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Abstract: We address the three-machine flowshop scheduling problem to 
minimise maximum lateness, where setup times are considered separate from 
processing times. We establish a dominance relation for the problem where it 
specifies which of the two adjacent jobs should precede in an optimal solution. 
Moreover, we propose three heuristics: Earliest Due Date (EDD), an Enhanced 
Earliest Due Date (EEDD) and a Polynomial Genetic-based Algorithm (PGA). 
We conduct computational analysis on randomly generated problems to 
evaluate the performance of the proposed heuristics. The analysis shows that 
the performance of EEDD is acceptable if the computational time is of the main 
concern and the number of jobs are large. The analysis also shows that PGA 
significantly outperforms EDD and EEDD. 
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1 Introduction 

Treating setup times as separate from processing times is important in many applications. 
One application of separate setup can be found in the printing industry, where  
machine-cleaning (setup) time depends on the colour of the order. Similar practical 
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situations arise in the chemical, pharmaceutical, food processing, metal processing  
and semiconductor industries, e.g., see Bianco et al. (1988), Bitran and Gilbert (1990), 
Uzsoy et al. (1992) and Kim and Bobrowski (1994). Recent surveys on scheduling 
problems involving setup times are given by Allahverdi et al. (1999, 2006). 

Many real life problems can be modelled as a three-machine flowshop scheduling 
problem where setup times are treated as separate. Allahverdi and Al-Anzi (2006) give a 
specific application in the area of distributed computing. Distributed computing is 
becoming one of the most promising choices for speeding up computations, Elmasri and 
Navathe (1999). This is especially true for cases where tasks can easily be broken into 
sequential-related subtasks. In the field of databases, it is common to find that the 
business logic of a transaction (job) can be divided into queries that run on  
separate machines sequentially. The only relation between two adjacent tasks would be 
the transfer of results from one subtask to the next one. For this reason, in an m site 
distributed database, queries are typically programmed to execute on different sites for 
efficiency reasons. Consider a configuration of three sites. An execution of a job is first 
submitted to the machine on site 1 for first stage of processing. The result of machine 
processing on site 1 is then transferred through the network to the machine on site 2  
for more processing, which allows the machine on site 1 to process a new job.  
When processing of machine 2 is complete, the result is transferred to the machine on  
site 3 for final processing, which leaves the machine on site 2 ready to process further 
jobs that have been completed by the machine on site 1. Note that some extra times are 
needed for submitting a job to the machine on site 1 as well as transferring the results to 
the machines on sites 2 and 3. These times can be observed as times needed for setting-up 
jobs for processing on machines on different sites. 

Yoshida and Hitomi (1979) extended the well-known two-machine flowshop 
scheduling problem to the case where setup times are separate from processing times  
and sequence independent with the objective of minimising makespan. Allahverdi (1995) 
extended the work of Yoshida and Hitomi to stochastic environments. There are other 
studies addressing flowshop scheduling problem with the objective function of makespan 
including Rios-Mercado and Bard (1998, 1999). 

Bagga and Khurana (1986) addressed the two-machine flowshop problem to 
minimise total completion time when considering setup times as separate from processing 
times and sequence independent. They developed one dominance relation and a lower 
bound for the problem. Allahverdi (2000) also considered the same problem of Bagga 
and Khurana. He established two more dominance relations for the problem. He also 
presented a branch-and-bound algorithm incorporating the dominance relations that he 
and Bagga and Khurana established. Moreover, he presented three heuristics for the 
problem. Al-Anzi and Allahverdi (2001) showed that the three-tired client-server 
database internet connectivity problem is equivalent to the two-machine flowshop 
problem with separate setup times, and hence the results of Bagga and Khurana (1986) 
and Allahverdi (2000) can be used for the three-tired client-server database internet 
connectivity problem when the objective is to minimise total completion time. Al-Anzi 
and Allahverdi (2001) also proposed heuristics for the problem and discussed the 
computational complexity of the proposed and the previous heuristics. Al-Anzi and 
Allahverdi (2001) showed that their heuristics outperform the previous ones. Allahverdi 
and Al-Anzi (2006) considered the three-machine flowshop scheduling problem to 
minimise total completion time with separate setup times. They obtained a dominance 
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relation and a lower bound for the problem. They also presented a branch-and-bound 
algorithm for the problem.  

Dileepan and Sen (1991) addressed the same problem, but with the objective of 
minimising maximum lateness. They presented dominance relations along with a lower 
bound to be used in a branch-and-bound algorithm. They also developed two heuristic 
algorithms. Allahverdi and Al-Anzi (2002) indicated that the multimedia data objects 
scheduling problem for WWW Applications can be modelled as a two-machine flowshop 
problem of minimising maximum lateness with separate setup times. They established 
three dominance relations and proposed four heuristics. They showed that their proposed 
heuristics outperform the ones developed by Dileepan and Sen. Other literature on 
scheduling problems with maximum lateness objective function and separate setup times 
include the works of Cheng et al. (2001), Pan et al. (2001) and Lin and Jeng (2004). 
Cheng et al. (2001) and Pan et al. (2001) consider the single machine-scheduling problem 
while Lin and Jeng (2004) consider the parallel machine-scheduling problem.  

The literature reveals that the flowshop problem with separate setup times and 
maximum lateness criterion has been limited to the two-machine flowshop. In this paper, 
we extend the problem to the three-machine flowshop problem. We establish a 
dominance relation and propose several heuristics. We also evaluate the performance of 
these heuristics. 

Problem formulation is presented in the next section. The dominance relation, 
heuristics, computational experiments and conclusions are presented in Sections 3–6, 
respectively. 

2 Formulation 

Let 

tj,k: Processing time of job j(j = 1, 2, …, n) on machine k(k = 1, 2, 3). 
sj,k: Setup time of job j on machine k. 
dj: Due date of job j. 
Cj,k: Completion time of job j on machine k. 
Lj: Lateness of job j. 
Lmax: Maximum lateness. 

Also let [j] denote the job in position j. Therefore, t[j],k denotes the processing time of the 
job in position j. Other variables are defined similarly. 

