
Optimality criteria for bilevel programmingproblems using the radial subdi�erentialD. Fangh�anel�October 28, 2005AbstractThe discrete bilevel programming problems considered in this paperhave discrete parametric lower level problems with linear constraints anda strongly convex objective function. Using both the optimistic and thepessimistic approach this problem is reduced to the minimization of aux-iliary nondi�erentiable and generally discontinuous functions. To developnecessary and su�cient optimality conditions for the bilevel problem theradial-directional derivative and the radial subdi�erential of these auxil-iary functions are used.Key words: Bilevel programming, necessary and su�cient optimality con-ditions, discrete parametric optimization, minimization of discontinuous func-tions, radial-directional derivative.1 IntroductionBilevel programming problems are hierarchical optimization problems wherethe constraints of one problem (the so-called upper level problem) are de�nedin part by a second parametric optimization problem (the lower level problem)[1, 2]. These problems occur in a large variety of practical situations [3]. Manyapproaches are known to attack continuous bilevel programming problems. But,the number of references for bilevel programming problems with discrete vari-ables is rather limited. Focus in the paper [15] is on existence of optimal so-lutions for problems which have discrete variables in the upper resp. the lowerlevel problems. Solution algorithms have been developed in [5, 8, 9, 16]. Theposition of constraints in the upper resp. in the lower level problems is critical.The implications of and gains obtained from shifting a 0-1 variable from thelower to the upper level problems have been investigated in [4].�Technical University Bergakademie Freiberg, Freiberg, Germany1



Focus in this paper is on optimality conditions for bilevel programmingproblemswith discrete variables in the lower level problem. Veri�cation of optimalityconditions for continuous linear problems is NP{hard [14] even if the optimalsolution of the lower level problem is unique for all upper level variable values.If the lower level problems may have nonunique optimal solutions, useful con-cepts are the optimistic and the pessimistic approaches. Both concepts lead tothe minimization of a discontinuous auxiliary function '. In the case of a linearbilevel programming problem, this function is a generalized PC1{function andthe formulation of optimality conditions can be based on the radial-directionalderivative [2, 6].In this paper a similar approach is investigated for discrete bilevel programmingproblems.The outline of the paper is as follows. In Section 2 the investigated bilevelprogram is formulated and some introductory examples are given. Structuralproperties of the solution set mapping of the lower level problem are investigatedin Section 3. In Sections 4 and 5 focus is on properties of the auxiliary function'. Optimality conditions using the radial-directional derivative of the function' are developed in Section 6, and in Section 7 the same is done by the help ofthe radial subdi�erential of the function '.Throughout this paper the gradient of a function is the row vector of the partialderivatives. Further we will use the abreviation fzkg for a sequence fzkg1k=1 ifthis will not cause any confusion.2 A bilevel problem with discrete lower levelIn this paper we consider the following bilevel programming problem8<: minfg(x; y) : y 2 Y; x 2 	D(y)g	D(y) = Argminff(x; y) : x 2 SDg (1)with the following requirements:1. Y � Rn is convex, closed and intY 6= ;.2. f(x; y) = F (x) � y>x with F : Rn! R being di�erentiable and stronglyconvex [10] with modulus � > 0, i.e. for all x; x0 2 Rn it holdsF (x) � F (x0) +rF (x0)(x � x0) + �kx � x0k2:3. g(x; y) is continuously di�erentiable with respect to y.2



4. The set SD � Rn is required to be nonempty and discrete, i.e. there existssome ! > 0 with kx� x0k � ! for all x; x0 2 SD , x 6= x0.SD denotes the set of all feasible solutions of the lower level problem.Thus, the problem under consideration is continuous in the upper level anddiscrete with some special structure in the lower level.In general the solution of the lower level is not unique. This causes some uncer-tainty in the de�nition of the upper level objective function [2]. Thus, insteadof g(x; y), we will investigate the following functions�o(y) = minx2	D (y) g(x; y); (2)�p(y) = maxx2	D (y) g(x; y): (3)The function �o(y) is called optimististic solution function and �p(y) pessimisticsolution function. While most of the papers on bilevel programming with pos-sible nonunique lower level solutions investigate (implicitly) the optimistic ap-proach (see e.g. [1] and the references therein), focus for instance in the paper[11] is on the pessimistic approach and both approaches have been compared in[12]. A local optimal solution of the optimististic/pessimistic solution functionis a local optimistic/pessimistic solution of (1).In this paper we investigate necessary and su�cient conditions under whichsome point y0 2 Y is a local optimistic/pessimistic solution of (1).We will use the notation �(y) if the statement holds for both �o(y) and �p(y).For our considerations the so-called regions of stability are very important. Theyare de�ned as follows.De�nition 1. Let x0 2 SD. Then the setR(x0) = fy 2 Rn : f(x0; y) � f(x; y) for all x 2 SDg= fy 2 Rn : x0 2 �D(y)gis called region of stability for the point x0.Thus the set R(x0) denotes the set of all parameters for which the point x0 isoptimal.To make the subject more clear consider the following example.Example 1. minfsin(xy) : y 2 [0; 5]; x 2 	D(y)g	D(y) = Argminx �12x2 � xy : 0 � x � 5; x 2Z�3



Since the upper level objective function is continuous on the regions of stabilitythe latter ones can be seen in �gure 1. Formally the regions of stability areR(0) = (�1; 0:5]; R(1) = [0:5; 1:5]; R(2) = [1:5; 2:5]; R(3) = [2:5; 3:5];R(4) = [3:5; 4:5] and R(5) = [4:5;1):Using the de�nitions of the optimistic and pessimistic solution functions at theintersection points of the regions of stability, we get�o(y) = 8>>>>>><>>>>>>: 0 y � 0:5sin(y) 0:5 < y < 1:5sin(2y) 1:5 � y � 2:5sin(3y) 2:5 < y � 3:5sin(4y) 3:5 < y � 4:5sin(5y) y > 4:5 �p(y) = 8>>>>>><>>>>>>: 0 y < 0:5sin(y) 0:5 � y � 1:5sin(2y) 1:5 < y < 2:5sin(3y) 2:5 � y < 3:5sin(4y) 3:5 � y < 4:5sin(5y) y � 4:5 :
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yFigure 1: solution function � for example 1As it can be seen in �gure 1 the local optimal solutions of �o arey 2 [0; 0:5]; y = 3�4 ; y = 3:5; y = 11�8 ; y = 3�2and y 2 [0; 0:5); y = 3�4 ; y = 11�8 ; y = 3�2are the local optimal solutions of �p.In Example 1 the optimistic and the pessimistic solution function are not contin-uous but rather selections of �nitely many continuously di�erentiable functions.4



