problem is to assign a set of

jobs at different locations with time windows to technicians with different job

skills. Several heuristics are designed and tested for solving the problem: a pure

greedy heuristic, a GRASP, and a local search algorithm. The greedy choice

of the GRASP proposed is to select jobs with the highest unit weight. The local

search implements four different moves, among them the 2-exchange and a swap

that exchanges an assigned job with another job unassigned under the candidate

schedule. See also page 405.

13.17 ELECTRICAL POWER SYSTEMS

GRASP has been applied to problems arising in planning and operations of electrical

power systems. The following papers examplify these applications.



Bibliography

Bahiense, L., G. Oliveira, and M. Pereira (2001). A mixed integer disjunctive model
for transmission network expansion. IEEE Transactions on Power Systems 16, 560–
565.

Given the nonconvex nature of the transmission network expansion problem,

its classical nonlinear mixed integer formulation does not guarantee an optimal

solution. An alternative mixed integer linear disjunctive formulation is proposed.

The mixed integer program is solved by a commercial branch and bound code,

where the upper bound in the bounding phase is obtained by applying the reactive

GRASP proposed in Binato et al. (2001).

Binato, S. and G. Oliveira (2002). A Reactive GRASP for transmission network ex-
pansion planning. In C. Ribeiro and P. Hansen (Eds.), Essays and surveys in meta-
heuristics, pp. 81–100. Kluwer Academic Publishers.

The GRASP previously proposed by Binato, Oliveira, and Araújo (1998) for the
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The unit commitment problem consists in deciding, over a given planning hori-

zon, the set of electric generators to be committed and defining the production

levels required for each generator so that load and spinning reserve requirements

are verified at a minimum production cost. The GRASP construction phase pro-

posed applies a greedy criterion based on fuel cost, start-up cost, and shut-down

cost. The local search procedure uses a 1-flip neighborhood, where neighbors of
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French.

13.18 BIOLOGY

Recent work in computational biology has applied the concepts of GRASP. The papers

below illustrate this.
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similarity over a set of characters. To solve the phylogeny problem is to find a

phylogeny with the minimum number of evolutionary steps, i.e. applying the so-

called parsimony criterion. Several heuristic approaches are studied and tested,

including a GRASP. Three different neighborhood structures are investigated:

nearest neighborhood interchange, the single step neighborhood, and subtree

pruning and regrafting.

Andronescu, M. and B. Rastegari (2003). Motif-GRASP and Motif-ILS: Two new
stochastic local search algorithms for motif finding. Technical report, Computer
Science Department, University of British Columbia, Vancouver, Canada.

A motif is a conserved pattern thought to exist in several biosequences such as

DNA, RNA, and proteins. Given N biosequences Si, i = 1,2, . . .,N with length ni

and a number L, the problem of motif finding consists in finding a sequence Mi

of length L for each biosequence such that their similarity grade is maximized. A

candidate solution is represented as a set a1,a2, . . . ,aN , where ak ∈ [1,nk−L+1],
for each k ∈ [1,N]. All candidate solutions correspond to all possible combina-

tions of ai assignment. Several greedy functions are proposed based on the a

weight defined on the starting point of the motif. The neighborhood structure

used in the local search procedure is a 1-exchange.

Brown, D. (2000). Algorithmic methods in genetic mapping. Ph. D. thesis, Cornell
University, Ithaca, NY, USA.

A survey of existing methods for genetic mapping problems is presented and

several new algorithms, including a GRASP, proposed. The greedy function is

defined on bin length, while the local search first removes from the sample those

population members that do not affect on the objective function value.

Brown, D., T. Vision, and S. Tanksley (2000). Selecting mapping: A discrete opti-
mization approach to select a population subset for use in a high-density genetic
mapping project. Genetics 155, 407–420.
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A GRASP is proposed for selecting a population subset for use in a high-density

genetic mapping project. At each iteration of the construction phase, one among

the r unchosen population members which most improve the objective function

value is added to the solution. Very small sized RCLs (i.e. r = 3 and r = 5)

are used. The implemented local search removes from the current solution some

members and greedily includes other members.

Fried, C., W. Hordijk, S. Prohaska, C. Stradler, and P. Stradler (2003). The foot-
print sorting problem. Technical report, Bioinformatics, Department of Computer
Science, University of Leipzig, Germany.

Phylogenetic footprints are short pieces of no-coding DNA sequence in genes

that are conserved between evolutionary distant species. It is shown that solving

the footprint sorting problem requires the solution of a minimum weight vertex

feedback set problem. For this the GRASP of Festa et al. (2001) is used.

Iorvik, V., E. Triantaphyllou, T. Liao, and S. Waly (1999). Predicting muscle fatigue
via electromyography: A comparative study. In Proceedings of the 25th Interna-
tional Conference on Computers and Industrial Engineering, pp. 277–280.

A comparison of some state-of-the-art AI predictive and statistical techniques,

including a GRASP, is presented.

Krasnogor, N., D. Pelta, W. Russo, and G. Terrazas (1998). A GRASP approach to
the protein structure prediction problem. Technical report, LIFIA Lab, University
of La Plata, La Plata, Argentina.

The applicability of a GRASP for solving a special protein folding problem is

presented. The goal is to predict from the molecular sequence of a given protein

its particular 3D structure.

Reynolds, A., J. Dicks, I. Roberts, J. Wesselink, B. de la Iglesia, V. Robert,
T. Boekhout, and V. Rayward-Smith (2003). Algorithms for identification key gen-
eration and optimization with application to yeast identification. In Applications of
Evolutionary Computing, Volume 2611 of Lecture Notes in Computer Science, pp.
107–118. Springer-Verlag.

For the automated creation of low cost identification keys, several algorithms are

described. One of them applies the greedy randomized strategy of the GRASP

framework.

Ribeiro, C. and D. Vianna (2003). A GRASP/VND heuristic for the phylogeny prob-
lem using a new neighborhood structure. Technical report, Department of Computer
Science, Catholic U. of Rio de Janeiro, Rio de Janeiro, Brazil.

The phylogeny problem consists in finding a phylogeny with the minimum num-

ber of evolutionary steps, where a phylogeny is a tree that relates taxonomic

units based on their similarity over a set of characters. The authors propose a

hybridization of GRASP and VND. See also page 365.

13.19 VLSI DESIGN

GRASP has been used to solve circuit partitioning problems, as illustrated by the

following papers.



Bibliography

Areibi, S. (1999). GRASP: An effective constructive technique for VLSI circuit parti-
tioning. In Proc. IEEE Canadian Conference on Electrical & Computer Engineer-
ing (CCECE’99), Volume 1, pp. 462–467.

A GRASP is proposed to obtain good initial solutions for an iterative improve-

ment technique. See page 388 and page 393.

Areibi, S., M. Moussa, and H. Abdullah (2001). A comparison of genetic/memetic
algorithms and other heuristic search techniques. In Proceedings of IC-AI 2001.

Several constructive procedures for circuit partitioning problems are compared,

including a genetic algorithm, a memetic algorithm, and a GRASP.

Areibi, S. and A. Vannelli (1997). A GRASP clustering technique for circuit partition-
ing. In J. Gu and P. Pardalos (Eds.), Satisfiability problems, Volume 35 of DIMACS
Series on Discrete Mathematics and Theoretical Computer Science, pp. 711–724.
American Mathematical Society.

The number of clusters is predetermined as a function of the number of par-

titions required. Initially, the heuristic reads the circuit description and resizes

the blocks to be used by GRASP, which utilizes only the construction phase

to generate the number of required clusters. The GRASP construction phase is

followed by a post-processing stage, in which a simple dynamic hill climbing

algorithm is used as local search to improve the initial solution generated. See

also page 388.

