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AbstractThis paper presents an MILP model for the permutation flowshop wherein the setup times are both separable 
from the job processing times and independent of a job’s position in the processing sequence. Two experiments were 
conducted to estimate the computer times necessary to solve problems with up to 9 machines and 15 jobs, and to then 
compare these solution time requirements to those required to solve the same sets of problems solved as regular (NSIST) 
flowshop problems. The resultant data were then used to assess the impact on two optimal sequence performance measures, 
makespan and mean flowtime when setup times were separated from their jobs and allowed to begin as soon as the machine 
was free from the preceding job. This impact of separated setup times was found to increase with increasing numbers of 
machines, but to decrease slightly with increasing numbers of jobs for a given number of machines. Lastly, the data were 
used to analyze the impact on mean flowtime when makespan is minimized, and the impact on makespan when mean 
flowtime is minimized. 
KeywordsInteger programming, Flowshop, Setup times, Sequence-independent setup times, Makespan, Mean flow time 
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1. INTRODUCTION 

The purposes of this paper are threefold: (1) to present 
and investigate a new MILP (mixed-integer linear 
programming) model for the M × N permutation flowshop 
with separable, sequence-independent setup times (SSIST); 
(2) to use this model to investigate the impact of SSIST on 
competing flowshop system performance measures 
(makespan and mean flow time); and (3) to use this model 
to investigate the tradeoffs between the competing 
performance measures as first one, then the other is 
optimized. First, to set the stage for this new model, the 
flowshop problem environment is described in some detail. 

 
1.1 The classical flowshop problem 

A flowshop consists of two major elements: (1) a set of 
N jobs; and (2) a series of M machines over which each job 
is to be processed in the same technological ordering of 
machines. As stated by Gupta (1972), this problem may be 
summarized as: 

Given a set of  N jobs to be processed on a series of  M machines, 
find the ordering or sequencing of  jobs that will minimize a well 
defined and desirable measure of  production cost. 

In this paper we further restrict the sequence to be 
permutation; that is, the jobs are processed on each 
machine in the exact same ordering. In his seminal paper 
on flowshop scheduling, Johnson (1954) presented many 
of the basic assumptions of this classical flowshop 
sequencing problem. A recent available source of all of 

these assumptions, divided into groups concerning the jobs 
(J1-J8), concerning the machines (M1-M5), and concerning 
operating policies (P1-P8), is Gupta and Stafford (2006). 

Graves (1981) and others have shown that, except for a 
few special cases, such as Johnson’s work with the 
two-machine regular flowshop and a few three-machine 
scenarios, all variants of the flowshop scheduling problem 
are computationally NP-complete or worse in complexity. 
Thus much of the research, to date, has concentrated on 
heuristic techniques for finding “good” or near-optimal 
solutions to many of these variants of the flowshop 
problem. At the same time, a variety of optimizing 
techniques has been successfully developed over the past 
forty years. These have included (with representational 
citations) complete or implicit enumeration (Aggarwal and 
Stafford, 1975), mathematical programming (Wagner, 1959; 
Stafford, 1988; Stafford et al., 2005), branch and bound 
(Ignall and Schrage, 1965; Lageweg, 1978) and 
combinatorial search (Baker, 1975; Gupta, 1975). This 
paper utilizes an MILP model, which combines the 
features of mathematical programming and branch and 
bound, to optimize the SSIST flowshop problem model 
described below. 

 
1.2 Job setup time considerations 

In their recent survey paper involving setup time 
considerations, Allahverdi et al. (1999) state: “The majority 
of scheduling research assumes setup as negligible or part 
of the processing time....” This assumption, labeled J6 by 
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Gupta and Stafford, was one of the main elements of 
Johnson’s description of the classical flowshop in 1954, 
and it carried through much of the flowshop sequencing 
literature up to the present. But for the past decade or so, 
more and more papers have been concerned with job setup 
time as an important element to consider. The impetus of 
this current paper is due, in part, to a recent spate of 
papers involving separable setup times by Aldowaisan and 
Allahverdi (1998), Allahverdi (2000), and Aldowaisan 
(2001). 

Two aspects in considering job setup times, (1) the 
separability of setup times from the job processing times, 
and (2) the independence of a given job’s setup time from 
the job immediately preceding that job in the processing 
sequence, are both major determinants of the scope of this 
paper.  

 
1.2.1 Separability of  setup times 

Starting with Johnson (1954), most early flowshop 
sequencing researchers assumed that setup times were 
independent of a job’s sequence position, and hence they 
could be included in the processing times. This inclusion 
effectively was an implicit assumption that setup times 
were not separable. Yoshida and Hitomi (1979) extended 
Johnson’s work to two-machine flowshops wherein setup 
times were separable from processing times. As pointed 
out by these authors, realistic problems involve the 
situation wherein the setup for a job on a succeeding 
machine can be done before that job’s completion on the 
preceding machine. Much of the subsequent research 
involving separable setup times has involved two- or 
three-machine flowshop problems. 

The following example illustrates the impact of 
separable setup times on the scheduling performance 
measures makespan and mean flow time (see section 1.4, 
below, for a complete explanation of these measures). 
Assume there are two jobs, A and B, to be processed on a 
two-machine flowshop. The times (setup, processing) for 
job A on machines 1 and 2 are (1, 6) and (3, 5) respectively; 
for job B, (4, 6) and (3, 6). This A-B processing sequence is 
Gantt-charted in Figure 1 for both the non-separable and 

separable setup time cases. The makespan savings is 3 in 
the separable case (23 versus 26), and the mean completion 
time savings is 3 (17.5 versus 20.5). Analysis of this savings 
is an important aspect of the evaluation of the new MILP 
models presented later in this paper. 

 
1.2.2 Independence of  setup times 

The great majority of flowshop scheduling research has 
included assumption J5 wherein the magnitude of each 
setup time is independent of the job’s position in the 
sequence. That is, job i’s setup time on machine r is a 
constant regardless of the assigned position for job i in the 
processing sequence. When this setup time is not a 
constant, but rather varies depending on job i’s position in 
the job sequence, assumption J5 is modified, the problem 
becomes considerably more complex, and it is known as 
the SDST (sequence-dependent setup times) problem 
variant. Corwin and Esogbue (1974) were among the first 
to describe the SDST flowshop problem, which has 
proven amenable to MILP modeling as discussed below. 
Allahverdi et al. (1999) describe several real-life examples 
for the SDST flowshop variant. 

 
1.2.3 A taxonomy of  MILP flowshop models 

Table 1 links these two aspects of setup time into a 
two-by-two taxonomy of MILP flowshop models. Each of 
the four cells of this table (NSI, SSI, NSD, SSD) contains 
two families of flowshop models, one each at the limits of 
the machine buffer sizes for the production system. Our 
acronyms for these models are of the form alpha/beta. The 
alpha portion consists of two parts: (1) an initial letter (S = 
separable, N = not separable) indicating the separability of 
the setup times from the job processing times; and (2) four 
additional letters (SIST = sequence-independent, SDST = 
sequence-dependent) indicating whether or not the values 
of these setup times are independent of the preceding job 
in the processing sequence. The beta portion of these 
acronyms is discussed below. (SSIST is equivalent to SIJST, 
and SSDST to SDJST in Chen et al. (1998).)

 
Figure 1. Separable versus non-separable setup times. 
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1.3 Interstage buffer considerations 

Assumption P6 for the classical flowshop problem 
states: 

Each machine is provided with adequate waiting space for allowing 
jobs to wait before starting their processing. (Gupta and Stafford, 
2006) 

This assumption of infinite-sized or N-sized queues or 
buffers at each machine in the processing system has been 
the predominant buffer assumption throughout the 
flowshop literature from 1954 to the present. At the same 
time, there has been an increasing number of papers 
examining flowshop problems with finite capacity queues 
and with no queues.  

The extreme case is the “no wait” flowshop, also called 
the NIQ (no intermediate queues) flowshop (Wismer, 
1972). In this variant, once a job begins its processing on 
machine 1, it must be processed without any delays on 
each of the M machines in the system. There are no 
buffers (except before machine 1) and a job may not sit 

idle on any machine, after it has finished processing on that 
machine, waiting for the job ahead of it in the sequence to 
finish processing on the next machine in the system. In 
their survey of “no wait” and “blocking” flowshop studies, 
Hall and Sriskandarajah (1996) identify a number of such 
flowshops occurring in industry because of process and/or 
product requirements. 

The next case is to have no queues, but to allow a job to 
remain on the machine when it has completed its 
processing there if the predecessor job in the sequence is 
still being processed on the next downstream machine in 
the production system. This is called the “blocking” 
flowshop; the job of interest is blocked from advancing to 
the next machine by its sequence predecessor, and it may 
also be blocking its sequence successor from advancing 
upon completion of processing on an earlier machine. 
According to Table I in Hall and Sriskandarajah, studies of 
“blocking” flowshops have been limited to two-machine 
systems. 

