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Abstract

The discrete bilevel programming problems considered in this paper
have discrete parametric lower level problems with linear constraints and
a strongly convex objective function. Using both the optimistic and the
pessimistic approach this problem is reduced to the minimization of aux-
iliary nondifferentiable and generally discontinuous functions. To develop
necessary and sufficient optimality conditions for the bilevel problem the
radial-directional derivative and the radial subdifferential of these auxil-
iary functions are used.

Key words: Bilevel programming, necessary and sufficient optimality con-
ditions, discrete parametric optimization, minimization of discontinuous func-
tions, radial-directional derivative.

1 Introduction

Bilevel programming problems are hierarchical optimization problems where
the constraints of one problem (the so-called upper level problem) are defined
in part by a second parametric optimization problem (the lower level problem)
[1, 2]. These problems occur in a large variety of practical situations [3]. Many
approaches are known to attack continuous bilevel programming problems. But,
the number of references for bilevel programming problems with discrete vari-
ables is rather limited. Focus in the paper [15] is on existence of optimal so-
lutions for problems which have discrete variables in the upper resp. the lower
level problems. Solution algorithms have been developed in [5, 8 9, 16]. The
position of constraints in the upper resp. in the lower level problems is critical.
The implications of and gains obtained from shifting a 0-1 variable from the
lower to the upper level problems have been investigated in [4].
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Focus in this paper is on optimality conditions for bilevel programming problems
with discrete variables in the lower level problem. Verification of optimality
conditions for continuous linear problems is A'P—hard [14] even if the optimal
solution of the lower level problem is unique for all upper level variable values.

If the lower level problems may have nonunique optimal solutions, useful con-
cepts are the optimistic and the pessimistic approaches. Both concepts lead to
the minimization of a discontinuous auxiliary function . In the case of a linear
bilevel programming problem, this function is a generalized PC'—function and
the formulation of optimality conditions can be based on the radial-directional
derivative [2, 6].

In this paper a similar approach 1s investigated for discrete bilevel programming
problems.

The outline of the paper is as follows. In Section 2 the investigated bilevel
program is formulated and some introductory examples are given. Structural
properties of the solution set mapping of the lower level problem are investigated
in Section 3. In Sections 4 and b focus 1s on properties of the auxiliary function
. Optimality conditions using the radial-directional derivative of the function
@ are developed in Section 6, and in Section 7 the same is done by the help of
the radial subdifferential of the function ¢.

Throughout this paper the gradient of a function is the row vector of the partial
derivatives. Further we will use the abreviation {z*} for a sequence {z*}%2, if
this will not cause any confusion.

2 A bilevel problem with discrete lower level

In this paper we consider the following bilevel programming problem
min{g(z,y) :y €Y, 2 € ¥p(y)}

Up(y) = Argmin{f(z,y) : = € Sp}

with the following requirements:

1. Y C R™ is convex, closed and int Y # §.

2. f(z,y) = F(x) —y '« with F : R” — R being differentiable and strongly
convex [10] with modulus @ > 0, i.e. for all z, 2° € R™ it holds

F(e) > F(2°) + V() (@ - 2%) + 0|z — 7).

3. g(z,y) is continuously differentiable with respect to y.



4. The set Sp C R"™ is required to be nonempty and discrete, i.e. there exists
some w > 0 with ||z — || > w for all , 2’ € Sp, « # «'.

Sp denotes the set of all feasible solutions of the lower level problem.

Thus, the problem under consideration is continuous in the upper level and
discrete with some special structure in the lower level.

In general the solution of the lower level is not unique. This causes some uncer-
tainty in the definition of the upper level objective function [2]. Thus, instead
of g(z,y), we will investigate the following functions

bo(y) = min g(x,y), (2)
z€¥p (y)
op(y) = xelggfy)g(x,y) (3)

The function ¢,(y) is called optimististic solution function and ¢, (y) pessimistic
solution function. While most of the papers on bilevel programming with pos-
sible nonunique lower level solutions investigate (implicitly) the optimistic ap-
proach (see e.g. [1] and the references therein), focus for instance in the paper
[11] is on the pessimistic approach and both approaches have been compared in
[12]. A local optimal solution of the optimististic/pessimistic solution function
is a local optimistic/pessimistic solution of (1).

In this paper we investigate necessary and sufficient conditions under which
some point y € Y is a local optimistic/pessimistic solution of (1).

We will use the notation ¢(y) if the statement holds for both ¢,(y) and ¢, (y).

For our considerations the so-called regions of stability are very important. They
are defined as follows.

Definition 1. Let z° € Sp. Then the set
R(z%) = {yeR™: f(x° y) < f(x,y) for all x € Sp}
= {yer": 2" op(y)}

is called region of stability for the point x°.

Thus the set R(2°) denotes the set of all parameters for which the point z° is
optimal.

To make the subject more clear consider the following example.
Example 1.
min{sin(zy) : y € [0,5], # € ¥p(y)}

1
Up(y) :Argmin{ixz—xy: 0 <z <h, J:EZ}



Since the upper level objective function is continuous on the regions of stability
the latter ones can be seen in figure 1. Formally the regions of stability are

R(0) = (—00,0.5], R(1) = [0.5,1.5], R(2) = [1.5,2.5], R(3) = [2.5,3.5],
R(4) = [3.5,4.5] and R(5) = [4.5, ).

Using the definitions of the optimistic and pessimustic solution functions at the
intersection pownts of the regions of stability, we get

0 y <05 0 y <05
sin(ly) 0bh<y<15b sin(y) 05<y<15b
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sin(by) y>4.5 sin(by) y>4.5
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Figure 1: solution function ¢ for example 1

As it can be seen in figure 1 the local optimal solutions of ¢, are
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y€[0,0~5],y—Z, y—3~5,y—?, v=
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3/6[0,05),3/—?, y—?, 9—7

are the local optimal solutions of ¢p.

In Example 1 the optimistic and the pessimistic solution function are not contin-
uous but rather selections of finitely many continuously differentiable functions.



3 Some remarks on the sets ¥p(y) and R(x)

In this section we want to derive some properties of the sets ¥p(y) and R(x)
which we will need later.

Lemma 1. Foreach z° € Sp the set R(z°) is a closed conver set with VF (2°)7
n its intertor.

