A Mixed Integer Approach
for the Transient Case
of Gas Network Optimization

Vom Fachbereich Mathematik
der Technischen Universitdt Darmstadt
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

von

Dipl.—Math. Susanne Moritz

aus Koln
Referent: Prof. Dr. A. Martin
Korreferent: Prof. Dr. R. Schultz
Tag der Einreichung: 24. Oktober 2006

Tag der miindlichen Prifung: 6. Dezember 2006

Darmstadt 2007
D17



Also lautet ein BeschluB,
Dal’ der Mensch was lernen muf3.
Nicht allein das Abc
Bringt den Menschen in die Hoh’;
Nicht allein im Schreiben, Lesen
Ubt sich ein verniinftig Wesen;
Nicht allein in Rechnungssachen
Soll der Mensch sich Miihe machen,
Sondern auch der Weisheit Lehren
MufR man mit Vergniigen horen.

Wilhelm Busch, Max und Moritz



Zusammenfassung

Erdgas ist der drittwichtigste Energietrdger der Welt. Der Verbrauch von Erdgas steigt derzeit am
starksten im Vergleich zu anderen nicht erneuerbaren Energietrdgern. Daher stellt Optimierung
von Gastransport in Netzwerken eine wichtige logistische Herausforderung dar.

In dieser Dissertation betrachten wir das Problem der zeitabhdngigen Optimierung von Gasnetz-
werken, auch genannt Transiente Technische Optimierung (TTO). Ein Gasnetz besteht aus einer
Menge von Leitungen, die das Gas von den Lieferanten zu den Abnehmern transportieren. Auf-
grund von Reibung an den Rohrwénden geht Gasdruck verloren. Dieser Druckverlust wird mit so-
genannten Kompressoren ausgeglichen. Das Ziel der TTO ist es, den Brenngasverbrauch der Kom-
pressoren zu minimieren, wobei der Bedarf der Abnehmer immer gedeckt werden muB3. Transiente
Optimierung der Gasverteilung stellt eine grolRe Herausforderung an die Forschung auf diesem Ge-
biet.

Wir formulieren einen gemischt-ganzzahligen Ansatz fiir das Problem der TTO, der sich auf
die zeitabhangigen und diskreten Aspekte konzentriert. Dafiir werden die Nichtlinearitédten, die
sich aus physikalischen Bedingungen ergeben, unter Verwendung von SOS-Mengen stiickweise
linear angendhert. Ein Branch-and-Cut Verfahren wird entwickelt, das globale Optimalitdt in
Abhéngigkeit von der Approximationsgenauigkeit garantiert.

Hinsichtlich der Nichtlinearitdten gehen wir auf die Giite der Approximationsgitter ndher ein, in-
dem wir die Naherungsfehler betrachten. Die SOS Bedingungen werden implizit mittels geeigneter
Branchingstrategien modelliert, welche durch entsprechende Preprocessing Techniken verbessert
werden.

Ein heuristischer Ansatz basierend auf Simulated Annealing liefert eine obere Schranke in
unserem Branch-and-Cut Verfahren. Zur Verbesserung der unteren Schranke verwenden wir
zwei Separierungsalgorithmen. Der erste ergibt sich aus theoretischen Studien der so genann-
ten Switching Polytope, die durch Laufzeitbedingungen und Schaltprozesse von Kompressoren
definiert werden. Die Verknupfung unterschiedlicher SOS Bedingungen liefert eine zweite
Separierungsstrategie.



Wir présentieren theoretische Untersuchungen der SOS 2 und SOS 3 Polytope. Diese Poly-
tope ergeben sich aus der Modellierung von SOS Typ 2 und SOS Typ 3 Bedingungen mittels
zusatzlicher bindrer Variablen. Die Ergebnisse haben keine praktische Bedeutung fiir unseren
Losungsalgorithmus, jedoch charakterisieren wir Ungleichungen, die Facetten definieren und ins-
gesamt eine vollstandige Beschreibung dieser Polytope liefern.

Wir evaluieren das entwickelte Branch-and-Cut Verfahren mittels dreier Testnetzwerke, die uns
von unserem Projektpartner E.ON Ruhrgas AG zur Verfiigung gestellt wurden. Zwei dieser Netz-
werke sind kiinstlicher Art, da sie fir Testzwecke entwickelt wurden und keine realen Netze wider-
spiegeln. Sie enthalten alle wichtigen Elemente eines Gasnetzes, sind jedoch eher klein. Das dritte
Netzwerk beschreibt den groRten Teil des Transportnetzes der Ruhrgas AG im Westen Deutsch-
lands. Wir testen Instanzen von drei bis zu 24 gekoppelten Zeitschritten.



Abstract

Natural gas is the third most important energy source in the world. Presently, the consumption of
natural gas is increasing the most in comparison to other non-renewable energy sources. Therefore,
optimization of gas transport in networks poses a very important industrial problem.

In this thesis we consider the problem of time-dependent optimization in gas networks, also called
Transient Technical Optimization (TTO). A gas network consists of a set of pipes to transport the
gas from the suppliers to the consumers. Due to friction with the pipe walls gas pressure gets
lost. This pressure loss is compensated by so called compressors. The aim of TTO is to minimize
the fuel consumption of the compressors, where the demands of consumers have to be satisfied.
Transient optimization of gas transmission is one of the great research challenges in this area.

We formulate a mixed integer approach for the problem of TTO which concentrates on time-
dependent and discrete aspects. Thereby, the nonlinearities resulting from physical constraints
are approximated using SOS (Special Ordered Set) conditions. A branch-and-cut algorithm is
developed which guarantees global optimality in dependence on the approximation accuracy.

Concerning the nonlinearities, we discuss the quality of approximation grids by calculating ap-
proximation errors. The SOS conditions are implicitly handled via a branching scheme, supported
by adequate preprocessing techniques.

A heuristic approach based on simulated annealing yields an upper bound in our branch-and-cut
framework. To improve the lower bound, we incorporate two separation algorithms. The first one
results from theoretical studies of the so called switching polytopes which are defined by runtime
conditions and switching processes of compressors. Linking of different SOS conditions gives a
second separation strategy.

We present theoretical investigations of the SOS 2 and SOS 3 polytope. These polytopes arise
from the modeling of SOS Type 2 and SOS Type 3 conditions using additional binary variables.
The results do not have practical relevance for our solution algorithm, but we characterize facet-
defining inequalities providing complete linear descriptions of these polytopes.



We evaluate the developed branch-and-cut algorithm using three test networks provided by our
project partner E.ON Ruhrgas AG. Two are of artificial nature, as they were developed for test
purposes. They contain all important elements of a gas network, but are rather small. The third

network characterizes the major part of the Ruhrgas AG network in Western Germany. We test
instances from three up to 24 coupled time steps.



Acknowledgements

First of all, I want to express my thanks to my supervisor Prof. Dr. Alexander Martin. He enabled
me the work in this interesting real-world application. He supported me with helpful suggestions,
and gave me the freedom necessary to accomplish my research. It was always a friendly discussion
atmosphere.

I wish to thank Prof. Dr. Rudiger Schultz for the acceptance of being referee.

Furthermore, 1 want to thank Prof. Dr. Jens Lang for giving me support in the development of
the grid generator “MeshTool” extracted from KARDOS. Moreover, | am grateful to him, Prof.
Dr. Gunter Leugering, and Prof. Dr. Stefan Ulbrich for discussions in the field of discretization of
partial differential equations.

I would like to thank our industry partners, in particular Klaus Reith from E.ON Ruhrgas AG and
Dr. Erwin Sekirnjak from PSI AG who gave me an introduction in the technical details of gas
transport and provided their expert knowledge.

Many thanks to all my colleagues of the Optimization group as well as the group of Numerical
Analysis and Scientific Computing. | always enjoyed the nice and friendly working atmosphere.
Especially, 1 wish to thank Dr. Peter Lietz for his help with the proof of Theorem 6.4.1, and Sven
Herrmann for the support in the determination of Delaunay triangulations. Furthermore, I want
to thank Dr. Markus Moller for the discussions and cooperation at the beginning of the project.
Finally, I am grateful to Ute Giinther, Debora Mahlke, and Andrea Zelmer as well as my sister
Anna Moritz for the careful reading of this work, and for their criticism and their suggestions.

My special thanks go to my family. My parents for always supporting me in my studies. My
daughter who showed me the important things in life. And finally, I am very thankful to my
husband Oliver for his patience and his great belief in me.

Darmstadt, October 2006 Susanne Moritz






Contents

1 Introduction
1.1 TheProblem. . . . . . . .

1.2 Literature SUIVEY . . . . . . .

2 Mathematical Background
2.1 OptimizationProblems . . . . ... ... ... .. ... ...
2.2 Graphs. . . . . e
2.3 HeuristiCs . . . . . . . .
2.4 Polyhedral Theory . . . . . . . . . . . .

2.5 Branch-and-Cut Algorithm . . . . . . . .. ... ... ... ..

3 Approximation of Nonlinear Functions
3.1 Approximation of a One-Dimensional Function . . . . . ... ... ........

3.2 Approximation of a Higher Dimensional Function . . . . . . ... ... ... ...

4 Physical Characteristics of a Gas Network

41 GasDynamicsinPipes . . . . . . . .

15

16

17

21



10

CONTENTS

4.1.1 The Continuity Equation . . . . . . . ... ... ... . 40

4.1.2 The Momentum Equation . . . . .. ... .. ... . ... ... 40
413 TheEnergy Equation . . . . . . . . . . ... .. 40
414 The State EquationofGas . . . . . . ... ... .. .. 41

4.1.5 Simplification of the Equations . . . . . . . . ... ... ... ... .... 41
4.1.6 Discretization of the Equations . . . . . . . . ... ... ... ....... 43

4.2 COMPreSSOIS . . o o v o i e e e e 44
43 Variablesand Constants . . . . . . . . . .. ... 47
The Model 49
5.1 Graph Structure and Variables . . . . . . ... ... ... .. 49
5.2 The ComponentsofaGasNetwork . . . . ... ... ... ... ... ........ 51
5.2.1 PropertiesofaPipe . . . . . . .. . 51

5.2.2 PropertiesofaConnection . . . . . ... ... ... .. ... . ... ... 52

5.2.3 PropertiesofaValve . . ... ... ... ... 52

5.2.4 PropertiesofaControlValve . . . . . ... ... ... ... ........ 53

5.25 PropertiesofaCompressor . . . . . ... ... ... ... 54

5.2.6 Propertiesof Nodes. . . . . . ... ... . ... ... ... 56

5.3 Linearization of the discretized Partial Differential Equations . . . . . . ... ... 57
5.4 Further Transient Conditions . . . . . . . . . . .. ... .. ... 60
5.4.1 Minimum Runtime and Downtime . . . . . . ... ... ... ....... 61

5.4.2 Switching Processes . . . . . . . . . . e 61



CONTENTS

543 Initial State . . . . . . .
5.4.4 Fixations of controllable Segments . . . . . ... ... ... .. ......
545 Terminal Condition . . . . . . . .. ... ...
5.5 Objective Function . . . . . . . . . ..

Handling of SOS Conditions

6.1 LinearizingGrids . . . . . . . . ...
6.2 Branching for SOS Conditions . . . . . . . . . . . . ... . ...
6.3 Preprocessing for SOS Conditions . . . . . .. ... ... ... ... .......
6.4 Separation for SOS Conditions . . . . . . . . . . . . ...

A Primal Heuristic: Simulated Annealing

7.1 The Simulated Annealing Algorithm . . . . . . . .. ... ... ... .......
7.1.1 Theldea . . . . . . .
7.1.2 TheAlgorithm . . . . . . . . .. . .

7.2 The Simulated Annealing Algorithmfor TTO . . . . .. ... ... .. ... ...
7.2.1 Constraint-Handling and Cost Function . . . . .. ... ..........
7.2.2 Neighborhood Structure . . . . . . . ... ... ... ...
7.2.3 Initial Solution . . . . . ...
7.24 CoolingSchedule . . . . . . ... . ...
7.25 Solution for the Linearized Problem . . . . . . ... .. ... .. .....

7.3 Computational Results . . . . . . . ... ... ...



12

8 Switching Polytopes

10

8.1

8.2

8.3

Linearization of Functions: SOS Polytopes
9.1 Binary Linearization Model
9.2 The SOS 2 Polytope

9.3 The SOS 3 Polytope

Computational Results

10.1

10.2

10.3

10.4

10.5

10.6

10.7

10.8

10.9

Mathematical Formulation
Literature Survey
Investigation of the Switching Polytopes
8.3.1 Polyhedral Studies

8.3.2 Separation

Test Networks

Approximation Accuracy
Binary Approach using CPLEX
SOS Branching

Heuristic. . . . . . . . . ... ... ....

Preprocessing

Separation for Runtime Conditions and Switching Processes
Separation for SOS Conditions

Tests under practical Conditions

CONTENTS



CONTENTS

10.10Concluding Remarks

11 Conclusions



14

CONTENTS



Chapter 1

| ntroduction

Natural gas is the third most important energy source in the world, and it shares about 24% of the
world-wide primary energy consumption. In comparison to other non-renewable energy sources
as petroleum and coal, the consumption of natural gas is currently increasing the most.

In Germany the share of gas in primary energy consumption was 22.7% in 2005, and it increased
slightly in comparison to the previous year. The applications of natural gas are versatile. There
are three main sectors in which gas is used. At first, there is the residential and commercial sector
which comprises private households as well as commercial and service companies. In 2005, it
accounted 47% of the total gas consumption. Industry, the second sector, took around a quarter of
all gas consumed. Finally, the third main sector is given by power generation with an amount of
about 14%.

The German gas demand is mainly covered by imports. In 2005, 85% came from imports and
15% from indigenous fields. The main supplier was Russia providing 34% of gas needed. Norway
shared 25% of the total German gas supply. Gas from the Netherlands accounted for 20% of
German gas supplies. Finally, The United Kingdom, Denmark, and some other countries provided
the remaining 6%.

In contrast to petroleum or coal, natural gas can directly be used as primary energy. Moreover
it is eco-friendly and causes less carbon dioxide and nitrogen oxide emission. The natural gas
reserves which are economically exploitable at the moment satisfy the needs till 2070. If we add
the resources which can be gained in the future, we obtain a range of about 170 years.

Another important fact in connection with natural gas is the liberalization of the European gas
market, see [00s98]. In the near future, the gas transmission companies need strategies to react
rapidly and flexibly on the global market. Thus, the development of a control system is necessary.
For more informations and facts concerning natural gas, see for example [BGR, GAS, RA].

By these facts the important role of gas transport is shown. Also, the optimization of gas transport
in networks poses a difficult problem to the companies. Therefore simulation and optimization of

15



16 CHAPTER 1. INTRODUCTION

the gas transmission process gain more and more significance, and the development of adequate
software tools is of great importance.

1.1 TheProblem

In this thesis we consider the problem of time-dependent gas network optimization, also called
Transient Technical Optimization, or TTO for short. The problem is the following. The gas flows
through the pipes, and due to friction with the pipe walls gas pressure gets lost. To guarantee the
continuation of the gas transport this pressure loss has to be compensated. To this end certain ma-
chines, the so called compressors, are used. The gas flows through the compressor and the pressure
of the gas is increased at the cost of consuming energy typically fuel gas itself. Further on, there
are consumers, in our case local distribution companies, having a certain gas demand. Finally,
there are suppliers that deliver the gas. The aim of TTO is to operate the gas transmission in such
a way that the consumer demands are satisfied and the compressors work cost-efficiently.

The most common element of a gas network is a pipe. Then there are compressors to increase
the gas pressure. Moreover, we find a lot of valves in a network which can be open or close, thus
the gas flow can be directed. To give an impression of the dimension of such a gas network, we
consider the network driven by our project partner, the German E.ON Ruhrgas AG. It comprises
some hundred pipes with a total length of more than 10.000 kilometers. Further on, it features 22
compressor stations with a total of 70 compressor units to generate the pressure needed for the gas
transport, see [RA]. Until now, there are no possibilities to optimize with proven quality such a
gas network or even major parts of it using a mathematical optimization tool. At a gas company
there are people, the so called dispatchers, handling the operation of the gas transmission. They
decide which compressors to set in and direct the gas flow based on their knowledge and operating
experience.

The subject of this thesis arises from a project with the German industry partners E.ON Ruhrgas
AG and PSI AG in collaboration with the Universitat Duisburg-Essen and with the Konrad-Zuse-
Zentrum fur Informationstechnik in Berlin. The idea is to develop an optimization tool for the
problem of TTO supporting the dispatcher at work. The dispatcher specifies the state of the gas
network, and then the optimization tool calculates an optimal control of the network for the sub-
sequent time. As all network parameters must be adjusted on an hourly basis the solution time for
such an optimization software is limited to 15 minutes.

The problem of TTO includes nonlinear, combinatorial, and stochastic aspects. The pipe hydraulics
describing the gas flow through the pipes are given by a system of nonlinear partial differential
equations and the state equation of gas. Naturally, the problem is time-dependent as the hydraulic
of pipes is transient. Blending different gas qualities also yields a nonlinear process. Moreover the
fuel gas consumption of a compressor is given by a nonlinear function. On the other hand, there are
discrete aspects. A valve can be open or close. Each compressor has its state, either it operates or
it is shut down. Furthermore the modeling of delivery contracts can lead to combinatorial aspects.



1.2. LITERATURE SURVEY 17

Usually stochastic aspects have to be considered as well, e.g., sales quantities of gas dependent on
weather conditions or on the liberalized gas market. Altogether, we receive a very complex mixed
integer nonlinear optimization problem including stochastic aspects, and so far it is not possible to
solve this problem.

In this thesis we focus on the time-dependent and discrete aspects of the problem, whereas we
approximate the nonlinearities to obtain a mixed integer linear programming approach. Thus we
neglect the stochastic aspects and develop a mathematical model for the remaining problem where
an adequate handling of the nonlinearities is needed.

The work in the field of gas network optimization in the research group Optimization at the Tech-
nische Universitdt Darmstadt began in 2001. In a first step the stationary case of gas network
optimization was treated where just one time step is considered [M6104]. This thesis is based on
[M06104] and extends the developed strategies to the time-dependent case. For the transient case
further work has to be done and additional aspects must be taken into account. Because of the time
dependence, we need an appropriate modeling of the gas dynamics in the pipes. We also obtain
more conditions than in the stationary case, i.e., there are min-up and min-down times as well as
switching costs for compressors.

In this work we tailor a branch-and-cut algorithm to solve the mixed integer approach for the
problem of TTO. Before we present different approaches for the problem of gas network optimiza-
tion known from the literature, we give an outline of this thesis. In Chapter 2 we consider the
mathematical basics concerning our problem. In the third chapter, we concentrate on approxima-
tion of nonlinear functions. Thereafter we describe the physical characteristics of a gas network
comprising the gas dynamics in a pipe and the fuel consumption of a compressor. In Chapter 5
we present our mixed integer approach, whereas we approximate the nonlinearities by piece-wise
linear functions using the concept of so called SOS conditions. In the following chapter we con-
centrate on the handling of these SOS conditions to model them implicitly in our branch-and-cut
algorithm. A simulated annealing algorithm for the problem of TTO is specified in Chapter 7 to
obtain a feasible solution yielding an upper bound in our branch-and-cut framework. In Chapter
8 we study switching polytopes resulting from minimum runtime and downtime conditions and
from switching processes of a machine. Based on these studies, such conditions for the compres-
sors are incorporated implicitly in our solution algorithm using a separation procedure. In Chapter
9 theoretical investigations can be found concerning the modeling of SOS conditions via additional
binary variables. In Chapter 10 we conclude our work with computational results showing the ap-
plicability of our developed algorithm in practice. Finally, we give some concluding remarks and
suggestions for further improvements and investigations.

1.2 LiteratureSurvey

In the literature various approaches for gas network optimization can be found, but none of them
covers all nonlinear, combinatorial, time-dependent, and stochastic aspects. In the following, we



18 CHAPTER 1. INTRODUCTION

mention different solution methods and cite corresponding literature. Most papers concentrate on
the stationary case. Therefore we begin with a summary of literature considering this easier case
where just one time step is considered.

In [Zim75], [Gop79] and [Car98] dynamic programming is used. The first two restrict to a sim-
plified network structure, namely a directed graph consisting of pipes and compressors without
cycles, a so called “gunbarrel system”. [Car98] extends the dynamic approach to cyclic gas net-
works. This paper also gives a general overview for the application of dynamical programming in
gas transmission systems.

Because of the nonlinear elements the problem is often tackled by nonlinear optimization meth-
ods. In [Jen93] gradient techniques are used to optimize the steady-state of gas transport assuming
fixed states of compressors and valves. [Kra93] concentrates on the modeling of compressor sta-
tions and investigates the configurations of different machines. Note that these methods just yield
locally optimal solutions.

Heuristic approaches can also be found for the stationary case of gas network optimization like for
example simulated annealing [WSD98], genetic algorithms [Car98] or a hybrid heuristic approach
[BSRMO05]. [WSD98] concentrates on the optimization of compressor stations, i.e., the authors
look for optimal configurations and power settings for a large number of compressors arranged in
series or in parallel. [Car98] compares a genetic algorithm implementation with a dynamic pro-
gramming approach. Finally, [BSRMO05] combines dynamic programming with tabu search in a
two-stage iterative procedure. Notice that none of these heuristics yields a provable optimal solu-
tion.

Often iterative solution methods are used to solve the problem. There the nonlinearities are approx-
imated, the resulting (mixed-integer) linear program is solved, and the process is continued until
convergence is reached. In [PW84] we find such an approach. Here the problem is iteratively re-
linearized about the optimum of the linearized problem until convergence is obtained. Similarly,
the optimization problems are solved in an iterative fashion in [Sek98, Sek00] using sequential
linear programming. There the nonlinearities are linear approximated using Taylor expansion or
piece-wise linear functions, and convergence is enforced via certain penalty factors. [SWO00] also
uses a stepwise solution process based on a modified simplex algorithm. The disadvantage of such
iterative methods is that they cannot guarantee global convergence.

A mixed integer approach for the stationary case is also applied in [Hac02] and [M8104, MMMO6]
whereas the nonlinearities are approximated via so called SOS conditions. In [Hac02], the author
regards models for medium- and long-term optimization of gas transmission in networks. In these
cases, less physical and technical details are required than for short-time optimization as considered
in [M06104, MMMO06]. Moreover, [Hac02] restricts to SOS conditions of Type 2. [M6104, MMMO06]
extend the SOS concepts to the general higher dimensional case. Suitable branching strategies are
developed, and a separation algorithm combining different SOS conditions supports the solution
algorithm. Note that these approaches using SOS conditions yield global optimal solutions in
dependence on the approximation accuracy.

For the more challenging transient case less literature is known.



1.2. LITERATURE SURVEY 19

In [JCOO], the authors solve the nonlinear optimization problem by control theory using gradient
techniques, whereas they restrict on gunbarrel systems. They receive a local minimum, and sup-
pose the uniqueness of their solutions.

As for the stationary case, nonlinear optimization methods are also applied for the time-dependent
case. [Vos93] uses gradient methods whereas the author exploits properties of the system to obtain
an efficient calculation of the gradient. In [ES03, ES05] suitable space and time discretizations for
the partial differential equations are presented, and the resulting nonlinear optimization problem
is solved using an SQP method. Both approaches assume predetermined states of the switchable
segments in a gas network, and they can only guarantee local optimality.

[NeiO4] applies a nonlinear approach to solve the transient gas network optimization problem as-
suming given states of compressors and valves. This approach is compared with a similar model,
where the nonlinearities are piece-wise linear approximated using planes [Hei02]. The nonlinear
approach maps more precisely the reality, but in case of the linear model the running times are
much better.

A linear model for transient gas flow is also presented in [NWO03] where the system of partial dif-
ferential equations is substituted by a simple line-pack model of three sections for a pipe. After
calibration of the parameters, this warehouse approach is compared with numerical simulations.
[Wes04] concentrates on stochastic aspects of TTO and uses a coarse approximation of the nonlin-
earities. An uncertain demand of the consumers is assumed and a two-stage stochastic optimization
problem is formulated.

In [Sek00, KRS00] the problem of transient gas network optimization is tackled using sequential
linear programming. The nonlinearities are approximated by Taylor expansion and polygons using
the operating point. [KRS00] present the resulting mixed integer formulation and give computa-
tional results evaluated using a transient simulator.

Other mixed integer formulations are considered in [Hac02] and [Tom88] using the concept of
SOS of Type 2. Medium- and long-term planning is discussed in [Hac02]. [Tom88] dwells on
contractual conditions for suppliers and consumers, and considers long-term optimization.

Often simulation of gas transport in pipes is regarded. [NWO03] considers the gas flow in a pipe
and compare this simulation to a linearized approach. In [Bal05], a hierarchical modeling of the
partial differential equations describing the gas flow in a pipe is presented, and the different models
are compared. Especially, the instationary approaches are used to evaluate the stationary one in
[Sek00] as well as in [M6104, MMMO06]. [BHKO06] focuses on coupling conditions in gas networks.

As we see from this overview, none of the approaches fits to our intention in gas network op-
timization. Some methods just yield local optima, furthermore either combinatorial aspects are
neglected or coarse approximations for the nonlinearities are applied. Recall that we concentrate
on time dependence and combinatorial aspects. Moreover, we want to guarantee global optimality
in dependence on the approximation accuracy of the nonlinear functions.



20

CHAPTER 1. INTRODUCTION



Chapter 2

Mathematical Background

In this chapter we give a brief introduction into the most important mathematical fields needed in
this thesis. At first, we state formulations of optimization problems considered in this work. Then,
we summarize some basics of graph theory. In the third section, we specify the term heuristic and
meta-heuristic. In the following section, we concentrate on the fundamentals of polyhedral theory.
Finally, we dwell on the general structure of a branch-and-cut algorithm. In all sections we cite
literature which provides a deeper insight in the subject.

2.1 Optimization Problems

We want to formulate the problem of transient gas network optimization as a linear mixed integer
program (MIP). A general definition can be found for example in [NW88, Wol98].
A MIP can be written in the following form

min ¢’z + hly
Az +Gy <D (2.1)
r €L y € RP,

where ¢ € R™, h € R? and b € R™ are vectors, and A € R™ "™ and G € R™*P are matrices. It is
called “mixed’ because it contains integer variables = as well as continuous variables y. If there are
no continuous variables, i.e., p = 0, (2.1) is called (pure) integer program. If n = 0, i.e., there are
no integer variables, it is a linear program. The linear term ¢’z + h”'y is called objective function,
and Ax + Gy < b defines the constraints. We say that (z,y) € Z™ x R? is a feasible solution, if
it satisfies all constraints. Further on, a feasible solution (z,, y,) is called an optimal solution, if
Tz, + hTy, < Tz + hTy for all feasible solutions (z, y).

At present, among the most successful algorithms to solve a MIP are the so called branch-and-cut

21



22 CHAPTER 2. MATHEMATICAL BACKGROUND

algorithms, see Section 2.5, which are based on LP relaxation. That is also the approach which
we follow in this thesis. We formulate the problem of TTO as an MIP, see Chapter 5. Then we
develop a branch-and-cut algorithm to solve it.

Originally, the gas network optimization problem is a nonlinear optimization problem. Here, we
use the formulation given in [MF00]. We need this formulation in connection with the simulated
annealing heuristic, see Chapter 7.

Let f: R* - R, h; : R® - Rforj € {1,..,q}and g; : R* — Rforj € {¢+1,...,m} be
functions. Then

min f(x)
hj(x)=0 j=1,...,q (2.2)
9i(@) <0 j=q+1,....m

is called a nonlinear optimization problem.

Originally, the simulated annealing algorithm was developed for solving large combinatorial opti-
mization problems. Therefore we specify this kind of problem, see for example [NW88, Wol98].

Let N = {1,...,n} be a finite set and let ¢ = (cy,...,c,) be an n-vector. Further let
F C ZP(N) be a subset of the power set of NV, denoting the set of feasible subsets of N. We
define c(F') = >, ¢; for F C N. The combinatorial optimization problem is given by

min c(F), (2.3)

Fe7

hence finding a minimum weight feasible subset.

2.2 Graphs

In this section we give definitions and results of graph theory needed in this thesis. We model the
gas network as directed graph, see Section 5.1. In connection with our polyhedral studies for SOS
conditions with binary variables, we use the decomposition of a connected graph in so called cycle
with ears and paths, see Chapter 9. In our descriptions, we follow the books of Diestel [Die00] and
of Lovasz and Plummer [LP86] and the article of Whitney [Whi32].

A graphisapair G = (V, E) of sets, where V' is the node setand £ C V' x V is the edge set. All
graphs we consider are finite. We denote an edge e € E with endnodes « and v by uv. We will
not allow loops, i.e., edges of the form wu. Given an edge uv in a graph G, edge uw is said to be
incident with nodes » and v, and nodes u and v are said to be adjacent. Two edges are adjacent if
they have a common node.

If V' C Vand E' C E, then G’ = (V', E') is called a subgraph of G. By G[V'] we denote the
graph with node set V/, whose edges are exactly those edges of G joining two nodes of 1/, and



2.2. GRAPHS 23

call it the subgraph of G induced by V.

An alternating sequence of nodes and edges of the form vg, vovy, v1, V1V, Vo, ...y Vg1, Vp_1Uk, U,
where all nodes are distinct, is called a path (or a chain). The length of a path is defined as the
number of edges in it. A suspended chain is a chain containing two or more edges such that no node
of the chain other than the first and the last is incident to any other edge in the graph, and these two
endnodes are each on at least two other edges. A path vg, vovy, v1, V109, Vo, ..., Up_1, Up_10; With
vg = v and k > 2 is called a cycle.

A graph is connected if any two of its nodes are joined by a path. A component of  is a maximal
connected subgraph of GG. A graph is called cyclicly connected if any two of its nodes are contained
inacycle.

A set of nodes S in a connected graph G is a cutset if G[V \ S] is not connected. If S is a cutset
of GG consisting of a single node v, the node v is called a cutpoint (or cutvertex) of GG. A connected
graph containing no cutpoint is called a non-separable or 2-(node)connected graph. Geometrically,
G is a non-separable graph if there do not exist two graphs H; and H,, each containing at least
one edge, which form G if they are joined at a node. If G is not non-separable, it is said to be
separable. Clearly, a connected graph is non-separable if we cannot divide it into two graphs, each
containing at least one edge, at a single node. For example a graph consisting of a single edge is
non-separable, but a graph consisting of two edges uv and vw, u # w, is separable.

The following theorems can be found in [Whi32].

At first, we give a characterization of a cut vertex.

Theorem 2.2.1 Let G be a connected graph. A necessary and sufficient condition that the node ¢
be a cut vertex of G is that there exist two nodes « and v in GG, each distinct from ¢, such that every
path from « to v passes through c.

We consider a further characterization of a non-separable graph.

Theorem 2.2.2 Let G be a graph containing at least two edges. A necessary and sufficient condi-
tion that G be non-separable is that it be cyclicly connected.

Now we look at decomposition of graphs. As mentioned above, a separable graph can be broken
into two graphs having just a single node in common. Repeating this procedure we decompose the
graph G in non-separable parts and say that G is separated into its components. Here we mention
two results in this context.

Theorem 2.2.3 Every non-separable subgraph of GG is contained wholly in one of the components
of G.

Theorem 2.2.4 A graph GG may be decomposed into its components in a unique manner.



24 CHAPTER 2. MATHEMATICAL BACKGROUND

At last we consider a construction method for non-separable graphs.

Theorem 2.2.5 We can build up any non-separable graph containing at least two edges by ta-
king first a cycle, then adding successively edges or suspended chains, so that at any stage of the
construction we have a non-separable graph.

This method is useful for proving statements for non-separable graphs inductively. This decompo-
sition is also known as ear decomposition or cycle with ears (see [LP86]).

If we regard a connected graph and separate it into its components, hence into its non-separable
parts, then all components with two or more edges are cycles or cycles with ears. The components
consisting of just one edge can be pieced together to (several) paths of maximal length. So we can
decompose a connected graph in non-separables sets (cycle with ears) and paths.

We use this form of decomposition in the proof for the complete linear description of the SOS 3
polytope, see Theorem 9.3.5.

Finally, we give the definition of a directed graph needed for the modeling of a gas network. A
directed graph (or digraph) G = (V, E) consists of a set of nodes V' and a set of arcs £. An arc
e = (u,v) € V x V isan ordered tuple. v is called the tail of ¢, and v is the head of it. Considering
anodev € V, 6" (v) = {(u,w) € E|u = v} defines the the set of all outgoing arcs of v. Similarly,
0~ (v) = {(u,w) € E| w = v} denotes the set of all ingoing arcs in v.

2.3 Heuristics

For many optimization problems and real world applications it is not only hard to find optimal
solutions, even the specification of a feasible solution is very difficult. That is also the case for our
transient gas network optimization problem. However, feasible solutions are necessary in the frame
of a branch-and-cut algorithm for the bounding process, see Section 2.5. Therefore methods are
needed that find good solutions in acceptable running times. Such methods are called heuristics.
In [Ree93] we find the following definition.

Definition 2.3.1 [Ree93] A heuristic is a technique which seeks good (i.e., near-optimal) solutions
at a reasonable computational cost without being able to guarantee either feasibility or optimality,
or even in many cases to state how close to optimality a particular feasible solution is.

A special class of these methods are the so called meta-heuristics. They are superior strategies
which control, modify and combine different methods and build new hybrid concepts. The follow-
ing definition can be found in [OK96].



2.4. POLYHEDRAL THEORY 25

Definition 2.3.2 [OK96] A meta-heuristic is an iterative generation process which guides a sub-
ordinate heuristic by combining intelligently different concepts for exploring and exploiting the
search spaces using learning strategies to structure information in order to find efficiently near-
optimal solutions.

Simulated annealing, tabu search, and genetic algorithms are examples for meta-heuristics. Under
certain assumptions theoretical convergence can be proven for some meta-heuristics (see [OK96]).
But for most practical applications these assumptions cannot be fulfilled. Thus meta-heuristics do
not guarantee optimality but they yield good feasible solutions.

We used the approach of simulated annealing for our TTO problem (see [Mah05, MMMar]). In
Chapter 7 a detailed description of the algorithm can be found. The basic idea of the simulated
annealing algorithm is given by the local search algorithms. These methods are based on an
iterative improvement of the objective function value. Starting from a feasible initial solution S
the method tries to find a better solution in the neighborhood N(.5) of S. N(S) is obtained by
a so called move-generation mechanism (or transformation). If a better solution S’ is found, the
algorithm continues searching in the neighborhood N (S”), otherwise it stops. Here we give a basic
version of a local search method for a combinatorial optimization problem (2.3), see [OK96].

Algorithm 1 Local Search

1: Get an initial solution S and compute its objective ¢(.5).

2: while there is an untested neighbor S” € N(S) do
3:  Generate sequentially a trial " € N () and compute ¢(S5").
4 Ifc(S’) < ¢(S) then set S = S’. Otherwise retain S. Goto 2.
5
6

. end while
: Terminate the search and return S as the best found solution.

Local search is applicable to many kind of problems since just the specification of an initial solu-
tion, a cost function, and a generation rule for the neighborhood are needed. So it is a very flexible
and robust method. The main disadvantage is that it often terminates in a local optimum. Moreover
the resulting solution highly depends on the initial solution and the neighborhood structure.

2.4 Polyhedral Theory

In this section we concentrate on fundamentals of polyhedral theory. We need this basics for the
studies of the switching polytopes in Chapter 8 and the SOS polytopes in Chapter 9. For our
descriptions, we refer to the book [NW88].

We begin with the definition of a polyhedron.



26 CHAPTER 2. MATHEMATICAL BACKGROUND

Definition 2.4.1 A polyhedron P C R" is the set of points that satisfy a finite number of linear
inequalities, that is, P = {z € R"| Az < b}, where A is an m x n matrix and b is an m-vector.
A polyhedron is said to be rational if there exists an m’ x n matrix A’ and an m/’-vector 4" with
rational coefficients such that P = {x € R"| A’z < ¥'}.

A polyhedron P C R” is bounded if there exists an w > 0 such that P C {z € R"| —w < z; <
w for j =1,...,n}. Abounded polyhedron is called a polytope.

In our studies, we just consider polytopes. Further on, we use the dimension of a polyhedron.

Definition 2.4.2 A polyhedron P is of dimension k, denoted by dim (P) = k, if the maximum
number of affinely independent pointsin P is k£ + 1.
A polyhedron P C R" is full-dimensional if dim (P) = n.

The switching and SOS polytopes investigated in this thesis are not full-dimensional. If a polyhe-
dron P = {z € R"| Az < b} is not full-dimensional, then at least one of the inequalities a’z < ¥;
is satisfied at equality by all points of P. More precisely, if (A%, b) are the rows of (A, b) that are
satisfied at equality by all points of P (it is also called the equality set of the representation (A, b)
of P), then the dimension of the polyhedron can be calculated via the following formula.

Proposition 2.4.3 If P C R", thendim (P) + rank(A%,b5) = n.

Here, rank( A%, b5 ) denotes the rank of the matrix (A%, b%).

Considering a polyhedron P, we are interested in a minimal description of it, i.e., we want to know
which are the inequalities that are necessary for describing it. In this context we need the terms
valid inequality and face.

Definition 2.4.4 The inequality ax < « is called a valid inequality for P if it is satisfied by all
points in P.

Definition 2.4.5 Aset F' C P is called a face of P, if there exists a valid inequality az < o for P
with ' = PN {z € R"| ax = a}. We say that ax < a induces F'. A face is said to be proper if
() # F # P. When F' is nonempty, we say that az < « supports P.

If £ is a proper face of P, then dim (F") < dim (P) holds, see Proposition 2.4.3. Now, we can
characterize the inequalities that are necessary in the description of P.

Definition 2.4.6 A face F' of a polyhedron P is a facet of P if dim (F') = dim (P) — 1.



2.4. POLYHEDRAL THEORY 27

Proposition 2.4.7 For each facet F' of P, one of the inequalities representing F' is necessary in
the description of P.

On the other hand, the facets are also sufficient for the description of P, i.e., all faces with dimen-
sion less than dim (P) — 1 are irrelevant to the description of P.
Now we look at the proper faces of lowest dimension.

Definition 2.4.8 = € P is an extreme point (or vertex) of P if there do not exist 2!, 2% € P,
z' # 22, suchthat z = 1a! + 122,

We obtain the following characterization of an extreme point.
Proposition 2.4.9 z is an extreme point of P if and only if = is a zero-dimensional face of P.

Hence, if (A, b)) gives the rows of (A, b) that are satisfied at equality by the vertex x of P, then
rank(AZ, b7
The polytopes we consider in this thesis result from integer programs in case of the so called
switching polytope (see Chapter 8) and from mixed integer programs for the SOS polytopes (see
Chapter 9). The set S C Z™ x RP of feasible points for these problems is described implicitly via
a linear inequality system resulting in a set of (mixed) integer solutions of the form S = {z €
7", y € RP| Ax + Gy < b}. Now, we are interested in finding a linear inequality description of
this set .S.

In Chapter 8, we specify a complete linear inequality description for the switching polytope. For
proving this fact, we need the concept of totally dual integrality. Therefore, we conclude this
section with the terminology of integral polyhedron, see for example [Sch86, NW88].

At first we introduce the definitions of an integral polyhedron and of the property totally dual
integral for a rational system.

Definition 2.4.10 A rational polyhedron P is integral if P is the convex hull of its integral vectors,
i.e., P = conv(PNZ").

Definition 2.4.11 Let A € Q™™ and b € Q™. The system Ax < b is said to be totally dual
integral (TDI), if for each integral vector ¢ € Z™ for which min{b"y | ATy = ¢, y > 0} is
finite , there exists an integral optimum solution y* € Z™, ie., ATy* = ¢, y* > 0and b'y* =
min{b'y | ATy = ¢, y > 0}.



28 CHAPTER 2. MATHEMATICAL BACKGROUND

The following theorem vyields the connection between a TDI-system and the integrality of the
corresponding polyhedron.

Theorem 2.4.12 If Ax < b is a TDI-system and b is integral, the polyhedron {z | Az < b} is
integral.

2.5 Branch-and-Cut Algorithm

As already mentioned, branch-and-cut algorithms are among the most successful algorithms to
solve mixed integer programs. For the gas network optimization problem, we design a branch-
and-cut algorithm to solve it. In this section we sketch the structure of such an algorithm, see also
[NW88, Wol98]. In principle, it combines two methods. The branch-and-bound algorithm which
is based on a “divide and conquer’ approach, and a cutting plane phase which helps to tighten the
dual bound.

We consider a MIP of the form (2.1). Let S := {(z,y) € Z" x RP| Ax + Gy < b} be the set of
feasible solutions. Now we look at the problem

z=min 'z + hly (2.4)
(z,y) € 5.

The idea is to break the problem into smaller problems that are possibly easier to solve, and then
to put the solution information together to solve the original problem. Thus we split S into subsets
S; € 8S,i=1,...,k with S = UF_S; and try to solve the corresponding subproblems. Note
that if ' = min{c’x + hTy | (x,y) € S;}, fori = 1,..., k, then we receive z = min, z* for the
original problem.

In general, the subproblems might be as difficult to solve as the original problem. Therefore we
continue the splitting process and create subproblems of the subproblems, and so on. The typical
representation for such an “divide and conquer’ approach yields an enumeration tree, the so called
branch-and-bound tree. The root node of this tree is given by the original problem. If a problem
is split into two or more subproblems, we call it father and its subproblems sons. The unsolved
problems are the leaves of the tree.

Since complete enumeration is inefficient, we exploit bounds on the values z* of the subproblems
to investigate the branch-and-bound tree intelligently. The idea is to determine lower and upper
bounds for the values »* and to use these informations to prune branches from the tree. This is the
so called bounding process. Thereto we give the following observation.

Proposition 2.5.1 Let S = U | S; be a decomposition of S into smaller sets and let 2! =
min{cTx + hTy | (z,y) € S;}, fori = 1,..., k. Further on, let z' be an upper bound on z!



2.5. BRANCH-AND-CUT ALGORITHM 29

and z* be a lower bound on it. Then Z = min; z* is an upper bound for z and z = min; 2’ is a
lower bound for it.

There exist three criteria to eliminate branches from the branch-and-bound tree. The first one is
pruning by optimality. If the lower and upper bounds of a subproblem are equal, 2! = z, the
corresponding subset .S; must not be considered further, and it can be pruned by optimality. The
second criterion is pruning by bound. In that case, there is a subproblem where the lower bound
2" is greater than the best upper bound of the original problem found so far, i.e., z* > z. As the
optimal value has value at most z, no optimal solution can lie in the set .S;. Therefore .S; can be
pruned by bound. Finally, the last criterion is pruning by infeasibility. Obviously, if S; = (), this
node in the tree can be pruned by infeasibility. Exploiting these criteria, we can handle a part of
the enumeration process implicitly.

