
Math. Meth. Oper. Res. (2007) 66: 99–115
DOI 10.1007/s00186-006-0142-9

ORIGINAL ARTICLE

Debora Mahlke · Alexander Martin
Susanne Moritz

A simulated annealing algorithm
for transient optimization in gas networks

Received: 24 February 2006 / Revised: 18 October 2006 /
Published online: 23 January 2007
© Springer-Verlag 2007

Abstract In this paper we present a simulated annealing approach for the gas
network optimization problem. A gas network consists of a set of pipes to trans-
port the gas from the sources to the sinks whereby gas pressure gets lost due to
friction. Further on there are compressors, which increase gas pressure, and valves.
The aim is to minimize fuel gas consumption of the compressors whereas demands
of consumers have to be satisfied. The problem of transient (time-dependent) opti-
mization of gas networks results in a highly complex mixed integer nonlinear pro-
gram. We relax the equations describing the gas dynamic in pipes by adding these
constraints combined with appropriate penalty factors to the objective function. A
suitable neighborhood structure is developed for the relaxed problem where time
steps as well as pressure and flow of the gas are decoupled. Our approach convinces
with flexibility and very good computational results.

Keywords Mixed integer nonlinear programming · Transient gas optimization ·
Simulated annealing · Heuristics · Relaxation

1 Introduction

In this paper we consider the following problem. We are given a gas network con-
sisting of compressors and valves that are connected by pipes. There are consumers
that need a certain amount of gas at a specified quality and pressure, and sources
where some gas is delivered with a certain pressure and volume. While the gas
flows through the network, pressure decreases due to friction with the pipe walls.

D. Mahlke · A. Martin (B) · S. Moritz
Department of Mathematics, TU Darmstadt, Schloßgartenstraße 7,
64289 Darmstadt, Germany
E-mail: mahlke@mathematik.tu-darmstadt.de
E-mail: martin@mathematik.tu-darmstadt.de
E-mail: moritz@mathematik.tu-darmstadt.de

100 D. Mahlke et al.

Compressors are used to compensate the pressure loss at the cost of consuming fuel
gas (about 2 % of the gas running through them). The aim of the so called transient
technical optimization (TTO) is to operate the gas transmission in such a way that
the consumer demands are satisfied and the compressors are set in cost-efficiently.

The problem of TTO includes nonlinear and combinatorial aspects. The gas
dynamics in pipes and the fuel gas consumption of compressors are highly nonlin-
ear elements. Combinatorial aspects are given by switching modes of compressors
and valves.

Most papers that can be found in literature only handle the stationary case where
one time step is considered (see for example Borraz-Sánchez and Ríos-Mercado
2005; Jenicek 1993; Martin et al. 2006; Pratt and Wilson 1984; Carter 1998; Smeers
and De Wolf 2000; Wright et al. 1998). Optimization of the transient case (several
time steps) remains one of the great challenges. Note that from a mathematical point
of view in the time-dependent case, even the specification of a feasible solution is
a very difficult task. In this paper we present a simulated annealing algorithm for
the TTO. The aim of the heuristic is to yield a good feasible solution in adequate
runtime.

In Sect. 2 we formulate the problem of TTO as a mixed integer nonlinear prob-
lem. In Sect. 3 we introduce the general idea of the simulated annealing algorithm,
give a mathematical description of it, and adapt the simulated annealing algorithm
to the TTO in Sect. 4. Finally, we conclude with computational results showing the
applicability of our developed algorithm in practice.

In the literature various approaches for gas network optimization can be found
whereas none covers all nonlinear, combinatorial or time-dependent aspects. As
already mentioned most papers concentrate on the stationary case.

In Gopal (1979), Zimmer (1975) and Carter (1998) dynamic programming is
used. The first two restrict to a simplified network structure, i. e., a directed graph
consisting of pipes and compressors without cycles, and the latter one also com-
prises series parallel network elements. Because of the nonlinear elements the
problem is often tackled by nonlinear optimization methods whereas the combina-
torial aspects are neglected. In this context sub-gradient techniques (Jenicek 1993;
Králik 1993) are used.

Heuristic approaches can also be found for stationary gas network optimization
like for example simulated annealing (Wright et al. 1998) and a hybrid heuristic
approach (Borraz-Sánchez and Ríos-Mercado 2005). Wright et al. (1998) concen-
trates on the optimization of compressor stations, i. e., the authors look for optimal
configurations and power settings for a large number of compressors arranged
in series or in parallel. Borraz-Sánchez and Ríos-Mercado (2005) combines non-
sequential dynamic programming with tabu search in a two-stage iterative proce-
dure. In the first step gas flow variables are fixed and then optimal pressure values
are found via non-sequential dynamic programming. Thereafter, in a second stage,
pressure values are fixed and a tabu search procedure guides the search in the flow
variable space. Pratt and Wilson (1984) applies mixed integer programming for the
stationary case. The problem is solved iteratively by means of sequential linear pro-
gramming whereby the nonlinearities are approximated using Taylor expansion.
Smeers and De Wolf (2000) also uses an iterative solution process based on a mod-
ified simplex algorithm. An MIP approach for the stationary case is also applied in
Möller (2004) and Martin et al. (2006). Here the nonlinearities are approximated

A simulated annealing algorithm for transient optimization 101

via SOS techniques. A global optimum is received in dependence on the approx-
imation accuracy. For the more challenging transient case much less is known.