Proof. Let 2° € Sp. Then for all y € R(2°) it holds f(z° y) < f(z,y) for all
x € Sp and therefore

(x—2°)Ty < F(z)— F(2°) Vze€Sp.
Thus, R(z") corresponds to the intersection of (maybe infinitely many) half-
spaces. This implies that R(z°) is convex and closed.

Now we want to show that VF(2%) T € int R(z"). Since F : R™ — IR is strongly
convex there exists some 6 > 0 with F'(z) > F(2°)+VF(2%)(z—2°)+0||z—2°|]?
for all z € R™.

Consider y = VF(2%) T +ah with h € R™ ||h|| = 1 and a € [0, fw]. Then, for all
x € Sp, * # 2°, the following sequence of inequalities is valid by ||z — 2°|| > w

for x # ¥

v
"

(") +
F(x%) 4 yT (2 — 2% —ahT (z — 2°) + 0]|z — 2°|?
> F(°) +y" (¢ —2") —allz — 2°| + 0]« — «°||?
> F(%) +y" (2 —2") + (v — a)lle — 2
> Fe®) +yT (x—20).

Thus we obtain (VF(z%)T +ah) € R(2°) for all « € [0,0w], i.e. the assumption
holds. O

Lemma 2. 1. For each y € R™ the set Wp(y) has finite cardinality.
2. If y° € int R(z°) for some 2° € Sp, then ¥p(y") = {=°}.

3. Let some point y° € R” be given. Then there exists a positive real number
€ >0 such that ¥p(y) CVp(y°) for al y e Uc(y°) = {y : |ly — ¢°|| < €}.

Proof. 1. If Sp = ® the assumption holds obviously. Assume that Sp # 0§
and take a point 2° € Sp. Let an arbitrary y € R™ be given. Then for all
z € Up(y) it holds

Fle)—yTe < F(a®) — yTa®
implying

F(a®) + VF (") (2 = 2°) +0lle = 2" < Fa) + 37 (2 = 2°)



for some # > 0 since F' is strongly convex. Thus,

Ol =2 < (y" = VF@E") (e —2°) < ly = VF (") " l[lx — 2"

1
lz =2l < Slly=VFE).

Therefore ¥p(y) has finite cardinality.

. The inclusion y° € int R(z") implies {2} C Wp(y") by definition. To
prove the opposite direction assume that there exists a point 2 € ¥p (y"),

x # x° Then,

F(J:)—yOTx = F(J:O)—yOTxO

Flz)— F(") = 3° (x—2°) > VF(E")(z — 2°)
since F is strongly convex. Due to y" € int R(z") there exists some ¢ > 0
such that
y =y +e(y’ = VF(x%T) € R(z°). Now we obtain
Fa'y) = P =y e’ = Fa) =y e’ =y (2 =)
= fle,y)+y—y") (z -2
T
= flay) +e@’ —VPE"))(x-2") > f(z,y)

which is a contradiction to y € R(z?).

. Assume that the assertion does not hold. Then there exist sequences
{y*}ee, with % — 3% k — oo, and

{zF}2 | with 2% € Wp(y*) but 2% ¢ ¥p(y°) for all k.

Thus, for fixed z° € Sp, it holds

F(l‘k)—yk-rl‘k S F(xO)_ykaO
F(a%) + VF(a)(@* = a%) + )" —2"F < F@')+y (@ —a?)
k _ F ONT
This yields
||l‘k _ xOH < ||yk _yOH _|_||y0 _VF(xO)TH
0 0
-0

i.e. {z"} is bounded and has finitely many elements. Therefore we can
assume that all ¥ are equal, i.e. 3z € Sp with z € ¥p(y*) Vk but
v ¢ Wp(y").

That means y* € R(x) Vk but y° ¢ R(x). This is a contradiction to
Lemma 1.

O



4 Basic properties of ¢(y)

In this section we want to show first that for each y° € R™ there exists some
¢ > 0 such that in the neighborhood U, (y") the optimistic/pessimistic solution
function is a selection of finitely many continuously differentiable functions.
Further, for this special € > 0 we will investigate the support set

Ye(y') ={y € V(") N R(z) : g(z,y) = 6(y)}

and its contingent cone

s s . y -y
(") = {r: 3}y CYov") e} CRy s " =07 4 10, lim =———=r}.

oQ s

That means, Y, (y°) is the set of all y € U, (y") for which both z € ¥ (y) and
g(z,y) = ¢é(y) hold for a fixed point # € Sp. Properties of these sets are essential
for the investigation of generalized PC-functions (in short: G PC*-functions)
in the paper [6] leading to optimality conditions for linear bilevel programming
problems in [2]. The following two theorems show that the objective functions in
the two auxiliary problems (2) and (3) have many properties of G PC'-functions,
but they are not GPC'functions as it is shown by Example 2 below.

Theorem 3. For the function ¢ and each y° € R™ it holds:

1. There exists an open neighborhood U.(y°) of y° and a finite number of
points * € Up(y°) with

3(y) € {g(x, W) }oewpym) Yy € Uely”).

2. int Y (y°) = Ue(y°) Nint R(z) and Yy (y°) C cl int Y (y°) for z,y° € R™,

3. T (y°) Cel int T (y°) for y° € R(z).

Proof. Let an arbitrary y° € R™ be given.

1.) Because of Lemma 2, Wp(y") has finite cardinality and there exists some
€ > 0 with Wp(y°) D ¥p(y) for all y € U (y°). With ¢(y) € {g(x, Y)Yoewo (y) it
follows ¢(y) € {g(=, y)}xeq,D(yo) Vy € Ue(y°).

2.) Let y € int Y, (y"). Then there exists some § > 0 with Us(y) C Y. (y°).
Thus, y € Us(y°) and Us(y) C R(z), i.e. § € U(y®) Nint R(z).

Let y € Uc(y%)Nint R(z). Then there exists some § > 0 with Us(y) C Uc(y°) and
Us(y) C int R(z). From Lemma 2 it follows ¥p(y) = {z} Yy € Us(y). Thus,
(y) = g(z,y) Yy € Us(y), ie. y € Yo (y°) Yy € Us(y). Therefore, y € int Y, (y°).
This implies the first equation of part 2.

