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ABSTRACT: In this paper, an Ant Colony Optimization Algorithm (ACO) is proposed for 
operations of steady flow gas pipeline. The system is composed of compressing stations linked 
by pipe legs. The decisions variables are chosen to be the operating turbo compressor 
number and the discharge pressure for each compressing station. The objective function is the 
power consumed in the system by these stations. Until now, essentially Gradient based 
procedures and dynamic programming have been applied for solving this no convex problem. 
The main original contribution proposed, in this paper, is that we use an ant colony 
optimization algorithm for this problem. This method was applied to real life situation. The 
results are compared with those obtained by employing dynamic programming method. We 
obtain that compared with those obtained by employing dynamic method. We obtain that the 
ACO is an interesting way for the gas pipeline operation optimization. 

RESUME : Dans ce papier, nous proposons une formulation développée à partir des 
algorithmes d’optimisation de colonies de fourmis (ACO) pour la détermination des régimes 
de fonctionnement d’un gazoduc. L’optimisation des régimes de fonctionnement consiste à 
minimiser la consommation de gaz carburant des stations de compression. Les variables de 
décision sont les pressions de refoulement de ces stations et le nombre de groupes 
turbocompresseur à mettre en service dans chacune de ces stations. Cette formulation a été 
appliquée au gazoduc Hassi R'mell- Arzew. Les résultats sont comparés avec ceux obtenus en 
employant la méthode de la programmation dynamique. A partir de ces résultats, on peut 
affirmer que la technique des  ACO est une alternative intéressante à plus d’un titre pour 
l’optimisation des régimes de fonctionnement d’un gazoduc. 

KEYWORDS: Gas transport, Optimization, Ant Colony Algorithm. 
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1. Introduction 

The gas pipelines are wide complex systems in length (several hundred 
kilometers, and even of the thousands) intended for the transport of natural gas by 
pipe. There are three different kinds of topologies: linear (i.e., gun barrel), tree (i.e., 
branched), and cyclic. A gas pipeline is composed of compressing stations (CS) 
intended to provide the energy of pressure necessary to transport gas via a pipeline. 
A number of turbocompressors located in parallel are the principal equipments of 
the CS. A part of the gas crossing through the station is used as fuel gas for the 
turbocompressors (TC).  

In natural gas pipeline operations, the station operator is responsible for making 
two important decisions: increase or decrease compression in the pipelines, and 
start-up or shut down of turbocompressor units. Incorrect decisions made by the 
operator increases energy cost or may cause customer dissatisfaction. The main 
objective of this study is to provide a decision aid tool that assists operators to make 
the most appropriate decision within a short time.  

The objective function is the power consumed in the system by these stations. 
The decisions variables are chosen to be the operating turbocompressor number and 
the discharge pressure for each compressing station. 

Several methods were developed and none of them has considered all aspects of 
the problem. The majority of them are based on the dynamic programming (DP) [16, 
18, 19, 15, 3, 4] or gradient search techniques [14, 20].  

The use of metaheuristic, for gas pipeline fuel consumption minimization 
problem (GPFCMP), is generally limited until now to the genetic algorithms [11]. In 
Goldberg’s work, very original by the way, not all the constraints of the problem 
(operation range of the compressors) have been considered.  

The principal advantages of DP are that a global optimum is guaranteed and that 
the nonlinearity can be easily treated. The disadvantages of DP are that its 
application is practically limited to the simple network topologies (linear or 
ramified) and that computation increases in an exponential way with problem 
dimension. The advantages of GRG method consist of that dimension does not be a 
problem and, it could be applied to cyclic network schemes. However, as GRG 
method is based on a search gradient method, there is no guarantee to find a global 
optimum. In fact, with discrete decision variables, it can fix with the local optimum.  