In Vostrý (1993) and Ehrhardt and Steinbach (2005) nonlinear optimization
methods can be found whereas the first uses sub-gradient techniques and the latter
SQP-methods. Note that these approaches do not include combinatorial conditions
and just guarantee local optimality. In Sekirnjak (1998, 1999) the problem is for-
mulated as a mixed integer program and is iteratively solved using sequential linear
programming similar to Pratt and Wilson (1984). Westphalen (2004) concentrates
on stochastical aspects of TTO and uses a coarse approximation of the nonlineari-
ties. A linear model for transient gas flow is presented in Nowak and Westphalen
(2003) where a simple line-pack model for pipes is developed and numerically
tested.

In summary, for the steady state a lot of approaches are available in the literature.
To the best of our knowledge, for the transient case, sequential solution methods are
used that only guarantee local optimality, either combinatorial aspects are neglected
or coarse approximations for the nonlinearities are applied. In the following we
present a simulated annealing algorithm that includes time-dependent, combinato-
rial as well as nonlinear aspects and is applicable to general graph structures.

2 A mathematical model

We formulate the TTO problem as a mixed integer nonlinear problem (MINLP).
The gas network is modeled via a directed graph G = (V, E). The set of edges E
can be divided into three kinds of components, also called segments, the set EP
of pipes, the set EC of compressors, and the set EV of valves. Further on we have
special kinds of valves ER ⊂ EV , so called control valves, having the additional
possibility to reduce gas pressure. Connections, a subset of the pipes E A ⊂ EP , can
be viewed as short pipes where pressure loss can be neglected. The set of nodes
V consists of the set of sources (gas delivering points) S ⊂ V , the set of sinks
(consumers) U ⊂ V , and intersection points of segments. We assume the graph to
be directed since we do not allow back-flow in pipes.

In the following we describe the variables and constraints of the model. In most
cases we restrict to a verbal description since a detailed model would go beyond
the scope of this paper. For an exact mathematical formulation we refer to Martin et
al. (2006) and Möller (2004) in the stationary case and Mahlke (2005) and Moritz
(2006) in the transient case.

Variables
Let T ∈ N denote the number of time periods (in our case hours), in which the
planning horizon is divided. All variables receive a time index t for each t ∈ T :=
{1, . . . , T }. We introduce a variable qt

e ∈ R+ describing the gas flow for each valve
or compressor e ∈ EV ∪ EC . For each pipe e = vw ∈ EP the two flow variables
qt

e,v, qt
e,w ∈ R+ nominate the gas flow at the beginning and at the end of pipe e.

For v ∈ V , pt
v ∈ R+ describes the gas pressure. For each compressor e ∈ EC ,

f t
e ∈ R+ reflects the fuel gas consumption of the machine. We get constant upper

and lower bounds for all these continuous variables. Finally, decision variables
st

e ∈ {0, 1}, e ∈ EC ∪ EV , indicate if a compressor or a valve is switched on or off.

102 D. Mahlke et al.

Time-independent conditions
Now we describe conditions which must be considered for each time step t ∈ T of
the planning horizon.

For pipes, there are no time-independent conditions as the most important pipe
constraints arise because of the gas dynamics which have effect on gas flow and
pressure. In case of a connection, a pipe without pressure loss, gas dynamics can
be neglected and we get constant flow and pressure in it.

A valve is a controllable element which can be opened or closed. It is also
found in connection with a compressor as a so called bypass valve. A bypass valve
is open iff the compressor is not operating. The following constraints model the
situation of a compressor e = vw ∈ EC and its bypass valve b(e) ∈ EV

st
e + st

b(e) = 1

dpmax
e st

b(e) − pt
v + pt

w ≤ dpmax
e

pt
v − pt

w ≤ 0,

where dpmax
e signifies the maximal pressure difference between beginning and end

node. The pressure at the beginning and the end of an ordinary valve must be the
same, whereas for control valves pressure can be reduced within some technical
limits.

A compressor compensates for the pressure loss in pipes resulting in costs
reflected by the fuel gas consumption. For a compressor e = vw ∈ EC the fuel
gas f t

e is given by the nonlinear function

f (pt
v, pt

w, qt
e) = γ

((
pt
w

pt
v

) κ−1
κ − 1

)
qt

e, (1)

where γ, κ are constants. Note that (1) is neither convex nor concave.
For each node v ∈ V \{S, U } the first law of Kirchhoff must hold which ensures

flow balance in a node∑
e∈δ−(v)\EP

qt
e +

∑
e∈δ−(v)∩EP

qt
e,v −

∑
e∈δ−(v)∩EC

f t
e

=
∑

e∈δ+(v)\EP

qt
e +

∑
e∈δ+(v)∩EP

qt
e,v, (2)

where δ+(v) and δ−(v) denote the set of outgoing and ingoing segments, respec-
tively. Note that the fuel gas consumption must be regarded in this equation if
e ∈ δ−(v) corresponds to a compressor. For sources and sinks we have additional
flow bounds reflecting consumer behavior and supply contracts.

Gas dynamic in pipes
The gas transport in a pipe is described by a system of partial differential

equations, i.e., the continuity equation, the momentum equation, and the energy
equation as well as the thermodynamic state equation of gas. Since German pipes
are at least 1 m beneath the ground with nearly constant temperature, general sim-
ulation models do not take the energy equation into account (see Sekirnjak 1999;
Záworka). Therefore, we neglect it and assume the temperature T to be constant.