 
 

Table 1. Setup time taxonomy of  MILP flowshop models

Setup Times  Sequence Independent  Sequence Dependent 

Not Separable  NSIST/Rega {Classicalb}  NSDST/Reg 

   (F3/ /CMAX)d   
       Wagner (1959)c 

  none 

  
  

  (FM/ /CMAX, MFT) 
       Stafford (1988) 
       Stafford and Tseng (2002) 
       Stafford et al (2005) 

   

   NSIST/NIQ {NIQ}  NSDST/NIQ 

    (FM/nwt/CMAX, MFT)   
       Stafford (1988) 
       Stafford and Tseng (2002) 

  none 

Separable  SSIST/Reg  SSDST/Reg {SDST} 

    (FM/Stsi/CMAX, MFT)     
       This Paper 

  (FM/Stsd/CMAX)  
       Srikar and Ghost (1986) 
       Rios-Mercado and Bard (1998) 

       (FM/Stsd/CMAX, MFT)   
       Tseng and Stafford (2001) 
       Stafford and Tseng (1990,2002) 

   SSIST/NIQ  SSDST/NIQ {SDST/NIQ} 

    (FM/nwt, Stsi/CMAX, MFT)    
       Future Study 

  (FM/nwt,Stsd/CMAX, MFT)   
       Stafford and Tseng (1990, 2002) 

aModel acronym as described in this paper. 
bModel synonym used in the literature. 
cAuthors and references. 
dLawler et al. (1993) three-field notation (shop type/shop conditions including setup information/performance criteria) as described by 
Allahverdi et al. (1999); FM = flowshop with M machines; CMAX = Makespan; MFT = mean flowtime; nwt = no wait; Stsi = sequence 
independent setup time; Stsd = sequence dependent setup time 
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The third case involves flowshops with machine buffers 
of finite capacity. This problem was described as early as 
1980 by Papadimitriou and Kanellakis (1980). Norman 
(1999) tested several heuristic procedures for solving this 
problem under a variety of assumptions about both the 
size of the buffers and the magnitude of the 
sequence-dependent setup times relative to job processing 
times. This case covers all models (except blocking) from 
the NIQ model (no buffers) to the regular flowshop 
wherein queue sizes are limited only by the number of jobs 
in the job set.  

The second or “beta” portion of our notation (see 
Figure 1) may now be understood: Reg = regular flowshop; 
FB = finite buffer flowshop; ZB = “zero buffer” or 
“blocking” flowshop; and NIQ = flowshop with no 
intermediate queues, the “no wait” flowshop. This paper 
presents an MILP model for the first case: REG = regular 
flowshop. The NIQ, finite buffers and blocking models are 
left for development in future investigations. The 
development of the latter two models will result in an 
expansion of Table 1. 

 
1.4 Sequence performance measures 

Makespan is defined as the span of time required to 
“make” (process) all N jobs completely on the set of M 
machines. It is the time from when setup begins for the 
first job in the sequence on machine 1 to the time the last 
job in the sequence completes its processing on the last 
machine in the system. Makespan has been the 
predominant cost measure used in flowshop research, from 
Johnson (1954) to the present. It may be shown that 
minimizing makespan is equivalent to minimizing the sums 
of job processing times, machine idle times, and, where 
appropriate, separated setup times on machine M, the last 
machine in the system (Tseng and Stafford, 2001). For the 
NSIST/Reg (classical or regular) flowshop, Stafford (1988) 
showed that minimizing makespan is equivalent to 
minimizing machine idle time on the last machine. 

Conway et al. (1967) and later researchers presented 
arguments for mean job flow time, also called mean flow 
time or mean job completion time, as a more appropriate 
measure of cost than makespan for evaluating flowshop 
scheduling techniques. Flowshop problems with mean flow 
time as the performance measure are NP-hard or worse for 
M ≥  3 machines (Graves, 1981). Job flow time, also 
called job completion time, is the difference in time 
between when a job first enters the production system until 
it completes processing on the last machine in the system. 
Based on assumption J1 (all jobs being available at time 
zero), flow time becomes the time when a job completes 
processing on machine M, CMj. Mean flow time then is the 
average of all job flow times, Σ /MjC N ; but since N is a 
constant, minimizing MjCΣ is equivalent to minimizing 
mean flow time. This paper will use both makespan and 
mean job completion time as performance measures for all 
MILP models investigated. 

 

1.5 Integer programming models for the flowshop 
problem 

Table 1 lists the MILP literature relevant to the 
development of the MILP flowshop model described 
below. This new model will occupy the upper half of the 
currently empty lower left cell of this table. We conjecture 
that the flowshop problems represented by the currently 
empty upper right cell of Table 1 will be more 
appropriately modeled by a TSP (traveling salesman 
problem) technique than by MILP. Testing of this 
conjecture is left to a future study. 

Wagner (1959) described an all-integer linear 
programming model for the classical regular flowshop 
(NSIST) with M = 3 machines. Stafford (1983, 1988) 
extended Wagner’s model to the general M-machine case, 
converted it to an MILP model, added a set of constraints 
to insure that the first job in the sequence started on each 
machine in the production system at the earliest possible 
time, and developed five different performance measures, 
including makespan and mean flow time for this regular 
flowshop model. Stafford also modified his model to 
accommodate flowshops with the NIQ requirements 
(NSIST/NIQ). Kang and Markland (1988) used Stafford’s 
NSIST/NIQ model to test various heuristic procedures for 
solving the NIQ flowshop problem. Stafford and Tseng 
(1990) proposed alternative models for the NSIST/Reg 
and NSIST/NIQ flowshop problems. These new models 
were derived from the SDST flowshop work of Srikar and 
Ghosh (1986). Stafford and Tseng (2002) found that the 
assignment problem approach (Stafford, 1988) was 
computationally superior to the dichotomous constraints 
approach of Manne (1960) for both the NSIST Regular 
and NIQ flowshop problems. Further, this computational 
efficiency increased with increasing problem size in both N 
and M. 

Srikar and Ghosh (1986) presented a dichotomous 
constraints MILP model for the SDST (SDST/Reg) 
flowshop problem. Stafford and Tseng (1990) made some 
minor corrections to the Srikar-Ghosh model and 
demonstrated that the modified model was robust to 
violations of the triangular inequality assumptions of 
dependent setup times. They also proposed alternative 
models for the NSIST/Reg, NSIST/NIQ and SDST/NIQ 
flowshop problems based on their investigation of the 
Srikar-Ghosh model. Rios-Mercado and Bard (1998) 
proposed an alternative MILP model for the SDST/Reg 
flowshop problem, and then showed that the 
Stafford-Tseng modification of the original Srikar-Ghosh 
model dominated their model for both branch-and-bound 
and branch-and-cut versions of MILP solution techniques. 
Tseng and Stafford (2001) described two new models for 
the SDST/Reg flowshop problem, and Stafford and Tseng 
(2002) added a new model for the SDST/NIQ problem. 
Their work included comparisons of these new, 
assignment-problem based models with their earlier 
dichotomous constraint models. The new SDST/Reg 
models were shown to be computationally superior to the 
earlier models, for all problem sizes tested. For the 
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SDST/NIQ problem, the new models were computationally 
superior for problems with N ≥  8 jobs.  

In the forgoing paragraphs, we have set the stage for the 
presentation and analysis of a new MILP model for 
flowshops with separable, sequence-independent setup 
times (SSIST). This new model is presented in section 2 of 
this paper. In section 3, we use this new model to address a 
number of research questions related to the impact of 
allowing separable setup times, and related to the 
relationships between makespan and mean job flow time as 
system performance measures. In section 4, we provide a 
summary, conclusions drawn from this work, and a list of 
projects meriting future research efforts. 

 
2. MILP MODEL FOR THE SSIST FLOWSHOP 

PROBLEM 

In this section, we first present the new mixed-integer 
linear programming (MILP) model for the permutation 
flowshop wherein the job setup times are both separable 
from job processing times and independent of the job’s 
position in the processing sequence. We refer to this model 
as the SSIST flowshop model. We then present the 
WST/Reg model reported by Stafford and Tseng (2002) 
for the regular flowshop wherein setup times are assumed 
to be included with the job processing times. We refer to 
this model here as the NSIST flowshop model. 

 
2.1 Model notation 

The notational conventions used in this paper follow 
that of Stafford and Tseng (1990, 2002). The subscript 
symbols used are: i for jobs, (1 ≤  i ≤  N); j for sequence 
position, (1 ≤  j ≤  N); and r for machines, (1 ≤  r ≤  
M). The variables are defined as follows: 

 
Xrj idle time on machine r before the start of job in 

sequence position j 
Yrj idle time of job in sequence position j after it finishes 

processing on machine r 
Zij 1, if job i is assigned to sequence position j, 0 

otherwise 
CMj completion time of job is sequence position j on the 

last machine of the M-machine production line 
 

The CMj variables are used to formulate the objective 
functions. The Zij are binary integer variables. The others 
are real variables that take integer values when processing 
times are also given integer values. Hence both models 
described below are MILP models. 

There are two sets of parameters for the SSIST model, 
one each for job processing times and job setup times. The 
M × N matrix P ={Pri} represents the known or 
computable processing times of all jobs on all M machines, 
where Pri is the processing time for job i on machine r. 
Further, the M × N matrix S = {Sri} represents the setup 
times of all jobs on these same M machines, where Sri is 
the separable, sequence-independent setup time of job i on 
machine r. In the classical flowshop problem, called here 

the NSIST problem, it is assumed that setup times are 
sequence-independent, and that they can be added to the 
job processing times. Thus, for the NSIST model, T = P + 
S = {Tri}, where Tri is the total time (setup plus processing) 
required for job i on machiner. 

 
2.2 The SSIST model 

The MILP model for the SSIST regular flowshop was 
developed using the assignment problem approaches of  
Wagner (1959) and Stafford (1988). 