Now let i € Y, (y°). This means y € R(z), y € Uc(y°) and ¢(y) = g(x,y). Since
R(x) is convex with nonempty interior (cf. Lemma 1) there exists some sequence



{y*} € int R(x) with y* — gy, k — co. W.lo.g. we can further assume that
y" € Uc(y°) Vk. Consequently, y* € int Y, (y°) Vk and thus g € cl int Y, (y°).
3.) Let an arbitrary r € T,(y°) be given. Then there exist sequences {y*} C
Y (y°) and {t;} C Ry with y* — y%, ¢5 | 0 and slggo yst_syﬂ = r. We can assume
w.l.o.g. that ¢, € (0,1) Vs.

Take any g € int Y (y°) and let §* :=t,7+ (1 —t)y° = v +t,(§ — y"). Then,
lim, 00 9° = y° and gst_y =g —y” = 7 Vs. Since R(z) is convex it follows
easily that g* € int Y, (y°) Vs and 7 € int T} (y°

).

Now consider 2§ := Ay* + (1 — A)g® with A € (0,1). Since R(z) is convex and

y* € int Yy (y°) it follows 2§ € int Y (y°) VA Vs. Then it holds 2§ — ¢° for

s — oo and lim Zit;yu =M+ (1 = A)F = ry € Tp(y°) for all A € (0,1).
§— 00 s

Moreover, ry — r for A — 1.

Now, from z§ € int Y;(y") it follows easily that 25 — y° € int7,(y") and thus
B9 cint T, (y°) Vs VA € (0, 1).

ts
Hence, 7y € cl intT,(y°) YA € (0,1). This together with ry — » for A — 1

implies » € cl cl int T, (y°) = cl int T} (y°). O

Theorem 4.  int Ty (y°) Nint T2 (y°) = 0 for all 21, 2% € Up (y°), ' # 22

Proof. Let r € Ty1(y°) N Ty2(y°) be arbitrary. Due to r € Ty (y°) there exists
sequences {y*} C Y,1(y%), v* — y" and {t;}, 5 | 0 with r* := yst_—yo = 7.

From y* € Y1 (y°) Vs it follows y* € R(x') Vs, ie. F(a') —y* T2l < F(2?) —
y* Tx?. Since 2! x> € Up(y°) it holds F(x') — yOTxl = F(2?) - yOTxZ. Hence,

yST(l‘l _l,Z) > F(l‘l) _ F(l‘z) — yOT(l‘l _ xZ)
(' =y (&' —2%) >0 Vs
(et —2?) >0 Vs
With #¥ — 7 this yields r ' (2! — 2?) > 0.
From r € T,2(y") it follows analogously (z! — 2%)T» < 0. Therefore it holds

(2% —2Y)Tr =0 for all ¥ € Ty (¥°) N Tp2 (¥°).

Assume that there exists some r € int Tp1 (y®) Nint Ty2 (y°). Then for all ¢ € R™,
|l{]| = 1 there exists a real number § > 0 with r + §t € T,1(y%) N Ty (y°), ie.

(l‘z —xl)T(r—l—ét) =
5(1‘2 — xl)Tt =
(l‘z — xl)Tt = 0 WVt
and therefore 2! = z2. O



Next we show that the function ¢ is not a GPC'-function (cf. [2],[6]). For
G PC'-functions one requires additionally to the results in the Theorems 3 and
4 that there exists a number § > 0 such that for all r € Ty (y°) N Typ2(y°),
IIr]] = 1, ' # 2% some tg = t(r) > § can be found with y° + tr € Y1 (y°) or
YO +ir € Y2 (y°) Vit € (0,t0). We will show that the functions ¢ usually do not
have this property.

Example 2. Consider the lower level problem in (1) with the feasible set Sp =
{a! = (0,0,0)7,2% = (1,0,0)7,2% = (0,1,0)T} and f(x,y) = $2Tz —2Ty.
Then we obtain the following regions of stability:

R(z') = {yeR’:y <1/2,50 < 1/2}
R(z*) = {yeR’:y >1/2,p <}
R(@®) = {yeR’:yp>1/2,y0 >y}
Let g(z,y) = (1/2,—1,0) Tz be the objective function of the upper level problem.
Then,
-1 ye€ R(2%)
bo(y) =< 0 y € R(zYH)\R(x?)
1/2  else

Set r = (0,0,1)7 and y° = (1/2,1/2,0) 7.
Further, y'(e) := (1/2— €2,1/2— 2, e + )T € Y1 (y°) Ve > 0. Then

C _ T_ 0

!E;%y (6) - (1/2a1/2a0) =Y,

T _ 0
lim 3/(6)73/ = lim(—e,—, 14+ ¢)T =7, ie. 7 € Tpr(y").
e—0 € e—0

Analogously y*(€) = (1/2 +€%,1/2, e+ €2)T € Yy2(y°) Ve > 0. Then

9 _ T_ 0

!E}(l)y (6) - (1/2a1/2a0) =Y,

20N _ .0
limm = lim(e,0,14+¢)" =7, ice. 7 € T2 (3°).
e—0 € e—0

Therefore, r € Ty (y°) N Tyz(y°), [|7]| = 1, 2 # 22 but ¢ (y° +tr) = -1 <
gz 0 +tr), i=1,2, ¥Vt >0, ie. Y +tr ¢ Vo (y°) and y° +tr ¢ YV,2(y°) for
all t > 0.

Until now the description of the contingent cones has been more theoretical.
Thus, for calculation we will need some better formula. In [10] many statements
are given concerning contingent cones to closed convex sets. But, in general the
sets Y, (y°) are neither convex nor closed. Using T;(y°) C cl{r € R™ : Jty >
0 with y® + ¢r € Y, (y°) V¢t € [0,10]} we obtain the following Lemma:

Lemma 5. Let ¥ € Wp(y"). Then it holds

To(°)={reR": 0< (z—2)"r VYee&Up(y’)}.



Proof. Let r € Tr(y"). Then there exists some sequence {r*} with limg_, ., ¥ =
r and y° +trF € R(z) for all k if ¢ > 0 is sufficiently small. Hence,

F(z) - (3° —I—tr) z < F(x)—(yo—l—trk)Tx Ve € Sp
Fa) -y -tz < Fo)—y a—tr* & Voesp.