A simulated annealing algorithm for transient optimization 103

The continuity equation describes the influence of the alteration of the gas flow to
the alteration of the gas density. The momentum equation specifies the sum of all
forces on the gas molecules. The system of these equations is given by

A
∂ρ

∂t
+ ρ0

∂q

∂x
= 0, (3)

∂p

∂x
+ gρ

∂h

∂x
+ λ|v|v

2D
ρ + ρ0

A

∂q

∂t
+ ∂(ρv2)

∂x
= 0, (4)

where A is the area of the cross-section of the pipe, ρ the gas density, ρ0 the norm
gas density, which is the density of the gas volume at norm pressure p0 and norm
temperature T0 resulting from the state equation of gas, and q the gas flow. In
the momentum equation g denotes the acceleration constant due to gravity, ∂h

∂x the
slope of the pipe, λ is the pipe friction value, v = ρ0

A
q
ρ

the gas velocity, and D
the diameter of the pipe. Since we assume the pipe to be horizontal we neglect the
second term. The state equation of gas reads

ρ = ρ0z0T0

p0

p

z(p)T
, (5)

where z is the compressibility factor characterizing the non-ideal behavior of gas
(for ideal gas z ≡ 1 holds) and z0 is the norm compressibility factor.

After insertion of Eq. (5) in the partial differential equations (3) and (4), we
discretize them in space and time. For the space discretization, we use the grid
consisting just of the beginning and the end of the pipe. For e = vw ∈ EP \ E A
this results in

qt
w − qt

v

L
+ A

z0T0

p0T

(
pt
w

z(pt
w)

− pt−1
w

z(pt−1
w)

)
= 0, (6)

pt
w − pt

v

L
+ λ

2D

ρ0 p0T

A2z0T0

(qt
w)2z(pt

w)

pt
w

+ ρ0

A

(
qt
w − qt−1

w

)

+ ρ0 p0T

A2z0T0

(qt
w)2z(pt

w)

pt
w

− (qt
v)

2z(pt
v)

pt
v

L
= 0. (7)

These two nonlinear equations are integrated in our model for each pipe e ∈ EP\E A
and for each t ∈ T \ {1}.
Boundary conditions
Moreover, we are given an initial state for the gas network, i.e., values of all flow
and pressure variables at the beginning of the planning horizon. Based upon this
initial state optimization for the succeeding time steps is made. Finally, a terminal
condition is required which guarantees operational availability after the considered
time horizon. We require that the total gas volume at the end of the considered time
horizon is at least as large as that at the beginning. Otherwise the optimization
process would result in very low pressure and flow values for the last time step,
since it is cheaper to pump the gas network empty than to transport the gas flow
from the sources.

104 D. Mahlke et al.

Objective function
The objective function reads ∑

t∈T

∑
e∈EC

f t
e , (8)

which is to minimize the sum of the fuel gas consumption of the compressors for
all time steps.

Altogether we get a complex model including nonlinearities and binary vari-
ables. Practical instances of this MINLP cannot be solved by current general pur-
pose algorithms. It is even very difficult to determine a feasible solution for the
TTO problem.

3 The simulated annealing algorithm

The simulated annealing (SA) algorithm is a meta-heuristic. It was originally
developed for solving large combinatorial optimization problems and uses local
search. It randomly accepts solutions with increasing objective function value.
Thus, SA can overcome local minima and the dependence on the initial solution is
marginal, but it stays flexible and robust (Aarts and Korst 1989).

The original idea of simulated annealing for solving large combinatorial opti-
mization problems was independently introduced by Kirkpatrick et al. (1983) and
Černý (1985). As implied by the name the simulated annealing algorithm is based
on the analogy between the physical process of annealing liquids to the thermal
equilibrium (solid phase) and the problem of finding the solution of combinatorial
optimization problems.

The simulated annealing algorithm is widely discussed in the literature see for
instance van Laarhoven and Aarts (1987), Aarts and Korst (1989), Reeves (1993),
Osman and Kelly (1996), and Nemhauser and Wolsey (1988). It can be seen as a
sequence of consecutively executed Metropolis algorithms (Metropolis et al. 1953)
(see Algorithm 1, step 5 to 12). After each iteration of the Metropolis algorithm
the control parameter T is reduced. Here, we give a description of the algorithm
(Mahlke 2005).

Algorithm 1 Simulated Annealing
1: Initialize control parameter T
2: Find initial solution S
3: Calculate c(S)
4: repeat
5: repeat
6: Randomly generate neighbor S′ of S
7: Set � = c(S′) − c(S)
8: Choose θ ∈ (0, 1) randomly
9: if � < 0 or θ < e−�/T then
10: Set S = S′
11: end if
12: until Equilibrium criterion is fulfilled
13: Decrement control parameter T
14: until Specified stop criterion is fulfilled
15: return the best solution found

A simulated annealing algorithm for transient optimization 105

The key point is that it also accepts worse solutions with a certain probability,
which diminish with decreasing T (see Algorithm 1, step 8 and 9). This stochastic
aspect should avoid termination in local minima. Therefore this algorithm is also
called stochastic hill-climber (Michalewicz and Fogel 2000).

By means of the theory of Markov chains theoretical (asymptotic) convergence
can be proven (van Laarhoven and Aarts 1987; Aarts and Korst 1989). Thus the
algorithm can be viewed as a global optimization algorithm if an infinite number of
transitions is allowed. Since this conclusion is not useful for practical applications,
a finite time approximation must be developed (van Laarhoven and Aarts 1987;
Aarts and Korst 1989). In the literature finite time bounds for SA can also be found
(Nolte and Schrader 2000). The number of necessary steps, however, exceeds the
cardinality of the solution space, hence it would be more reasonable to determine
the optimal solution by complete enumeration.