The main original contribution proposed in this paper, is that we use, for the first 
time, the ant colony optimization algorithm for the GPFCMP. The results obtained 
with the suggested approach are excellent with a strong computing time saving 
compared to those obtained with the DP technique. This will enable us to design a 
fast, effective and robust decision aid tool based on the suggested method. This tool 
will assist operators to make the most appropriate decision within a short time.  
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The results reported in this work have been applied to the gas transportation pipe 
“Hassi R’mell-Arzew “of Algerian network. 

This method was inspired by ants behaviour studies [6] (Deneubourg et al.). The 
ant algorithm is a new evolutionary optimization method first proposed by Dorigo et 
al. [7] to solve different combinatorial optimization problems like the travelling 
salesman problem and the quadratic assignment problem. Dorigo and Di Caro [8] 
introduced the ant colony metaheuristic framework. This enables ACO to be applied 
to other engineering problems. Abbaspour et al. [1] used ACO algorithms to 
estimate hydraulic parameters of unsaturated soil. Maier et al. [12] developed ACO 
algorithms to find a near global optimal solution to a water distribution system. 
However, no application of ACO was carried out for gas pipeline operation 
optimization. 

The paper is organized as follows. In chapter 2, the description, the formulation 
and the assumptions are described. The proposed methodology is fully described in 
chapter 3. An extensive computational evaluation of the metaheuristic, including 
comparison with dynamic programming technique, is presented in chapter 4. 
Finally, we conclude this work in chapter 5. 

2. The Problem  

2.1 Description 

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1. The transportation system 

D.T.: Departure terminal (Gas gathering and treatment centre); 
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A.T.: Arrival terminal (Consumer); 

(i,j)∈ Ac; 

(j,k) ∈ Ap; 

With:  Ap:  Set of pipe leg arcs. 

           Ac:  Set of compressing station arcs. 

            V:  Set of all nodes. 

            A:  Set of all arcs. 

2.2. Formulation 

 
Objective function:  
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      pj ≥ 0                 (i,j)∈ Ac                                                                               [4] 

    (xij/nij , pi ,pj )∈ Dij              ni,j ∈{0,1,2,…,Nij}, (i,j)∈ Ac                                [5]                   

With:   pi: Pressure at node i. 

            pj: Pressure at node j. 

            Pl
i, Pu

i: Pressure limits at node i; l= lower limit, u= upper limit. 

            V: Set of all nodes. 

            Rij: Resistance of pipe leg (i, j). 

            xij: Mass flow rate through the compressor station (i, j). 

            nij : Operating turbocompressors number in station (i, j).  

           Nij: Number of available turbocompressors in the station (i, j). 

            Zi:  The gas compressibility factor at suction conditions of       station 
(i,j).   
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        R:  The gas constant. 

 Ti:  Suction gas temperature in station (i, j). 

         μij: Turbocompressor adiabatic efficiency in station (i, j). 

          
γ
−γ

=ω
1

    Where γ is the gas specific heat ratio.  

            Dij: Feasible operating domain for a single turbocompressor unit in     
compressing station (i, j).             

Equation (1) is the total power consumed by all the pipeline compressor stations. 

Equation (2) defines the gas flow dynamics in each pipe leg (i, j). 

Equation (3) bounds the pressure in the pipeline. 

Equation (4) defines the pressure as nonnegative variable. 

Equation (5) represents the feasible operating domain for a single 
turbocompressor unit.  

The compressor stations are constituted of several identical turbocompressors, 
built in parallel, which could be stopped or started. The operation range of a 
turbocompressor in compressing station (i,j) as a function of the variables qij (flow 
through the turbocompressor unit), pi (suction pressure) and pj (discharge pressure) 
is given by the following equations . 
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         Smin < sij< Smax                                                                       [8] 

        Surge < qij/sij < Stonewall                                                                           [9]  

Where AH, BH, CH, DH, AE, BE and CE are constants which depend on the 
compressor unit and are typically estimated by applying the least squares method to 
a set of collected data of the quantities qij, sij, hij et μij [17]. Surge is lower bound of 
qij/sij and Stonewall is upper bound of qij/sij. 

The relationships between (hij, qij) and (xij, pi,pj) are the following: 
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Where: 

Smin:  Turbocompressor minimum speed. 