 
2.2.1 Constraint equation 

The equation for the four sets of  constraints of  the 
SSIST model are as follows: 

 

1

1
N

ij
j

Z
=

=∑    {i = 1, ..., N} (1) 

 

1

1
N

ij
i

Z
=

=∑    {j = 1, ..., N} (2) 

 

1,  ,  1 1,  ,  1
1 1

1,  1 ,  1

( ) (
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N N

ri ri r i i j r j ij r j
i i

r j r j rj

S P S Z P Z X

X Y Y

+ + + +
= =

+ + +

+ − − +

− + −

∑ ∑  

{r = 1, ..., M − 1; j =1, ..., N − 1} (3) 
 

1,  1 1 1,  1 1
1

( ) ( )  0
N

ri ri r i i r r r
i

S P S Z X X Y+ +
=

+ − + − + =∑  

{r = 1, ..., M − 1} (4) 

 
Eq. (1) and (2), which control the assignment of  jobs to 

positions in the job processing sequence, represent 2N 
constraints that are identical in form and purpose to the 
constraints of  the classical assignment problem. Only one 
of  the decision variables in each of  these 2N equation is 
nonzero at one time because all of  the Zij variables are 
binary integers. Eq. (1) insures that each job i is assigned to 
one, and only one position j in the sequence, while Eq. (2) 
insures that one, and only one job is assigned to each 
position in the sequence. 

The (M − 1) × (N − 1) constraints represented by Eq. (3) 
insure the following: (1) the job in position j in the 
sequence cannot begin to be processed on machine r + 1 
until it has completed its processing on machine r, and its 
setup on machine r + 1 has been completed; and (2) the 
setup for the job in position j + 1 in the sequence cannot 
be performed on machine r until the processing of  the job 
in position j in the sequence has been completed on this 
same machine. Stafford and Tseng (1990, 2002) referred to 
this type of  constraint set as JAML (job-adjacency-machine- 
linkage) constraints.  

The (M − 1) constraints represented by Eq. (4) control 
the start time of  the first job in the sequence on machines 
2 through M. The earliest starting time for this first job on 
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machine 1 is immediately after the first machine has been 
set up. The starting time of  this first job on subsequent 
machines, 2 through M, is determined by the maximum of  
(1) the completion time of  this job on the previous 
machine, r − 1; and (2) the setup time on the current 
machine r. If  the completion time on the previous machine 
occurs first, then this first job has idle time Yr-1, 1 before it 
can proceed on the current machine r. Otherwise, machine 
r has idle time Xr1 while awaiting the first job to be 
completed on the previous machine. The derivation of  Eq. 
(3) and (4) is provided in the Appendix of  this paper.  

In addition to the four sets of  constraints described 
above, the following set of  relationships is used to 
represent the completion time of  the jobs in each of  the N 
sequence positions on Machine M, the last machine in the 
production system. 

 

1 1 1

( )
j jN

Mj Mi Mi ip Mp
p i p

C P S Z X
= = =

= + +∑∑ ∑  

 
{j = 1, ..., N}                                 (5) 

 
Eq. (5) does not actually constrain the integer 

programming problem; rather, it is used as shown below to 
develop the objective functions for this model. 

 
2.2.2 Objective functions 

From Johnson (1954) onward, minimizing makespan has 
been the predominant performance measure optimized for 
the flowshop problem. Since all jobs are assumed to be 
available at time = 0, jobset makespan is the completion 
time of  the last job in the sequence on the last machine in 
the production system. That is: 

 
Makespan = FMAX = CMN                 (6) 
      

Again, since all jobs are available at time = 0, mean 
flowtime is the average completion time of  all N jobs on 
the last machine. This may be expressed as: 

 

Mean flowtime = FBAR =
1

/
N

Mj
j

C N
=

∑                (7) 

 
Recently, a number of  authors (Aldowaisan and 

Allahverdi, 1998) have reported flowshop studies that used 
total flowtime as the objective. Eq. (7) may be easily 
modified to represent total flowtime as follows: 

 

Total flow time = FTOT = 
1

N

Mj
j

C
=

∑                 (8) 

Stafford (1988) proposed three other possible objectives 
to minimize for the flowshop: (1) total job idle time, while 
the jobs wait for the next machine in the processing 
sequence to be ready to process them; (2) total overall 
machine idle time; and (3) within-sequence machine idle 
time. These are represented, respectively, by the following 

equations: 
           

Total job idle time=
1 1

N M

ri
i r

Y
= =

∑∑                     (9) 

 

Overall total machine Idle Time=
1 1

N M

ri
i r

X
= =

∑∑         (10) 

 

Within-Sequence Machine Idle Time=
2 1

N M

ri
i r

X
= =
∑∑      (11) 

 
The SSIST MILP model may be summarized as: 
 

Minimize: (6), (7), (8), (9), (10) or (11), subject to (1), (2), 
(3), (4), and (5).  

 
2.3 The NSIST model 

The WST/Reg model of  Stafford and Tseng (2002) was 
chosen to represent the regular permutation flowshop for 
investigating the impact of  the SSIST assumptions on 
various aspects of  the flowshop problem. This model was 
chosen because it was the impetus for developing the new 
SSIST model, and because it is quite similar to this SSIST 
model. The variables and parameters for this model are as 
defined above. For this paper, we call this model the 
NSIST flowshop model. 

The NSIST model also uses the classical assignment 
problem constraints, Eq. (1) and (2) above, to control the 
assignment of  jobs to positions in the job processing 
sequence. From above, Tri = Pri + Sri. The remaining sets 
of  constraints for the NSIST model are then as follows: 

 

,  1 1,  ,  1 1,  1 ,  1
1 1

 
N N

ri i j r i ij r j r j r j
i i

T Z T Z X X Y+ + + + + +
= =

− + − +∑ ∑  

 0rjY− =   {r = 1, ..., M − 1; j = 1, ..., N − 1}  (12) 
 

1 1,1 1
1

 0
N

ri i rl r r
i

T Z X X Y+
=

+ − + =∑   {r = 1, ..., M − 1} (13) 

 
Yr1 = 0  {r = 1, ..., M − 1}                  (14) 

 

1 1 1

j jN

Mj Mi ip Mp
p i p

C T Z X
= = =

= +∑∑ ∑   {j = 1, ..., N}       (15) 

 
Eq. (12) and (13) serve the same function as Eq. (3) and 

(4) respectively in the SSIST model. Eq. (14) is required to 
anchor the first job in the processing sequence to the zero 
time line of  the Gantt chart (see Stafford, 1988). Eq. (15) is 
the NSIST equivalent to Eq. (5) of  the SSIST model. The 
NSIST model may then be summarized as: 

Minimize: (6), (7), (8), (9), (10), or (11), subject to (1), (2), 
(12), (13), (14) and (15). 

 
The SSIST and NSIST models are extensively compared 

and investigated in the next section of  this paper. 
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3. MODEL ANALYSES 

In this section, we address a number of  research 
questions regarding the SSIST flowshop problem model 
described above. One question is posed with regard to 
model size complexity: 
Q1 What is the size complexity of  the MILP model for 

the SSIST flowshop, and how does this complexity 
compare with the size complexity of  the comparable 
model for the NSIST flowshop? 

The following research questions are posed with regard 
to computer solution time requirements:   
Q2  What are the time requirements for solving problems 

of  various sizes for the SSIST flowshop model?   
Q3  How do these solution time requirements compare 

to the requirements for the corresponding model in 
the NSIST environment, and to similar studies in the 
literature? 

With regard to the impact of  separating setup times 
from job processing times, the following research question 
is posed: 
Q4 What is the impact on sequence performance for the 

regular flowshop problem when the job setup times 
are separated from job performance times? 

For Q4, this question is investigated for both job 
sequence makespan and for mean job flowtime. 
Q5 What is the impact of  minimizing one performance 

measure (makespan or mean flowtime) on the other 
performance measure? 

Question Q5 addresses the tradeoffs between the two 
major performance measures prevalent in the flowshop 
scheduling literature. We first address the issue of  size 
complexity with regard to research question Q1. The 
remainder of  this section is dedicated to investigating 
research questions Q2 through Q5. 

 
3.1 Size complexity of the models 

The size complexity of  the SSIST flowshop model and 
its corresponding NSIST model, as a function of  M 
(number of  machines) and N (number of  jobs), is shown 
in Table 2. This complexity is divided into two parts: (1) 
number of  decision variables; and (2) number of  
constraints. Both models require N2 binary integer 
variables to assign the N jobs to the N positions in the 
processing sequence. Both models require an additional 
2MN + 2 real variables to account for machine and job 
idleness, job completion times, makespan, and mean flow 
time. The SSIST model requires 2N + MN + 2 constraints, 
while the NSIST mode requires the same number plus an 
additional M − 1 constraints due to Eq. (13). 

 
3.2 Computer experiments 

Two full factorial experiments were designed and 
executed to help answer research questions Q2 through Q5 
posed above. The first experiment, conducted several years 
ago, utilized LINDO (LINDO Systems, 1999) to conduct 
an initial investigation of  these questions. The second 

experiment, conducted recently, utilized LINGO (LINDO 
Systems, 2004) and a newer computer to extend the size of  
problems solvable with both the SSIST and NSIST models. 