3 Some remarks on the sets 	D(y) and R(x)In this section we want to derive some properties of the sets 	D(y) and R(x)which we will need later.Lemma 1. For each x0 2 SD the set R(x0) is a closed convex set with rF (x0)>in its interior.Proof. Let x0 2 SD. Then for all y 2 R(x0) it holds f(x0; y) � f(x; y) for allx 2 SD and therefore(x� x0)>y � F (x)� F (x0) 8x 2 SD:Thus, R(x0) corresponds to the intersection of (maybe in�nitely many) half-spaces. This implies that R(x0) is convex and closed.Now we want to show that rF (x0)> 2 intR(x0). Since F : Rn! R is stronglyconvex there exists some � > 0 with F (x) � F (x0)+rF (x0)(x�x0)+�kx�x0k2for all x 2 Rn.Consider y = rF (x0)>+�h with h 2 Rn, khk = 1 and � 2 [0; �!]. Then, for allx 2 SD, x 6= x0, the following sequence of inequalities is valid by kx� x0k � !for x 6= x0:F (x) � F (x0) +rF (x0)(x� x0) + �kx� x0k2= F (x0) + y>(x� x0) � �h>(x� x0) + �kx� x0k2� F (x0) + y>(x� x0) � �kx� x0k+ �kx� x0k2� F (x0) + y>(x� x0) + (�! � �)kx� x0k� F (x0) + y>(x� x0):Thus we obtain (rF (x0)>+�h) 2 R(x0) for all � 2 [0; �!], i.e. the assumptionholds.Lemma 2. 1. For each y 2 Rn the set 	D(y) has �nite cardinality.2. If y0 2 intR(x0) for some x0 2 SD , then 	D(y0) = fx0g.3. Let some point y0 2 Rn be given. Then there exists a positive real number� > 0 such that 	D(y) � 	D(y0) for all y 2 U�(y0) = fy : ky � y0k < �g.Proof. 1. If SD = ; the assumption holds obviously. Assume that SD 6= ;and take a point x0 2 SD . Let an arbitrary y 2 Rn be given. Then for allx 2 	D(y) it holds F (x)� y>x � F (x0) � y>x0implyingF (x0) +rF (x0)(x� x0) + �kx� x0k2 � F (x0) + y>(x� x0)5



for some � > 0 since F is strongly convex. Thus,�kx � x0k2 � (y> �rF (x0))(x � x0) � ky �rF (x0)>kkx� x0kkx� x0k � 1� ky �rF (x0)>k:Therefore 	D(y) has �nite cardinality.2. The inclusion y0 2 intR(x0) implies fx0g � 	D(y0) by de�nition. Toprove the opposite direction assume that there exists a point x 2 	D(y0),x 6= x0. Then,F (x)� y0>x = F (x0) � y0>x0F (x)� F (x0) = y0>(x� x0) > rF (x0)(x� x0)since F is strongly convex. Due to y0 2 intR(x0) there exists some � > 0such thaty := y0 + �(y0 �rF (x0)>) 2 R(x0). Now we obtainf(x0; y) = F (x0)� y>x0 = F (x)� y>x0 � y0>(x� x0)= f(x; y) + (y � y0)>(x� x0)= f(x; y) + �(y0> �rF (x0))(x� x0) > f(x; y)which is a contradiction to y 2 R(x0).3. Assume that the assertion does not hold. Then there exist sequencesfykg1k=1 with yk ! y0; k!1, andfxkg1k=1 with xk 2 	D(yk) but xk =2 	D(y0) for all k.Thus, for �xed x0 2 SD, it holdsF (xk) � yk>xk � F (x0)� yk>x0F (x0) +rF (x0)(xk � x0) + �kxk � x0k2 � F (x0) + yk>(xk � x0)kxk � x0k � kyk �rF (x0)>k� :This yields kxk � x0k � kyk � y0k�| {z }!0 +ky0 �rF (x0)>k� ;i.e. fxkg is bounded and has �nitely many elements. Therefore we canassume that all xk are equal, i.e. 9x 2 SD with x 2 	D(yk) 8k butx =2 	D(y0).That means yk 2 R(x) 8k but y0 =2 R(x). This is a contradiction toLemma 1. 6



4 Basic properties of �(y)In this section we want to show �rst that for each y0 2 Rn there exists some� > 0 such that in the neighborhood U�(y0) the optimistic/pessimistic solutionfunction is a selection of �nitely many continuously di�erentiable functions.Further, for this special � > 0 we will investigate the support setYx(y0) := fy 2 U�(y0) \R(x) : g(x; y) = �(y)gand its contingent coneTx(y0) := fr : 9fysg � Yx(y0) 9ftsg � R+ : ys ! y0; ts # 0; lims!1 ys � y0ts = rg:That means, Yx(y0) is the set of all y 2 U�(y0) for which both x 2 	D(y) andg(x; y) = �(y) hold for a �xed point x 2 SD. Properties of these sets are essentialfor the investigation of generalized PC1{functions (in short: GPC1{functions)in the paper [6] leading to optimality conditions for linear bilevel programmingproblems in [2]. The following two theorems show that the objective functions inthe two auxiliary problems (2) and (3) have many properties ofGPC1{functions,but they are not GPC1{functions as it is shown by Example 2 below.Theorem 3. For the function � and each y0 2 Rn it holds:1. There exists an open neighborhood U�(y0) of y0 and a �nite number ofpoints x 2 	D(y0) with�(y) 2 fg(x; y)gx2	D (y0) 8y 2 U�(y0):2. intYx(y0) = U�(y0) \ intR(x) and Yx(y0) � cl intYx(y0) for x; y0 2 Rn.3. Tx(y0) � cl intTx(y0) for y0 2 R(x).Proof. Let an arbitrary y0 2 Rn be given.1.) Because of Lemma 2, 	D(y0) has �nite cardinality and there exists some� > 0 with 	D(y0) � 	D(y) for all y 2 U�(y0). With �(y) 2 fg(x; y)gx2	D (y) itfollows �(y) 2 fg(x; y)gx2	D (y0) 8y 2 U�(y0):2.) Let �y 2 intYx(y0). Then there exists some � > 0 with U�(�y) � Yx(y0).Thus, �y 2 U�(y0) and U�(�y) � R(x), i.e. �y 2 U�(y0) \ intR(x).Let �y 2 U�(y0)\intR(x). Then there exists some � > 0 with U�(�y) � U�(y0) andU�(�y) � intR(x). From Lemma 2 it follows 	D(y) = fxg 8y 2 U�(�y). Thus,�(y) = g(x; y) 8y 2 U�(�y), i.e. y 2 Yx(y0) 8y 2 U�(�y). Therefore, �y 2 intYx(y0).This implies the �rst equation of part 2.Now let �y 2 Yx(y0). This means �y 2 R(x), �y 2 U�(y0) and �(�y) = g(x; �y). SinceR(x) is convex with nonempty interior (cf. Lemma1) there exists some sequence7