Let ST[j],k denote the sum of the setup and processing times of jobs in positions  
1, 2, …, j on machine k, i.e., 

[ ], [ ], [ ],
1

( ), 1,2, ..., and 1, 2, 3.
j

j k r k r k
r

ST s t j n k
=

= + = =∑  

Moreover, let  

[ ] [ ],1 [ 1],2 [ ],2( ), 1,2, ...,j j j jST ST s j nδ −= − + =  (1) 
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where ST[0],2 = 0. Let IT[j],2 denote total idle time on the second machine until the job in 
position j on the machine is completed. It is known that, Allahverdi (2000), 

[ ],2 [1] [2] [ ]max{0, , ,..., }.j jIT δ δ δ=  (2) 

Therefore,  

[ ],2 [ ],2 [ ],2 .j j jC ST IT= +  (3) 

Now let  

[ ] [ ],2 [ ],2 [ 1],3 [ ],3( ), 1,2,...,j j j j jIT ST ST s j nφ −= + − + =  (4) 

where ST[0],3 = 0. Similarly, if IT[j],3 denotes the total idle time on the third machine until 
the job in position j on the machine is completed it can be shown that 

[ ],3 [1] [2] [ ]max{0, , ,..., }.j jIT φ φ φ=  (5) 

Hence,  

[ ],3 [ ],3 [ ],3.j j jC ST IT= +  (6) 

Once the completion times of jobs on the last (third) machine are known, then, the 
lateness of the job in position j is defined as: 

[ ] [ ],3 [ ].j j jL C d= −  (7) 

Therefore,  

max [1] [2] [ ]max{ , , , }.nL L L L= …  

It should be noted that throughout this paper, we only consider permutation flowshops. 

3 A dominance relation 

Dominance relations are common in the scheduling literature, e.g., Chu (1992),  
Bagga and Khurana (1986), Allahverdi (2000) and Allahverdi and Al-Anzi (2002).  
They are mainly used in implicit enumeration techniques such as branch-and-bound 
algorithms. In this section, a dominance relation is developed for our problem. 

Consider exchanging the positions of two adjacent jobs on a three-machine flowshop 
in a sequence π1 that has job i in an arbitrary position τ and job j in position τ + 1. 
Consider another sequence that is obtained from the sequence π1 by only interchanging 
jobs i and j. Call the sequence obtained from π1 as π2, i.e., π2 = …, i, j, … and  
π2 = …, j, i, …. If it is shown that Lmax(π2) ≤ Lmax(π1), then, sequence π2 would be no 
worse than sequence π1, and, therefore, job j precedes job i in a sequence that minimises 
maximum lateness.  
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The following four lemmas will be used for the proof of Theorem 1, which specifies a 
dominance relation for our problem. In Lemma 1, it is shown that δ[r] values for both 
sequences π1 and π2 are the same for all positions except τ and τ + 1. 

Lemma 1: For both sequences π1 and π2, δ[r](π1) = δ[r](π2) for r = 1, 2, …, τ – 1, τ + 2, 
τ + 3, …, n. 

Proof: It is obvious that δ[r](π1) = δ[r](π2) for r = 1, 2, …, τ – 1 since both sequences have 
the same jobs in these positions. Furthermore, δ[r](π1) = δ[r](π2) for r = τ + 2, τ + 3, …, n 
since again both sequences have the same jobs in these positions, and both include the 
jobs in positions τ and τ + 1. Observe that the sum of processing and setup times is taken 
into account and hence the order is not important since both jobs in positions τ and τ + 1 
are considered for r = τ + 2, τ + 3, …, n. 

In the following Lemma, it is shown that φ[r] value for sequence π2 is less than or 
equal to that of π1 for all positions except τ and τ + 1, if a certain condition is satisfied. 

Lemma 2: If max{δ[τ](π2), δ[τ+1](π2)} ≤ max{δ[τ](π1), δ[τ+1](π1)}, then φ[r](π1) = φ [r](π2) 
for r = 1, 2, …, τ – 1, and furthermore φ[r](π2) ≤ φ [r](π1) for r = τ + 2, τ + 3, …, n. 

Proof: It is clear that φ[r](π1) = φ [r](π2) for r = 1, 2, …, τ – 1 since both sequences have 
the same jobs in these positions. Now, it follows by definition of φ[r] that for r = τ + 2, 
τ + 3, …, n. 

[ ] 2 [ ] 1 [1] 2 [ ] 2 [ +1] 2 [ ] 2

[1] 1 [ ] 1 [ +1] 1 [ ] 1

( ) ( ) = max{0, ( ), , ( ), ( ), , ( )}

max{0, ( ), , ( ), ( ), , ( )}.
r r τ τ r

τ τ r

π π δ π δ π δ π δ π

δ π δ π δ π δ π

φ φ−
−

… …
… …

 

If max{δ[τ](π2), δ[τ+1](π2)} ≤ max{δ[τ](π1), δ[τ+1](π1)}, then by Lemma 1, φ[r](π2) ≤ φ [r](π1). 

Lemma 3: For an r value where r < τ, 

[ ] 2 [ ] 1( ) ( ).r rL Lπ π=  

Proof: Since both sequences have the same jobs in positions 1, 2, …, τ – 1, 
L[r](π2) = L[r](π1) for r = 1, 2, …, τ – 1. 

Lemma 4: If max{φ[τ](π2), φ[τ+1](π2)} ≤ max{φ[τ](π1), φ[τ+1](π1)}, then L[r](π2) ≤ L[r](π1) 
for r = τ + 2, τ + 3, …, n. 

Proof: For r = τ + 2, τ + 3, …, n, it follows from the definition of L[r] that 

[ ] 2 [ ] 1 [1] 2 [ ] 2 [ +1] 2 [ ] 2

[1] 1 [ ] 1 [ +1] 1 [ ] 1

( ) ( ) = max{ ( ), , ( ), ( ), , ( )}

max{ ( ), , ( ), ( ), , ( )}.
r r τ τ r

τ τ r

L π L π π π π π

π π π π

φ φ φ φ
φ φ φ φ

−

−

… …
… …

 

Therefore, if max{φ[τ](π2), φ[τ+1](π2)} ≤ max{φ[τ](π1), φ[τ+1](π1)}, then by Lemma 2 
L[r](π2) ≤ L[r](π1). 