 
Table 2. Size complexity of  SSIST and NSIST flowshop models 

Model SSIST NSIST 

Variables  

 Integer {Z} N2 N2 

 Real {X, Y, C} 2MN 2MN 

 Other ‡ {FMAX†, FBAR†} 2 2 

   Total Variables N2 + 2MN + 2 N2 + 2MN + 2 

  

Constraints  

 Assignment {(1), (2)} 2N 2N 

 JAML {(3), (4); (11), (12)} N(M − 1) N(M − 1) 

 Job Idle {(13)} - - - - M − 1 

 Completion Time {(5); (14)} N N 

 Other ‡ {(6), (7)} 2 2 

   Total Constraints 2N + MN + 2 2N + MN+ M + 1 
†FMAX = makespan; FBAR = mean job completion or flow time. 
‡Two variables and constraints added to simplify measuring 
performance measures. 
 
3.2.1 Experiment I, using LINDO 

The two major factors in this experiment were M 
(number of  machines) and N (number of  jobs). Factor 
levels were M = 5, 7, and 9; and N = 6, 7, 8, and 9. These 
levels correspond to the earlier experiments reported by 
Tseng and Stafford (2001), Stafford and Tseng (2002), and 
Tseng et al. (2004). There were five replications for each of  
the 12 cells of  the experiment. The job processing times 
and the job setup times for each problem generated were 
both uniformly distributed: Pri∈U[1, 100] and Sri∈U[1, 25]. 
This distribution of  setup times is in line with the 20-40% 
reported by Gupta and Darrow (1986) for Sri/Pri ratios 
found in practice. Each of  the sixty base problems was 
then processed through four different problem generators 
to create four different flowshop problems: [SSIST or 
NSIST] × [makespan or mean flow time]. 

The resultant 240 flowshop problems were each solved, 
one at a time, with version 6.1 of  Hyper LINDO on a Dell 
Pentium III 800 MHz microcomputer equipped with 128 
MB of  RDRAM. The specific LINDO options utilized 
were integer programming, an optimality stopping criterion 
of  zero, terse output, and the “Take” command. The 
LINDO elapsed time feature was used to measure actual 
problem solution times to the nearest 0.01 second. The 
optimizing criteria used were minimizing job set makespan 
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for 120 problems and minimizing mean job completion 
time for the other 120 problems.  

 
3.2.2 Experiment II, using LINGO 

This experiment used the same major factors, M and N, 
that were used in Experiment I. Factor levels were M = 5, 
7, and 9; and N = 10, 11, 12, 13, 14, and 15. The job 
processing times and the job setup times were again both 
uniformly distributed: Pri ∈ U[1,100] and Sri ∈ U[1,25]. 
There were five replications for each of  the 18 cells of  this 
experiment; and each of  the resultant 90 problems was 
represented by a simple data set that could be read 
individually, or in batches, by all of  the four LINGO 
programs that were written, one for each of  the four major 
cells of  this experiment: [SSIST or NSIST] × [makespan or 
mean flow time].  

All 360 problem instances were solved using LINGO 
9.0 on a Dell Pentium IV 2 GHz personal computer 
equipped with 512 MB of  RDRAM. Specific LINGO 
options employed were integer programming, terse output, 
an optimality stopping criterion of  zero, and script files to 
solve the problems in batches of  30. The LINGO elapsed 
time option was used to measure actual problem solution 
times to the nearest 0.01 second. The optimizing criteria 

again were minimizing job set makespan for 170 problems 
and minimizing mean job completion time for the other 
170 problems. (The M × N = 9 × 15 cell problems for 
experiment II were not run due to excessive computer 
solution time requirements for these problems.) 

For both experiments I and II, the relevant solution 
values were summarized, processed, and compared in a 
large Excel workbook. The results of  these comparisons 
are presented below. 

 
3.3 Computer solution times  

The computer solution times (in seconds) for each of  
the 12 cells of  experiment I and 17 of  the 18 cells of  
experiment II are summarized in Tables 3 and 4 
respectively. The mean solution times are given for each 
cell of  five problems, for both the makespan and mean 
flowtime performance measures, and for both the SSIST 
and NSIST flowshop models. Following Stafford et al. 
(2005), the cell median solution time values are also 
reported for both experiments. The computer solution 
times for the two experiments cannot be directly linked 
and compared because each experiment was executed with 
different MILP software. 

 
 

Table 3. Computer solution time means and medians, experiment I 
 Minimize Makespan  Criterion  Minimize Mean Flow Time  

Mean Solution Time  Median Solution Time  Mean Solution Time  Median Solution Time 

SSIST NSIST SSI/NSI‡  SSIST NSIST SSI/NSI‡  N‡  M‡  SSIST NSIST SSI/NSI  SSIST NSIST SSI/NSI 

0.26† 0.28 0.923  0.22† 0.27 0.815  6  5  0.14 0.25 0.567  0.11 0.22 0.500 
0.75 0.93 0.800  0.66 0.88 0.750    7  0.65 0.57 1.137  0.61 0.50 1.220 
1.12  0.91 1.228  1.26 0.83 1.518    9  0.95  1.06 0.889  1.04 1.10 0.945 
0.71 0.71 1.000  0.62 0.71 0.873 Mean/Med.§ 0.58 0.63 0.921  0.55 0.49 1.122 
0.48 0.26 1.860  0.42 0.17 2.471  7  5  0.59 0.58 0.876  0.60 0.44 1.364 
1.78  1.44 1.233  1.75 3.68 0.476    7  1.91 2.33 0.820  2.22 2.42 0.909 
2.70 3.80 0.729  1.92 3.51 0.547    9  3.25 3.13 1.039  3.13 3.24 0.966 
1.68 1.83  0.914  1.54 1.43 1.077 Mean/Med. 1.92 2.01 0.938  1.65 2.14 0.771 
0.89 1.40 0.636  1.21 1.09 1.110  8  5  1.56 1.83 0.852  1.32 1.48 0.892 
6.93 5.96 1.162  5.06 3.68 1.375    7  7.29 5.10 1.430  7.97 4.45 1.791 
13.46 12.49 1.078  10.33 14.39 0.718    9  10.33 11.06 0.934  9.39 8.51 1.103 
7.09 6.62 1.072  4.55 3.63 1.253 Mean/Med. 6.40 6.00 1.066  4.99 4.45 1.121 
4.51  6.31  0.715  3.13 4.95 0.632  9  5  5.79 5.51 1.050  5.88 7.41 0.794 
15.88 15.74 1.009  12.53 16.26 0.771    7  14.79 12.60 1.175  13.29 10.38 1.280 
52.14  53.44  0.976  47.84 35.37 1.353    9  55.47 55.45 1.000  57.24 66.18 0.865 
24.17 25.16 0.961  12.53 16.26 0.771 Mean/Med. 25.35 24.52 1.034  13.29 10.38 1.280 

8.41 8.58 0.980  1.81 1.98 0.914 Overall§ 8.56 8.29 1.033  2.74 2.59 1.060 

†Mean or median computer solution time for 5 problems, seconds. 
‡N=number of  jobs; M=number of  machines; SSI/NSI= ratio of  SSIST mean solution time to NSIST mean solution time. 
§ “Mean/Med.”= average or median of  all problems for a given N value; “Overall”= average or median for all problems in experiment.   
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Table 4. Computer solution time means and medians, experiment II 
 Minimize Makespan  Criterion  Minimize Mean Flow Time  

Mean Solution Time  Median Solution Time  Mean Solution Time  Median Solution Time 

SSIST NSIST SSI/NSI‡  SSIST NSIST SSI/NSI‡  N‡  M‡  SSIST NSIST SSI/NSI  SSIST NSIST SSI/NSI 
13.09† 10.09 1.298  9.41 9.96 0.945  10  5  10.67 11.09 0.962  9.70 11.99 0.809 

20.44 18.79 
 

1.088  15.92 13.00 1.225    7  22.63 20.50 1.104  23.52 21.19 1.110 

56.95 40.04 1.422  29.85 33.67 0.887    9  26.06 38.23 0.682  27.37 37.92 0.722 

30.16 22.97 1.313  15.92 15.33 1.038 Mean/Med.§ 19.79 23.27 0.850  20.85 21.19 0.984 

12.68 13.05 0.972  11.85 9.91 1.196  11  5  16.74 27.18 0.616  18.04 33.32 0.541 

40.81 19.55 2.087  42.60 19.97 2.133    7  38.36 47.53 0.807  34.26 48.61 0.705 

223.18 145.47 1.534  100.55 72.95 1.378    9  118.40 95.61 1.238  70.67 77.79 0.908 

92.22 59.36 1.554  42.40 23.51 1.803      57.84 56.78 1.019  34.26 48.61 0.705 

16.84 12.36 1.352  14.36 7.88 1.822  12  5  35.93 47.48 0.757  34.09 46.03 0.741 

44.86 22.48 1.340  46.81 18.82 2.487    7  92.95 103.37 0.899  78.82 71.95 1.095 

253.36 316.62 0.803  114.47 308.94 0.371    9  666.06 827.68 0.805  668.61 656.03 1/019 

105.02 120.49 0.872  46.81 34.35 1.363 Mean/Med. 264.98 326.18 0.812  78.82 80.57 0.978 

99.32 127.21 0.781  28.36 75.67 0.375  13  5  406.09 212.44 1.912  262.99 256.77 1.024 

86.93 131.52 0.661  80.57 103.05 0.782    7  601.80 811.28 0.742  521.55 452.04 1.154 

721.05 466.80 1.545  187.84 410.21 0.458    9  616.77 708.02 0.871  634.73 687.68 0.923 

302.43 241.84 1.251  95.52 139.71 0.684 Mean/Med. 541.55 577.25 0.938  521.55 344.92 1.512 

36.24 93.11 0.389  27.19 53.36 0.510  14  5  461.94 434.81 1.062  387.47 448.61 0.864 

1091.777 7232.312 0.151  610.83 808.18 0.756    7  1869.64 1686.23 1.109  1408.69 856.30 1.645 

6688.50 5777.82 1.158  3403.28 3110.37 1.094    9  7905.346 9643.32 0.820  4800.19 3438.91 1.396 

2605.50 4367.75 0.597  285.71 534.63 0.534 Mean/Med. 3412.32 3921.45 0.870  1408.69 989.32 1.424 

13.50 17.312 0.780  2.96 3.73 0.794  15  5  861.208 2014.16 0.428  782.17 476.06 1.643 

6308.10 6072.794 1.039  395.19 1026.80 0.385    7  10035.912 9617.37 1.044  4220.71 4788.92 0.881 

3160.80 3045.0533 1.038  170.07 109.88 1.548 Mean/Med. 5448.560 5815.77 0.937  1615.32 2603.48 0.620 

925.15 1207.49 0.766  46.81 42.03 1.114 Overall§ 1399.208 1549.78 0.903  99.45 138.51 0.718 
†‡§See Table 3 for footnote explanations. 
 