Smax:  Turbocompressor maximum speed. 

qij: Turbocompressor inlet volumetric flow rate in station (i, j).. 

sij: Turbocompressor speed in station (i, j). 

hij: Turbocompressor adiabatic head in station (i, j). 

 

3. Ant colony optimization algorithm 

3.1 Introduction 

The graph G(D, L, C) [21] of the GPFCMP can be represented as a set of nodes 
D = {1,2,…,n+1}. Each node i ≤ n (n: number of compressor stations) is linked to 
the next via a set of edges ζ(i,Si

’)= {l(i,,j,Si
’) : j = 1,2,…,NOi}, where l(i,,j,Si

’) is the 
jth  edge(station discharge pressure) connecting node i to node i+1. NOi is the 
number of edges connecting node i to node i+1 with the preceding semi-constructed 
tour Si

’ and the set of all edges is L={s: s∈ ( )'1 , i
n
i Siζ∪ = }. A feasible tour through 

this graph is then an element of the solution space S = {S: S = {s(1,S1
’), …, s(n,Sn

’)}, 
s(i,Si

’) ∈ ζ(i,Si
’), i=1,…,n}. C = {c(i,,j,Si

’)} is the set of costs associated with edge 
l(i,,j,Si

’).  

In what follows, for the clearness of the text, we omit to add the preceding semi-
constructed tour S’ in the formulas. 

A set of finite constraints Ω(D,L) may be assigned over the elements of D and L.  

The m ants are placed at the starting node. Ants build a solution to solve 
GPFCMP, while moving from a node to another one to all visit them. 

 During an iteration t, each ant k carries out a tour Tk(t), and during this tour, the 
choice of edge li,j connecting node i to node i+1, depends on the following criteria: 
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1. The inverse of cost cij, called visibility ηij (ηij=1/ cij). This heuristic value is 
calculated once at the start of the algorithm and is not changed during the 
computation. 

2. The concentration of pheromone τij(t) on edge lij at iteration t. The 
pheromone trail takes into account the ant’s current history-performance. The 
amount of pheromone trail τij(t) associated to edge lij is indented to represent the 
learned desirability of choosing  jth  edge at node i. The pheromone trail information 
is changed during problem solution to reflect the experience acquired by ants during 
problem solving.  

3.2. Ant Colony System (ACS)  

ACS algorithm was introduced to improve the performances of the basic 
algorithm [9] on big size problems, the modifications are as follows [10]: 

   ACS introduces a rule of transition depending on a parameter q0 (0≤q0≤1), which 
determines the relative importance of exploitation versus exploration : every time an 
ant at node i selects edge lij according to the following transition rule:  
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The parameters α=1 [9] and β∈[0, 9.5] control the relative importance of the 
pheromone trail and heuristic value referred to as pheromone and heuristic 
sensitivity parameters, respectively.  
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–The pheromone trail is changed both locally and globally. 

      -Local updating : Every time an edge li,j is chosen by an ant, the amount of 
pheromone will change by applying the local trail updating formula : 

 

( ) ( ) ( ) 0ijij  τρtτρtτ +−= 1                                                        [14]        

Where τ0 is the initial pheromone value, ρ evaporation rate. 

       -Global updating: Upon completion of a tour by all ants in the colony, the global 
trail updating is done as follows: 

         ( ) ( ) ( ) ( )tΔτ ρtτρtτ ijijij +−=+ 11          ( )
+

=
L

tΔτ ij
1

    [15] 

Where edge li,j belongs to the best tour within the past total iteration, and L+ 
value of the objective function for the ant with the best performance within the past 
total iteration. 

The ACS algorithm works in this application as follows. 