Areibi, S. and A. Vannelli (2000). Efficient hybrid search techniques for circuit parti-
tioning. In IEEE 4th World Multiconference on Circuits, Systems, Communications
& Computers.

See page 362, page 388, and page 393.

13.20 AUTOMATIC DRAWING

GRASP has been used to find approximate solutions to problems related to automatic

drawing. This section lists these papers.
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Binucci, C., W. Didimo, G. Liotta, and M. Nonato (2002). Labeling heuristics for
orthogonal drawings. In Proceedings of GD’98 – Symposium on Graph Drawing,
Volume 2265 of Lecture Notes in Computer Science, pp. 139–153. Springer-Verlag.

Several heuristics (including a GRASP) for computing an orthogonal drawing of

a graph with labels are implemented and compared.

Fernández, E. and R. Martı́ (1999). GRASP for seam drawing in mosaicking of aerial
photographic maps. Journal of Heuristics 5, 181–197.

Commercial aerial photographic maps are often so large that it is necessary to

produce one map from two or even more photographs. These are combined, two

at a time, in a process called mosaicking. The most difficult step in the mo-

saicking process is seam-drawing. A GRASP is proposed for solving the seam-

drawing process.

Laguna, M. and R. Martı́ (1999). GRASP and path relinking for 2-layer straight line
crossing minimization. INFORMS Journal on Computing 11, 44–52.

A GRASP with path-relinking is developed for the problem of minimizing

straight line crossings in a 2-layer graph. The greedy criterion of the construction

phase is based on the degree of the vertices and a value based restricted candi-

date list is used. Each step of the improvement phase consists in selecting each

vertex to be considered for a move. A probabilistic selection rule is used such

that vertices with high degree are more likely to be selected first at each step of

this process. See also page 357 and page 363.

Martı́, R. and V. Estruch (2001). Incremental bipartite drawing problem. Computers
and Operations Research 28, 1287–1298.

A GRASP is proposed for the incremental arc crossing minimization problem

for bipartite graphs. Computational experiments are done on 450 instances and

results are compared with a branch and bound algorithm. See also page 376.

Martı́, R. and M. Laguna (2003). Heuristics and meta-heuristics for 2-layer straight
line crossing minimization. Discrete Applied Mathematics 127, 665–678.

Extensive computational results are presented using 12 heuristics and two meta-

heuristics for the 2-layer straight line crossing minimization problem. On dense
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graphs, a tabu search meta-heuristic does best with GRASP a close second.

On low-density graphs, GRASP outperforms all other approaches. See also

page 376.

Ng, K. and B. Trifonov (2003). Automatic bounding volume hierarchy generation
using stochastic search methods. In CPSC532D Mini-Workshop ”Stochastic Search
Algorithms”.

A bounding volume hierarchy is used for improving the efficiency of ray trac-

ing based rendering. Finding good hierarchies is difficult, since the number of

hierarchies grows exponentially with the number of scene objects. A GRASP

is designed for improving previously proposed heuristics. The greedy function

used is based on subdivision points, while local search is basically a perturbation

procedure.

Osman, I., B. Al-Ayoubi, and M. Barake (2003). A greedy random adaptive search
procedure for the maximal planar graph problem. Computers and Industrial Engi-
neering 45, 635–651.

A GRASP is proposed and tested for the weighted maximal planar graph prob-

lem. The construction is a randomized version of the Green and Al-Hakim al-

gorithm (1985). A new data structure is introduced, reducing the complexity of

the construction from O(n3) to O(n2). Local search uses four types of moves

proposed by Pesch, Glover, Bartsch, Salewski, and Osman (1995). See also

page 377.

Osman, I., B. Al-Ayoubi, M. Barake, and M. Hasan (2000). A greedy random adaptive
search procedure for the weighted maximal planar graph problem. Technical report,
School of Business and Center for Advanced Mathematical Sciences, American
University of Beirut, Beirut, Lebanon.

A GRASP is proposed and tested for the weighted maximal planar graph prob-

lem. See also page 377.

Osman, I., M. Hasan, and A. Abdullah (2002). Linear programming based meta-
heuristics for the weighted maximal planar graph. Journal of the Operational Re-
search Society 53, 1142–1149.

Two meta-heuristics are described, both derived from an ILP relaxation. The

first one takes into account only variables with fractional value greater than half

in the ILP relaxation to build an initial subgraph from which a planar subgraph

is extracted with the help of a GRASP and triangulation of faces. The second

approach considers only edges having integer value in the ILP relaxation, while

the remaining edges are sorted in descending order of their weights. Those edges

that do not violate a planarity test are thus candidate for insertion to obtain a

feasible solution using GRASP. See also page 377.

Resende, M. and C. Ribeiro (1997). A GRASP for graph planarization. Networks 29,
173–189.

A GRASP is described that extends the two-phase heuristic of Goldschmidt

and Takvorian (Networks, v. 24, pp. 69–73, 1994). Computational experience on

a large set of standard test problems is presented. On almost all test problems

considered, the heuristic either matches or finds a better solution than previously
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described graph planarization heuristics. In several cases, previously unknown

optimal solutions are found. See also page 378.

Ribeiro, C. and M. Resende (1999). Algorithm 797: Fortran subroutines for approx-
imate solution of graph planarization problems using GRASP. ACM Transactions
on Mathematical Software 25, 341–352.

A set of Fortran subroutines that implements the GRASP for graph planarization

of Resende and Ribeiro (1997) is presented. See also page 368 and page 378.

13.21 MISCELLANEOUS

The papers in this section could not be categoried into any of the previous section in

this paper.





Bibliography

Boeres, M., C. Ribeiro, and I. Bloch (2003). Randomized algorithms for scene recog-
nition by inexact graph matching. Technical report, Computer Science Department,
Catholic University of Rio de Janeiro, Rio de Janeiro, Brazil.

The algorithm proposed to solve a scene recognition problem consists of a ran-

domized construction procedure and a local search procedure. In the construction

procedure, the greedy function has two terms representing, respectively, the node

and edge contributions to the measure of the solution quality associated with the

correspondence. Given a feasible solution x, the neighborhood structure used

during local search considers as neighbors of x all feasible solutions that can be

obtained by changing some association. See page 374.

cois, H. F. and O. Boëffard (2002). The greedy algorithm and its application to the
construction of a continuous speech database. In Proceedings of LREC-2002, Vol-
ume 5, pp. 1420–1426.

A general framework of the construction of databases characterized by differ-

ent linguistic features is addressed. A small sized continuous speech database

is needed, at the same time based on a maximum number of phonetic units.

After recorded, the set of sentences constitutes the source from which the text-

to-speech synthesizer draws the needed acoustic units. The problem is to find the

smallest subset of sentences that covers all needed units. A greedy algorithm is

described to solve the problem and the development of a GRASP is proposed as

future work.

de Noronha, T. F. (2001). Algoritmos e estratégias de solução para o problema do
gerenciamento de sondas de produção terrestre na bacia petrolı́fera potiguar. Revista
Electrônica de Iniciação Cientifica 1.

Several different heuristics are proposed, including a GRASP, for a petroleum

production planning problem. The greedy function is a simple cost function re-

lated to the production, while the local search phase looks for improving solu-

tions by swapping paths. In Portuguese.

de Souza, C. C., C. B. Medeiros, and R. S. Pereira (1996). Integrating heuristics and
spatial databases: A case study. Technical Report IC-96-18, Institute of Computing,
Universidade Estadual de Campinas, Campinas, Brazil.
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Part of the ongoing efforts at IC-UNICAMP to apply heuristic algorithms to vec-

torial georeferenced data to help decision support in urban planning is described.