Now the question arises how to obtain upper and lower bounds for the problems. Notice that each
feasible solution provides an upper bound. Having good feasible solutions, and hence good upper
bounds, is crucial for the bounding process to eliminate nodes from the branch-and-bound tree.
Often, problem dependent heuristics are developed to determine good feasible solutions. In case
of the TTO problem, we choose the concept of simulated annealing to produce a good solution,
see Chapter 7.

To obtain a lower bound, we consider a relaxation of the problem. Therefore we choose a set
S; C Z" x RP with S; C S; and optimize the objective function over S;. For example, this can be
the LP relaxation where the integrality conditions in (2.4) are neglected. This is also the approach
we use in this thesis. In case of the gas network optimization problem, we do not just drop the
integrality requirements, but we also disregard the SOS conditions for the linearized functions and
incorporate them implicitly in the branching scheme, see Chapter 3 and 6. In the course of the
algorithm it may happen that the optimal solution of the LP relaxation of a subproblem is also a
feasible solution for the original problem, i.e., it lies in S. In that case we receive an upper bound
that is possibly better than the incumbent, and thus helps us to tighten the tree.

In the description of the algorithm there are two steps where we have to make a decision. The
first one, is which node of the tree to process next, i.e., which subproblem should be considered.
The second question is how to split a problem into subproblems. Assuming the LP relaxation to
calculate lower bounds in the nodes, there is a typical way to split a problem into two subproblems.
Regarding the optimal solution (z*,y*) of the LP realaxation, we choose a fractional variable
x} that must be integer and create two subproblems by adding xz; > [x}]] or x; < |x}] to the
formulation. But considering this approach, we do not know which fractional integer variable
to choose. We refer to [LP79] for selection strategies within the scope of a branch-and-bound
algorithm.

The solution algorithm described till now is called branch-and-bound algorithm, since we do not
use cuts. To obtain a branch-and-cut algorithm, we have to incorporate the cutting plane phase in
the branch-and-bound algorithm. The idea is to tighten the lower bounds throughout the branch-
and-bound tree by adding so called cutting planes. In the following we describe this approach.
Considering a node of the branch-and-bound tree, i.e., a subproblem of the original problem, we
solve the LP relaxation and receive an optimal solution (z*, y*) (which gives us a lower bound



30 CHAPTER 2. MATHEMATICAL BACKGROUND

at this node). If z* is integral, we found a feasible solution for (2.4) which possibly improves
the best upper bound in the tree. Otherwise, we try to find a valid inequality for the polyhedron
conv{(x,y) € Z" x RP| Ax + Gy < b} = conv(S) that is violated by the LP solution (z*, y*).
Hence, we look for a valid inequality d"= + e’y < « for the original problem such that the
violation of it by the LP solution, d"z* 4 e"y* > «, is preferably big. We concentrate on facet-
defining inequalities of the polyhedron or some subpolyhedron to receive faces of high dimension.
The problem of finding such an inequality is called the separation problem. If we are able to
specify a violated inequality, we can strengthen the LP relaxation and the lower bound at the node
is possibly improved. We continue this process until (z*, y*) is a feasible solution or if no more
violated inequalities are determined. Altogether, this is the so called cutting plan phase. After
termination of this phase, we continue with the branch-and-bound process, i.e., we split a problem
into subproblems.

In case of the problem of TTO, we incorporate two kinds of cutting planes. The first class treats
combinations of SOS conditions, see Section 6.4. And the second one comes from switching
processes and runtime conditions for compressors, see Chapter 8. Both kinds of inequalities result
from studies of subpolytopes of the gas network optimization formulation. For the switching
polytopes, we are even able to determine facets and integrate them in the cutting plane phase. The
following algorithm summarizes the described branch-and-cut algorithm.

Algorithm 2 Branch-and-Cut Algorithm
1: Let L be a list of unsolved problems. Initialize L with (2.4).
2: Set upper bound Z = oo.

3: repeat
4. Choose a problem P from L.
5 repeat
6 Solve LP relaxation of P. Let (x*, y*) be an optimal solution.
7: Let z2p = ¢"2* + h'Ty* be a lower bound for P.
8: if (2*,y*) € Z" x RP then
o if Z > zp then
10: Let?z = zp.
11: Update best feasible solution (z, 9) = (z*, y*).
12: Delete from L all problems P’ with z,, > Z.
13: end if
14: Goto 19.
15: end if
16: Find violated inequalities and add them to the LP.

17 until No more violated inequality can be found.

18:  Split P into subproblems and add them to list L.

19: until L =0

20: If z < oo, (Z,y) is an optimal solution for (2.4). Otherwise the problem is infeasible.




Chapter 3

Approximation of Nonlinear Functions

The problem arising from TTO contains several nonlinear elements such as the fuel gas consump-
tion of compressors and the system of partial differential equations describing the gas dynamic in
pipes. Since we want to formulate this problem as an MIP of the form (2.1), we need to linearize
these components.

In this chapter we give a brief introduction in how to approximate nonlinear functions by piece-
wise linear ones. A lot of literature can be found concerning the approximation of nonlinear func-
tions by piece-wise linear ones [Bea79, BF76, BT70, Dan63, LWO01, KdFJN04, MM57, NW88,
Pad00, Tom81, Wil98, M6104, MMMO06].

Most approaches focus on nonlinear separable functions. A separable function h : R™ — R is a
function that can be written as h(z) = >, h*(z;) with one-dimensional functions »* : R — R.
Hence literature concentrates on linearization concepts for one-dimensional functions. There ex-
ist three different linearization approaches. The first one uses so called Special Ordered Sets of
Type 2, briefly SOS Type 2. These are sets with a certain property which is modeled implicitly
during the branch-and-bound phase [BT70, BF76, Bea79]. The two further approaches intro-
duce additional binary variables. One is the so called convex combination or lambda method, see
[Dan63, NW88, Wil98, LWO01]. Here the SOS Type 2 condition is modeled explicitly using ad-
ditional binary variables. The second binary approach is known as incremental or delta method
[Dan63, MM57, Wil98].

For the approximation of non-separable functions, i.e., higher-dimensional functions, less litera-
ture can be found. [Tom81, M6l04, MMMO6] yield an extension of the SOS concepts to gen-
eral n-dimensional functions. A generalization of the lambda and delta method can be found in
[Wil98, LwO01].

In the following we present the three approaches for the piece-wise linear approximation of a
one-dimensional nonlinear function. Thereafter, we extend these ideas to functions in higher di-
mensions.

31



32 CHAPTER 3. APPROXIMATION OF NONLINEAR FUNCTIONS

h3

>
Ta

I I I I I
a=x1 x2 x3 x4 b =x5

Figure 3.1: Approximation of a nonlinear function

3.1 Approximation of a One-Dimensional Function

We consider a nonlinear function of the form 2 : D — R defined on an interval D := [a, ]
with a,b € R. The idea of approximating such a function goes back to the traditional way known
from pertinent textbooks, see for example [Dan63, NW88]. By dividing the interval in parts, we
receive grid points ¢ = x' < 22 < ... < z¥ = b with corresponding function values h(z?),
ieA:={1,... k}. We want to approximate h by the piece-wise linear function that is indicated
in Figure 3.1. Therefore, we introduce a variable \? for each grid point i € A and approximate the
function value h(z) for x € D by the following convex combination.

ZAZ’ =1 (3.1)

€A
h(z) ~ ) h(a') X (3.2)
1EA
r=)Y a' X (3.3)
1EA
N> 0 forall ¢ A. (3.4)

Note that this formulation is not sufficient to linearize h» by means of the line segments. We also
need the additional condition that at most two A-variables are positive, and if two are positive
they must be adjacent. In the literature this condition is called the Special Ordered Set of Type 2
condition, briefly SOS 2 condition, and equation (3.1) is then regarded as an SOS Type 2 constraint
[BT70, BF76, Bea79].

In the first approximation approach for the nonlinear function A this condition for the A-variables
is modeled implicitly by incorporating it in the branch-and-bound phase [BT70, BF76, Bea79]. In
Section 6.2 we describe corresponding branching strategies that guarantee the SOS 2 condition.



3.1. APPROXIMATION OF A ONE-DIMENSIONAL FUNCTION 33

Figure 3.2: Variables for approximation of a function

The second approximation method for a one-dimensional function models this SOS 2 condition
explicitly via additional binary variables. This method is known as convex combination or lambda
method [Dan63, NW88, Wil98, LW01]. Again we consider the function h and the decomposition
of the interval D = [a, b] with the set of grid points A and the corresponding variables \’, i € A.
Let Y define the set of indices of the £ — 1 segments that define the partition of the interval. We
introduce a binary variable y?, j € Y, for each segment indicating if this segment is chosen to
approximate the nonlinear function, see Figure 3.2. Now we can formulate an MIP which yields
an approximated function value i(z).

d o Ai=1 (3.5)

€A
>y =1 (3.6)
JjeyYy
A<yt (3.7)
No< vyt forall ieA\{1,k} (3.8)
Af < gkt (3.9)
h(z) ~ Y h(z') X' (3.10)
1EA
r=>Y a'X (3.11)
€A
A>0 forall ic A (3.12)
v’ € {0,1} forall jeV. (3.13)

Because of the second constraint exactly one segment of the decomposition is selected to approx-
imate h. Constraints (3.7) to (3.9) ensure that only those \-variables can be positive which are
adjacent to the chosen segment. Hence, these constraints guarantee the SOS 2 condition. In Sec-
tion 9.2 we investigate the polytope resulting from this modeling of the SOS 2 condition.

The second binary approach is known as delta or incremental method [Dan63, Wil98, KdFJNO04].
It also describes the linear interpolation of the grid points, and its binary formulation is as follows.



34 CHAPTER 3. APPROXIMATION OF NONLINEAR FUNCTIONS

Let [; := '™ — 2% be the length of the interval [z, 'T!]. We introduce a continuous variable §;
for each subinterval [z?, 2'*!] of [a,b], ¢ € Y. Then for = € [a, b] we obtain the approximation of
h(x) by

€Y
h(z) & h(a) + Y _(h(2) = h(z)) &
€Y
0<6§;<1 forall i€y,

where the §-variables have to satisfy the so called filling condition [Wil98]:
If 6, >0 with 2<i<k—1,then §; =1 for 1 <j <.

This condition assures that if an interval is chosen, then all intervals to its left must also be used
completely.

By means of additional binary variables w; associated with the interval [x?, 2" ™],i € Y\ {k — 1},
we can model this filling condition via

w; <6, for ieY \{k—1}. (3.15)

Because of constraint (3.15) w; = 1 enforces §; = 1. Together with (3.14) w;_; = 1 follows.
Hence, all intervals to the left are iteratively filled.

[Pad00] shows that the lambda method is computationally inferior to the delta method as its linear
programming relaxation always produces worse bounds than the relaxation of the delta method.
The author proves that the delta method is locally ideal, i.e., that regarding the polytope defined
by the LP-relaxation of the delta formulation, the components of extreme points corresponding
to binary variables are integer. In contrast, the polytope defined by the lambda formulation has
extreme points with fractional components for the binary variables, and it strictly contains the
polytope resulting from the delta method. [KdFINO4] prove that the LP-relaxations of the lambda
model, of the delta model, and of the SOS Type 2 approach all yield the same optimal objective
function value, if the piece-wise linear function is to be minimized. In [CGMO03] and [dFJZZ05]
approaches for discontinuous piece-wise linear functions are investigated, where the first paper
considers MIP models and the second one an SOS approach.

3.2 Approximation of a Higher Dimensional Function

Now we extend these linearizing ideas to higher-dimensional functions. We consider a nonlinear
function h : D — R defined on a domain D C R™ with an arbitrary n € N. At first we determine



3.2. APPROXIMATION OF A HIGHER DIMENSIONAL FUNCTION 35

Figure 3.3: Triangulation of a rectangle

a triangulation of the domain D. This results in a set of n-dimensional grid points and a set of
simplices. In the following A denotes the index set of the grid pointsand Y = {N!, ... N}, with
N C A, gives the set of simplices, where each of the d simplices is represented by the indices
of its vertices. Note that the proposed triangulation needs not be uniform. Moreover, we could
consider an arbitrary subdivision (in the one-dimensional case |N?| = n + 1 holds, but in the two-
dimensional case for example we could subdivide the domain D in triangles and rectangles). As
in the one-dimensional case we introduce a variable \* for each grid point : € A and calculate the
exact function value h(z*). We linearize i within each simplex by means of the exact function
values at its vertices, see again (3.1) to (3.4).

As in the one-dimensional case the A-variables must fulfill an additional condition, namely that the
positive A-variables belong to the vertices of one simplex. This is modeled via the so called set
condition, an extension of the SOS 2 condition, which was introduced by [M6104, MMMO06]. The
following definition can be found in [MMMO6].

Definition 3.2.1 Consider some subdivision Y = { N, ..., N4} with respect to grid points A. We
say that a vector A satisfies the set condition with respect to (3.1) and the subdivision Y/, if there
exists some index » € {1,...,d} suchthat {¢ € A : X\’ > 0} C N". We call (3.1) SOS Type k
constraint, where & = max; | N'|.

Note that in case of a triangulation, (3.1) is an SOS Type £ constraint with £ = n + 1. Let
us illustrate this generalization of SOS conditions by means of an example. We consider a two-
dimensional function that is defined on a rectangle [a, b] x [c, d] with a, b, ¢, d € R. We determine a
triangulation of this rectangle by subdividing the first interval |a, b] into [ — 1 parts and the second
one into m — 1 parts with [, > 2. The small rectangles that result from this subdivision are
halved in triangles. Altogether we obtain (m grid pointsand 2(I — 1)(m — 1) triangles. See Figure
3.3 for an example with/ = 4and m = 7.

Now we linearize the nonlinear function within each triangle as described above. The set of grid



36 CHAPTER 3. APPROXIMATION OF NONLINEAR FUNCTIONS

points is given by A = {1,..., kl}, and the set Y of simplices is defined by the 2(k — 1)(I — 1)
triangles. In this case (3.1) is an SOS Type 3 constraint, since Y consists of triangles. The variables
i, i € A, must fulfill the SOS 3 condition, i.e., at most three \-variables may be positive and these
positive variables must belong to one triangle.

In [Tom81, M6l04, MMMO6] suitable branching strategies for SOS conditions in higher dimen-
sions are developed. We describe these strategies in Chapter 6 and improve them by adequate
preprocessing methods.

The generalized lambda method for the approximation of higher dimensional nonlinear functions
models these extended SOS conditions explicitly using additional binary variables [Wil98, LW01].
We again consider the n-dimensional function A, and introduce a binary variable 37 for each sim-
plex N7 € Y of the triangulation. Let Y = {1, ..., d} denote the indices of these binary variables.
The following mixed integer program yields the function value h approximated by the generalized
lambda method.

dxN=1
€A
W
JeY
X< )y forall ieA (3.16)

jE{leY] ieNt}

h(z) ~ ) h(a') X
€A
T = le A\
€A
X>0 forall ieA
y € {0,1} forall jeVY.

The second constraint guarantees that exactly one simplex of the triangulation is chosen to approxi-
mate the nonlinear function. Constraints (3.16) model the SOS Type £ condition. In Section 9.3
we study the polytope which results from the modeling of the SOS 3 condition.

Finally, we present the generalized delta method which is a bit more complicated [Wil98]. Re-
member that when considering the delta method for one dimension the filling condition requires
an ordering of the simplices. In the one-dimensional case such an ordering is automatically given
since the set of simplices Y consists of a sequence of segments. For the delta method in higher di-
mensions we have to generalize this filling condition, but there does not exist an obvious ordering
of the simplices. Therefore, [Wil98] makes the following assumption for the simplices Y of the
triangulation which is called the ordering assumption.



3.2. APPROXIMATION OF A HIGHER DIMENSIONAL FUNCTION 37

We assume that the simplices inY = {N?' ..., N} are ordered in such a way that N:"-1 N N7 # ()
holds fori = 2,...,d. Furthermore we require that for each simplex N%, we can label its k; + 1
vertices as v0, v}, ..., v¥ such that v/*7" = v holds fori = 2, ..., d.

Note that in the one-dimensional case this ordering assumption is automatically fulfilled. In that
case all simplices N* are segments with two vertices v? = 2 and v} = 21, where v} | = v) = 2!
holds for i = 2, ..., d. But in general a triangulation need not satisfy the ordering assumption.

Figure 3.4: Point in simplex given by N*

In the following we assume that the set of simplices Y of the triangulation of the domain D fulfill
the ordering assumption. Choosing a simplex N € Y, any point in this simplex can be written as

ks
v + U —v
J=1

where Zf’;l 62 < land 52 > 0, see Figure 3.4 for an illustration. We see that any point in the
z’th simplex, given by N, can be represented as the point v? plus a conical combination of the rays
vl — 0 withj =1,..., k;. Furthermore, the point v{ can be written as the point v?_, plus the ray
vfl 1 =), since vl 1" = v? holds because of the ordering assumption. Applying this iteratively,

v) is given by

Altogether any point in the ith simplex can be presented by v? plus the vectors from U? to U?_,’_l,
j=1,...,i— 1, plus a conical combination of the rays v/ — v?.
Using these ideas we can give the generalized formulation of the delta method [Wil98]. For x € D



38 CHAPTER 3. APPROXIMATION OF NONLINEAR FUNCTIONS

we receive an approximated function value for i(z) by

ki
Y sl<1 fori=1,....d
7=1
/>0 fori=1,....d;j=1,... ks,

where the §-variables have to satisfy the so called generalized filling condition [Wil98]:
Fori=1,...,d, j=1,... k; 63 can be positive only if 5?511 =1.

Iteratively we can conclude that a variable 62 can only be positive, if all variables 611‘2*11 equal one
for [ = 2,...,i. This means that a point in the ith simplex given by N¢ can only be considered if
all simplices N in the ordering before are used up completely. Notice that in dimension one the
generalized filling condition reduces to the filling condition for the one-dimensional delta method.
To model the generalized filling condition we have to introduce binary variables w; associated with
simplex N fori = 1,...,d — 1. The following constraints enforce this condition

w; <6 for i=1,...d—1.

If 55 is positive, the first constraint enforces the binary variable w;_; to one. With the second
constraint 5f511 = 1 follows. Applying this repeatedly, we see that all simplices before N are
used up.

[Wil98] shows the integrality of the polytope resulting from the LP-relaxation of the generalized
delta formulation. Further on, the corresponding polytope of the generalized lambda method has
extreme points with fractional components for the binary variables. Hence, the results of [Pad00]
also hold for the n-dimensional case. Moreover, [Wil98] presents computational results on ran-
domly generated instances where the sum of two-dimensional functions is to be maximized. These
results show the superiority of the delta over the lambda method.

In [MMMO6] the generalized delta and lambda method as well as the extended SOS approach
are compared in context of an MIP approach for the stationary case of gas network optimization.
Computational results for that application also show that the delta method provides better results
than the lambda method. But the SOS approach yields by far the best running times, and therefore,
no binary approach is competitive to it.



Chapter 4

Physical Characteristics of a Gas Network

In this chapter we gain insight into the physical and technical background of gas network opti-
mization. The problem of TTO contains two main topics including physical characteristics. On
the one hand there is the system of equations describing the transient processes in a pipe. On the
other hand compressors operate subject to complex technical properties.

In the following sections we will discuss these themes in more detail and introduce the most impor-
tant variables. A complete list of all variables - time and spatial dependent variables and constants
- is given in the last section of this chapter (see Tables 4.1 and 4.2). The physical and technical
descriptions are based on [Sek00, Sek01, RS01, Sek03].

4.1 GasDynamicsin Pipes

The gas transport in a pipe is described by a nonlinear system of partial differential equations
as well as the thermodynamic state equation of gas. For each pipe of the network, we obtain
four equations. At first we consider these equations, i.e., the continuity equation, the momentum
equation, the energy equation, and the state equation. After that we transform them, since we
want to use the variables gas pressure p and gas (volume) flow ¢ in our model. At last we present
suitable discretizations (in space and time) for the simplified equations, which we can integrate in
our model.

39



40 CHAPTER 4. PHYSICAL CHARACTERISTICS OF A GASNETWORK

4.1.1 The Continuity Equation

At first we consider the continuity equation [Sek00]

oM ap

o AT
where M is the mass flow of gas, p is the gas density, and A is the area of the cross-section of the
pipe. It states that the rate of change of the gas density in time corresponds to the mass flow out of
or into the pipe across its boundaries. For example, if the amount of gas entering the pipe is bigger
than the amount of gas leaving the pipe, then the density of the gas inside the pipe grows. If we
standardize the mass flow by means of the norm density

0, (4.1)

M = po q

we receive the (norm) gas flow ¢, a technical variable commonly used in gas transport [Sek00].
Therefore ¢ is the gas flow variable of our model.

4.1.2 TheMomentum Equation

The momentum equation describes the sum of all forces on the gas particles. For cylindrical pipes
it has the following form [Sek00, Sek03]
Op Oh  Aplv 10M d(pv?)

e Pt P A T o

Here the important variables p and v denote the pressure and the flow velocity of gas, respectively.
Moreover, g is the acceleration constant due to gravity, % is the slope of the pipe, A is the pipe
friction value, and D the diameter of the pipe.

Let us consider the terms of this equation. Obviously the first term is the pressure gradient. There-
after, we find the force of gravity which is influenced by the slope of the pipe. The third term gives
the friction force with the pipe wall. The friction factor X in this term depends on the diameter and
the roughness of the pipe. The following term signifies the change of flow rate in time. Finally, we
have the so called impact pressure. The most important factor which influences the pressure loss
is the friction force with the pipe wall.

= 0. (4.2)

4.1.3 TheEnergy Equation

The last partial differential equation is the energy equation [Sek00]

2 2

) )
W(pAds) = = | (pAdz) (e.T + % + gdh)} + 5 [(va dz) (e, T + %’ + % +gdh)] .



4.1. GASDYNAMICSIN PIPES 41

Here, W denominates the heat addition (per mass flow and time) from the soil to the gas, ¢, the
specific heat (at constant gas volume), and 7" the temperature of the gas. Besides the inner energy
of the gas, the energy equation deals with the heat exchange with the soil which is a very slow
process.

The first two equations (continuity and momentum equation) as well as the state equation of gas are
of prevailing significance for the simulation of most transient effects in pipeline networks. Since
the German pipes are at least one meter beneath the ground with nearly constant temperature, in
general (transient) simulation models do not take the energy equation into account (see for example
[Sek00, Zaw]). So we neglect the energy equation in this context and we assume the temperature
T to be constant.

4.1.4 The State Equation of Gas

Finally, there is the state equation [Sek00]

:POZOTO D
po 2T’

where the index ‘0’ stands for values under norm condition, and z is the compressibility factor (so
called z-factor) characterizing the non-ideal behavior of gas. Real gas deviates from the ideal gas
because of the interaction of molecules (clearly for ideal gas z = 1 holds). This z-factor depends
on the chemical composition of the gas as well as on pressure and temperature.
Since no exact theoretical determination of the z-factor exists, several empirical approximations
were developed. In our model we use the following formula from the American Gas Association
(AGA)

2p,T) =1+ 0.257p, — 0.533?—’“,
where p, = pﬂ and 7, = Tl are the relative pressure and temperature [Sek00] with pseudo-critical
pressure p. and pseudo-critical temperature 7. It yields a good approximation for pressure up to
70 bar which is a realistic assumption in our gas network.

4.1.5 Simplifi cation of the Equations

We want to bring the equations in the form needed for our model, where the variables used in
practice are introduced. As mentioned above, we omit the energy equation and assume a constant
temperature 7. In the following we set the state equation of gas in the remaining equations and
thus obtain a system of two partial differential equations.



42 CHAPTER 4. PHYSICAL CHARACTERISTICS OF A GASNETWORK

At first the state equation and the approximated z-factor can be simplified because of the constant
temperature

T
p:mz—) and z=2z(p) =1+ ap.
pol" 2

Notice that the pseudo-critical pressure p. and temperature 7. are also constants that o« < 0 and
hence 0 < z < 1.

We continue with the continuity equation (4.1). By introducing the mass flow M = p, ¢ and the
state equation we receive

dq 201y 0 D
% 2 —0. 4.
e TA DT B <z<p>) 0 “.3)

The momentum equation (4.2) requires a bit more work. At first we introduce M = pq ¢ and the
gas velocity v = %% and obtain (see [Sek01])

Op oh X pdladla  podq P50 (¢ _
9r o Tap Az , T Ao Aar\p) "

Insertion of the state equation yields

Op , poxTo Oh p A popoT lalgz(p) | po Oq | popeT O (¢*x(p)\ _

— 4y S + = 2+ — =0. (44)
ox pol Ox z(p) 2D A?zTy P A Ot AT, Ox P

Until now all pipes in the data which we used for our calculations are horizontal, hence the second
term of the equation vanishes.

The pipe friction value X is an important factor of the friction term. In principle it depends on the
diameter D and the roughness & of the pipe and on the Reynolds’ number

4 M

R.=——
mn D

indicating whether a flow is laminar or turbulent. Generally the gas flow we are considering is tur-
bulent. Unfortunately the friction factor X is given by an implicit formula from Prandtl-Colebrook

R (2.51+ k )
7 g10 RNVX 371D)°

But choosing an iterative method it can be calculated within a few iterations.

Now the two partial differential equations have the desired form in both the time and spatial de-
pendent variables p and q.



4.1. GASDYNAMICSIN PIPES 43

4.1.6 Discretization of the Equations

We conclude this section about gas dynamics in pipes by presenting discretizations for the con-
tinuity equation (4.3) and the momentum equation (4.4). Note that as we want to include these
discretizations into our mixed integer model, they must be as simple as possible. On the one hand,
we need equations which describe the transient processes in the pipes. On the other hand, we
cannot be as exact as necessary for simulation algorithms, since we want to optimize large gas
networks, see [ES03, ES05].

For the space discretization, we use a simple grid consisting of the beginning and the end of the
pipe, signified by ‘in” and ‘out’ (Note that if we have a very long pipe, we could subdivide it
and model it by several short pipes.). For the discretization in time, the planning horizon is di-
vided equidistantly to receive a time grid. In our case we consider hourly time steps. Following
[ESO3, ESO5], the two partial differential equations are discretized with implicit Euler schemes in
space and time. Let us begin with the continuity equation (4.3). Discretizing this equation in space
and time yields

pout(t) _ pout(t_At)

Qout (t) — qin(t) 2070 Zouw@®) — Z(pout((=A1)
A =0 4.5

where ¢;,(t) and ¢,.(t) denotes the flow at the beginning and the end of the pipe at time ¢, and L
is the length of the pipe. p,.(t) describes the pressure at the end node of the pipe at time ¢ and
Pout(t — At) at the previous time step. Thus, At stands for the length of the subdivision of the
planning horizon, which, as already mentioned, in our case is an hour. Note that the flow direction
in a pipe is specified and no back-flow is allowed.

Now we come to the momentum equation (4.4). We again discretize in space and time and obtain

pout(t> - pm(t) pOZOTO % pout(t> A /)OPOT qgut(t>z<pout(t))

L T T 02 2(pou(t) | 2D ATy poull)
@2 () zPout (1) 4, ()2(Pin (1))
-+ @CIout(t) — Gout (t B At) —+ pOpOT ) pout(t) t o pm(t) — 0 (4 6)
A At A220T0 L ’ .

where we follow the same notations as above. Hence, p;,(¢) denotes the pressure at the beginning
of the pipe at time ¢ and g, (t — At) signifies the flow at the end of the pipe at the previous time
step. As we assume no back-flow in a pipe, we can neglect the absolute value of the flow variable
in the third term of the equation.

Note that these are coarse discretizations for the partial differential equations. In [Kol] these dis-
cretizations are evaluated via numerical simulation. The computational results therein show that
these simple discretizations are sufficient for our optimization model. Notice that we cannot inte-
grate these discretizations in our model directly. Recall that we want to formulate the gas network
optimization problem as a mixed integer program, thus we can only accept linear constraints. If
we look at equations (4.5) and (4.6), we see that they contain several nonlinear terms. In Chapter 5
we consider how to handle these nonlinearities. We develop appropriate approximations to receive
linear conditions describing the transient processes in pipes.



44 CHAPTER 4. PHYSICAL CHARACTERISTICS OF A GASNETWORK

4.2 Compressors

In this section we concentrate on the technical and physical scenario of a compressor. We model a
special kind of compressor, the so called turbocompressor, driven by a gas turbine. It is the most
commonly used machine in the network of the E.ON Ruhrgas AG.

At first, we describe the technical function in detail. As we will see, the operation of a compressor
is quite complex and involves a lot of technical and physical variables. To have a clear structure
we neglect mechanical losses. Moreover most of the variables are given by empirical data tables.
Therefore, simplifications are necessary and we obtain an idealized compressor which we include
in our model, see [Sek01, RSO1].

Each compressor has a favorable working point, a so called design point, and it can operate in
the neighborhood of this point. This neighborhood is often described by a characteristic diagram.
The characteristic diagram of a turbocompressor comprises the parameters flowrate @, head H 4,
revolutions (or speed) n, and adiabatic efficiency 7,4. The flowrate is given by means of the gas
flow ¢ with

1p0Enzin

=3.6"
Q pznTO

Y

where the index ‘in’ signifies the input of the compressor. The value of the head

<pout) o - 1] (47)
Pin

can be interpreted as the (fictive) height, on which the gas have to be pumped, to attain the same
power. Here « is the isentropic exponent, R is the universal gas constant, and m is the molecular
weight of gas. The index ‘out’ stands for the output of the compressor. Naturally, H,,; depends on
the pressures at the input and output of the compressor, more precisely on the pressure quotient.
The adiabatic efficiency 7,4 is a quotient

R ZanT‘zn
k—1 gm

Ngas
= —22 4.8
Nad Novnt (4.8)
of the power
N, as — LPO q Had (49)
g 3600 ’

which is necessary to compress the gas, and the power N, Which has to be generated by the
drive unit (here the gas turbine), see below.

Each (permissible) working point of a turbocompressor is specified by a measured (or extrapolated)
quadruple of this four parameters. The empirical data (measured points) can be found in tables of



4.2. COMPRESSORS 45

the following shape

Ty N9 [ n;
m (Haar1, Q1) (Hagr2, @Qi2) - oo (Hagrj, Q1)
Up) (Had2,17 QQ,I) (Had2,27 QZ,Q) e e (HadZ,jv Q?,j)
i (Hadi,lv Qi,l) (Hadi,Qv Qi,Z) e e (Hadi,jv Qi,j)‘

Hence, for each pair of efficiency 7,4 and revolutions n, we obtain different values for the head and
the flowrate. Using the formulas of H,; and ¢ we receive the connection to the variables pressure
p and gas flow ¢ in our model.

The permissible working range is limited by four curves: the maximum and minimum revolutions
(or speed), the surge limit, and the choke line. While the compressor is destroyed by operation
beyond max./min. speed or surge limit, the choke line can be exceeded. But such an exceeding
should be avoided because of very poor efficiency.

Now we consider the operation mode of the gas turbine which has to generate the shaft power
Neoupi at the coupler. The gas turbine also possesses a characteristic diagram defined by (amongst
others) the parameters shaft speed n,,.;,, power at the coupler N, drive power N, air flow,
and compressor inlet temperature 7". The manufacturer of the turbines delivers several diagrams in
the coordinates shaft speed n4,;,,, POWer N, and specific fuel consumption b (sometimes also
air flow) for varying compressor inlet temperatures. These diagrams are of the form

N1 N2 Nj

bl bg bj

s N9 n;
Tl Nll N1,2 Nlj
T2 N21 N2,2 N2j
T, | Noi Nio ... Nij.

Here for (discrete) values of the shaft power N, the (specific) fuel consumption and the shaft
speed can be found. The dependence on the inlet temperature is given by the second part of the
diagram, where the interrelationship of the three parameters inlet temperature, shaft power, and
speed are shown.

The specific fuel consumption is the ratio of input to output power

- Ndriv - 1

b
Ncoupl Ndriv
and equals the reciprocal of the turbines efficiency.
We are interested in the hourly fuel consumption f which can be calculated by the formula
Ndriv Ncoupl b

f= 1000H, _ 1000H,, (4.10)




46 CHAPTER 4. PHYSICAL CHARACTERISTICS OF A GASNETWORK

where the constant H,, is the net calorific value of the gas.

As mentioned above, we use an idealized form of the turbocompressor which we include in our
model. Based on empirical data, approximated mean values for the adiabatic efficiency 7,, and the
specific fuel consumption b can be calculated. Furthermore, we incorporate fixed limiting values
Npin and N, for the shaft power. All other parameters and limits are not taken into account.

So we obtain constant values for 1,4 and b as well as constant bounds for V., in the equations
(4.7) till (4.10). By combination of these formulars we can reduce the number of equations. We
receive equation (4.10) and the nonlinear equation

k—1
bp()ZanT‘Zn K Pout o
_ 1 4.11
f 36 - 10°mH n.q Kk — 1 [( Din I @1

for the fuel gas consumption including the model variables pressures at the beginning p;, and at
the end p,.; of the compressor as well as gas flow ¢ through it. We include this nonlinear function
f = f(Pin, Pout, q) in our MIP using an adequate linearization, see Chapter 5.

Finally let us remark that this nonlinear function f(p;,, pout,q) IS Neither convex nor concave.
For constant flow ¢ and ingoing pressure p;,, the function is concave. Assuming constant flow and
outgoing pressure it is convex. This is an important fact, since fuel consumption of the compressors
is an essential part of the objective function. Figure 4.1 shows this function for constant flow q.

70
40 60

50 50 pin
pout 60 70

Figure 4.1: Function for fuel gas consumption with constant flow



4.3. VARIABLESAND CONSTANTS 47

4.3 Variablesand Constants

We conclude this chapter with a list of all dependent variables and constants appearing in the de-
scription of the physical characteristics in a gas network. At first we table the dependent variables.
There are variables dependent on time and space as well as variables dependent just on space or
time. The letter = (unit m) denotes the space and ¢ (unit s) indicates the time. Note that because of
simplifications some variables become independent (e.g. T, 144)-

Table 4.1: Variables in the physical description

q=q(z,t) gas flow [m3s™1]
p = p(z,t) pressure of gas [Pal
p=p(z,t) gas density (kg m™3]
v=uv(z,t) flow velocity of gas [m s71]
M = M(z,t) mass flow of gas (kg s
A=Az, 1) friction coefficient of pipe 1]

T =T(x,t) gas temperature (K]

z = z(z,t) compressibility factor (z-factor) 1]

pr = pr(,t) relative pressure of gas 1]

T, =T, (x,t) relative temperature of gas [1]

R. = R.(z,t) Reynolds number 1]

A= A(x) cross section of pipe [m?]

h = h(z) height of pipe [m]

W =Wi(t) heat addition to gas [kJ kg=ts™!
Q=Q() flowrate [m3s™1]
Huq = Huy(t) adiabatic head [m]

n = n(t) revolutions/speed of compressor [min~!]
Nad = Nad(t) adiabatic efficiency of compressor 1]

Tin = Tin(t) gas temperature at input of compressor  [K]

Zin = Zin(t) z-factor at input of compressor 1]

Din = Pin(t) gas pressure at input of compressor [bar]
Pout = Pout(t) gas pressure at output of compressor [bar]
Nyas = Nyas(t) (theoretical) power of compressor (kW]
Ncoupl = Ncoupl<t) shaft power [kW]
Nariv = Napin(t) drive power of turbine (kW]
Nariv = Nariv(t) shaft speed of turbine [min=!]
b=0b(t) specific fuel consumption 1]

Nriv = Neriv (1) adiabatic efficiency of turbine [1]
f=f@ fuel gas consumption of compressor (m3h=1]




48 CHAPTER 4. PHYSICAL CHARACTERISTICS OF A GASNETWORK

In the following, we compile the list of general physical constants as well as gas and pipe constants.

Table 4.2: Physical, gas, and pipe constants

g acceleration of gravity [m s~

D diameter of pipe [m)]

L length of pipe [m]

Cy specific heat kJ kg~ 'K
00 norm density (kg m™=3]

20 norm compressibility factor [1]

To norm temperature (K]

Do norm pressure [bar]

Pe pseudo-critical pressure [bar]

T. pseudo-critical temperature  [K]

n dynamic viscosity of gas (kg m=ts™!]

k roughness of pipe [m]

K isentropic exponent 1]

R universal gas constant [kJ kmol ' K1
m molecular weight of gas (kg kmol™1]
H, net calorific value of gas (kW m™3]

Finally, we give the physical units used in the description and the units of the variables assumed in
our implementation.

Table 4.3: Units of physical variables and of variables used in program

physical | unit used
unit in program
pressure variable p | [Pal [bar]
flow variable ¢ [m?3/s] | [1000m?/h]
length L of pipe [m] [km)]




Chapter 5

The Modd

The problem of TTO is to optimize the gas flow in the network such that the demands of the
consumers are fulfilled and the fuel gas consumption and switching costs of compressors are min-
imized.

In this chapter we model this problem as a mixed integer program. We introduce the elements of
a gas network and give a mathematical formulation of their properties. Besides trivial inequalities
like bounds for the diverse variables, we put emphasis on combinatorial constraints including so
called switching variables on the one hand. On the other hand, we have to model nonlinear com-
ponents resulting from fuel gas consumption of compressors and gas dynamics in pipes. These
nonlinearities are approximated by piece-wise linear functions. As these approximations play a
decisive role, the basic ideas can be found in Chapter 3.

In the following we present the graph structure of a gas network and we introduce the variables of
the model. Then we concentrate on time-independent constraints, i.e., constraints that also appear
in the stationary case, describing the components of a gas network. After this we consider the
discretized equations resulting from gas dynamics in pipes and show our linearizing ideas. Be-
sides, further time-dependent conditions are needed concerning switching modes of compressors
and states of the gas network. Finally we specify the objective function.

5.1 Graph Structureand Variables

A gas network basically consists of pipes, compressors and valves. Moreover there are gas deliv-
ering points and consumers. A gas network can be modeled via a directed graph G = (V, E) as
follows. The set of edges, in this contest also called segments, can be divided into the set Fp of
pipes, the set E- of compressors, and the set Ey of valves. Further on, we have special kinds of
valves Er C Ey, so called control valves, having the additional property to reduce gas pressure.

49



50 CHAPTER 5. THE MODEL

Connections, a subset of the pipes £4 C Ep, can be viewed as short pipes without pressure loss.
The set of nodes V' consists of the set of sources (gas suppliers) S C V/, the set of sinks (con-
sumers) U C V, and innodes (intersection of points of segments). We assume the graph to be
directed since we do not allow back-flow in pipes.

Now let us come to the variables of the model. The most important variables are gas flow and
pressure variables, fuel gas of compressors and decision variables for the controllable elements.
For each segment except the pipes we obtain one flow variable describing the gas volume flow in
it. Whereas for each pipe there are two flow variables signifying the flow at the beginning and at
the end of a pipe. In our model pressure is a nodal variable. Then there is a fuel gas variable for
each compressor reflecting the fuel gas consumption of the machine. Finally, the decision variables
indicate if a compressor or a valve is on or off.

Let 7" € N denote the number of time periods (in our case hours), into which the planning horizon
is divided. All variables receive a time index ¢ for each time stept € T := {1,...,T}. In the
following, we specify all variables of the model where we begin with continuous variables and end
with the binary ones.

Table 5.1: Variables of the model

q gas flow in compressor, valve or connection e € Ec U Ey U Ey
Qe gas flow at the beginning of the pipe e=vw € Ep\ Ex
Qb gas flow at the end of the pipe e=vw € Ep\ Ex
P gas pressure in node veV

q gas delivered from source vesS

q gas consumed at sink velU

It fuel gas of compressor e € Fo

N! power of compressor e € Ec

Pl bl auxiliary variables for compressor e=wvw € Ec

st €{0,1} switching variable of compressor or valve ee€ EcUEy

Stup € 10,1} start-up variable of compressor e€ Ec

St down € 10,1} shut-down variable of compressor e€ B¢

Note that all continuous variables are nonnegative and due to technical constraints they all have
constant upper and lower bounds.

Concluding this section, we list constants of the model. They are all positive.



5.2. THE COMPONENTS OF A GAS NETWORK o1

Table 5.2: Constants of the model

qmin minimal gas flow in pipe, compressor or valve e€ EpUFEsUEy
qrer maximal gas flow in pipe, compressor or valve e€ EpUFEsUEy
prmin minimal gas pressure in node veV

pres maximal gas pressure in node veV

q{}}g" minimal gas flow delivered from source ve S, teT

qpi maximal gas flow delivered from source veS teT

q{}}f" minimal gas flow consumed at sink veU, teT

qyi maximal gas flow consumed at sink veU teT

M,, M, constants for valve ec Ey

dp*®  maximal pressure difference for bypass valve e € By \ Er
dp?*®  maximal pressure reduction of control valve e € Er

dp™™  minimal pressure reduction of control valve e € Er

N maximal power of compressor e € Ee

N minimal power of compressor e € Ec

fimaw maximal fuel gas of compressor e€ Eex

Clop start-up cost for compressor intime stept € T \ {1} ec Ec

C! own  Shut-down cost for compressor intimestept € T\ {1} e € E¢

5.2 The Componentsof a Gas Network

In this section we consider the principal components of a gas transmission system. We describe the
properties of the particular elements and show how we integrate them in our model, whereby we
restrict to the time-independent inequalities that is the constraints that occur also in the stationary
case of gas network optimization.

In principal there are three kinds of constraints: combinatorial constraints including switching
variables, linearization constraints for the fuel gas consumption, and simply bounds for the vari-
ables. We only give a brief overview since the stationary case was discussed in detail by [M3104].
Now we concentrate on function and modeling of the specific network components. Naturally, the
following conditions must be considered for each time step ¢t € T of the planning horizon.

5.2.1 Propertiesof aPipe

Obviously, the most common segment of a transmission system is a pipe. For example the length
of the pipes in the network driven by the German E.ON Ruhrgas AG is about 10.000 kilometers
[RA].

For the stationary description of a pipe only few conditions are needed. The most important pipe
constraints arise because of the physical characteristics continuity and momentum which have



52 CHAPTER 5. THE MODEL

effect on gas flow and pressure. We will focus our attention on these time-dependent properties in
Section 5.3.
So we just have to take flow bounds into account. Hence we receive

min

" < ey Qe < 40, (5.1)

where e = vw € Ep \ Ea.