A dominance relation is given in the following theorem. 
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Theorem 1: Consider a three-machine flowshop where setup times are treated as 
separate from processing times. Suppose that two jobs i and j satisfy the following 
conditions: 

i dj ≤ di 

ii sj,2 + tj,2 + si,3 ≤ si,2 + ti,2 + sj,3 

iii sj,1 + tj,1 + si,2 ≤ si,1 + ti,1 + sj,2 

iv either {sj,2 + tj,2 ≤ sj,3 + tj,3 and either si,1 + ti,1 ≤ si,2 + tj,2 or sj,1 + tj,1 ≤ sj,2 + tj,2} or 
{si,2 + ti,2 ≤ si,3 + tj,3 and si,1 + ti,1 ≤ si,2 + tj,2}. 

Then, there exists an optimal solution that minimises maximum lateness in which job j 
precedes job i if jobs i and j are adjacent. 

Proof: Consider the two sequences described earlier. For the jobs in positions τ and τ + 1 
for the two sequences π1 and π2 we have,  

[ ] 1 [ 1],1 1 ,1 ,1 [ 1],2 1 ,2( ) ( ) ( ) ,τ τ i i τ iδ π ST π s t ST π s− −= + + − −  (8) 

[ ] 2 [ 1],1 2 ,1 ,1 [ 1],2 2 ,2( ) ( ) ( ) ,τ τ j j τ jδ π ST π s t ST π s− −= + + − −  (9) 

[ 1] 1 [ 1],1 1 ,1 ,1 ,1 ,1 [ 1],2 1 ,2 ,2 ,2( ) ( ) ( ) ,τ+ τ i i j j τ i i jδ π ST π s t s t ST π s t s− −= + + + + − − − −  (10) 

[ 1] 2 [ 1],1 2 ,1 ,1 ,1 ,1 [ 1],2 2 ,2 ,2 ,2( ) ( ) ( ) .τ+ τ j j i i τ j j iδ π ST π s t s t ST π s t s− −= + + + + − − − −  (11) 

Observe that ST[τ–1],1(π1) = ST[τ–1],1(π2) and ST[τ–1],2(π1) = ST[τ–1],2(π2) since both sequences 
have the same jobs in all the positions prior to τ. 

By the hypothesis of (iii) and equations (8) and (9), 

[ ] 2 [ ] 1( ) ( ).τ τδ π δ π≤  (12) 

If si,1 + ti,1 ≤ si,2 + tj,2, then by equations (9) and (11), 

[ 1] 2 [ ] 2( ) ( ),τ+ τδ π δ π≤  (13) 

and if sj,1 + tj,1 ≤ sj,2 + tj,2, then by equations (8) and (11), 

[ 1] 2 [ ] 1( ) ( ).τ+ τδ π δ π≤  (14) 

Hence, it follows by equation (12) and the hypothesis of (iv) (i.e., if either equation (13) 
or (14) holds) that 

[ 1],2 2 [ ] 2 [ +1] 2 [ 1],2 1 [ ] 1 [ +1] 1max{ ( ), ( ), ( )} max{ ( ), ( ), ( )}.τ τ τ τ τ τIT π π π IT π π πδ δ δ δ− −≤  (15) 

The φ values for the jobs in positions τ and τ + 1 for the two sequences π1 and π2 are 
given as  

[ ] 1 [ 1],2 1 [ ] 1 [ 1],2 1

,2 ,2 [ 1],3 1 ,3

( ) max{ ( ), ( )} ( )

( ) ,
τ τ τ τ

i i τ i

π IT π π ST π

s t ST π s

φ δ− −

−

= +

+ + − −
 (16) 
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[ ] 2 [ 1],2 2 [ ] 2 [ 1],2 2

,2 ,2 [ 1],3 2 ,3

( ) max{ ( ), ( )} ( )

( ) ,
τ τ τ τ

j j τ j

π IT π π ST π

s t ST π s

φ δ− −

−

= +

+ + − −
 (17) 

[ 1] 1 [ 1],2 1 [ ] 1 [ +1] 1 [ 1],2 1

,2 ,2 ,2 ,2 [ 1],3 1 ,3 ,3 ,3

( ) max{ ( ), ( ), ( )} ( )

( ) ,
τ+ τ τ τ τ

i i j j τ i i j

π IT π π π ST π

s t s t ST π s t s

φ δ δ− −

−

= +

+ + + + − − − −
 (18) 

[ 1] 2 [ 1],2 2 [ ] 2 [ +1] 2 [ 1],2 2

,2 ,2 ,2 ,2 [ 1],3 2 ,3 ,3 ,3

( ) max{ ( ), ( ), ( )} ( )

( ) .
τ+ τ τ τ τ

j j i i τ j j i

π IT π π π ST π

s t s t ST π s t s

φ δ δ− −

−

= +

+ + + + − − − −
 (19) 

Remember that both sequences have the same jobs in positions 1 through τ – 1, therefore, 
ST[τ–1],2(π1) = ST[τ–1],2(π2), ST[τ–1],3(π1) = ST[τ–1],3(π2), and IT[τ–1],2(π1) = IT[τ–1],2(π2). 

It follows from equations (12), (16), (17) and the hypothesis of (ii) that 

[ ] 2 [ ] 1( ) ( ).τ τπ πφ φ≤  (20) 

From equations (8), (9), (11), (16) and (19),  

[ +1] 2 [ ] 1( ) ( )τ τπ πφ φ≤  (21) 

if sj,2 + tj,2 ≤ sj,3 + tj,3 and if either si,1 + ti,1 ≤ si,2 + tj,2 (for the case δ[τ+1](π2) ≤ δ[τ](π2)) or 
sj,1 + tj,1 ≤ sj,2 + tj,2 (for the case δ[τ+1](π2) ≤ δ[τ](π1)). 