Before implementing SA for the solution of a special problem, a lot of deci-
sions must be made which can be divided in generic and problem specific ones (van
Laarhoven and Aarts 1987; Reeves 1993). Generic decisions comprise parameters
of the annealing algorithm itself. These are initialization and decrement of the
control parameter T , specification of the number of steps until the equilibrium
condition is fulfilled and a stop criterion. Together these parameters build the so
called cooling schedule. The second, problem specific class includes the charac-
terization of feasible solutions, specification of the cost function, generation of an
initial solution and the definition of the neighborhood structure.

As already mentioned, the presented SA algorithm is a method for solving
combinatorial optimization problems. In that case it is often intuitive to specify
a neighborhood structure. Because of its general and flexible form SA can easily
be adapted to other optimization problems, since for example no special proper-
ties as differentiability or convexity are imposed on the objective function or the
constraints.

Due to successful implementations of the SA algorithm in the field of com-
binatorial optimization, its practicability for problems with continuous variables
was investigated. Approaches for global optimization in case of an n-dimensional
function defined on a bounded subset can be found for instance in Bohachevsky
et al. (1986), Dekkers and Aarts (1991). Dekkers and Aarts (1991) also proves
convergence of the algorithm in analogy to the classical SA for combinatorial
optimization problems.

Wah and Wang (1999) describe a modified SA algorithm to optimize functions
with continuous variables subject to equality and inequality constraints. All con-
straints are relaxed by means of Lagrange multipliers and the resulting problem
is solved using so called constrained simulated annealing. Note that if the optimi-
zation problem has numerous constraints one gets a lot of additional variables. In
Corana et al. (1987) and Wah and Chen (2000) further modifications of SA can
be found to tackle (constrained) global optimization of functions with continuous
variables.

All these approaches provide a basis for solving the TTO problem. Note that
our problem comprises numerous integer as well as continuous variables. Thereto
we have to combine different ideas of the cited literature.

106 D. Mahlke et al.

4 Simulated annealing for TTO

In order to adjust the simulated annealing algorithm to the TTO problem, we have
to make a couple of problem specific and generic decisions. The latter concerns
the design of an adequate cooling schedule. The decisions tailored to our problem
comprise constraint-handling and solution characterization respectively, definition
of a cost function, design of a neighborhood structure, step size selection and initial
solution generation. The following discussion is gathered around these decisions.

Constraint-handling
Like in most real-world problems our problem contains a lot of constraints which
restrict the solution space. The question is how to handle these constraints in order
to receive feasible solutions. Basically there are two alternative approaches deal-
ing with constraints, see Michalewicz and Fogel (2000). The first method only
operates on feasible solutions and all infeasible solutions are rejected. Thus, the
search space is not extended supplementary. A disadvantage is the difficulty of
finding feasible neighbors in each iteration step. The second approach deals with
both feasible and infeasible solutions and therefore simplifies the latter problem.
The new arising task of evaluating infeasible solutions can be handled by adding
a penalty term Q(x) to the objective function in order to reduce the quality of an
infeasible solution x .

Since it is very complicated to find a feasible solution for the TTO problem we
apply the latter approach. In Michalewicz and Fogel (2000) two commonly known
penalty methods are provided, a static and a dynamic one. For a better understand-
ing in the following we abbreviate a solution (p, q, f, s) consisting of pressure,
flow, fuel gas consumption, and decision variables by x . Further on we denote the
equations and inequalities presented in Sect. 2 by h j (x) and g j (x), respectively.
Both penalty methods are based on the following definition of v j (x) for a solution
x which is a measure for the violation of the j-th constraint:

v j (x) =
{ ∣∣h j (x)

∣∣ if 1 ≤ j ≤ q
max

{
0, g j (x)

}
if q + 1 ≤ j ≤ m,

where q ∈ {1, . . . , m} is the number of equations and j ∈ {1, . . . , m}. The penalty
function for the static method is

Q(x) =
m∑

j=1

R jv
2
j (x),

where R j is a constant imposed for the violation of constraint j . To overcome the
problem of determining good parameters R j , which are necessary to find feasible
solutions, penalty functions with dynamic aspects are applied. As a result of includ-
ing the iteration step n to the function the penalty term is dynamically increased
during execution. For the n-th iteration the penalty function is calculated by

Q(x) =
m∑

j=1

(C j n)αv2
j (x),

where C j and α are positive constants. While testing the SA algorithm apply-
ing these two methods to our problem there arise difficulties in finding a feasible

A simulated annealing algorithm for transient optimization 107

solution, see Mahlke (2005). Thus, we developed a combination of both methods
especially adapted to our problem. Besides the minimization of the fuel gas con-
sumption (8) the feasibility of the solution is the primary objective of the algorithm.
In this context we consider a solution to be feasible, if the maximal absolute viola-
tion of the relaxed constraints is lower than a given accuracy ε. The underlying idea
of this combined method is the additional dynamic penalty of violations greater
than ε. For TTO the penalty function is defined as

Q(x) =
m∑

j=1

Pjv
2
j (x), (9)

where

Pj =
{

R j if v j (x) ≤ ε
R j + (C j n)α if v j (x) > ε.

Having presented the different penalty functions, we apply this approach to our
problem. As good parameter settings for the penalty functions might be difficult
to find we neglect only some constraints which pose most of the problems to us.
Therefore, we relax the discretized continuity (6) and momentum (7) equations
for each pipe of the gas network, as basically they connect single time steps and
flow and pressure variables. The remaining constraints have to be fulfilled in each
iteration. Once the penalty functions QC (x) and QM (x) of the form (9) for the
continuity and momentum equations are introduced, the problem reads

min f (x) + QC (x) + QM (x)

s.t. x satisfies • lower and upper bounds for pressure in nodes
• lower and upper bounds for flow in segments
• flow balance in nodes (Kirchhoff’s first law), see (2)
• supplier and consumer behavior for sources and sinks
• compressor constraints, see (1)
• switching constraints for valves and compressors
• terminal condition for the last time step,

(10)

where f (x) denotes the original objective function, i.e., the fuel gas consumption
(8).