5.2.2 Propertiesof a Connection

For a connection, gas dynamics can be neglected. Thus it is a transport element with constant flow
and without pressure loss in it.
For a connection e = vw € F 4, this property is modeled by the simple equation

Py = Dl (5.2)
Further on, we just have to pay attention to bounds of the gas flow

gt < gt < g (5.3)

5.2.3 Propertiesof aValve

A valve is a controllable element of the gas network. It can be open or closed so it can be controlled
whether there is gas flow or not. This effect is modeled via a switching variable s € {0,1},
e € By \ Egr. Beyond we assume that there is no pressure loss regarding an open valve (except
control valves, see next subsection).

A valve can be placed anywhere in a transmission system. Mainly it can be found in connection
with a compressor. If a compressor is shut down the gas needs an alternative way to flow. For
this reason a valve is built-in parallel to a compressor, a so called bypass valve. Below we will see
that there is a difference between the constraints of an ordinary and a bypass valve. The technical
symbol of a valve is shown in Figure 5.1.

—Ni

Figure 5.1: Symbol of a valve

Both types of valves have bounds for the gas flow ¢!, ¢ € Ey \ E. These flow bounds are affected
by the switching variable s’ since there cannot be any flow if a valve is closed, so we obtain

q;”insé < qé < qg’"”‘””ste. (5.4)



5.2. THE COMPONENTS OF A GAS NETWORK 53

Now we have to distinguish between valves and bypass valves.
For an ordinary valve we want constraints which assure that the pressure in the incident nodes
is equal if the valve is open and that the corresponding pressures can be arbitrary if the valve is
closed. So for e = vw € Ey \ Ex We receive two inequalities

M, st —p' +p!, <M, and M, st +p' —p!, < M,, (5.5)

whereby 1M, and M, are appropriate constants depending on pressure bounds of the nodes.
Considering a bypass valve we have similar constraints

dp* st — pl, + pl, < dp*® and  pl, —pl, <0, (5.6)
whereas dp*** signifies the maximal pressure difference between beginning and end node. If the
bypass valve is open these inequalities ensure equality of pressure in the nodes. If the valve is
closed, the compressor must work. If so the second inequality yields a pressure increase which is
limited by the first inequality because of technical conditions.
It is clear that further constraints modeling the combination of a compressor and its bypass valve
are required. They are outlined in the subsection of compressor properties.

5.2.4 Propertiesof a Control Valve

A control valve is a special kind of valve. It has the additional property that it reduces the pressure.
Such a regulator is often installed before a consumer because the distribution company has to meet
stringent pressure conditions. Notice that a control valve is never used as a bypass for a compressor.
Figure 5.2 shows its technical symbol.

Figure 5.2: Symbol of a control valve

Like for a valve the gas flow in a control valve e € E has operating dependent bounds
g se < q. < g s (5.7)

In contrast to a valve there is device-controlled pressure drop instead of pressure equality in the
adjacent nodes of an opened control valve. So we make minor modifications in inequalities (5.5)
and obtain

(M, + dp™)st — pt +pt, < M, and (M, — dp™™)st + p! — pl, < M, (5.8)

€ €

for e = vw € Ex with technical bounds dp™™, dpme*.

e



54 CHAPTER 5. THE MODEL

Figure 5.3: A compressor and its bypass valve

5.2.5 Propertiesof a Compressor

Now we discuss the model of a compressor. A compressor compensates for the pressure loss in
pipes. It is driven by a gas turbine therefore some fraction of gas flowing through it is lost during
compression process. For the precise physical background we refer to Section 4.2. Remember that
fuel gas consumption is one of the main cost in the objective function.

Clearly, compressors operate subject to a fairly complex system of constraints. For this reason
we divide the constraints into two parts. First we regard some basic inequalities. Thereafter we
concentrate on the nonlinear function describing the fuel gas consumption of a compressor.

Just as a valve, a compressor ¢ € E¢ has a switching variables s’ indicating if a compressor is on
or off. At first there are bounds for the gas flow through a compressor

grtst < b < gst. (5.9)

After that we consider a compressor in connection with its bypass valve. Figure 5.3 is a sketch of
this situation. Let Stv(e) be the switching variable of the respective bypass valve v(e) € Ey \ Eg.
The next constraint is of combinatorial nature

SZ + 52(6) = 1 (510)

It states that either the compressor is on or the valve is open.

At last we focus on basic inequalities including fuel gas ! and power N’ of a compressor. These
two variables are coupled since the fuel gas consumption of a compressor depends on its power.
So we receive a coupling constraint

Nyt _ 1000H, .,

e be e’

whereby the constant H,, stands for (net) calorific value of gas and the constant b, for specific fuel
consumption of the gas turbine (see also equation (4.10)).

Due to technical requirements the power of a compressor is bounded by maximal and minimal
power rate, N™* and N/, resulting in

N! < N™@gt and  N! > N™ngt, (5.12)

e

(5.11)

Finally we add the inequality
ft fmax t (513)



5.2. THE COMPONENTS OF A GAS NETWORK 55

with a theoretical calculated constant f!"** to bound the fuel gas even though an indirect bound is
given by equation (5.11). We observed that this additional constraint accelerates running time (see
[M6104]).
Now we investigate the more extensive constraints approximating the fuel consumption f:. For a
better understanding we neglect the time index ¢ in the following. As we worked out in Section
4.2 fuel gas of a compressor e = vw € E¢ is given by a nonlinear function. It depends on the
flow ¢, through the compressors, on the pressure p, at the beginning of the compressor and on the
pressure p,, that is generated by it. We approximate this function f. = f.(qe, p,, pw) (S€€ EqUAation
(4.11)) by piece-wise linearization, the idea is as follows (see also Chapter 3).
We decompose the domain [¢7", g™*] x [pmin pmar] x [pmn pmee] of the function f, =
fe(Ge, Pv,s Pw) In tetrahedra that is we determine a grid with three-dimensional grid points
(qt,p%,pt,). Then we linearize the function within each tetrahedron by means of convex com-
bination. Finally, we ensure that during optimization exactly one tetrahedron can be chosen in
order to linearize f..
The implementation of this idea is done in the following way.
We associate a weighting A\’ € [0, 1] with each grid point (¢%, p, p,). Let A. define the set of
indices of grid points and Y, the set of indices of all tetrahedra for compressor e = vw. For each
grid point 7 € A., we calculate the exact value of the nonlinear function f! = f.(q’, p, p’,).
We linearize f. by convex combination of grid points therefore we utilize the A-variables. We have
to assure that the positive A-variables belong to vertices of exactly one tetrahedron j € Y,. This
is modeled by the so called SOS Type 4 condition (see [MMMO06] and Chapter 3). Let us denote
by N7 the indices of A-variables associated with the vertices of tetrahedron j € Y,. We say that
a vector \, € R*¢ satisfies the SOS Type 4 condition if there exists some index j € Y. such that
{i € A, | X! > 0} C N’. We incorporate this condition implicitly in our branch-and-cut algorithm
(see Section 6.2) and do not explicitly model it via additional binary variables.
Having introduced the variables we just write down the linearizing constraints.
At first we have the equation

> N =s., (5.14)

i€
since the approximated function value is given by convex combination of grid point values if the
compressor is operated.
In the following two constraints we describe pressures at the beginning and the end of the com-
pressor as convex combinations of grid points. Here we have to take into account that pressure
variables are node dependent, that is, p,, and p,, can be positive even if the compressor is off (Re-
member that in this case there is pressure equality in the adjacent nodes because of the opened
bypass valve). For this reason we introduce nonnegative auxiliary variables p’gﬂ, and p’g’w and add
appropriate bound constraints. Altogether we receive

po=>_ P A +pl, and preT (s, — 1) +pl, <0, (5.15)
€A,
Pu= Y Py N+l and  pl** (s, — 1) +pl, <0, (5.16)

€A,



56 CHAPTER 5. THE MODEL

where p'** and p;'** are upper bounds for the respective pressure.
At last convex combinations according to gas flow ¢. and fuel gas consumption f, have to be
considered yielding

=Y g N and f.= fiA (5.17)

1€, 1€,

5.2.6 Propertiesof Nodes

As aforementioned there are three kinds of nodes: sources, sinks, and innodes. At a source the
transmission system is supplied with gas. The gas is taken from the consumers at sinks. As the
name implies innodes can be found inside the network connecting different segments.

For the modeling of a node just one constraint is required. In each node the first law of Kirchhoff
must hold. This physical law ensures flow balance in a node meaning that the sum of ingoing gas
flows must be equal the sum of outgoing gas flows. For formalizing this consider a node v € V.
Let 51 (v) be the set of outgoing segments of node v and let 5~ (v) be the set of ingoing segments.
We obtain

> ¢+ > Qo = > q + > ¢, (5.18)

e€dt (V\(Ep\E4) e€st (v)N(Ep\Ea) e€s~ (vV)\(Ep\Ea) e€~ (V)N(Ep\E4)

- >

ecé~ (v)NEc

In this equation we have to differentiate between pipes and remaining segments. There exist two
flow variables for pipes depending on space, since in opposition to all other types of segments the
gas flow is not modeled constant in the whole pipe. So it becomes clear that we choose ¢/, for a
pipe. Note that also the fuel gas consumption must be regarded in this equation. It is subtracted
from the gas flow in the end node of the compressor.

To be strict the flow variable ¢ of anode v € SUU should be integrated in this equation involving
a case differentiation which we did not for transpary reasons.

Besides these equations we have lower and upper bounds for the pressure in a node v € V' yielding

Py < pl < piret (5.19)

These pressure bounds arise because of technical constraints.
Finally, in case of a sink or a source v € .S U U, we also receive bounds for the gas flow

ay" < gl < g (5.20)

These flow bounds in principal depend on consumer needs and delivery contracts for the respective
sources.



5.3. LINEARIZATION OF THE DISCRETIZED PARTIAL DIFFERENTIAL EQUATIONS 57

5.3 Linearization of the discretized Partial Differential Equa-
tions

In this section we show how we integrate the discretized partial differential equations in our model.
There are the continuity and the momentum equation which describe the gas flow in a pipe. Re-
member that they contain nonlinear terms. As we want a mixed integer program we have to lin-
earize them in an adequate manner. Here we follow the same idea as in the case of the fuel gas
consumption of a compressor (see also Chapter 3).

We begin with the discretized continuity equation. Let e = vw € Ep \ E 4 be a pipe, then equation
(4.5) must be considered for each time step t € T \ {1}. We adapt the notation to this chapter and
switch from the physical units to the units that we use in our program (see Table 4.3), where At
corresponds to one hour. So we obtain

t t t t—1

ew  Yew 201 w w

Lo q’+A°°(pt_pt_1):O,
L pOT Z(pw) Z(pw )

where z(p) = 1+ 0.2572 — 0.533- % = p. This equation consists of two linear terms that depend
on flow and of two nonlinear terms |n pressure variables. Note that the two nonlinear terms are
one-dimensional and they have the same structure as they differ just in the time step. Therefore we
introduce | T | one-dimensional functions of the form

2010 p
poT 2(p)’

which depend on the pressure at the end of the pipe in time step ¢. This function conti(p) is defined
on an interval given by the pressure bounds p™" and p™* in the end node of the considered pipe.
For a better understanding we neglect the pipe index e and the time index ¢. The linearizing idea
of this one-dimensional function is quite easy (see also Chapter 3). We decompose the interval
[p™i, p™a] in parts. So we obtain a set of grid points p?, i € A.... We calculate the exact
function value conti(p®) in each grid point i € A.,.;;. Now we want to approximate conti(p) by
the piece-wise linear function that is indicated in Figure 5.4. Hence we introduce a variable \* for
each grid point and write down the linearizing equations.

(5.21)

conti(p) =

> ox=1 (5.22)
Z'eAconzﬁi
conti(p) ~ Z conti(p) \' (5.23)
2-EAconti
p= >, pN (5.24)
Z'eAconzﬁi

)\i 2 0 1 € Aconti



58 CHAPTER 5. THE MODEL

Figure 5.4: Piece-wise linearized one-dimensional function

Observe that the additional condition is needed that at most two A-variables are positive and if
so they must be consecutive. This is called SOS Type 2 condition and equation (5.22) is an SOS
Type 2 constraint (see also Section 3.1). This SOS Type 2 condition is modeled implicitly in our
branch-and-cut algorithm, see Section 6.2.

We linearize all | T | conti-functions that occur in the continuity equations for one pipe in this way.
Finally, we can write the continuity equations of pipe e = vw in the linear form

t t
ey — Gew

7 + conti(pt,) — conti(pl; 1) =0

fort € T\ {1}.
Note that considering all pipes we receive altogether (|Ep \ E4|-| T |) one-dimensional functions
that have to be linearized.

Now we consider the discretized momentum equation. Again we take a pipe e = vw € Ep \ E4
and regard equation (4.6) for each time step ¢ € T \ {1}. In our case all pipes are horizontal thus
we can neglect the second summand since % = (. Adapting the notation and switching to the
units in our program yield

P A popoT (@) 2(Ph)  po
362 103 22 4 103 — -
L + 5D A2, o + 1 (e @)
(¢w)? 2(Ph)  (ab.)* 2(0h)
+ pOPOT pt, P, -0
A220T0 L ’

The first and the third summand of this equation are linear. So there remain two nonlinear sum-
mands in this equation. Note that we can combine them in the following way

36% 10° Lo P2 L : if(q;y —4)
(o 1) T G )T (i

2D L) A%2xT, P, A2 THL ,




5.3. LINEARIZATION OF THE DISCRETIZED PARTIAL DIFFERENTIAL EQUATIONS 59

There are two nonlinear terms of dimension two in this equation which have to be approximated.
For the first term we introduce | T | — 1 two-dimensional functions of the form

- A 1Y popeT ¢ 2(p)
o 3
fmctwn(p, q) = <1O + _) A22,T, p

5.25
2D L (5.25)

which depend on pressure and flow at the end of the pipe in time step ¢. We call this function
“friction’ as it mainly represents the friction force of the gas with the pipe walls. It is defined on a
rectangle given by the pressure bounds p™™ and p™2® at the end of the pipe and the flow bounds
g™ and ¢™** of the pipe.

Analogously, we handle the second nonlinear term. Therefore we need | T | — 1 two-dimensional
functions of the form

) T ¢z
impact(p, q) = A’ZOZI; ;0 7 a p(p ) (5.26)

which in contrast depend on pressure and flow at the beginning of the pipe in time step ¢. Here,
we use the name ‘impact’ as the impact pressure in the pipe is described by it. The domain of this
function is again a rectangle given by pressure and flow bounds.

Notice that these two functions have the same structure. They only vary in a constant factor and
in the space. And as pressure and flow bounds of most pipes do not differ between beginning and
end of the segment, the domains of these functions are equal.

2000 i

000

=)

40

60

3000
B0 1000 2000

Figure 5.5: Approximation of the friction-function

We illustrate the linearization of such a two-dimensional function by means of the friction-term,
where we neglect pipe and time indices. The method is the same as in the one- and three-
dimensional case, see also Section 3.2. First we decompose the domain [p™", p™a*] x [¢™" g™*]



60 CHAPTER 5. THE MODEL

in triangles, this defines a two-dimensional grid. Then we linearize the function within each trian-
gle, namely we obtain an approximated function value if we take the convex combination of the
exact function values in the vertices of the triangle, see Figure 5.5. Let us translate the idea in the
mathematical language. For each grid point (p*, ¢*), ¢ € A triction, We calculate the exact function
value friction(p’,¢'). Then we introduce a variable A’ for each grid point i € Ajf,cion. These
A-variables are necessary for the representation of the convex combination. Now we can write
down the formulation.

> oN=1 (5.27)
iEAfr'iction
friction(p, q) =~ Z friction(p’, q") \' (5.28)
ieAf’r'iction
p= Y. PN (5.29)
iEAfr'iction
g= > N (5.30)
iEAfr'iction

)\i Z 0 7€ Afrz'ction

The second equation yields an approximated value for the friction-function. For the \-variables
the SOS Type 3 condition must be fulfilled, i.e., at most three \’s can be positive and these positive
variables must belong to one triangle. As in the case of the fuel function of a compressor and
the conti-function of a pipe this condition is implicitly incorporated in our solution algorithm.
Equation (5.27) is an SOS Type 3 constraint.

Approximating all friction- and impact-functions of a pipe that way, we obtain a piece-wise
linearized momentum equation

t t
Py —D Po _
362 103 w v PO/t ot 1
—7 t (Tew = Ten)
+friction(p},, ¢c.,,) — impact(p,, q..,) = 0 (5.31)

for pipe e = vw ineach timestept € T \ {1}.
Observe that altogether we receive (2-|Ep \ E4|- (] T | — 1)) two-dimensional functions that must
be considered in case of the momentum equation.

5.4 Further Transient Conditions

Besides the discretizations of the partial differential equations we have some other kinds of coup-
ling constraints in the transient model.
First we have to adhere to minimum runtime and downtime for a compressor. Then we need



54. FURTHER TRANSIENT CONDITIONS 61

conditions for modeling the switching process of compressors for integrating start-up costs and
shut-down costs. These two kinds of constraints are not integrated directly in our model, instead
they are included by means of a separation algorithm within the scope of our branch-and-cut algo-
rithm, see Chapter 8 for a thorough investigation.

Then there are constraints concerning the network. Here, we need an initial state for the gas net-
work based upon which optimization for the succeeding time steps is made. Sometimes, we have
to respect fixations of a controllable segment for certain time steps. Finally a terminal constraint is
required for the overall gas volume in the network.

541 Minimum Runtime and Downtime

Because of technical conditions a compressor can just be switched on after a certain minimum
downtime. Similarly it may only be set into operation if a specified minimum runtime can be
complied. These conditions can also be found for machines in other technical fields as for example
power production or regenerative energy and are modeled via the following constraints (see for
example [Sek00, NNR*00, GNRS00, TKW00, HNNS04]).

As already mentioned there are switching variables s’ for each time step ¢ € T and for each
compressor e € Eo. Let L.,l. € N denote the minimum runtime and downtime. Then the
minimum runtime of compressor e is modeled by the inequalities

for t+1<j<min{t+L.—1,T}, (5.32)

where ¢ € T\ {1,T'}. They assure that if the compressor is switched on, it must be operated at least
L. time steps (in our case hours) or at least until the end of the considered time horizon. Likewise
the constraints

st o5t <1 —-4f for ¢+1<j<min{t+I. —1,T}, (5.33)

where t € T \ {1, 7'} yield the minimum downtime of compressor e.
In [LLMO4] a complete linear description of the polytope defined by these inequalities can be
found as well as a separation algorithm is developed with running time O(T).

5.4.2 Switching Processes

Switching a compressor on or off involves costs. Obviously these costs occur in the objective
function and variables and constraints are needed for modeling the switching processes. Notice that
such costs must also be considered in other practical applications, see [Sek00, NNR ™00, GNRS0O0,
AC00, HNNSO04].

For modeling start-up costs of compressor e we need variables st fort € T \ {1}, where s

e7up e7up



62 CHAPTER 5. THE MODEL

is 1 if and only if machine e is switched on in time period ¢. Similarly there are variables s ;,,,,.

t € T\ {1}, indicating if compressor e is shut down in period ¢. The following conditions ensure
the properties of these variables

st— st = st A SE goun = 0 for te T\ {1} (5.34)
Stup + 5o down < 1 for te T\ {1} (5.35)

see also [Sek00, AC00]. If compressor e is switched on in period ¢, i.e., st = 1 and s:~! = 0,
then (5.34) yields s, = 1 and s/ ,,,,,, = 0 since the variables in these equations are binary. Con-
versely, we receive s, ;,,,, = 1and s, = 0 if the compressor switches from up in time step ¢ — 1
to down in step ¢, i.e., st = 0 and s{~! = 1. Inequalities (5.35) are needed if the running state of
the machine does not change, i.e., s’ = st=1. In that case, (5.34) results in the equality of s;up
and s! 4,,,,, and thus (5.35) forces them to be zero. Note that these inequalities can be neglected if
start-up and shut-down costs are positive and we consider a minimization problem.

These constraints and the constraints of the previous subsection do not explicitly appear in our
model. In [Mar05] the polytope given by the inequalities (5.32) to (5.35) is investigated and a
complete linear description is presented. Moreover a separation algorithm is specified having run-
ning time O(T") for using these facet-defining inequalities in a branch-and-cut framework. The
benefits of this separation algorithm instead of the explicit consideration of the conditions is ana-
lyzed by means of the example of transient gas network optimization. Therefore we integrate this
separation procedure in our branch-and-cut algorithm to fulfill the runtime and switching condi-

tions. In Chapter 8 we give an overview of [Mar05] and comment on the main results.

5.4.3 Initial State

For time-dependent gas network optimization, an initial state of the gas network is required from
which the optimization process starts. Such an initial state gives a complete description of the gas
network at the beginning of the planning horizon. Hence, it is defined by values of all flow and
pressure variables for ¢ = 1.

So we need concrete values of the following variables.

g fore € Ec U Ey U E,
qg,m‘];,w fore =vw € EP\EA
ik forv eV

q, forv e SUU

Obviously, the settings of these variables must comply the properties of the elements of the gas
network. Thus they have to fulfill the constraints that also occur in the stationary case which are
described in Section 5.2.



54. FURTHER TRANSIENT CONDITIONS 63

Note that by means of these flow and pressure values the remaining variables of time step ¢ = 1
can be calculated. These are the fuel gas and the power of the compressors as well as the switching
variables of valves and compressors, see Table 5.1.

5.4.4 Fixations of controllable Segments

A special kind of condition are fixations of controllable segments. This means that for a certain
time step the switching variable of a valve or a compressor has a predefined value, so the cor-
responding segment must be on or off in this time step. Such fixations are necessary to model
different situations.

For example, if a compressor must be shut down for a couple of time steps because of maintenance,
its switching variable must have value 1. Or if a compressor was switched on just before the be-
ginning of the considered time horizon, its switching variable must initially equal 1 to comply the
minimum runtime of the machine.

Fixations of a valve can be considered, if we want the gas flow to follow a certain transportation
direction, and thus to block a part of the gas network. This is useful for maintenance of pipes.

545 Terminal Condition

A so called terminal condition is required to guarantee operational availability after the considered
time horizon. Otherwise the optimization process would result in very low pressure and flow values
for the last time step (and the network is no more operational) since it is cheaper to pump dry the
gas network than to transport the gas flow from the sources. There are two approaches that avoid
such situations. In the first approach cyclical conditions for the pressure values in all nodes for
the first and the last time step are assumed. The second one requires a lower bound on the total
gas volume flow in the network at the end of the considered horizon. Since the gas volume flow
in a pipe depends on the pressure values at the beginning and end node (see below), the cyclical
pressure conditions imply the gas volume flow condition. As in [ES03, ES05] we follow the
approach of setting a lower bound on the total gas volume flow in the network at time step t = 7.
Note that in this context we disregard the few amount of gas volume in non-pipe elements.
According to [Sek00], the gas volume flow in a pipe e = vw € Ep \ E4 for time step¢ € T can
be approximated by

vt LD%T@ _ LD?*m 2T, .

‘ 4 Po 4 ZmTpo m

where L is the length and D is the diameter of the pipe, the mean z-factor z,, is given by an
appropriate constant value, and for the mean pressure p!, we take

o= Pt
" 2



64 CHAPTER 5. THE MODEL

the arithmetic mean. Remark that the gas volume flow depend on the pressure at beginning and
end of the pipe.

To obtain the total gas volume for time step ¢ we have to sum up V! over all pipes e € Ep \ Ea.
We require that the total gas volume at the end of the considered time horizon is at least as large as
that at the beginning, i.e.,

>, v Y v (5.36)
eEEp\EA BGEP\EA

Notice that this is a linear inequality in pressure variables. Since transporting gas causes costs, the
optimization process will tend to fulfill (5.36) at equality.

5.5 Objective Function

We conclude this chapter with the objective function of the gas network optimization model. It
consists of two parts. On the one hand there is the fuel gas consumption and on the other hand
there are the switching costs of the compressors in all time steps.
The total amount of fuel gas consumption of the TTO problem is given by the sum of the fuel gas
of all compressors during the whole time horizon. So we receive

> (5.37)

teT ecEc

Further on, we consider in our model constant start-up and shut-down costs. With C?!  and

e,up
tdownr t € T\ {1}, we denote the costs if compressor e € E is switched on or off in time
step ¢. Hence, the switching costs in our model can be quoted by

Z Z C;UPS;up + Cé,downsi,down' (538)

teT\{1} e€Ec

Addition of (5.37) and (5.38) yields our objective function.



Chapter 6

Handling of SOS Conditions

In this chapter we show how we incorporate the SOS conditions of the model in our branch-and-
cut algorithm. We integrate them implicitly by means of our branching scheme without using
additional (binary) variables. Remember that the SOS conditions in our model come from the
approximation concepts for the nonlinear functions that arise from gas dynamics in pipes and fuel
gas consumption of compressors. There are one-, two- and three-dimensional nonlinear functions
in the problem of TTO, hence we must handle SOS conditions of Type 2, of Type 3 and of Type 4.
At first we concentrate on the approximation grids for the nonlinear functions. In this context, we
treat the approximation errors, and a good choice for the grid decomposition is presented. Then
we introduce our branching strategies, where we also discuss the concept for the classical SOS
Type 2 condition. The branching idea for SOS conditions of higher dimensions was developed
within the scope of the stationary case of gas network optimization, see [M6104, MMMO6]. In
the transient case, we improve this SOS branching by means of adequate preprocessing strategies.
Finally, we describe a separation algorithm based on the idea of linking approximation grids, hence
combining different SOS constraints. This separation algorithm results from polyhedral studies
made in context with the stationary case of gas optimization, see [M6104, MMMO06]. We apply this
separation idea to the transient case.

6.1 Linearizing Grids

In this section we concentrate on the grids that results from approximation of nonlinear functions.
We regard approximation errors, infeasibility problems and present decomposition criteria.

At first we want to remind the general linearization concept for a nonlinear function (see Chapter
3). Initially, we triangulate the domain of the function. So we obtain a set of grid points and a set

65



66 CHAPTER 6. HANDLING OF SOS CONDITIONS

00
300, L )

000

i)

40

60

80 1000 2000 feeo

Figure 6.1: Triangulation of the friction-function

of simplices. Then we approximate the function linearly within each simplex by means of convex
combination. The question is how to choose an adequate grid in order to receive a good approxi-
mation.

Remember that there are four kinds of nonlinear functions in our model. At first, the one-
dimensional conti-function, see (5.21) , resulting from the continuity equation. Then, there are
two functions of dimension two, the friction-function (5.25) and the impact-function (5.26), that
come from the discretized momentum equation and differ just in a scaling factor from each other.
Finally, the fuel gas consumption (4.11) of a compressor is defined by a three-dimensional func-
tion.

Note that if a linearization grid of a function is given, we can calculate the maximal absolute
approximation error in each simplex, and we receive the overall maximal absolute error of the
complete triangulation. But it does not seem reasonable to look just at the absolute error. In Figure
6.1 we see a picture of the friction-function which becomes steeper for large flow-values. Thus
in the region of large flow-values the absolute error becomes bigger but the relative approximation
error remains small because of the increasing function value. Moreover, the relative error is neces-
sary if we want to compare the quality of different approximation grids. Therefore we consider the
relative approximation error as accuracy criterion for the quality of our linearization grids. Note
that in this context, we only regard the part of the function’s domain that is relevant in practical
applications. For example, for a pipe the theoretical flow bounds are given by 0 and 3000, but in
practice flow values vary between 500 and 1500. Thus, if we calculate the maximal relative error
of a pipe grid, we only consider simplices with flow values between 500 and 1500. Altogether we
say that an approximation grid of a nonlinear function has accuracy ¢, if the maximal relative error
in the practical relevant part of the domain is at most ¢.

Before we concretize the grid determination for the nonlinear functions in the problem of TTO



6.1. LINEARIZING GRIDS 67

we dwell on numerical difficulties that arose in our development phase. We look at the linearized
momentum equation (5.31). As the common length of a pipe is about 100 km, the coefficients of
the pressure variables in (5.31) are in the range of 10%. All other coefficients in this equation equal
one or are about one in case of the flow variables. This fact causes numerical difficulties, as a little
change of a pressure variable has a big effect on the equation. Therefore, we introduce scaling
factors fact fric and factimpact for the friction- and impact-term in equation (5.31) yielding

t ¢
Py — Dy Po, ¢ t—1
36%10° =—= + =2 (gL, —
L A ( e,w e,w )
+fact fric- friction(py,, q..,,) — factimpact - impact(p,, ¢..,) = 0,

whereas we have to adapt our nonlinear functions (5.25) and (5.26) in an adequate manner, namely
by dividing them by the corresponding factor. Note that we cannot scale the flow variables in the
momentum equation as they also appear in other constraints. Testing our scaling method (also
within the scope of the simulated annealing algorithm) we observe that we can overcome the cal-
culation problems in the linearized momentum equation. It also turns out that the friction-term
has more influence in this equation than the impact-term. Good choices for the scaling factors
are factfric = 5000 and factimpact = 5. These values especially guarantee that the absolute
approximation errors of the impact- and friction-term are in the same order of magnitude.
Moreover we have to handle feasibility problems. Because of the errors resulting from the dis-
cretizations of the partial differential equations and from the approximations of the nonlinearities,
the mixed integer program that we consider is not feasible anymore. A first step to treat these
infeasibility problems is to round the coefficients in all linearizing equations. Our tests show that
it is not practicable to consider a big number of decimal places in the equations that give us the
convex combinations of the approximated function value and of the individual components of the
nonlinear function. Notice that in practice for pressure variables an absolute error of 0.1 bar is
acceptable, for flow variables this error may even be worse. Assuming these pressure and flow
accuracies, we round all coefficients of the linearizing equations down on two digits. Further on,
we introduce slack variables. For each compressor we define slack variables for all linearizing
equations (5.15) to (5.17) for each time step ¢t € T. Accordingly, considering a certain pipe, we de-
fine slack variables for equations (5.23) and (5.24) of the linearized conti-function for each ¢ € T.
Furthermore, for ¢t € T \ {1}, we add slacks to equations (5.28) to (5.30) of each friction-term
and analogously for all impact-terms. Finally, we need slack variables in the linearized continuity
and momentum equations. Note that these slack variables do not occur in the objective function.
Instead, we introduce constant upper and lower bounds for them which depend on the accuracy ac-
ceptable in practice (as mentioned above). By this proceeding, the resulting mixed integer program
becomes feasible, and our algorithm yields practical applicable solutions.

Having addressed the accuracy aspects for the linearizing grids, we continue with their concrete
determination. At first we consider the one-dimensional conti-function. Its function values range
from 40 to 75 for a standard pipe in our test networks. Figure 6.2 illustrates this function. As
we can see, it is almost linear. So we approximate the conti-term by means of one line segment
defined by the boundary points (p™™, conti(p™™)) and (p™**, conti(p™**)). Then we calculate



68 CHAPTER 6. HANDLING OF SOS CONDITIONS

P

Figure 6.2: Illustration of the conti-function

approximation errors for this “trivial” grid. We receive 0.69 as maximal absolute error, and the
maximal relative error is 0.012. This accuracy is sufficient for practical applications.

Thereafter, we regard the two-dimensional functions in our TTO model. As already mentioned,
they just differ in a constant factor. Since such a factor does not affect the relative approximation
error, we choose the friction-function as an example for this case. To obtain a two-dimensional
grid, we us the mesh generator from the software package KARDOS [ELR02]. Remember that the
domain of the friction-function is a rectangle. KARDOS comprises a function that determines a
uniform triangulation of a rectangle as shown in Figure 6.3, if the user specifies the number of ver-
tical and horizontal subdivisions. So we can test different partitions in pressure and flow direction
whereas the approximation accuracy for the grid stays the same (see the computational results in
Section 10.2). The function value of the friction term varies between about 0 and 500 (taking into
account the scaling factor fact fric = 5000) depending on the specific pipe data. Figure 6.1 shows
a picture of the function. We see that for low flow values, the absolute approximation error is small
but the relative error is very big because of small friction values. On the other side, considering
big flow values, the absolute error becomes bigger whereas the relative error is small. In the region
that is relevant for our practical application (flow of 500 to 1500) the absolute as well as the relative
error are of adequate size.

Finally, we look at the three-dimensional nonlinear function in our model, the fuel gas consumption
of a compressor. The software package KARDOS does not include a three-dimensional mesh gene-
rator. It just offers a refinement function for a given grid. Because of pressure and flow bounds, the
fuel gas function is defined on a cube. In a first step, we subdivide this cube into 12 tetrahedra and
use the refinement function of KARDOS to obtain a grid of higher accuracy. But this approach has
the disadvantage that we receive a uniform triangulation that does not respect the characteristics
of our function. Note that in the two-dimensional case we also consider uniform grids, but we can
affect the form by choosing different subdivisions in pressure and flow direction. So, we deve-
loped another approach in cooperation with [Her06]. The idea is the following. At first, regarding
the domain of the function - the cube - we see that we can omit half of it as we assume that the



6.1. LINEARIZING GRIDS 69

Figure 6.3: Triangulation of a rectangle with two vertical and five horizontal subdivisions

compressor increases the pressure. This means that the outgoing pressure of a compressor is at
least as large as the pressure at the beginning of it. Thus, we have to triangulate half of the cube.
We start with an arbitrary triangulation. Note that we choose this starting triangulation in such
a way that its grid points are given by the valid vertices of the cube, i.e., vertices that fulfill our
pressure condition. Now, we determine the tetrahedron with the maximal absolute approximation
error. We take the point where this maximal error occurs and add it to our triangulation. Then we
specify a new division into tetrahedra, respecting our extended set of grid points. Therefore we
use the software package pol ynmake [GJ99], which calculates the Delaunay triangulation of our
grid points. This procedure is executed iteratively, i.e., determination of the tetrahedron with the
maximal absolute error, adding the corresponding point to the set of grid points, and calculation of
the Delaunay triangulation, until a specified accuracy is attained.

Notice that this accuracy is calculated based on the absolute error. Remember that we mentioned at
the beginning of this section that we use the relative error as criterion for our approximation grids.
But in this grid generation process we must consider the absolute error. Otherwise, our algorithm
would tend to add points near the boundary where in- and outgoing pressure equalities hold, since
there the function values are very low and hence the relative error is extensive. The resulting trian-
gulation would be impractical for our purpose, since the pressure is always considerably increased
by a compressor in applications, and therefore a fine grid near the boundary is useless. So we first
determine a triangulation respecting the absolute error. Thereafter, we have to estimate the relative
approximation error of the generated grid to evaluate its accuracy for our test runs.

In Figure 6.4, a triangulation for our three-dimensional function is shown that was generated by
the strategie described above. Note that the colors in this picture indicate the fuel gas consumption
of the compressor. Blue color stands for few fuel gas. Green or yellow regions denote mean
consumption of the machine which are the relevant values in practice. Finally, orange and red
shows very high costs. All these function values vary from zero (no pressure increase of the
machine) to about 25.

This concludes our grid investigations. In our computational results, see Chapter 10, we consider



70 CHAPTER 6. HANDLING OF SOS CONDITIONS

3000

Figure 6.4: Triangulation for the function of fuel gas consumption

three accuracy levels, namely e = 0.15,¢ = 0.1 and £ = 0.05.

6.2 Branchingfor SOS Conditions

Now, we show how we guarantee the fulfillment of the SOS conditions in our algorithm. Re-
member that there are SOS conditions of Type 2, of Type 3 and of Type 4 in our gas network
optimization model. We begin this section with a brief literature survey concerning SOS condi-
tions. Then, we present the branching idea of the classical SOS Type 2 (briefly SOS 2) condition.
Subsequently, we concentrate on the branching scheme for SOS in higher dimensions where we
follow the description of [MMMO6].

Branching strategies for the classical SOS 2 were developed in the seventies and can be found in
[Bea79, BF76, BT70]. [Tom81, M6l04, MMMO6] extend the SOS concept to higher dimensions.
In [Tom81] nonlinearities are piece-wise linearly approximated using the standard simplicial sub-
division of the hypercube. Further on, a branch-and-bound method is presented to handle the re-
sulting extensions of SOS constraints. [M6104, MMMO6] adapt these method to the stationary case
of gas network optimization. There, a general definition of SOS conditions in higher dimensions is
given (see also Definition 3.2.1) and corresponding branching strategies are discussed. [dFJZZ05]
present an SOS approach for discontinuous piece-wise linear functions. They consider optimiza-
tion problems with discontinuous piece-wise linear objective function and prove the advantages of
SOS over the binary model.

Let us begin with the classical branching idea for SOS 2. Remember that a set of consecutive
variables {\;,..., A\, } is SOS 2, if at most two variables can be nonzero and if so they must be



6.2. BRANCHING FOR SOS CONDITIONS 71

adjacent. It is reasonable that in case of SOS it is more efficient to branch on sets of variables
rather than on individual variables [BT70]. So, if there are two positive variables A; and A\, with
|k — j| > 1, we choose one of them and divide the set into two parts. If we take for example A
as cutting variable, we add the equation 3% | A\’ = 1 to the first subproblem and 327, X = 1 to
the second one. Figure 6.5 illustrates this concept. In the literature cited above, several selection
strategies for the cutting variable can be found.

Figure 6.5: Branching on SOS 2

Now, we come to the branching concepts for SOS conditions in higher dimension. We illustrate
the ideas by means of the two-dimensional approximation grid of the friction-function in the
linearized momentum equation. As we will see they can be generalized to linearization grids of
higher dimensional functions.

For pipe e = vw € Ep \ E4, the function friction(py,q..) is defined on the rectangle
[prim pmar] x [gmn gme*]. For a better understanding we neglect the time index ¢. We deter-

w

mine a uniform triangulation of this rectangle, i.e., we choose equidistant partitions p* = p,, ; <
Pw2 < oo <Py =prand ¢"" = qoq < Gea < ... < ey = ¢ with k, [ > 2. By construc-
tion we obtain & - [ grid points (py.i, ¢e;), 4, = 1,...,k, j = 1,...,0. Fors € {2,...,k — 1}
we divide them into two sets L, = {(¢,7) € {1,....k} x {1,....l} : puwi < Duws} and
Ry ={(i,5) € {1,...,k} x{1,...,1} : pw:i > puws} We call the branching vertical branching

(for s), if we add to the first subproblem the equation
Y N=1
jeLs

and to the second subproblem the equation
Sv=t
JERs

see Figure 6.6 for such an example.

Note that the branch-and-bound tree resulting from vertical branching has at most £ — 1 leaves
(number of consecutive column pairs) and thus 2k — 3 nodes. Similarly, we branch in the second
direction, i. e., g. .,, which we call horizontal branching. Observe that if there are no further vertical



72 CHAPTER 6. HANDLING OF SOS CONDITIONS

Ls S Rs

Figure 6.6: Illustration of vertical branching

or horizontal branchings the positive A-variables are restricted to exactly one rectangle. Now we
just have to branch on the two triangles constituting this rectangle.

In the general case of an n-dimensional grid, we have to branch in all n directions. Therefore,
we generally call it hyperplane branching (in a certain direction). After hyperplane branching in
all directions - if we suppose a uniform triangulation - the remaining positive A-variables belong
to the vertices of exactly one hypercube. Then we have to confine the positive A-variables to a
simplex of this hypercube. For example, consider a uniform grid of the three-dimensional fuel gas
consumption function (our first grid approach). After branching in the three directions, the positive
A-variables are restricted to a cube which is divided into tetrahedra.

In principle the idea of vertical branching (and hyperplane branching in a certain direction) is that
used for the classical SOS 2 branching. Let us depict the transfer to the general extension by
means of the two-dimensional example above. We write )\;; for the A-variable associated with grid
point (i,7) € {1,...,k} x {1,...,1}. Further we sum up the variables of column i and define
Ai = >._, \ij. Standard branching on the (relaxed) one-dimensional SOS Type 2 constraint
S, A\ = 1 yields vertical branching.

The branching strategies presented till now just guarantee SOS conditions for uniform grids. But
in case of the fuel gas function, we include nonuniform approximation grids in our model. So
we return to hyperplane branching again. First look at the sets L, and R,. Instead of taking the
subdivision points p,, ; as ‘cut points’ for these sets, we could choose arbitrary values, for example
a coarser step size. Using such a partition, we can handle compressor-grids as well as uniform



6.2. BRANCHING FOR SOS CONDITIONS 73

Figure 6.7: An example for variable branching: the bullet nodes indicate the neighbors of \* and
the rectangles indicate fractional variables

pipe-grids or, for instance, pipe-grids that are no more uniform because of some refinements of
triangles in a certain region.

Further on, in the case of nonuniform triangulations, the above statement that after hyperplane
branching in all directions the positive A-variables belong to the vertices of one hypercube, is no
longer valid. Here the following algorithm assures that the positive A-variables fulfill the general
SOS condition. We use the notation of Chapter 3 and regard an arbitrary triangulation. Let A be
a set of n-dimensional grid points and Y = {N*,... N9} a set of simplices, where each of the
simplices is represented by a subset N* C A of grid points. We say that a vector A\ € R/l satisfies
the SOS Type & condition (k = max; | N?|) with respect to (3.1) and the triangulation Y if there
exists some index r € {1,...,d} suchthat {i € A : \' > 0} C N7, i.e., the positive \-variables
belong to one simplex. Now let X be an optimal LP-solution that does not satisfy this condition
and N be a set of indices of the fractional variables, i.e., 0 < \* < Lifand only ifi € N. Let I
denote the neighbors of grid point  in the triangulation Y, i.e., the set of indices of grid points that
are adjacent to grid point 7, see Figure 6.7. Consider the following algorithm.

Algorithm 3 Variable Branching
1: fori e N do
if " U {i} 2 N then
goto 6

end if
end for
. Split the problem in the following way
First subproblem: Add the condition >,y Aj = 1.
Second subproblem: Add the condition \; = 0.

N

© o NSO R®

. Stop.

Observe that - as the LP-solution \ does not satisfy the SOS condition - there exists some i € N



74 CHAPTER 6. HANDLING OF SOS CONDITIONS

with TV U {i} 2 NN and the algorithm terminates with two branches in which X is not feasible.

We call this kind of branching variable branching. An illustration of it can be found in Figure 6.7.
Note that using this algorithm we can guarantee that the SOS condition is fulfilled. The number of
branch-and-bound nodes generated by it depends on the simplicial subdivision of the triangulation.
If we assume the neighborhood |I*| to be constant, which is the case in our applications, the
algorithm yields O(A) leaves (as in case of SOS 2).

In the branch-and-cut algorithm for the problem of TTO, we use hyperplane branching as long
as there are possible candidates, since it is more efficient to branch on sets than on variables.
Thereafter, we continue with variable branching to fulfill all SOS conditions.

6.3 Preprocessing for SOS Conditions

To accelerate our branch-and-cut algorithm, we extend the branching strategies with suitable pre-
processing methods. We present two kinds of preprocessing processes that are based on similar
ideas. The first strategie is in connection with hyperplane branching and the second one exploits
flow bounds resulting from supplier and consumer behavior.