fykg 2 intR(x) with yk ! �y; k ! 1. W.l.o.g. we can further assume thatyk 2 U�(y0) 8k. Consequently, yk 2 intYx(y0) 8k and thus �y 2 cl intYx(y0).3.) Let an arbitrary r 2 Tx(y0) be given. Then there exist sequences fysg �Yx(y0) and ftsg � R+ with ys ! y0, ts # 0 and lims!1 ys�y0ts = r. We can assumew.l.o.g. that ts 2 (0; 1) 8s.Take any ~y 2 intYx(y0) and let ŷs := ts~y + (1� ts)y0 = y0 + ts(~y � y0). Then,lims!1 ŷs = y0 and ŷs�y0ts = ~y � y0 =: ~r 8s. Since R(x) is convex it followseasily that ŷs 2 intYx(y0) 8s and ~r 2 intTx(y0).Now consider zs� := �ys + (1� �)ŷs with � 2 (0; 1). Since R(x) is convex andŷs 2 intYx(y0) it follows zs� 2 intYx(y0) 8� 8s. Then it holds zs� ! y0 fors ! 1 and lims!1 zs��y0ts = �r + (1 � �)~r =: r� 2 Tx(y0) for all � 2 (0; 1).Moreover, r� ! r for �! 1.Now, from zs� 2 intYx(y0) it follows easily that zs� � y0 2 intTx(y0) and thuszs��y0ts 2 intTx(y0) 8s 8� 2 (0; 1).Hence, r� 2 cl intTx(y0) 8� 2 (0; 1). This together with r� ! r for � ! 1implies r 2 cl cl intTx(y0) = cl intTx(y0).Theorem 4. intTx1(y0) \ intTx2(y0) = ; for all x1; x2 2 	D(y0), x1 6= x2.Proof. Let r 2 Tx1 (y0) \ Tx2(y0) be arbitrary. Due to r 2 Tx1 (y0) there existssequences fysg � Yx1(y0), ys ! y0 and ftsg; ts # 0 with rs := ys�y0ts ! r.From ys 2 Yx1(y0) 8s it follows ys 2 R(x1) 8s, i.e. F (x1) � ys>x1 � F (x2) �ys>x2. Since x1; x2 2 	D(y0) it holds F (x1)� y0>x1 = F (x2)� y0>x2. Hence,ys>(x1 � x2) � F (x1)� F (x2) = y0>(x1 � x2)(ys � y0)>(x1 � x2) � 0 8srs>(x1 � x2) � 0 8s:With rs ! r this yields r>(x1 � x2) � 0:From r 2 Tx2(y0) it follows analogously (x1 � x2)>r � 0. Therefore it holds(x2 � x1)>r = 0 for all r 2 Tx1 (y0) \ Tx2 (y0):Assume that there exists some r 2 intTx1 (y0)\ intTx2 (y0). Then for all t 2 Rn,ktk = 1 there exists a real number � > 0 with r + �t 2 Tx1(y0) \ Tx2 (y0), i.e.(x2 � x1)>(r + �t) = 0�(x2 � x1)>t = 0(x2 � x1)>t = 0 8tand therefore x1 = x2. 8



Next we show that the function � is not a GPC1-function (cf. [2],[6]). ForGPC1-functions one requires additionally to the results in the Theorems 3 and4 that there exists a number � > 0 such that for all r 2 Tx1 (y0) \ Tx2(y0),krk = 1, x1 6= x2 some t0 = t(r) � � can be found with y0 + tr 2 Yx1 (y0) ory0 + tr 2 Yx2(y0) 8t 2 (0; t0). We will show that the functions � usually do nothave this property.Example 2. Consider the lower level problem in (1) with the feasible set SD =fx1 = (0; 0; 0)>; x2 = (1; 0; 0)>; x3 = (0; 1; 0)>g and f(x; y) = 12x>x � x>y.Then we obtain the following regions of stability:R(x1) = fy 2 R3 : y1 � 1=2; y2 � 1=2gR(x2) = fy 2 R3 : y1 � 1=2; y2 � y1gR(x3) = fy 2 R3 : y2 � 1=2; y2 � y1g:Let g(x; y) = (1=2;�1; 0)>x be the objective function of the upper level problem.Then, �o(y) = 8<: �1 y 2 R(x3)0 y 2 R(x1)nR(x3)1=2 else :Set r = (0; 0; 1)> and y0 = (1=2; 1=2; 0)>.Further, y1(�) := (1=2� �2; 1=2� �2; �+ �2)> 2 Yx1(y0) 8� > 0. Thenlim�!0 y1(�) = (1=2; 1=2; 0)> = y0;lim�!0 y1(�)� y0� = lim�!0(��;��; 1 + �)> = r; i.e. r 2 Tx1(y0):Analogously y2(�) := (1=2 + �2; 1=2; �+ �2)> 2 Yx2(y0) 8� > 0. Thenlim�!0y2(�) = (1=2; 1=2; 0)> = y0;lim�!0 y2(�) � y0� = lim�!0(�; 0; 1 + �)> = r; i.e. r 2 Tx2(y0):Therefore, r 2 Tx1 (y0) \ Tx2(y0), krk = 1, x1 6= x2 but �o(y0 + tr) = �1 <g(xi; y0 + tr); i = 1; 2; 8t > 0, i.e. y0 + tr =2 Yx1(y0) and y0 + tr =2 Yx2(y0) forall t > 0.Until now the description of the contingent cones has been more theoretical.Thus, for calculation we will need some better formula. In [10] many statementsare given concerning contingent cones to closed convex sets. But, in general thesets Yx(y0) are neither convex nor closed. Using Tx(y0) � clfr 2 Rn : 9t0 >0 with y0 + tr 2 Yx(y0) 8t 2 [0; t0]g we obtain the following Lemma:Lemma 5. Let �x 2 	D(y0). Then it holdsT�x(y0) = fr 2 Rn : 0 � (�x� x)>r 8x 2 	D(y0)g:9