On the other hand it holds F(z) — yOTi‘ =F(x) — yOTJ: Ve € ¥p(y°). Thus,
rkT(i‘ —x) > 0 VkVz € ¥p(y®). Consequently it holds »"(z — x) > 0 Vz €
Up(y°).

Let 0 < (z —2)Tr Vo € ¥p(y"). Then it holds
F@)— @ +tr)Tz2< F(x)— (4" +tr) @ Yo eUp(y’)vi>0.

Further there exists some ¢ > 0 with ¥p(y) C ¥p(y°’) Yy € Uc(y"). Thus,
for all t € (0,¢/|r]]) it holds F(z) — (y° +tr)Tz < F(z) — (y° +tr)Tz Vz €
Up(y? +ir), ie. y° +tr € R(z) Yt € (0,¢/||r|]). Now we will show that
r € Tp(y"). Let § = y° + tor for some fixed to € (0,¢/||r|]). Since R(z) is
convex with nonempty interior there exists some sequence {y*} € int R(Z) with
y* — 7, s = oo and y* € Uc(y"). Then it holds (y* —y°)A+y° € int Yz(y") VA €
(0,1) Vs. Consequently, y* — y" € Tz (y%) Vs. Since T;(y%) is a closed cone and
g—y° = slgg) y* —y it follows §—y° = tor € T(y"), i.e. it holds r € Tx(y°). O

Consequently, the cones T (y°) are polyhedral cones with nonempty interior for
all z € ¥p(y°).

5 The radial-directional derivative

In the following we formulate criteria for local optimality. For this we want to
use the radial-directional derivative which was introduced by Recht [13]. Such
kind of considerations have even been done for G PC'-functions [2, 6]. But as
shown, although our functions ¢ have some properties in common with GPC*-
functions they are in general not G PC!-functions.

Definition 2. Let U C R™ be an open set, y° € U and ¢ : U — R. We say
that ¢ is radial-continuous at y° in direction r € R", ||r|| = 1, if there exists a
real number ¢(y°;r) such that

. 0 _ 4.0,

ltlf(rjqu(y +ir)=¢(y ;7).
If the radial limit ¢(y°;r) ewists for all r € R™, ||r|| = 1, ¢ is called radial-
continuous at y°.

¢ is radial-directionally differentiable at y°, if there exists a positively homoge-
neous function dgyo : R™ — R such that for all v € R”, ||r|| =1 and all t > 0 it
holds

O(y” +1r) = $(y7; 1) = tdgyo(r) + o(y’, 11)

10



with limgyo o(y°, tr)/t = 0. Obviously, d¢,o is uniquely defined and is called the
radial-directional derivative of ¢ at yP°.

Theorem 6. Both the optimistic solution function ¢, and the pessimistic so-
lution function ¢, are radial-continuous and radial-directionally differentiable.

Proof. Consider y° and some direction » € R™, [|r|]| = 1. Further let
L") = {xeVUpy®): Ye> 0T € (0,¢) with y° +tr € Yo (y°)}
and G(y° +tr) = min g(x,y° +tr).
z€l (y°)

Since Wp (y°) has finite cardinality and the sets R(z) are convex it holds ¢,(y° +
tr) = G(y° + tr) for all sufficiently small real numbers ¢ > 0. Since the func-
tion G(-) is the minimum function of finitely many continuously differentiable
functions it is continuous and quasidifferentiable (cf. [7]) and thus directionally
differentiable in ¢ = 0. Therefore the limits

. Gy’ +tr) — G
0 _ 0
ltlf(rle(y +1tr)=CG(y") and ltlf(rjl ;

=G'(y’s7)
exist. Moreover, since for all z € I.(y") it exists some sequence {t;} | 0 :
y° + tpr € Yo (y°) and

lim G(y° 4 tr) = lim G(y° +t,r) = lim g(x,y° + tpr) = g(x, y°)

tl0 k—o0 k—oo
we derive

do(y°;7) = lting(yo +1r) = G(y°) = g(=,y°) Vo € 1. (y°). (4)

Concerning the radial-directional derivative we obtain

Doy’ +1r) — do(y";7) Gy" +tr) - G(°)

dgoyo(r) = ltlfél ; = ltlf(rjl .
= Vyy(z, y°)r Ve € 1. (y°) (5)

since ¢ 1s continuously differentiable with respect to y.

For ¢,(y) we can prove the assertions analogously. O

Example 3. Let some feasible set Sp = {z!' = (0,0)7, 22

(—=1,0)"} be given with functions f(z,y) = %xTx —z"y and

I
—_
o

—
N

_'

&

w
I

3.1
_ f yisin - y1 >0
g(z,y) =21+ 22 {0 " <0,

Then the function g(x,y) is continuously differentiable with respect to y. The
regions of stability are

R(z') = {y€eR”: y1 >—05,y <05}
R(z%) = {y€R?: y1+y >0,y > 05}
R(@®) = {yeR?: y <05,y +y <0}

11



Let y° = (0,4)" and r = (1,0)T. Then I,(y°) = {z*, 2?} for both the optimistic

and the pessimistic solution function. Thus it holds
$o(y’;7) = 6p(y";7) = g(',4°) = g(?,4") = 0

and '
Poyo(r) = (bpyo(r) = Vyg(z',y%)r, i=1,2.

Further it holds ¢,(y°) = ¢,(y°) = 0. Remarkable in this example is the fact
that for all e > 0 there exists some t € (0, ¢) with either ¢(y° +tr) # g(xt, y°+tr)

or ¢(y° +tr) # g(x?,y° + tr).

Now let § = (—%, %)T and r = (=1,1)T. Then, for the optimistic solution
function it holds

L(g) = {2%} and ¢o(y) = ¢o(y;7) = —1
and for the pessimistic solution function it holds

I (y) = {2} and ¢, (y) = ¢p(y;7) = 0.
Considering the direction r = (0,1) we obtain I,(y) = {z*} and ¢(y;r) = 0 for
both the optimistic and the pessimistic case, but ¢,(y) = —1 # 0= ¢, (7).