We begin our description with the preprocessing ideas concerning hyperplane branching. Observe
that hyperplane branching (and SOS 2 branching) implicitly induces a cut for each of the two
subproblems. Let us illustrate this idea by means of vertical branching for the two-dimensional
grid of the friction-function, see above. Have a look at Figure 6.6. The subproblems resulting
from vertical branching are defined by the sets L, and R,. Remember that these sets affect the
pressure variable p!, at the end of the pipe for the considered time step as it is the first component
of our friction-function. If we look at the left son of this branching step, hence the set L, the
inequality p!, < p, s is valid for the subproblem. Accordingly, p!, > p. s holds for the right
son. Obviously, these cuts are implicitly incorporated in the subproblems, but we received better
computational results if we add them explicitly.

Notice that the designation of these cuts is a little bit more complicated, if we consider nonuniform
grids or do not use grid points as ‘cut points’ for the determination of the sets L, and R,. Figure
6.8 shows such a situation. To obtain the upper bound of the pressure variable p!, in the left son,
we have to determine the maximum pressure value of all grid points that lie in the set L, i.e.,
the maximal pressure that can be attained in this set. In Figure 6.8 the corresponding points are
marked by black squares. If the pressure value, i.e., the first component of these points equals p,,,
the inequality p!, < p, isvalid for the left son and we add it to the branch. Analogously, we specify
a valid cut for the right son. For this purpose, we calculate the minimum pressure value in the set
R, and receive a lower bound for p?, .

The cuts induced by hyperplane branching can be used for further preprocessing strategies. For an



6.3. PREPROCESSING FOR SOS CONDITIONS 75

Figure 6.8: Illustration of cut induced by vertical branching for a nonuniform grid

explanation, we regard again the friction-function with vertical branching. There, we obtain cuts
that concern the pressure variable pf . As pressure variables are nodal variables, we can use the cut
bounds to restrict the pressure values of other approximation grids and hence, to eliminate further
linearizing variables in the subproblems. Let us choose another linearization grid that includes the
pressure variable p! (for example we can take the impact-function of an outgoing pipe of node
w) and consider the left subproblem. An illustration of the idea can be found in Figure 6.9. The
induced cut is sketched as straight line, thus the region of the rectangle to the right of it is infeasible.
Therefore, we can eliminate the \-variables belonging to marked grid points in the left branch by
setting them to zero.

By means of this preprocessing method, we can branch on several grids in one iteration. There are
several possibilities to combine approximation grids.

At first we consider the case that the hyperplane branching candidate affects the pressure variable
of node v in time step ¢. Here, we consider the conti- and friction-function of each ingoing pipe
of this node at time ¢ (as they depend on pressure at the end of the pipe) and also the fuel-function
of each ingoing compressor, and eliminate infeasible \-variables. Further on, we consider the
impact-function of each outgoing pipe and the fuel-function of each outgoing compressor of v
and set the corresponding A-variables to zero.

Even if flow variables belong to segments, as they indicate the gas flow in the segment or at the
beginning/end of it, we can use the cuts induced by hyperplane branching on a flow variable to
eliminate linearizing variables because of Kirchhoff’s law. Remember that this law ensures flow
balance in a node, i.e., the sum of ingoing gas flows equals the sum of outgoing gas flows. Thus,
we can apply the induced cuts to other approximation grids, but just in case that there is exactly
one outgoing and one ingoing segment. If there are several parallel segments, we do not know



76 CHAPTER 6. HANDLING OF SOS CONDITIONS

fffffffffffffffffffffffffffffffffffffffffff e S W ——
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e %
Dl = Du

Figure 6.9: Elimination of A-variables using cut induced by branching

how the gas flow distributes, and so we cannot use the flow bounds for other grids. Only if the
considered segment is a compressor, we can accept a further parallel segment as each compressor
has a bypass valve.

There are three possibilities that a flow variable is concerned by hyperplane branching, either by the
first component of the fuel-function of a compressor or by the second component of the friction-
or impact-function of a pipe. In case of compressor we only have to consider one flow variable,
whereas for a pipe the flow differs at the beginning and at the end.

If hyperplane branching concerns the flow variable of a compressor e = vw, we look at both nodes
v and w. If v has exactly one ingoing segment, a pipe, we can eliminate A-variables of its friction-
grid, but only if, in addition to its bypass valve, the compressor e has no further parallel segments.
Alternatively, if v has just a compressor and its bypass valve as ingoing segments, the \’s of the
fuel-grid are concerned. Analogously, we handle the end node w of the compressor. Here, we
must take the impact-grid of a pipe, and additionally we have to take the fuel gas consumption f!
of the compressor into account.

Otherwise, if one of the flow variables of a pipe e = vw is affected by branching on a pipe grid, we
just have to consider one of the nodes. In case of branching on the impact-grid, we regard node v
(as impact values depend on the flow at the beginning of the pipe) and proceed as described above,
but only if pipe e has no parallel segment. Accordingly, if we branch on the friction-grid, end
node w must be considered.

We conclude this section with the second preprocessing strategie that we developed for our approx-
imation grids. As already mentioned, we exploit flow bounds of sources and sinks that are defined
by delivery and consumer behavior. In general, such bounds are stronger than the technical ones



6.4. SEPARATION FOR SOS CONDITIONS 77

given for pipes or compressors. Note that only pipe grids are concerned using this preprocessing
methods as a compressor e = vw can only be found in the inner of a network, hence its defining
nodes are innodes v, w € V' \ (SUU).

o« oo - @ o« °
N 4
7777777777777777777777 e i
. @
. v,
L S » N .o kS °
oot . SSCEEeR L B °

Figure 6.10: Preprocessing via supplier bounds of a source

At first, we consider a source v € .S with its flow bounds ¢;";" and ¢;'/*“. If source v has exactly one
outgoing segment and this is a pipe, we can apply these bounds to determine the feasible region
of its impact-grid in time step ¢. Have a look at Figure 6.10. The source bounds are indicated by
straight lines. Note that these lines are horizontal as the flow variable defines the second component
of the impact-function. The feasible region of this grid is given by the small stripe between the
two lines. Therefore, all A-variables corresponding to marked grid points must be zero.

In case of a sink v € U, the procedure is similar. Again we take the flow bounds q;jff” and ¢, for
a certain time step. If v has a pipe as single ingoing segment and has no outgoing segments (note
that it is rarely possible that a sink has also outgoing segments, see test network one in Section
10.1), we use the sink bounds for elimination of A-variables of the friction-grid for time step t.

6.4 Separation for SOS Conditions

Finally, we present a separation algorithm for SOS conditions in connection with approximation
of functions which combines different SOS conditions. To develop the separation strategie, sub-
structures of the linearizing model are studied. The studies of such structures and the resulting
algorithm were made within the scope of stationary gas network optimization. We just give a
brief introduction of the idea where we refer to [MMMO06]. A detailed description can be found in
[M06104]. We adapt this separation algorithm to the transient case of gas optimization.



78 CHAPTER 6. HANDLING OF SOS CONDITIONS

We illustrate the idea by means of an example, whereby we neglect the time index ¢. This idea can
be applied to the general case of linking arbitrary SOS conditions. At the end of this section we
list the combination possibilities that we use in the transient model of gas network optimization.
Lete = wv,g = vw € Ep \ E4 be two pipes in a row and consider the friction-function
friction(py, ge) Of the first pipe and the impact-function impact(p., q,,,) Of the second one. As
the friction-term depends on the outgoing pressure and the impact-term on the ingoing, the first
input parameters of these functions are identical. Taking the modeling of the two functions by SOS
constraints into account this identity is expressed in the polytope

Pa= () eRMIN] Sy .
JEM '
oooN =1
JEA2
SN - - 0
JEAL JEA2
X, X, > 0

A1, p satisfy SOS Type 3 for Yy and Vs },

where for ease of exposition we choose the subindex 1 for the first pipe and the subindex 2 for the
second one. Furthermore, the notation of Chapter 3 is used, where A; and A, stand for the sets
of grid pointsand Y; = {N{,..., Nf} and Y5 = {Nj, ..., N¢} describe the triangulation with its
simplices. In the formulation of this polytope, we see the linking of the SOS Type 3 conditions via
the pressure equality. Note that the subdivision points of the first and second pipe, p’ and p?, may
differ, as they appear in different approximation grids.

In [M0104] the linear description of conv(PA) was computed on small instances using PORTA
[CLOO], whereas the polytope P is based on a nonlinear function of the stationary gas model. But
as the structure of the polytopes in the stationary and transient case are similar and the magnitude
of the numbers are equal (in both cases pressure values are considered), we can transfer the results
to our problem. [M6104] describes that already for up to 30 grid points and simplices not only the
number of facet-defining inequalities, but also the range of the coefficients increase dramatically
(up to five digits). Therefore, it seems very difficult to give a complete linear description of the
polytope in the general case.

Considering the linking polytope Px, the computations with PORTA also indicate that the number
of vertices grows moderately, precisely speaking quadratically, for larger instances. Let us motivate
this fact. Observe that each vertex of conv(Px) must also be extreme in some P;; = conv(Px) N
{(3}) € RMIHAl | supp (X)) C Nj, supp(y) € Nj}, where Ni € Yi and Nj € Y; and
supp (A) := {i | \; # 0} denotes the support of A, as the SOS Type 3 conditions have to be
fulfilled. Such a polyhedron P;; may be described by |Ni| 4 | Nj| variables, three equations and
| N?| 4 | NJ| nonnegativity constraints. Remember that for our example all simplices are triangles
(as we linearized the two-dimensional friction- and impact-function), hence |[Ni| = |NJ| = 3
holds for all ¢, 5. Because of the SOS constraints, each vertex of P,; must contain at least one



6.4. SEPARATION FOR SOS CONDITIONS 79

positive ) in the set N} and one in the set Ng , respectively. Altogether, at most three variables can
be positive. If we determine all possible combinations, we observe that P;; has at most 9 vertices,
implying that the number vertices of polytope P, is bounded by 9|Y7||Ys|. This observation is
generalized in the following theorem [MMMO06].

Theorem 6.4.1 Consider some system of linear equalities Az = b with A € R™ ™. Let
I C {1,...,m}, |I| = d, be a set of rows which consists of SOS Type k constraints with
Y; = {N} ..., Nf(i)}. Assume that each variable x; appears in exactly one SOS Type & con-
straint and let

P=conv{z e R"| Az =10
x satisfies the set condition for each i € I}.

If s = rank A and r = max;; | N}|, then the number of vertices of P is bounded by

(s, d) [ *(0),

iel

where

with ¢ = min{s, [ ]}.

On the one hand this theorem covers the combination of SOS conditions of different dimension
(for example necessary for coupling of pipe and compressor). On the other hand an arbitrary graph
structure can be handled such as trees and cycles that might show up in a gas network. To illustrate
this idea we consider some connected substructure of a graph on W nodes and F’ edges. For each
edge (corresponding to a pipe or a compressor) we have one SOS constraint. We suppose that we
can couple the SOS constraints via the pressure variables as in the above example. This results in
|d0(v)| — 1 coupling constraints per node v € W, where 6(v) denotes the degree of node v. Taking
the flow conservation (see Kirchhoff’s law (5.18)) into account we receive |§(v)| constraints per
each node. Thus, Az = b in Theorem 6.4.1 consists of m = 3|F| constraints including d = |F|
SOS conditions.

The observation that the number of vertices of polyhedron P, grows quadratically, motivates the
following separation algorithm developed in [M6104]. Let v, . . ., v, be the vertices for Pa. Let
be an optimal LP-solution to be cut off. We look for a violated cut of the form a” A < « by solving
the linear program

2* =max o'\ —a

st. a'v;<a foralli=1,..., k. (6.1)



80 CHAPTER 6. HANDLING OF SOS CONDITIONS

Observe that the feasible set of (6.1) is a polyhedral cone and thus the optimal solution value z* is
either zero (in which case there is no violated inequality) or the linear program is unbounded. To
deal with this situation we normalize the set of solutions in the spirit of [BCC93]. Computational
tests showed that the best choice is to restrict the coefficients a; € [—1,1].

Notice that this separation algorithm is only useful, if the number of vertices is moderate, since
we must solve an LP to obtain a potential cut. Our observations above just indicate theoretical
bounds for the number of vertices. [M06104] determines concrete values for the number of vertices
of polytope Pa for different instances. These investigations show that it is not useful to couple
more than two approximation grids, hence linking more than two SOS constraints.

In comparison with the stationary case, here are much more possibilities to link approximation
grids as our problem contains four kinds of nonlinear functions (in the stationary case there are
just two, the fuel gas consumption of a compressor and a function describing the pressure loss in
a pipe). Especially, we can even combine two linearization grids of the same pipe, if we consider
the conti- and the friction-function as they both depend on the outgoing pressure of the pipe. In
the example given above, we coupled two grids via the pressure variable. We can also link SOS
constraints using flow variables, but this case is a little bit more complicated as flow variables are
not nodal, but they depend on the segments (see also the description of the preprocessing methods
above). Thus, we just can couple via flow values, if the intersection node of both segments has
exactly one outgoing and one ingoing segment (the only exception is a compressor with its bypass
valve). In that case, we can combine the corresponding flow variables because of Kirchhoff’s law.



Chapter 7

A Primal Heuristic: Simulated Annealing

In this chapter we present a primal heuristic based on the idea of simulated annealing for our gas
network optimization problem. The aim of the heuristic is to yield a good feasible solution for
our TTO model in adequate runnning time, and thus to obtain a good upper bound for our branch-
and-cut algorithm. The described algorithm was developed within the scope of a diploma thesis,
see [Mah05, MMMiar]. In the first section we introduce the general idea of the algorithm and give
a mathematical description of it. Thereafter we adapt the simulated annealing algorithm for the
problem of TTO. We conclude this chapter with an overview of computational results that can be
found in [Mah05].

7.1 TheSimulated Annealing Algorithm

711 Theldea

The simulated annealing (SA) algorithm is a meta-heuristic (see Section 2.3). It was originally
developed for solving large combinatorial optimization problems and uses local search. In contrast
to general local search algorithms (Algorithm 1 in Section 2.3), it randomly accepts solutions with
increasing objective function value. Thus, SA can overcome local minima and the dependence on
the initial solution is marginal, but it stays flexible and robust as local search algorithms [AK89].

The original idea of simulated annealing for solving large combinatorial optimization problems
was independently introduced by [KJV83] and [Cer85]. As implied by the name, the simulated
annealing algorithm is based on the analogy between the physical process of annealing liquids
to the thermal equilibrium (solid phase) and the problem of finding the solution of combinatorial
optimization problems. In the following we describe the annealing process and show this analogy

81



82 CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING

(see also [LA87, AK89, Ree93, Mah05]).

At the beginning the solid material is heated up until it melts. Because of the high temperature of
the substance the molecules move in a highly disordered way. Cooling down slowly reduces the
(kinetic) energy of the molecules and they arrange uniformly in a lattice structure. After reaching a
certain temperature each molecule finds its ideal position and the substance changes into the solid
phase.

If the initial temperature is high enough and if the cooling down is sufficiently slow, the molecules
are optimally ordered and the energy of the resulting system is minimal. If the lowering of the
temperature is too fast, the solid material does not reach its ground state and it will have several
defects. For obtaining the optimal state, the substance must reach the thermal equilibrium at each
temperature 7', before the temperature is again reduced. This means that the system must achieve
the state of minimal energy for each temperature 7. A mathematical description of the thermal
equilibrium yields the Boltzmann distribution (with random variable X)

Pr(X =1)= %eXp (;B—ET)

where E; is the energy, 7 the temperature, k5 the Boltzmann constant and Z(7) is a normalization
factor (so called partition function). This distribution specifies the probability of the system being
in state ¢ with corresponding energy F; at a certain temperature 7. \We see that the more the
temperature decreases the more probable are states with lower energy.

The authors of [MRR*53] developed an algorithm that simulates the evolution of a substance
with interacting molecules to the thermal equilibrium at a fixed temperature 7. This algorithm
is known as Metropolis algorithm and uses Monte Carlo methods, see also [LA87, AK89]. It
generates a sequence of states of the substance, where a state is defined by the position of the
molecules. Starting from a state ¢ with corresponding energy E; a new state j with energy E; is
generated using a little perturbation, e.g. a small displacement of a randomly chosen particle. If
E;—E; <0, i.e., astate with lower energy was found, we move to the new state j and continue the
iteration process. If the energy difference is greater than zero, we accept state ; with probability
exp (E,;;fj). Thereby we randomly choose a number 6 € (0,1), and if § < exp(E,;;fj), we
change to the new state j, otherwise we retain i. This acceptance rule is called Metropolis criterion.
After numerous iterations of this perturbation mechanism, the probability distribution of the system
states tends to the Boltzmann distribution. Hence, using this criterion the substance can reach its
thermal equilibrium at given temperature 7.

Knowing the physical background it is easy to see the analogy between statistical mechanics and
optimization problems (see also [Ree93]). A state of the substance with its energy corresponds to
a feasible solution and its objective function value. Perturbation of a state stands for the generation
of a neighbor solution. The temperature can be interpreted as a control parameter for the heuristic.
Finally, the solid phase of the substance reflects the approximated solution of the problem.




7.1. THE SIMULATED ANNEALING ALGORITHM 83

7.1.2 TheAlgorithm

The simulated annealing algorithm is widely discussed in the literature, see for instance [LA87,
AKB89, Ree93, OK96, NW88]. It can be seen as a sequence of consecutively executed Metropolis
algorithms (see Algorithm 4, step 5 to 12). After each iteration of the Metropolis algorithm the
control parameter 7 is reduced. Here we give a description of the algorithm using the notation of
problem (2.3) [Mah05].

Algorithm 4 Simulated Annealing
1: Initialize control parameter 7
2: Find initial solution .S
3: Calculate ¢(5)

4: repeat

5. repeat

6: Randomly generate neighbor S’ of S
7 Set A = ¢(S5") — ¢(9)

8: Choose 6 € (0, 1) randomly

9 if A <0orf < e /7 then

10 Set S =9

11: end if

12: until Equilibrium criterion is fulfilled
13:  Decrement control parameter 7

14: until Specified stop criterion is fulfilled
15: Return the best solution found

The key point here is that the algorithm also accepts worse solutions with a certain probability
which diminishes with decreasing 7 (see Algorithm 4, step 8 and 9). This stochastic aspect should
avoid termination in local minima. Therefore, this algorithm is also called stochastic hill-climber
[MFO00].

A mathematical model of the SA algorithm can be given by Markov chains. By means of the theory
of Markov chains theoretical (asymptotic) convergence can be proven [LA87, AK89]. Thus, the
algorithm can be viewed as a global optimization algorithm, if an infinite number of transitions is
allowed. Since this conclusion is not useful for practical applications, a finite time approximation
must be developed [LA87, AK89]. In the literature finite time bounds for SA can also be found.
The best bound known at present can be found in [NSO0]. But there the number of necessary steps
exceeds the cardinality of the solution space, hence it would be more reasonable to determine the
optimal solution by complete enumeration.

Before implementing SA for the solution of a special problem, a lot of decisions must be made
which can be divided into generic and problem specific ones [LA87, Ree93]. Generic decisions
comprise parameters of the annealing algorithm itself. These are initialization and decrement of
the control parameter 7, specification of the number of steps until the equilibrium condition is



84 CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING

fulfilled, and a stopping criterion. Together these parameters build the so called cooling schedule.
The second problem specific class includes the characterization of feasible solutions, specification
of the cost function, generation of an initial solution, and the definition of the neighborhood struc-
ture.

As already mentioned, the presented SA algorithm is a method for solving combinatorial optimiza-
tion problems. In that case it is often intuitive to specify a neighborhood structure. Because of its
general and flexible form SA can easily be adapted to other optimization problems, since no spe-
cial properties as for example differentiability or convexity are imposed on the objective function
or the constraints.

Due to successful implementations of the SA algorithm in the field of combinatorial optimization,
its practicability for problems with continuous variables was investigated. Approaches for global
optimization in case of an n-dimensional function defined on a bounded subset can be found for
instance in [BJS86, DA91]. Solution methods based on SA are developed and yield good results.
[DA91] also proves convergence of the algorithm in analogy to the classical SA for combinatorial
optimization problems.

[WW99] describes a modified SA algorithm to optimize functions with continuous variables sub-
ject to equality and inequality constraints. All constraints are relaxed by means of Lagrange multi-
pliers and the resulting problem is solved using so called constrained simulated annealing. Note
that if the optimization problem has numerous constraints one obtains a lot of additional variables.
In [CMMR87] and [WCO00] further modifications of SA can be found to tackle (constrained) global
optimization of functions with continuous variables.

All these approaches provide a basis for solving the TTO problem. Note that our problem com-
prises numerous integer as well as continuous variables. Therefore, we have to combine different
ideas of the cited literature and develop a new SA algorithm.

7.2 The Simulated Annealing Algorithm for TTO

To adapt the idea of SA to the TTO problem we have to make several problem specific and generic
decisions. As already mentioned, generic decisions correspond to the cooling schedule which is
similar for each application of SA. Problem specific aspects for our gas network optimization are
the characterization of a solution and constraint-handling respectively, i.e., we follow the approach
of [WW99] and relax some, but not all, of the constraints. Accordingly, we have to define a cost
function for the relaxed conditions. A further crucial point is the specification of a neighborhood
structure including a step size selection for the continuous variables. Finally we have to generate
an initial solution.



7.2. THE SIMULATED ANNEALING ALGORITHM FOR TTO 85

7.2.1 Constraint-Handling and Cost Function

Let us begin with the handling of constraints. Basically there are two alternative approaches deal-
ing with it (see [MF0Q]).

The first one only accepts feasible solutions. Hence, no time is wasted investigating infeasible
solutions. A disadvantage is that in each iteration step a feasible neighbor must be found which
might be difficult for complex problems.

The second approach also allows a transition to infeasible solutions. Thus, it becomes easier to de-
termine a neighbor solution. Obviously the main disadvantage is that the solution space increases
and a further handling of infeasibilities is needed in order to guarantee a feasible solution at the
end of the algorithm.

In case of TTO it is very complicated to find feasible solutions, even the determination of an initial
solution poses a challenge. Therefore, we follow the latter approach.

A common treatment for infeasible solutions is to introduce penalty terms. In [MFO00] two well
known methods are described: static penalty costs on the one hand and dynamic ones on the other
hand. For both methods we need to define violation of constraints whereby we refer to the general

form of a nonlinear optimization problem (2.2). For j € {1,...,m}, v;(x) indicates the (absolute)
violation of the jth constraint with
vi(z) = |hj(z)| if1<j<gq
J max {0, g;(z)} ifg+1<j<m’

where g¢;(z) are the inequalities and h;(x) the equations.
The idea of the static penalty method is the following. For each constraint j we define [ levels of

violation and corresponding penalty coefficients R;;, i = 1,---,l. Then the penalty term can be
written as
j=1

where index j refers to constraints and i to the respective level of violation. Note that such penalty
costs can be calculated simply and fast. The disadvantage of this method is that numerous param-
eters (m(2] + 1), for each constraint j we need to determine the number of levels, [ parameters for
the boundaries defining these levels and [ penalty coefficients R;;) must be specified which might
be very difficult to ensure feasibility of the solution.

To overcome the problem of determining good parameters, penalty functions with dynamic aspects
are applied. Here the iteration step n is integrated in the penalty term. Hence, costs for infeasibil-
ities increase dynamically during the execution of the algorithm. For the nth iteration the penalty
function is given by

> (Cyn)*vf (x), (7.2)



86 CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING

where C;, o and 3 are positive constants. For this method less parameters have to be determined.
It turns out that both kinds of cost functions fail for our TTO problem. While testing the SA
algorithm applying these two methods to our problem, there arise difficulties in finding a feasi-
ble solution. Therefore, a combination of both methods was developed (see [Mah05]). Besides
the minimization of fuel consumption the main goal of our SA algorithm is the feasibility of the
resulting solution. In our context we consider a solution to be feasible, if the maximal absolute vi-
olation of the relaxed constraints is less than a given accuracy ¢ and the remaining constraints are
satisfied. The basic idea of the new, combined method is additional dynamic penalty of violations
greater than . The penalty function for TTO is defined as

Qx) = 3 Fvj (@), (7.3)
where
p - Rj if Uj(!lf) S £
Tl R+ (Cn)> ifui(x) > e

Having presented different penalty functions, we apply this approach to our problem. Nevertheless,
since determination of good parameters might be difficult, we neglect only some constraints which
pose most problems to us. Therefore, we relax the discretized continuity and momentum equation
for each pipe of the gas network, as basically they connect single time steps as well as flow and
pressure variables. The remaining constraints have to be fulfilled in each iteration.

For a better understanding, in the following we abbreviate a solution (p, q, f, N, s) consisting of
pressure, flow, fuel gas consumption, power, and switching variables by z. Introducing penalty
functions Q¢ (x) and @y, () of the form (7.3) for the continuity and momentum equations of the
pipes, we receive a relaxed problem which can be written in the following abbreviated form:

min f(x) + Qo(x) + Qu(w)

s.t. = satisfies e lower and upper bounds for pressure in nodes
e lower and upper bounds for flow in segments
e flow balance in nodes (Kirchhoff’s first law) (7.4)
e supplier and consumer behavior for sources and sinks
e COMpressor constraints
e switching constraints for valves and compressors
e terminal condition for the last time step,

where f(x) denotes the original objective function, see Section 5.5.

7.2.2 Neighborhood Structure

We continue with an important part of the algorithm, the specification of a suitable neighborhood
structure which has to guarantee a powerful search. As there are continuous and integer variables



7.2. THE SIMULATED ANNEALING ALGORITHM FOR TTO 87

in case of the TTO problem, the definition of an adequate neighborhood structure is not as intuitive
as for combinatorial problems.

Due to the relaxed continuity and momentum equations the flow and pressure variables as well
as the single time steps (except the first and last time step because of the terminal condition, see
(5.36)) are decoupled. Thus, each time step can be treated separately, and flow and pressure vari-
ables can be determined independently for each time step. Hence, the key idea of the neighborhood
generation is a small perturbation of flow or pressure variables. At each iteration we randomly
choose atime step¢ € T \ {1} and either a segment e = vw € E or anode v € V. Then the flow
variable ¢, ¢/, or ¢.,, (depending if the chosen segment is a pipe) or the pressure variable p!, is
altered, yielding a flow or pressure neighbor. Note that the change of such a variable often results
in a violation of constraints in the same time step ¢. In order to generate a feasible neighbor for
the relaxed problem (7.4), we use so called repair procedures in order to adapt the neighbor to the
violated constraints or to return that the generated neighbor is infeasible.

So we define two kinds of neighborhoods for a given solution z, the flow Ny, (x) and the
pressure neighborhood N,cssure(x) and denote z’ to be a neighbor of = if 2/ € N(z) =
Npressure() U Npjow(x). In the following we describe in detail how to generate an element of
Npow(x). As the generation idea is similar in case of a pressure neighbor, we only give a brief
description of it.

For generating a flow neighbor, we randomly select a segment e = vw € F and a time step
t € T\ {1}. In case of a pipe we additionally randomly choose between the beginning and end
of it, since it has two flow variables. Then we modify the corresponding flow variable ¢, ¢! , or
q¢.,, by increasing or decreasing its value by Ag, where Ag! denotes the step size (for the step size
selection see below). In case of a flow capacity violation of the segment, the generation terminates
and returns “infeasible”.

After changing the flow variable, just the flow balance equations (5.18) in the initial node v and
the end node w of segment e at time ¢ can be violated. Therefore, we need two repair procedures
to handle these infeasibilities. The first procedure is called adjustFlowBackward() and recursively
adapts the flow variables corresponding to v in reverse flow direction. Similarly the second one
adjustFlowForward() iteratively adjusts the flow variables concerning node w in flow direction.
The idea of these procedures is based on the specific properties of each segment type. Basically
the segments can be divided into two groups: the set of free segments and the set of fixed segments.
A segment belongs to the first group, if a modification of the flow variable at the beginning of the
segment does not effect the flow variable at the end of it and reversely. All other segments are
called fixed. The assignment of the segments depends on the specific constraints. Compressors,
valves, control valves and connections are fixed segments as they have one flow variable, whereas
pipes are free segments since they have flow variables for beginning and end, and these variables
are decoupled because of the relaxed continuity and momentum equations.

The adjustFlowBackward() procedure works as follows. First it checks whether v is a source.
If this is the case, the procedure terminates. Otherwise it randomly chooses an ingoing segment
e € 6~ (v) of v. If ¢ = ww is a fixed segment, the corresponding flow variable is modified such
that (5.18) is fulfilled in node v, and the procedure is recursively applied to node « to continue
adaption in reverse flow direction. In case of a free segment, hence a pipe, the flow variable ¢, ,



88 CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING

~ ~ \e\
4o~o e ¥
: .
connection e,

open valve e,

source --=- : unchanged segments

Figure 7.1: Generation of flow neighbor

is adjusted and the procedure terminates. Unless no capacity constraints such as flow boundaries
or supplier conditions are violated, the procedure returns “feasible”. The adjustFlowForward()
operates analogously in flow direction.

Let us illustrate the flow neighbor generation by an example (see Figure 7.1). Since we consider a
fixed, randomly selected time step ¢, we omit this index in the following. We randomly choose seg-
ment e; € E which is a connection. We alter its flow variable ¢., by Ag., and assume that no flow
bounds are violated. Now the adjustFlowBackward() procedure is called to guarantee flow balance
in node v. This procedure randomly selects the open valve e; from the set of ingoing edges of v
and changes the corresponding flow variable ¢., by Aq.,. As a valve is a fixed segment, recursion
begins. Next, the initial node of valve e, is considered. Since it is a source, the adjustFlowBack-
ward() procedure terminates successfully, assuming that no supplier condition is violated. After
this, the neighbor generation continues in flow direction with the adjustFlowForward() procedure
for node w. The outgoing segment e; is selected. Since e is a pipe, hence a free segment, the vari-
able ¢., ., is adjusted and the procedure stops. Supposing that all capacity constraints are fulfilled,
a feasible flow neighbor was generated.

Now we come to the pressure neighbors in N,,.ssur(z). The main differences to the flow neigh-
bor generation are that pressure variables are nodal variables and that pressure variations must be
adapted independently of the flow direction. A node v € V and atimestept € T \ {1} are ran-
domly selected. After this, the pressure variable p! is changed by Ap,. The resulting constraint
violations of the relaxed problem (7.4) are corrected by the adjustPressure() procedure. Note that
we need just one repair procedure, since pressure changes direction independently. Again, we
have to divide the set of segments into fixed and free elements, but this time with respect to pres-
sure. Hence, open valves and connections are fixed segments as they require pressure equality at
beginning and end. Whereas pipes, compressors, control valves, and closed valves are free seg-
ments, since they can handle pressure differences. Now, the adjustPressure() procedure is called
recursively for every fixed segment incident with node v to guarantee feasibility of the generated
neighbor.

Moreover, we have to pay attention to the controllable elements valves/control valves, and com-
pressors. The algorithm provides the possibility of closing or opening these operable segments. If
during the neighbor generation the fuel gas consumption of an operating compressor falls below
a certain lower bound, the machine can be shut down with a certain probability and with respect



7.2. THE SIMULATED ANNEALING ALGORITHM FOR TTO 89

to switching constraints. Accordingly, the same holds for an open valve, if the corresponding
flow variable reaches a certain minimal value. On the other hand, a compressor or a valve can be
opened, if its associated flow variable is increased during the neighborhood generation.

To conclude the neighbor structure, we have to dwell on step size selection, as the generation
mechanism works on continuous variables. The choice of the step size has a significant effect on
the accuracy of the solution. If the step size is too small, the algorithm needs a very long time to
approximate the optimal solution. Otherwise, if the step size is chosen too large, it is difficult to
obtain an exact solution. Thus, using a fixed step size Ax; for each variable results in a compromise
between solution accuracy and time. To overcome this problem adaptive step size selection was
developed, see for example [MHFO03]. In this approach a neighbor range R; is specified for each
variable z; depending on the problem. Then the adaptive step size Ax; is determined via the
following equation

Ax;=r-R;, (—-1<r<1), (7.5)

where r denotes a random variable. In the case of TTO we use a uniform distribution for the
random variable.

Basically we differentiate between the step sizes Aq and Ap for flow and pressure variables. To
guarantee that the change of the cost function is of the same order of magnitude for the generation
of a flow and a pressure neighbor, the pressure variation Ap must be less than Ag by a factor
of 100. Then a neighbor of N,,..ssure(x) is accepted with the same probability as a neighbor of
Nyiow(z) (see [Mah05]).

7.2.3 Initial Solution

The last aspect of the specific decisions for the SA algorithm is the generation of an initial fea-
sible solution for the relaxed problem (7.4) from which the search starts. For its generation we
use the given initial state of the gas network, i.e., the values of all flow and pressure variables at
the beginning of the planning horizon for ¢ = 1. This state is multiplied to the other time steps
by assigning the variable values to the corresponding variables at time steps ¢t € T \ {1}. Thus,
the resulting solution fulfills the stationary constraints (see Section 5.2) and only transient condi-
tions are violated. Note that because of the relaxed continuity and momentum equations, violated
transient constraints are in principle supplier and consumer behavior and fixations of controllable
elements. By means of the repair procedures of the neighborhood generation such violations can
be corrected.



90 CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING

7.2.4 Cooling Schedule

In this section we have a look at the generic decisions for the SA algorithm. As already mentioned,
they build the cooling schedule and comprise the initial value and the decrement function of the
control parameter 7, the specification of a finite number of iterations for each value of the control
parameter, and a stop criterion. All these settings control the acceptance of worse solutions during
the algorithm. A lot of literature can be found concerning the determination of an efficient cooling
schedule, whereby we concentrate on [LA87, DA91]. In the following we present the cooling
schedule developed for the problem of TTO.

First we concentrate on the initial value 7, of the control parameter 7. This value should be
sufficiently large so that at the beginning almost all transitions are accepted, i.e., the ratio xq
between the number of accepted transitions and the number of generated ones is close to 1. We
follow [DA91] who proposes the following empirical rule. Suppose a given number of m,, trials is
randomly generated under the assumption that all are accepted. Let m; and m, denote the number
of trials with decreasing and increasing cost function (m; + ms = my). Further on, let Af* be
the average increase of costs, hence the average change of the cost function for transitions that are
considered in my. The initial value is calculated with the expression

—Aft (In ma -
To=af (l <m2X0 + (1 - Xo)m1)) 7 (7.6

where x, € (0, 1) is a given acceptance ratio.

Now we outline the number L of iterations for each value of the control parameter 7. This pa-
rameter specifies how carefully the search space is explored. It should be large enough to allow
investigation of the neighborhood of a given solution in all directions. In [DA91], L is determined
dependent on the problem dimension n via

L:Lo'n

with a constant L, the so called standard length. Note that this definition leads to a constant
number for a given problem instance. The dimension of the TTO problem is in principle influenced
by the size of the considered time horizon. Hence we choose L proportional to the number of time
steps 7" with L = 500.

We continue with the decrement function of the control parameter 7. We tested two alternative
approaches for the problem of TTO, the geometric and the adaptive one. The geometric function is
a commonly used decrement rule. It simply requires a constant « € (0, 1) and the reduced control
parameter is calculated with the following formula

T, = aTj, (7.7)

where 7;, stands for the value of the control parameter in the k-th inner loop (see [LA87]).

The second approach is presented in [AdBHvL86]. This adaptive method uses informations gath-
ered during execution of the algorithm in order to obtain an optimal cooling of the control param-
eter 7. Therefore, the reduction multiplicator is varied in each iteration step and depends on the



7.2. THE SIMULATED ANNEALING ALGORITHM FOR TTO 91

standard deviation o(7;_,) of the objective function in the previous inner loop. The decremented
value 7y, is given by

(7.8)

-1
T, =T, (1_‘_%) 7

30 (Tr-1)

where ¢ is a parameter which influences the velocity of reduction of the control parameter.
Finally we consider the stop criterion for the algorithm. One termination criterion is that there is no
significant improvement of the objective function for a fixed number of iterations, another is that
the algorithm terminates if the control parameter reaches a predefined value (see [LA87]). In case
of the TTO problem, we combined these two criteria, where we use 7 = 0.001 and n = 100000.
Additionally the algorithm stops if the maximum absolute violation of the relaxed constraints is
less than a given accuracy value . Note that in the latter case we find a feasible solution, since we
allow minor violations of the discretized continuity and momentum equations.

This completes the description of our SA algorithm for gas network optimization.

7.2.5 Solution for the Linearized Problem

The SA algorithm described above gives a solution for the mixed integer nonlinear formulation
of the TTO problem. Hence, it works on the exact discretized continuity and momentum equa-
tions (4.5) and (4.6) for the pipes and the fuel consumption function (4.11) for the compressors,
and does not consider any approximation model. If we want to integrate the SA heuristic in our
branch-and-cut algorithm, we have to determine a solution for the linearized problem. This adap-
tation is straightforward as the nonlinear and the linear problem only differ slightly from each
other. The main difference occures in those parts of the algorithm where the nonlinear compo-
nents of the model appear. Let us regard for example the fuel consumption (4.11) of a compressor
e = vw € E.. We know that it is a three-dimensional function f(p., p.,q.) of pressure p, at
the beginning of the compressor, of pressure p,, generated by it and of flow ¢. through it. We
also remember that we have a three-dimensional grid and the function is linearized within each
tetrahedron by means of the convex combination of the exact function values at the vertices of the
tetrahedron (see Section 5.2.5). For determining the linearized function value in a point (p,, pw, ge)
which specifies the current state of the compressor, we have to find the tetrahedron in which this
point lies. Then the point (p,, p., ¢.) can be written as the convex combination of the vertices
of this tetrahedron by means of the A-variables. The values of the \-variables are given by the
solution of a linear system of equations. Finally the linearized function value can be calculated
with the help of these A-values as the convex combination of the exact function values in the grid
points.

Accordingly for a general grid of arbitrary dimension, we have to determine the simplex in which
the point lies where the nonlinear function is to be approximated. The A-values can be calcu-
lated analogously and we obtain the linearized function value by the corresponding convex com-
bination. Note that besides the fuel gas consumption of the compressors, we have a nonlinear



92 CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING

one-dimensional term in the discretized continuity equation and two two-dimensional terms in the
discretized momentum equation. Altogether we receive a solution for the linearized model of TTO
and thus, an upper bound for our branch-and-cut algorithm.

7.3 Computational Results

In [Mah05] the SA algorithm is tested considering three gas networks (see networks in Section
10.1) over different time horizons. At first, alternative approaches are compared and diverse pa-
rameter settings are tried. This is done by means of the smallest test network to obtain a general
calibration of the algorithm. After this, varying time horizons for all test networks and fixations of
compressors are considered. In the following we summarize the computational results.

For the initial value 7, we use the formula given by [DA91], see (7.6). The number of iterations L
for each value of the control parameter 7 is defined depending on the considered time horizon T,
the dimension of the TTO problem. It turns out that L = 500 - (7" — 1) provides a good value.
First of all, the fixed step size selection is compared with the adaptive one. Test runs show that the
optimal value for the fixed step size must be determined experimentally for each tolerance limit .
Otherwise it could happen that the algorithm fails and does not yield any feasible solution. The
adaptive step size approach is more flexible for different accuracy values . Moreover, it always
finds a feasible solution and the running time is better. Therefore we integrate the adaptive step
size selection because of its flexibility and speed.

Thereafter the different penalty cost approaches for the relaxed constraints are compared, static
costs (7.1), dynamic costs (7.2), and the combined method (7.3). For the dynamic penalties no
parameter settings could be specified to find a feasible solution. Hence, this method does not seem
to be applicable for the problem of TTO. For small planning horizons, e.g. 7" = 3, there is no
difference between the static and the combined cost function. But with increasing complexity, the
static method fails as it cannot determine any feasible solution. So we choose the combined penalty
approach since it certainly gives a feasible solution. This alternative was especially developed for
the TTO problem where R; = 10 and C; = 0.0005 for all j and oo = 2 are good parameter values.
Then the geometric and the adaptive decrement function (7.7) and (7.8), respectively, of the control
parameter are compared. For small time horizons the geometric method is considerably faster with
decreasing « than the adaptive one. But at the same time the probability decreases that it finds a
feasible solution. In case of greater values of 7" the adaptive decrement is more reliable and faster.
Thus, we take the adaptive decrement function where 6 = 20 is a good parameter choice.

For concluding the calibration of the parameters we again have a look at the step size selection.
We have to specify step size ranges R, and R, for the adaptive method applicable for different ac-
curacy parameters <. As already mentioned, R, must be less than R, by the factor of 100. Hence,
different values of < are considered while varying the neighbor ranges R, and R,. In contrast to
minor differences of the objective function value between several test runs, the solution time varies
considerably. Again the flexibility of the adaptive step size method with respect to changing accu-



7.3. COMPUTATIONAL RESULTS 93

racies can be observed. For all considered values of ¢, the best results are obtained using R, = 5
and R, = 0.05. Besides, we remark that there is a clear dependency between time and accuracy.
With decreasing ¢ the running time increases moderately.

After determination of the parameter settings, the three networks are tested over different time
horizons 7" with accuracy € = 0.1. Note that for the third network we have to decrease the distance
parameter ¢ of the adaptive decrement function to 5 in order to obtain a feasible solution. Beyond
this, no parameter changes are necessary. The algorithm yields feasible solutions of the problem of
TTO for all considered examples. Naturally a notable raise of running time can be observed with
increasing 7.

For the first test network, the smallest one, the running times range between 6 seconds for 7' = 3
and 5 minutes for 24 time steps. These results are very good.

For the second network the running times are considerably longer even though the complexity of
these test instance increases only slightly. Here the times varies from 15 seconds for 3 time steps
to about 16 minutes for a day. Amongst others this is due to good initial solutions generated for the
SA algorithm in case of the first network. The initial solutions generated for the middle network
do not give feasible settings of the controllable segments, thus at the beginning, the algorithm has
to test different states of the compressors which increases the running time.

Surprisingly, we receive the best solution times for the biggest network, the third one. Again this
can be attributed to good initial solutions for SA. Here the algorithm needs 4 seconds for 3 and 77
seconds for 24 time steps.

Altogether, the SA algorithm for TTO is able to find feasible solutions considering up to 24 time
steps in very fast running times.

To summarize, we presented a SA algorithm tailored for TTO. Since this problem comprises in-
teger as well as continuous variables, we follow the relaxation approach for some constraints. To
decouple time steps as well as pressure and flow variables we relaxed the discretized continuity
and momentum equations and integrated them by means of an especially developed penalty term
in the objective function. For the local search we defined flow and pressure neighborhoods for
the relaxed problem by the perturbation of variables. An adequate cooling schedule was found
according to the literature.