3.3.1 Solution times for the SSIST model (Q2) 

For experiment I, both cell solution time summary 
measures -- mean and median -- are consistent. That is, for 
increasing M (within cells) and for increasing N (between 
adjacent cells), both the means and medians increase 
without fail for both performance measures -- makespan 
and mean flowtime. With a single exception, this 
consistency holds in Experiment II for the mean flowtime 
criterion. For both cell mean and median solution times, 
the values for cell M × N = 9 × 12 are larger than the 
corresponding values for cell 9 × 13. This single 
inconsistency may be explained in large part by examining 
the individual problem solution times in the two cells. 
Problem 091202 required 1045 seconds to solve to 
optimality, a value approximately 83% larger than the mean 
for the other four problems in that cell. Problem 091300, 
on the other hand, required just 353 seconds to solve, 
approximately 57% less time than the mean for the other 
four problems in that cell. (The problem number notation 
is of  the form mm-jj-pp where mm = number of  machines 

in the flowshop, jj = number of  jobs in the problem, and 
pp = problem number, 00, 01, ....) These occurrences of  a 
relatively quick solution time (problem 091300) and a 
relatively slow solution time (problem 091202) are not 
unique to this study; similar occurrences have been 
reported by Tseng and Stafford (2001), Stafford and Tseng 
(2002), and Stafford et al. (2005), among others. 

For the makespan criterion in experiment II, the results 
are not nearly so consistent as those described above. For 
mean solution times, the mean of  M × N = 5 × 10 is 
greater than that of  cell 5 × 11. This difference is 
explained by the result that problem 051103 required just 
1.16 seconds to solve to optimality compared to the mean 
time of  15.58 seconds for the other problems in that cell. 
The 5 × 13, 5 × 14, and 5 × 15 cells exhibit a major 
inconsistency with cell means of  99.32, 36.24, and 13.50 
seconds respectively. Cell 5 × 13 has two problems (0 and 
4) with a mean solution time more than 20 times that of  
the other three problems in that cell. The solution times 
for cell 5 × 15 are quite unusually small with three solution 
times under 3 seconds. We attribute this solution time 
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inconsistency to these two large solution times (cell 5 × 13) 
and three very fast solution times (cell 5 × 15). Further, 
this explanation holds for the inconsistency among these 
same three cells for the median cell solution times. The 
inconsistency between cells 5 × 13 and 7 × 13, for 
makespan, is also explained by the very short solution tome 
for problem 051103. The slight inconsistency between cells 
5 × 13 and 5 × 14 for the median solution times may also 
be explained by the two problems in cell 5 × 13 that 
require extensive time to solve. 

The overall mean and median values in Tables 3 and 4 
suggest that, on average, the SSIST model solves a problem 
in less time when makespan is the performance measure 
than when mean flowtime is the performance measure. For 
experiment I, the mean solution times for makespan and 
mean flowtime were 8.41 seconds and 8.56 seconds, 
respectively; the median solution times were 1.81 and 2.74 
seconds, respectively. The makespan measure required less 
time than the mean flowtime measure for 34 of  the 60 
problems, the mean flowtime measure required less time 
for 25 problems, and there was one tie. For experiment II, 
the respective overall means were 925.15 seconds and 
1399.20 seconds for minimizing makespan versus mean 
flowtime; and the respective median solution times were 
46.81 seconds and 99.45 seconds. The makespan solutions 
were faster in 61 of  the 85 problems for experiment II, 
while the mean flowtime solutions were faster for 24 of  
the problems. It should be noted that Eq. (7), mean 
flowtime, was used in experiment I while Eq. (8), total 
flowtime, was used in experiment II as a surrogate for 
mean flowtime. It is possible that this alternative although 
equivalent objective function in experiment II impacted on 
the improved success of  makespan versus mean flowtime 
in this experiment. 

 
3.3.2 Solution times: SSIST vs NSIST models (Q3) 

The means and medians summary values in Tables 3 and 
4 suggest that, overall, there is no clear difference between 
the SSIST and NSIST models regarding required computer 
solution times for two common sets of  problems. For 
experiment I, the overall mean and median solution times 
were slightly smaller for the SSIST model when makespan 
was the optimized performance measure; but these same 
measures were slightly higher for the SSIST model when 
mean flowtime was the performance measure. The data in 
Table 5 indicate that the SSIST model was faster than the 
NSIST model in 65 of  the 120 total problem instances in 
experiment I. 

In experiment II, for the makespan performance 
measure, the overall mean solution time for the SSIST 
model was significantly smaller than that for the NSIST 
model (925.15 vs 1207.49 seconds), yet the median 
solution time for the SSIST model was higher than that for 
the NSIST model (46.81 vs 42.03 seconds). When mean 
flowtime is the optimizing performance measure, both the 
overall mean and median solution times were less for the 
SSIST model than for the NSIST model. From Table 5, the 
SSIST model was faster in 88 of  the 170 total problem 

instances for experiment II. The “Sseq” column data in 
Table 5 indicate the number of  problems in which the 
SSIST and NSIST models found exactly the same optimal 
sequence for each performance measure in each 
experiment. 

 
Table 5. Miscellaneous data, experiments I and II 

Measure SGN† NGS SSeq† Total # Problems 

Experiment I     

 FMAX‡ 28 32 13 60 

 FBAR‡ 27 33 22 60 

Total 55 65 35 120 

Experiment II     

 FMAX‡ 43 42 6 85 

 FBAR‡ 39 46 9 85 

Total 82 88 15 170 

      
Grand Total 137 153 50 290 

‡FMAX = makespan; FBAR = mean flow time. 
†SGN = # problems wherein SSIST model solution time 
greater than NSIST model solution time; NGS = reverse; 
Sseq = # problems both models having same optimal sequence. 

 
3.3.3 Solution times SSIST and NSIST vs the literature 

(Q3) 

The SSIST model reported in this paper is, to our 
knowledge, the first model for the M × N flowshop with 
separable sequence-independent setup times reported in 
the literature; and as such, it seems reasonable to 
benchmark this model to similar models in the literature. 
Stafford et al. (2005) included the WST model in their 
comprehensive analysis of  two families of  MILP models 
for the regular flowshop; and this WST model is quite 
close to the SSIST model in structure and size. These 
authors also ran two experiments, each of  which is 
equivalent to experiments I and II of  the current paper; 
and the Pentium IV computer they used is the same 
machine used in experiment II of  the current paper. Table 
6 presents the summary data for the SSIST model, for both 
performance measures and both experiments, as well as the 
summary data from the two Stafford et al. experiments. 
Overall, the SSIST times compare well with the WST 
model results. It is expected that the WST model computer 
solution times would differ from those times for the SSIST 
solution times since Stafford et al. ran their LINDO 
solutions on a Pentium IV computer and a Pentium III 
computer was used for experiment I in this paper 

 
3.4 Impact of separable setup times on performance 

measures 

We next address the second purpose of  this paper, that 
of  using this model to investigate the impact of  SSIST on 
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competing flowshop system performance measures. This 
impact is described in the following two sub-sections, for 
makespan and mean flow time respectively. 

 
3.4.1 Impact on makespan (Q4) 

The left half  of  Table 7 presents summary data for 
investigating the impact of  separable setup times on 
makespan for the problem sizes solved in this paper. For 
each M × N cell in the combined experiments, the mean 
makespan for the SSIST model, the mean makespan for 
the regular flowshop model (NSIST), the differences 
between these means, and the ratio of  the mean NSIST 
makespan to the mean SSIST makespan are given. 

The NSI/SSI ratio in Table 7 indicates the average 
penalty when setup times cannot begin until a job arrives at 
a machine (NSIST) relative to allowing setup times to 

commence as soon as the machine is clear of  the previous 
job in the sequence. For the experimental cells based on 
number of  machines M, the overall penalty for M = 5, 7, 
and 9 machines increases, with values of  5.4, 8.0, and 9.0 
percent, respectively; the overall impact is an additional 7.4 
percent makespan time required. 

Within each M-value cell there is a clear pattern for the 
NSI/SSI values. As the number of  jobs N increases from 5 
to 15, this ratio steadily decreases for each value of  M. The 
intercept and slope values for simple linear regressions of  
the NSI/SSI ratios as a function of  N (number of  jobs) 
are shown for each value of  M, for the makespan 
performance measure, in the top half  of  Table 8. The 
Pearson r-values indicate a very good fit for the data for 
each M-value. 