Neighborhood structure
The choice of a suitable neighborhood structure is, next to the cooling schedule,
one of the most important parts of the algorithm. Only an efficient neighborhood
structure leads to a powerful search. Since the problem contains continuous and
integer variables, the definition of a neighborhood structure is not as intuitive as
for combinatorial problems.

Our key idea of the neighborhood generation is a small perturbation of flow and
pressure variables in the segments and nodes. At each iteration of the algorithm
either a flow variable qt

e, qt
e,v or qt

e,w of a segment e = vw ∈ E at t ∈ T \ {1}
is variated or a pressure variable pt

v of a node v ∈ V at time step t ∈ T \ {1} is
altered. Due to the relaxation of the continuity and momentum equations each time

108 D. Mahlke et al.

step can be treated separately and flow and pressure variables can be determined
independently for each time step with the exception of the terminal condition,
which couples the first and last time step.

We define two sets Npressure(x) and Nflow(x) for a given solution x and denote
x ′ to be a neighbor of x if x ′ ∈ N (x) := Npressure(x) ∪ Nflow(x).

The alteration of a flow variable at t ∈ T \ {1} often results in a violation of
constraints which concern other flow variables in the same time step. This holds
for pressure variables analogously. In order to generate a feasible neighbor for the
relaxed problem (10) we use so called repair procedures to adapt the neighbor to
the violated constraints or to return that the generated neighbor is infeasible.

In detail, an element of Nflow(x) is generated in the following manner. The gen-
eration mechanism selects randomly a segment e ∈ E and a time step t ∈ T \ {1}.
For e ∈ EC ∪ EV ∪ E A we modify the corresponding flow variable qt

e by increasing
or decreasing its value by �qt

e, where �qt
e denotes the step size. In case of choosing

a pipe e = vw ∈ EP \ E A to which a flow variable at the beginning and a flow
variable at the end are assigned we decide randomly between qt

e,v and qt
e,w and

alter this flow variable analogously. In case of a capacity violation the generation
terminates.

Once the flow variable is set there are basically two constraints that can be
violated, the flow balance equation (2) in the initial node v and the flow balance
equation in the end node w of edge e at time t . Here the approach to handle these
violations is to adjust the flow variables concerning node w in flow direction by the
recursive procedure adjustFlowForward() and the flow variables corresponding to
node v in reverse flow direction by the recursive procedure adjustFlowBackward().
Both procedures are based on the specific properties of each segment type. Basically
the segments can be subdivided into two groups: free segments and fixed segments.
A segment belongs to the first group, if a modification of the flow variable at the
beginning of the segment does not effect the flow variable at the end and reversely.
All other segments are called fixed. The assignment of the segment depends on the
segment specific constraints. In our model compressors, valves, control valves and
connections are fixed, whereas pipes are free segments due to the relaxed momen-
tum and continuity equations. Briefly the adjustFlowBackward() procedure works
in the following way. At the beginning it is checked whether v is a source. If so,
the procedure terminates. Otherwise it selects randomly one of the ingoing edges
of v, say e′ = uv. In case of a fixed segment the corresponding flow variable
is modified according to the balance equation (2) in node v and the procedure is
recursively applied to node u. Otherwise, in case of a free segment, that is a pipe.
The corresponding flow variable qt

e′,v is adjusted and the procedure terminates.
Unless no capacity constraint is violated the procedure returns “feasible”. The
adjustFlowForward() procedure works analogously. To illustrate the flow neigh-
bor generation we give the following example (see Fig. 1).

Let e3 ∈ E be the randomly chosen segment which is a connection. Since
we consider a fixed, randomly selected time step t , in the following we omit this
index. At the beginning the flow variable of the connection is modified by the gen-
erated step length �qe3 . Assume that no capacity constraint is violated. In order
to adjust the resulting violation of the Kirchhoff law in the initial node v the ad-
justFlowBackward() procedure is called. Selecting randomly the open valve e2 out
of the ingoing edges of node v, the associated variable qe2 is adjusted. Note that

A simulated annealing algorithm for transient optimization 109

Fig. 1 Flow neighbor

a valve is a fixed segment, hence recursion begins. Since the initial node of edge
e2 is a source, the procedure terminates successfully, granted that no capacity con-
straint is violated. We proceed with the adjustFlowForward() procedure in node w.
Suppose that the pipe e5 is selected randomly. Because of e5 being a free segment,
the corresponding variable qe5,w is adapted and the procedure terminates. Verifying
the capacity constraints, a feasible flow neighbor is generated.

To generate an element of Npressure(x) we proceed similarly to the flow neigh-
bor generation. The main difference lies in the fact that pressure variables are
nodal. Thus, the generation mechanism selects randomly a node v ∈ V and a time
step t ∈ T \ {1}. Subsequently the corresponding pressure variable pt

v is altered
by decreasing or increasing its value by �pv . The resulting constraint violations
are repaired by the adjustPressure() procedure. Briefly, this procedure is based on
the same idea as the adjustFlowBackward() procedure, but works independently
from the flow direction. Again, we differentiate between fixed and free segments,
this time with respect to pressure. Here open valves and connections are fixed,
since pressure equality is required. Whereas pipes, compressors, control valves
and closed valves are free segments. Note that these segments are able to deal
with different values of the variables in the initial and end node. In order to adjust
the neighbor to the violated constraints the recursive adjustPressure() procedure is
called for every fixed segment incident with node v.