The tuning of the methods and parameters was very extensive. But altogether we obtain a flexible
algorithm which does not use special properties of the problem instance. Moreover, it is robust
against modifications of the basic conditions. The resulting SA algorithm yields feasible solutions
in very good running times where only marginal changes of parameters are necessary.



94

CHAPTER 7. A PRIMAL HEURISTIC: SIMULATED ANNEALING



Chapter 8
Switching Polytopes

In this chapter we consider 0/1 polytopes - which we call switching polytopes - that are defined
by modeling minimum runtime and downtime and of switching processes for a machine. Such
conditions appear for compressors in our transient gas network optimization.

At first we state the mathematical formulation of these conditions. After this we give a survey on
related literature. Finally we summarize the studies of these 0/1 polytopes that were developed
within the scope of a diploma thesis and can be found in [Mar05]. For the computation of the
linear description of the switching polytopes for small instances we used PORTA [CLO00].

8.1 Mathematical For mulation

As already mentioned in Chapter 5, min-up and min-down conditions and switching processes (for
consideration of constant start-up and shut-down costs) are modeled via

ot -2t <! for 2<t<j<min{t+L-1,T} (8.1)

et <1 -2t for 2<t<j<min{t+(-1,T} (8.2)

at =t =2l + i, =0 for t=2,...,T (8.3)
Thp + T < 1 for t=2,...,T. (8.4)

Here T' € N denotes the number of time steps (in our case hours), into which the planning horizon
is divided. L € N is the min-up time for the machine, i.e., when the machine is switched on
it must be on for at least L time steps. Similarly [ € N is the min-down time of the machine.
The binary variable z* indicates if the machine is operating (= 1) in time period ¢ or not (= 0).
Finally the binary variable =, or =/, equals 1 if and only if the machine is switched on or off in
time period ¢, respectively. The inequalities (8.1) and (8.2) assure the min-up and min-down times

95



96 CHAPTER 8. SWITCHING POLYTOPES

of the machine. Whereas conditions (8.3) and (8.4) guarantee the correct settings of the up- and
down-variables.

Note that in this chapter we use a minor modification for the denotations. In Chapter 5, we indicate
by s, st ., and s ;,,, the switching, start-up and shut-down variable of a compressor e € E¢,

respectively. Here, we choose the letter ‘2’ instead of ‘s’ and neglect the compressor index e.

8.2 Literature Survey

Besides in gas network optimization, minimum runtime and downtime conditions for machines
can be found in other applications as for example power production or regenerative energy (see
[GNRS00, NNR*™00, AC00, TKWO00, HNNSO04]). In the following we give a detailed description
of the article [LLMO04] of Lee, Leung and Margot. In this paper, Pr(L, ) is defined as the convex
hull (in RT) of the 0/1 solutions of (8.1) and (8.2). The authors investigate these 0/1 polytopes
- so called min-up/min-down polytopes - defined by the min-up and min-down conditions for a
machine. There the following classes of inequalities are defined.

Definition 8.2.1 For a nonnegative integer k, consider a nonempty set of 2k + 1 indices from the
discrete interval [1, 7] with ¢(1) < ¥(1) < ¢(2) < ¥(2) < ... < ¢(k) < (k) < ¢(k + 1) such
that p(k + 1) — ¢(1) < L. With these indices the alternating up inequality

k+1 k
_ Z 290 1 Z @ <0 (8.5)
=1 j=1

is associated.
By requiring ¢(k + 1) — ¢(1) < [, the alternating down inequality

k+1 k
qus(j) _ Z 240 < 1 (8.6)
j=1 J=1

is defined.

Note that inequalities (8.1) and (8.2) and the simple lower bound inequalities —z7 < 0 and upper
bounds 2/ < 1 are alternating up or down inequalities. Notice the symmetry in these inequalities
by switching the roles of L and I and complementing the variables z* (i.e., replacing z* by 1 —
x'). Validity of these inequalities for Pr(L,1) is checked by considering all feasible 0/1 vectors
that fulfill the min-up and min-down conditions and inserting these vectors in the corresponding
inequality.

Moreover, the alternating up and down inequalities describe facets of Pr(L, ). This is shown by



8.2. LITERATURE SURVEY 97

specifying T affinely independent points that are tight for the respective inequality. The main result
of [LLMO4] is that the alternating up and down inequalities provide a complete linear inequality
description of Pr(L,1). The idea of the corresponding proof is that any point, satisfying all of
the alternating up and down inequalities, can be expressed as a convex combination of extreme
points of Pr(L,1). The authors also indicate a separation algorithm yielding (for a given z € RT)
a maximally violated inequality (if any) of the form (8.5) and (8.6) in running time O(T).

Now we come to switching costs. In applications, if switching costs are taken into account, start-
up costs for machines are always considered whereas shut-down costs are mostly neglected. In
the literature two models of start-up costs are distinguished, constant and down-time dependent
start-up costs.

First we look at the basic model of constant start-up costs, i.e., down-time independent, see for
example [GNRS00, NNR*00]. For time step ¢, these costs can be expressed by

t t t—1

Cypmax{z’ — ", 0},

where C/, are the positive and constant start-up costs for a machine at this time. Note that the
maximum is one, if and only if 2 = 1 and 2'~! = 0. If we want to integrate this cost factor
in a MIP, we have to linearize it. Therefore we need the additional variable =, and the further

constraints

xfm > gt — gt (8.7)
xtup <z (8.8)
o <1 — gt (8.9)

up —

which assure the right setting of the variables (see [PWO06]). The variables 7, can only be equal
to one, if the machine is operating in time step ¢ (see inequality (8.8)) and not operating in time
step ¢ — 1 (see inequality (8.9)). If both states occur simultaneously, inequality (8.7) forces z,,
to one. Notice that the inequalities above linearize the equation =/, = z*(1 — z*~'). In [Mar05]
polyhedral studies of the polytope defined by (8.1), (8.2) and (8.7) to (8.9) can be found. Facet-
defining inequalities and an appropriate polynomial separation algorithm are specified, which is
tested by means of compressors in a gas network.

Now we come to an extended approach where the start-up costs depend on the preceding down
time of the machine. The longer the time that the machine was shut down the higher are the start-
up costs. If the down time of the machine exceeds a certain bound, the costs are assumed to be
constant, since this necessitates a so called cold start of the machine. This results in piece-wise
constant start-up costs.

For time step ¢ they can be modeled by (see [GNRS00])

min{7,t—1}

max < C (2" — Z o) b

k=1



98 CHAPTER 8. SWITCHING POLYTOPES

where C are the constant costs if the compressor is turned on and has been switched off the
preceding time steps. These cost coefficients are in ascending order with C'y = 0 to ensure non-
negative start-up costs for time step ¢. The compressor needs 7. time steps to cool down, hence
C-, are the costs for a cold start. The term z* — E?j}{”_l} z'=* is bounded from above by 1. For
7 > 0 itequals 1 if and only if the machine is operating at time ¢ (x* = 1) and has been off-line the
min{r,¢ — 1} preceding time steps (z'~! = ... = gmax{li=7} = (),

In [ACO0] a linearization of these time-dependent start-up costs can be found. This formulation
needs additional binary and integer variables and constraints resulting in a complex model.

The results presented in this chapter were independently developed in [Mar05] and [RT05] where
polyhedral studies concerning minimum up and down constraints and start-up and shut-down costs
can be found. In the paper [RTO05] of Rajan and Takriti the down-variables 2%, . are eliminated
from the model via equations (8.3) and the resulting polytope is investigated. Taking into account
this variation, the authors obtain the same set of inequalities as we give in Lemma 8.3.2. They
prove validity of these inequalities and facet-defining property with the same arguments as we do
(see [Mar05] and Section 8.3.1). The polyhedral studies differ in the proof of the main result, i.e.,
that the given constraints yield a linear inequality description of the polytope. Following the idea
of [LLMO4], the authors of [RT05] show integrality of the resulting polytope by proving induc-
tively that any point in it can be written as a convex combination of integral elements. Whereas
we demonstrate that the system of linear inequalities, including the down-variables, is totally dual
integral. [RTO5] tested the developed separation algorithm within the scope of a branch-and-cut
algorithm for the unit commitment problem and show the benefit of it. It is clear that the inequali-
ties resulting from runtime and switching conditions dominate the alternating up/down inequalities
defining the min-up/min-down polytope. Moreover [RT05] point out that the alternating up/down
inequalities describe a projection of the switching polytope if all up- and down-variables are elim-
inated.

8.3 Investigation of the Switching Polytopes

In this section we investigate the switching polytopes. As mentioned above these polytopes are
connected with runtime conditions and constant switching costs of compressors in our transient
optimization.

8.3.1 Polyhedral Studies

For short we define

(ZE, xup? dewn)T = ((‘Tlv Tt 7xT)7 (I’ip, tt 71’5]))7 (x?lown7 tt 7x§own)—r‘



8.3. INVESTIGATION OF THE SWITCHING POLY TOPES 99

We consider the switching polytope P;%ff)h which is defined as the convex hull of all feasible
solutions of inequalities (8.1) to (8.4), that is

P;‘(”Liflc)h i= conv{(%, Tup, Taown) ' € {0, 11772 | (2, Tup, Taouwn) = Satisfies (8.1) - (8.4)},

where T € N is the number of time steps of the planning horizon and L, [ € N are the min-up and
min-down times of the machine.

In the following we study this switching polytope. Detailed proofs of the statements can be found
in [Mar05], whereas we just sketch the ideas.

At first we have a look at the vertices of the polytope. Obviously all vertices are 0/1-vectors. Since
a vertex must fulfill the minimum runtime condition, a sequence of 1-entries in the first subvector
2 must have a length of at least L, except at the beginning and end of the horizon where shorter
1-sequences are allowed. Likewise the minimum downtime condition is assured for a vertex if a
zero sequence (in the first subvector) has a length of at least /, except at the beginning and end of
the horizon. The subvector z,,, of a vertex can have a positive entry if and only if the corresponding
state variable equals 1 and the preceding one is 0. Conversely, zf,_ ... is positive if and only if the
corresponding state variable is 0 and the preceding one has value 1. Trivial vertices are

e:=((1,...,1),(0,...,0),(0,...,0))" and z:=((0,...,0),(0,...,0),(0,...,0)7,

where the machine is on resp. off during the whole time horizon. Further vertices with simple
structure are given by solutions a; where the compressor is operating at the beginning of the plan-
ning horizon and it is switched off in time step j € {2,...,T'}. Note that for a; the subvector z,,
has no positive entry and exactly one of the down variables - namely :r:flown - equals 1. Similarly,
we have vertices b; where the machine is initially off and it is turned on at time j € {2,...,T'}.
Here 40, = 0 and just 27, of the up-variables is positive.

By means of these vertices, we can determine the dimension of P},

Lemma8.3.1 dim (Pyt/") = 27" — 1.

Proof. Because of equations (8.3) Py(/;" has dimension at most 27" — 1. Now we choose the
following 27 vertices
e,z and Clj,bj with j € {2,,T}

It is easy to show that these points are affinely independent, which implies the statement. N
In the following lemma we present inequalities that are valid for P;?Liff)h.
Lemma 8.3.2 The following inequalities are valid for P;%”Liff)h.
(i) The nonnegativity constraints
z, >0 for i=2.. T (8.10)
Thown >0 for i=2 ... T (8.11)



100 CHAPTER 8. SWITCHING POLY TOPES
(i) ForT —L+1>2
T T
"> ah, = Y Ak, <0 for i=2.. T-L+1 (8.12)
k=i

k=i+L

and if T — L + 1 < 2 these inequalities reduces to
T
—z7 + Z xﬁp <0.
k=2

(i) For T — 1 +1>2

T T
o=y k> Ak, <1 for i=2. . T—1+1 (8.13)
k=i+1 k=i

and if T'— [ + 1 < 2 these inequalities reduces to

T
T k
T+ Zxdown <1
k=2

Proof. We just explain the validity of (8.12) incase 7' — L + 1 > 2. The idea can be adjusted for
(8.13) and the proofs for all other inequalities are trivial.
Leti € {2,...,T — L+ 1} and let (2, Zyp, Taown) ' be a vertex of P;?Liff)h. Because of the min-

imum runtime L the value of the sum >/ ah exceeds the value of Z;;FZHL zk . by at most
one. If Y5,k < S0 ok . the point (2, 2.y, Taewn,) " fulfills inequality (8.12). In case of
Zfzi ah, > ZLHL xk . the machine must be on in the last time step 7', hence the left side of
the inequality equals zero. a

As in the case of the alternating up and down inequalities for the min-up/min-down polytope, we
can detect a certain symmetry. Complementing the variable =7, switching the roles of L and [ and
interchanging the variables =, and 2%, maps (8.13) to (8.12).

Having the validity of these inequalities, we can also show that these inequalities induce facets of
the switching polytope.

Lemma 8.3.3 The inequalities (8.10), (8.11), (8.12) and (8.13) describe facets of the polytope

switch
PT(L,l) '

Proof. For each kind of inequality, we can specify 27" — 1 affinely independent points that satisfy
the corresponding inequality at equality.



8.3. INVESTIGATION OF THE SWITCHING POLY TOPES 101

For inequality (8.10) we choose a; for j € {2,...,T}, b, for j € {2,..., T} \ {¢}, and the points
eand z.

For inequality (8.11) we can take a; for j € {2,...,T}\ {i}, b; forj € {2,..., T}, eand z.

In case of inequality (8.12) the situation is a little bit more complicated. We have a; for j €
{2,...,i+L—1} b;forje{i,..., T} and z. Beyond those we choose the following 7" — L — 1
points, where the machine is shut down at the beginning and at the end of the planning horizon and
it is switched on at time j € {2,...7 — L} for exactly L time steps.

For inequality (8.13) we take a; for j € {i,..., T}, b; forj € {2,...,i+ 1 — 1} and e from the
simple vertices. Furthermore we have T' — [ — 1 points, where the compressor is on at beginning
and end of the horizon and it is switched off at time j € {2,...7T — [} for exactly [ time steps.
ThecasesT — L+ 1< 2andT — [+ 1 < 2 are easy to handle and are neglected here. a

In the next step we prove that these inequalities together with equations (8.3) yield a complete
description of P

Theorem 8.3.1 Equations (8.3) and inequalities (8.10), (8.11), (8.12) and (8.13) give a complete
linear description of Py

The crucial point of the proof is that the system of linear inequalities (8.3), (8.10), (8.11), (8.12)
and (8.13) is totally dual integral (TDI). Interesting to note is that this linear inequality description
of the switching polytope is already TDI without adding further constraints.

Proof. We restrict ourselvestothecase T'— L +1 > 2and T — [ + 1 > 2. The other cases can
be handled analogously.
Let P3¢ be the polytope defined by (8.3), (8.10), (8.11), (8.12) and (8.13). We show P} =

P;l(”gff)h to prove the statement. Since the above inequalities are valid for P;l(”gff)h, we have P;l(”gff)h C

Dswitch
Prc -

Let LP;¢;"" denote the set of solution of the linear programming relaxation of P}

First, we verify the inclusion Pswitch C [ pswitch by showing that a point that does not lie in
T(L,l) T(L,l)

LP;?Liff)h cannot lie in P;?Liff)h. Thereafter we just have to show that the polytope P;‘(”L"ff)h is integral,
which implies the missing direction.

As mentioned before one can show that the above system of inequalities, which describes the
polytope ﬁ;%ff)h, is TDI, hence the integrality of P;f(“gtf)h follows. In the following we sketch the
ideas of this proof, details can be found in [Mar05].

Let

T _
c:=((c1,...,or), (57, .. cf), (5. .. ) e 7372



102 CHAPTER 8. SWITCHING POLY TOPES

be an integral vector. We consider the dual of the inequality system (combined with objective
function ¢ (x, Zuyp, Taown) ") given by

T—I+1
drp = min E Yi
i=2

min{s,T—L+1}

i—l
k=2 k=2
i—L min{s,T—1+1}
—vi =Y wit+ Y pta=drm for i=2....T (8.15)
k=2 k=2
—Zk9 = (1 (816)
Zi — Zi+1 = G for 222,,T—1 (817)
T—-L+1 T—1+1
— Z W + Z Y+ 27 = Cr (8.18)
k=2 k=2
U,Z,UZZO fOI’ 222,,T
w; >0 for 1=2,.... T—L+1
y; >0 for i=2,....T—1+1
z €R for 1=2,....T.

For proving the TDI property we must find an integral optimal solution if d; p is finite. It is possi-
ble to construct such an integral optimal solution for an arbitrary integral c.

By means of constraints (8.16) and (8.17) the values of the z-variables can recursively be calcu-
lated. Since c is integral, they are also integral.

Now we come to the more complicated determination of the y- and w-variables. Note that we
initially neglect the remaining variables » and v. Let us first sketch the idea. As the y-variables
constitute the objective function, we have to minimize their values. In the following we determine
positive settings of the y-variables that are forced by (8.15). Thereafter, we iteratively calculate
eventually positive values of the w-variables enforced by (8.14). Note that if in this iterative pro-
cess we receive a positive w-variable, we have to increase the value of exactly one y-variable.
Moreover, we see a dependence of the w-variables on the y-variables and vice versa. Hence the
increment of this one y-variable might influence other w-variables. But as we will see, this in-
crement only concerns w-variables that are considered later in the iterative determination process.
After the setting of all y- and w-variables the value for the «- and v-variables can be calculated.
Let us begin. At first we assign positive values to the y-variables which are forced by (8.15) since

i—1 i—L i—1
down down
Yi =06 Tz — E Y +v; + E wg > ¢ — 2 — E Yk
k=2 k=2



8.3. INVESTIGATION OF THE SWITCHING POLY TOPES 103

and calculate )
i
d
y; = max{c®" — z; — Z Y, 0}
k=2

for: = 2,...,T — [. Variable yr_;,; is considered in a moment, since it may appear in several
equations. In the following we must increase a variable y; if one of the variables w; for k =
2,...,1— L gets positive.

Furthermore we iteratively determine eventually positive values of the w-variables if demanded by
equations (8.14). Because of

i—1 i—1 i—1 i—1
wi:c§p+zi—2wk+2yk+ui zc?p%—zi—Zwk%—Zyk
k=2 k=2 k=2 k=2
we have

i—1 i—l
w; = max{c;” + z; — Z wy, + Z Y, 0}

k=2 k=2
fori =2,...,T — L. Again the last variable wr_; . is considered below. Here we recognize that
the w-variables depend on the y-variables and vice versa. But this does not put a problem as we
will see in the following.
If w; > 0during the recursive calculation we have to increase variable y, with s = min{ L+, T—[}
if and only if min{ L+, T — 1} = L+1. Note that because of equations (8.15) it suffices to change
exactly one y-variable namely the first one that is affected by w;. Moreover we have to take into
account that an increase of y, only influences variables w; with j > s+1 = L+i+1, i.e., variables
not yet considered in the iterative process.
We are able to calculate nonnegative integral values of the variables w;, i = 2,...,T7 — L and y;,
1 =2,...,T — [ that are required by (8.15) and (8.14).
We set

T—1 i—L
Yr_141 = Max max {cfaw” —z; — g Yk + E w }, 0
T>i>T—1+1
k=2 k=2
and
T—L i—1
up
Wr_r+1 = mMax max c; +z-—§ wk+g w1, 0 p .
+ Tzz'zT—Lﬂ{ L ! Pt 4 2y s

To guarantee constraint (8.18) we have to change wr_; .1 or yr_;,1 depending on the sign of the
violation of the equation. If c; — zp > — S Faw, + STT-14 1y, we have to increase yr_;4
accordingly, since this has no influence on the values of the w-variables (and hence on other y-
variables). Otherwise we increase wr_ 1 Which has no consequence for values of y-variables.
Finally we determine the - and v-variables such that equations (8.15) and (8.14) are fulfilled. By
construction of the other variables this results in nonnegative variables. For example a variable v;,
fori =2,...,T — [ may only be positive if y; equals zero.

Altogether we have determined integral values of the variables and all constraints are fulfilled. By
construction this solution is even optimal, since the decrease of any y-variable would result in a



104 CHAPTER 8. SWITCHING POLY TOPES

violation of condition (8.14), (8.15) or (8.18).
a

Therewith the studies of the switching polytope are complete. In the next subsection we have a
look on separation in this context.

8.3.2 Separation

For typical practical applications, i.e., T — L+ 1 > 2and T — [ + 1 > 2 holds, the switching
polytope can be described by T" — 1 equations, 27" — 2 nonnegativity constraints and 27" — L — [
additional inequalities with coefficients +1 and right-hand side 0 or 1. Hence separation of these
conditions is an easy task.

In [Mar05] a corresponding separation algorithm with running time O(T") can be found, which is
tested considering three gas networks (see networks in Section 10.1) over different time horizons.
The results of the separation algorithm are compared with the model where conditions (8.1) to
(8.4) (the formulation found in the literature) are explicitly integrated.

At first switching costs of the compressors are set to zero (hence the coefficients C¢,, and C! ;.
equals zero in the objective function, see Section 5.5). For the two smaller gas networks the sepa-
ration algorithm could improve the lower bound by factor 2 and 3. Moreover the number of nodes
in the branch-and-bound tree is reduced by factor around 10 for some planning horizons in case of
the middle test instance. For the biggest network less improvement of the lower bound could be
observed, only a factor around 1.1 was noticeable.

In case of no switching costs, [Mar05] also tested the model where switching processes and min-
imum runtime and downtime for compressors are completely omitted. It turns out that the ne-
glection of these conditions yields the worst computational results. For the middle test instance
the results are comparable with the explicit integration of (8.1) to (8.4), but for the smallest gas
network the number of nodes in the tree increases dramatically by factor 2 up to 10, and for the
biggest one the lower bound is worse. Thus, the additional conditions for the states of the com-
pressors help to improve the solution algorithm.

In a second step, the two solution methods (separation algorithm and formulation (8.1) to (8.4))
are compared considering several positive values of switching costs and fixations of compressors,
i.e., the state variable of a machine is forced to be zero or one in a certain time step. In practice
fixations of machines are interesting for example because of maintenance work. In that case the
improvement of the lower bound by the separation algorithm is less (factor 1.1 to 1.6) but the num-
ber of nodes in the branch-and-bound tree could be reduced significantly by a factor 3 up to 11.
Altogether, the comparisons show the benefit of the separation algorithm, since the lower bound
and the size of the tree could be improved. So we integrate it in our solution process for the TTO
model.



Chapter 9

Linearization of Functions. SOS Polytopes

In this chapter we concentrate on theoretical studies in connection with the linearization of func-
tions. We focus on an approach using additional binary variables which comes from our first gas
network optimization model. In practice we follow the SOS approach without binary variables, see
Chapter 6. Nevertheless, we received some interesting polyhedral results that we want to present
in this chapter. We used the software package PORTA [CLOO0] to calculate the linear description
for small polytopes concerning approximation models.

At first, we introduce a well-known linearization model including binary variables for one-
dimensional functions (see also Chapter 3). After this, we concentrate on the paper [LWO01] of
Lee and Wilson as our polyhedral studies are related to their work. Finally, we completely charac-
terize the SOS 2 and the SOS 3 polytope arising from the linearization of one- and two-dimensional
functions.

9.1 Binary Linearization Model

Let f: [a,b] — R be a nonlinear function with a,b € R. By subdividing the interval [a, b] into
n — 1 parts we receive n — 1 segments and n grid pointsa = z; < --- < x,, = b, see Figure 9.1.
Let A define the set of indices of these grid points and Y the set of indices of the corresponding
segments.

We present the binary model based on which we made our polyhedral studies. This method is
known as convex combination or lambda method and can be found for example in [NW88] (see
also Chapter 3). We have the modeling variables \’ for i € A and 3’ for j € Y. Further on, we
define for each binary variable 47, j € Y, as neighborhood N (y?) = {4, 7 + 1} the indices of the
adjacent A-variables, and for each \’, i € A, the neighborhood N (\*) = {i — 1,4} with the indices
of the adjoining y-variables. Now we can formulate an MIP which yields for each = € [a, b] an

105



106 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

Figure 9.1: Approximation of a function

approximated function value.

dy=1 (9.1)

Jjey
d N = 9.2)
€A
X< Y oyb o forall ieA (9.3)
keN(AY)
y’ €1{0,1} forall jeY (9.4)
N>0 forall e A (9.5)
r=)Y z; X (9.6)
€A
F=> flx) N 9.7)
€A

Because of the first constraint exactly one segment of the decomposition is selected. The second
constraint shows the convex combination of the A-variables. Constraint (9.3) ensures that only
those A-variables can be positive which are adjacent to the chosen segment, that is f cannot be
approximated by function values belonging to grid points of different segments. The approximated
function value f(z) results from the last equality.

Instead of inequalities (9.3) we could also integrate

Y < Z N forall jev.
kEN(y7)

These formulations are equivalent due to equations (9.1) and (9.2).

Remark that at most two of the \i’s are positive and if \* and \’ are positive, then [ = k — 1 or
k + 1. This kind of sets like A are called Special Ordered Sets of Type 2, briefly SOS Type 2, see
also Section 3.1. They were introduced by [BT70].

In the following we concentrate on the paper [LWO01] of Lee and Wilson. The authors determine a
related extension of the SOS definition developed in [MMMO6] (see also Section 3.2) to approx-
imate functions of more than one variable. There the domain of the function is triangulated by a



9.1. BINARY LINEARIZATION MODEL 107

finite set of simplices, maybe having different dimensions, and then the function is linearly inter-
polated within each simplex. Therefore, the lambda method is extended to the higher dimensional
case. The term ‘adjacency condition’ is introduced corresponding to definition of set condition
(see Definition 3.2.1). The authors study the resulting polytope, give facet-defining conditions,
and provide a complete linear description.

Remember that in this chapter we consider the SOS 2 and the SOS 3 polytope which arise from the
linearization of one- and two-dimensional functions, respectively, over uniform grids. Hence, we
just consider two special cases which are also tackled by Lee and Wilson. The studies presented
in this chapter were obtained independently. Obviously, we obtain the same results concerning
dimension and vertices of the polytopes as well as the characterization of facet-defining trivial
inequalities and of valid inequalities. However, in case of the facet-defining conditions for non-
trivial inequalities and the complete linear description of the polytope the results differ. We found
a mistake in the facet proof of [LWO1]. There, only one condition is needed to guarantee the facet
property. We analyzed that this condition suffices in case of a one-dimensional triangulation, i.e.,
the SOS 2 polytope. But already for a two-dimensional triangulation, i.e., the SOS 3 polytope,
further conditions are necessary. In Theorem 9.3.1 we show that in this case three conditions are
needed. Furthermore, we suppose that in higher dimensions at least as much conditions must be
fulfilled as in the two-dimensional case.

As a consequence of this mistake, the proof for the complete linear description of the polytope in
[LWO01] is not correct. The authors show that every nontrivial facet of the polytope is described by
an inequality fulfilling their facet condition. But since the facet proof is incorrect some of these
inequalities are redundant. Thus, we can say that to the best of our knowledge we are the first who
found a complete irredundant linear description of the SOS 3 polytope.

In the following, we present a counter-example for the facet criterion of [LWO01]. At first we give
an introduction of the notation in [LWO1]. A function f : D — R is to be approximated, where
the domain D C R? is the union of a finite number of polytopes and no component of D is a single
point. D is triangulated with a finite set of simplices .7 having the vertex set ¥'(.7), where the
intersection of any two simplices is a proper face of each. ForasimplexT € .7 let V(T) be the set
of its vertices. For each vertex v € ¥ (7), a variable \, and, for each simplex 7" € .7, a variable
yr is introduced. Then the function f(x) is approximated by >, A f(v) via the following
constraints (note that this formulation corresponds to (9.1) till (9.5))

Ay >0 forall ve 7(7) (9.8)

> oa=1 (9.9)
veV ()

D yr= (9.10)
TeT

A= Y yr <0 forall ve ¥(7) (9.11)
T:weV(T)

yr € {0,1} forall T e 7. (9.12)



108 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

1 2 3

Figure 9.2: Triangulation for counter-example

Let P(.7) be the polytope defined by these constraints, i.e., the convex hull of the solutions of
(9.8) to (9.12).
For # C 7, Lee and Wilson consider the inequality

dyr— > AW<0 (9.13)
)

Te#h vEY (LB

which says that if a simplex in 4 is selected, then the vertices used to interpolate the function must
all belong to simplices from Z. Note that this type of inequality corresponds to valid inequalities
given in Lemma 9.2.3 and 9.3.3 for the SOS 2 and SOS 3 polytope. Furthermore, let

Dy:={xeD|xeT, forsomeT € #}
for # C 7. They define that the set # C .7 is a k-breaking set of simplices if
k(Dg) + k(D \ Dg) = k(D) + k,
where «(S) is the number of components of some set S C R¢. Now we can specify the facet-

defining condition of Lee and Wilson.

Proposition 9.1.1 (See Proposition 9 in [LWO01])
An inequality of the form (9.13) describes a facet of P(.7) if and only if # C 7 is a 1-breaking
set.

One direction of this proposition is correct: If an inequality of the form (9.13) describes a facet,
then £ is a 1-breaking set. For the other direction ’<=" we found a counter-example. In the fol-
lowing we use the canonical form of inequalities given in [LWO1].



9.2. THE SOS2 POLYTOPE 109

For a counter-example regard the triangulation 7% shown in Figure 9.2. It consists of eight
triangles and nine vertices. We choose the set # = {1,...,6} which is a 1-breaking set with
the corresponding inequality

TSRy L (] (9.14)

But this inequality does not yield a facet of P(.7%). To see this, take the sets %, = {1,...,7} and
P, ={1,...,6,8}. Note that these sets are also 1-breaking sets with inequalities

yl oy =N - =A<,
v AN = =N <.
Adding these inequalities gives
T SR Ny VL Ry VLY LD N D LD L L |}

Taking equations (9.9) and (9.10) into account this results in (9.14), hence, it cannot be a facet of
P(9).

9.2 TheSOS 2 Polytope

In this section we analyze the polytope arising from the linearization of a one-dimensional function
and the SOS Type 2 condition.

We use the notation of the introduction, i.e., let A = {1,...,n} be the SOS Type 2 of A-variables
and let Y = {1,...,n — 1} be the set of indices of binary variables. Further let N(\Y) = {i — 1,i}
and N(y?) = {j,7 + 1} be the neighborhoods of a A-variable and a y-variable indicating the
indices of the adjacent binary and A-variables, respectively. Remark that all neighborhoods have
cardinality two except that of the first and last A-variable which have cardinality one.

As already shown, the Special Ordered Set of Type 2 problem, briefly SOS 2 problem, can be
formulated as a mixed integer program as follows

=1 (9.15)
JjeYy
d N = (9.16)
iEA
X< Y yF forall ieA (9.17)
keEN(X\Y)
v’ €{0,1} forall jeY (9.18)

N> 0 forall e A. (9.19)



110 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

As abbreviation, we define
A= ()\1’ ey )\n)T and y = (y17 ...,y"‘l)T.

We are interested in the SOS 2 polytope Pg,¢ , Which is defined as the convex hull of all feasible
solutions of the SOS 2 problem, that is

Plos o = conv{(\,y) € R 1| ()\,y) satisfies (9.15) - (9.19)}.

At first, we have a look at the dimension of Pg, ,.
Before, let us denote by
FeR™! forkcAandl €Y

the point with all components equal to zero except the two components belonging to A\* and !
which have value one (these are the kth and the (n + [)th component of the vector). As we will
see later, the vertices of the SOS 2 polytope are of that form.

Lemma 9.2.1 dim (Pg,q,) = 2n — 3.

Proof. Because of the equations (9.15) and (9.16) it is obvious that dim (P&, ¢ ,) < 2n — 3.
Now we choose the following 2n — 2 points

el,e’ , and ef |, ef forke A\ {1,n}

which lie in Pg, ¢ ,. Showing that they are linearly independent implies the statement.

Hence consider
per + pm_qen_y + Z Z prer =0
k€A\{1,n} IeN(AF)

and show that all ;-variables are equal to zero.

Positive entries of the components belonging to A! and A" can just be found in the first two terms,
so their coefficients p} and p7_, are equal to zero.

Further one can conclude inductively that for each neighborhood N(\*), k = 2,...,n — 1, the
p-variables vanish. ;i = 0 holds since y*~! is the y-variable with the lowest index (still in the
equation) and it appears just at this place. From this it follows that ;¥ = 0 because here is the last
positive \*-component. 0

Having determined the dimension of the polytope we consider its vertices. We already used them
in the preceding proof.

Lemma 9.2.2 The vertices of Pg, , are given by the points ¢¥ with j € Y and k € N(y/).
Altogether there exist 2n—2 vertices.



9.2. THE SOS2 POLYTOPE 111

Proof. The feasible solutions of the problem have the following form. Exactly one of the y-
variables is equal to one the remaining are zero. If y/ = 1 only those \-variables adjacent to the
jth segment can be positive, moreover they are convex combined. This proves the claim. N

In the next step we introduce a new class of valid inequalities. They generalize the constraint (9.17)
of the SOS 2 formulation.

Lemma 9.2.3 Let () # J C Y. The inequality

Yo X< (9.20)

keA: N(XF)CJ leJ

is valid for Pg,¢ ,.

Proof. Let() = J C Y and show that the inequality is valid for all vertices of PZ, ,. Let e} be a
vertex with [ € Y and k € N(y!).

If I € J, the point ef fulfills the inequality because the right-hand side is equal to one and the sum
of the left-hand side is at most one.

If 1 ¢ J, it fulfills the inequality because in that case both sides are equal to zero since I € N(\*) ¢
J. [

Later we will give conditions for this kind of inequality to be facet-defining, but we previously
examine which of the nonnegativity constraints represent facets.

Lemma9.2.4

(i) The nonnegativity constraints A\' > 0 and A" > 0 define facets of Pz, ,.
SOS 2

(ii) The nonnegativity constraints \* > 0 for k € A\ {1,n} and y' > 0 for [ € Y are redundant
in the description of Pg,g 5.

Proof.

(i) The 2n — 3 points ef_,,ef for k € A\ {1,n} and e"_, (e}) satisfy A! > 0 (\" > 0) at
equality and are linearly independent (see proof of Lemma 9.2.1).

(i) Letk € A\ {1,n}. We choose the sets J; = {1,....k— 1} and J, = {k,...,n — 1} and take
the corresponding inequalities given by Lemma 9.2.3. Adding these two valid inequalities
yields \* > 0.

Let € Y. We choose the sets J; = {1,...,l} and J, = {l,...,n — 1} and take the corre-
sponding inequalities given by Lemma 9.2.3. Adding these two valid inequalities yields the
redundance of 3' > 0.



112 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

O

After describing the trivial facets we return to the more interesting class of inequalities of Lemma
9.2.3 and give facet-defining conditions.

Lemma9.25 Let() # J C Y, J # Y. The inequality (9.20) defines a facet of P, , if and only
if J=A{1,...,j}orJ={j,...,.n—1}forajeY.

It is easy to illustrate the condition for the inequality to be irredundant. The indices in J as well as
Y \ J must be consecutive.

Before we prove this lemma, we consider as example the case n = 5 as depicted in Figure 9.1. In
this case we have nine variables A1, ..., As and 1, ..., y4 and the corresponding formulation (9.15) to
(9.19). The point (3, 3,0,0,0, 3,0, ;, 0) is a vertex of the polytope LPZ, , defined by the linear
programming relaxation, Where the integrality condition of the y-variables is neglected. This point
is cut off by the inequality

AN <y 4y

which defines a facet of P2, , according to Lemma 9.2.5.

Proof. We first show that the inequality is facet-defining if the set .J has one of the above men-
tioned form. W.l.o.g. let J = {1, ..., 5} with 1 < j < n — 1 and get the inequality

D
k=1

=1

The 2n — 3 points e, e?_,, e ;i} and ef | effork € {2,....,5} U{j +2,..,n — 1} are linearly
independent (see proof of Lemma 9.2.1) and are tight for it.

It remains to prove the converse direction. Here we make a case differentiation.

At first we assume that J = {my, ..., m.} with 1 < m;, < m, < n — 1 that is only the indices of
the set Y\ J are not consecutive. For J we get the inequality

We choose the sets J; = {1, ..., m.} and J, = {m,, ..., n — 1} and take the corresponding inequal-
ities. Adding them yields

S ) Ak<zy+zy

k= mb+1 = my



9.2. THE SOS2 POLYTOPE 113

which is equivalent to the above inequality.
After that we consider the case that either .J is not consecutive or both sets ./ and Y \ J are not
consecutive. Therefore let J be of the following form

U
p=1

whereby ¢ > 2and § # J? = {ml,..mP} C Y forp = 1,...,q with m? < mP™" for p =
1,...,q—1. So J is the disjoint union of ¢ sets consisting of consecutive elements of Y. Notice that
this representation is unique since it is required that the sets J? have maximal possible cardinality
( see condition m? < m?™).

It is easy to see that we receive the inequality belonging to J by adding the ¢ inequalities defined
by the sets J? because of the maximal and disjunctive property. This proves the statement. a

Now we show that we have already found all inequalities describing P&, 5.

Theorem 9.2.1 The facet-defining inequalities (i) of Lemma 9.2.4 and the ones of Lemma 9.2.5
together with the equalities (9.15) and (9.16) provide a complete linear description of Pg, ,.

Remark 9.2.2 The SOS 2 polytope P¢,q , is described by two equality constraints and altogether
2n — 2 inequalities, i.e., two nonnegativity constraints and 2n — 4 constraints given by Lemma
9.2.5.

Proof. Let Pgos , be the polytope defined by (9.15), (9.16), A' > 0, A™ > 0 and the inequalities

i i
DA< yforj=1,..,n—2 and Z )\k<2y forj=2,..n—1 (9.21)
k=1 =1

k=j+1

from Lemma 9.2.5.

To prove the statement we will show that P, , = P&y ,. First note that P, , € PZ 5, Since
the above inequalities are valid for Pg,, ,. Furthermore, it is clear that P, , C LP%, s , holds,
where LPg,q , is the solution set of the linear programming relaxation of Pg,¢,. Therefore,
whenever (\,y) € PZ,q, and y is integer, then (\,y) € PZ,q,. We will conclude PZ,g, C
PZ, , by proving that a vertex of PZ, , cannot have fractional y-components.

Let (), 7) be a vertex of PZ,, and suppose that the point (), 7) has more than one positive y-
component. We will show that (), ) is a nontrivial convex combination of other points in Pgg ,,
which is a contradiction, since in that case ()\,7) cannot be a vertex of PZ,¢,. Thus, for every
vertex of PZ, , the y-components must be integer.



114 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

Notice that n > 3 holds, since at least two y-variables are positive, and thus n — 1 > 2 holds.
Since (), 7) is a vertex of PZ,,, it has to satisfy at least 2n — 1 constraints at equality. As
mentioned above, there are 2n — 2 inequalities and two equalities defining the polytope Pgos 9
thus, at most one inequality cannot be satisfied at equality by (), 7). Here we consider two cases.
Either (), ) is not tight for one of the nonnegativity constraints or it is not tight for one of the
inequalities (9.21).

First, we assume A\' > 0. The proof of the case \" > 0 works analogously. In the former case all
inequalities (9.21) must be fulfilled at equality by (X, 7). Inequality \' < ' yields \' = 7. For
Jj=2,..,n—2,(\y)istight for

j—1 7j—1 J J
FeS Y3y
k=1 =1 k=1 =1

yielding M = g7. Furthermore, \» = 0 holds due to the second nonnegativity constraint. And
finally, we have
n—2 —2
-l (9.16) 1 Z N —1 — yk (9.15) gn—I.
k=1 1

3

B
Il

Thus (A, %) can be written as (), 7) = Z;;l i’ ¢]. This is a convex combination of at least two
points in Pl,g 5, as €] € Plys, C Pl , holds, and we supposed more than one y-component to
be positive. Hence, we obtain a contradiction to (), ) being a vertex of Pl ,.

Second, we consider w.l.o.g. >3, \* < 377 g foraj* € {1,...,n—2}. Thecase Y., A\ <
Zf;jl* y' for some j* € {2,...,n — 1} can be treated analogously. In the former case we obtain
A" = ¢~ from the inequality A\» < y™~!. Forj = 3,...,n — 1, (), ) is tight for

n n—1 n n—1
PIFUD DI SR !

k=j I=j—1 k=j+1 I=j
yielding M’ = 7~ for j = 3, ..., n. Now we have to consider the cases j* # 1 and j* = 1.

If j* # 1 holds, the inequality A' < y' gives \' = 7'. Finally, we can calculate
32619 _ Z oz —q— ng_l _ ©19)
k=3 k=3

Thus (), %) can be written as (A, §) = 7,77 el_, + ' e} which is a convex combination of

at least two points in PZ, ,, a contradiction to (X, 7/) being a vertex.



9.2. THE SOS2 POLYTOPE 115

For j* = 1, we have A\! < §'. Beyond, A' = 0 holds because of the nonnegativity constraint.
Therefore, inequality \! + A2 < ¢! + 42 gives \? = ' + #2. Further on, we can calculate

9.16) o < 3l _ _ - _1_1 (9.15) _
1(:)2)\k>\:0y1+y2+zyk 1(:)y2_'_1.
k=1 k=3

Hence, 7> = 0 holds yielding \*> = ¢'. Note that in the case n = 3 we have already finished
the proof, since we get a contradiction. There are only two y-variables and we assumed that at
least two are positive. Thus, (), 7) can be written as (A, 7) = Y7, §/~" eJ_, which is a convex
combination of at least two points in PZ, s ,, again a contradiction to (X, 7) being a vertex.

This completes the proof. N

To complete the studies of the polytope Pg,q 5, we show how to separate the inequalities (9.21).
For this purpose we consider the inequalities

ILE
k=1

and indicate a separation algorithm. This algorithm can be adjusted to the other kind of inequalities
(9.21).

Let (\*,y*) be an optimal solution for the linear relaxation. If y* is not integer, that is, (A\*, y*)
is not feasible for the SOS 2 problem, we want to find an index j* of the maximally violated
inequality. It is easy to see that j* is given by

y' forj=1,...,n—2 (9.22)

J
=1

J

jf=arg  max Y (A -y,

JE{L,..;n—2} “—

if the maximum is positive. Hence, we receive the following algorithm.

Algorithm 5 Separation of inequalities (9.22)
1: Define Sum := 0, MaxSum :=0 and j* := 0.
2. forj=1,...,n—2do
3 Let Sum :=Sum+ \*¥ - y*,

4 if Sum > MaxSum then

5: Update MaxSum := Sum.
6 Set index j* := ;.

7. endif

8: end for

9: Return index j*.

Either the algorithm returns the index j* of a maximally violated inequality or it returns j* = 0
signifying that there is no violated inequality among the inequalities (9.22).