Lemma 7. For all y° € R” and for all v € R™ it holds:

(

0 QSO )
2. ‘/’p(yo) > ép(

)

0.
ysr

0.
y,r

Proof. Assume there exists some y° and some r with ¢,(y%) > ¢,(y°;r). Then
from I, (y°) C ¥p(y") and the proof of Theorem 6 it follows that there exists
some = € ¥p(y") with ¢,(y°;7) = g(=,y°). Hence, ¢,(y°) > g(z,y’) for some
x € Up(y"). This is a contradiction to the definition of ¢,.

The proof for ¢, is similar. O

6 Optimality criteria based on the
radial-directional derivative

Let locmin{¢(y) : y € Y} denote the set of all local minima of the function ¢(-)
over the region Y C R™.

Theorem 8. It holds

locmin{¢,(y) : y € R"} C locmin{¢,(y) : y € R"}.
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Proof. Arguing by contradiction we assume that there is some y° with y° €
locmin{¢,(y) : y € R"} but y° ¢ locmin{¢,(y) : y € R™}. Then there exists
some sequence {y*} C R”™ with y* — y° k — oo and ¢,(v*) < ¢.(y°). Since
W (y°) has finite cardinality and ¥ p(y°) D ¥p(y) for all y in a neighborhood of
y? we can assume w.l.o.g. that there exists some € Wp(y°) with z € ¥p(y*)
and ¢,(y") = g(=,y") Vk, ie. y* € Y. (y°) Vk. Since g(z,) is differentiable
with respect to y and Y, (y%) C cl int Y, (y") we can further assume that y* €
int Y, (y") Vk. Thus it holds ¥p(y*) = {z} Vk, ie. ¢o(v*) = ¢p(v*) = g(x,¥")
Vk. Consequently,

¢p(yk) = ¢0(yk) < ¢0(yo) < ¢p(yo) Vk.
This is a contradiction to y° € locmin{¢,(y) : y € R"}. O
Thus, if Y = R™ and we know that some point y° is a local pessimistic solution

then clearly y° is a local optimistic solution, too.

Further, for y € intY and y € locmin{¢,(y) : y € Y} it follows analoguously
that y € locmin{¢,(y) : y € Y}. As the next example will show we indeed need
the condition y € intY'.

Example 4. Let

Sp = {(0’1)T’(0’_1)T}’
Y = {yeR?: y, >0},
1
fle,y) = §xTx—xTy and
g(x,y) = w2yl 4y

Then it holds fory €Y

9 .
2 yi + Y2 if y2>0
— d o — k
p(y) =i+ an 90(y) { —y% +ys if y2=0.

Thus, y° = (0,0)7 is a local pessimistic but not a local optimistic solution.
Moreover, y° is a global pessimistic solution. Some local optimistic solution
does not exist.

For further considerations we will need the contingent cone of the set Y. For
each given point y° € Y this cone is defined as follows:

Ty(yo) = {rER":EI{yS}gYEI{tS}¢O:ys—>y0,5—>oo,
s _ ,0
with lim 2—% =5}
s—oo 1y

The set Ty (y°) is a convex, closed, nonempty cone [10]. Since Y is convex it

holds
Ty(yo) =cl Ty(yo)
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with
Ty(y°) = {r € R": Jty > 0 with y° +tr € Y Vt € [0,20]}.

Theorem 9. Let y° € R” and let ¢ : R® — R denote the optimistic or the
pessimistic solution function. Then y° ¢ locmin{é(y) : y € Y} if there exists
some r € Ty(y°), ||7|] = 1, such that one of the following conditions 1,2 is
satisfied:

1. déyo(r) <0 and ¢(y°;7) = é(y°)
2. 6(y°;7) < 6(y°)

Proof. Let the vector r° € Ty(y°) with ||r°|| = 1 satisfy condition 1. That
means doyo(r) = limy ot ((y° +1r®) — ¢(y°; 7)) < 0. Then there exists some
t' € (0,tp) such that ¢(y° + tr%) < ¢(y°;r%) and y° + ¢r° € Y Vt € (0,¢).
Because of ¢(y%;r%) = #(y°) we have ¢(y° + ") < ¢(y") and y° +t° € Y for
all ¢ € (0,¢'). Thus, y” cannot be a local minimum of ¢.

Now let the vector 7° € Ty (y") with ||r°|| = 1 satisfy condition 2. Then it holds
o(y") = (4" 7") = 0(y°) — lime(y’ + %) > 0.

Hence there exists some t' € (0, o) such that y°+¢r® € Y and ¢(y") > ¢(y°+¢r°)
for all ¢ € (0,#'). Thus, y° cannot be a local minimum of ¢. O

Since d¢yo(-) is not continuous it is indeed necessary to consider only the set
Ty(y"). The consideration of Ty (y") would not lead to correct results as we
will see in the next example.

Example 5. Let

SD = {(_1a0)Ta(1’O)T}a

Y o= {yeR”: (m—1)°+y <1}
fle,y) = %J;Tx—xTy and
g(xy) = (1 + 1)y +93) + (21— Do

Then Ty (y°) = {y € R2: y; > 0} and for O = (0,1)7 it holds ¢,(y°) =
$o(y";7%) = 0 and d(boyo(ro) = —2 < 0. Thus, condition 1 is satisfied for ¢,
and r° but y° = (0,0)7 is a global optimistic and pessimistic optimal solution.

Specifying the conditions of Theorem 9 by using Lemma 7 we obtain the fol-
lowing necessary optimality conditions:

Let y° € locmin{¢,(y) : y € Y}. Then it holds

op(y°") = ¢p(y°; ) and dép,o(r) >0 Vre Ty (y°).
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Let y° € locmin{¢,(y) : y € Y}. Then for all » € Ty(y") it holds

$o(y°) < $o(y’;7) or ddoyo(r) > 0.

To prove the next theorem we will need the following lemma.

Lemma 10. Assume it holds ¢,(y°) = g(2°,4°) for y* € R" and 2° € ¥p(y°).
Then r € Typo(y°) implies
$o(y”) = da(y’; 7).