 
Table 6. Comparison of  SSIST and WST§ models solution times 

  Experiment I  Experiment II 

M‡ N‡ SSIST/FMAX‡ SSIST/FBAR‡ WST/FMAX‡§  M‡ N‡ SSIST/FMAX‡ SSIST/FBAR‡ WST/FMAX‡§ 

5 6 0.26† 0.14 0.24  5 10 13.09 10.67 31.25 

 7 0.48 0.59 0.63   11 12.68 16.74 20.66 

 8 0.89 1.56 1.54   12 16.84 35.93 138.56 

 9 4.51 5.79 3.02   13 99.32 406.09 18.87 

       14 36.24 461.94 57.69 

       15 13.50 861.21 1169.25 

  1.54 2.02 1.36 Average 31.95 298.76 239.25 

7 6 0.75 0.65 0.58  7 10 20.44 22.63 19.20 

 7 1.78 1.91 1.59   11 40.81 38.36 2541.75 

 8 6.93 7.29 3.61   12 44.86 92.95 140.75 

 9 15.88 14.79 23.88   13 86.93 601.80 351.95 

       14 1091.77 1869.68 820.07 

       15 6308.10ƒ 10,035.91 853.46 

  6.33 6.16 7.42 Average 256.96ƒ 525.08ƒ 790.77ƒ 

9 6 1.12 0.95 1.34  9 10 56.95 26.06 26.48 

 7 2.77 3.25 3.40   11 223.18 118.40 379.98 

 8 13.46 10.33 11.53   12 253.36 666.06 248.19 

 9 52.14 55.47 27.35    13 721.05 616.77 1674.15 

       14 6680.50 7905.34 8994.67 

       15 - - - - - - 18,477.10 

  17.37 17.50 10.92 Average 1588.61ƒ 1866.53ƒ 2264.69ƒ 

  8.41 8.56 6.57  Overall 624.17ƒ 914.97ƒ 1107.14ƒ 
‡FMAX = makespan criterion; FBAR = mean flow time criterion; M = # of  machines; N = # of  jobs. 
†Mean computer solution time of  five problems, seconds. 
§Model WST and data from Stafford et al. (2005). 
ƒMeans do not include values from N = 15 cell(s); in boldface cell, one problem did not solve in >13h. 
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Table 7. Impact of  separable setup times on makespan and mean flow time 
Minimize Makespan Objective Minimize Mean Flowtime 

SSIST NSIST NSI − SSI§ NSI/SSI§ M§ N§ SSIST NSIST NSI − SSI§ NSI/SSI§ 

612.4† 668.4† 56.0† 1.091† 5 6 410.20‡ 459.77‡ 49.57‡  1.121‡ 

648.4 685.4 37.0 1.057  7 426.80 473.38 46.58 1.109 

782.8 830.2 47.4 1.061  8 494.75 550.85 56.10 1.113 

824.8 872.4 47.6 1.058  9 524.18 575.62 51.44 1.098 

894.4 936.6 42.2 1.047  10 557.10 606.28 49.18 1.088 

977.2 1027.4 50.2 1.051  11 582.31 634.22 51.91 1.089 

1041.8 1093.8 52.0 1.050  12 625.63 675.82 50.18 1.080 

1037.0 1083.2 46.2 1.045  13 621.82 668.95 47.14 1.076 

1048.2 1091.6 43.4 1.041  14 617.33 666.84 49.51 1.080 

1252.4 1304.2 51.8 1.041  15 735.92 792.03 56.11 1.076 

911.94 959.32 47.38 1.054 Average 559.60 610.38 50.77 1.093 

719.0 808.4 89.40 1.124 7 6 514.77 593.37 78.60 1.153 

788.2 874.2 86.00 1.109  7 583.80 664.37 80.57 1.138 

871.2 948.0 76.80 1.088  8 592.50 666.95 74.45 1.126 

954.8 1027.6 72.80 1.076  9 652.49 725.27 72.78 1.112 

1008.8 1091.0 82.2 1.081  10 665.72 740.24 74.52 1.112 

1030.0 1100.6 70.6 1.069  11 667.82 745.93 78.11 1.117 

1125.6 1201.0 75.4 1.067  12 700.27 792.07 91.80 1.131 

1169.8 1254.8 85.0 1.073  13 766.68 844.28 77.60 1.101 

1260.4 1335.4 75.0 1.060  14 791.97 865.91 73.94 1.093 

1312.0 1386.0 74.0 1.056  15 818.41 892.53 74.12 1.091 

1023.98 1102.70 78.72 1.080 Average 675.44 753.09 77.65 1.117 

908.8 1007.2 98.40 1.108 9 6 678.87 775.70 96.83 1.143 

912.6 1020.0 107.40 1.118  7 677.66 779.71 102.06 1.151 

1014.0 1114.0 100.00 1.099  8 721.05 824.95 103.90 1.144 

1065.8 1160.8 95.00 1.089  9 776.40 872.42 96.02 1.124 

1145.2 1240.0 94.8 1.083  10 788.74 897.16 108.42 1.137 

1200.2 1308.0 107.8 1.090  11 827.27 928.55 101.27 1.122 

1238.0 1346.6 108.6 1.088  12 869.28 977.33 108.05 1.124 

1326.0 1417.4 91.4 1.069  13 876.77 977.51 100.74 1.115 

1417.4 1517.4 100.0 1.071  14 938.60 1035.70 97.10 1.103 

1136.44 1236.82 100.38 1.090 Average 794.96 896.56 101.60 1.129 

1020.25 1094.88 74.63 1.074 Overall 672.59 748.40 75.81 1.113 
†Means of  makespan, difference in mean makespan, or ratio of  mean makespan for five problems. 
‡Means of  mean flowtime, difference in mean flowtime, or ratio of  mean flowtime for five problems. 
§M = # machines; N = # jobs; NSI-SSI = mean difference between NSIST and SSIST makespan or mean flowtime values; NSI/SSI = 
ratio of  mean makespan or mean flowtime for NSIST and SSIST models. 

 
3.4.2 Impact on mean flowtime (Q4) 

The corresponding summary data for investigating the 
impact of  separable setup times on mean flowtime is 
presented in the right half  of  Table 7. The results for mean 
flowtime are quite similar to the results for makespan, but 
with higher average penalties across the board for both M 
and N. The overall penalty for M = 5, 7, and 9 machines 
increases, with values of  9.3, 11.7, and 12.9 percent, 
respectively; and the overall impact is an additional 11.3 

percent mean flowtime required per problem. There is 
again a clear pattern for the NSI/SSI values in each 
M-value cell, with this ratio steadily declining with 
increasing values of  N. The intercept and slope values for 
mean flowtime linear regressions are shown in the bottom 
half  of  Table 8. 

The impact of  allowing setup times to be separable from 
jobs in the regular permutation flowshop has been shown 
here to be significant, with savings averaging 6.9 percent 
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for makespan and 10.2 percent for mean flowtime values. 
At the same time, the reader is cautioned that these results 
are valid only for the processing time and setup time values 
selected for this initial investigation. We leave to the future 
a more comprehensive study on the impact of  separable 
setups for a variety of  job processing time: setup time 
ratios, not only for the regular flowshop but for other 
flowshop variants as well. 

 
Table 8. Regression models for impact of  separable setup times 

Performance 
Measure 

M‡ 
Intercept 

a† 
Slope 

b† 

5 1.0962 -0.0040 

7 1.1489 -0.0065 Makespan 

9 1.1434 -0.0053 

    

5 1.1469 -0.0051 

7 1.1765 -0.0056 Mean Flowtime 

9 1.1801 -0.0053 
†Estimated values for mean NSI/SSI = a + b[N]. 
‡M = # machines; N = # jobs. 
 

 
3.5 Impact of minimizing each performance measure 

on the other measure 

From Conway et al. (1967) onward, flowshop 
researchers have debated which performance measure is 
more appropriate, makespan or mean flowtime. (As shown 
in Eq. (7) and (8), minimizing total flowtime is equivalent 
to minimizing mean flowtime.) At the same time, few, if  
any, of  these researchers have ever reported the effect 
minimizing makespan has on the value of  mean flowtime 
for a problem, and vice versa. The data collected in both 
experiments I and II for this paper allow an investigation 
of  these effects, for both the SSIST and NSIST flowshop 
models. 

 
3.5.1 Impact of  makespan on mean flowtime (Q5) 

The impact of  minimizing makespan on the mean 
flowtime measure, for the same problems, is shown in the 
left portion of  Table 9. For example, for the M × N = 5 × 
6 cell, the value of  1.124 indicates an average increase of  
12.4 percent over the optimal value of  mean flowtime for 
those five problems. Likewise, minimizing makespan 
increases the mean flowtime for the 5 × 6 cell problems 
solved as regular flowshop problems (NSIST) by an 
average of  6.8 percent, compared to the optimal mean 
flowtime values. For the SSIST model, the overall means 
for the M = 5-, 7-, and 9-machine cells were 11.2, 8.9, and 
7.7 percent respectively, thus indicating a downward trend 
for increasing numbers of  machines. For the NSIST model, 
these values were 9.0, 8.2, and 8.0 percent, respectively, for 

M = 5, 7, and 9 machines. Simple regression analyses of  
this measure found no statistically significant trends as a 
function of  increasing numbers of  jobs, N, in any of  the 
M-value cells for either the SSIST or NSIST models. 