116 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

9.3 The SOS 3 Polytope

As extension of the SOS 2 problem we investigate the polytope defined by the SOS Type 3 condi-
tion, see also Section 3.2. This condition can be used to linearize two-dimensional functions.

We start by concretizing the term SOS Type 3, briefly SOS 3. Given a rectangle by the intervals
la,b] X [c,d] with a, b, ¢, d € R, we determine an (equidistant) decomposition. We subdivide the
first interval [a, b] into n — 1 parts and the second one into m — 1 parts with n,m > 2. So we
obtain nm grid points and (n — 1)(m — 1) small rectangles. These small rectangles are then halved
in triangles. We identify a nonnegative A-variable with each grid point and a y-variable with each
triangle and number them serially, see Figure 9.3 for an illustration where n = 6 and m = 4.

19
A

A

20

A

21

A

22

A

23

A

17

29

30

11

19

20

24

18

12

2 4 6 8 10

Figure 9.3: Decomposition of a rectangle

For the set of all A-variables the SOS 3 condition states that the set of A-variables which are strictly
positive must belong to grid points of the same triangle.

Now we formulate a mixed integer program modeling the SOS 3 condition. Hereby, we extend the
concept of the SOS 2 problem.

Once again let A = {1, ..., nm} be the set of indices of A\-variablesand Y = {1,...,2(n — 1)(m —
1)} the set of indices of y-variables. The A-variables are bounded by zero and one and the y-
variables are binary. Further on, for each binary variable v/, j € Y, we define as neighborhood
N(y’) the indices of the A-variables belonging to the vertices of the jth triangle, and for each \?,
i € A, the neighborhood N ()\*) is given by the set of numbers of the adjacent triangles. Remark
that the neighborhoods of the y-variables all have cardinality three whereas the cardinality of the
A-neighborhoods varies depending on the position of its grid point. If \* corresponds to a vertex or
lies on an edge of the rectangle, then |[N(\Y)| € {1,2} or |[N()\?)| = 3, respectively. If it lies inside



9.3. THE SOS 3 POLYTOPE 117

the rectangle, [N (\")| = 6 holds.
With our numbering (see Figure 9.3) we receive
[N = [N =1, [NQ")| = [N+ =2,
INAY| =3 foric{2,..n—1}U{n(m—1)+2,...nm—1}U
{n+1,2n,2n+1,3n,...n(m —2)+ 1,n(m —1)},

and cardinality six for all other \.
The SOS 3 condition can be formulated as the following mixed integer program

d =1 (9.23)
JjeY
Z ANo=1 (9.24)
€A
< > yf forall ieA (9.25)
keN()\Z
v’ €{0,1} forall jeVY (9.26)
N> 0 forall ic A. (9.27)

Equation (9.23) ensures that exactly one triangle is chosen and constraint (9.25) guarantees that
only \-variables belonging to the vertices of this triangle can be positive. These constraints extend
the SOS 2 condition, where the corresponding constraints (9.15) and (9.17) guarantee that exactly
one segment is choosen and the positive \-variables must be adjacent to this segment.

If a nonlinear function f i [a,b] x [, d] — R shall be approximated, we have to calculate the exact
function value f(z},z?), ¢ € A, for each grid point of the decomposition (where z! € [a, b] and
x? € e, d]). Then we obtain additional equalities

1_ 1y 2 _ 2 yi
x—Exi)\,x—Exi)\, (z', 2? Efl,l

LIS 1€EA LISHN

We again abbreviate
A= (AL AT and gy i= (gt g2 T

In the following we study the SOS 3 polytope Pg7 5 which is defined as the convex hull of the
incidence vectors of sets fulfilling the SOS 3 condition, i.e.,

P . = conv{(\,y) € RmT2n=D0n=1 1 () ) satisfies (9.23) - (9.27)}.
Like in the previous section, we denote by
ef € RrmH2n=lm=1 " fork c Aandl € Y

the point with all components equal to zero except the two components belonging to \* and 3/
which have value one (these are the kth and the (nm + [)th component of the vector).
We begin with the vertices, since they have the same structure as the ones of the SOS 2 polytope.



118 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

19 20 21 22 23 24

18
A

y2 Y y y %

<p
<
<
<
<

Figure 9.4: Linear independence

Lemma 9.3.1 The vertices of Pgjy 5 are given by the points e with j € Y and & € N(y/).
Altogether there exist 6(n — 1)(m — 1) vertices.

The argumentation of Lemma 9.2.2 can be aplied to prove this lemma.
Likewise, we adapt the dimension to the SOS 3 polytope.

Lemma 9.3.2 dim (Pjs ) =nm+2(n—1)(m—1) — 2.

Proof. Because of equations (9.23) and (9.24) the dimension of PZj , is at most nm + 2(n —
)(m—1)—2.
Now we choose the following nm + 2(n — 1)(m — 1) — 1 vertices of P 4

fori e A : ‘. with  j* = ma
AL G i = g
forjeY\{2(n—1)(m—1)}: eé-* with " = max i
iEN(y7)

and point out that they are linearly independent which proves the lemma. In Figure 9.4 this selec-
tion is illustrated whereby each little arrow stands for a vertex. Head and tail of an arrow specify
the positive y- resp. A-component of the vector. Let us consider

LR DR
i€A FEV\{2(n—1)(m—1)}

and show that the u-variables must be zero. Instead of juggling with indices we argue by means of
sketch 9.4. We proceed iteratively by the rows of (small) rectangles from the bottom up.



9.3. THE SOS 3 POLYTOPE 119

We begin with the lowest row. If we look at the \-variables at the lower edge of this row we remark
that they all have just one arrow thus the corresponding p-factors (uj.*) must vanish. Deleting these
arrows there is exactly one arrow left in each triangle implying that the p-variables of the associated
y-variables must be zero (,uj-*). So we can neglect the arrows of the first row.

The remaining rows can be treated in an analogous manner except the last (upper) one. Here the
arrows at the lower edge can be deleted in the same way but then some triangles are left including
two arrows. However we handle the rectangles of this upper row iteratively from left to right. In
each rectangle there are three arrows. The first one (left) can be omitted since it is the only one in
the lower triangle. As a consequence the middle arrow that remains for the left upper A-variable
can be neglected. Finally the upper triangle owns just one arrow. a

Furthermore, we obtain the same class of valid inequalities as for the SOS 2 problem extending
the neighborhood constraints (9.25).

Lemma 9.3.3 Let () ## J C Y. The inequality

D I

keA: N(XF)CJ leJ

is valid for P§7y ..

The proof of this lemma is similar to the corresponding proof for the SOS 2 polytope, see Lemma
9.2.3.

Before we give facet-defining conditions for this kind of inequalities in case of the SOS 3 polytope
we look at trivial facets resulting from nonnegativity constraints.

Lemma9.3.4
(i) Fori € A the nonnegativity constraint A’ > 0 defines a facet of P43 .

(ii) Let j € Y with |[N(A¥)| > 1 forall k € N(y7). Then the nonnegativity constraint ¢/ > 0
defines a facet of Pgjs 5.

(iii) Let j € Y such that there exists a k € N(y’) with |[N(\*)| = 1. Then the nonnegativity
constraint y/ > 0 is redundant in the description of P25 .

For example for the SOS 3 problem given by Figure 9.3 all nonnegativity constraints except the
two ones for y' and 4° represent facets of Pgy 5 (as [N(\Y)] = [N(\**)| = 1). The redundance
is obvious, since the inequalities \' < »* and \?* < ¢ are valid for Pg) ,.

In general, for a grid of nm points, just the inequalities ' > 0 and 2™~ Y™~ > ( do not induce
trivial facets, since y' > A! and y2(*=D(m=1 > \nm are valid for PZ% ,.



120 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLYTOPES
Proof.

(i) Leti e A. We take (assuming that A\’ does not lie at the upper edge) the nm + 2(n — 1)(m —

1) — 2 points
foric A\ {i}: L.owith j*= ma
ie A\ {i} € J7 = max g
forjeY\{2(n—1)(m—1)}: e;-* with "= max 1.
iEN (y7)\{i}

satisfying ' > 0 at equality. Linear independence of them can be shown in a similar way as
in the proof of Lemma 9.3.2, therefore we omit the details. Because of the linear indepen-
dence A" > 0 defines a facet. (If \° lies at the upper edge we must change max to min in the
determination of ¢* forone j € Y\ {2(n — 1)(m —1)}.)

(if) As in the proof of Lemma 9.3.2 and as in the case (i), nm +2(n —1)(m — 1) — 2 linearly in-
dependent vertices can be determined satisfying the corresponding nonnegativity constraint
at equality.

(iii) Letj € Yand k € N(y7) with [N(A¥)| = 1, i.e., N(A\¥) = {;j}. Because of Lemma 9.3.3
the inequality \* < 47 is valid for P24 .. So ¢/ > 0 must be redundant.

O

Having characterized trivial facets, the subsequent theorem states conditions for the inequality of
Lemma 9.3.3 in order to be facet-defining.

Theorem 9.3.1 Letd # J C Y, J # Y. Define I := {k € A | N(\*¥) C J}. The inequality
DAY Y (9.28)
kel leJ

defines a facet of PZj 5 if and only if the following conditions are fulfilled:

(1) Each triangle of the set J has a corresponding A-variable in the set /, i.e.,
VpeJ: NyP)nI 0.

(2) The A-variables appearing in the inequality are connected, i.e.,
Vk,l eI Jiy,....i, € [ withi; =k, i, =1,and N(A=)NN(\=+1) £ Pfors=1,...,r—1.

(3) The triangles given by the set Y\ J touch, i.e.,
Vp,q € Y\ J 3j1,...,5. € Y\ J with j; = p, 5, = ¢, and N(y’*) N N(y/s+1) #£ @ for
s=1,....,r—1.



9.3. THE SOS 3 POLYTOPE 121

Remark that in our case the terms ‘connect’” and “touch’ specify two different kinds of connection,
by edges on the one hand and by vertices on the other hand. To illustrate the connection of A-
variables in condition (2), we consider Figures 9.7 and 9.6. The A-variables marked by black
points in Figure 9.7 are connected. The marked A-variables in Figure 9.6 are not connected, since
A8 is isolated. Finally, we describe the term ‘touch’ for triangles in condition (3). The white
triangles in Figure 9.7 do not fulfill this condition, whereas the white triangles in Figure 9.5 touch
(but they are not connected).

We see that the facet-defining conditions are a bit more complicated than the ones in the case of
Pg,q 5. Furthermore, it is easy to prove that the triangles given by the set J must be connected,
i.e., the following condition is fulfilled

(4) The triangles given by the set .J are connected, i.e.,
Vp,q € J Fji,..,jr € J with j; = p, j, = ¢, and |N(y’s) N N(y=+1)| = 2 for
s=1,....,r—1.

Note that if the set [ fulfills condition (2) this implies condition (4) for set .J.

In the following we first show that the individual conditions are necessary and quote illustrative
examples.

Let us begin with condition (1).

Lemma 9.3.5 If the set J of Theorem 9.3.1 does not fulfill condition (1), then inequality (9.28) is
redundant to the description of PZjs 5.

Before proving this lemma we present an example, see Figure 9.5.

7 8 9
A A A

1 2 3

Figure 9.5: Necessity of condition (1)



122 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

Example 9.3.2 Consider the SOS 3 polytope ngs 5 and take the set J = {5, 6, 7} (grey triangles).
Then we obtain the set I = {7} of A-variables (black point). Note that 7 and Y\ J fulfill condition
(2) and (3), respectively. The inequality given by J is redundant for pggs 4, since it is the sum of
the valid inequalities

0<y” and X <y®+45

We extend this special proof to the general case.
Proof. Let() # J C Y, J # Y beasetnot fulfilling condition (1) and I = {k € A | N(\¥) C J}.
Since (1) is not fulfilled we have

dpeJ:Ny)NI =10,

i.e. forall k € N(y) holds N(\*) £ J. i
Define J := J\ {p},then I = {k € A | N(\*) C J} = I because of the assumption. Addition of
the valid inequalities (see Lemma 9.3.3) >~, ; AF < >°, ;¢! and 0 < y? yields

PRRUED DD SUERIED B

kel kef lej leJ

Now we discuss the second condition.

Lemma 9.3.6 If the set I of Theorem 9.3.1 does not fulfill condition (2), then inequality (9.28) is
redundant to the description of Pgjs 5.

This time we choose P35 , for an illustrative example, see Figure 9.6.

Example 9.3.3 The sets J = {1,2,9,...,12,17,...,22,27,28,29}and I = {1,6, 11, 12, 18} fulfill
conditions (1) and (3). The corresponding inequality results from the sum of the valid inequalities
belonging to the sets J; = {1,2,9,...,12,17,18,19} and J, = {20,21,22,27,28,29}, and thus,
is redundant.

Proof. Let() # J C Y, J # Y beasetnot fulfilling condition (2) and I = {k € A | N(\¥) C J}.
Since (2) is not fulfilled we have

dk,l € I Viy,...,i, € I withi; = k,i, = [ there exists
s€{l,..,r — 1} with N(\*) N N(\=) = 0.



9.3. THE SOS 3 POLYTOPE 123

26 27 28 29 30

33 35 37 2
21 22 23 24 25

y y
16 17 18 19 20

y y
11 12 13 14 15

Figure 9.6: Necessity of condition (2)

We define

Cy:={ne€l]|3i,.. i € I withi; = k,i, =nand
NN NN\ £ fors=1,....,r — 1}
Cy:={nel|Fi,..,i € I withi; =[,7, = nand
NN NWN=) £ fors=1,....,r — 1}

which are the (maximal) sets of connected A-variables containing the £th resp. [th A-variable (in
the above example \' and \!® are not connected, so we can choose & = 1 and [ = 18 and get
Cy ={1,6,11,12} and Cg = {18}). C, := I\ (C} U () is the set of the remaining indices in /.
Because of the assumption C, N C; = @ holds, and so I = C;, U C; U C,.

Further on we define

Jeo=J N, J=JNO and o= N

neCy neC neCy
and get the corresponding sets of A-indices

Li={ne A|NOYCJY, [T ={necA|NO)CJ} and
I ={neA|NO")CJ}).

Obviously the following inclusions

Ch €I, CCL; and C, CI,



124 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

are fulfilled (One can even show that equality holds).
Addition of the valid inequalities given by the sets J,, J; and J, from Lemma 9.3.3 yields

STANEI NI Y D> )y

nely nel; nel, neJy neJ; neJy

Because of the above relations the left-hand side of this inequality is greater or equal than )~ _, A™.
Now we show that the following claims hold

(a)JkUJlUJTQJ (b)JkﬁJl:@ (C)JkﬂJTIQ) (d)JlﬂJTI(Z)

which proves the lemma since (9.28) must be redundant.
ad (a): Letm € J, U J; U J,.. W.l.o.g. we take m € J,. Because of definition we have

meJy= | NO") = 3n e Cpwithm e N(A")

neCly

and asn € C, C I, inclusion N(A™) C J holds, hence m € J.

ad (b): Suppose J, N J; # (0. Letm € J, N J;. Because of the definition of the sets .J,, and J; there
existsn; € Cp, and ny € Cywithm € N(A\™) resp. m € N(A\"2), thusm € N(A\")NN(A\"2) # ().
Furthermore we find connected A-variables from & to n; and from [ to n,:

ny € Ck = E"il, ey by € I with 1= ]C,Z'T =N and
NN )NNW\=)#£Q fors=1,...,r—1
No € Cl = 3%1, ...,%; € I with %1 = l,%f = N2 and
NN YN NN+ £ 0 fors=1,...,7 — 1.
Putting them together we get a sequence of connected A-variables iy, v bpydy ety € T with
iy = k, 1, = land N(\"") N N(\7) # (@ since i, = n; and i = ny, a contradiction to our
assumption.

Claim (c) and (d) can be handled similarly, there we get a contradiction to the definition of C}, or
C. 0

Finally we discuss condition (3).

Lemma 9.3.7 Iftheset Y\ J of Theorem 9.3.1 does not fulfill condition (3), then inequality (9.28)
is redundant to the description of P¢7 ;.

Let us illustrate this condition by means of P35 ., see Figure 9.7.

Example 9.3.4 Here we see that the sets J = {3,...,6,11,...,16,18,...,30} and I =
{3,8,13,14,15,17,18, 21, 22, 23} fulfill conditions (1) and (2). Adding the valid inequalities



9.3. THE SOS 3 POLYTOPE 125

21 22 23 24 25
A A A A A
26 28 30 32
y y y
25 27 29 31
y y y y
16 17 18 19 20
A A A A A
18 20 22 24
y y y y
17 19 21 23
y y y y
11 12 13 14 15
A A A A A
10 12 14 16
y y y y
9 11 13 15
y y y y
6 7 8 9 10
A A A A A
2 6
y y4 y v
1 3 5 7
y y y y
1 2 3 4 5
A A A A A

Figure 9.7: Necessity of condition (3)

resulting from the sets J; = {3,...,6,11,...,16,18,...,32}, Jo = {1,...,6,9,...,30} and
Js=1{3,...,8,11,...,16,18,...,30} gives

14+2) A <142 ¢

kel leJ

which shows the redundance of the corresponding inequality.

Proof. Let() # J CY,J # Y beasetnot fulfilling condition (3)and I = {k € A | N(\*) C J}.
Since (3) is not fulfilled we have

Ip,q e Y\ J Vji,...,jr € Y\ J with j; = p, j, = ¢ there exists
s€{l,...,r —1}with N(y*) N N(y’*+) = 0.

We define

C,={leY\J|dj,....5r €Y\ Jwith j; =p,j, =l and
N(y*) N N(y=) £ fors=1,....,r — 1}
Co={leY\J|3,...jr €Y\ Jwithj; =¢,j. =land
N )N Ny ) £Q fors=1,....,r — 1}
which are the (maximal) sets of touching triangles in Y\ J containing the pth resp. gth triangle

(in the above example the first and the last triangle do not touch, so we can choose p = 1 and
q = 32and get C; = {1,2,9,10,17} and C3, = {31,32}). C, := Y \ (JUC, U C,) is the



126 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

set of the remaining indices in Y\ J. Because of the assumption C, N C, = 0 holds, and so
Y\J=C,UC,UC,.
Further on we define

J,=C,UJ, J,=C,UJ and J.:=C,UJ
and get the corresponding sets of A-indices

L={le A\|NN)C J}, I,:={le A|NN)C J,} and
L={le A| N C J}.

Remark that J,NJ, = J,NJ. = J,NJ. = J.
Addition of the valid inequalities given by the sets .J,, J, and .J. from Lemma 9.3.3 yields

Z)\l+2)\l+2)\l§2yl+2yl+2yl

I€, lel, Ie, leJp ledy I,

AsY \ J = C,UC, U C, the right-hand side of this inequality equals

VD U ED Y VY DY =3 v+ )

1€Cy leJ 1eCy leJ 1eC, leJ leJ ley\J
l ! l
=2 E Yy + E Yy =2 E y + 1.
leJ ley leJ

Now we show that the following claims hold
@IL,NIl,=1 ®IL,NI.=I @I,N=1 (dI,Ul,Ul.=A.

Using these claims we can simplify the left-hand side of the inequality to

D oN+2Y N =2 AN+1

leA lel lel

which proves the lemma since (9.28) must be redundant.

ad (a): Direction "2 is clear since I C I,,, I, (remember that J C J,,, J,).

Soletle I,n1I,. Then N(\') C J,NnJ,=Jandsol € I.

Claim (b) and (c) can be handled similarly.

ad (d): Direction ”C” is clear. So we just have to show that the union of 1,,, I, and I, gives A.
Let! € A. If [ € I the claim follows since I, N I, N I, = I. So let{ € A\ I. For proving that
l € I, U1, U I, we must show that N (A") lies entirely in one of the sets .J,,, .J, or J, implying that
[ must lie in the corresponding 7-set.

First suppose that there exist ky, ko € N(\) withk, € J,\J = C,and ky € J,\ J = C,. Because
of the defintion of the sets C, and C,, we find touching triangles in Y\ J from p to %, and from ¢




9.3. THE SOS 3 POLYTOPE 127

to ko:

ki€ Cp= Fj1,....5» € Y \ Jwith j; = p, j, = k; and
Ny )N N(y**)#£0 fors=1,...,r—1

ky € Cy = 3j1,..., 57 € Y\ Jwith j; = ¢, j; = ks and
N*) A N(y) £ 0 fors=1,...7F — 1.

Putting them together at ! we get a sequence of touching triangles 71, ..., jr, ji, ..., j1 € Y \ J with
ji=p j1 = qand N(yi") N N(y7) # 0 since j, = ki, j: = ks € N(A!), a contradiction to our
assumption.

The other cases (existence of ki, ky € N(\) with &, € Cpand ky € C.ork; € Cyand ky € C))
can be handled similarly, there we get a contradiction to the definition of C), or C,,. O

Before we come to the proof of Theorem 9.3.1, we compare the conditions for the set J to define
nontrivial facets in case of the SOS 2 polytope Pg,¢ , and the SOS 3 polytope Pgj 5. Remember
that for PZ,g , the indices in J as well as in Y\ J must be consecutive. This coincides with
conditions (3) and (4) for P{fs 5. It is easy to see that for the SOS 2 problem where we have
segments instead of triangles these conditions imply (1) and (2), the additional conditions for
the SOS 3 case. If J = {1,...,5}or J = {j,...,n—1}foraj € Y, then I = {1,...,5} or
I = {j+1,..,n}, respectively. Because of N(y*) = {k,k + 1} the condition (1) is fulfilled.
Since the indices in I are consecutive, the A-variables are connected.

7 8 9
A A A

1 2 3

Figure 9.8: Example withn =m =3

Furthermore, let us give an example. We consider the case n = m = 3 as depicted in Figure 9.8.
Here we have 17 variables, nine A-variables and eight y-variables, together with the corresponding
formulation (9.23) - (9.27). The point (0,0,0,0,0,0,0,%,%,0,0,0,0,%,0,0, 3) is a vertex of the
polytope LPj 5 defined by the linear programming relaxation, where the integrality condition of
the y-variables is neglected.



128 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

It is cut off by the facet-defining inequality
AN <yf+y 8

given by Theorem 9.3.1.
Now we give the proof of this theorem.

Proof. Let® # J C Y, J # Y be a set fulfilling conditions (1) to (3), and let I = {k € A |
N(AF) C J}. Because of Lemma 9.3.3 we know that inequality (9.28) is valid for P24 .

Define F:= {(\,y) € Pl 5 | D opes A¥ — D 4t = 0} Letb™ (X, y) < 3 be a valid inequality
for P25 . with ' C Fy, = {(\,y) € P8 5 | b' (A, y) = 5}. By means of the vertices of P5as .
we show that b is a multiple of the coefficients of (9.28).

At first we specify for each element in J and Y\ J, respectively, vertices lying in F" and thus in
F},. In the following we denote by by« and b, the components of the b-vector that correspond to \*
or 7, respectively.

():leY\J

Ask ¢ I fork e N(y'), e} € F holds. Hence,

by +b, =B for ke Ny,

i.e., for each triangle [ in Y"\ J all coefficients of \-variables belonging to its vertices are equal to
B — by

(ii):1eJ

Because of condition (1) we have N (y') N I # 0. Thus, e} € F holds for k € N(y') N I and

by +b, =3 for ke Ny NI,

i.e., for each triangle [ in J the coefficients of \-variables belonging to its vertices and lying in the
set I are equal to 3 — b,

In the next step we use condition (2) to prove that the A-variables in I and the y-variables in .J each
have the same coefficient. )

Let k, k € I. Because of condition (2) there exist i1, ..., i, € I withi; = k, 4, = k, and N(\*) N
N(\s+1) £ () for s = 1,...,r — 1. Since A’ and \*+* have at least one common triangle [, €
N(X=) N N(\=+1) C J, for which the coefficient is uniquely determined, we have by (ii) by.. =
B — by, = byi,, fors =1, ...,r — 1. Particularly, byx = b, follows.

Thus, all A-variables of the set 7 have the same coefficient, i.e., there exists an a € R with

by =a for kel,

and as a result of using (ii)
by=0—a for e

)

By means of condition (3) we show that the variables in A\ 7 and in Y\ J each have the same
coefficient.



9.3. THE SOS 3 POLYTOPE 129

Let p,q € Y \ J. Because of condition (3) there exist ji, ..., 7, € Y \ J with j; = p, j, = ¢, and
N(ys) N N(ys+1) # @ for s = 1, ..., — 1. Since y’= and y’++* have at least one common vertex
ks € N(y’) N N(y’=+) C A\ I, for which the coefficient is uniquely determined, we have by (i)
byss = B — byrs = by for s =1,...,r — 1. In particular, b,» = by« follows.

Hence, all y-variables of the set Y\ J have the same coefficient, i.e., there exists a ¢ € R with
by=c for leY\J,

Y

and thus, by using (i)
by = —c for ke A\l

Summarizing these results yields for the inequality defining F;,

ﬁ>bT)\y Zb)\k)\k—FZb)\k)\ +Zbly+Zb

kel kEA\T leJ ley\J
:aZ)\k—l—(ﬂ—c) Z )\k—l—(ﬁ—a)Zyl—i-c Z y!
kel keA\I leJ leyY\J
=(a—pF+c) ZA’“ (a—pB+c) Zy—l— —C)Z)\k+cZyl.
kel leJ keA ley

Since the equality set of PZJ ; isgivenby >, A =3, 1 4f = 1,b7(\,y) = G isamultiple
of >, o, AF = >, = 0, and the statement that F" is a facet follows. O

In the subsequent theorem we show that the facets stated so far already yield a complete linear
description of P 5.

Theorem 9.3.5 The facet-defining inequalities given by Lemma 9.3.4 (i) and (ii) and by Theorem
9.3.1 together with the equalities (9.23) and (9.24) provide a complete linear description of Pgj 5.

Proof. Let ngg 5 be the polytope defined by (9.23), (9.24) and the facet-defining inequalities
given by Lemma 9.3.4 (i) and (ii) and by Theorem 9.3.1.

To prove the statement we will show that P23 , = P22 .. First note that Pi, , € P22 4, since
the above inequalities are valid for Pg ,. Furthermore, it is clear that P57 , C LPL5 5 holds,
where LPZjs 4 is the linear programming relaxation of P& ;. Therefore, whenever (X, y) €
Pz . and y is integer, then (), y) € Pggs 3. We will conclude pzme . C Prme o by proving that
a vertex of Pz , cannot have fractional y-components.

Let (), 7) be a vertex of P2z, and suppose that the point (X, 7) has more than one positive y-
component. We will show that (), ) is a nontrivial convex combination of other points in P32, ..
Hence, we obtain a contradiction, since (), %) cannot be a vertex of Pz .. Thus, for every vertex
of Pz . the y-components must be integer.



130 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

Define S := {k € Y | #* > 0}. Because of the assumption |.S| > 2 holds.

As (), ) is a vertex of Pi% . it has to satisfy at least nm+2(n—1)(m — 1) constraints at equality.
Besides the facets given by Theorem 9.3.1, the polytope ngg 5 Is just defined by the equations
(9.23) and (9.24) and the nonnegativity constraints (i) and (ii) of Lemma 9.3.4. Therefore, the
point (X, %) must fulfill at least |S| — 1 facets of the form (9.28) at equality and all except at most
one of the y-variables in the set .S can be found in these facets.

In the following we iteratively choose one of these facet-defining inequalities (9.28) defined by
sets .J and I and fulfilled at equality by (), 7) in order to eliminate at least one positive y-variable
of the vector (), ), i.e., one variable of the set S. This means that we show that the sub-vector
(A7, ) can be written as the conical combination

(yJ) Z Z xlel

l€J keN(yh)

of points ef in PgZ 5 with zf > 0and 32,0, > cnen oF = Soper A = e, 9’ Thus, we
can neglect these components of (), %) and subtract them, i.e., (X, %) — (A7, %), and continue the
procedure with the remaining vector.

In each step we reduce the number of positive y-variables by at least one and after handling all
possible facets there is at most one positive y-variable left. We will describe below how such an
iteration works in detail, and especially, how to determine a conical combination for (A7, 7).

First, we consider the easier case that only one positive y-variable 4", I* € S, is left.
The inequality

is valid for Pg‘gsg. Hence, only the A-variables belonging to the neighborhood of y"" can be
positive. Since in each iteration we subtract Zkel A =37, ¥, we obtain

=2 M

keN(y'")

( )\N(y ) Z )\kel*

keN(y'™")

and we can write

with ef. € Pa . and AF > 0.

Altogether we can show that (), ) is a nontrivial (since |S| > 2) convex (since Djey y o=
S",ea A = 1) combination of points in Pza. 5. Hence, (), 7) cannot be a vertex.

Now let us consider a facet-defining inequality (9.28) defined by the sets / C Y and I C A and
fulfilled at equality by (1, 7). Before we give a detailed description of finding a conical combina-
tion of feasible points in P§J 5 for (A7, ), as mentioned above, we briefly map out our strategy.



9.3. THE SOS 3 POLYTOPE 131

At first, we show that we can assume w.l.0.g. that the set of positive \- and - variables in I and
J, respectively, is connected. Thus, a connected graph given by these positive variables can be
considered. Then we explain how to divide this connected graph into paths and non-separable sub-
graphs. We proceed in this is way, since we successively determine conical combinations for the
variables appearing in such a path or non-separable subgraph. Given a path P of this decomposi-
tion and its associated sets P* and PY of \- and y-indices, we point out how to find a combination
for (Ap», pv). Additionally, we mention that all paths can be treated successively. At last, we look
at the non-separable subgraphs one after the other. We show how to find a conical combination for
the corresponding variables in that case. For this purpose we decompose a non-separable subgraph
in a cycle with ears.

First step
We subdivide 7 and J in order to receive disjoint maximal connected sets of positive \- and -
variables. So we have

{iel|N>0=LU..UIL, and JNS=JU..UJ,

where I, N I; = Jy N J; = @ for k, 1 € {1,...,p} and the sets I and J,, k € {1, ..., p}, belong
together, i.e., the \-variables of I, belong to vertices of the triangles given by J, and vice versa. In
this context *connected’ stands for connected by positive A’s and ’s. This means that we obtain
pairs of sets I, and .J, with

Vp,q € Iy iy, ....ir € Iy Withiy =p, i, =q and NN )NNA\=+)NJ, #Dfors=1,....,r—1
and

Vp,q € Jp 371, ..y jr € Jp With j1 = p, j, = ¢ and N(y?*)NN(y/=+)NI, #Pfors=1,....,r—1.

Figure 9.9: Example for non-connected sets

In Figure 9.9 we depict two examples to illustrate the term *connected’. The positive \- and -
variables are marked by black points and grey color, respectively. In the left picture y* and 4’ are
not connected in our sense, since A, = 0 holds for a € N(y*) N N(y'). Therefore, they must
belong to different sets .J;, and .J;. In the right picture A* and A’ are not connected according to our
definition, since N(\*) " N(A\H) NS = 0.



132 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

Now we prove the following claim

VEe{l,..pp D> N=) ¢ (9.29)

i€l jedy

Let k € {1,..,p}. To prove (9.29) we first show that 3, N< > ey, ¥’ This is done by
deriving a valid inequality from the sets 7 and J,.
We expand the set .J,. such that the A-variables of the set I, are covered

Ji=|J NO) 2 .

i€y,

Because of the maximality of the set J;, ¥ = 0 holds for all « € Ji \ J;.
Then we expand the set I}, in order to receive a valid inequality for Pgj 5

If={le A|NN)CJ} DI

Here A = 0 for a € I¢ \ I, is fulfilled because of the maximality of the set 7.

Altogether we get a valid inequality Zielg < Zjer y’, where just the \- and g-variables of the
sets I, and J,, are positive, thus 3, ., A" <37 ¥/

Suppose now that 3, ; o< > e, ¥ holds for some k* € {1,..., p}. Then we obtain

P

BRSBTS W LD

el k=1 i€l k=1 jeJy jeJ

which is a contradiction, since by our assumption the facet given by 7 and J is fulfilled at equality.
Hence, equality holds for all the connected pairs of sets. Thus, it is sufficient to consider the case
of finding a conical combination for positive - and g-variables that are connected. We can assume
w.l.0.g. that the sets 7 and .J already fulfill this condition.

Figure 9.10: Connected graph

Second step
These positive A- and g-variables define a connected graph G in the whole grid in the following



9.3. THE SOS 3 POLYTOPE 133

way. All positive \-variables define the nodes of the graph. An edge is part of graph G, if its in-
cident nodes belong to GG and if at least one of the g-variables of the adjacent triangles is positive.
Figure 9.10 illustrates a connected graph G.

As mentioned in Section 2.2, we can decompose the connected graph G into non-separable sub-
graphs and maximal paths. Before we describe the conical combination for variables in these parts
of the graph, we note two simplifications.

At first, consider a positive 77* having but one positive variable X' in its neighborhood. Here we
choose g*e! and subtract it from (A7, ;). In this way we can eliminate all positive y-variables
with only one associated positive A-variable.

Second, for each edge having two triangles £ and [ with * > 0 and ' > 0, see Figure 9.11, we
can combine these two variables. We remove ' from the set .J by adding its value to ¥, since
concerning the conical combination the values of A\® and \° can be arbitrarily distributed to * and
i, respectively.

b
A

Figure 9.11: Eliminating a y-variable

Third step
Now we consider the paths of the decomposition of the connected graph G and show how to find
conical combinations for the variables belonging to them.

First, we examine a path having just one ‘point of contact’ with GG, see Figure 9.12. Due to the
above assumptions, each edge of the path has exactly one positive adjacent g-variable and each
triangle defining the path has exactly two positive A-variables. Let the indices of the path be given
by

P = {ig,iy,....,i,} and  PY = {jy, ...},

Figure 9.12: Path in decomposition



134 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

where 7 is the length of the path and 4, 4, for [ € {1,...,r} are the edges of the path which are
at the same time edges of the triangles 7. Since A\ has no positive neighbor except 7/, we can
iteratively determine a conical combination for the path variables with

S

s—1 s—1 s -1
(S ) m (S0
=1

1=0 =1 =0

for s = 1,...,r. By means of this choice we can eliminate all variables of the path except the
contact point variable \'r.

If there is a path that touches G in both endpoints A\ and A, the situation becomes a little bit
more complicated, since we do not know which fraction of the variables A and A\’ must be taken
for the conical combination of the path variables. By deleting the path from the graph, G breaks
into two components because of the assumption above that the connected graph is divided into
maximal paths and non-separable subgraphs. Summing up the y-variables for each component we
can calculate the fraction of A resp. A" needed by the respective component. Therefore, we can
again specify a conical combination for the path variables and eliminate all except the end point
variables A and A",

We iteratively deal with all paths of the decomposition.

Fourth step
It remains to consider the non-separable subgraphs of GG. As in the case of the paths, we can treat
one non-separable set after another independent of the number of intersections with the remaining
graph. Thus, let us outline the strategy of finding the conical combination for the variables in one
non-separable subgraph Gs. By Theorem 2.2.5 of Section 2.2, we obtain an ear decomposition of
G with

GszCUPlu...UPq,

where C'is a cycle and P, is an edge or a suspended chain having but its endnodes in common
with C'U P, U ... U P;, see Figure 9.13. At any stage C U P; U ... U P; defines a non-separable
graph.

Figure 9.13: Cycle with ears



9.3. THE SOS 3 POLYTOPE 135

Using this presentation of G5, we inductively construct the conical combination, where we begin
with the last ear F,. During the construction, the number of intersections of P; with C' or other ears
gives us the degrees of freedom to ‘tap’ other ears or the cycle. Here we always tap that ear being
the next in the list under consideration P;_4, ..., P;,C. Hence, if we make a wrong decision in
the combination of \- and y-variables for the conical combination, we notice this mistake as early
as possible. Note that there are “little’ ears defined by one triangle with all adjacent \-variables
positive. These exceptions can be treated in the same way as the following ears.

We begin with the last ear P, which has only two intersection points with the graph at its endnodes.
It is similar to a path with two contact points apart from the fact that we cannot calculate the fraction
needed of the A-endpoint-variables, if we delete P, from the graph G's we still have a non-separable
subgraph. Because of our assumptions each edge of the ear has exactly one positive adjacent g-
variable and each triangle defining the ear has exactly two positive \-variables. Let the indices of
the ear be given by

P} ={ig,i1,....i,} and PY={ji, ..., 5},

where i;_17; for [ = 1,...,r are the edges of the ear, which are at the same time edges of the
triangles 7. Further, let A belong to the intersection point with the next ear or the cycle in the
list P,_4, ..., P, C, that is the “tap point’.

Now we come to the determination of the conical combination where we have to eliminate the
variables A\ for { = 1,...,r — 1 and ¢’ for [ = 1,...,r. The strategy is as follows. For the first
variable 77! we take as much as we can of A\ and, if it is not enough, we tap the rest of A\, For an
inner variable 7%, k = 2, ..., — 1, we take the rest of \*~1, as much as we need or can from \
and, at last, we tap A% if necessary. For the last variable 37~ we completely use \*—*, then we tap
Ao as much as we can, and the rest - if any - is taken from A", '

Now we describe the details. We denote the fraction of A~ and A" needed for 7t by 2/~* and

x;ll , respectively. These fractions are determined iteratively so that

- o , , _

=y for 1=1,..,m, z —i—m;lm =N forl=1,....,r—1,

0 i ir Yir
rp <A and xy <A
hold. Especially they must be ‘shifted’, if A\ is tapped.
First we choose =% €7 and z; e’ with
i =min{g",\"} and 2z} =y — 2%
for g71. -
- - 1h— Up— 3 3

Fork € {2,...,r — 1} we continue with z ;" e/~ and =% ¢}* where

=1 __ Yip_1 _ o bk—1 ik s e k=1 Yig
;= z; 0 and  zf = min {y* -z A

. i Te1 N4 _ Qg . Th— 7 —q
If min {y* - N :):_j’z ', we are done, otherwise x ;=" + z}} < g’* holds and we
have to tap A. In that case we consider

RS S 1 SN T By AN T SN /S S R ) -1
My = min {X® — a2, 5% — 237 — w25, 25, 0 757 )



136 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

where the first entry in the minimum quotes the remaining capacity of A%, the second value indi-
cates the rest needed by 7+ and the other entries assure nonnegativity of the coefficients for the
y-variables already handled, since we want a conical combination, and shift the coefficients set till
now in the following way
ot =l + My and ol =2t — My for l=1,..,k—1

k1 ik
;= xp 0+ My,
Suppose that x;.’;*l + xé’; < g7 still holds after this shifting. Since we shifted the coefficients as
much as possible, we obtain

()

ji A Sl S

: Yo Ik
mln{)\ LY Ly, Je? i1 V20 ) Vi

and consider two different cases.

Figure 9.14: Violated inequality

i - i1 .02 k-1 _
First case: min {27, 2%, ...,2;  } =0

Leta :=max{l € {1,...k — 1} | x;’l = 0}. So the combination of the variable 3’* does not need
a fraction of \e, i.e., ' is entirely taken by 77s+1. Then the valid inequality

N N> et g

is violated, pictured in Figure 9.14, since all A-variables of the left side are used up, but 77+ has
some rest capacity that must be covered.

Second case: A0 = zf
Here \' is already entirely taken by 77!, and therefore, cannot be tapped anymore. In that case the
valid inequality

NO N > g g
is violated, since all A-variables considered so far are used up, but 7+ on the right hand side still
has a fraction that must be covered. _
Hence, we get a contradiction in both cases. Thus, :1:;-’;’1 + x;’; = g’* holds after shifting and we
have finished.



9.3. THE SOS 3 POLYTOPE 137

P
i

Figure 9.15: Ear with several intersection points

At last we look at ;". Here we choose z; ™' = X! — ; CIf x“ ' < ¢" holds, we tap A\ as
much as we can by means of the shlftlng process described above If after that step ¢" is still not
covered, the rest must be taken of X', i.e., 2% = g — 27",

So we can eliminate the - and the inner A-variables of the ear and reduce the values of the endpoint
variables by x° and 27, respectively.

In the same way we can handle each ear having just the two intersections with the graph at its
endnodes.

Now we consider an ear P; having more than just the two intersection points at its ends. Here we
have more liberties to tap other ears. We denote the \-variables belonging to the endnodes of the
ear as A\’ and \¢. Further, we denote by \*, k = 1, ..., s, the other possible tapping-variables arising
from inner intersection points of the ear, see Figure 9.15. Note that such intersection points arise
from ears P, k > i, already processed. Let A\’ belong to the (end) intersection point with the next
ear in the list P,_q, ..., P;, C. In principle, we embark on the same strategy as above beginning at
the y-variable adjacent to A" except that if the current variable 3¢ cannot be covered by adjacent
A-variables we have, if we have already hit an inner intersection point, the choice between several
tapping variables \’, \!, ..., \7. Here we begin the shifting process where we iteratively move as
much capacity as we can and need from the tapping variable connected via an already handled ear
to the next ear in the list P,_4, ..., P;, C. We shift as long as 3¢ is not covered and we know that
this is possible, since otherwise we would find a violated inequality as in the case above. So we
find also a conical combination for an ear with several degrees of freedom.

Having outlined these two cases, we are able to iteratively eliminate all ears including their vari-
ables.

In a final step we have to look at the cycle C'. Again we can assume w.l.0.g. that each edge of the
cycle has exactly one positive adjacent y-variable and each triangle defining the cycle has exactly
two positive A-variables. Note that in the case of a little cycle, i.e., a triangle where all adjacent
A-variables are positive, it is easy to find a conical combination for the variables. So let the indices
of the cycle C be given by

= {il, ...,ir} and CY = {jl, ---7jr}7



138 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES

Figure 9.16: Conical combination for cycle variables

where ;4,1 for{ = 1, ..., r (define r + 1 = 1) are the edges of the cycle which are at the same time
edges of the triangles y’t. Obviously, Y7, A% = >} _, 7% holds. We begin the construction of
the conical combination at y7* and always try to cover the g-variables by adjacent \-variables, i.e.,
for k € {1,...,r} we choose z* ¢!t and z7*** e** with

x;’z = min {g/*, \% — x;’;il} and :U;-'Z“ = min {7’* — x;’;, Akl
Note the exceptions z!! = 0 and xj.:“ = 2% = min {7 — 27 X' — 2} 12 42l = g
holds, we are done. Otherwise, we have to tap other variables. Since we have originally a cycle
with ears, we have various tapping variables and sometimes even several alternatives to transport
the rest capacity of a A-variable depending on the complex structure of the non-separable subgraph.
Figure 9.16 illustrates this situation. The tapping variables are marked by tilted squares, where a
black square signifies that there exists just one way to transport the rest capacity of the variable and
a white one stands for several transportation possibilities. For example, for \* in Figure 9.16 we
have a path along the cycle or we transport along the big ear or we make a combination between
transport along the cycle and the little ear.
We begin tapping those variables we have already considered. Starting with A we shift the rest
capacity along all possible alternatives and continue in ascending order. It is clear that we can
cover 7 in this way, or else, we would find a violated inequality. If we iteratively handled all 37*-
variables, we know that also the \**-variables are used up, and we are finished with the cycle.