Proof. Since ¢, is radial-continuous there exists some & € ¥p(y°) and some
sequence {t;} | 0 with & € Wp(y° + tx7), ¢o(y° + txr) = g(Z,y° + txr) and
Go(y?;7) = limg oo d0(y" + ter) = limgy 00 9(2, 9" + tx7) = g(2,y"). Clearly it
holds r € Tz (y°) N Tyo(y"). Then from the proof of Theorem 4 it follows that
7T (2°—%) = 0. Further we know that , 2% € ¥p(y°) and thus F(mo)—xOTyo =
F(z) — & "y". Consequently, F(z°) — xOT(yO +tgr) = F(2) — 27 (y° + tgr) VE,
ie. 2% € Wp(y + txr) Yk. Thus we obtain ¢,(y° + txr) < g(z°, y° + tgxr) Vk,
ie.

$o(y’sr) = lim ¢,(y" +txr) < lim g(2°,4° +ter) = 9(2°,4°) = 00(y°).
k—oco k— o0
Now from Lemma 7 it follows the equality. O

Theorem 11. Assume that y° € Y is a point which satisfies one of the follow-
ing two conditions:

1 o(y°) < o(y°;r) Vr € Ty (y°)

2. ¢(y°) < o) Vr € Ty (y°) and dyo(r) > v Vr € Ty (¥°) = o(¥°) =
¢(y%;7), |Ir]] = 1 with v = 0 in the optimistic case and v > 0 in the pessimistic
case.

Then, ¢ achicves a local minimum at y°.

Proof. Suppose y° € Y satisfies one of the two conditions of the theorem.
Arguing by contradiction we assume that there is a sequence {y*};>; with
v* = y° k — oo and ¢(y*) < é(y°) Vk. Since ¥p(y?) D Wp(y) for all y
in a neighborhood of y° and Wp(y°) has finite cardinality there exists some
z% € Up(yY) such that Y,o(y®) contains infinitely many of the points y*, i.e.
#(y") = g(=°, v*). In the following we consider the sequence {y*} NY,0(y°) and
denote it by {y*} again. Because of the continuity of g(z?,-) it follows

g2 y") = lim g(a”, ") = lim 6(s") < 6(4"). (6)
Let 7% := ”ZZ%ZZ”, k=1,...,00. Then it holds 7* € Ty (y°)NTo(y"). Further,
let # an accumulation point of the sequence {r*}. Clearly, # € Ty (y°) NT5o (y°).
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i) Let ¢ denote the optimistic solution function. Then inequality (6) yields
g(2%,4°%) = 6,(y") since 2% € ¥p(y®). Now from Lemma 10 it follows ¢,(y°) =
¢o(y°;7*) Yk and ¢,(y°) = #,(y°; 7). Thus, the first condition does not hold.
Then the second condition must be satisfied. Since # € Tyo(y°) it holds y° +t7 €
R(2%) for all t € [0,¢). Therefore, ¢,(y° +t7) < g(2¥,y° + t7) for all ¢ € [0, €).
Hence,

Go(y° +17) — ¢o(y¥; 7)

0 <dyo(r) = ltlf(rjl ;
— lim ¢o(y0 + tf) - ¢o(y0)
T 4o t
< i 2@ Y 1) — 9@, ")
- tlo i

= Vyg(xo,yo)f.
On the other hand it holds
$o(y”) > 6o (v*) = 9(«°,4°) + lv" — "IV (=, v°)r" + o(lly* = 4°|I)

which together with (2%, y°) = ¢,(y°) and lim 0(||||yk7y§||||) = 0 leads to

k—oco yr -y
Vyg(xo, yo)f < 0.

But this is a contradiction, i.e. if 4" is no local optimistic solution none of the
two conditions holds.

ii) Let ¢ denote the pessimistic solution function. Then from Lemma 7 it follows
¢p(¥°) > ¢p(y°;r) for all » € Ty (y°), i.e. the first condition is not satisfied.
Then the second condition must be satisfied, i.e. it holds ¢, (y°) = ¢,(y°; r) and
d(bpyo(r) >y >0 for all r € Ty (3°).

Since ¢, is radial-continuous and radial differentiable for all k there exists some
8 € Lx(y"). Because of Ix(y°) C ¥p(y®) Vk and the finite cardinality of
Up(y°) we can assume w.l.o.g. that there exists some z € ¥p(y°) with z €
L« (y°) Vk. Thus, for all k it holds

6p (10 7%) = 6,(¥°) = 9(%,4°) and 0<y< d(/)pyu(rk) = Vyg(z,y")rk.
Since # is an accumulation point of {r*} we obtain
0 <y < Vyg(#,y°)r.

Further we have 7* € Ty (y°) N T (y°). Thus, y° +tr* € R(z°)NR(Z) V¢ € [0, €)
which yields ¢,(y*) > ¢(Z,y°) Vk. Consequently, for all k it holds

Gp(y”) > 0p (V) = 9(2,4") = 9(&,0°) +Iv* — v°[IVya(®,4°)r" + o(lv* — "))
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which together with ¢(z,y°) = ¢,(y°) and lim O(llllyki_yoll) = 0 leads to

k=00 y*—yY]|
Vyg(i‘, 3/0)72 <0.
But this is a contradiction, i.e. if y° is no local pessimistic solution none of the
two conditions holds. O
Specifying the conditions of Theorem11 by using Lemma 7 we obtain the fol-
lowing sufficient optimality conditions:

Let
¢p(y0) = g/)p(yo; ) and d(bpyo(r) >y>0 Vre Ty(yo).

Then y° € locmin{¢,(y) : y € Y}.

Let
¢o(y0) < ¢o(y0; 7“) or d¢0y0 (7“) >0 Vrely (y0)~
Then y° € locmin{¢,(y) : y € Y}.

Example 6. Consider the bilevel programming problem
min{g(z,y) : y € R? z € ¥p(y)}
Up(y) = Argmin{i||z|] —yTa: 21 <0,20>0,—x1 + 22 < 1, x € Z%}

with g(z,y) = z2(y2 — (y1 +0.5)* = 0.5) + (1 — 23)(y1 —y2 + 1) + 21 (3y1 + 1.5).