Additionally the algorithm provides the possibility of closing or opening the
operable segments, i.e., compressors and valves. If in the scope of neighborhood
generation the fuel gas consumption of an open compressor falls below a special-
ized lower bound the compressor can be closed with a certain probability and with
respect to switching constraints. Accordingly the same holds for an open valve, if
the corresponding flow variable reaches its lower bound. Further on a compressor
or a valve can be opened if its associated flow variable is increased during neigh-
borhood generation.

Step size selection
A special task arising for optimization problems involving continuous variables is
the determination of an appropriate step size. This choice has a major effect on the
accuracy of the solution. Generally there is a tradeoff between accuracy and speed.
To alleviate this problem we use the approach presented by Miki et al. (2003). We
determine �xi by applying an uniform distribution and a fixed neighborhood range

110 D. Mahlke et al.

Ri for each variable xi . Thus, the step size is generated by the following equation

�xi = r · Ri , (−1 ≤ r ≤ 1),

where r denotes a random variable. In general the neighborhood ranges Ri are
application dependent. In this context we need neighborhood ranges Rp and Rq
for pressure and flow variables which are determined according to several test runs,
see Sect. 5.

Initial solution generation
To generate an initial feasible solution for the relaxed problem (10), we use the
initial state of the gas network. The variable values of this state are assigned to
the corresponding variables at the time steps t ∈ T \ {1}. Thus, only transient
constraints are violated. The latter can be repaired using the procedures developed
for the neighborhood generation.

Cooling schedule
As already mentioned, a cooling schedule is a set of parameters, specified by an
initial value and a decrement function of the control parameter T , a finite number of
iterations for each value of the control parameter and a stop criterion. According to
these parameters the probability of accepting worsening moves is controlled. The
problem of determining a good cooling schedule is addressed in several papers,
e.g. see van Laarhoven and Aarts (1987) and Dekkers and Aarts (1991). In this
section we present the schedules used for TTO.

• Initial value of the control parameter T : An initial value is chosen so that at
the beginning approximately all transitions are accepted, i.e., the ratio between
the number of accepted transitions and the number of generated ones is close to
1. We follow Dekkers and Aarts (1991) who proposes the following empirical
rule: Suppose a given number of trials m0 is generated under the assumption
that all transitions are accepted. Let m1 and m2 denote the number of improving
and worsening trials respectively (m1 + m2 = m0). The average increase in
cost is described by �̄ f +. For a given acceptance ratio χ0 ∈ (0, 1) the initial
value T0 is calculated from the following expression

T0 = �̄ f +
(

ln
m2

m2χ0 + (1 − χ0)m1

)−1

. (11)

• Finite number L of iterations for each value of the control parameter: This
number L regulates how thoroughly the search space is explored. It should be
large enough to allow the algorithm to investigate the neighborhood of a given
solution in all directions. Dekkers and Aarts (1991) determines L depending on
the problem dimension n and a constant L0 by the following expression

L = L0 · n.

For our problem we determine L to be proportional to the number of time steps
T with L0 = 500.

• Decrement function of the control parameter: We present two alternative func-
tions: geometric and adaptive. The geometric function is a commonly used
decrement rule as it simply requires a constant α ∈ (0, 1), see van Laarhoven

A simulated annealing algorithm for transient optimization 111

Table 1 Three test instances

Test instance Pipes Number of Valves Length of
compr. all pipes

Network 1 11 3 5 920
Network 2 20 3 4 1,200
Network 3 31 15 29 2,200

and Aarts (1987). The control parameter is decreased according to the following
rule

Tk = αTk−1,

where Tk denotes the value of the control parameter in the k-th inner loop.
An alternative adaptive approach is given in Aarts et al. (1986). In contrast to the
former approach adaptive decrement functions use information gathered during
execution. Here, the reduction multiplicator is recalculated in each iteration step
using the standard deviation σ(Tk−1) of the objective function in the (k − 1)-th
inner loop and some parameter δ:

Tk = Tk−1

(
1 + ln(1 + δ)Tk−1

3σ(Tk−1)

)−1

. (12)

The parameter δ influences the velocity of decreasing the control parameter.
• Stop criterion: The algorithm terminates if either the control parameter reaches

a predefined final value T or if there is no significant improvement for a fixed
number n of iterations, see van Laarhoven and Aarts (1987). Here, we used
T = 0.001 and n =100,000. Additionally, the algorithm stops if the maximum
absolute violation of the relaxed constraints falls below a given tolerance value
ε, since our primary aim is to find a feasible solution. Note that in the latter
case the algorithm finds a feasible solution for the original problem described
in Sect. 2 since we allow minor violations of the discretized continuity and
momentum equations.

5 Computational results

The simulated annealing algorithm was implemented in C and the computations
were done on a 1 GHz Pentium III processor with 1 GB main memory.

For the computational tests we consider three test instances provided by the
German gas company E.ON Ruhrgas AG, see Table 1.

Figure 2 shows the smallest test instance, which consists of three compressors
(named VdA, VdB and VdC), 11 pipes with a total length of 920 km, five valves,
two sources (Qu1, Qu2) and three sinks (Ab1, Ab2, Ab3).

Since SA has a stochastic component it is reasonable to run the algorithm
several times applying different random numbers. In order to receive meaningful
results, here the outcomes are average values of ten independent runs.