From equations (9), (11), (17) and (19), 

[ +1] 2 [ ] 2( ) ( )τ τπ πφ φ≤  (22) 

if si,2 + ti,2 ≤ si,3 + tj,3 and if si,1 + ti,1 ≤ si,2 + tj,2 (for the case δ[τ+1](π2) ≤ δ[τ](π2)). 
Clearly if equation (20) and either equations (21) or (22) hold then 

[ 1],3 2 [ ] 2 [ 1] 2 [ 1],3 1 [ ] 1 [ 1] 1max{ ( ), ( ), ( )} max{ ( ), ( ), ( )}.τ τ τ+ τ τ τ+IT π π π IT π π πφ φ φ φ− −≤  (23) 

It can easily be shown that if the conditions in which equation (20) holds, the conditions 
in which either equations (21) or (22) holds are satisfied, then  

[ 1],2 2 [ ] 2 [ 1] 2 [ 1],2 1 [ ] 1 [ 1] 1max{ ( ), ( ), ( )} max{ ( ), ( ), ( )}.τ τ τ+ τ τ τ+IT π δ π δ π IT π δ π δ π− −≤  (24) 

For sequences π1 and π2, the latenesses of the jobs in positions τ and τ + 1 on the third 
machine are given as  

[ ] 1 [ 1],3 1 ,3 ,3 [ 1],3 1 [ ] 1( ) ( ) max{ ( ), ( )} ,τ τ i i τ τ iL π ST π s t IT π π dφ− −= + + + −  (25) 

[ ] 2 [ 1],3 2 ,3 ,3 [ 1],3 2 [ ] 2( ) ( ) max{ ( ), ( )} ,τ τ j j τ τ jL π ST π s t IT π π dφ− −= + + + −  (26) 

[ +1] 1 [ 1],3 1 ,3 ,3 ,3 ,3

[ 1],3 1 [ ] 1 [ +1] 1

( ) ( )

max{ ( ), ( ), ( )} ,
τ τ i i j j

τ τ τ j

L π ST π s t s t

IT π π π dφ φ
−

−

= + + + +

+ −
 (27) 

[ +1] 2 [ 1],3 2 ,3 ,3 ,3 ,3

[ 1],3 2 [ ] 2 [ +1] 2

( ) ( )

max{ ( ), ( ), ( )} .
τ τ j j i i

τ τ τ i

L π ST π s t s t

IT π π π dφ φ
−

−

= + + + +

+ −
 (28) 
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From equations (26) and (27), 

[ ] 2 [ 1] 1 ,3 ,3

[ 1],3 2 [ ] 2

[ 1],3 1 [ ] 1 [ +1] 1

( ) ( )

max{ ( ), ( )}

max{ ( ), ( ), ( )}.

τ τ+ i i

τ τ

τ τ τ

L π L π s t

IT π π

IT π π π

φ
φ φ

−

−

− = − −

+

−

 

It follows from equation (23) that 

[ 1],3 2 [ ] 2 [ 1],3 1 [ ] 1 [ +1] 1max{ ( ), ( )} max{ ( ), ( ), ( )}.τ τ τ τ τIT π π IT π π πφ φ φ− −≤  

Therefore,  

[ ] 2 [ 1] 1( ) ( ).τ τ+L π L π≤  (29) 

From equations (27) and (28), 

[ +1] 2 [ 1] 1

[ 1],3 2 [ ] 2 [ +1] 2

[ 1],3 1 [ ] 1 [ +1] 1

( ) ( )

max{ ( ), ( ), ( )}

max{ ( ), ( ), ( )}.

τ τ+ j i

τ τ τ

τ τ τ

L π L π d d

IT π π π

IT π π π

φ φ
φ φ

−

−

− = −

+

−

 

It follows from equation (23) that 

[ 1],3 2 [ ] 2 [ +1] 2 [ 1],3 1 [ ] 1 [ +1] 1max{ ( ), ( ), ( )} max{ ( ), ( ), ( )}.τ τ τ τ τ τIT π π π IT π π πφ φ φ φ− −≤  

Moreover, dj ≤ di. Therefore, 

[ +1] 2 [ 1] 1( ) ( ).τ τ+L π L π≤  (30) 

Hence, from equations (29) and (30),  

[ ] 2 [ 1] 2 [ ] 1 [ 1] 1max{ ( ), ( )} max{ ( ), ( )}.τ τ+ τ τ+L π L π L π L π≤  (31) 

Thus, from equations (23) and (31), and Lemmas 3 and 4, Lmax(π2) ≤ Lmax(π1).  
This concludes the proof. 

4 Heuristics 

We consider three heuristics for the problem. One is the EDD heuristic where jobs are 
arranged based on the increasing order of their due dates. We also propose another 
version of EDD, we call it EEDD (Enhanced Earliest Due Date), where sum of the setup 
and processing times on all the three machines are also taken into account. In EEDD, we 
first calculate EDi for each job i, where  

3
, ,1

.
( )

i
i

i k i kk

d
ED

s t
=

=
+∑

 

Then, the EEDD heuristic is obtained by arranging the jobs in increasing order of EDi. 
While EDD gives higher priority to jobs with smaller di’s, EEDD gives higher priority to 
jobs with not only smaller di’s but also to jobs with smaller sum of setup and processing 
times. The third heuristic that we consider is a PGA (Polynomial-based Genetic 
Algorithm). 
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Genetic algorithms have been used for the scheduling problems by many researchers 
including Ruiz and Maroto (2005, 2006), and Tavakkoli-Moghaddam et al. (2005).  
Our proposed PGA considers a population (POP) of given sequences, generated 
randomly and selects two sequences out of POP as parents to produce two offsprings. 
These two offsprings are produced by swapping subsequences of equal length  
among two parents. Care must be taken that both offsprings are feasible schedule.  
To understand this process, consider the following two sequences of X and Y where 
X = {x1, x2, …, xi, …, xj, …, xn} and Y = {y1, y2, …, yi, …, yj, …, yn}. The two segments 
of xi, …, xn and yi, …, yn are said to be compatible if they include the same subset of jobs, 
but not necessarily in the same order. Two sequences X and Y are called compatible, if 
they have two compatible segments. The process of generating offsprings from a given 
population is repeated CP times. 

The process of generating the offsprings is repeated for a given number of 
generations (GEN). Then, y schedules of the population (POP) are replaced with the best 
y schedules from the set of offspring schedules. At the same time, each schedule in the 
population is mutated with a known probability p, where two randomly selected jobs are 
interchanged. At the end of the given number of generations, a schedule with best value 
of maximum lateness is accepted as the heuristic solution. 