1. m ants are initially positioned at the starting node (Departure terminal) in 
the same edge li,j (Departure terminal discharge pressure); 

2. each ant builds a tour by repeatedly applying the state transition rule; 

3. an ant, while constructing its tour, changes the amount of pheromone on the 
visited edges by applying the local updating rule; 

4. seek the best tour using the solution process, in which ants are guided in 
building their tours by both heuristic information and by pheromone information. An 
edge with a high amount of pheromone is a very desirable choice;  

5. once all ants have terminated their tour, only one ant (the best so far ant) is 
allowed to add pheromone after each iteration;  

6. end conditions (maximum number of iterations or stagnation situation); 
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4. Description and results 

4.1. Description 

The gas pipeline considered in our calculations, in the first part of this study, is 
that of “Hassi R' mell-Arzew”. In the second part of this work, we consider general 
cases having the same principal data of Hassi R'mell-Arzew gas pipeline. However, 
the compressor station number and the turbocompressor number are different. A 
name Csx-Nby represents an instance with x compressor station and y 
turbocompressor.  

Hassi R'mell-Arzew gas pipeline is composed of one source, one demand and six 
pipe-legs connected in series by five compressor stations. These stations are 
constituted of three identical turbocompressors, built in parallel. A schematic 
illustration of this pipeline is provided in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Hassi R’mell: Gas gathering and treatment centre. 

Arzew: Liquefied natural gas plant.  

 

 

 

 
 

  

 
Figure 2. Gas pipeline Hassi R’mell-Arzew 

 Hassi R’mell     Station 1       Station 2        Station 3       Station 4      Station 5   
Arzew 
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4.2. Tests 

The computational tests was developed on a DELL biprocessor workstation with 
1 Giga RAM and 440 Mhz. The algorithm is coded using matlab 7.  

As with any metaheuristics, many parameters need to be set to have a good 
performance of ACO algorithm. The model performance was tested against 
variations of ρ, β, q0, m (ant number) and t_max (number of iterations). To have an 
idea on the best possible values of these parameters, a feasible range for each 
parameter was first defined. With β ∈ {1, 5, 6, 7, 8, 8.5, 9, 9.5}, ρ ∈ {0.05, 0.075, 
0.1, 0.25, 0.5, 0.75, 0.99} and q0 ∈ {0.1, 0.3, 0.5, 0.7, 0.9} objective function values 
were observed to select the best combination of these parameters.  

A value of 0.1 for the pheromone evaporation rate, one of 8 for β and one of 0.5 
for q0 seem to be the best choice for our problem. 

 

4.3. Hassi R’mell-Arzew Gas pipeline case 

This gas pipeline is a Cs5-Nb3 instance. We have compared the solution 
obtained by proposed method (ACO) with that of dynamic programming [4] for 
different flow rates (table 1). The two last columns of this table show the relative 
error (RE) and the computing time saving in percent (CTSP) of ACO over DP, given 
by 
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Table 1: Computing time and objective value for Hassi R’mell-Arzew Gas pipeline  
ACO DP  

Flow 
rate CPU time 

(s) 
Objective 
value 

CPU time 
(s) 

Objective 
value 

CTSP RE 

950000 209 17182 1727 17178 88 0,02 
1000000 203 23602 1170 23591 83 0,05 
1050000 199 28426 1446 28409 86 0,06 
1100000 195 34257 1544 34254  87 0,009 
1150000 185 41811 1766 41803 89 0.02 
 

From table 1, we can see that the ACO is still almost good as the DP and the 
computing time saving in percent of ACO over DP is bigger than 83. It becomes 6-9 
times faster. We notice also, for some flow rates (1150000 kg/h) (table 2), that the 
results of calculation of the discharge pressures are in agreement with Batey's 
principle [2].  

This principle very known for gas pipeline engineers can be expressed as 
follows: all the compressor station has to work in the most raised possible pressure 
(in our case 72 bars) except the last one who has to develop a sufficient just load so 
that pressure in the arrival is equal to the acceptable minimal pressure.  

In table 2, we present an optimal policy obtained by the proposed method for a 
flow rate of 1150000 kg/h.  