 
Table 9. Impact of  minimizing makespan or mean 

flowtime on each other 
Impact on: Mean Flowtime  Makespan 
for Minimizing: Makespan  Mean flowtime 

M§ N§  SSIST NSIST Model: SSIST NSIST 
5 6  1.124† 1.068†  1.076‡ 1.075‡ 
 7  1.084  1.054  1.099 1.090 
 8  1.148 1.106  1.091 1.056 
 9  1.097 1.079  1.089 1.082 
 10  1.096 1.088  1.117 1.117 
 11  1.115 1.107  1.062 1.063 
 12  1.113 1.092  1.073 1.082 
 13  1.104 1.097  1.085 1.088 
 14  1.149 1.096  1.090 1.082 
 15  1.123 1.117  1.069 1.077 
Average 1.112 1.090  1.085 1.081 

7 6  1.067 1.080  1.108 1.084 
 7  1.076 1.071  1.113 1.101 
 8  1.078 1.075  1.089 1.064 
 9  1.104 1.103  1.126 1.109 
 10  1.071 1.078  1.102 1.067 
 11  1.116 1.093  1.110 1.101 
 12  1.103 1.062  1.047 1.060 
 13  1.085 1.082  1.108 1.094 
 14  1.112 1.104  1.110 1.089 
 15  1.083 1.071  1.086 1.080 
Average 1.089 1.082  1.100 1.085 

9 6  1.085 1.054  1.082 1.063 
 7  1.090 1.075  1.081 1.075 
 8  1.093 1.081  1.059 1.051 
 9  1.053 1.047  1.094 1.094 
 10  1.038 1.059  1.106 1.078 
 11  1.087 1.075  1.101 1.094 
 12  1.071 1.055  1.108 1.098 
 13  1.087 1.079  1.087 1.091 
 14  1.087 1.069  1.113 1.098 
Average 1.077 1.066  1.092 1.082 

Overall 1.093 1.080  1.092 1.083 
†[Fbar(for Min Fmax)/Min Fbar] for SSIST and NSIST models. 
‡[Fmax(for Min Fbar)/Min Fmax] for SSIST and NSIST models. 
§M = # machines; N = # jobs; Fmax = makespan; Fbar = mean 
flowtime. 

 
3.5.2 Impact of  mean flowtime on makespan (Q5) 

The impact of  minimizing mean flowtime on the 
makespan measure, for the same set of  problems, is shown 
on the right side of  Table 9. For example, for the SSIST 
model, minimizing mean flowtime for the M × N = 5 × 6 
cell caused an average increase of  7.6 percent over the 
optimal values of  makespan for those five problems. For 
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the SSIST model, the overall increases were 8.5, 10.0, and 
9.2 percent respectively for the 5-, 7-, and 9-machine 
problems For the NSIST model, these same increases were 
8.1, 8.5, and 8.3 percent respectively. Again, there was so 
statistically significant trends within the M-value cells for 
increasing values of  N, for either model. And there is no 
apparent trend among the M-value cells for either model. 
Thus, while there is a significant increase above optimal 
values for either makespan or mean flowtime, as the other 
measure is minimized, for both the SSIST and NSIST 
models, there is no detectable trend as a function of  
increasing numbers of  jobs, for the problems solved for 
this paper. 

 
4. CONCLUSIONS, AND FUTURE RESEARCH 

SUGGESTIONS 

This paper presented an MILP model for the 
permutation flowshop wherein the setup times were both 
separable from the job processing times and independent 
of  a job’s position in the processing sequence. Two 
experiments were conducted to estimate the computer 
times necessary to solve problems with up to 9 machines 
and 15 jobs, and to then compare these solution time 
requirements to those required to solve the same sets of  
problems solved as regular (NSIST) flowshop problems. 
The resultant data were then used to assess the impact on 
two optimal sequence performance measures, makespan 
and mean flowtime when setup times were separated from 
their jobs and allowed to begin as soon as the machine was 
free from the preceding job. Lastly, the data were used to 
analyze the impact on mean flowtime when makespan is 
minimized, and the impact on makespan when mean 
flowtime is minimized. We now draw conclusions from this 
work and then offer some suggestions for future research. 
 
4.1 Conclusions 

The MILP model for the SSIST flowshop problem 
presented in this paper is based on the same JAML 
constraints approach as that used by Wagner (1959), 
Stafford (1988), and Tseng and Stafford (2001). We draw 
the following conclusions regarding this model:  
1  The SSIST MILP model extends to M machines the 

optimal sequencing technique of  Yoshida and Hitomi 
(1979) for the 2-machine flowshop problem with 
separable setup times. Unlike the Yoshida and Hitomi 
procedure, the SSIST model is not polynomial solvable. 

2  The SSIST model is a viable and optimizing model for 
solving SSIST problems of  moderate size. It may be 
used to optimize SSIST flowshop problems for both 
the makespan and mean flowtime criteria and for three 
other criteria not normally found in the flowshop 
literature.  

3  The SSIST model is of  comparable problem size 
complexity with its NSIST counterpart (see Table 2), 
and the required range of  computer solution times for 
this model, for a given problem size, is comparable to 
the times required by the NSIST model for the same 

problem size (see Tables 3, 4, and 5).  
4  On average, the SSIST model, using either the 

makespan or mean flowtime criterion, solves problems 
faster that its NSIST counterpart, WST, recently tested 
in the literature (Stafford et al., 2005).  

The SSIST model was used to investigate the impact of  
the separable setup time assumption on both optimal job 
sequence makespan and optimal sequence mean flowtime. 
The following conclusions may be drawn regarding the 
results of  this investigation: 
5  Separable setup times result in a significant reduction of  

the optimal sequence makespan relative to the optimal 
makespan for the flowshop with nonseparable setup 
times (see Table 7). This reduction increases with 
increasing numbers of  machines in the flowshop, but it 
decreases slightly with increasing numbers of  jobs for a 
given number of  machines.  

6  Separable setup times result in a significant reduction of  
the optimal sequence mean flowtime relative to the 
optimal mean flowtime for the flowshop with 
nonseparable setup times. This reduction increases with 
increasing numbers of  machines, but it decreases 
slightly with increasing numbers of  jobs for a given 
number of  machines.  

We point out that conclusions 5 and 6 are drawn only 
for the problem sizes and setup times: job processing times 
ratios used in this paper. At the same time, we conjecture 
that similar results will occur for larger problem sizes and 
other setup times: job processing time ratios as well. 

An understanding of  the results summarized in 
Conclusions 5 and 6, which are based mainly on Table 7, is 
enhanced by considering a JAML diagram of  the problem 
as depicted in Figure 1. As more machines are added to a 
flowshop (the vertical dimension of  Figure 1), there are 
additional opportunities for reducing the overall processing 
time of  each job since the setups of  each job can be 
performed prior to that job’s arrival at each machine. On 
the other hand, there is essentially no opportunity to 
decrease makespan on the typical machine r (the horizontal 
dimension of  Figure 1) with separable setups because that 
machine must still experience SSrj, TTrj, SSr,j + 1, TTr,j + 1, et 
cetera as the jobs in all N positions of  the sequence are 
processed, one after the other on Machine r. (See the 
APPENDIX for an explanation of  the SS and TT terms.) 
That is, there is no overlap makespan savings between jobs 
on the same machine. It seems reasonable that this “within 
jobs” explanation for makespan carries over to mean 
flowtime as well.  

The SSIST model was also used to investigate the 
impact of  minimizing makespan on a job sequence’s mean 
flowtime, and to investigate the impact of  minimizing 
mean flowtime on a job sequence’s makespan. We draw the 
following tentative conclusions regarding these impacts: 
7  Minimizing makespan causes an increase in the resultant 

mean flowtime (over the optimal value) for both the 
SSIST and NSIST models, and this increase tends to be 
slightly higher for the SSIST model for a given M × N 
problem size (see Table 9). 

8  Minimizing mean flowtime causes an increase in the 
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resultant makespan (over the optimal value) for both 
the SSIST and NSIST models, with this increase being 
slightly higher for the SSIST model for a given M × N 
problem size. 

We caution that the true increases in either makespan or 
mean flowtime, when minimizing the other measure, most 
likely are lower than those shown in Table 8. Neither 
LINDO nor LINGO reports alternate optimal solutions 
for an integer programming problem, so that, for a given 
optimal makespan value, there could be an alternate 
optimal sequence with a different, perhaps lower mean 
flowtime value. This is especially true for a 15-job problem 
which has approximately 1.31 × 1012 different sequences to 
investigate. 

 
4.2 Suggestions for future research 

Based on our development and investigation of  the 
MILP model for the flowshop with separable, 
sequence-independent setup times, we enumerate three of  
several possible projects for future investigation. First, it is 
possible that the techniques detailed by Allahverdi (2000) 
may be combinable with the current SSIST model to 
improve computer solution times for the mean flowtime 
criterion. Second, following Stafford et al. (2005), there 
may be alternate SSIST MILP models which yield optimal 
solution in shorter times than experienced with the current 
SSIST model. Third, it would be useful to run an extensive 
study on the influences of  makespan and mean flowtime 
on each other, not only for the SSIST model, but for the 
regular flowshop environment as well. 
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APPENDIX: DERIVATION OF EQUATIONS 3 
AND 4 FOR THE SSIST MODELS 

We first define the following four sets of  “model 
development” variables which will facilitate the 
understanding of  the development of  Eq. (3) and (4) for 
the SSIST/Reg model. Let: B = {Brj}, where Brj = 
beginning time of  the job in position j of  the sequence on 
machine r; C = {Crj}, where Crj = completion time of  the 

job in position j of  the sequence on machine r; SS = {SSrj}, 
where SSrj = setup time of  the job in position j on machine 
r; and TT = {TTrj}, where TTrj = processing time on 
machine r for the job in position j. These variables 
disappear from the final form of  Eq. (3) and (4) as shown 
below. 