This completes the conical combination of feasible points for (A;,7;) and the statement is
proven. a

This concludes our studies of the SOS 3 polytope. Note that we did not develop a separation



9.3. THE SOS 3 POLYTOPE 139

algorithm for the facet-defining inequalities given by Theorem 9.3.1. The reason is that instead of
following this MIP approach, we incorporate the SOS condition in the branch-and-bound phase.
As already mentioned, for the stationary case of gas network optimization it turned out that the
implicit handling of SOS conditions yields the best running times [MMMO06]. Moreover, it is not
that intuitive to separate this class of facets.

In [LWO1] the authors specify a separation algorithm for inequalities of the form (9.13) which
correspond to our valid inequalities (9.28). For the determination of an violated inequality, an
LP must be solved, and since linear programs can be solved efficiently, the separation problem
can be solved in polynomial time. Note that this separation algorithm also considers redundant
inequalities.



140 CHAPTER 9. LINEARIZATION OF FUNCTIONS: SOS POLY TOPES



Chapter 10

Computational Results

In this chapter we report on computational results for the solution of the TTO model as described in
Section 5. At first, we present the three networks which we used for testing. Then we concentrate
on approximation accuracy for the linearized functions. We test three different accuracy levels and
several subdivisions whereas we consider the smallest test network as prototype. In the following
section, we regard test results for the classical binary approach known from the literature using
CPLEX, where we suppose the coarsest accuracy. Thereafter, we start with the presentation of our
developed methods. The basis is given in Section 10.4 where we quote the results based on SOS
branching. These results can be compared with the binary approach of the previous section as no
further algorithmic additions are used. After this, we add one feature after another to our branch-
and-cut algorithm and show its benefit. First, we include the heuristic to obtain a feasible solution.
Then, we improve the branching scheme using our preprocessing strategies. Thereafter, the two
separation algorithms are incorporated. The first one assures runtime conditions and switching
processes of the compressors without explicit modeling, the second one tackles SOS conditions.
Then, we present results assuming practical conditions, i.e., a very short running time of the solu-
tion algorithm. Finally, we give a brief presentation of our developed algorithm considering some
examples and conclude with some remarks in the last section. In all test runs, we use seven differ-
ent sizes of the time horizon, from three hours till one day. In practice, optimization for one day is
desirable.

As branch-and-cut framework we include CPLEX Version 9.0. Our described methods, such as
heuristic, branching strategies, and separation algorithms, are added via so called cal | back
functions that are provided within CPLEX [CPL02]. The computations were done on an AMD
Athlon 64 Dual Core processor with 2.4 GHz with 4 GB main memory.

141



142 CHAPTER 10. COMPUTATIONAL RESULTS

10.1 Test Networks

Our project partner, the German gas company E.ON Ruhrgas AG [RA], provided three test in-
stances to us. These instances do not describe exactly any part of the whole Ruhrgas network,
but the most relevant characteristics are involved to check the performance and accuracy of our
approach. In the following, we give a brief description of these test networks.

Qu2

KnCl

VdAaus LtB4/ VdBein VdBaus

Abl Ab2

Figure 10.1: Network 1

Let us begin with the first network, the smallest one which was developed for test purposes by
the Ruhrgas AG. It includes all network elements specified in Section 5 and thus can be seen as a
prototype. In Figure 10.1 a picture of it is shown. As we can see, this network consists of three
compressors, denoted with VdA, VdB and VdC', eleven pipes (the lines with label “ L¢x”), and one
connection VbA1. Furthermore, there are four ordinary valves (note that the bypass valves By A,
ByB and ByC of the compressors are not shown), and one control valve Rg1. Finally, the gas is
delivered from two sources Qul and Qu2 and flows via ten innodes to the three consumers Abl,
Ab2, and Ab3.

The second network, the middle one, is of similar constitution. Figure 10.2 gives an illustration of
it. It has several additional pipes, one additional source and twice as much consumers as network
1. So this network can be seen as an extension of the smallest one. The number of compressors is
the same, but anyhow the complexity of this network is much higher due to the increased number
of pipes. Remember that three nonlinear functions must be considered for each pipe in each time
step. These first two test networks reflect the characteristics of a transmission network.

At last, we regard the third network, the biggest one. Figure 10.3 gives an impression of this test
instance, see also [KRS00]. Note that in this network there are parallel compressors (building so
called compressor stations) for example at Elten or Werne. Even though this test network does
not exactly represent a part of the Ruhrgas transmission system, it characterizes the major part of



10.2. APPROXIMATION ACCURACY 143

Qo2 A0L A2

Vo1 N10 A05

Co01 LO5 cot Lo8 V03
co3
L19
() L

O LO1| LO2 NO2 L0O4 L0O6 x LO7 | LO9NO7 L11

NO5 NO6
oo NOL NO3 Nm\& nos\ WNB N16
L03 L10 N1 L20

A06
Qo3 A03

A04

Figure 10.2: Network 2

the Ruhrgas network in Western Germany. Because of its high dimension, it poses a challenge for
our optimization algorithm.

Concluding this section, we summarize the size of these networks in the following table, see Table
10.1.

Table 10.1: Size of the three test instances

Test instance Number of

pipes compr. ord. valves ctr. valves connect. sources sinks innodes
network 1 11 3 4 1 1 2 3 10
network 2 20 3 3 1 1 3 6 16
network 3 29 15 22 7 42 19 11 56

10.2 Approximation Accuracy

In this section we concentrate on the accuracy of the approximated nonlinear functions in our
model. As already mentioned in Section 6.1, we consider three different accuracy levels e = 0.15,
e = 0.1, and € = 0.05. Remember that in our context the accuracy ¢ of an approximation grid
means that the maximal relative approximation error in the practical relevant part of the function’s
domain is at most . Based on the first network, we test these accuracies where we regard differ-
ent subdivisions of the two-dimensional grids. Finally, we choose partitions that we use for the
succeeding computations.



144

Elten

CHAPTER 10. COMPUTATIONAL RESULTS

Europipe Q

L7

St. Hubert

nd

NetGAb

winterswiik
e
Las Norpipe m
Salzwedal
Gescher
Vi < Wardenburg o
/\ \" Line Emsburen L8 Drohne
Emden WardEurod
g La Li6 L2
Warne
HerosLAba
L2
HerosLAb Lt11
L1113
(xzp. RS 27
3 Paffrath L Paffrath H
L% psp s Lt14
Porz Li4
= i Lauterbach
Vitzeroda
L A HI i
Li26
L7 L5
Schaeidt Schllchtern
LE HE
HI
uR i u2s
SetglAp ue23 L1t
Rimpar
SetgHAb 5
Gemsheim

GemsLAb

MegalGerns

GaemsMegal

\/
24

RimpGemAb

Figure 10.3: Network 3

1
L2 e
Rimy
T pGern

RimparMegal



10.2. APPROXIMATION ACCURACY 145

In Section 6.1 we analyzed that the one dimensional conti-function (5.21) that appear in the dis-
cretized continuity equation is nearly linear. We can approximate it via one line segment and obtain
a maximal relative error of 0.012 for the worst pipe. Note that in this case the SOS condition (of
Type 2) is automatically fulfilled and no branching on the one-dimensional approximation grids is
necessary.

In case of the two-dimensional approximation grids for the friction- and impact-function, see
(5.25) and (5.26), that arise from the discretized momentum equation, we can choose between
several subdivisions (see Section 6.1). Remember that the two-dimensional nonlinear functions of
our model just differ by a constant factor which does not influence the relative error. Therefore, we
can treat the approximation grids all at once. We determine uniform triangulations of the function
domains that are given by rectangles using the software package KARDOS. There, we receive dif-
ferent partitions for the same accuracy as we can vary subdivisions in pressure and flow direction,
see Figure 6.3. In Table 10.2 we list the subdivisions for the two-dimensional grids that we tested
for network 1, where we consider three different partitions for ¢ = 0.15 and two ones for e = 0.1
and ¢ = 0.05.

Table 10.2: Subdivisions for two-dimensional grids

Accuracy Subdivision of Number of

€ pressure flow points triangles
0.15 1 9 33 40
0.15 2 8 40 54
0.15 3 7 45 64
0.1 2 9 44 60
0.1 5 8 70 108
0.05 3 16 90 136
0.05 6 15 136 224

In the first column, we find the approximation accuracy corresponding to the decomposition. Col-
umn 2 and 3 give the number of subdivisions in pressure and flow direction. The last two columns
describe the number of the resulting triangles and grid points, obtained by the partition. Note that
these two parameters influence our model, as for each point we have to introduce a A-variable
describing the convex combination of our approximated function value. Furthermore, the number
of triangles is important in context of the branching strategies, since we have to guarantee that the
SOS Type 3 condition is fulfilled, i.e., the positive \-variables must belong to exactly one triangle
(Notice that for the classical binary linearization approach, see for example Section 3.2, the number
of triangles reflects the number of binary variables that are needed to formulate the approximation).
Based on our computational results, see below, we will choose favorable subdivisions.

Concluding our grid considerations, we outline the three-dimensional case. Here, we determine



146 CHAPTER 10. COMPUTATIONAL RESULTS

(nonuniform) approximation grids based on Delaunay triangulation as described in Section 6.1.
So we receive one grid for each accuracy level. As there are minor differences in the compressor
data for the first two networks and the third network (they vary in the maximal flow allowed in the
machine), we obtain different triangulations. In Table 10.3 and Table 10.4 the sizes of these grids
for the first two networks and the third one are given. In Column 1, the approximation accuracy is
shown. The following two columns specify the number of points and the number of tetrahedra of
the grids. As we see from these tables, the difference of the triangulation sizes for the first two and
the third network concerning the same accuracy level are marginal. For example, for ¢ = 0.15 the
number of points is the same for all three networks, and for a compressor of the biggest network
we need four tetrahedra less than for the smaller networks. Nevertheless, the structure of these
approximation grids differs.

Table 10.3: Size of three-dimensional grids for network 1 and 2

Accuracy Number of

€ points tetrahedra
0.15 36 108
0.1 80 303
0.05 129 527

Table 10.4: Size of three-dimensional grids for network 3

Accuracy Number of

€ points tetrahedra
0.15 36 104
0.1 86 310
0.05 134 539

Now, we come to our results of the accuracy tests. As already mentioned, we use network 1 as
prototype for these calculations. Further on, we can restrict the considered time horizon to three
hours, T' = 3, since the consequences of the grid choice can already be observed for this parameter
value. Notice that this is the smallest value for the time horizon that is reasonable for an opti-
mization process. Remember that the first time step is fixed because of the given initial state (see
Section 5.4.3) and the last time step is coupled with the first one via the terminal condition (see
Section 5.4.5). Therefore, we need at least three time steps to obtain optimization potential.

For an adequate evaluation of the test runs, we incorporate our developed methods as the heuristic,



10.2. APPROXIMATION ACCURACY 147

the SOS branching and preprocessing, and the separation algorithm concerning switching pro-
cesses in the branch-and-cut algorithm. Here, we disregard the separation for the SOS conditions
as this algorithm highly depends on the triangulations, and therefore it becomes difficult to com-
pare the different partitions for the two-dimensional grids as the size of the considered model
varies a lot. As our branch-and-cut algorithm does not find an optimal solution within a reasonable
running time, we restrict the solution process to one day for the test runs.

Table 10.5: Accuracy tests for network 1 with time horizon 7" = 3 and running time 24 hours

Accuracy Subdivision of Number of
€ press.  flow Nodes BestSol. LowerBd  Gap Feas. Sol.
0.15 1 9 2688500 26.5930 17.5329 34.07% 3
0.15 2 8 3256090 23.8092  17.5329 26.36% 6
0.15 3 7 3381480 25.2633  17.5329 30.60% 4
0.1 2 9 3905324 28.1437  17.5329 37.70% 1
0.1 5 8 4656390 28.3058  17.5329 38.06% 1
0.05 3 16 3516607 28.1945  17.5329 37.81% 1
0.05 6 15 3328758 27.9782  17.5329 37.33% 1

In Table 10.5 the obtained results are summarized. The first column specifies the accuracy that
must be fulfilled for all approximation grids. In Column 2 and 3, the subdivisions in pressure
and flow direction for the two-dimensional grids can be found (see also Table 10.2). The fourth
column indicates the number of nodes in the branch-and-bound tree. Column 5 gives the best
feasible solution, and Column 6 the best lower bound. In the following column the percentage
deviation of the best solution from the best lower bound is given, i.e., if UB and LB denotes the
value in Column 5 and 6, respectively, then it contains the value %. Here, we choose the
upper bound as reference value since we suppose that the best solution found by our algorithm is
near the optimal solution. Finally, the last column gives the number of feasible solutions that were
found during execution of the algorithm. Note that for all test runs at least one feasible solution is
determined by the simulated annealing heuristic.

At first, we consider the accuracy level e = 0.15. In all cases, the branch-and-cut algorithm was
able to find better feasible solutions than that given by the heuristic. For the parameters 1 and
9 for pressure and flow subdivisions two further solutions, for the parameters 2 and 8 even five
feasible solutions, and for the last partition three better solutions were detected. For the partition
2 and 8, three of the five feasible solutions were found within about two hours, whereas for the
other partitions it took more than nine or eleven hours before a better incumbent was found. If we
look at the lower bound in the sixth column, we see that the values are the same for all partitions
considered. This lower bound is reached already at the beginning of the branch-and-bound tree.
But if we take the gap into account, the middle partition yields definitely the best results because



148 CHAPTER 10. COMPUTATIONAL RESULTS

of the better feasible solution.

Now, we look at ¢ = 0.1. The results for both partitions are almost the same. The best lower
bounds are equal and again determined early in the branching process. The feasible solutions that
are given by our heuristic do not differ a lot due to the stochastic component involved. There are
no qualitative differences for the partitions within the solution algorithm.

For accuracy € = 0.05 the results are similar. The lower bounds, received early in the tree, are the
same and the best feasible solutions, again given by the heuristic, do not differ a lot.

Altogether, the lower bounds for all accuracy levels are the same, and this value is already fixed at
the beginning of the solution process. The branch-and-cut algorithm could not further improve this
lower bound because of the SOS conditions that have to be fulfilled via branching. Only for the
lowest accuracy value we could improve the results as the algorithm found better feasible solutions.

We decide to consider two accuracy levels in the following sections. We choose accuracy € = 0.15
with partition values 2 and 8 as in that case we receive the best results (see Table 10.5). Since
this is a coarse accuracy value, we also test accuracy level e = 0.05. For this value we obtained
no qualitative differences for the two considered partitions, therefore we take subdivisions 3 and
16 as these parameter values imply a smaller size of the resulting triangulation, see Table 10.2.
Considering two accuracy levels we can observe how the individual methods, developed for our
branch-and-cut framework, affect different approximation accuracies for our nonlinear functions.
Further on, we restrict the running time to two hours when testing our features. As mentioned
above, we found better feasible solutions than those given by the heuristic within this time limit
fore = 0.15.

10.3 Binary Approach using CPLEX

Before we consider the results given by our developed methods, we look at a binary approach for
the linearization of functions as a comparison with our SOS approach. Here, we choose the classi-
cal binary approach that prevails in the literature, so to speak as benchmark, the so called lambda
method. This method models the SOS condition explicitly using additional binary variables (see
Chapter 3). There, a binary variable is introduced for each simplex of the triangulation (hence for
each line segment, triangle or tetrahedron depending on the dimension) indicating if this simplex
is chosen for the approximation of the nonlinear function. Thus exactly one of all these binary
variables is positive and if so, only the A-variables belonging to its vertices can be positive. The
mathematical formulation of this approach can be found in Chapter 3.

We use this binary approach to formulate the approximation of all nonlinear functions in our model.
We restrict to the lowest accuracy e = 0.15 (already for this value the binary approach fails) and
consider all three test networks. We choose seven different values for the time horizon, namely
T =3,4,5,6,9,12,24. We also consider these values in the following sections.

We used CPLEX Version 9.0 to solve the resulting mixed integer programs assuming default pa-



10.3. BINARY APPROACH USING CPLEX 149

Table 10.6: Binary tests for all networks with approximation accuracy ¢ = 0.15 and running time
24 hours

Test Number of
Instance T allvar. bin.  constr. Nodes Lower Bd
Network 1 3 6353 3417 4051 6640881 13.3610
4 9160 4954 5845 1036360 18.6216
5 11967 6491 7639 218461 23.0318
6 14774 8028 9439 246974 27.1946
9 23195 12639 14839 61235 35.7168
12 31616 17250 20239 50997 46.3959
24 65300 35694 41839 3276 54.6510
Network2 3 10325 5385 6381 400546 1.9871
4 15020 7902 9315 69992 2.9681
5 19715 10419 12249 61551 2.9932
6 24410 12936 15189 77683 2.8208
9 38495 20487 24009 8197 3.1875
12 52580 28038 32829 6734 3.9944
24 108920 58242 68109 328 7.3179
Network 3 20474 11223 13544 912124 5.0306

3

4 29116 16018 19242 304243 6.7075
5 37758 20813 24940 197836 8.3843
6 46400 25608 30668 56853 8.6350
9 72326 39993 47852 10717 8.2248
2 98252 54378 65036 2684 9.2304
4 201956 111918 133772 37 9.4249

rameter settings. We restrict the running time to one day. In Table 10.6 we list the results. Column
1 states the test network. The second column gives the considered time horizon. The following
three columns specify the size of the MIP, the number of variables, the number of binaries among
them, and the constraints of the problem. Finally, the number of nodes in the branch-and-bound
tree and the best lower bound are given in the last columns.

The results of the test runs for the binary approach are as expected. In none of the examples
CPLEX could find a feasible solution within the given running time. This was already observed
for bigger test instances in stationary gas network optimization, see [MMMO06]. As we deal with
the transient gas optimization problem, which means a coupling of multiple stationary models, this
behavior is transferable. Furthermore, the number of nodes in the branch-and-bound tree decreases
with increasing time horizon. There are only two exceptions in case of 7" = 6 for network 1 and 2,
here the number of nodes increases slightly. Obviously, the best lower bound grows with increas-



150 CHAPTER 10. COMPUTATIONAL RESULTS

ing time horizon. But this growth is not in appropriate proportion to the increasing number of time
steps, this means that for growing time horizon the fuel costs approximately increase proportional
with the number of time steps, and thus also the best lower bound must be higher. For the increas-
ing lower bounds, we find two irregularities for 7" = 6 for the second network and 7" = 9 for the
third one. In these cases the lower bound slightly decreases. We cannot explain this phenomenon,
maybe it is because of the growing complexity of the model. Finally, we have to stress that these
lower bounds are mostly attained at the end or nearly the end of the restricted running time. Only
for small values of 7" the best lower bound presented in the table could be reached earlier, for the
small network even within some minutes. Note that we can compare the lower bounds in Table
10.6 with the results given in the next section where we use SOS branching to guarantee the SOS
conditions (see Tables 10.7, 10.8 and 10.9).

10.4 SOSBranching

In this section, we begin with the presentation of our developed methods. At first, we incorporate
the branching methods for the SOS conditions as described in Section 6.2 in the branch-and-cut
framework given by CPLEX. Therefore, we neglect the binary variables needed for the approxi-
mation of the nonlinear functions in the previous section.

We use the following settings and conditions as standard for further computational tests. We test
the accuracy levels ¢ = 0.15 and ¢ = 0.05 for all three test networks. As mentioned above, we
choose T' = 3,4, 5, 6,9, 12, 24 as different time horizons and restrict the running time to two hours.
Furthermore, we take min-up and min-down times as well as switching processes for the compres-
sors into account (see Section 5.4.1 and 5.4.2). At the beginning, these conditions are modeled
explicitly via the constraints given in Chapter 8 (see Lemma 8.3.2 and equations (8.3)). Later, we
include these conditions implicitly using a separation algorithm, see Section 10.7. We suppose
four hours as minimum runtime and downtime, i.e., if a compressor is switched on, it must operate
for at least four hours and if it is switched off, it must stay off for at least four hours. These values
are given by the E.ON Ruhrgas AG. Unfortunately, our project partner could not provide real data
concerning switching costs for compressors to us. It is very difficult to estimate these costs, espe-
cially as they influence the optimization process since they appear in the objective function (see
for example [Hei02]). For our following presentation we decided to set all switching costs to zero
by choosing C{ ,, = C! 4., = 0 fore € Ec and fort € T \ {1} in the objective function (5.38).
We implemented the following branching sequence in our solution algorithm. At first, we branch
on the variables suggested by CPLEX. Note that our model includes only few binary variables, the
switching variables for compressors and valves, but contains a big number of SOS conditions that
must be fulfilled via branching strategies. Therefore, we begin with the SOS branching, if there
is no more integer infeasibility. Note that this way of proceeding is reasonable, because otherwise
we would for example branch on a fuel gas consumption grid of a compressor, even if the ma-
chine does not operate. After the default branching function of CPLEX, we continue with the SOS



10.4. SOSBRANCHING 151

branching (see Section 6.2). If there is any candidate for hyperplane branching we start with this
strategie, since it is very efficient, especially in connection with our preprocessing techniques (see
below). Thereafter we continue with variable branching to guarantee that all SOS conditions are
fulfilled. A candidate for hyperplane or variable branching is chosen based on the criterion of a
balanced tree, i.e., given a LP-solution, we require that the sum of the positive A-variables in the
right son is about the sum of positive \’s in the left son for the considered grid.

Further on, we add an additional feature to our SOS branching. Note that for each LP-solution we
can calculate the relative approximation errors for the nonlinear functions. If this relative error is
less than a certain threshold § for an approximated function, we consider this approximation grid
being feasible even if it does not satisfy the SOS condition. On the basis of several test runs we ob-
served that § = %5 yields a good choice for this threshold parameter, where ¢ is the approximation
accuracy of the nonlinear function.

Table 10.7: SOS branching tests for network 1 with running time two hours

Number of
Accuracy T allvar. bin. constr. Nodes Lower Bd

e=0.15 3 2972 36 584 391369  14.2115
4256 50 819 179753  18.6216
5540 64 1054 93664  23.0318
6824 78 1295 163679  28.4229
10676 120 2018 48508  41.6534
14528 162 2741 13026  49.6183
29936 330 5633 2951  50.2402

6009 36 584 356305  14.2115

8672 50 819 209967  18.6216
11335 64 1054 81855  23.0318
13998 78 1295 105455  27.5668
21987 120 2018 24462  41.6534
12 29976 162 2741 5874  43.9234
24 61932 330 5633 54  44.1449

e =0.05

NI
O OO W ANMNOOO O~

In Table 10.7 we list the branching results for the first test network. The designation of the columns
is the same as for the binary tests (see Table 10.6). Column 1 gives the approximation accuracy,
and Column 2 the considered time horizon. Column 3 to 5 state the dimension of the resulting
MIP. In these columns the number of all variables, the number of binaries among them, and the
number of constraints are given. Finally, we find the number of nodes of the tree and the best lower
bound in the two last columns.

As for the binary approach in the previous section, our SOS branching concept cannot determine



152 CHAPTER 10. COMPUTATIONAL RESULTS

a feasible solution within the running time of two hours. This shows the complexity of the time-
dependent gas optimization problem in contrast to the stationary model. In that case, where just
one time step is considered, the problem could be solved to optimality, see [MMMO06]. If we look
at the number of nodes, we notice that it decreases with increasing planning horizon 7'. Only in
case of T = 5, there is an exception. Here we receive a smaller tree, which results from the fact
that for 7" = 5 it is the first time that the minimum runtime and downtime of four hours for the
compressors have an effect on the model. Hence, these conditions help us to tighten the tree. If
we regard the best lower bounds, we recognize increasing values with growing time horizon, as
expected. If we compare these bounds for the different accuracy levels, they are almost always
equal. Only for bigger planning horizons, we obtain worse bounds for the higher accuracy value.
Finally, we can compare the lower bounds for e = 0.15 with those given by the binary approach,
see Table 10.6. In nearly all cases our SOS branching yields the same or even a better lower bound.
Only for a time horizon of one day, we receive a minor value. But remember that we allowed a
running time of 24 hours in the previous section in contrast to two hours for the SOS branching (we
devote a longer running time to the binary approach). For a longer running time, SOS branching
can improve this lower bound.

Table 10.8: SOS branching tests for network 2 with running time two hours

Number of
Accuracy T allvar. bin. constr. Nodes LowerBd

e=0.15 3 4973 33 880 69216 1.9871
4 7164 46 1247 30235 2.9681
5 9355 59 1614 18009 2.9932
6 11546 72 1987 11367 2.9681
9
2

18119 111 3106 6969 4.7210
1 24692 150 4225 572 4.2844
24 50984 306 8701 1019 7.7800

9810 33 880 122311 1.9871
14280 46 1247 51231 2.9681
18750 59 1614 43166 2.9932
23220 72 1987 19540 2.9681
36630 111 3106 1124 3.3256
12 50040 150 4225 7328 5.8317
24 103680 306 8701 1445 7.3223

e =0.05

O ook w

The results for network 2 are given in Table 10.8. Obviously, our algorithm does not find a feasible
solution. Regarding the lower bounds, we observe that especially for 7" = 6 the SOS branching
strategie has problems to increase this best value. Note that with growing planning horizon the



10.4. SOSBRANCHING 153

number of nonlinear functions in the model multiply. Thus the algorithm has much more possibil-
ities to violate SOS conditions in a favorable way, i.e., resulting in a low objective function value.
To fulfill SOS conditions a big number of branching steps is necessary, and hence, the lower bound
only increases slightly. If we look at the bigger time horizons 7' = 9,12, 24, the lower bounds
become better. This is due to the min-up and min-down times for the compressors which only have
a significant effect for bigger planning horizons. Comparing the lower bounds for the different
accuracy levels, they are the same for a planning horizon up to six coupled time steps. Otherwise,
we obtain worse values for higher approximation accuracy except for 7 = 12. In that case, a
finer approximation near the LP-solution can improve the best lower bound. For an accuracy of
e = 0.15, we receive the same bounds up to five time steps and even stronger bounds for the other
parameters in comparison to the binary approach solved by CPLEX, see Table 10.6.

Table 10.9: SOS branching tests for network 3 with running time two hours

Number of
Accuracy T allvar. bin. constr. Nodes Lower Bd

e=0.15 3 9443 192 2265 154073  5.0306
4 13364 266 3140 53312  6.7075
5 17285 340 4015 23879  8.3843
6 21206 414 4920 11829  9.8224
9 32069 636 7635 2256  10.3281
12 44732 858 10350 1221  11.4217
24 91784 1746 21210 79 89028
=005 3 19653 192 2265 134075  5.0306
4 27944 266 3140 80421  6.7075
5 36235 340 4015 45754  7.5459
6 44526 414 4920 21061  8.3843
9 69399 636 7635 969  6.5887
12 94272 858 10350 428  5.9869
24 193764 1746 21210 42 67018

Finally, Table 10.9 shows the results for the biggest network. They are similar to the results of
the two smaller networks. The best lower bound increases slightly with growing time horizon
T, whereas the number of nodes decreases. For this instance we can observe that the growing
complexity of the model poses problems to the SOS branching methods. For e = 0.15and 7' = 24
and for £ = 0.05 and nine or more coupled time steps, we obtain worse lower bounds than for
shorter planning horizons, especially for higher approximation accuracy. Note that the number of
pipes and compressors increases drastically in comparison to the first test instances. Hence, we
have to taken much more nonlinear functions into account that must be approximated. This means



154 CHAPTER 10. COMPUTATIONAL RESULTS

that we have to handle a bigger number of SOS conditions via our branching strategies. Thus, we
see that SOS branching attains its limits.

Altogether, we can conclude that our branching strategies beat the binary approach solved with
CPLEX. For an approximation accuracy of ¢ = 0.15, we obtain the same or even tighter lower
bounds than in the binary approach, whereas we restrict the running time to two hours instead of
one day in the binary tests. Only in two cases with a time horizon of 7" = 24, our branching
methods yield worse values, which can be improved assuming longer running times. Nevertheless,
we reached the limits of SOS branching, thus further features are needed to improve the results.
In the following tables concerning computational results we omit the columns specifying the di-
mension of the considered MIP, i.e., the number of variables, the number of binary variables , and
the number of constraints, as these values do not change. Furthermore, we neglect the column giv-
ing the number of nodes in the tree as the behavior of this number is always the same, the number
of nodes in the branch-and-bound tree decreases with increasing time horizon.

10.5 Heuristic

In a next step, we include the simulated annealing (SA) algorithm as heuristic in the branch-and-
cut algorithm as described in Chapter 7.

Again we use our standard settings, which are the approximation accuracies ¢ = 0.15and ¢ = 0.05,
planning horizons T' = 3,4, 5,6, 9, 12, 24, restricted running time of two hours, min-up and min-
down times of four hours, and zero switching costs.

Regarding the SA algorithm for the gas network optimization problem, we integrate the following
parameters which were tested in [Mah05]. For the relaxed continuity and momentum equations,
we combine static and dynamic penalty costs in the objective function, see (7.3). Here, we choose
the static cost coefficients 2; = 100 and the dynamic coefficients C; = 0.0005 and a = 2. For the
adaptive step size, we select step size ranges R, = 5 for flow variables and R, = 0.05 for pressure
variables, see (7.5). The initial value 7, of the control parameter is calculated using Dekkert’s
and Aart’s approach see (7.6). We apply the adaptive decrement function (7.8) for the control
parameter 7" using reduction parameter § = 20. Finally, the number of iterations L for each value
of the control parameter 7" is computed via L = 500 - (T" — 1), where T' is the planning horizon.

In Table 10.10, we find the results for the first test network. In contrast to the tables of the previ-
ous section we delete the columns indicating the dimension of the considered MIP as well as the
number of nodes (as mentioned above), and we add three columns. In Column 3, the best feasible
solution given by the SA algorithm is shown. The time that the heuristic needs to determine this
solution is stated in the last column. In the column before last, the gap is indicated. As mentioned
above, it is calculated via “2-LE where U B is the best feasible solution and LB the best lower
bound found.




10.5. HEURISTIC 155

Table 10.10: Simulated annealing algorithm for network 1 with running time two hours

Accuracy T BestSol. LowerBd  Gap Time

e=0.15 3 281806 14.2115 49.57% 2.69s
4 38.0955  18.6216 51.12% 4.73s

5 48.6365  23.0318 52.65% 6.92s

6 585815 284218 51.48% 10.60s

9 89.7588  41.6534 53.59% 23.88s

12 122.7367  49.8296 59.40%  40.88s

24 247.0880 615010 75.11% 120.81s

e=0.05 3 281945 14.2115 49.60% 3.51s
4 38.2616  18.6216 51.33% 494 s

5 49.2139  23.0318 53.20% 11.16s

6 584344 275976 52.771% 12.27s

9 894267 41.6534 53.42% 24.09s

12 121.3873  48.0180 60.44%  50.49s

24 2452796  61.8004 74.80% 165.94s

If we look at the last column of this table, we see that the SA algorithm is very fast. The running
time is from some seconds for small planning horizons up to two or three minutes for a whole
day. Considering the gap, it grows from about 50% for values up to 7" = 6 to 75% for 24 hours.
Nevertheless, we suppose that the feasible solutions given by the heuristic are good. If we take the
optimal function value in the stationary case for network 1, which is about 8.71, as a benchmark
for a typical time step, the heuristic solutions seem to be reasonable. If we look at the best solution
values for the different accuracies, we see that they only differ slightly due to the stochastic com-
ponent involved and the different approximation grids for the fuel gas consumption. Finally, we
compare the lower bounds here with the lower bounds of the previous section, given by the SOS
branching strategies. We remark that in the majority of cases the heuristic solution could not help
us to improve the best lower bound. Only for bigger time horizons, 7' = 12, 24, we observe that
the values increase.

Now we look at the results for the second network in Table 10.11. In the last column we see that
the running time for the heuristic increases for this test instance. It needs up to a minute for small
planning horizons, and even up to ten minutes for a day. Especially, we recognize growing time
values for the higher accuracy. Note that for the determination of the linearized function values,
the heuristic has to determine the right simplex of the triangulation for each nonlinear function.
Since for a higher accuracy the number of simplices in all triangulations grows, see Section 10.2,
it is clear that more time is needed to find the simplices by which the nonlinear functions are
approximated. Regarding the gaps, varying from 88% to about 95%, they are worse than the



156 CHAPTER 10. COMPUTATIONAL RESULTS

Table 10.11: Simulated annealing algorithm for network 2 with running time two hours

Accuracy T BestSol. LowerBd  Gap Time

e=0.15 3 17.3455 1.9871 88.54% 5.15s
4  22.2530 2.9681 86.66% 9.56 s

S5 27.1449 29932 88.97% 15.59s
6 32.4963 2.9681 90.87% 61.85s
9 51.4124 49300 90.41% 57.20s
12 69.8742 4.8893 93.00%  89.55s

24 140.5824 7.7800 94.47% 301.46s

16.9595 1.9871 88.28% 9.36s
23.3355 2.9681 87.28% 16.45s
28.4046 2.9932 89.46% 31.25s
33.9530 2.9681 91.26% 50.80s
51.7342 49300 90.47% 151.52s
12 70.9011 5.8189 91.79% 188.35s
24 143.2503 7.3223 94.89% 579.42s

e =0.05

O ook, Ww

gaps for the first network. This reflects the fact that the second network poses a higher degree of
difficulty as it is an extension of network 1. Compared with the stationary case we again expect
that the heuristic provides quite good solutions. Considering Table 10.11 we can calculate an
average objective function value of about 5.5 for one time step. For the stationary case we obtain
an objective function value of about 3.52, but only two compressors operate. In the time-dependent
case, all three compressors are needed to guarantee the gas transport. Therefore an average fuel
gas consumption value of 5.5 for a time step is appropriate. Remark that the total transport costs
for network 2 are less than the costs for the smaller network. On the one hand this is due to the fact
that at the beginning of the considered time horizon just two of the three compressors work. On
the other hand, we see in the picture of the second network, Figure 10.2, that the three additional
consumers can be found close to the suppliers. The first one is located directly behind the sources
and two other consumers are situated behind the first compressor. Further on, the minimal gas
demand of all consumers is almost the same for both networks. Thus, it becomes clear that we
receive less transport costs, even though the network is bigger. Notice that as in case of network 1,
the heuristic solutions could not help to increase the lower bound.

Table 10.12 shows the results for network 3. Again, we observe very fast running times of the SA
algorithm in the last column. Surprisingly, we receive very good results, even though the network
is much bigger than the previous instances. We obtain a gap of about 1% for up to six coupled time
steps for the coarser accuracy level. For growing planning horizons the gap increases. We also
recognize that for the higher approximation accuracy, it becomes more difficult to improve the gap



10.5. HEURISTIC 157

Table 10.12: Simulated annealing algorithm for network 3 with running time two hours

Accuracy T BestSol. LowerBd  Gap Time

e =0.15 3 5.1203 50306 1.75% 4.08s
4 6.7953 6.7075 1.29% 535s
5 8.4642 8.3843 0.94% 6.08 s
6 10.1661 10.0612 1.03% 7.20s
9 15.3002 12.3972 18.97% 15.10s

12 20.3615 11.0362 4580% 14.76s

24 40.7211 8.4460 79.26%  41.53s

3

4

5

6

9

5.0575 5.0306 0.53% 8.36 s
6.8698 6.7075 2.36%  18.57s
8.5175 7.5459 11.41% 31.03s
10.3402 8.3843 18.91% 37.78s
15.3785 9.7604 36.53% 81.02s

12 20.5679 8.5768 58.30% 129.76s
24 41.1995 6.7018 83.73% 270.40s

e =0.05

because of the growing complexity of the model.

These good results are due to the fact that a lot of compressors in this network are parallel, see Fig-
ure 10.3, in contrast to the smaller networks, where the compressors are in series. For optimization,
it is much easier to decide which of the parallel machines must be operated than to regulate the
successive compressors in an optimal manner. So it is comprehensible that the results are much
better for this test instance. Considering the several time horizons, we obtain an average fuel gas
consumption of about 1.7 per time step. In the stationary case, this value is about 1.68. Thus
we can say that the heuristic solution is quite good. Especially for bigger planning horizons, we
suppose that the feasible solution is near the optimum and the big gap results from the bad lower
bound. It is amazing that we receive the lowest fuel cost for the biggest test network. These results
are due to the fact that just two compressors are needed to guarantee the gas transport. Further-
more, there are some shorter pipes in this network, and the pressure offered by the sources yields
a good basis for transport.

Recapitulating these results, the simulated annealing algorithm finds good feasible solutions in
very short running times. For the biggest network, we receive minor gaps for planning horizons up
to six coupled time steps. Otherwise, further work has to be done, to diminish the gap.



158 CHAPTER 10. COMPUTATIONAL RESULTS

10.6 Preprocessing

In this section we want to improve the SOS branching with the preprocessing strategies described
in Section 6.3. If the branching algorithm performs a hyperplane branching step, we add the
induced cuts to the left and right son. Moreover, we determine A-variables in other grids that must
be zero assuming these cuts, and pass these informations to the sons. Beyond, we use informations
of the input data, such as the initial state, the consumer demands, and the deliveries of the sources,
to obtain further restrictions for linearizing variables of the grids.

Table 10.13: Preprocessing for network 1 with running time two hours

Accuracy T BestSol. LowerBd  Gap

e=0.15 3 262979 17.5329 33.33%
4 38.0955  21.9431 42.40%

5 48.6365  27.3342 43.80%

6 585815  31.7444 45.81%

9 89.7588  45.9558 48.80%

12 122.7367  54.6001 55.51%

24 247.0880 68.2705 72.37%

e=005 3 281945 17.5329 37.81%
4 382616  21.9431 42.65%

5 492139  26.3532 46.45%

6 584344  31.7444 45.68%

9 89.4267  45.9558 48.61%

12 121.3873  54.6001 55.02%

24 245.2796  67.5922 72.44%

In Table 10.13, we list the results for the smallest test network. We have to emphasize one value
in this table, namely the best solution value for 7 = 3 and accuracy ¢ = 0.15. In that case, our
algorithm finds a feasible solution which is better than the solution given by the heuristic. This
proves the advantage of our preprocessing strategies. Further on, the lower bounds are improved.
For T = 3, now we obtain a gap below 40% and for the lower accuracy even 33.33% due to the
better incumbent. For up to five coupled time steps, the gaps could be decreased by about 10%. For
bigger planning horizons the gaps diminished by about 5%. Only if the considered time horizon
comprises a day, there are just minor improvements. But altogether, we receive gaps below 50%
for a time horizonupto 7' = 9.

Table 10.14 shows the results for the second network. In that case none of the heuristic solutions



10.6. PREPROCESSING

Table 10.14: Preprocessing for network 2 with running time two hours

Accuracy T BestSol. LowerBd  Gap
e=0.15 3 17.3455 45212 73.93%
4  22.2530 45212 79.68%
5 27.1449 5.5021 79.73%
6 32.4963 4.4960 86.16%
9 51.4124 6.9342 86.51%
12 69.8742 6.6882 90.43%
24 140.5824 8.8944 93.67%
e=0.00 3 16.9595 4.4960 73.49%
4 233355 45212 80.63%
5 28.4046 5.5021 80.63%
6 33.9530 4.4960 86.76%
9 51.7342 6.5145 87.41%
12 70.9011 7.5211 89.39%
24 143.2503 9.1530 93.61%

Table 10.15: Preprocessing for network 3 with running time two hours

Accuracy T BestSol. LowerBd  Gap
e=015 3 51203 50306 1.75%
4 6.7953 6.7075 1.29%
5 8.4642 8.3843  0.94%
6 10.1661  10.0612 1.03%
9 153002 12.5765 17.80%
12 20.3615 11.4897 43.57%
24 40.7211 8.7314 78.56%
e=0.05 3 50575 5.0306 0.53%
4  6.8698 6.7075  2.36%
5 85175 7.5459 11.41%
6 10.3402 8.3843 18.91%
9 15.3785 10.2646 33.25%
12 20.5679 9.7521 52.59%
24 41.1995 6.8818 83.30%

159



160 CHAPTER 10. COMPUTATIONAL RESULTS

could be improved using our preprocessing strategies. But the algorithm could tighten the gaps.
For T" = 3, there is an improvement of around 14%. For four and five time steps, the gap diminishes
by around 8%. For more coupled time steps, the gap reduces just by around 4%. As in case of
the smaller network, for a whole day only minor improvement can be observed. Summarizing, we
obtain gaps below and around 80% for up to five coupled time steps.

Finally, we regard the results for the biggest network in Table 10.15. We do not observe any
changes in the results for small planning horizons up to six hours. But with a gap of around 1% the
results are already good and in case of better approximation accuracy our strategies do not help.
Moreover, for higher values of 7" only minor improvement are received. For ¢ = 0.15 we gain
around 1 — 2% and for the better accuracy about 3 — 5% (except T' = 24).

Concluding these results, we can say that the preprocessing strategies improve our branch-and-
cut algorithm. Note that these strategies originate from very simple and intuitive ideas, and no
theoretical mathematical background is used. Nevertheless, they help us to find a better feasible
solution in case of the smallest network considering three coupled times steps. Moreover, they
decrease the gaps for other test runs, except for network 3, where already good results are given.

10.7 Separation for Runtime Conditions and Switching Pro-
CEesses

In the following, we concentrate on separation algorithms. At first, we consider runtime conditions
as well as switching processes of compressors. Until now, we modeled these conditions explicitly
via equations (8.3) and inequalities (8.10) to (8.13). Now the idea is to omit all these constraints in
our model and to incorporate them implicitly using a separation algorithm. But here, the following
difficulties arise.

If we omit the constraints modeling the runtimes and switching processes of the compressors, the
start-up and shut-down variables s.,, and s, only appear in the objective function (or if we do not
suppose switching costs they do not appear at all). Therefore, assuming default settings, CPLEX
would eliminate these variables from the model fixing them to zero. To avoid this elimination, we
must turn off CPLEX presolving. But this poses a problem. Notice that SOS branching affects the
continuous A-variables. Remember that using SOS branching, some A-variables in each son are
fixed to zero. But CPLEX itself does not branch on continuous variables, hence it adds an extra
constraint of the form \* < 0, if variable \* is supposed to be zero in the branch. In the course of
our branch-and-cut algorithm, a lot of SOS branching steps are performed. So we can imagine that
adding all these (nonpositivity) constraints, the considered problems in the nodes increase drasti-
cally. If we disregard presolve techniques of CPLEX, this results in a memory capacity problem.
Hence, we implement two things to handle this problems. At first, if A,,,, defines the set of indices



10.7. SEPARATION FOR RUNTIME CONDITIONS AND SWITCHING PROCESSES 161

of A-variables that must be zero in a son, we pass the equation .., A" = 0 to the branch in-
stead of adding all the ‘nonpositivity’ constraints. Furthermore, we turn preprocessing of CPLEX
on. To avoid elimination of variables s.,, and s/,,,,,, we continue including some of the constraints
defining the switching polytope explicitly in our model. Here, we choose equations (8.3). The
start-up and shut-down variables appear in these equations, hence CPLEX cannot remove these
variables from the model. Therefore, we just separate constraints (8.12) and (8.13) during the so-
lution algorithm. Notice that these cuts must be separated throughout the branch-and-bound tree.

