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Abstract— This paper presents an efficient
method for dealing with the problems of
topological observability in steady-state natural
gas transmission networks. In the practical
world, these type of instances are very large, in
terms of the number of decision variables. In this
paper, we present a study of the properties of gas
pipeline networks, and exploit them to develop a
technique that can be used to reduce significantly
problem dimension, without disrupting problem
structure. The correctness of this method is
established by the lemmas and theorems
provided in the text. The proposed method has
been successfully applied to a real-life gas
transmission network.

I. INTRODUCTION

As natural gas pipeline systems have grown
larger and more complex, the importance of
optimum operation and planning of these
facilities has increased. The investment costs
and operation expenses of pipeline networks
are so large that even small improvements in
system utilization can involve substantial
amounts of money.

The natural gas industry services include
producing, moving, and selling gas. Our main
interest in this study is focused on the
transportation of gas through a pipeline
network. Moving gas is divided into two
classes:  transmission and  distribution.
Transmission of gas means moving a large
volume of gas at high pressures over long
distances from a gas source to distribution
centers. In contrast, gas distribution is the
process of routing gas to individual customers.
For both transmission and distribution
networks, the gas flows through various
devices including pipes, regulators, valves, and
compressors. In a transmission network, gas
pressure is reduced due to friction with the
pipe wall as the gas travels through the pipe.
Some of this pressure is added back at
compressor stations, which raises the pressure
of the gas passing through them.

Depending on how the gas flow changes
with respect to time, we distinguish between
systems in steady state and transient state. A
system is said to be in steady state when the
values characterizing the flow of gas in the

system are independent of time. In this case,
the system constraints, particularly the ones
describing the gas flow through the pipes, can
be described wusing algebraic non-linear
equations. In contrast, transient analysis
requires the use of partial differential equations
to describe such relationships. This makes the
problem considerably harder to solve from the
optimization perspective. In fact, optimization
of transient models is one of the most
challenging areas of opportunity for future
research. In the case of transient optimization,
variables of the system, such as pressures and
flows, are functions of time. In this work, we
focus on steady-state gas transmission network
problems with the objective of minimizing the
number of measurement points.

Gas network topologies are in a relatively
well developed stage. This problem is
represented by a network, where arcs
correspond to pipelines and compressor
stations, and nodes correspond to their physical
interconnection points. The decision variables
are the mass flow rates through every arc, and
the gas pressure level at every node.

The main contribution of our work is to
provide a way to significantly reduce the size
of the problem instances at preprocessing
without disrupting problem structure. In fact,
our approach has been successfully
incorporated in recent work such as Wu et al.
[15], Kim [3], and Kim, Rios-Mercado, and
Boyd [4]. For a more complete review on
algorithms for pipeline optimization the reader
is referred to the work of Carter [1] and Rios-
Mercado [9].

The rest of the paper is organized as follows.
In Section 2, we introduce the problem and
present the mathematical formulation. This is
followed by Sections 3 and 4, where we
present the relevant results related to graph
theory and the pipeline network flow equations,
respectively. In Section 5, we develop the main
theoretical results about wuniqueness and
existence of solutions using techniques from
nonlinear functional analysis [11]. We
continue in Section 6 with the description of
the proposed network reduction method and
show how to apply it in the two basic cases of



network topologies. Simulation on the real-life
gas network is studied in section 7. Then we
conclude in Section 8.

II. MODEL DESCRIPTION

This problem involves the following
constraints:

(i) mass flow balance equation at each node;

(ii) gas flow equation through each pipe;

(iii) pressure limit constraints at each node;

(iv) operation limits in each compressor
station.

The first two are also called steady-state
network flow equations. We emphasize that
while the mass flow balance equations (i) are
linear, the pipe flow equations (ii) are
nonlinear; this has been well documented in
[14,15]. For medium and high pressure flows,
when taking into account the fact that a change
of the flow direction of the gas stream may
take place in the network, the pipe flow
equation takes the following form:

2 2 a
p; = pj=cyulu”, (1)
where p, and p, are pressures at the end
nodes of pipe (i, j) , u is the mass flow rate
through the pipe, o is a constant (@ = 1), and
the pipe resistance ¢, is a positive quantity
depending on the pipe physical attributes.

The steady-state network flow equations can
be stated in a very concise form by using
incidence matrices.Let us consider a network
with n nodes, [ pipes, and m compressor
stations. Each pipe is assigned a direction
which may or may not coincide with the
direction of the gas flow through the pipe. Let

Az be the nx/ matrix whose elements are

given by
1, if pipe j goes into node i;
a; =4-1, if pipe j goesinto nodei;and
0, otherwise.