A first prototype, implemented in C++, and tested on support planning activities

for the São Paulo State Post Office System in Brazil is presented. The prob-

lem is a special partition problem, where the number of clusters in the partition

(number of districts in the distribution zone) must be minimized. The problem is

represented by building a special undirected graph that has two main character-

istics: connectivity and information about the mailman daily loads. To solve the

problem, a set of randomized heuristics, including a GRASP, are proposed.

Demirer, R. and B. Eksioglu (1998). Subset selection in multiple linear regression:
A new mathematical programming approach. Technical Report School of busi-
ness working paper no. 284, School of business, University of Kansas, Lawrence,
Kansas, USA.

A new mathematical programming model is proposed. It is parametrically solved

to obtain a collection of efficient subsets. The parametric solution requires re-

peatedly solving a mathematical program which is done with either a Lagrangian

relaxation based heuristic or a GRASP.

Festa, P. and G. Raiconi (2001). GRASP in switching input optimal control synthesis.
In Proceedings of MIC’2001, pp. 381–385.

Several optimal control problems are introduced. A GRASP is designed. In the

construction phase, the greedy criterion minimizes the quadratic costs in the Ric-

cati equation. The neighborhood structure used in the local search phase is de-

fined on the Hamming distance.

Gandibleux, X., D. Vancoppenolle, and D. Tuyttens (1998). A first making use of
GRASP for solving MOCO problems. Technical report, University of Valenciennes,
France.

An extension of GRASP, to solve multi-objective combinatorial optimization

(MOCO) problems, is considered. In particular, classical covering, assignment,

knapsack, and scheduling problems with multiple objectives are used as bench-

marks. Computational results compare GRASP solutions for a benchmark set

of test problems and results are discussed in comparison with an exact method,

when available. In French.

Ghosh, J. (1996). Computational aspects of the maximum diversity problem. Opera-
tions Research Letters 19, 175–181.

Two variations of the maximum diversity problem are addressed. This problem

arises when m elements are to be selected from an n-element population based

on inter-element distances. Using a reduction from the vertex cover problem, a

GRASP is proposed.

Gomes, A. and J. Oliveira (2001). A GRASP approach to the nesting problem. In
Proceedings of MIC’2001, pp. 47–52.

A GRASP is proposed to solve a variant of the classical nesting problem, whose

objective is to minimize the length of a single plate used to produce a given set of

smaller pieces. Two greedy criteria are tested. The first one is the layout length,

measured as the maximum coordinate in the current layout, while the second one
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is the added internal waste, measured as the potential area lost when placing one

piece. The local search phase uses neighbors obtained by exchanging pairs of

pieces in the sequence output of the construction phase.

Juillé, H. and J. Pollack (1998). A sampling-based heuristic for tree search applied
to grammar induction. In Proceedings of the Fifteenth National Conference on
Artificial Intelligence.

SAGE, a new search algorithm that incorporates the same fundamental mecha-

nisms as the most popular metaheuristics, is presented. It is an iterative search

procedure that at each iteration performs a construction phase and a competition

phase. In the construction phase, SAGE implements a set of elementary random-

ized searches and a meta-level heuristic that controls the search procedure by

distributing the alternatives among the searches. Scope of the competition phase

is to favor the most promising search alternatives.

Locatelli, M. (1998). A class of heuristic methods for the maximization of the l1-
norm over parallelotopes. Technical report, Dipartimento di Sistemi ed Informatica,
Universitá di Firenze, Firenze, Italy.

For the maximization of the l1-norm over parallelotopes, a class of heuristics is

proposed that includes a slightly modified GRASP, in which between a greedy

construction and local search phases a filter phase is inserted to avoid performing

local search from bad starting solutions. The local search uses is a variant of a

1-flip neighborhood.

Medeiros, M., M. Resende, and A. Veiga (2001). Piecewise linear time series estima-
tion with GRASP. Computational Optimization and Applications 19, 127–144.

A GRASP is proposed to build piecewise linear statistical models with multivari-

ate thresholds. The construction phase consists of sequentially choosing hyper-

planes until the maximum number of hyperplanes is reached. The greedy func-

tion orders the possible hyperplanes with respect to the sum of squared errors of

the fitted data. The local search is a 2-exchange heuristic.

Medeiros, M., A. Veiga, and M. Resende (2002). A combinatorial approach to piece-
wise linear time analysis. Journal of Computational and Graphical Statistics 11,
236–258.

A new approach to modeling threshold processes is proposed. It is based on a lin-

ear model with time-varying parameters. This formulation is shown to be closely

related to the self-exciting threshold autoregressive models (SETAR) with the ad-

vantage that it incorporates linear multivariate thresholds. A GRASP is proposed

to estimate the parameters of the model. The greedy choice takes into account

the sum of squared errors of the fitted data. The local search is a 2-exchange

heuristic.

Mockus, J., E. Eddy, A. Mockus, L. Mockus, and G. Reklaitis (1997). Bayesian
discrete and global optimization. Kluwer Academic Publishers.

This book describes the Bayesian approach to discrete optimization. A Bayesian

heuristic algorithm version of GRASP is described.

Neto, T. and J. Pedroso (2001). GRASP for linear integer programming. In Proceed-
ings of MIC’2001, pp. 377–380.
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The GRASP framework is extended for solving general linear integer problems.

The key is to split the variables into a set of integer and a set of linear variables.

Then, GRASP finds values of the integer variables that are replaced in the orig-

inal problem, which becomes a pure continuous problem solvable by any linear

programming solver.

Neto, T. and J. Pedroso (2003). GRASP for linear integer programming. In M. Re-
sende and J. de Sousa (Eds.), Metaheuristics: Computer decision-making, pp. 545–
574. Kluwer Academic Publishers.

A preliminary version in this paper appeared in Neto and Pedroso (2001). Here,

the GRASP framework is extended for solving general linear integer problems.

The key is to split the variables into a set of integer and a set of linear variables.

Then, GRASP finds values of the integer variables that are replaced in the origi-

nal problem, which becomes a pure continuous problem, solvable by any linear

programming solver.

Palubeckis, G. and A. Tomkevicius (2002). GRASP implementations for the uncon-
strained binary quadratic optimization problem. Information Technology and Con-
trol 24, 14–20.

A classical GRASP framework and an enhanced GRASP that uses a simple

tabu search as local search are proposed. Numerical results show that the en-

hancement introduced in the classical GRASP implementation produces higher

quality solutions. See also page 364.

Roli, A. and M. Milano (2002). MAGMA: A multiagent architecture for metaheuris-
tics. Technical Report DEIS-LIA-02-007, DEIS, Università degli Studi di Bologna,
Bologna, Italy.

The main metaheuristic schemes, including GRASP, are revisited in a multiagent

perspective and a uniform framework called MAGMA is provided.

Sellmann, M. and W. Harvey (2002). Heuristic constraint propagation using local
search for incomplete pruning and domain filtering of redundant constraints for the
social golfer problem. In CPAIOR 2002).

It is hard to efficiently establish the existence of a feasible solution in a constraint

satisfaction problem. The most common approach is to implicitly explore the

feasible region. This paper proposes to add tight redundant constraints, possibly

hard to be verified exactly, but that can be checked by applying heuristics. One

heuristic strategy considered follows a GRASP strategy.

Silva, G., L. Ochi, and S. Martins (2003). Experimental comparison of greedy ran-
domized adaptive search procedures for the maximum diversity problem. Technical
report, Department of Computer Science, Federal Fluminense University, Niterói,
Brazil.

Given a large collection C of elements, the maximum diversity problem consists

in finding optimally diverse subsets of C. Ghosh (1996) proposed a GRASP for

approaching this problem. Here, a new GRASP is depicted, whose construction

phase implements three different strategies based on distance greedy function.