The steps of the PGA are as follows. 

Step 1: Initialise a population, POP, of random sequences. 

Step 2: Compute the Lmax of each sequence in POP. 

Step 3: Order the sequences in POP according to Lmax from the best to the worst. 
Step 4: Repeat Steps (i)–(v) for GEN times 

(i) Repeat Steps (a)–(d) for CP times 
(a) Randomly choose two different compatible parents to crossover 
(b) Select compatible segments in the two parents 
(c) Swap the segments 
(d) Save the new sequences in CHILD and compute Lmax of each. 

(ii) Order CHILD with respect to Lmax. 

(iii) Replace the worst y sequences of POP with the best y sequences in CHILD. 

(iv) Mutate each sequence in POP with the probability p. 

(v) Compute Lmax and order POP. 

Step 5: Store the best solution from POP as the heuristic solution. 

It should be noted that the two parents that are used to perform the crossover operation 
are scanned from left to right. We stop at the earliest position where we can do a swap. 
That is, the scan process continues until all the positions in both sequences (parents) 
contain the same set of jobs, not necessarily in the same order. It should also be noted 
that if y is less than the total number of offsprings, then the remaining offsprings are 
omitted. On the other hand, if y is greater than the total number of offsprings, we adjust 
the value of y temporarily to the number of offsprings (this will allow more parents to go 
into the next generation). 
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Careful setting of the parameters for our proposed genetic algorithm is essential to 
achieve a good performance. This is done experimentally. To do so, various parameter 
settings were tested with the following ranges: POP, GEN and CP from n to 5n with the 
increment of n; y from 1/6 to 5/6 with the increment of 1/6; and p from 0.005 to 0.1 with 
the increment of 0.005. After an extensive computational analysis, the parameters are set 
as given in Table 1. Note that according to these parameters, it can easily be shown that 
the complexity of the PGA is O(n3). 

Table 1 Parameters of the hybrid genetic algorithm 

Parameter Value 

POP 2n 
GEN n 
CP 2n 
y 1/3 
p 0.035 

5 Computational experiments 

In this section, the effectiveness of the proposed heuristics is investigated on randomly 
generated problem instances. The heuristics were implemented using C programming 
language on a Sun Sparc 20. The processing and setup times were randomly generated 
from discrete uniform distributions with ti,j from [1, 100] and si,j from [0, 100k].  
The parameter k is the expected ratio of setup time to processing time (si,j/ti,j).  

Due dates are generated from a discrete uniform distribution in a range (PX, PY) 
where P is set to  

,3 ,3 ,1 ,1 ,2 ,21 1
1

( ) min( ) min( )
n n n

i i i i i ii i
i

P s t s t s t
= =

=

= + + + + +∑  

which is a lower bound on the makespan. The parameters X and Y are defined as  
X = (1–T–R/2) and Y = (1–T + R/2), where R is called due date range whereas T is called 
tardiness factor. This method of generating due dates is common in the literature for 
different combinations of T and R values, e.g., see Volgenant and Teerhuis (1999),  
Kim (1993, 1995) and Chu (1992).  

Problem data are generated for different number of jobs for the range of 30–80 jobs in 
an increment of 10. The data are generated for different combinations of k, T and R 
values (k = 0.1, 0.4, 0.7; T = 0.3, 0.6, 0.9 and R = 0.3, 0.6, 0.9), which results in 27 
combinations. Twenty-five replicates are randomly generated for each combination. 

We compare the performance of the heuristics using three measures: average 
percentage error (Error), standard deviation (Std) and the percentage of the number  
of the best solutions (NOB). The percentage error is defined as 100 × (Lmax(heuristic) 
– Lmax(best))/(Lmax(worst) – Lmax(best)). According to this definition, the worst heuristic 
will have an error of 100 and the best will have an error of zero. For comparison 
purposes, we evaluate the performance of EDD, EEDD and PGA against that of a random 
sequence. 
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The computational results are summarised in Tables 2–4 for different problem sizes. 
The error for random sequence was 100% for 150 cases and it was more than 96% for the 
remaining 12 cases. The overall percentage errors of the heuristics EDD, EEDD and PGA 
were 3.35, 2.78 and 0.01, respectively, while it was 99.63 for the random sequence.  
It is clear that all the three heuristics performed very well. Owing to large values of the 
error for the random sequence, it will not be included in tables and figures, and will not 
be discussed in the rest of the analysis. 

Table 2 Computational results for n = 30 and n = 40 

EDD  EEDD  PGA 
n k T R NOB Error Std NOB Error Std NOB Error Std 

30 0.1 0.3 0.3 48 4.918 0.080 48 3.931 0.061 100 0.000 0.000 
   0.6 36 4.126 0.051 44 4.419 0.058 100 0.000 0.000 
   0.9 32 5.115 0.064 40 3.039 0.039 100 0.000 0.000 
  0.6 0.3   8 9.052 0.173 24 6.406 0.120 96 0.047 0.002 
   0.6 40 6.820 0.105 48 4.834 0.101 100 0.000 0.000 
   0.9 40 8.465 0.137 32 8.304 0.151 100 0.000 0.000 
  0.9 0.3 44 3.393 0.045 56 3.659 0.069 100 0.000 0.000 
   0.6 40 3.651 0.048 44 5.753 0.109 100 0.000 0.000 
   0.9 32 4.397 0.054 48 7.658 0.174 96 0.136 0.006 
 0.4 0.3 0.3 56 8.388 0.187 52 2.782 0.054 100 0.000 0.000 
   0.6 52 3.881 0.072 52 3.998 0.078 100 0.000 0.000 
   0.9 44 4.200 0.066 48 3.980 0.060 100 0.000 0.000 
  0.6 0.3 28 7.761 0.113 36 5.055 0.058 100 0.000 0.000 
   0.6 52 6.673 0.200 52 4.716 0.092 100 0.000 0.000 
   0.9 48 3.026 0.061 40 3.439 0.051 100 0.000 0.000 
  0.9 0.3 64 3.484 0.066 52 8.143 0.203 100 0.000 0.000 
   0.6 64 2.554 0.047 68 1.937 0.040 100 0.000 0.000 
   0.9 72 4.073 0.083 84 1.569 0.042 100 0.000 0.000 
 0.7 0.3 0.3 68 2.402 0.048 80 1.131 0.028 100 0.000 0.000 
   0.6 60 3.045 0.066 76 1.651 0.036 100 0.000 0.000 
   0.9 56 2.547 0.037 48 4.567 0.057 100 0.000 0.000 
  0.6 0.3 44 3.341 0.046 52 4.799 0.097 100 0.000 0.000 
   0.6 72 2.939 0.059 60 2.201 0.041 100 0.000 0.000 
   0.9 48 8.502 0.199 48 6.316 0.125 100 0.000 0.000 
  0.9 0.3 72 1.500 0.032 80 1.097 0.029 100 0.000 0.000 
   0.6 72 5.491 0.201 64 3.166 0.069 100 0.000 0.000 
   0.9 72 3.232 0.063 64 4.012 0.081 100 0.000 0.000 