In terms of  the decision variables and system 
parameters defined in Section 2, SSrj and TTrj may be 
expressed as follows: 

 

1

N

rj ri ij
i

SS S Z
=

= ∑  {j = 1, ..., N; r = 1, ..., M}         (A-1) 

 

1

N

rj ri ij
i

TT P Z
=

= ∑  {j = 1, ..., N; r = 1, ..., M}         (A-2) 

 
Two types of  constraints are first developed and then 

combined into a set of  equations.: (1) job adjacency 
constraints, in which, on each machine, job i must not be 
started until its predecessor has been completely processed 
and the machine has been set up to process job i; and (2) 
machine linkage constraints, in which a job i cannot be 
started on a machine j until that job has finished being 
processed on machine j − 1 and machine j has been set up 
to process job i. In other words, a feasible solution requires 
the satisfaction of  the following:  

 
1  Each machine r must be set up before a job i can be 

processed on it. Machine r may be set up for job i as 
long as job i’s predecessor job has finished processing 
on machine r, even if  job i is not ready to be processed 
on machine r (that is, job i is still being processed on 
machine r − 1).  

2  The job in position j must completely precede the job in 
position j + 1 for all M machines. That is, the beginning 
time of  the job in position j + 1 must not be earlier 
than the completion time of  the job in position j plus 
the setup time of  changing over from the job in 
position j to the job in position j + 1, on machine r. 
This requirement may be expressed as:  

 
,  1 ,  1rj r j r jC SS B+ ++ ≤                      (A-3) 

 
3  Each job must be completed on machine r before it can 

begin processing on machine r + 1. Thus the beginning 
time of  the job in position j on machine r + 1 must not 
be earlier than the completion time of  that same job on 
machine r. This may be expressed as:  

 
1,  rj r jC B +≤                    (A-4) 

 
4  A job cannot be split; once a job has started on a 

machine it cannot be interrupted until it is completed. 
Thus the completion time of  the job in position j on 
machine r equals its processing start time plus its 
processing time on machine r, as shown in the 
following:  
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rj rj rjC B TT= +           (A-5) 
 

Eq. (A-3) through (A-5) hold for each job in position j on 
machine r (j = 1, ..., N − 1; r = 1, ..., M − 1). 

In Eq. (A-3), the difference between the two sides of  
the inequality is the possible idle time of  machine r, Xr, j+1, 
before it starts processing the job in position j + 1. Thus 
Eq. (A-3) may be rewritten as:  

 
,  1 ,  1 ,  1 rj r j r j r jC SS X B+ + ++ + =                (A-6) 

 
For Eq. (A-4), the difference between the two sides of  the 
inequality is the possible idle time of  job j, Yrj, after that 
job finishes processing on machine r and before it begins 
its processing on machine r + 1. Eq. (A-4) may then be 
rewritten as:  

 
1,  rj rj r jC Y B ++ =                   (A-7) 

 
The processing time for the job in position j + 1 on 

machine r, TTr,j + 1, may be added to both sides of  Eq. (A-6) 
yielding: 

 
,  1 ,  1 ,  1 ,  1 ,  1 rj r j r j r j r j r jC SS X TT B TT+ + + + ++ + + = +      (A-8) 

 
But, from Eq. (A-5), the right hand side of  Eq. (A-8) is just 
the completion time of  the job in position j + 1 on 
machine r, so Eq. (A-8) may be rewritten as: 

 
,  1 ,  1 ,  1 ,  1 rj r j r j r j r jC SS X TT C+ + + ++ + + =            (A-9)  

 
Likewise, adding TTr + 1,j to both sides of  Eq. (A-7), then 
comparing its right hand side to Eq. (A-5), yields the 
following: 

 
1,  1,   rj rj r j r jC Y TT C+ ++ + =                   (A-10) 

 
Eq. (A-9) represents the usage of  machine r between the 
completion of  the job in position j on that machine and 
the completion of  the job in position j + 1 on that 
machine. Upon completion on machine r, the job in 
position j is transferred to machine r + 1. Machine r is 
setup for the job in position j + 1. Then, after a possible 
machine delay waiting for the job in position j + 1, Xr, j +1, 
machine r will process that next job, TTr, j +1.   

Eq. (A-10) represents the job in position j between 
completion of  processing on two successive machines. 
Upon transfer to machine r + 1, the job in position j may 
experience a delay, Yrj before it can begin processing on 
machine r + 1. Then this job must be processed on 
machine r + 1, TTr+1, j, to reach its completion on that 
machine. 

Next, consider Eq. (A-7) for the job in position j + 1 
which results in: 

 

,  1 ,  1 1,  1 r j r j r jC Y B+ + + ++ =                   (A-11) 
 
and Eq. (A-6) for machine r + 1, which results in: 

 
1,  1, 1 1,  1 1,  1 r j r j r j r jC SS X B+ + + + + + ++ + =         (A-12) 

 
The earliest time the job in position j + 1 can start 
processing on machine r + 1 is the maximum of: (1) 
completion time of  itself  (job j + 1) on machine r, Cr, j +1; 
and (2) the time when machine r + 1 is first available to 
begin processing job j + 1, (Cr+1, j + SSr+1, j+1). If  the 
completion time in condition 1 is earlier, then the job will 
have some waiting time, Yr, j+1, as shown in Eq. (A-11). If  
the completion time in condition 2 is earlier, then machine 
r + 1 will have waiting time, Xr+1, j+1, as shown in Eq. 
(A-12). 

Replacing the Cr, j+1 term in Eq. (A-11) with Eq. (A-9) 
results in: 

 
,  1 ,  1 ,  1 ,  1 1,  1 rj r j r j r j r j r jC SS X TT Y B+ + + + + ++ + + + =    (A-13) 

 
Likewise, replacing the Cr + 1, j term in Eq. (A-12) with Eq. 
(A-10) yields: 

 
1,  1,  1 1,  1 1,  1 rj rj r j r j r j r jC Y TT SS X B+ + + + + + ++ + + + =    (A-14) 

 
Since Eq. (A-13) and (A-14) both express the difference 

between the time the job in position j + 1 starts processing 
on machine r + 1 and the time the job in position j finished 
its processing on machine r, we may set these equations 
equal to each other, yielding: 

, 1 ,  1 ,  1 ,  1r j r j r j r jSS X TT Y+ + + ++ + + =  
   

1,  1,  1 1,  1rj r j r j r jY TT SS X+ + + + ++ + +                (A-15) 
 
The tight binding between each pair of  adjacent jobs and 
each pair of  consecutive machines represented by Eq. 
(A-15) is depicted in Figure A1. 

Eq. (A-15) may be rewritten as follows: 
 

,  1 1,  1 ,  1 1,  ( ) ( )r j r j r j r jSS SS TT TT+ + + + +− + −   

,  1 1,  1 ,  1( ) ( )  0r j r j r j rjX X Y Y+ + + ++ − + − =          (A-16) 
 

Finally, Eq. (A-1) and (A-2) are used to replace the SS and 
TT terms of  Eq. (A-16), and when like terms are 
combined, the result is the constraints represented by Eq. 
(3): 

 

1,  , 1 1,  ,  1
1 1

1,  1 ,  1

( ) (

) ( ) 0

N N

ri ri r i i j r i ij r j
i i

r j r j rj

S P S Z P Z X

X Y Y

+ + + +
= =

+ + +

+ − − +

− + − =

∑ ∑    

{j = 1, ..., N − 1; r = 1, ..., M − 1}                 (3) 
 

Effectively, several of  the constraints described above are 
combined into Eq. (3). 
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Now consider the development of  Eq. (4) which deals 
with the first job in the processing sequence. The earliest 
starting time for the first job in the sequence is 
immediately after the first machine has been set up. The 
starting time of  this first job on subsequent machines, 2 
through M, is determined by the maximum of  (1) the 
completion time of  this job on the previous machine, r − 1; 
and (2) the setup time on the current machine r. If  the 
completion time on the previous machine occurs first, then 
this first job has idle time Yr −1, 1 before it can proceed on 
the current machine r. Otherwise, machine r has idle time 
Xr1 while awaiting the first job to be completed on the 
previous machine. 

Using Figure A2, the following expression may be 
written to account for parallel segments of  the Gantt chart 
for the start of  the first job in the sequence on each of  the 

M machines: 
 

1 1 1 1 1,  1 1,  1 r r r r r rSS X TT Y SS X+ ++ + + = +  
{r = 1, ..., M − 1}                           (A-17) 
 
Eq. (A-17) equals the start time of  the job in the first 
position in the sequence for machines 2 to M. 

Eq. (A-1) may be substituted for the SS terms in Eq. 
(A-17), and Eq. (A-2) may be substituted for the TT terms. 
Rearranging and collecting similar terms results in Eq. (4):   

 

1,  1 1 1,  1 1
1

( ) ( )  0.
N

ri ri r i i r r r
i

S P S Z X X Y+ +
=

+ − + − + =∑  

{r = 1, ..., M − 1}  (4) 

 
Figure A1. Relationship between adjacent jobs and machines. 

 
Figure A2. Variables depicting the start of  the job in the first sequence position. 

 