 
 
 
 
 

Table 2: Optimal policy for a flow rate of 1150000 kg/h. 
Flow rate (kg/h) stations Variables 

1150000  
Discharge pressure (bars) 72 Station 1 

Operating turbocompressors 3 
Discharge pressure (bars) 72 Station 2 

Operating turbocompressors 3 
Discharge pressure (bars) 72 Station 3 

Operating turbocompressors 3 
Discharge pressure (bars) 72 Station 4 

Operating turbocompressors 3 
Discharge pressure (bars) 64.35 Station 5 

Operating turbocompressors 3 
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4.4. General cases 

To test the algorithm performance in general cases, we consider different 
problem sizes. For this, we analyze, for different flow rates, the influence of both 
compressor station number and turbocompressor number on the performance of 
ACO algorithm.  

For these various instances, computing times and objective values were 
calculated. Tables 3, 4 and 5 show a comparison between DP and ACO. These 
tables share the same format as that of table 1.  

As we can see, from table 3, the relative error of ACO over DP is less than 0.22 
%. Moreover, the computing time saving in percent of ACO over DP is bigger than 
93. The ACO is 14-27 times faster.  

 

Table 3: Computing time and objective function for a Cs11-Nb6 instance  
ACO DP  

Flow 
rate CPU time 

(s) 
Objective 
value 

CPU time 
(s) 

Objective 
value 

CTSP RE 

950000 721 49217 10332 49114  93 0,21 
1000000 509 61641 11533 61534 96 0,17 
1050000 477 73413 11779 73252 96 0,22 
1100000 445 87028 11335 86942 96 0,10 
1150000 418 103739 11150 103600 96 0.13 
 

From table 4, we first observe that relative error of ACO over DP is less than 
0.41 %. On the other hand, we also observe that computing time saving in percent of 
ACO over DP is bigger than 96. In fact, the ACO becomes 23-42 times faster. 

Table 4: Computing time and objective function for a Cs17-Nb9 instance  
ACO DP  

Flow 
rate CPU time 

(s) 
Objective 
value 

CPU time 
(s) 

Objective 
value 

CTSP RE 

950000 1251 81152 28262 81050 96 0,13 
1000000 1114 99882 30405 99477 96 0,41 
1050000 1069 118311 29886 118122 96 0,16 
1100000 977 140230 28560 139705 97 0,38 
1150000 649 165888 27522 165397 98 0.30 
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As can be seen from table 5, the relative error of ACO over DP is less than 0.66 
%. We can observe also that the computing time saving in percent of ACO over DP 
is bigger than 97. The ACO becomes 30-57 times faster. 

 

Table 5: Computing time and objective function for a Cs23-Nb12 instance  
ACO DP  

Flow 
rate CPU time 

(s) 
Objective 
value 

CPU time 
(s) 

Objective 
value 

CTSP RE 

950000 1869 113390 55168 112985 97 0,36 
1000000 1525 137913 57628 137419 97 0,36 
1050000 1536 164062 56332 162993 97 0,66 
1100000 1405 193297 53409 192469 97 0,43 
1150000 895 228550 50786 227194 98 0,60 
 

Finally, as can be seen from these tables, ACO algorithm gives quasi-optimal 
solutions in less computing time for all flow rates and for different problem sizes. In 
some instances, ACO becomes 57 times faster. This shows the effectiveness of the 
proposed method. 

 

5. Conclusions 

In this paper, we use a relevant technique to minimize fuel consumption of gas 
pipeline. An algorithm based on ant colony metaheuristic was very performing 
compared to dynamic programming technique. In fact, with the suggested method, 
we obtain excellent results with a strong computing time saving.  This will enable us 
to design a fast, effective and robust decision aid tool based on the suggested 
method. This tool will assist operators to make the most appropriate decision within 
a short time.  

A careful sensibility analysis is required for parameters involved in the algorithm 
(ρ, β and q0). In this work, some variations of these parameters were tested and the 
values reported are those that gave us better results.  

Finally, obtained results encourage us to study more complex structures (cyclic 
network topology), non-stationary problem and combinatorial aspects (non-identical 
turbocompressors…).  
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