The local search phase uses two neighborhood structures. One is the structure

defined by Ghosh, while the second one is a 2-exchange neighborhood.
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13.22 RECENT PUBLICATIONS

In this section, we list some recent publications. These will later be reclassified into

the previous sections.
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Abello, J., M. Resende, and S. Sudarsky (2002). Massive quasi-clique detection. In
S. Rajsbaum (Ed.), LATIN 2002: Theoretical Informatics, Volume 2286 of Lecture
Notes in Computer Science, pp. 598–612. Springer-Verlag.

The authors propose techniques that are useful for the detection of dense sub-

graphs (quasi-cliques) in massive sparse graphs whose vertex set, but not the

edge set, fits in RAM. The algorithms rely also on greedy randomized adaptive

search procedures (GRASP) to extract the dense subgraphs.

.

Aiex, R., S. Binato, and M. Resende (2003). Parallel grasp with path-relinking for job
shop scheduling. Parallel Computing 29, 393–430.

This paper describes a parallel GRASP with path relinking. Independent and co-

operative parallelization strategies are described and implemented. Two greedy

functions are defined: the first on is the makespan resulting from the inclusion of

a candidate operation to the already-scheduled operations; while the second one

(used in conjunction with the makespan) favors operations from jobs having long

remaining processing times. RCL is built by applying a min-max α-percentage

rule. The authors employ the two exchange local search.

.

Aiex, R., P. Pardalos, L. Pitsoulis, and M. Resende (2000). A GRASP for computing
approximate solutions for the three-index assignment problem. In Proceedings of
Parallel and Distributed Processing, Volume 1080 of Lecture Notes in Computer
Science, pp. 504.

The GRASP construction phase builds a feasible solution S by selecting n triplets

one at a time and the greedy choice reflects the weight associated with each

ordered triplet. In the local search a 2-exchange neighborhood is adopted.

.

Aiex, R. and M. Resende (2005). Parallel strategies for grasp with path-relinking. In
T. Ibaraki, K. Nonobe, and M. Yagiura (Eds.), Metaheuristics: Progress as Real
Problem Solvers. Springer.
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The authors analyze two parallel strategies for GRASP with path-relinking and

propose a criterion to predict parallel speedup based on experiments with a se-

quential implementation of the algorithm. Independent and cooperative parallel

strategies are described and implemented for the 3-index assignment problem

and the job-shop scheduling problem.

.

Aiex, R., M. Resende, and C. Ribeiro (2006). Tttplots: A perl program to create
time-to-target plots. Optimization Letters, published online.

This papers describes a Perl language program to create time-to-target solution

value plots for measured CPU times that are assumed to fit a shifted exponential

distribution, as in the case of randomized local search based heuristics for combi-

natorial optimization. The authors show how to use such plots in the comparison

of different algorithms or strategies for solving a given problem. A detailed de-

scription of the Perl program tttplots.pl is also provided.

.

Alvarez-Valdes, R., F. Parreo, and J. Tamarit (2005). A grasp algorithm for constrained
two-dimensional non-guillotine cutting problems. Journal of the Operational Re-
search Society 56(4), 414–425.

A GRASP is designed for the constrained two-dimensional non-guillotine cut-

ting problem, which consists in cutting the rectangular pieces from a large rect-

angle so as to maximize the value of the pieces cut. The authors investigate sev-

eral strategies for the construction and improvement phases. In the construction

phase, the authors take the smallest rectangle breaking the ties by the nearest dis-

tance to a corner of the stock rectangle. Then, two criteria have been considered

to select the piece: 1) The first piece in a list ordered, giving priority to pieces

which must be cut; 2) The piece producing the largest increase in the objective

function. Three alternative local search procedures are proposed: 1) A block ad-

jacent to an empty rectangle is selected and a tentative of completely eliminating

it is performed. The remaining pieces are then moved to the corners, the empty

rectangles are merged and the resulting list of empty rectangles is filled by ap-

plying the constructive algorithm. 2) The second procedure is a simplification

of method 1) in which pieces are not moved to the corners and the new empty

rectangles are only merged with existing adjacent empty rectangles. 3) The third

procedure consists of eliminating the final k% blocks of the solution and filling

the empty space with the deterministic constructive algorithm. Once the final

pieces have been removed from the solution, the remaining pieces are moved to

the corners, the empty rectangles are merged and the constructive algorithm is

then applied.

.

Alvarez-Valdes, R., F. Parreo, and J. Tamarit (2007). Reactive grasp for the strip-
packing problem. Computers & Operations Research, to appear, –.

This paper proposes a GRASP for the strip packing, where the problem is to

place a set of rectangular pieces into a strip of a given width and infinite length

so as to minimize the required length. The n pieces to pack are grouped into m

types of pieces of dimensions (hi,wi), i = 1, . . . ,m, and it is needed to pack Qi
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copies of each type i, with ∑m
i=1 Qi = n. The greedy choice is to sort the set of

piece types still to be packed in non-increasing order respect to wi and ties are

broken by non-increasing hi. The authors propose several different construction

procedures. The first three criteria are based on the width, trying to fill the bottom

of rectangle as much as possible. Each one of them gives a different importance

to the height of the pieces. The fourth criterion tries to maintain a profile of the

current solution which is as smooth as possible, avoiding peaks and troughs.

Several local searches are described. In the first one, from the initial solution of

height H, the authors define a closed stock sheet of width W and height H− 1

and remove the last k% pieces from the solution. In the second one, the pieces

defining the maximum height H are removed from the solution and placed on

some of the waste rectangles at lower levels of the strip. The third method con-

sists of eliminating the last k% pieces of the solution and filling the empty space

with the deterministic constructive algorithm. The fourth method is similar to the

third one, but in this case all pieces with their upper side exceeding a height λH

are removed, with 0 < λ < 1.

.

Amaldi, E., A. Capone, and F. Malucelli (2003). Planning umts base station location:
Optimization models with power control and algorithms. IEEE Transactions on
Wireless Communications 2(5), 939–952.

In this paper, the authors propose discrete optimization models and algorithms

aimed at supporting the decisions in the process of planning where to locate new

BSs. As the authors underline, these models consider the signal-to-interference

ratio as quality measure and capture at different levels of detail the signal qual-

ity requirements and the specific PC mechanism of the wideband CDMA air

interface. Two randomized greedy procedures and a TS algorithm for the up-

link (mobile to BS) direction are described. In particular, the authors devise a

greedy randomized procedure and a reverse greedy randomized procedure that

construct a solution, i.e. a subset of candidate sites where to activate BSs by it-

eratively adding and removing BSs from the current solution, respectively. The

greedy criterion takes into account the number of connections they could ser-

vice. The authors define swap moves that amount to installing a new BS in one

of the empty sites while deleting one of the active BSs by only considering swaps

between candidate sites that are relatively close to each other.

.

Amaldi, E., A. Capone, F. Malucelli, and F. Signori (2003). Optimization models and
algorithms for downlink umts radio planning. In Proceedings of Wireless Commu-
nications and Networking, (WCNC 2003), Volume 2, pp. 827–831.

The authors describe two mathematical programming models for locating direc-

tive base stations considering downlink (base station to mobile) direction and

assuming a power-based as well or a SIR-based power control mechanism. To

efficintly solve the NP-hard downlink BS locationthe problem, a GRASP and a

TS are proposed. Each GRASP construction phase starts from an empty set of

active BSs and at each iteration randomly selects an available CS (in which to

install an additional BS) from a set of available CSs which yield the best im-

provements in the objective function. In the local search the following moves are

considered to explore the solution space: removing a BS, installing a new BS,
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removing an existing BS and installing a new one (swap). The output GRASP

solution is used ss initial solution for a TS algorithm.