Based on various test runs we integrated the following methods in the SA
algorithm. We applied the adaptive decrement function (12) using the parameter

112 D. Mahlke et al.

Fig. 2 A test instance

Table 2 Computational results depending on accuracy parameter and step size range

ε Rp Rq Fuel Iter. Sec. Succ. rate

0.1 0.01 1 36.98 193,833 26.73 9/10
0.05 5 36.64 68,700 11.52 10/10
0.25 25 37.40 91,500 14.00 8/10

0.05 0.01 1 36.21 310,875 43.08 8/10
0.05 5 36.65 81,300 12.80 10/10
0.25 25 37.58 184,071 24.97 7/10

0.01 0.01 1 36.47 306,562 41.86 8/10
0.05 5 36.56 236,333 31.91 9/10
0.25 25 37.11 1,044,000 130.66 6/10

δ = 20. For the initial value of the control parameter we used Dekkert’s and Aart’s
approach, see Eq. (11). The calculation of the penalty function was done according
to the combined penalty function (9), where R j = 10 and C j = 0.0005 for all j
and α = 2. The number of iterations L for each value of the control parameter T
was computed by the expression L = 500(T − 1), where T denotes the planning
horizon.

Table 2 gives an impression of the behavior of the algorithm for different accu-
racy parameters ε, specified in the first column, while varying the step size ranges
Rp and Rq , shown in column two and three. We tested the algorithm for network
1 with planning horizon T = 4. In the columns Fuel, Iter., and Sec. the fuel gas
consumption, the total number of iterations and the running time can be found. As
already mentioned these three values are average values of ten independent runs.
The last column shows the success rate m/n of the algorithm, which means that in
m out of n runs the algorithm finds a feasible solution to the original problem.

Generally, we notice only minor differences of fuel gas consumption between
the several test runs. In contrast the solution time varies considerably. The table
illustrates the flexibility of the variable step size selection with respect to different
accuracies. For every considered ε the best results are obtained using Rp = 0.05

A simulated annealing algorithm for transient optimization 113

Table 3 Computational results on various time periods for network 1

T Fuel Iter. Sec. Succ. rate

3 27.13 41,900 6.02 10/10
6 56.05 118,888 24.99 9/10

12 115.57 314,285 95.11 7/10
24 235.73 660,611 299.19 9/10

Table 4 Computational results on various time periods for network 2

T Fuel Iter. Sec. Succ. rate

3 14.98 109,250 14.62 8/10
6 31.07 381,944 71.29 9/10

12 66.11 1,281,500 304.17 8/10
24 139.09 2,870,400 944.13 10/10

Table 5 Computational results on various time periods for network 3

T Fuel Iter. Sec. Succ. rate

3 5.11 37,222 4.15 9/10
6 10.21 67,857 9.51 7/10

12 20.46 132,916 24.11 10/10
24 40.94 287,500 76.48 10/10

and Rq = 5. Furthermore, there is a clear dependency between running time and
selected accuracy. With decreasing ε the running time increases moderately.

We are interested in the flexibility of the algorithm regarding the complexity
of the tested network. Table 3 shows the results of our testing calculations using
several numbers of time steps T , given in the first column. We applied the same
step size selection, penalty function, decrement function, and parameter setting as
in the previous test runs. Further on we used an accuracy of ε = 0.1 and step
size ranges Rq = 5 and Rp = 0.05. The running time of the algorithm seems
acceptable for all number of time steps we have been investigated. Nevertheless
we observe a notable raise of running time with increasing T , due to the growing
dimension of the problem.

Tables 4 and 5 show the computational results on the second and third net-
work. Network 2 consists of three compressors and 20 pipes with a total length of
1,200 km and network 3 contains 15 compressors and 31 pipes with a total length
of 2,200 km, see Table 1. All settings used in the algorithm are taken over, except
for the control parameter δ of the decrement function. In order to obtain feasible
solutions, we decreased its value from 20 to 5 for the third test instance. We see
that the running times shown in Table 4 are considerably longer than those shown
in Table 3 even though the complexity of the test instances only increases slightly.
Among others this is due to good initial solutions generated for the computations
of the first network.

Concerning the results given in Table 5 the running times are surprisingly small
even though network 3 is much bigger than network 1 and 2. Again this observation
can be attributed to good initial solutions generated for the third network.

114 D. Mahlke et al.

Recapitulating these results, the algorithm is able to find feasible solutions for
all test instances considering up to 24 times steps in very fast running time.

6 Conclusions

In this paper, we adapted the idea of simulated annealing to the problem of tran-
sient technical optimization (TTO). Since the gas network optimization problem
contains numerous integer and continuous variables, we had to combine different
approaches from literature resulting in a new algorithm. We relaxed the discretized
continuity and momentum equations which mainly connect the single time steps as
well as pressure and flow variables. Then, we developed a cost function combining
static and dynamic penalty functions. Furthermore, we propose a flow and pressure
neighborhood structure for the relaxed problem. An adequate cooling schedule was
defined following proposals of the literature.

Altogether we get a flexible algorithm. Moreover, just minor modifications of
parameters are necessary to tackle gas networks of different dimension. The pro-
posed SA algorithm yields feasible solutions for TTO in very fast running times.

A first step toward transient optimization of gas networks is done. The great
challenge determining a provably good or optimal solution for time-dependent gas
networks stays open. The next step would be to integrate this heuristic solution as
upper bound in a branch-and-cut algorithm.

Acknowledgements We are thankful to our industry partner E.ON Ruhrgas AG for the provided
test instances.