Proof. Let r 2 T�x(y0). Then there exists some sequence frkg with limk!1 rk =r and y0 + trk 2 R(�x) for all k if t > 0 is su�ciently small. Hence,F (�x) � (y0 + trk)>�x � F (x)� (y0 + trk)>x 8x 2 SDF (�x)� y0>�x� trk>�x � F (x)� y0>x� trk>x 8x 2 SD :On the other hand it holds F (�x) � y0>�x = F (x) � y0>x 8x 2 	D(y0). Thus,rk>(�x � x) � 0 8k 8x 2 	D(y0). Consequently it holds r>(�x � x) � 0 8x 2	D(y0).Let 0 � (�x� x)>r 8x 2 	D(y0). Then it holdsF (�x)� (y0 + tr)>�x � F (x)� (y0 + tr)>x 8x 2 	D(y0) 8t � 0:Further there exists some � > 0 with 	D(y) � 	D(y0) 8y 2 U�(y0). Thus,for all t 2 (0; �=krk) it holds F (�x) � (y0 + tr)>�x � F (x) � (y0 + tr)>x 8x 2	D(y0 + tr), i.e. y0 + tr 2 R(�x) 8t 2 (0; �=krk). Now we will show thatr 2 T�x(y0). Let ~y = y0 + t0r for some �xed t0 2 (0; �=krk). Since R(�x) isconvex with nonempty interior there exists some sequence fysg 2 intR(�x) withys ! ~y, s!1 and ys 2 U�(y0). Then it holds (ys�y0)�+y0 2 intY�x(y0) 8� 2(0; 1) 8s. Consequently, ys � y0 2 T�x(y0) 8s. Since T�x(y0) is a closed cone and~y�y0 = lims!1 ys�y0 it follows ~y�y0 = t0r 2 T�x(y0), i.e. it holds r 2 T�x(y0).Consequently, the cones Tx(y0) are polyhedral cones with nonempty interior forall x 2 	D(y0).5 The radial-directional derivativeIn the following we formulate criteria for local optimality. For this we want touse the radial-directional derivative which was introduced by Recht [13]. Suchkind of considerations have even been done for GPC1-functions [2, 6]. But asshown, although our functions � have some properties in common with GPC1-functions they are in general not GPC1-functions.De�nition 2. Let U � Rn be an open set, y0 2 U and � : U ! R. We saythat � is radial-continuous at y0 in direction r 2 Rn, krk = 1, if there exists areal number �(y0; r) such thatlimt#0 �(y0 + tr) = �(y0; r):If the radial limit �(y0; r) exists for all r 2 Rn, krk = 1, � is called radial-continuous at y0.� is radial-directionally di�erentiable at y0, if there exists a positively homoge-neous function d�y0 : Rn! R such that for all r 2 Rn, krk = 1 and all t > 0 itholds �(y0 + tr)� �(y0; r) = td�y0(r) + o(y0; tr)10



with limt#0 o(y0; tr)=t = 0. Obviously, d�y0 is uniquely de�ned and is called theradial-directional derivative of � at y0.Theorem 6. Both the optimistic solution function �o and the pessimistic so-lution function �p are radial-continuous and radial-directionally di�erentiable.Proof. Consider y0 and some direction r 2 Rn, krk = 1. Further letIr(y0) := fx 2 	D(y0) : 8� > 0 9t 2 (0; �) with y0 + tr 2 Yx(y0)gand G(y0 + tr) := minx2Ir(y0) g(x; y0 + tr):Since 	D(y0) has �nite cardinality and the sets R(x) are convex it holds �o(y0+tr) = G(y0 + tr) for all su�ciently small real numbers t > 0. Since the func-tion G(�) is the minimum function of �nitely many continuously di�erentiablefunctions it is continuous and quasidi�erentiable (cf. [7]) and thus directionallydi�erentiable in t = 0. Therefore the limitslimt#0 G(y0 + tr) = G(y0) and limt#0 G(y0 + tr)�G(y0)t = G0(y0; r)exist. Moreover, since for all x 2 Ir(y0) it exists some sequence ftkg # 0 :y0 + tkr 2 Yx(y0) andlimt#0 G(y0 + tr) = limk!1G(y0 + tkr) = limk!1 g(x; y0 + tkr) = g(x; y0)we derive �o(y0; r) = limt#0 G(y0 + tr) = G(y0) = g(x; y0) 8x 2 Ir(y0): (4)Concerning the radial-directional derivative we obtaind�oy0(r) = limt#0 �o(y0 + tr)� �o(y0; r)t = limt#0 G(y0 + tr)�G(y0)t= ryg(x; y0)r 8x 2 Ir(y0) (5)since g is continuously di�erentiable with respect to y.For �p(y) we can prove the assertions analogously.Example 3. Let some feasible set SD = fx1 = (0; 0)>; x2 = (0; 1)>; x3 =(�1; 0)>g be given with functions f(x; y) = 12x>x� x>y andg(x; y) = x1 + x2 �� y31 sin 1y1 y1 > 00 y1 � 0 :Then the function g(x; y) is continuously di�erentiable with respect to y. Theregions of stability areR(x1) = fy 2 R2 : y1 � �0:5; y2 � 0:5gR(x2) = fy 2 R2 : y1 + y2 � 0; y2 � 0:5gR(x3) = fy 2 R2 : y1 � �0:5; y1 + y2 � 0g:11



Let y0 = (0; 12 )> and r = (1; 0)>. Then Ir(y0) = fx1; x2g for both the optimisticand the pessimistic solution function. Thus it holds�o(y0; r) = �p(y0; r) = g(x1; y0) = g(x2; y0) = 0and �oy0(r) = �py0 (r) = ryg(xi; y0)r; i = 1; 2:Further it holds �o(y0) = �p(y0) = 0. Remarkable in this example is the factthat for all � > 0 there exists some t 2 (0; �) with either �(y0+tr) 6= g(x1; y0+tr)or �(y0 + tr) 6= g(x2; y0 + tr).Now let �y = (�12 ; 12)> and r = (�1; 1)>. Then, for the optimistic solutionfunction it holds Ir(�y) = fx3g and �o(�y) = �o(�y; r) = �1and for the pessimistic solution function it holdsIr(�y) = fx2g and �p(�y) = �p(�y; r) = 0:Considering the direction r = (0; 1) we obtain Ir(�y) = fx2g and �(�y; r) = 0 forboth the optimistic and the pessimistic case, but �o(�y) = �1 6= 0 = �p(�y).Lemma 7. For all y0 2 Rn and for all r 2 Rn it holds:1. �o(y0) � �o(y0; r)2. �p(y0) � �p(y0; r)Proof. Assume there exists some y0 and some r with �o(y0) > �o(y0; r). Thenfrom Ir(y0) � 	D(y0) and the proof of Theorem 6 it follows that there existssome x 2 	D(y0) with �o(y0; r) = g(x; y0). Hence, �o(y0) > g(x; y0) for somex 2 	D(y0). This is a contradiction to the de�nition of �o.The proof for �p is similar.6 Optimality criteria based on theradial-directional derivativeLet locminf�(y) : y 2 Y g denote the set of all local minima of the function �(�)over the region Y � Rn.Theorem 8. It holdslocminf�p(y) : y 2 Rng � locminf�o(y) : y 2 Rng :12