.

Andrade, D. and M. Resende (2006). A GRASP for PBX telephone migration schedul-
ing. In Proceedings of the Eighth INFORMS Telecommunications Conference, pp.
–.

A PBX, or private branch exchange, is a private telephone network. The PBX

telephone migration problem arises when an enterprise acquires a new PBX to

replace an existing one. Phone numbers need to migrate from the old system

to the new system over a time horizon. A penalty, assigned to the each pair of

phones, is incurred if the pair is migrated in different time periods. The objective

is to assign phones to time periods such that no more than a given number of

phones is assigned to any period and the total penalty is minimized. The authors

propose a GRASP for approximatively solve this problem, where a solution is

an assignment of phone numbers to time periods such that each time period has

no more than a fixed telephone numbers assigned to it. The construction proce-

dure sequences the phone numbers and assigns them evenly to each time period.

The greedy criterion is to minimize a penalty function associated with migrating

phone numbers in different time periods. Once a feasible solution is constructed,

local search is applied using three neighborhoods: swap phones, move phone,

and swap periods.

.

Andrade, D. and M. Resende (2007). Grasp with evolutionary path-relinking. Techni-
cal report, AT&T Labs Research Technical Report TD-6XPTS7, Florham Park, NJ,
USA.

The authors propose GRASP with evolutionary path-relinking (EvPR), a meta-

heuristic resulting from the hybridization of GRASP, path-relinking, and evo-

lutionary path-relinking. The new proposed hybrid framework is applied to a

network migration problem and experiments show that it is able to find good ap-

proximate solutions faster than a heuristic based on GRASP with path-relinking

as well as one based on pure GRASP. In EvPR, the solutions in the pool are

evolved as a series of populations P1, P2, . . . of equal size. The initial popula-

tion is the pool of elite solutions produced by GRASP with PR. In iteration k

of EvPR, path-relinking is applied between a set of pairs of solutions in popula-

tion Pk and, with the same rules used to test for membership in the pool of elite

solutions, each resulting solution is tested for membership in population Pk+1

. This evolutionary process is repeated until no improvement is seen from one

population to the next.

.

Andreatta, A. and C. Ribeiro (2002). Heuristics for the phylogeny problem. Journal
of Heuristics 8, 429–447.

A phylogeny is a tree that relates taxonomic units, based on their similarity over

a set of characters. The phylogeny problem consists in finding a phylogeny with

the minimum number of evolutionary steps (the so-called parsimony criterion).

The authors propose different heuristic approaches to the phylogeny problem
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under the parsimony criterion, including a GRASP and a VNS. The greedy ran-

domized construction randomly selects a pair taxon-branch from among all those

leading to the most parsimonius increment value. The local search phase is im-

plemented with the selection of the first improving move. Two neighborhood

strategies are used to devise two alternative GRASP algorithms. The first one

applies subtree pruning and regrafting (SPR): solutions are obtained by eliminat-

ing one internal node and its three adjacent branches. Next, two pending nodes

are joined by a new branch. The still pending subtree is reconnected by its pend-

ing node to a branch of the other subtree. The second one defines three different

neighborhoods explored within a VND procedure: SPR, a nearest neighborhood

interchanges (NNI), and the single step neighborhood (STEP), where a neighbor

is obtained by taking out a taxon (i.e., a leave) from the current solution and

putting it back into another branch of the tree.

.

Boudia, M., M. Louly, and C. Prins (2007). A reactive grasp and path relinking
for a combined production-distribution problem. Computers and Operations Re-
search 34, 3402–3419.

In this article, an NP-hard production-distribution problem for one product over

a multi-period horizon is studied. The aim is to minimize total cost taking pro-

duction setups, inventory levels, and distribution. A GRASP and two improved

versions using either a reactive mechanism or a path relinking are proposed. The

greedy criterion takes into account the best insertion position and the minimum

associated cost. The GRASP construction phase performs two steps. At the first

step, it computes day by day a preliminary production plan and associates trips

without storage at the plan. Then, during the second step, it tries to shift some

production day to achieve the best compromise between setup and storage costs

at the plan. Local search considers different types of moves that for each cos-

tumer in a day change the quantity delivered, the day of production, the day of

delivery, the delivery trip, and the position in this trip.

.

Canuto, S., M. Resende, and C. Ribeiro (2001). Local search with perturbations for
the prize-collecting Steiner tree problem in graphs. Networks 38, 50–58.

In this paper, the authors describe a multi-start local search algorithm for the

prize-collecting Steiner tree problem, based on the generation of initial solutions

by a primal-dual algorithm using perturbed node prizes. Path relinking is used to

improve the solutions found by local search and variable neighborhood search is

used as a post-optimization procedure. The neighborhood of a solution is formed

by all minimum spanning trees whose sets of nodes differ by exactly one node.

The proposed perturbation algorithm is similar to a GRASP procedure, in which

the greedy randomized construction is replaced by the construction of initial so-

lutions using perturbed cost functions.

.

Commander, C., S. Butenko, P. Pardalos, and C. Oliveira (2004). Reactive GRASP
with path relinking for the broadcast scheduling problem. In Proceedings of the
40th Annual International Telemetry Conference, pp. 792–800.
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The Broadcast Scheduling Problem (BSP) is an NP-complete problem that arises

in the study of wireless networks. A finite set of stations are to be scheduled in a

time division multiple access (TDMA) frame with the objective of finding a col-

lision free transmission schedule with the minimum number of TDMA slots and

maximal slot utilization. Such a schedule must also minimize the total system

delay. The authors propose variations of a GRASP with path relinking as post-

optimization strategy. They also describe a reactivity method to balance GRASP

parameters. The greedy choice consists in soritng the stations in descending or-

der of the number of one-hop and two-hop neighbors. Starting from the schedule

output of the construction phase, the local search procedure sorts the slots in de-

scending order of the number of bursts. The two slots with the fewest transmis-

sions are combined. A colliding station from the combined slot is then randomly

selected and every attempt is made to swap this station with another from the

remaining slots.

.

Commander, C., P. Festa, C. Oliveira, P. Pardalos, M. Resende, and M. Tsitselis
(2006a). A greedy randomized algorithm for the cooperative communication prob-
lem on ad hoc networks. In Proceedings of the Eighth INFORMS Telecommunica-
tions Conference, pp. –.

Ad hoc networks are composed of a set of wireless units that can communi-

cate without the use of a pre-established server infrastructure. Each client has

the capacity of accessing network nodes that are within its reach. The problem

consists of maximizing the amount of connectivity among a set of users, subject

to constraints on the maximum distance traveled, as well as restrictions on what

types of movement can be performed. The greedy function value of each can-

didate element is a measure of additional connections created by its insertion in

the partial solution under construction. The local search procedure is based on a

perturbation function consisting of selecting a wireless agent and rerouting.

.

Commander, C., P. Festa, C. Oliveira, P. Pardalos, M. Resende, and M. Tsitselis
(2006b). Grasp with path-relinking for the cooperative communication problem
on ad hoc networks. Technical report, AT&T Labs Research Technical Report TD-
6X3U73, Florham Park, NJ, USA.

Ad hoc networks are composed of a set of wireless units that can communi-

cate without the use of a pre-established server infrastructure. Each client has

the capacity of accessing network nodes that are within its reach. The problem

consists of maximizing the amount of connectivity among a set of users, subject

to constraints on the maximum distance traveled, as well as restrictions on what

types of movement can be performed. The greedy function value of each can-

didate element is a measure of additional connections created by its insertion in

the partial solution under construction. The local search procedure is based on a

perturbation function consisting of selecting a wireless agent and rerouting.

.