40 0.1 0.3 0.3 48 3.664 0.046 60 2.091 0.038 100 0.000 0.000 
   0.6 36 4.658 0.063 44 3.963 0.073 100 0.000 0.000 
   0.9 32 3.415 0.057 36 2.966 0.066 96 0.044 0.002 
  0.6 0.3 52 6.161 0.200 56 6.437 0.204 100 0.000 0.000 
   0.6 28 5.753 0.071 32 3.888 0.053 100 0.000 0.000 
   0.9 28 4.296 0.061 32 2.549 0.030 96 0.106 0.005 
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Table 2 Computational results for n = 30 and n = 40 (continued) 

EDD  EEDD  PGA 
n k T R NOB Error Std NOB Error Std NOB Error Std 
  0.9 0.3 40 8.320 0.208 44 12.138 0.286 100 0.000 0.000 
   0.6 48 6.617 0.143 56 3.391 0.053 100 0.000 0.000 
   0.9 36 4.913 0.070 32 5.147 0.074 100 0.000 0.000 
 0.4 0.3 0.3 44 3.182 0.042 72 1.060 0.021 96 0.044 0.002 
   0.6 44 4.350 0.073 44 3.720 0.038 100 0.000 0.000 
   0.9 44 3.062 0.045 44 4.951 0.080 100 0.000 0.000 
  0.6 0.3 40 5.941 0.102 40 2.941 0.053 100 0.000 0.000 
   0.6 40 2.739 0.038 44 2.797 0.036 100 0.000 0.000 
   0.9 44 2.444 0.026 44 3.159 0.069 100 0.000 0.000 
  0.9 0.3 56 4.369 0.067 52 2.712 0.043 100 0.000 0.000 
   0.6 36 9.078 0.210 48 9.996 0.216 100 0.000 0.000 
   0.9 60 1.726 0.033 68 2.072 0.044 100 0.000 0.000 
 0.7 0.3 0.3 48 2.938 0.047 56 2.905 0.049 100 0.000 0.000 
   0.6 64 2.202 0.061 64 1.702 0.029 100 0.000 0.000 
   0.9 52 3.380 0.050 48 3.417 0.044 100 0.000 0.000 
  0.6 0.3 48 4.063 0.082 40 4.214 0.098 100 0.000 0.000 
   0.6 48 2.634 0.050 56 2.594 0.049 100 0.000 0.000 
   0.9 64 3.550 0.072 48 3.806 0.070 96 0.010 0.000 
  0.9 0.3 64 4.768 0.104 76 0.901 0.018 100 0.000 0.000 
   0.6 76 1.352 0.037 80 2.679 0.086 100 0.000 0.000 
      0.9 76 1.945 0.052 80 0.909 0.026 96 0.080 0.004 

Table 3 Computational results for n = 50 and n = 60 

EDD  EEDD  PGA 
n k T R NOB Error Std NOB Error Std NOB Error Std 
50 0.1 0.3 0.3 52 1.993 0.033 72 1.015 0.022 100 0.000 0.000 
   0.6 44 3.018 0.053 20 3.465 0.043 100 0.000 0.000 
   0.9 36 6.079 0.146 24 5.570 0.144 100 0.000 0.000 
  0.6 0.3 32 3.803 0.053 44 2.691 0.035 100 0.000 0.000 
   0.6 24 4.182 0.053 40 2.310 0.033 100 0.000 0.000 
   0.9 24 4.933 0.072 24 4.100 0.055 100 0.000 0.000 
  0.9 0.3 48 5.066 0.059 52 3.573 0.061 96 0.123 0.006 
   0.6 40 4.700 0.059 52 2.528 0.037 100 0.000 0.000 
   0.9 40 7.330 0.199 48 6.098 0.199 100 0.000 0.000 
 0.4 0.3 0.3 56 4.733 0.102 72 5.517 0.199 100 0.000 0.000 
   0.6 48 2.389 0.050 60 1.824 0.047 96 0.010 0.000 
   0.9 32 3.051 0.035 36 2.380 0.027 96 0.010 0.000 
  0.6 0.3 64 1.705 0.039 64 0.914 0.018 100 0.000 0.000 
   0.6 48 4.425 0.061 44 2.778 0.037 100 0.000 0.000 
   0.9 20 4.506 0.073 48 1.921 0.031 100 0.000 0.000 
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Table 3 Computational results for n = 50 and n = 60 (continued) 

EDD  EEDD  PGA 
n k T R NOB Error Std NOB Error Std NOB Error Std 
  0.9 0.3 56 3.030 0.074 72 1.915 0.040 100 0.000 0.000 
   0.6 72 2.281 0.067 72 2.009 0.042 100 0.000 0.000 
   0.9 64 1.925 0.034 72 1.483 0.032 100 0.000 0.000 
 0.7 0.3 0.3 48 4.138 0.081 52 3.156 0.046 100 0.000 0.000 
   0.6 36 2.793 0.046 44 3.681 0.067 100 0.000 0.000 
   0.9 56 1.393 0.025 72 1.803 0.041 92 0.165 0.005 
  0.6 0.3 64 2.252 0.039 48 3.715 0.065 100 0.000 0.000 
   0.6 48 5.511 0.103 48 2.414 0.053 96 0.040 0.002 
   0.9 48 1.902 0.026 48 2.529 0.044 96 0.073 0.003 
  0.9 0.3 52 4.123 0.068 60 2.669 0.051 100 0.000 0.000 
   0.6 64 2.707 0.061 64 2.805 0.081 100 0.000 0.000 
   0.9 64 2.110 0.038 68 4.806 0.123 100 0.000 0.000 