References

Aarts E, Korst J (1989) Simulated annealing and Boltzmann machines. A stochastic approach to
combinatorial optimization and neural computing. Wiley, New York

Aarts EHL, de Bont FMJ, Habers EHA, van Laarhoven PJ (1986) Parallel implementations of
the statistical cooling algorithm. Integr VLSI J 4:209–238

Bohachevsky IO, Johnson ME, Stein ML (1986) Generalized simulated annealing for function
optimization. Technometrics 28(3):209–217

Borraz-Sánchez C, Ríos-Mercado RZ (2005) A hybrid meta-heuristic approach for natural gas
pipeline network optimization. In: Blesa MJ, Blum C, Roli A, Sampels M (eds) Hybrid
Metaheuristics: Second International Workshop, HM 2005, Barcelona, Spain, August 29–30.
Springer, Heidelberg, pp 54–65

Carter R (1998) Pipeline optimization: dynamic programming after 30 years. In: Pipeline Simul-
taion Interest Group, URL: http://www.psig.org

Černý V (1985) Thermodynamical approach to the traveling salesman problem: an efficient
simulation algorithm. J Optim Theory Appl 45:41–51

Corana A, Marchesi M, Martini C, Ridella S (1987) Minimizing multimodal functions of contin-
uous variables with the “simulated annealing” algorithm. ACM Trans Math Softw 13:262–280

Dekkers A, Aarts E (1991) Global optimization and simulated annealing. Math Program 50:
367–393

Ehrhardt K, Steinbach M (2005) Nonlinear optimization in gas networks. In: Bock HG, Kostina
E, Phu HX, Ranacher R (eds) Modeling, simulation and optimization of complex processes.
Springer, Berlin, pp 139–148

Gopal VN (1979) Techniques to optimize fuel and compressor combination selection. In: Amer-
ican Gas Association Transmission Conference

A simulated annealing algorithm for transient optimization 115

Jenicek T (1993) Steady-state optimization of gas transport. In: Proceedings of the 2nd Interna-
tional Workshop SIMONE on Innovative Approaches to Modelling and Optimal Control of
Large Scale Pipeline Networks, September 1993

Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science
220:671–680

Králik J (1993) Compressor stations in SIMONE. In: Proceedings of the 2nd International Work-
shop SIMONE on Innovative Approaches to Modelling and Optimal Control of Large Scale
Pipeline Networks, September 1993

van Laarhoven PJM, Aarts EHL (1987) Simulated annealing: theory and applications. D. Reidel,
Dordrecht

Mahlke D (2005) Der Simulated Annealing Algorithmus zur transienten Optimierung von Gas-
netzen. Master’s thesis, Technische Universität Darmstadt

Martin A, Möller M, Moritz S (2006) Mixed integer models for the stationary case of gas network
optimization. Math Program 105:563–582

Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state
calculations by fast computing machines. J Chem Phys 21(6):1087–1092

Michalewicz Z, Fogel DB (2000) How to solve it: modern heuristics. Springer, Heidelberg
Miki M, Hiroyasu T, Fushimi T (2003) Parallel simulated annealing with adaptive neighborhood

determined by GA. IEEE Int Conf Syst Man Cybern 1:26–31
Möller M (2004) Mixed integer models for the optimisation of gas networks in the stationary

case. PhD thesis, Darmstadt University of Technology
Moritz S (2007) A mixed integer approach for the transient case of gas network optimization

PhD thesis, Darmstadt University of Technology (to appear)
Nemhauser GL, Wolsey LA (1988) Integer and combinatorial optimization. Wiley, New York
Nolte A, Schrader R (2000) A note on the finite time behavior of simulated annealing. Math Oper

Res 25(3):476–484
Nowak MP, Westphalen M (2003) A linear model for transient gas flow. Technical Report STF38

S03601, SINTEF Industrial Management, Norway
Osman IH, Kelly JP (eds) (1996) Meta-heuristics: theory and applications. Kluwer, Dordrecht
Pratt KF, Wilson JG (1984) Optimization of operation of gas transmission systems. Trans Inst

Meas Control 6(4):261–269
Reeves CR (ed) (1993) Modern heuristic techniques for combinatorial problems. Halstead Press

(Wiley), New York
Sekirnjak E (1998) Mixed integer optimization for gas transmission and distribution systems.

INFORMS Meeting, Seattle, October 1998. Lecture notes
Sekirnjak E (1999) Transiente Technische Optimierung (TTO-Prototyp). PSI Berlin, 1999. Tech-

nical Report
Smeers Y, De Wolf D (2000) The gas transmission problem solved by an extension of the simplex

algorithm. Manage Sci 46:1454–1465
Vostrý Z (1993) Transient optimization of gas transport and distribution. In: Proceedings of the

2nd International Workshop SIMONE on Innovative Approaches to Modelling and Optimal
Control of Large Scale Pipeline Networks, September 1993

Wah BW, Chen YX (2000) Optimal anytime constrained simulated annealing for constrained
global optimization. In: Proceedings Sixth International Conference on Principles and Practice
of Constraint Programming, pp 425–440

Wah BW, Wang T (1999) Constrained simulated annealing with applications in nonlinear continu-
ous constrained global optimization. In: Proceedings of the 11th IEEE International Conference
on Tools with Artificial Intelligence, pp 381–388

Westphalen M (2004) Anwendungen der stochastischen Optimierung im Stromhandel und Gas-
transport. PhD thesis, Universität Duisburg-Essen

Wright S, Somani M, Ditzel C (1998) Compressor station optimization. In: Pipeline Simulation
Interest Group, Denver, Colorado, October 1998

Záworka J (1993) Project SIMONE—Achievements and Running Development. Institute of
Information Theory and Automation, Czech Republik

Zimmer HI (1975) Calculating optimum pipeline operations. In: American Gas Association
Transmission Conference

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