Commander, C., C. Oliveira, P. Pardalos, and M. Resende (2005). A GRASP heuristic
for the cooperative communication problem in ad hoc networks. In Proceedings of
the VI Metaheuristics International Conference (MIC2005), pp. 225–330.



BIBLIOGRAPHY 443

This paper is a preliminary version of 13.22.

.

Cotta, C. and A. Fernndez (2004). A hybrid grasp evolutionary algorithm approach to
golomb ruler search. In Parallel Problem Solving from Nature - PPSN VIII, Volume
3242 of Lecture Notes in Computer Science, pp. 481–490. Springer-Verlag.

The point-feature cartographic label placement problem (PFCLP) is an NP-hard

problem whose main application involves maps production. The labels must be

placed in predefined places avoiding overlaps and considering cartographic pref-

erences. Due to its high complexity, the scientific community has proposed and

implemented several heuristics searching for approximated solutions. This pa-

per proposes a GRASP that takes as input the conflict graph associated with the

problem. Considering the PFCLP represented by a conflict graph, the construc-

tive phase greedy criterion is based in the vertex degrees, since the degree of a

vertex is a measure of labels in conflict. To build the RCL a fixed-size criterion is

adopted. Starting from the built solution, the local search procedure tests for each

point another valid candidate position and performs the best change. Computa-

tional results show that GRASP generates better solutions than all those reported

in the literature in reasonable computational times.

.

Delorme, X., X. Gandibleux, and J. Rodriguez (2003). Grasp for set packing problems.
European Journal of Operational Research 153(3), 564–580.

A GRASP is described for the set packing problem. The proposed framework

uses a self-tuning procedure (reactive GRASP), an intensification procedure (us-

ing path relinking), and a procedure involving the diversification of the selection

(using a learning process). A set of test problem instances includes real-world

railway planning instances, never solved before by means of metaheuristics.

.

Duarte, A. and R. Martı́ (2007). Tabu search and grasp for the maximum diversity
problem. European Journal of Operational Research 178(1), 71–84.

In this paper, the authors propose a new heuristic based on the tabu search

methodology and incorporating memory structures for both construction and im-

provement. They compare their tabu search construction with a memory-less de-

sign and with previous algorithms recently developed for this problem. The con-

structive method can be coupled with a local search procedure or a short-term

tabu search for improved outcomes.

.

e D.S. Vianna, C. R. (2005). A grasp/vnd heuristic for the phylogeny problem us-
ing a new neighborhood structure. International Transactions in Operational Re-
search 12, 325–338.

A phylogeny is a tree that relates taxonomic units, based on their similarity over

a set of characters. The phylogeny problem consists in finding a phylogeny with

the minimum number of evolutionary steps. The authors propose a GRASP that

uses variable neighborhood descent for local search. At a generic construction

phase iteration, a pair taxon-branch is randomly selected from among all those



444 AN INTRODUCTION TO GRASP

with cost 10% higher than the most parsimonious increment value. The neigh-

borhood defined is the subtree pruning and regrafting (SPR or 1-SPR): a subtree

of the current tree is disconnected and reconnected in a different position.

.

e S. Urrutia, C. R. (2007). Heuristics for the mirrored traveling tournament problem.
European Journal of Operational Research 179, 775–787.

The Traveling Tournament Problem models some sport timetabling issues, where

the objective is to minimize the total distance traveled by the teams. In this work,

the authors study the mirrored version of the problem. They propose a fast con-

structive algorithm and a new heuristic based on the combination of GRASP and

Iterated Local Search metaheuristics. A strong neighborhood based on ejection

chains is also proposed.

.

Ekisoglu, S. D., P. Pardalos, and M. Resende (2002). Parallel metaheuristics for
combinatorial optimization. In R. C. et al. (Ed.), Models for Parallel and Dis-
tributed Computation - Theory, Algorithmic Techniques and Applications, pp. 179–
206. Kluwer Academic Publishers.

Parallel metaheuristics for approximating hard combinatorial optimization prob-

lems are reviewed. Recent developments on parallel implementation of genetic

algorithms, simulated annealing, tabu search, variable neighborhood search, and

greedy randomized adaptive search procedures (GRASP) are discussed.

.

Festa, P. (2007). On some optimization problems in molecular biology. Mathematical
Bioscience 207(2), 219–234.

This paper provides a detailed description of some among the most interesting

molecular biology problems that can be formulated as combinatorial optimiza-

tion problems and proposes a GRASP to find improved solutions for a particular

class of them, known as the far from most string problem. The greedy function

takes into account the contribution to the objective function achieved by selecting

a particular element. In the case of the far from most string problem, it is intu-

itive to relate the greedy function to the occurrence of each character in a given

position. To realize the local search phase the 2-exchange algorithm is used.

.

Festa, P., P. Pardalos, L. Pitsoulis, and M. Resende (2005). GRASP with path-relinking
for the weighted maximum satisfiability problem. In Proceedings of the IV Work-
shop on Efficient and Experimental Algorithms (WEA2005), Volume 3503 of Lec-
ture Notes in Computer Science, pp. 367–379.

A GRASP with path relinking for finding good quality solutions of the weighted

maximum satisfability problem (MAX-SAT) is described in this paper. Here,

path relinking is used to intensify the search around good quality isolated so-

lutions that have been produced by the GRASP heuristic. Experimental com-

parison of the pure GRASP (without path relinking) and the GRASP with path

relinking illustrates the effectiveness of path relinking in decreasing the average

time needed to find a good quality solution. In the construction phase, given any
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partial solution, corresponding to a set of satisfied clauses, the next candidate el-

ement to be added to the solution to maximize the total weight of the unsatisfied

clauses that become satisfied after the assignment. Once obtained a completed a

truth assignment, local search is applied using the simple 1-flip neighborhood.

.

Festa, P., P. Pardalos, L. Pitsoulis, and M. Resende (2006). Grasp with path-relinking
for the weighted maxsat problem. ACM J. of Experimental Algorithmics 11, 1–16.

A GRASP with path relinking for finding good quality solutions of the weighted

maximum satisfability problem (MAX-SAT) is described in this paper. Construc-

tion and local search phase details are as in 13.22. In this paper, the authors de-

signed accurate experiments designed to determine the effect of path relinking on

the convergence of the GRASP for MAX-SAT. Since GRASP and GRASP with

PR are both stochastic local search algorithms, the authors compare their perfor-

mance by examining the distributions of their running times. The results show

that: 1) given a fixed amount of computing time, GRASP with PR has a higher

probability than GRASP of finding a target solution; 2) given a fixed probability

of finding a target solution, the expected time taken by GRASP to find a solution

with that probability is greater than the time taken by GRASP with PR.

.

Festa, P., P. Pardalos, M. Resende, and Ribeiro (2001). GRASP and VNS for Max-Cut.
In J. Sousa (Ed.), Proceedings of the IV Metaheuristics International Conference
(MIC2001), pp. 371–376.

In this paper, a GRASP and a variable neighborhood search (VNS) for MAX-

CUT are proposed and tested. In the case of the MAX-CUT problem, it is intu-

itive to relate the greedy function to the sum of the weights of the edges in each

cut. Local search is based in Boolean flip operations.

.

Festa, P., P. Pardalos, M. Resende, and C. Ribeiro (2002). Randomized heuristics for
the max-cut problem. Optimization Methods and Software 7, 1033–1058.

In this paper, a GRASP, a variable neighborhood search (VNS), and a path re-

linking as intensification heuristic for MAX-CUT are proposed and tested. New

hybrid heuristics that combine GRASP, VNS as GRASP local search, and path

relinking are also proposed and tested. In the case of the MAX-CUT problem, it

is intuitive to relate the greedy function to the sum of the weights of the edges

in each cut. Local search is based in Boolean flip operations. On a set of stan-

dard test problems, new best known solutions were produced for many of the

instances.