Table 10.16: Separation of runtime conditions and switching processes for network 1 with running
time two hours

Accuracy T BestSol. LowerBd Cuts Gap

e=015 3 249665  17.5329 3 29.77%

4 38.0955  21.9431 3 42.40%
5 48.6365  27.3342 3 43.80%
6
9

58.5815  31.7444 7 45.81%
89.7588  45.9558 15 48.80%
12 122.7367  54.6001 27 55.51%
24 247.0880  68.2205 91 72.39%

e=005 3 281945  17.5329 3 37.81%
4 38.2616  21.9431 3 42.65%

5 49.2139  26.3532 3 46.45%

6 58.4344  31.7444 7 45.68%

9 89.4267  45.9558 13 48.61%

12 121.3873  54.6001 28 55.02%

24 2452796  67.5371 101 72.47%

Let us consider the results for the smallest network given in Table 10.16. Based on the tables of the
previous section, we insert a new column in front of the last one, where the number of cuts, added
via the switching separation algorithm, is shown. We can stress one value in this table namely
for T' = 3 and accuracy ¢ = 0.15 the separation algorithm helps us to improve the best feasible
solution. Remember that the heuristic solution for this setting could already be improved using
SOS preprocessing, hence the branch-and-cut algorithm determines a second feasible solution.
Beyond there are no considerable improvements. For 7' = 24 the lower bound slightly decreases
in comparison with Table 10.13. Finally, we see that the number of violated cuts of the form
(8.12) or (8.13) grows with increasing planning horizon. This results from the fact that min-up and
min-down times just have an effect if a bigger time horizon is considered.



162 CHAPTER 10. COMPUTATIONAL RESULTS

Table 10.17: Separation of runtime conditions and switching processes for network 2

Accuracy T BestSol. LowerBd Cuts Gap

e=0.15 3 17.3455 45212 3 73.93%
4  22.2530 45212 3 79.68%

S5 27.1449 5.5021 3 79.73%

6 32.4963 4.4960 8 86.16%

9 51.4124 6.8800 18 86.62%

12 69.8742 6.9728 32 90.02%

24 140.5824 9.2885 69 93.39%

e=0.05 3 16.9595 4.4960 3 73.49%
4  23.3355 4.5212 3 80.63%

S5  28.4046 5.5021 3 80.63%

6 33.9530 4.4960 7 86.76%

9 51.7342 6.6838 18 87.08%

70.9011 7.4107 35 89.55%
24 143.2503 9.1704 78 93.60%

[ERY
N

Table 10.18: Separation of runtime conditions and switching processes for network 3

Accuracy T BestSol. LowerBd Cuts Gap

e=015 3 5.1203 5.0306 12 1.75%

4 6.7953 6.7075 14 1.29%
5 8.4642 8.3843 14 0.94%
6
9

10.1661  10.0612 29 1.03%
153002  12.5765 79 17.80%
12 20.3615 11.6756 118 42.66%
24 40.7211 8.0639 124 80.20%

5.0575 5.0306 10 0.53%
6.8698 6.7075 14 2.36%
8.5175 7.5459 16 11.41%
10.3402 8.3843 32 18.91%
15.3785  10.1410 80 34.06%
20.5679 7.6352 109 62.88%
41.1995 6.0895 107 85.22%

e =0.05

ADNOOOOCTEA~W

N -




10.8. SEPARATION FOR SOS CONDITIONS 163

Table 10.17 shows the results for the second network. As in case of the smallest network, the
implicit incorporation of runtime conditions and switching processes via a separation algorithm
cannot really help us to improve the lower bounds. Here the results are even worse. Only in some
cases with growing planning horizon, we gain very small improvements for the gaps.

Finally, we look at the results for network 3 in Table 10.18. As well as for the other test instances,
the separation algorithm does not improve the results. For ¢ = 0.05, the results worsen for bigger
planning horizons, and for 7" = 12 the gap decreases even by around 10%.

Summarizing the results of this section, we can say that this separation algorithm does not really
improve the results. Only in case of network 1 we can improve the incumbent for three coupled
time steps and the lower accuracy level. In the test runs, where we separate all constraints describ-
ing runtimes and switching processes, i.e., separating also equations (8.3), we receive much better
results. For example for up to six coupled time steps, we obtain gaps below 40% for the first net-
work and below 60% for the second one. For bigger planning horizons the gaps can be tighten for
all three test instances. Thus, it seems to be more effective, if CPLEX just adds the constraints vi-
olated during optimization instead of including some (or all) of them explicitly, even if the number
of constraints is quite small. But as aforesaid, in some cases we obtain memory capacity problems
since we must turn off CPLEX presolve. Therefore, as default setting, we add equations (8.3) to the
model formulation. Perhaps, in a future release of CPLEX, it is possible to branch on continuous
variables just changing their bounds. Then we can benefit from this separation algorithm.

10.8 Separation for SOS Conditions

Finally, we incorporate the separation algorithm for the SOS conditions as described in Section
6.4 in the branch-and-cut framework. Remember that this algorithm results from linking two
approximation grids and hence it combines the linearizing A-variables of two SOS constraints. In
our test runs, it turned out that it is the best to add the cuts in the root node only. In the stationary
case of gas network optimization, these cuts are also used in the root node, see [MMMO06].

Table 10.19 shows the results for the first network. Notice that in Column 5 there are two numbers
for the cuts. The first number gives the number of cuts resulting from separation for SOS conditions
and the second one specifies the number of cuts determined by the previous separation algorithm
concerning runtimes and switching processes. At first, we remark that the better feasible solution
found for 7" = 3 and ¢ = 0.15 gets lost adding the SOS cuts. As the lower bound is improved, the
gap still increases slightly by around 1%. Due to the separation algorithm, the gap is improved by
around 6 — 7% for up to nine time steps. For twelve coupled time steps the gap even decreases by
around 11%. Only for the biggest horizon, T = 24, the improvement is not so good. For the lower
accuracy we gain around 2%. For the higher accuracy the gap increases slightly, this is because of



164 CHAPTER 10. COMPUTATIONAL RESULTS

Table 10.19: Separation for SOS conditions for network 1 with running time two hours

Accuracy T BestSol. LowerBd  Cuts Gap

£=0.15 3 281806 19.4948  76/3  30.82%
4 38.0055 24.8860 28/3  34.67%
5 486365 302771 513  37.75%
6 58.5815 356682 50/4  39.11%
9 80.7588  51.8416 165/8 42.24%
12 1227367 68.0150 327/13 44.58%
24 247.0880  74.7055 45/74  69.77%
£=005 3 281045 104948 60/1  30.86%
4 382616 24.8860 102/3  34.96%
5 492139 302771 151/3 38.48%
6 584344 356682 241/6 38.96%
9 804267 51.8416 371/5 42.03%

121.3873  68.0150 608/8 43.97%
2452796  64.5732 144/101 73.67%

DN
AN

Table 10.20: Separation for SOS conditions for network 2 with running time two hours

Accuracy T BestSol. LowerBd Cuts Gap

e=015 3 17.3455 5.6279 15/3  67.55%

4  22.2530 9.6524  27/3  56.62%
5 27.1449 8.4702 33/3 68.80%
6
9

324963  13.7020 46/8 57.84%
514124  13.6265 56/13 73.50%
12 69.8742  12.6707 50/22 81.87%
24 140.5824  46.2248 89/23 67.12%

e =0.05 3 16.9595 44960 19/3 73.49%
4  23.3355 45212 31/3 80.63%
5 28.4046 55021 40/3 80.63%
6 33.9530 4.4960 48/7 86.76%
9
2
4

51.7342 6.5187 76/18 87.40%
70.9011 7.5234 104/35 89.39%
143.2503 8.7960 204/75 93.86%




10.8. SEPARATION FOR SOS CONDITIONS 165

the time needed to determine the SOS cuts. Altogether we obtain a gap of around 30% for T = 3,
and a gap below 40% for up to six coupled time steps. If we consider the number of SOS cuts, we
see that it increases with growing planning horizon. An exception is 7" = 24, there are less cuts
than for 7" = 12, but here we obtain a bigger number of cuts resulting from runtimes and switching
processes. Finally, we observe that - except for a whole day - we obtain the same lower bounds for
the accuracy levels. Thus, this value is not influenced by the approximation grids.

In Table 10.20 we present the results for the second network. We again see that the number of cuts
increases with growing planning horizon. For the lower accuracy level e = 0.15 the separation for
the SOS conditions really help us to improve the results. We gain from 6% up to 28% improvement
for the gaps. For accuracy level e = 0.05, the lower bounds cannot be improved using SOS cuts.
For T = 9 and T' = 24 the gap even increases slightly because of the running time needed for
the separation of the SOS cuts. Thus, for network 2 we see that the accuracy level influences the
solution algorithm.

Table 10.21: Separation for SOS conditions for network 3 with running time two hours

Accuracy T BestSol. LowerBd  Cuts Gap Time

e =0.15 3 5.1203 5.1203 22/1 0.00% 9.38s
4 6.7953 6.7953 32/0 0.00% 10.95s
5 8.4642 8.4642 43/1 0.00% 13.64s
6 10.1661 10.1661 57/1 0.00% 18.54s
9 15.3002 15.3002 95/1 0.00% 35.56s
2 20.3615 20.3615 144/4 0.00% 1m:13.56s
4 40.7211 40.7211  304/4 0.00% 11m:06.12s
3
4
5
6
9

N -

5.0575 5.0306 32/11 0.53%
6.8698 6.7075  53/15 2.36%
8.5175 8.5175 86/10 0.00%  3m:07.89s
10.3402  10.3402 109/23  0.00%  4m:49.99s
153785  14.0882 143/45  8.39%

12 20.5679 7.3707 92/114 64.16%

24 41.1995 6.8863 143/101 83.29%

e =0.05

The results for the biggest network are listed in Table 10.21. Note that we add a column, since
in some cases the branch-and-cut algorithm yields the optimal solution of the test instance. First,
we observe that for accuracy value ¢ = 0.15, all test instances are solved to optimality using SOS
cuts. Remember that for up to six coupled time steps the gap was already small, but especially for
T = 24 the gap is reduced by 80%. Obviously the time needed to solve the problems increases with
growing planning horizon, see last column in in Table 10.21. As for the second network, we see
that the solution algorithm depends on the accuracy value. For ¢ = 0.05 only two test instances,



166 CHAPTER 10. COMPUTATIONAL RESULTS

T =5and T = 6, are solved to optimality. For 7" = 9 the gap can be improved by 25%. In all
other cases the separation algorithm for the SOS conditions does not help us to improve the results.
For the small planning horizons, 7' = 3 and T' = 4, the gap is already small, but for 7" = 12 and
T = 24 we still receive a gap of 64% and 83%, respectively.

This concludes the presentation of our features incorporated in the branch-and-cut framework of
CPLEX to solve the time-dependent case of gas network optimization. Recapitulating, we can say
that the addition of the SOS separation algorithm helps us to improve the lower bound.

10.9 Testsunder practical Conditions

In this section, we consider our developed branch-and-cut algorithm under practical conditions,
that is, we restrict the running times to 15 minutes. In a gas company the so called dispatchers
operate the gas transmission network. They decide which compressors to set in and on which
level the machines have to run. Further on, they switch the valves and determine the way of
the gas to flow. All decisions are based on their expert knowledge. The idea of a gas network
optimization tool is to support the dispatcher at work. First the dispatcher specifies the initial state
of the gas network for the optimization process, and then the software tool computes an optimal
operation of the gas network over a certain time horizon. Here an hourly consideration of a whole
day is desirable. Knowing a good or even optimal solution, given by the optimization tool, the
dispatcher can make his decisions for the next hour. Thereafter, he can restart the optimization
process to receive suggestions for the gas transmission in the following steps. Obviously, such an
optimization tool must yield good or optimal solutions in very short running time. In practice a
running time of 15 minutes is acceptable. Therefore, we regard the branch-and-cut algorithm for
the problem of TTO with respect to this restricted running time.

Table 10.22 shows the results of the solution algorithm for the smallest network after a quarter
of an hour. If we compare these results with Table 10.19, where a running time of two hours is
assumed, we see that we obtain the same gaps except for the biggest planning horizon T" = 24.
So the lower bounds in Table 10.19 are attained early in the optimization process, mostly, the
gap is achieved within some minutes. Thus, we can present the dispatcher good feasible solution
within very short running times for a time horizon up to twelve hours. Finally we remark that the
results are not worse for increasing accuracy. So the approximation accuracy does not influence
the solution quality.

Now, we have a look at the second network in Table 10.23. The results are similar to the results for
the smaller network. With the exception of the biggest time horizons 7" = 12,24 (and 7" = 3, 9 for
accuracy ¢ = 0.05), the same lower bounds are attained as under the consideration of the longer
running time, see Table 10.20. Again, the corresponding gaps are received at the beginning of the



10.9. TESTSUNDER PRACTICAL CONDITIONS 167

Table 10.22: Practice test for network 1 with running time 15 minutes

Accuracy T BestSol. LowerBd Cuts Gap

e=0.15 3 281806 19.4948 76/2 30.82%
4 38.0955 248860 28/1 34.67%

5 48,6365 30.2771 51/2 37.75%

6 585815 35.6682 50/3 39.11%

9 89.7588  51.8416 165/8 42.24%

12 122.7367  68.0150 327/13 44.58%

24 247.0880  58.3910 45/55 76.37%

e=0.06 3 281945 194948 69/1 30.86%
4 38.2616  24.8860 102/3 34.96%

5 492139  30.2771 151/3 38.48%

6 584344  35.6682 241/5 38.96%

9 89.4267  51.8416 371/4 42.03%

12 121.3873  68.0150 608/6 43.97%

24 2452796  49.0910 144/56 79.99%

Table 10.23: Practice test for network 2 with running time 15 minutes

Accuracy T BestSol. LowerBd Cuts Gap

e=015 3 17.3455 5.6279 15/3  67.55%

4  22.2530 9.6524  27/3  56.62%
5 27.1449 8.4702 33/3 68.80%
6
9

32.4963  13.7020 46/8 57.84%
514124  13.6265 56/10 73.50%
12 69.8742  11.5232 50/20 83.51%
24 140.5824  34.9815 89/13 75.12%

e =0.05 3 16.9595 3.8220 19/3 77.46%
4  23.3355 45212 31/3 80.63%
5 28.4046 55021 40/3 80.63%
6 33.9530 4.4960 48/6 86.76%
9
2
4

51.7342 57118 76/16 88.96%
70.9011 5.5880 104/24 92.12%
143.2503 8.7222 197/1 93.91%




168 CHAPTER 10. COMPUTATIONAL RESULTS

solution algorithm within some minutes. For this network, the results are not as good as for the
first one. For the lower accuracy value ¢ = 0.15, we receive gaps varying from 56% — 69% for
up to six coupled time steps. For bigger planning horizons, we receive gaps of more than 70%.
For the higher accuracy level e = 0.05, the results are worse. We only obtain gaps around 80%
for up to five coupled time steps. Otherwise the gaps are even worse. Nevertheless, we suppose
that the best solution given by the simulated annealing algorithm is good, but our branch-and-cut
algorithm has problems to improve the lower bound. In contrast to the first network, the accuracy
parameter influences the solution quality.

Finally, we consider the practical tests for network 3 in Table 10.24. As for the two test networks
before, the branch-and-cut algorithm terminates after 15 minutes with the same results as in Table
10.21 except for the bigger time horizons at higher accuracy level. There, the lower bounds are
improved until the end of the considered running times. In the other cases, the best lower bound
is determined within some minutes. Especially, we receive optimal solutions for all considered
planning horizons assuming accuracy € = 0.15. Thus, we are very content with the results for the
biggest network as we are able to find very good or even optimal solutions for the gas network
optimization problem. Furthermore, we suppose that the heuristic solution for bigger planning
horizons and accuracy € = 0.05 is also near the optimum. Remember that even if network 3 is the
biggest test network, it poses less problems to the optimization process due to parallel compressors.

Table 10.24: Practice test for network 3 with running time 15 minutes

Accuracy T BestSol. LowerBd Cuts Gap

e=015 3 5.1203 5.1303 22/1 0.00%

4 6.7953 6.7953  32/0 0.00%
5 8.4642 8.4642  43/1 0.00%
6
9

10.1661  10.1661 57/1 0.00%
153002  15.3002 95/1 0.00%
12 20.3615 20.3615 144/4  0.00%
24 40.7211  40.7211 304/4  0.00%

e=005 3 5.0575 5.0306  32/9 0.53%
6.8698 6.7075 53/15  2.36%
8.5175 8.5175 86/10  0.00%

10.3402  10.3402 109/23 0.00%

15.3785  10.5553 143/33 31.36%

20.5679 5.2938 92/58 74.26%

41.1995 5.5513 143/10 86.53%

ADNOOO O A~

N -




10.10. CONCLUDING REMARKS 169

10.10 Concluding Remarks

For a brief presentation of our developed features we consider one test instance for each network.
We begin with network 1 in Table 10.25 for time horizon 7" = 12 and accuracy ¢ = 0.05. In the
first column of this table we give the feature added to the branch-and-cut algorithm. We start with
SOS branching, then we add successively the simulated annealing heuristic, the SOS preprocessing
and the separation algorithms. As we see in Table 10.25 the results are improved step by step. The
heuristic yields a feasible solution. Preprocessing as well as separation strategies increase the lower
bound such that the gap can be reduced by around 16%.

Table 10.25: Network 1 for 7' = 12 and € = 0.05

Feature Best Sol. Lower Bd Gap
Branching 43.9234
Heuristic 121.3873  48.0180 60.44%

Preprocessing 121.3873  54.6001 55.02%
Separation 121.3873 68.0150 43.97%

For the second network we consider six coupled time steps and accuracy € = 0.15, see Table 10.26.
In this case especially the separation strategies help to improve the lower bound. Thus, the gap of
around 91% obtained by means of the heuristic solution can be decreased to about 58%.

Table 10.26: Network 2 for T’ =6 and e = 0.15

Feature Best Sol. Lower Bd Gap
Branching 2.9681
Heuristic 32.4963 2.9681 90.87%

Preprocessing  32.4963 4.4960 86.16%
Separation 32.4963  13.7020 57.84%

For the biggest network we choose a planning horizon of six time steps with accuracy ¢ = 0.05. In
Table 10.27 the results are listed. Here, the preprocessing ideas cannot help to improve the lower
bound. But by means of the separation strategies the heuristic solution is proven to be optimal.

Recapitulating all results, we can say that we developed an acceptable optimization tool for the
gas network transmission problem. Only in some cases we can determine optimal solutions, but in



170 CHAPTER 10. COMPUTATIONAL RESULTS

Table 10.27: Network 3 for T'=6 and ¢ = 0.05

Feature Best Sol. Lower Bd Gap
Branching 8.3843

Heuristic 10.3402 8.3843 18.91%
Preprocessing  10.3402 8.3843 18.91%
Separation 10.3402 10.3402 0.00%

general the algorithm yields good feasible solutions.

For network 1, the results are satisfactory with gaps below 40% for up to six time steps and around
40% for T' = 9 and T" = 12. For the middle network, we obtain the worst results. In that case
our branch-and-cut algorithm has problems to tighten the lower bounds, especially for the higher
accuracy we obtain still big gaps. In case of the biggest network, we successfully solved the
transient gas network optimization problem assuming accuracy ¢ = 0.15. For the higher accuracy,
we can say that we solved it for up to six coupled time steps. For bigger planning horizons, where
we still receive big gaps, we suppose that the heuristic solutions are near the optimal solutions.

To check the performance of the branch-and-cut algorithm, we also started longer test runs for
the smallest planning horizon of three coupled time steps, since we wanted to know if the results
can be improved. But even for running times of up to several days, nothing changed at all. The
algorithm neither found a better feasible solution nor the lower bound could be increased.
Furthermore, we tested longer running times for some other planning horizons. We observed
that the results presented in the tables above could only be improved considering bigger planning
horizons as twelve or 24 coupled time steps, or for nine time steps in case of higher approximation
accuracy. In that cases the lower bound could be tightened and thus the gaps decreased. But this
process of improvement always stopped after some time.

Regarding the approximation accuracy of the nonlinear functions, we see that the results for net-
work 2 and network 3, yielded by the branch-and-cut algorithm, depend on this parameter. For the
first network, the smallest one, the results do not differ for both accuracy levels. Hence, with grow-
ing complexity of the test network our solution algorithm is influenced by the accuracy parameter
for the nonlinear functions.

Furthermore, the branch-and-cut algorithm has problems with the fulfillment of the SOS condi-
tions for all nonlinear functions. Remember that in the course of the presentation of our results,
the algorithm could improve the heuristic solution given by simulated annealing two times. This
succeeds always for the smallest network with planning horizon 7" = 3 and accuracy ¢ = 0.15.
One better solution is found adding the preprocessing strategies, another one considering the sep-
aration algorithm for runtime and switching conditions of the compressors. But in general the
algorithm hardly succeeds to determine feasible solutions. Note that in order to fulfill the SOS
condition for one nonlinear function in a certain time step, several branching steps are needed in



10.10. CONCLUDING REMARKS 171

general. And thus guaranteeing the SOS conditions for all nonlinear functions in all considered
time steps requires a great number of branching steps, even if we improve the SOS branching via
preprocessing strategies. Thus further ideas are needed to handle SOS conditions.



172 CHAPTER 10. COMPUTATIONAL RESULTS



Chapter 11

Conclusions

In this thesis we considered the problem of Transient Technical Optimization (TTO). In TTO,
the gas transmission in a network must be operated in such a way that the consumer demands
are satisfied and the fuel consumption of the compressors is minimized. We proposed a mixed
integer approach for this problem concentrating on time-dependent and discrete aspects, where
the nonlinearities are piece-wise linear approximated via SOS conditions. Within the framework
of our branch-and-cut algorithm an adequate handling of these SOS conditions was necessary.
To get a feasible solution, we included a heuristic based on the idea of simulated annealing. The
lower bound in our solution algorithm was increased using cutting planes resulting from theoretical
studies of switching polytopes and the linking of SOS conditions.

The simulated annealing algorithm yields good solutions in very short running times. We extended
the SOS branching strategies developed within the scope of the stationary gas network optimization
to the transient case and supported them using additional preprocessing strategies. These prepro-
cessing ideas manage to diminish the gap. The separation algorithm given by switching processes
and runtime conditions did not actually help us to improve the lower bound. But we could not
completely exploit this separation idea. Because of problems with the CPLEX preprocessing we
had to include some constraints defining the switching polytope explicitly in our model. This fact
worsened the results. A separation of all constraints would yield much better results. Finally, cut-
ting planes arising from coupled SOS conditions increase the lower bound in our branch-and-cut
framework.

Regarding our solution algorithm under the restricted running time of 15 minutes which is ne-
cessary for practical applications, we achieved satisfactory results. For the smaller network we
obtained good solutions for planning horizons of up to twelve time steps, whereas the second
network posed most problems to our solution algorithm. Surprisingly, we received very good
results for the biggest network. In this case optimal solutions could also be determined, especially

173



174 CHAPTER 11. CONCLUSIONS

for a lower accuracy level all considered planning horizons are solved to optimality. From our
computational results we saw that the approximation accuracy has an influence on the solution
quality with growing complexity of the test network. Furthermore the branching routine hardly
succeeds to fulfill all SOS conditions. We suppose that our feasible solutions are good and that the
lower bounds in our algorithm can be tightened.

In our application the concept of SOS conditions attained its limits. In comparison to the sta-
tionary case of gas network optimization, where simple SOS branching sufficed to obtain optimal
solutions, even improved branching strategies were not sufficient to solve the problem of TTO.
This is due to the fact that there is a larger number of nonlinearities that, in addition, depend on
each other. Thus, more strategies are necessary to continue the approach via SOS approximations.
A first step is the consideration of adaptive grids which pay more attention to the properties of
the nonlinear function, especially in the practically relevant part of the domain. Furthermore, a
combination of SOS conditions with binary variables could help to improve the results. The idea is
that an approximation grid is divided into some parts, hence, several simplices of the triangulation
are aggregated, each one identified by a binary variable. Via these binary variables the solution
process first chooses the rough region in the grid, thereafter the values are calibrated using exact
SOS branching. If the subdivision is chosen in such a way that additional cuts are induced as in
the case of our preprocessing strategies, this could also accelerate the algorithm.

A next step from the technical point of view is the evaluation of the feasible solutions received
from our branch-and-cut algorithm using a simulation tool. Thereafter, the modeling of the gas
dynamics, where we considered rough discretizations, must be adapted.

The methods developed in this thesis are also useful for other applications. Any nonlinear func-
tion can be piece-wise linear approximated using SOS conditions. For an adequate number of
nonlinearities the presented methods are sufficient to solve the problem in dependence on the ap-
proximation accuracy. Besides, the concept of SOS can be improved as pointed out above.

There are a lot of practical applications including switching processes and runtime conditions for
a machine, for example in the field of power production or regenerative energies. The polyhedral
studies of the switching polytopes can help to speed up solution algorithms for such problems.
Furthermore, the studies of the SOS 2 and SOS 3 polytopes are interesting from a theoretical point
of view.

Concluding this discussion, we can say that we presented good results for the challenging task of
solving the transient gas network optimization. But still much research remains to be done in order
to solve the problem of TTO.



Wie war zu Koln es doch vordem
Mit Heinzelmannchen so bequem!
Denn war man faul - man legte sich
Hin auf die Bank und pflegte sich:
Da kamen bei Nacht,

Eh man’s gedacht,

Die Méannlein und schwarmten
Und klappten und larmten,
Und rupften
Und zupften
Und hiipften und trabten
Und putzten und schabten,
Und eh ein Faulpelz noch erwacht,
War all sein Tagewerk
bereits gemacht!

August Kopisch, Die Heinzelméannchen von Kéln






Bibliography

[ACO0]

[AdBHVL86]

[AK89]

[Bal05]

[BCCY3]

[Bea79]

[BF76]

[BGR]

[BHKO6]

[BJS86]

[BSRMO5]

J.M. Arroyo and A.J. Conejo. Optimal response of a thermal unit to an electricity
spot market. IEEE Transactions on Power Systems, 15(3):1098 — 1104, 2000.

E.H.L. Aarts, F.M.J. de Bont, E.H.A. Habers, and P.J.M. van Laarhoven. Parallel
implementations of the statistical cooling algorithm. Integration, the VLSI Journal,
4:209 — 238, 1986.

E.H.L. Aarts and J. Korst. Simulated Annealing and Boltzmann Machines. A
Stochastic Approach to Combinatorial Optimization and Neural Computing. Wi-
ley, 1989.

P. Bales. Hierarchische Modellierung der Eulerschen Flussgleichungen in der Gas-
dynamik. Master’s thesis, Technische Universitat Darmstadt, 2005.

E. Balas, S. Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0 — 1 programs. Mathematical Programming, 58:295 — 324, 1993.

E.M.L. Beale. Branch and bound methods for mathematical programming systems.
Annals of Discrete Mathematics, 5:201 — 219, 1979.

E.M.L. Beale and J.J.H. Forrest. Global optimization using special ordered sets.
Mathematical Programming, 10:52 — 69, 1976.

BGR. Bundesanstalt  fir  Geowissenschaften und  Rohstoffe.
http://www.bgr.bund.de.

M.K. Banda, M. Herty, and A. Klar. Gas flow in pipeline networks. Networks and
Heterogenous Media, 1(1):41 — 56, 2006.

I.0. Bohachevsky, M.E. Johnson, and M.L. Stein. Generalized simulated annealing
for function optimization. Technometrics, 28:209 — 217, 1986.

C. Borraz-Sanchez and R.Z. Rios-Mercado. A hybrid meta-heuristic approach for
natural gas pipeline network optimization. In M. J. Blesa, C. Blum, A. Roli, and

177



178

[BT70]

[Car98]

[Cer85]

[CGMO3]

[CLOO]

[CMMR8T7]

[CPLO2]

[DA91]
[Dan63]
[dFJZZ05]
[Die00]
[ELR02]

[ES03]

BIBLIOGRAPHY

M. Sampels, editors, Hybrid Metaheuristics: Second International Workshop, HM
2005, Barcelona, Spain, August 29-30, pages 54 — 65. Springer, 2005.

E.M.L. Beale and J.A. Tomlin. Special facilities in a general mathematical pro-
gramming system for non-convex problems using ordered sets of variables. In
J. Lawrence, editor, Proceedings of the Fifth International Conference on Opera-
tions Research, pages 447 — 454. Tavistock Publications, London, 1970.

R. Carter. Pipeline optimization: Dynamic programming after 30 years. In Pipeline
Simulation Interest Group, URL: www.psig.org, 1998.

V. éerny. Thermodynamical approach to the traveling salesman problem: An effi-
cient simulation algorithm. Journal of Optimization Theory and Applications, 45:41
—-51, 1985.

K.L. Croxton, B. Gendron, and T.L. Magnanti. A comparison of mixed-integer
programming models for nonconvex piecewise linear cost minimization problems.
Management Science, 49:1268 — 1273, 2003.

T. Christof and A. Lobel. PORTA: POlyhedron Representation Transformation Al-
gorithm, Version 1.3. Konrad-Zuse-Zentrum fir Informationstechnik Berlin, 2000.

A. Corana, M. Marchesi, C. Martini, and S. Ridella. Minimizing multimodal func-
tions of continuous variables with the “simulated annealing” algorithm. ACM Trans-
actions on Mathematical Software, 13:262 — 280, 1987.

ILOG CPLEX Division, 889 Alder Avenue, Suite 200, Incline Village, NV 89451,
USA. Using the CPLEX Callable Library, 2002. Information available at URL
http://www.cplex.com.

A. Dekkers and E. Aarts. Global optimization and simulated annealing. Mathemat-
ical Programming, 50:367 — 393, 1991.

G.B. Dantzig. Linear Programming and Extensions. Princeton University Press,
1963.

I.R. de Farias Jr., M. Zhao, and H. Zhao. A special ordered set approach to discon-
tinuous piecewise linear optimization. Technical report, State University of New
York at Buffalo, 2005.

R. Diestel. Graphentheorie. Springer, 2000.

B. Erdmann, J. Lang, and R. Roitzsch. KARDOS user’s guide. Technical Report
ZR 02-42, Konrad-Zuse-Zentrum fiir Informationstechnik Berlin, 2002.

K. Ehrhardt and M. Steinbach. Nonlinear optimization in gas networks. Technical
Report ZR 03-46, Konrad-Zuse-Zentrum fir Informationstechnik Berlin, 2003.



BIBLIOGRAPHY 179

[ESO05]

[GAS]
[GJ99]

[GNRS00]

[Gop79]

[Hac02]

[Hei02]

[Her06]

[HNNS04]

[JCO0]

[Jen93]

[KdFINO4]

[KIV83]

[Kol]

[Kra93]

K. Ehrhardt and M. Steinbach. Nonlinear optimization in gas networks. In H.G.
Bock, E. Kostina, H.X. Phu, and R. Ranacher, editors, Modeling, Simulation and
Optimization of Complex Processes, pages 139 — 148, Berlin - Heidelberg - New
York, 2005. Springer.

GASAG. Berliner Gaswerke AG. http://www.gasag.de.

E. Gawrilow and M. Joswig. pol ynmake: a Framework for Analyzing Convex
Poltytopes, 1999.

R. Gollmer, M.P. Nowak, W. Rémisch, and R. Schultz. Unit commitment in power
generation — a basic model and some extensions. Annals of Operations Research,
96:167 — 189, 2000.

V.N. Gopal. Techniques to optimize fuel and compressor combination selection. In
American Gas Association Transmission Conference, 1979.

P. Hacklander. Integrierte Betriebsplanung von Gasversorgungsunternehmen. PhD
thesis, Bergische Universitét - Gesamthochschule Wuppertal, 2002.

T. Heidenreich. Linearisierungen in transienten Optimierungsmodellen des Gas-
transports. Master’s thesis, Gerhard-Mercator-Universitat Duisburg, 2002.

S. Herrmann, 2006. Personal communication and documents.

E. Handschin, F. Neise, H. Neumann, and R. Schultz. Optimal operation of dis-
persed generation under uncertainty using mathematical programming. Technical
report, Universitat Dortmund, Universitat Duisburg-Essen, 2004.

H.H. Rachford Jr. and R. Carter. Optimizing pipeline control in transient gas flow.
In Pipeline Simulation Interest Group, URL: www.psig.org, 2000.

T. JeniCek. Steady-state optimization of gas transport. In Proceedings of the 2nd
International Workshop SIMONE on Innovative Approaches to Modelling and Op-
timal Control of Large Scale Pipeline Networks, September 1993.

A.B. Keha, I.R. de Farias Jr., and G.L. Nemhauser. Models for representing piece-
wise linear cost functions. Operations Research Letters, 32:44 — 48, 2004.

S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671 — 680, 1983.

O. Kolb. Physikalisches Modell des Gastransports in vernetzten Pipelines. Working
Paper.

J. Kralik. Compressor stations in SIMONE. In Proceedings of the 2nd International
Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of
Large Scale Pipeline Networks, September 1993.



180

[KRSO00]

[LA8T7]

[LLMO4]

[LP79]

[LP86]

[LWO1]

[Mah05]

[Mar05]

[MFOO]

[MHFO03]

[MM57]

[MMMO6]

[MMMar]

[M5104]

[MRR*53]

BIBLIOGRAPHY

C. Kelling, K. Reith, and E. Sekirnjak. A practical approach to transient optimiza-
tion for gas networks. Technical report, Ruhrgas AG, PSI AG, 2000.

P.J.M. van Laarhoven and E.H.L. Aarts. Simulated Annealing: Theory and Appli-
cations. D. Reidel Publishing Company, 1987.

J. Lee, J. Leung, and F. Margot. Min-up/min-down polytopes. Discrete Optimiza-
tion, 1:77 — 85, 2004.

A. Land and S. Powell. Computer codes for problems of integer programming.
Annals of Discrete Mathematics, 5:221 — 269, 1979.

L. Lovasz and M.D. Plummer. Matching Theory. Annals of Discrete Mathematics
29. North-Holland Mathematics Studies, 1986.

J. Lee and D. Wilson. Polyhedral methods for piecewise-linear functions I: The
lambda method. Discrete Applied Mathematics, 108:269 — 285, 2001.

D. Mahlke. Der Simulated Annealing Algorithmus zur transienten Optimierung von
Gasnetzen. Master’s thesis, Technische Universitat Darmstadt, 2005.

P. Marcinkowski.  Schaltbedingungen bei der Optimierung von Gasnetzen:
Polyedrische Untersuchungen und Schnittebenen. Master’s thesis, Technische Uni-
versitdt Darmstadt, 2005.

Z. Michalewicz and D.B. Fogel. How to Solve It: Modern Heuristics. Springer,
2000.

M. Miki, T. Hiroyasu, and T. Fushimi. Parallel simulated annealing with adaptive
neighborhood determined by GA. IEEE International Conference on Systems, Man
and Cybernetics, 1:26 — 31, 2003.

H.M. Markowitz and A.S. Manne. On the solution of discrete programming prob-
lems. Econometrica, 25:84 — 110, 1957.

A. Martin, M. Moller, and S. Moritz. Mixed integer models for the stationary case
of gas network optimization. Mathematical Programming, 105:563 — 582, 2006.

D. Mahlke, A. Martin, and S. Moritz. A simulated annealing algorithm for transient
optimization in gas networks. Mathematical Methods of Operations Research, to
appear.

M. Moller. Mixed Integer Models for the Optimisation of Gas Networks in the
Stationary Case. PhD thesis, Technische Universitdt Darmstadt, 2004.

N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller. Equa-
tion of state calculations by fast computing machines. Journal of Chemical Physics,
21(6):1087 — 1092, 1953.



BIBLIOGRAPHY 181

[Nei04]

[NNR*00]

[NS00]

[NW88]

[NWO3]

[OK96]

[O0s98]

[Pad00]

[PW84]

[PWO06]

[RA]
[Ree93]

[RSO1]

[RTO5]

[Sch86]

F. Neise. Transportkostenminimierung in Gasnetzen mittels nichtlinearer opti-
mierung. Master’s thesis, Universitdt Duisburg-Essen, 2004.

M.P. Nowak, R. Nirnberg, W. Romisch, R. Schultz, and M. Westphalen. Stochas-
tic programming for power production and trading under uncertainty. Technical
Report SM-DU-471, Gerhard-Mercator-Universitat Duisburg, 2000. Schriftenreihe
des Fachbereichs Mathematik.

A. Nolte and R. Schrader. A note on the finite time behavior of simulated annealing.
Mathematics of Operations Research, 25(3):476 — 484, 2000.

G.L. Nemhauser and L.A. Wolsey. Integer and Combinatorial Optimization. Wiley,
1988.

M.P. Nowak and M. Westphalen. A linear model for transient gas flow. Technical
Report STF38 S03601, SINTEF Industrial Management, Norway, 2003.

I.LH. Osman and J.P. Kelly, editors. Meta-Heuristics: Theory and Applications.
Kluwer, 1996.

F. van Oostvoorn. European gas market developments - opportunities and threats
-. In Supplement to the IAEE/GEE Conference “Energy Markets, What’s New?”’,
pages 29 — 44, Berlin, 9-10 September 1998.

M. Padberg. Approximating separable nonlinear functions via mixed zero-one pro-
grams. Operations Research Letters, 27:1 -5, 2000.

K.F. Pratt and J.G. Wilson. Optimization of operation of gas transmission systems.
Transactions of the Institute of Measurement and Control, 6(4):261 — 269, October
1984.

Y. Pochet and L.A. Wolsey. Production Planning by Mixed Integer Programming.
Springer, 2006.

E.ON Ruhrgas AG. http://www.eon-ruhrgas.com.

C.R. Reeves, editor. Modern Heuristic Techniques for Combinatorial Problems.
Halstead Press (Wiley), 1993.

K. Reith and E. Sekirnjak. Transiente Technische Optimierung (TTO-
Basisdokument.). Technical report, PSI AG, Berlin; Ruhrgas AG, Essen, April
2001. Vertrauliche Dokumentation.

D. Rajan and S. Takriti. Minimum up/down polytopes of the unit commitment
problem with start-up costs. Technical report, IBM Research Division, 2005.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.



182

[Sekag]

[Sek00]

[Sek01]

[Sek03]

[SWO0]

[TKWOO]

[Tom81]

[Tom8g]

[Vos93]

[WCO00]

[Wes04]

[Whi32]

[Wil98]

[Wol98]
[WSD98]

BIBLIOGRAPHY

E. Sekirnjak. Mixed Integer Optimization for Gas Transmission and Distribution
Systems. INFORMS Meeting, Seattle, October 1998. Lecture notes.

E. Sekirnjak. Transiente Technische Optimierung (TTO-Prototyp). Technical re-
port, PSI AG, Berlin, November 2000. Vertrauliche Dokumentation.

E. Sekirnjak. Stationdre Leitungshydraulik fir lange Segmente. Technical report,
PSI AG, Berlin, November 2001. Vertrauliche Dokumentation.

E. Sekirnjak. Transiente Leitungsmodelle fiir lange Segmente und Perioden. Tech-
nical report, PSI AG, Berlin, Oktober 2003. Vertrauliche Dokumentation.

Y. Smeers and D. De Wolf. The gas transmission problem solved by an extension
of the simplex algorithm. Management Science, 46:1454 — 1465, 2000.

S. Takriti, B. Krasenbrink, and L.S.-Y. Wu. Incorporating fuel constraints and elec-
tricity spot prices into the stochastic unit commitment problem. Operations Re-
search, 48(2):268 — 280, 2000.

J.A. Tomlin. A suggested extension of special ordered sets to non-separable non-
convex programming problems. Annals of Discrete Mathematics, 11:359 — 370,
1981.

J.A. Tomlin. Special ordered sets and an application to gas supply operations plan-
ning. Mathematical Programming, 42:69 — 84, 1988.

Z. \ostry. Transient optimization of gas transport and distribution. In Proceedings
of the 2nd International Workshop SIMONE on Innovative Approaches to Modelling
and Optimal Control of Large Scale Pipeline Networks, September 1993.

B.W. Wah and Y.X. Chen. Optimal anytime constrained simulated annealing for
constrained global optimization. In Proceedings Sixth International Conference on
Principles and Practice of Constraint Programming, pages 425 — 440, 2000.

M. Westphalen. Anwendungen der stochastischen Optimierung im Stromhandel und
Gastransport. PhD thesis, Universitat Duisburg-Essen, 2004.

H. Whitney. Non-separable and planar graphs. Transactions of the American Math-
ematical Society, 34:339 — 362, 1932.

D. Wilson. Polyhedral Methods for Piecewise-Linear Functions. PhD thesis, Uni-
versity of Kentucky, 1998. Thesis only available via www.umi.com.

L.A. Wolsey. Integer Programming. Wiley, 1998.

S. Wright, M. Somani, and C. Ditzel. Compressor station optimization. In Pipeline
Simulation Interest Group, Denver, Colorado, 1998.



[WW99]

[Zaw]

[Zim75]

B.W. Wah and T. Wang. Constrained simulated annealing with applications in non-
linear continuous constrained global optimization. In Proceedings of the 11th IEEE
International Conference on Tools with Artificial Intelligence, pages 381 — 388,
19909.

J. Zaworka. Project SIMONE - achievements and running development. Institute of
Information Theory and Automation, Academy of Sciences of the Czech Republik.

H.I. Zimmer. Calculating optimum pipeline operations. In American Gas Associa-
tion Transmission Conference, 1975.






Akademischer Werdegang

Susanne Moritz

geboren am 24. August 1973 in Koln

1980 - 1984 Katholische Grundschule Merten, Bornheim
1984 - 1993 Max-Ernst-Gymnasium, Briihl
1993 Abitur

1993 - 2000 Studium Diplom Mathematik mit Nebenfach Informatik und
Lehramt Franzdsisch an der Universitat zu Koln

August 1996 Zwischenprifung Franzosisch
Februar 2000 Diplom in Mathematik

Seit April 2000 Wissenschaftliche Mitarbeiterin am Fachbereich Mathematik
der Technischen Universitdt Darmstadt