Proof. Arguing by contradiction we assume that there is some y0 with y0 2locminf�p(y) : y 2 Rng but y0 =2 locminf�o(y) : y 2 Rng. Then there existssome sequence fykg � Rn with yk ! y0; k ! 1 and �o(yk) < �o(y0). Since	D(y0) has �nite cardinality and 	D(y0) � 	D(y) for all y in a neighborhood ofy0 we can assume w.l.o.g. that there exists some x 2 	D(y0) with x 2 	D(yk)and �o(yk) = g(x; yk) 8k, i.e. yk 2 Yx(y0) 8k. Since g(x; �) is di�erentiablewith respect to y and Yx(y0) � cl int Yx(y0) we can further assume that yk 2int Yx(y0) 8k. Thus it holds 	D(yk) = fxg 8k, i.e. �o(yk) = �p(yk) = g(x; yk)8k. Consequently, �p(yk) = �o(yk) < �o(y0) � �p(y0) 8k:This is a contradiction to y0 2 locminf�p(y) : y 2 Rng.Thus, if Y = Rn and we know that some point y0 is a local pessimistic solutionthen clearly y0 is a local optimistic solution, too.Further, for y 2 intY and y 2 locminf�p(y) : y 2 Y g it follows analoguouslythat y 2 locminf�o(y) : y 2 Y g. As the next example will show we indeed needthe condition y 2 intY .Example 4. Let SD = f(0; 1)>; (0;�1)>g;Y = fy 2 R2 : y2 � 0g;f(x; y) = 12x>x� x>y andg(x; y) = x2y21 + y2:Then it holds for y 2 Y�p(y) = y21 + y2 and �o(y) = � y21 + y2 if y2 > 0�y21 + y2 if y2 = 0 :Thus, y0 = (0; 0)> is a local pessimistic but not a local optimistic solution.Moreover, y0 is a global pessimistic solution. Some local optimistic solutiondoes not exist.For further considerations we will need the contingent cone of the set Y . Foreach given point y0 2 Y this cone is de�ned as follows:TY (y0) := fr 2 Rn : 9fysg � Y 9ftsg # 0 : ys ! y0; s!1;with lims!1 ys � y0ts = rg:The set TY (y0) is a convex, closed, nonempty cone [10]. Since Y is convex itholds TY (y0) = cl TY (y0)13



with TY (y0) = fr 2 Rn : 9t0 > 0 with y0 + tr 2 Y 8t 2 [0; t0]g:Theorem 9. Let y0 2 Rn and let � : Rn ! R denote the optimistic or thepessimistic solution function. Then y0 =2 locminf�(y) : y 2 Y g if there existssome r 2 TY (y0), krk = 1, such that one of the following conditions 1,2 issatis�ed:1. d�y0(r) < 0 and �(y0; r) = �(y0)2. �(y0; r) < �(y0)Proof. Let the vector r0 2 TY (y0) with kr0k = 1 satisfy condition 1. Thatmeans d�y0(r) = limt#0 t�1(�(y0+ tr0)��(y0; r0)) < 0. Then there exists somet0 2 (0; t0) such that �(y0 + tr0) < �(y0; r0) and y0 + tr0 2 Y 8t 2 (0; t0).Because of �(y0; r0) = �(y0) we have �(y0 + tr0) < �(y0) and y0 + tr0 2 Y forall t 2 (0; t0). Thus, y0 cannot be a local minimum of �.Now let the vector r0 2TY (y0) with kr0k = 1 satisfy condition 2. Then it holds�(y0)� �(y0; r0) = �(y0)� limt#0 �(y0 + tr0) > 0:Hence there exists some t0 2 (0; t0) such that y0+tr0 2 Y and �(y0) > �(y0+tr0)for all t 2 (0; t0). Thus, y0 cannot be a local minimum of �.Since d�y0(�) is not continuous it is indeed necessary to consider only the setTY (y0). The consideration of TY (y0) would not lead to correct results as wewill see in the next example.Example 5. Let SD = f(�1; 0)>; (1; 0)>g;Y = fy 2 R2 : (y1 � 1)2 + y22 � 1g;f(x; y) = 12x>x� x>y andg(x; y) = (x1 + 1)(y21 + y22) + (x1 � 1)y2:Then TY (y0) = fy 2 R2 : y1 � 0g and for r0 = (0; 1)> it holds �o(y0) =�o(y0; r0) = 0 and d�oy0(r0) = �2 < 0. Thus, condition 1 is satis�ed for �oand r0 but y0 = (0; 0)> is a global optimistic and pessimistic optimal solution.Specifying the conditions of Theorem 9 by using Lemma 7 we obtain the fol-lowing necessary optimality conditions:Let y0 2 locminf�p(y) : y 2 Y g. Then it holds�p(y0) = �p(y0; r) and d�py0(r) � 0 8r 2TY (y0):14