60 0.1 0.3 0.3 44 3.454 0.051 52 2.224 0.042 100 0.000 0.000 
   0.6 48 1.678 0.026 56 0.820 0.016 96 0.056 0.002 
   0.9 32 2.007 0.024 36 2.921 0.069 100 0.000 0.000 
  0.6 0.3 40 2.030 0.023 28 2.323 0.020 100 0.000 0.000 
   0.6 24 3.122 0.042 40 2.460 0.027 100 0.000 0.000 
   0.9 52 2.526 0.041 48 2.483 0.034 100 0.000 0.000 
  0.9 0.3 52 2.725 0.043 68 1.004 0.023 100 0.000 0.000 
   0.6 48 1.797 0.029 48 1.325 0.015 100 0.000 0.000 
   0.9 48 6.332 0.197 56 5.346 0.199 100 0.000 0.000 
 0.4 0.3 0.3 40 3.035 0.084 64 2.073 0.041 100 0.000 0.000 
   0.6 36 4.473 0.063 40 2.319 0.028 100 0.000 0.000 
   0.9 44 2.770 0.036 44 3.022 0.046 100 0.000 0.000 
  0.6 0.3 72 1.479 0.033 64 1.738 0.044 100 0.000 0.000 
   0.6 52 1.781 0.027 60 1.942 0.038 96 0.034 0.001 
   0.9 44 1.975 0.027 44 1.872 0.031 100 0.000 0.000 
  0.9 0.3 48 3.492 0.054 52 3.810 0.083 100 0.000 0.000 
   0.6 44 1.611 0.019 52 1.587 0.024 100 0.000 0.000 
   0.9 68 1.291 0.022 72 0.907 0.018 100 0.000 0.000 
 0.7 0.3 0.3 44 1.572 0.021 56 2.160 0.040 100 0.000 0.000 
   0.6 44 2.569 0.033 60 1.217 0.024 96 0.018 0.000 
   0.9 48 2.978 0.044 32 4.188 0.048 100 0.000 0.000 
  0.6 0.3 64 2.492 0.049 72 1.304 0.034 100 0.000 0.000 
   0.6 52 1.196 0.016 60 1.636 0.044 100 0.000 0.000 
   0.9 60 1.224 0.025 72 0.610 0.016 100 0.000 0.000 
  0.9 0.3 72 1.625 0.036 72 1.018 0.022 100 0.000 0.000 
   0.6 68 1.079 0.022 76 1.025 0.027 100 0.000 0.000 
      0.9 60 1.700 0.033 68 1.486 0.028 100 0.000 0.000 
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Table 4 Computational results for n = 70 and n = 80 

EDD  EEDD  PGA 
n k T R NOB Error Std NOB Error Std NOB Error Std 

70 0.1 0.3 0.3 36 4.297 0.054 48 2.393 0.029 100 0.000 0.000 
   0.6 32 3.723 0.046 36 2.356 0.036 100 0.000 0.000 
   0.9 32 3.994 0.064 52 1.602 0.023 96 0.164 0.008 
  0.6 0.3 24 7.271 0.200 40 3.456 0.070 100 0.000 0.000 
   0.6 16 7.363 0.197 24 2.883 0.035 100 0.000 0.000 
   0.9 44 2.067 0.038 48 1.599 0.035 100 0.000 0.000 
  0.9 0.3 32 4.521 0.064 48 2.248 0.035 100 0.000 0.000 
   0.6 24 4.518 0.052 52 2.054 0.031 100 0.000 0.000 
   0.9 56 1.776 0.033 56 1.274 0.026 100 0.000 0.000 
 0.4 0.3 0.3 56 2.995 0.074 48 3.170 0.055 100 0.000 0.000 
   0.6 52 1.408 0.022 56 2.495 0.040 96 0.075 0.003 
   0.9 36 2.465 0.038 52 1.925 0.033 100 0.000 0.000 
  0.6 0.3 64 4.831 0.199 72 4.552 0.199 96 0.014 0.000 
   0.6 60 2.433 0.048 60 2.167 0.041 100 0.000 0.000 
   0.9 48 1.536 0.024 48 1.335 0.020 100 0.000 0.000 
  0.9 0.3 52 2.855 0.045 64 1.720 0.040 100 0.000 0.000 
   0.6 56 2.031 0.037 60 0.925 0.013 100 0.000 0.000 
   0.9 52 2.266 0.039 52 1.291 0.025 100 0.000 0.000 
 0.7 0.3 0.3 64 2.097 0.054 68 1.366 0.024 100 0.000 0.000 
   0.6 68 2.188 0.056 64 1.091 0.020 100 0.000 0.000 
   0.9 56 2.162 0.037 60 1.521 0.027 96 0.012 0.000 
  0.6 0.3 72 0.526 0.014 68 2.102 0.046 100 0.000 0.000 
   0.6 44 1.899 0.031 48 2.488 0.046 96 0.057 0.002 
   0.9 48 2.899 0.048 44 4.093 0.072 96 0.009 0.000 
  0.9 0.3 60 3.222 0.079 56 1.951 0.033 100 0.000 0.000 
   0.6 72 3.268 0.105 88 0.527 0.015 100 0.000 0.000 
   0.9 64 1.360 0.026 76 1.133 0.029 100 0.000 0.000 