.

Festa, P. and M. Resende (2002). GRASP: An annotated bibliography. In C. Ribeiro
and P. Hansen (Eds.), Essays and Surveys on Metaheuristics, pp. 325–367. Kluwer
Academic Publishers.

Since 1989, numerous papers on the basic aspects of GRASP, as well as en-

hancements to the basic metaheuristic have appeared in the literature. GRASP
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has been applied to a wide range of combinatorial optimization problems, rang-

ing from scheduling and routing to drawing and turbine balancing. This paper is

an annotated bibliography of the GRASP literature from 1989 to 2001.

.

Han, B. and V. Raja (2003). A grasp heuristic for solving an extended capacitated
concentrator location problem. International Journal of Information Technology
and Decision Making 2(4), 597–617.

In the GRASP construction phase, the greedy criterion looks for the minimum

number of concentrators required to obtain a feasible solution. Two local search

procedures are proposed and tested. The first one tries to eliminate a concentra-

tor with low capacity consumption by trying to reassign its end-user nodes to

other concentrators. The second one tries for each concentrator to replace it by a

cheaper one while not violating capacity constraints.

.

Hirsch, M., C. Meneses, P. Pardalos, M. Ragle, and M. Resende (2006). A continuous
grasp to determine the relationship between drugs and adverse reactions. Technical
report, AT&T Labs Research Technical Report TD-6UPR92, Florham Park, NJ,
USA.

Adverse drug reactions (ADRs) are estimated to be one of the leading causes of

death. The authors formulate the drug-reaction relationship problem as a con-

tinuous optimization problem and utilize continuos GRASP (C-GRASP), a new

continuous global optimization heuristic, to approximately determine the rela-

tionship between drugs and adverse reactions. C-GRASP works by discretizing

the domain into a uniform grid. Both the construction and local improvement

phases move along points on the grid. As the algorithm progresses, the grid

adaptively becomes more dense. RCL is formed containing unfixed coordinates

whose objective function value is better or equal to a threshold value computed

by applying the min-max α-percentage rule. The local improvement phase (with

pseudo-code can be seen as approximating the role of the gradient of the objec-

tive function.

.

Hirsch, M., C. Meneses, P. Pardalos, and M. Resende (2007). Global optimization by
continuous grasp. Optimization Letters 1(2), 201–212.

In this paper a new global optimization method, called Continuous GRASP (C-

GRASP), is proposed. It extends Feo and Resende’s GRASP from the domain of

discrete optimization to that of continuous global optimization and is well-suited

approach for solving global optimization problems, since it does not make use

of derivative information. C-GRASP resembles GRASP in that it is a multistart

stochastic search metaheuristic that uses a randomized greedy procedure to gen-

erate starting solutions for a local improvement algorithm. The main difference

is that an iteration of C-GRASP does not consist of a single greedy randomized

construction followed by local improvement, but rather a series of construction-

local improvement cycles with the output of construction serving as the input of

the local improvement, as in GRASP, and the output of the local improvement

serving as the input of the construction procedure, unlike GRASP. C-GRASP
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works by discretizing the domain into a uniform grid. Both the construction and

local improvement phases move along points on the grid. As the algorithm pro-

gresses, the grid adaptively becomes more dense.

.

Hirsch, M., P. Pardalos, and M. Resende (2006a). Recognition of projected 3d points
and lines using a continuous grasp. Technical report, AT&T Labs Research Techni-
cal Report TD-6XLTAY, Florham Park, NJ, USA.

The authors derive equations for the point and line correspondences, explicitly

accounting for noise in the image data, and provide a mixed integer nonlinear op-

timization formulation for the object recognition problem. They also propose a

decomposition approach to solve it and describe details of a C-GRASP, that is ap-

plied in the first step of the decomposition technique for the scenarios considered

in the computational study. RCL is built by applying the min-max α-percentage

rule. approximating the role of the gradient of the objective function.

.

Hirsch, M., P. Pardalos, and M. Resende (2006b). Speeding up continuous grasp.
Technical report, AT&T Labs Research Technical Report TD-6U2P2H, Florham
Park, NJ, USA.

The authors propose some improvements to speed up the original continuos

GRASP (C-GRASP) and to make it more robust. The main differences between

this new version of C-GRASP and the previous one do not involve construction

and local search mechanisms, but are limited only to the input parameters and

when the grid density is increased. The authors compare the new C-GRASP with

the original version as well as with other algorithms from the literature on a set

of benchmark multimodal test functions whose global minima are known.

.

Jr., H. F., S. B. M. Resende, and D. Falco (2005). Power transmission network design
by a greedy randomized adaptive path relinking approach. IEEE Transactions on
Power Systems 20(1), 43–49.

This paper proposes a new metaheuristic approach called Greedy Randomized

Adaptive Path Relinking (GRAPR), to solve the static power transmission net-

work design problem, which consists in choosing, from a pre-defined set of can-

didate circuits, those that should be built in order to minimize the investment and

operational costs, and to supply the forecasted demand along a planning horizon.

GRAPR uses in the path relinking phase generalized GRASP concepts to explore

different trajectories between two good quality solutions previously found, such

as the RCL idea of selecting not only the best ranked candidate, but a set of well

ranked candidates. The authors describe computational results obtained from two

real-world case studies of Brazilian systems.

.

Laguna, M. and R. Martı́ (2001). A grasp for coloring sparse graphs. Computational
Optimization and Applications 19(2), 165–178.

During GRASP construction phase the greedy criterion is defined on vertices

degree. The local search procedure combines into one the smallest and second
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smallest cardinality color classes and then, for each violating vertex it tries to

rebuild feasibility.

.

Lim, A., B. Rodrigues, and C. Wang (2006). Two-machine flow shop problems with
a single server. Journal of Scheduling 9, 515–543.

Several heuristics are proposed in this paper to solve the problems in general

case, including simulated annealing, TS, genetic algorithms, GRASP, and other

hybrids. In the construction phase two greedy criteria are adopted. One criterion

is to sort by setup times instead of the processing times. The second criterion

schedules all jobs one by one and each insertion will increase the objcctive func-

tion by a minimum value. For the local search phase, the authors define several

neighborhoods, including swapping, insertion, and a mixture of them.

.

Lim, A. and F. Wang (2004). A smoothed dynamic tabu search embedded GRASP for
m-VRPTW. In Proceedings of ICTAI 2004, pp. 704–708.

m-VRPTW is a vehicle routing problem with both time window and limited num-

ber of vehicles (m-VRPTW). In this paper an improved GRASP is proposed that

uses techniques including multiple initialization and solution reuse. A smoothed

dynamic tabu search is also embedded into the GRASP to improve the perfor-

mance.

.

Loureno, H. and D. Serra (2002). Adaptive approach heuristics for the generalized
assignment problem. Mathware and Soft Computing 9(2-3), 209–234.

This paper presents several hybrid algorithms consisting of adaptive construction

heuristics and subsequent application of local search to solve the GAP. The basic

elements are extract from a specific Ant Colony Optimization algorithm (MAX-

MIN Ant System) and GRASP, which are are embedded in a general frame-

work characterized by three steps. In the first step, a solution is constructed by

a randomized construction heuristic; in the second step, a local search is applied

to improve the just built solution, a descent local search and TS are proposed;

the last step consists in updating a set of parameters which guide the construc-

tion process. The three steps are repeated until a stopping criterion is verified.

The choices made in each step lead to different heuristic methods. The main

difference between GRASP and the Ant Colony Optimization algorithm is the

method of selecting the agent to whom the previously chosen task is assigned.