Let y0 2 locminf�o(y) : y 2 Y g. Then for all r 2TY (y0) it holds�o(y0) < �o(y0; r) or d�oy0(r) � 0:To prove the next theorem we will need the following lemma.Lemma 10. Assume it holds �o(y0) = g(x0; y0) for y0 2 Rn and x0 2 	D(y0).Then r 2 Tx0 (y0) implies �o(y0) = �o(y0; r):Proof. Since �o is radial-continuous there exists some ~x 2 	D(y0) and somesequence ftkg # 0 with ~x 2 	D(y0 + tkr), �o(y0 + tkr) = g(~x; y0 + tkr) and�o(y0; r) = limk!1 �o(y0 + tkr) = limk!1 g(~x; y0 + tkr) = g(~x; y0). Clearly itholds r 2 T~x(y0) \ Tx0 (y0). Then from the proof of Theorem 4 it follows thatr>(x0�~x) = 0. Further we know that ~x; x0 2 	D(y0) and thus F (x0)�x0>y0 =F (~x)� ~x>y0. Consequently, F (x0)� x0>(y0 + tkr) = F (~x) � ~x>(y0 + tkr) 8k,i.e. x0 2 	D(y0 + tkr) 8k. Thus we obtain �o(y0 + tkr) � g(x0; y0 + tkr) 8k,i.e.�o(y0; r) = limk!1�o(y0 + tkr) � limk!1g(x0; y0 + tkr) = g(x0; y0) = �o(y0):Now from Lemma 7 it follows the equality.Theorem 11. Assume that y0 2 Y is a point which satis�es one of the follow-ing two conditions:1. �(y0) < �(y0; r) 8r 2 TY (y0)2. �(y0) � �(y0; r) 8r 2 TY (y0) and d�y0(r) >  8r 2 TY (y0) : �(y0) =�(y0; r); krk = 1 with  = 0 in the optimistic case and  > 0 in the pessimisticcase.Then, � achieves a local minimum at y0.Proof. Suppose y0 2 Y satis�es one of the two conditions of the theorem.Arguing by contradiction we assume that there is a sequence fykgk�1 withyk ! y0; k ! 1 and �(yk) < �(y0) 8k. Since 	D(y0) � 	D(y) for all yin a neighborhood of y0 and 	D(y0) has �nite cardinality there exists somex0 2 	D(y0) such that Yx0 (y0) contains in�nitely many of the points yk, i.e.�(yk) = g(x0; yk). In the following we consider the sequence fykg\Yx0(y0) anddenote it by fykg again. Because of the continuity of g(x0; �) it followsg(x0; y0) = limk!1 g(x0; yk) = limk!1�(yk) � �(y0): (6)Let rk := yk�y0kyk�y0k , k = 1; : : : ;1. Then it holds rk 2 TY (y0)\Tx0(y0). Further,let r̂ an accumulation point of the sequence frkg. Clearly, r̂ 2 TY (y0)\Tx0 (y0).15



i) Let � denote the optimistic solution function. Then inequality (6) yieldsg(x0; y0) = �o(y0) since x0 2 	D(y0). Now from Lemma 10 it follows �o(y0) =�o(y0; rk) 8k and �o(y0) = �o(y0; r̂). Thus, the �rst condition does not hold.Then the second condition must be satis�ed. Since r̂ 2 Tx0 (y0) it holds y0+tr̂ 2R(x0) for all t 2 [0; �). Therefore, �o(y0 + tr̂) � g(x0; y0 + tr̂) for all t 2 [0; �).Hence, 0 < d�y0(r̂) = limt#0 �o(y0 + tr̂) � �o(y0; r̂)t= limt#0 �o(y0 + tr̂) � �o(y0)t� limt#0 g(x0; y0 + tr̂)� g(x0; y0)t= ryg(x0; y0)r̂:On the other hand it holds�o(y0) > �o(yk) = g(x0; y0) + kyk � y0kryg(x0; y0)rk + o(kyk � y0k)which together with g(x0; y0) = �o(y0) and limk!1 o(kyk�y0k)kyk�y0k = 0 leads toryg(x0; y0)r̂ � 0:But this is a contradiction, i.e. if y0 is no local optimistic solution none of thetwo conditions holds.ii) Let � denote the pessimistic solution function. Then from Lemma 7 it follows�p(y0) � �p(y0; r) for all r 2 TY (y0), i.e. the �rst condition is not satis�ed.Then the second condition must be satis�ed, i.e. it holds �p(y0) = �p(y0; r) andd�py0(r) >  > 0 for all r 2 TY (y0).Since �p is radial-continuous and radial di�erentiable for all k there exists somexk 2 Irk (y0). Because of Irk (y0) � 	D(y0) 8k and the �nite cardinality of	D(y0) we can assume w.l.o.g. that there exists some �x 2 	D(y0) with �x 2Irk (y0) 8k. Thus, for all k it holds�p(y0; rk) = �p(y0) = g(�x; y0) and 0 <  < d�py0(rk) = ryg(�x; y0)rk:Since r̂ is an accumulation point of frkg we obtain0 <  � ryg(�x; y0)r̂:Further we have rk 2 Tx0(y0)\T�x(y0). Thus, y0+ trk 2 R(x0)\R(�x) 8t 2 [0; �)which yields �p(yk) � g(�x; y0) 8k. Consequently, for all k it holds�p(y0) > �p(yk) = g(�x; yk) = g(�x; y0) + kyk � y0kryg(x0; y0)rk + o(kyk � y0k)16



which together with g(�x; y0) = �p(y0) and limk!1 o(kyk�y0k)kyk�y0k = 0 leads toryg(�x; y0)r̂ � 0:But this is a contradiction, i.e. if y0 is no local pessimistic solution none of thetwo conditions holds.Specifying the conditions of Theorem11 by using Lemma 7 we obtain the fol-lowing su�cient optimality conditions:Let �p(y0) = �p(y0; r) and d�py0(r) >  > 0 8r 2 TY (y0):Then y0 2 locminf�p(y) : y 2 Y g.Let �o(y0) < �o(y0; r) or d�oy0(r) > 0 8r 2 TY (y0):Then y0 2 locminf�o(y) : y 2 Y g:Example 6. Consider the bilevel programming problem8<: minfg(x; y) : y 2 R2; x 2 	D(y)g	D(y) = Argminf12kxk2 � y>x : x1 � 0; x2 � 0;�x1 + x2 � 1; x 2Z2gwith g(x; y) = x2(y2 � (y1 + 0:5)2� 0:5)+ (1� x2)(y1 � y2 + 1) + x1(3y1+ 1:5).We obtain SD = fx1 = �01�; x2 = �00�; x3 = ��10 �g withR(x1) = fy 2 R2 : y2 � 0:5; y1 + y2 � 0g;R(x2) = fy 2 R2 : y2 � 0:5; y1 � �0:5g andR(x3) = fy 2 R2 : y1 � �0:5; y1 + y2 � 0g:Then we have�p(y) =8<: y2 � (y1 + 0:5)2 � 0:5 if y2 > 0:5; y1 + y2 > 0y1 � y2 + 1 if y2 � 0:5; y1 � �0:5�2y1 � y2 � 0:5 if y1 + y2 � 0; y1 < �0:5 :Let y0 = (�1=2; 1=2)>. Then it holds �p(y0) = �p(y0; r) = 0 8r 2 R2 and0 < d�py0(r) =8<: r2 if r2 > 0; r1 + r2 > 0r1 � r2 if r2 � 0; r1 � 0�2r1 � r2 if r1 < 0; r1 + r2 � 0 :However y0 is no local minimum of �p since y(t) = (t� 0:5; 0:5(1+ t2))> ! y0for t # 0 but �p(y(t)) = �12 t2 < �p(y0) 8t > 0. This is no contradiction toTheorem 11 since there does not exist any  > 0 with  < d�py0(r) 8r.17