We obtain
-1
Sp = {a'= (g),xzz (8),1‘3: ( 0 )} with
R(z') = {yeR’: 42> 0.5,y +y2 >0},
R(l‘z) = {ye RZ: y2 < 0.5, y1 > —0.5} and
R(z®) = {yeR’: yi <05y +y: <0}

Then we have

Y2 — (y1 + 0~5)2 —05 o y>05y+y>0
¢p(y) = yi—ys+1  if y2 <05,y >—05
2y —y2— 05 if y1 4y <0, 51 < =05,

Let y° = (=1/2,1/2)7. Then it holds ¢,(y°) = ¢,(y°;7) = 0 Vr € R? and

r9 if ra>0,r1+71r2>0
0< d(bpyo(r) = 1 — T if 12<0,r7 >0
—27“1—7“2 Zf 7“1<0,7°1—|—7°2§0.

However y° is no local minimum of ¢, since y(t) = (t —0.5,0.5(1+¢2))T — 3°
fort | 0 but ¢,(y(t)) = —%tz < ¢p(y°) Yt > 0. This is no contradiction to
Theorem 11 since there does not exist any v > 0 with v < d(bpyo(r) Vr.
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7 Optimality criteria using radial subdifferential

Definition 3. Let U C R”?, y° € U and ¢ : U — R be radial-directionally
differentiable at y°. We say that d € R™ is a radial subgradient of ¢ at y° if

o(y°) + (r,dy < ¢(y°;7) + doyo(r)

is satisfied for all v = ¢(y®) > ¢(y°; 7).
The set of all subgradients is called subdifferential and denoted by Oraad(y°).

The following necessary criterion for the existence of a radial subgradient is
valid:

Theorem 12 ([6]). If there exists some r € R™ with ¢(y°;r) < é(y") then it
holds Oraad(y") = 0.

With this theorem we get the following equivalent definition of the radial sub-
gradient:

3md¢>(y0) ={deR": (r,d) < dpy,o(r)Vr satisfying (/)(yo) = (/)(yo; )},

if there 1s no direction such that the radial limit in this direction is less than
the function value.

Using Lemma 7 we obtain that for the pessimistic solution function either
Oraadp(y®) = 0 if there exists some r with ¢,(y%) > ¢p(y°;7) or raady(v°) =
{deR™: (d,r) < ddp.q(r) Vr}.

For the optimistic solution function the condition of Theorem 12 is never valid.
Thus,
Oraado(y’) ={d €R™: (r,d) < d@oyo(r) Vr
satisfying (/)o(yo) = ¢>o(3/0§ r)}

and
Oraatp(y’) = {d € R™: (r,d) < dgp o(r)Vr}
if there is no r such that ¢,(y°; ) < ¢, (y°).

Next want to give further descriptions for the set O,,4¢(y°) by using equa-
tion (5). To do this we will need the following notations:

TE°) = {reR": ¢(x°) =@ r)}
Iy’ = |J L")
rET(y°)

Then the following Lemma holds:
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Lemma 13. 1. I(yo) ={ze€ \IJD(yO) : g(l‘,yo) = ¢(y0)}
2. cl T(yo) = Uer(yD) Tx(yo)

3. 3rad¢(yo) = mxej(yﬂ){d €eR™: (d,r) < Vyg(z, yO)r vr e Tx(yo)}

Proof. 1. Let « € I(y°). Then there exists some r € T (y") with z € I, (y°).

Because of the definitions of I.(y°) and T (y°) it holds ¢(y°) = ¢(y°;7) =
g(z,y") and x € ¥p (y¥), ie. x € {x € Up(y®) : g(z,y°) = (v}
Let % € Wp(y?) with g(2°,y°) = ¢(3°). Let r = VF(2%)T — y°. Since
VE(z%)T € int R(z°) and y° € R(z°) it holds AVF (29T + (1 — A\)y° €
int R(z%) VA € (0,1), i.e. y° + Ar € int R(2°) VA € (0,1). Consequently,
¢y + Ar) = g(2°,y° + Ar) VA € (0,1). But this means z° € I, (y°) and
¢y r) = g(2°,9°) = ¢(y°), i.e. » € T(y°) and thus 2 € I(y%).

2. Let # € ¢l T(y°). Then there exists some sequence {rf}2 . C T (y°)
with limgeor® = 7. Since I(y°) C ¥p(y°) and card ¥p(y°) <
there exists w.l.o.g. some = € I(y°) with = € Lx(y°) Vk, ie. 7% €

e

T (y°) Vk. Then from T} (y") being closed it follows that # € T, (y%), i.e.
7 € Urergye) Te (v)-

Let 7 € UxEI(yU)Tx(yO)' Then there exists some = € I(y°) with 7 €
T, (y"). Since T, (y°) C cl int T}, (y") there exists some sequence {r*}2, C
int 7 (y°) with lim . 7® = 7. Thus, for all k it holds y° +¢r* € int R(z)
for all t > 0 being sufficiently small. This means =z € I« (y°) and 7* €
T (y°) for all k. Consequently, # € cl T(y°).

~—

3. Let d € ﬂxe[(y”){d e R": (d,ry < Vyg(z,y°)r Vr € T;(y°)}. Then for
all @ € I(y°) it holds {d, 7y < Vyg(z,y°)r = déyo(r) Vr € Ty(y°). Thus,
<d’ 7°> S quyD(T) vr € UxEI(yU) Tx (yO) 2 T(yo)a ie. d S 87‘ad¢(y0)'

Let d € O0rqa¢p(y°). Now consider some arbitrary = € I(y") and some
r € Tp(y"). Then there exist some sequence {r¥}22  C int T;(y°) and
limy o0 7 = 7. Since intT,(y°) C T(y°) and d € 9,aap(y°) it follows
{(d, 7%y < dgyo(r*) = Vyg(z,y°)r* Vk and thus (d,r) < Vyg(z,y°)r. Con-
sequently, d € ﬂxej(yo){d eR™: (d,r) < Vyg(x,y°)rVr e T (y°)}.

O
Lemma 14. For all points y° € R™ and ¥ € ¥p(y°) the set
Nz(y?) :=cone{(x —z) : = € ¥p(y")}

is the normal cone of the contingent cone Tz(y°). Further it holds

Oraad(¥’) = [ (No(¥’)+ Vyg(e,y")7).

v€l(y®)
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Proof. We know from Lemma 5 that the contingent cone Ty (y°) is equal to
To(°)={reR™: (x—2)"r<0 VecUp®)}

Obviously it is the normal cone of the polyhedral cone Nz (y%). Since Nz(y°) is
convex and closed the normal cone of T;(y°) is Nz(y°) again.