For GRASP the choice is a probabilistic bias according to an adaptive priority

function, which does not depend on the solutions seen in previous iterations of

the general framework but only on the choices done in the previous iterations of

GRASP. the local search procedure interchanges or reassigns tasks. The authors

admit unfeasible solutions with respect to capacity constraints, i.e. the total re-

source required by the tasks assigned to some agents may exceed their capacity.

.

Martı́, R. and M. Laguna (2003). Heuristics and meta-heuristics for 2-layer straight
line crossing minimization. Discrete Applied Mathematics 127(3), 665–678.
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This paper presents extensive computational experiments to compare several dif-

ferent randomized metaheuristics for the problem of minimizing straight-line

crossings in a 2-layer graph. A TS metaheuristic yields the best results for rel-

atively dense graphs, while a GRASP outperforms all other approaches when

tackling low-density graphs. The GRASp construction phase starts by creating

a list of unassigned vertices, originally consists of all the vertices in the graph.

The greedy criterion takes into account vertices degree. At each iteration of the

local search phase vertices are selected to be moved and the probability of selec-

tion if a vertex increases with its degree. When a vertex is selected, three moves

are considered: (1) to insert the vertex one position above the barycenter, (2) to

insert the vertex at the barycenter position, and (3) to insert the vertex one posi-

tion below the barycenter. The vertex is placed in the position that produces the

maximum reduction in the number of crosses.

.

Oliveira, C., P. Pardalos, and M. Resende (2004). GRASP with path-relinking for the
quadratic assignment problem. In Efficient and Experimental Algorithms, Volume
3059 of Lecture Notes in Computer Science, pp. 356–368.

A GRASP for the quadratic assignment problem is described. Construction first

makes two assignments, and then completes the solution by making assignments,

one at a time. The greedy function is assignment interaction cost. The local

search procedure is a 2 assignment exchange. Path relinking is invoked at each

GRASP iteration as intensification procedure.

.

Osman, I., B. Al-Ayoubi, and M. Barake (2003). A greedy random adaptive search
procedure for the weighted maximal planar graph problem. Computers and Indus-
trial Engineering 45(4), 635–651.

The weighted maximal planar graph (WMPG) problem seeks to find a subgraph

from a given weighted complete graph such that the subgraph is planar–it can be

embedded on the plane without any arcs intersecting. The subgraph is maximal

no additional arc can be added to the subgraph without destroying its planarity

and it also has the maximal sum of arc weights. In this paper, the authors de-

scribes a GRASP, where RCL is dynamically updated.

.

Pacheco, J. and S. Casado (2005). Solving two location models with few facilities by
using a hybrid heuristic: a real health resources case. Computers and Operations
Research 32, 3075–3091.

A hybrid scatter search algorithm is proposed that incorporates procedures based

on different strategies, such as GRASP and path relinking. GRASP is used as

diversification method and the greedy criterion is to take into account the value

of the objective function if a certain location is added to the solution. Local

search is based on interchange neighborhood.

.

Pitsoulis, L. and M. Resende (2002). Greedy randomized adaptive search procedures.
In P. Pardalos and M. Resende (Eds.), Handbook of Applied Optimization, pp. 168–
183. Oxford University Press.
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This chapter gives an overview of GRASP. Besides describing the basic building

blocks of a GRASP, it covers enhancements to the basic procedure, including

reactive GRASP, hybrid GRASP, and intensification strategies.

.

Piana, E., I. Plana, V. Campos, and R. .Martı́ (2004). .

This paper proposes a GRASP for the problem of reducing the bandwidth of a

matrix, i.e. of finding a permutation of the rows and columns of a given ma-

trix, which keeps the nonzero elements in a band that is as close as possible

to the main diagonal. The proposed GRASP is combined with a Path Relink-

ing strategy as intensification to search for improved outcomes. Given a matrix

A = {ai j}n×n, the problem can be stated as graph theory problem considering a

vertex for each row and a vertex for each column. Then, an edge (i, j) is inserted

if either ai j 6= 0 or a ji 6= 0 and the problem consists of finding a labeling f of

the vertices that minimizes the maximum difference between labels of adjacent

vertices. The authors propose and test five different GRASP constructive meth-

ods. The first method C1 starts by selecting at random a vertex and assigning

to it a random label. Then, at each iteration the candidate elements CL are all

vertices that are adjacent to at least one labeled vertex and RCL is formed from

those candidate vertices with a maximum number of adjacent labeled vertices.

Constructive methods C2 and C3 differ from C1 in the definition of the RCL. At

each iteration, in C2 RCL elements are those vertices that have been in CL for

a maximum number of construction steps, while C3 combines both criteria by

considering the attractiveness of a vertex as the sum of both measures: the num-

ber of adjacent labeled vertices and the number of steps that a vertex has been in

CL. Constructive methods C4 and C5 are partially based on the construction of a

level structure of vertices set proposed in the GPS method, i.e. a special partition
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In this paper, the offline Private Virtual Circuit Routing (PVC) problem is for-

mulated as an integer multicommodity flow problem with additional constraints

and with an objective function that minimizes propagation delays and/or net-

work congestion. The authors of this paper propose variants of a GRASP with

path relinking heuristic for this problem. In the construction phase, the routes

are determined, one at a time. At each iteratin, RCL is built by applying the
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fixed-size rule and it is formed by a certain fixed number of unrouted PVC pairs

with the largest demands. From RCL a pair is then selected with a probability

computed trough a strategy usually employed by heuristic-biased stochastic sam-

pling. Once a PVC is selected, it is routed on a shortest path from its origin to its

destination. Each solution built in the construction phase may be viewed as a set

of routes, one for each PVC. the local search procedure seeks to improve each

route in the current solution, removing some units of flow from each edge in its

current route and trying to route.
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with path relinking for the 2-path network design problem. At each construction

phase iteration a pair of nodes is selected at random and a shortest path connect-

ing them is computed. Neighbors of a solution S are obtained by replacing in S

any of its 2-paths by another 2-path between the same origin-destination pair.
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In this article, the authors propose and analyze parallel cooperative strategies

for GRASP with path relinking for the 2-path network design problem. At each

construction phase iteration a pair of nodes is selected at random and a shortest

path connecting them is computed. Neighbors of a solution S are obtained by

replacing in S any of its 2-paths by another 2-path between the same origin-

destination pair. pargrasp.pdf.
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A scheduling problem with sequence-dependent setup time is among the most

complex scheduling problems. In fact, considering one machine and one stage,

the problem is equivalent to the TSP. While there is much research work con-

sidering parallel machines, few papers consider parallel non-related machines

and sequence-dependent setup times and all of them are randomized local serch

based heuristics. In this paper the authors propose an hybridization of GRASP

as an upper bound for a Branch and Bound procedure. At each GRASP iteration

the greedy criterion adopted to build a feasible solution consists in sorting the

jobs in a non-decreasing order using the due date and then assigning each job to

the machine able to finishing it first. The local search switches all existing pairs

of jobs assigned to different machines. The authors have also implemented path

relinking (PR) at the end of each GRASP iteration to intensify the local search.

First, a pool of good solutions (Elite Set) is retained. Every time PR is used, a

solution is randomly chosen from this pool. Then, all solutions in the path from

the solution found in the local search to the selected solution from the pool are

spanned. If a better solution is found, it is added to the pool.
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M. Resende and J. Souza (Eds.), Metaheuristics: Computer Decision-Making, pp.
627–658. Kluwer Academic Publisher.

The authors propose a GRASP with path-relinking heuristic. It uses a random-

ized version of a savings heuristic in the construction phase and an extension

of the local search strategy, incorporating some short term memory elements of

tabu search. The greedy criterion takes into account the saving with respect to

edge costs and capacity constraints. The local search strategy is based on a new

neighborhood structure defined by path exchanges.
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