7 Optimality criteria using radial subdi�erentialDe�nition 3. Let U � Rn, y0 2 U and � : U ! R be radial-directionallydi�erentiable at y0. We say that d 2 Rn is a radial subgradient of � at y0 if�(y0) + hr; di � �(y0; r) + d�y0(r)is satis�ed for all r : �(y0) � �(y0; r).The set of all subgradients is called subdi�erential and denoted by @rad�(y0).The following necessary criterion for the existence of a radial subgradient isvalid:Theorem 12 ([6]). If there exists some r 2 Rn with �(y0; r) < �(y0) then itholds @rad�(y0) = ;.With this theorem we get the following equivalent de�nition of the radial sub-gradient:@rad�(y0) = fd 2 Rn : hr; di � d�y0(r) 8r satisfying �(y0) = �(y0; r)g;if there is no direction such that the radial limit in this direction is less thanthe function value.Using Lemma 7 we obtain that for the pessimistic solution function either@rad�p(y0) = ; if there exists some r with �p(y0) > �p(y0; r) or @rad�p(y0) =fd 2 Rn : hd; ri � d�py0(r) 8rg.For the optimistic solution function the condition of Theorem 12 is never valid.Thus, @rad�o(y0) = fd 2 Rn : hr; di � d�oy0(r) 8rsatisfying �o(y0) = �o(y0; r)gand @rad�p(y0) = fd 2 Rn : hr; di � d�py0(r) 8rgif there is no r such that �p(y0; r) < �p(y0).Next want to give further descriptions for the set @rad�(y0) by using equa-tion (5). To do this we will need the following notations:T (y0) := fr 2 Rn : �(y0) = �(y0; r)gI(y0) := [r2T (y0) Ir(y0)Then the following Lemma holds: 18



Lemma 13. 1. I(y0) = fx 2 	D(y0) : g(x; y0) = �(y0)g2. cl T (y0) = Sx2I(y0) Tx(y0)3. @rad�(y0) = Tx2I(y0)fd 2 Rn : hd; ri � ryg(x; y0)r 8r 2 Tx(y0)gProof. 1. Let x 2 I(y0). Then there exists some r 2 T (y0) with x 2 Ir(y0).Because of the de�nitions of Ir(y0) and T (y0) it holds �(y0) = �(y0; r) =g(x; y0) and x 2 	D(y0), i.e. x 2 fx 2 	D(y0) : g(x; y0) = �(y0)g.Let x0 2 	D(y0) with g(x0; y0) = �(y0). Let r = rF (x0)> � y0. SincerF (x0)> 2 int R(x0) and y0 2 R(x0) it holds �rF (x0)> + (1 � �)y0 2int R(x0) 8� 2 (0; 1), i.e. y0 + �r 2 int R(x0) 8� 2 (0; 1). Consequently,�(y0 + �r) = g(x0; y0 + �r) 8� 2 (0; 1). But this means x0 2 Ir(y0) and�(y0; r) = g(x0; y0) = �(y0), i.e. r 2 T (y0) and thus x0 2 I(y0).2. Let r̂ 2 cl T (y0). Then there exists some sequence frkg1k=1 � T (y0)with limk!1 rk = r̂. Since I(y0) � 	D(y0) and card 	D(y0) < 1there exists w.l.o.g. some x 2 I(y0) with x 2 Irk (y0) 8k, i.e. rk 2Tx(y0) 8k. Then from Tx(y0) being closed it follows that r̂ 2 Tx(y0), i.e.r̂ 2 Sx2I(y0) Tx(y0).Let r̂ 2 Sx2I(y0) Tx(y0). Then there exists some x 2 I(y0) with r̂ 2Tx(y0). Since Tx(y0) � cl int Tx(y0) there exists some sequence frkg1k=1 �int Tx(y0) with limk!1 rk = r̂. Thus, for all k it holds y0+trk 2 int R(x)for all t > 0 being su�ciently small. This means x 2 Irk (y0) and rk 2T (y0) for all k. Consequently, r̂ 2 cl T (y0).3. Let d 2 Tx2I(y0)fd 2 Rn : hd; ri � ryg(x; y0)r 8r 2 Tx(y0)g. Then forall x 2 I(y0) it holds hd; ri � ryg(x; y0)r = d�y0(r) 8r 2 Tx(y0). Thus,hd; ri � d�y0(r) 8r 2 Sx2I(y0) Tx(y0) � T (y0), i.e. d 2 @rad�(y0).Let d 2 @rad�(y0). Now consider some arbitrary x 2 I(y0) and somer 2 Tx(y0). Then there exist some sequence frkg1k=1 � int Tx(y0) andlimk!1 rk = r. Since intTx(y0) � T (y0) and d 2 @rad�(y0) it followshd; rki � d�y0(rk) = ryg(x; y0)rk 8k and thus hd; ri � ryg(x; y0)r. Con-sequently, d 2 Tx2I(y0)fd 2 Rn : hd; ri � ryg(x; y0)r 8r 2 Tx(y0)g.Lemma 14. For all points y0 2 Rn and �x 2 	D(y0) the setN�x(y0) := cone f(x� �x) : x 2 	D(y0)gis the normal cone of the contingent cone T�x(y0). Further it holds@rad�(y0) = \x2I(y0)(Nx(y0) +ryg(x; y0)>):19