Let d € Orqa¢(y°). Because of Lemma 13 for all € I(y") it holds
(d, 7y < ddyo(r) = Vyg(x, yo)r Vr € Tx(yo).

Consequently, d—V,g(z,y°) T lies in the normal cone of T; (y°) for all z € I(y°),
ie. d—Vyg(z,y°)7T € N.(y°) for all z € I(y"). But this means

d € Ny (y°) 4+ Vyg(z,y") T for all x € I(y°).

Thus, dread(y°) C ﬂxej(yu)(Nx(yo) + Vyg(z,y°) 7). The reverse inclusion fol-
lows analogously. O

Example 7. Let y° = (0,0)7 and

= = (o)t (B)= (V)= (G0

1
fy) = SllelP =Ty
342
o(ey) = (= 2+ (= w2)”
Then it holds
R')={y: 1 > 0,52 >0}, g(z' ) =2y — 20
R(z?)={y: 91 > 0,52 <0}, g(x°,y) = 2y1 — 2yo + 4
R(@®)={y: 91 < 0,52 >0}, g(«®,y) = y1 — 22 +4
R(lA):{y Y1 SoayZSO}a 9(354,3/):3/1—23/2
Consequently, for the optimistic solution function it holds ¢,(y°) = 0 and
I(y°) = {zt,2*}. Further, since Nyi(y?) = R(z%), Npa(y°) = R(z!) and
vyg($1’y0) =(2,-2), vyg(lAayO) = (1,=2) it holds
Oraad(¥’) = (Nor(y") + Vyg(a',y")T) N (Nea (y”) + Vyg (2, y")7)
= {deR?: d; <2, dy<=2}n{d€R?: dy > 1, dy > -2}

= [1,2]x {-2}.

Now we derive optimality criteria in connection with the radial subdifferential.

Assume some point y° € locmin{¢(y) : y € Y} is given. Then we know from
Theorem 9 that for all » € Ty (y%), [|r|| = 1 it holds ¢(y°;r) > #(y°) and
dgyo(r) > 0if ¢(y°;7) = ¢(y°). Consequently,
0< Vyg(z,y°)r Ve e I(y?) VreTe(y?) N Ty(y°)
and thus 0 < Vyg(z,y")r Vee I(y°’) VreTe(y°)NnTy(y").
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This means that —V,g(z,y°)" lies in the normal cone of T (y°) N Ty (y°) for
all z € I(y°). Let I(y%) == {=z € I(y°) : i Ty (y°) Nri T.(y°) # B}. Since
both cones are convex and closed the normal cone of T} (y") N Ty (y°) is equal
to Ny (y°) + Np(y°) for # € I(y") where Ny (y°) denotes the normal cone of
Ty (y°). Consequently,

—Vyg(x, )T € Ny(¥))+Na(v®) Veel(y”)

0 € Ny(W)+(No(v) 4+ Vyg(z,0")") Ve e I(y°)
0 € [ M)+ (N °) + Vygla, "))
cel(y®)

If it holds y° € int Y we have Ny (y°) = {0}, Ty (¥°) = R™ and I(y°) = I(3").
Thus, it holds the following theorem:

Theorem 15. Let ¢ denote the optimistic or pessimistic solution function for
the bilevel programming problem (1). If y° € loemin{¢(y) : y € Y} then

0e () [ ")+ (Ve l") + Vygle )]
vel(y®)
If additionally y° € int Y then 0 € Oraad(y).

Example 8. Let Sp denote the vertex set of a reqular hexagon with radius 2,
r.e. let Sp be equal to

= (e (= ()= (= = ()

Further let .

2

vty ==z
glz,y) = 21 — Y2 frx ==
1 else .

Consider the optimistic solution function ¢,(y) and the set Y = {y € R?: y; >
0,92 <y, < 1} Then y° = (0,0)7 is an optimistic optimal solution. It
holds I(y") = {x*, 2%} = I(y°). Further,

No(y®) = {y:ye < —V3yi,y2 > Vauil,
Nea(y") = {y:ys <—V3yi,y2 <0}
and Ny(y") = {y:y1+y<0,; <0}

Then it holds

0 € Ny(y")+Nor(y') + Vyg(e',v")"
={yeR?: ;i <1,y <4-(yn —1)V3},
0 € Ny(¥")+ No2(y°) + Vyg(a?,y")"
={yeR?: yi+y <1, 4o < —1— (11 — 2)V3}.
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Thus, the conditions of Theorem 15 are satisfied. Further,
Oraado(y’) ={d €R?: dy < =1, dy > 4+ (dy — 1)V/3}.

In optimization one has very often necessary optimality criteria of the form
0 € dg(y°)+ Ny (y°). Such kind of necessary optimality criterium is usually not
fulfilled for our problem. For instance in this example it holds 0 ¢ Oraado(y°) +
Ny (4°).

Theorem 16. Let ¢ denote the optimistic or pessimistic solution function for
the bilevel programming problem (1). If 0 € int (Oraad(y®) + Ny (y°)) then ¢
achieves at y° a local minimum.

Proof. Clearly 0,4a¢(y°) # 0. Thus it holds ¢(y°) < ¢(y%;r) Vr € R™ |Ir]| = 1

because of Theorem 12.

Let 0 € int (0raad(y®) + Ny (y°)). Then there exists some v > 0 such that
for all » € R™ ||7|| = 1 it holds vr € (Oraad(y°) + Ny (y°)). Now fix some
P e T )NTy(y°), ||7]] = 1. Then there exists some s € Ny (y°) with (y7—s) €
Oraa®(y"). Using the definition of d,,4¢(y") we obtain
Y, )y — (s5,7) = (v — 5,7) < dpyo(r) Vre T(y").
Because of # € Ty (") and s € Ny (y") it holds {7, s) < 0 and thus
0 <y <AlIFll* = (s, 7) < doyo (7).

Thus, since # was arbitrary the sufficient optimality criterium is satisfied (The-
orem 11), i.e.
0<y<doy(r) VreT(y")NTy ().

Hence, y° € locmin{¢(y) : y € Y}. O
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