80 0.1 0.3 0.3 36 2.209 0.030 48 1.404 0.026 100 0.000 0.000 
   0.6 28 3.010 0.041 32 1.248 0.016 100 0.000 0.000 
   0.9 12 2.616 0.029 32 1.676 0.024 96 0.013 0.000 
  0.6 0.3 32 2.131 0.032 40 1.428 0.022 100 0.000 0.000 
   0.6 24 3.780 0.047 32 3.062 0.051 100 0.000 0.000 
   0.9 28 4.973 0.107 32 4.313 0.142 100 0.000 0.000 
  0.9 0.3 24 2.986 0.045 40 2.475 0.042 100 0.000 0.000 
   0.6 64 1.774 0.028 52 1.129 0.014 100 0.000 0.000 
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Table 4 Computational results for n = 70 and n = 80 (continued) 

EDD  EEDD  PGA 
n k T R NOB Error Std NOB Error Std NOB Error Std 
   0.9 44 2.273 0.032 56 1.191 0.017 96 0.012 0.000 
 0.4 0.3 0.3 56 1.278 0.022 52 1.620 0.028 100 0.000 0.000 
   0.6 28 2.803 0.047 60 1.324 0.023 100 0.000 0.000 
   0.9 40 2.734 0.040 44 1.668 0.028 100 0.000 0.000 
  0.6 0.3 40 4.292 0.061 44 3.283 0.058 100 0.000 0.000 
   0.6 44 1.956 0.035 40 2.010 0.031 96 0.044 0.002 
   0.9 52 1.580 0.027 52 1.583 0.029 100 0.000 0.000 
  0.9 0.3 60 1.051 0.022 64 1.808 0.035 100 0.000 0.000 
   0.6 48 1.899 0.044 68 2.048 0.064 100 0.000 0.000 
   0.9 64 2.346 0.059 64 2.025 0.056 100 0.000 0.000 
 0.7 0.3 0.3 52 1.503 0.022 48 2.596 0.051 100 0.000 0.000 
   0.6 48 2.174 0.033 56 0.917 0.015 96 0.009 0.000 
   0.9 48 1.919 0.026 52 0.959 0.015 96 0.113 0.005 
  0.6 0.3 76 1.383 0.046 88 0.357 0.011 100 0.000 0.000 
   0.6 56 1.356 0.025 64 0.907 0.015 100 0.000 0.000 
   0.9 68 1.172 0.032 60 1.568 0.028 96 0.005 0.000 
  0.9 0.3 84 0.560 0.015 76 2.408 0.099 100 0.000 0.000 
   0.6 60 2.303 0.043 76 1.066 0.022 100 0.000 0.000 
      0.9 52 4.385 0.109 64 2.389 0.060 96 0.038 0.001 

The results of Tables 2–4 are summarised in Figures 1–3. Figure 1 indicates the overall 
percentage errors of the heuristics with respect to the number of jobs where each point 
represents the average of 675 instances, which correspond to 25 randomly generated 
replicates for each of 27 combinations of k, R and T values. Figures 2 and 3 represent the 
standard deviation and the number of best solution performances for the same set of 
instances of the three heuristics. It is clear from the figures that the percentage errors of 
EDD and EEDD slightly decrease as n increases. The same is also true for Std values as 
shown in Figure 2. It is also clear from Figures 1–3 that EEDD performs better than 
EDD. The overall error of EDD is 1.2 times that of EEDD while both have almost  
the same computational time. Therefore, EEDD is preferable to EDD. The figures  
also clearly indicate that PGA significantly outperforms EEDD and EDD. Moreover, the 
overall error of EEDD is 278 times that of PGA. It should be noted that the 
computational time of PGA was less than half a minute for 50 jobs, and for the extreme 
case of 80 jobs, it was less than five minutes. Therefore, if the computational time is of 
main concern, then it is recommended to use PGA for n up to 50 while to use EEDD for 
larger number of jobs if an error of 2.78 is tolerable. 
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Figure 1 Error vs. number of jobs 

 

Figure 2 Std vs. number of jobs 

 

Figure 3 NOB vs. number of jobs 
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Figures 4–6 examine the error performance of the three heuristics for the three different 
values of k, T and R. Figure 4 indicates that the performances of both EDD and EEDD 
slightly improve as the k value increases. On the other hand, the performance of PGA 
was not sensitive to the k values. Figure 5 shows that the performances of the heuristics 
are not sensitive to T values. It should be noted that the larger the value of R, the wider 
will be the spread of due dates among the jobs. In this case, the problem becomes 
relatively easy to solve because of large due dates. On the other hand, the problem 
becomes difficult to solve for smaller values of R, since in this case due dates are smaller. 
It is clear from Figure 6 that the performances of EDD and EEDD slightly deteriorate as 
R gets smaller. Although it is not clear from Figure 6 owing to scale used, the 
performance of PGA gets slightly better as R gets smaller.  

Figure 4 Heuristics’ sensitivity to k 

 

Figure 5 Heuristics’ sensitivity to T 
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Figure 6  Heuristics’ sensitivity to R 

 

6 Conclusions 

The literature reveals that the flowshop scheduling problem with maximum lateness 
criterion and separate setup times has been limited to the two-machine case. This paper 
extends this problem to the three-machine case. The contribution of the paper includes a 
dominance relation and three heuristics (EDD, EEDD and PGA). Computational 
experiments are conducted to compare the performances of the proposed heuristics.  
The computational analysis shows that PGA significantly outperforms EDD and EEDD. 
If the computational time is of the main concern and the number of jobs are large, EEDD 
can be an acceptable alternative to PGA.  

Evaluation of the dominance relation developed in this paper has not been performed. 
Dominance relations are usually helpful when used in a branch-and-bound algorithm. 
Therefore, a possible extension is to develop a branch-and-bound algorithm for the 
problem by incorporating the dominance relation developed in this paper. Moreover,  
the performance of a branch-and-bound is also affected by the upper bound used  
in the algorithm. Hence, the proposed PGA can be used as an upper bound in the  
branch-and-bound algorithm to be developed since PGA performs very well.  

Setup times considered in this paper are assumed to be sequence independent.  
There are some environments where setup times are sequence-independent. However, 
there are many other environments where it is not valid to assume that setup times as 
sequence independent. Therefore, another possible area to study is to consider the same 
problem with sequence-dependent case. It may not be that easy to come up with some 
dominance relations for the sequence-dependent case. However, some new heuristics can 
be developed and compared with the ones proposed in this paper.  
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