Proof. We know from Lemma 5 that the contingent cone T�x(y0) is equal toT�x(y0) = fr 2 Rn : (x� �x)>r � 0 8x 2 	D(y0)g:Obviously it is the normal cone of the polyhedral cone N�x(y0). Since N�x(y0) isconvex and closed the normal cone of T�x(y0) is N�x(y0) again.Let d 2 @rad�(y0). Because of Lemma 13 for all x 2 I(y0) it holdshd; ri � d�y0(r) = ryg(x; y0)r 8r 2 Tx(y0):Consequently, d�ryg(x; y0)> lies in the normal cone of Tx(y0) for all x 2 I(y0),i.e. d�ryg(x; y0)> 2 Nx(y0) for all x 2 I(y0). But this meansd 2 Nx(y0) +ryg(x; y0)> for all x 2 I(y0):Thus, @rad�(y0) � Tx2I(y0)(Nx(y0) + ryg(x; y0)>). The reverse inclusion fol-lows analogously.Example 7. Let y0 = (0; 0)> andSD = fx1 = �11�; x2 = � 1�1�; x3 = ��11 �; x4 = ��1�1�gf(x; y) = 12kxk2 � x>yg(x; y) = (3 + x12 )y1 � 2y2 + (x1 � x2)2:Then it holdsR(x1) = fy : y1 � 0; y2 � 0g; g(x1; y) = 2y1 � 2y2R(x2) = fy : y1 � 0; y2 � 0g; g(x2; y) = 2y1 � 2y2 + 4R(x3) = fy : y1 � 0; y2 � 0g; g(x3; y) = y1 � 2y2 + 4R(x4) = fy : y1 � 0; y2 � 0g; g(x4; y) = y1 � 2y2:Consequently, for the optimistic solution function it holds �o(y0) = 0 andI(y0) = fx1; x4g. Further, since Nx1(y0) = R(x4); Nx4(y0) = R(x1) andryg(x1; y0) = (2;�2); ryg(x4; y0) = (1;�2) it holds@rad�(y0) = (Nx1 (y0) +ryg(x1; y0)>) \ (Nx4(y0) +ryg(x4; y0)>)= fd 2 R2 : d1 � 2; d2 � �2g \ fd 2 R2 : d1 � 1; d2 � �2g= [1; 2]� f�2g:Now we derive optimality criteria in connection with the radial subdi�erential.Assume some point y0 2 locminf�(y) : y 2 Y g is given. Then we know fromTheorem 9 that for all r 2 TY (y0); krk = 1 it holds �(y0; r) � �(y0) andd�y0(r) � 0 if �(y0; r) = �(y0). Consequently,0 � ryg(x; y0)r 8x 2 I(y0) 8r 2 Tx(y0) \TY (y0)and thus 0 � ryg(x; y0)r 8x 2 I(y0) 8r 2 Tx(y0) \ TY (y0):20



This means that �ryg(x; y0)> lies in the normal cone of Tx(y0) \ TY (y0) forall x 2 I(y0). Let �I(y0) := fx 2 I(y0) : ri TY (y0) \ ri Tx(y0) 6= ;g. Sinceboth cones are convex and closed the normal cone of Tx(y0) \ TY (y0) is equalto NY (y0) + Nx(y0) for x 2 �I(y0) where NY (y0) denotes the normal cone ofTY (y0). Consequently,�ryg(x; y0)> 2 NY (y0) +Nx(y0) 8x 2 �I(y0)0 2 NY (y0) + (Nx(y0) +ryg(x; y0)>) 8x 2 �I(y0)0 2 \x2�I(y0) �NY (y0) + (Nx(y0) +ryg(x; y0)>)� :If it holds y0 2 int Y we have NY (y0) = f0g, TY (y0) = Rn and I(y0) = �I(y0).Thus, it holds the following theorem:Theorem 15. Let � denote the optimistic or pessimistic solution function forthe bilevel programming problem (1). If y0 2 locminf�(y) : y 2 Y g then0 2 \x2�I(y0) �NY (y0) + (Nx(y0) +ryg(x; y0)>)� :If additionally y0 2 int Y then 0 2 @rad�(y0).Example 8. Let SD denote the vertex set of a regular hexagon with radius 2,i.e. let SD be equal tofx1 = �20�; x2 = � 1p3�; x3 = ��1p3�; x4 = ��20 �; x5 = � �1�p3�; x6 = � 1p3�g:Further let g(x; y) =8<: y1 + 4y2 if x = x12y1 � y2 if x = x21 else :Consider the optimistic solution function �o(y) and the set Y = fy 2 R2 : y2 �0; y2 � y1; y1 � 1g. Then y0 = (0; 0)> is an optimistic optimal solution. Itholds I(y0) = fx1; x2g = �I(y0). Further,Nx1 (y0) = fy : y2 � �p3y1; y2 � p3y1g;Nx2 (y0) = fy : y2 � �p3y1; y2 � 0gand NY (y0) = fy : y1 + y2 � 0; y1 � 0g:Then it holds0 2 NY (y0) +Nx1 (y0) +ryg(x1; y0)>= fy 2 R2 : y1 � 1; y2 � 4� (y1 � 1)p3g;0 2 NY (y0) +Nx2 (y0) +ryg(x2; y0)>= fy 2 R2 : y1 + y2 � 1; y2 � �1� (y1 � 2)p3g:21



Thus, the conditions of Theorem 15 are satis�ed. Further,@rad�o(y0) = fd 2 R2 : d2 � �1; d2 � 4 + (d1 � 1)p3g:In optimization one has very often necessary optimality criteria of the form0 2 @�(y0)+NY (y0). Such kind of necessary optimality criterium is usually notful�lled for our problem. For instance in this example it holds 0 =2 @rad�o(y0) +NY (y0).Theorem 16. Let � denote the optimistic or pessimistic solution function forthe bilevel programming problem (1). If 0 2 int (@rad�(y0) + NY (y0)) then �achieves at y0 a local minimum.Proof. Clearly @rad�(y0) 6= ;. Thus it holds �(y0) � �(y0; r) 8r 2 Rn; krk = 1because of Theorem 12.Let 0 2 int (@rad�(y0) + NY (y0)). Then there exists some  > 0 such thatfor all r 2 Rn, krk = 1 it holds r 2 (@rad�(y0) + NY (y0)). Now �x somer̂ 2 T (y0)\TY (y0), kr̂k = 1. Then there exists some s 2 NY (y0) with (r̂�s) 2@rad�(y0). Using the de�nition of @rad�(y0) we obtainhr̂; ri � hs; ri = hr̂ � s; ri � d�y0(r) 8r 2 T (y0):Because of r̂ 2 TY (y0) and s 2 NY (y0) it holds hr̂; si � 0 and thus0 <  � kr̂k2 � hs; r̂i � d�y0(r̂):Thus, since r̂ was arbitrary the su�cient optimality criterium is satis�ed (The-orem 11), i.e. 0 <  � d�y0(r) 8r 2 T (y0) \ TY (y0):Hence, y0 2 locminf�(y) : y 2 Y g.References[1] J. F. Bard, Practical Bilevel Optimization: Algorithms and Applications,Kluwer Academic Publishers, Dordrecht, 1998[2] S. Dempe, Foundations of Bilevel Programming, Kluver Academic Publish-ers, Dordrecht, 2002[3] S. Dempe, Annotated Bibliography on Bilevel Programming and Mathe-matical Programs with Equilibrium Constraints, Optimization, 2003, Vol.52, pp. 333-359[4] S. Dempe, V. Kalashnikov and Roger Z. R��os-Mercado, Discrete BilevelProgramming: Application to a Natural Gas Cash-Out Problem, to appearin European Journal of Operational Research22
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