Al is called the node-pipe incidence matrix.

Similarly, let 4,, be the 7 x m matrix whose

elements are given by
1, if nodeiis thedischarge
node of station k;
a; =<—1, if nodeiisthe suction
nodeof station k;and

0, otherwise.
A, is called the node-station incidence
matrix. The matrix formed by appending 4,, to

the right hand side of 4, will be denoted as A,

ie, A=(A4A4,) ,which is an nx(/+m)
matrix.

Letu=(u,,....u,) and V= (v,,...,v, )" be
the mass flow rate through the pipes and
stations, respectively. Let w=(u’,v’')". A
component U ;or V, is positive if the flow
direction coincides with the assigned pipe or
station direction, negative, otherwise. Let p; be

the pressure at node i, p=(p,,...,p,)" .
s =(5,,...,5,)" be the source vector, where

the source §;at node i is positive (negative) if

the node is a supply (delivery) node. A node
that is neither a supply or delivery node is

called a transition node and has S, equal to

zero. We assume, without loss of generality,
the sum of the sources to be zero:

isi =0 )
i=1

The network flow equations can now be
stated as the following:

{Aw =s o)
AIT = P(u)

Where P =, p), and
p(u) = (¢1 (ul),...,qﬁl (u,))T , with the pipe
flow equation at pipe J equal to

a

¢, (u;)=cu, ‘”f

III. GRAPH THEORY CONCEPTS

In this section we present some concepts
from graph theory that will be used to develop
our techniques. The results presnted here can
be found in most of the books on graph theory,
e.g. [2,5].

A graph G =(V ,E)is a structure consisting

of a finite set of elements V called vertices or

nodes and a set E of unordered pairs of nodes
called edges. A directed graph or digraph is
defined similarly, except that each edge is an
ordered pair, giving it direction from one node
to another. To make the distinction, we call the
ordered pair arc. For both graphs and digraphs,
an arc or edge from node 7 to node j is
denoted by (7, j) . An arc (i,i)is called a loop.
Throughout this work, we will make the
assumption that no loops are present. A walk
of a graph G is defined as a finite alternating
sequence of vertices and edges, beginning and
ending with vertices, such that each edge is
incident with the two vertices immediately



preceding and following it. A walk in which no
vertex appears more than once is called a path.
A path beginning and ending with the same
vertex is called a cycle. Similarly, in a digraph,
a directed walk is an alternating sequence of
vertices and arcs, where V,_,, e, ,V, being in
the sequence implies arc e, =(v,_,v,) . A
directed path is a directed walk in which no
vertex appears more than once, and a directed
cycle is a directed path beginning and ending
with the same vertex. A graph G is said to be
connected if there is at least one path between
every pair of vertices in G . A tree is a
connected graph with no cycles. A spanning
tree T of a graph G , is a tree consisting of all
the vertices in G . For a given spanning tree
T of a graph G, any edge in G which is not
in the tree T is called a chord. A basic result
from graph theory states that adding a chord to
a spanning tree 7 makes 7' no longer acyclic.
This cycle formed in T is called a fundamental
cycle.

Here are some basic results regarding
spanning trees and fundamental cycles of a

graph. Proofs of Theorems 1 and 2 can be
found in [2].

Theorem 1 Let 7 and e be the numbers of
vertices and edges, respectively, in a graph G .
Let T be a spanning tree of G . Then

(a) The number of edges in a spanning tree
T is n—1 , the number of chords
corresponding to the spanning tree 7 is
e—n+l.

(b) The number of the fundamental cycles
corresponding to the spanning tree 7' is
e—n+1. Every other cycle in Gis a linear
combination of the fundamental cycles.

Note that the set of fundamental cycles
corresponding to a given tree T is independent,
since each contains an edge not in any of the
others. Suppose G is a digraph with n vertices
and e arcs. The node-arc incident matrix A of
G is an n x e matrix, defined by

1, if arc jisincident out of vertexi;
)

0, otherwise.

By deleting one row from the matrix A, the
remainder matrix is called reduced incident

matrix, denoted by A ;> which is n — Iby e,
whose 7n—1 row vectors are linearly

independent. The vertex corresponding to the
deleted row is called reference vertex. The

a. =<-1, if arc jisincident out of vertexi;and

incident matrix of a digraph completely
determines the digraph. For digraph G there is
an associated undirected graph G', consisting
of the same set of vertices and edges, that is,
for each arc (i,j) in G there is an edge
(i,j)in G'. In other words, the undirected
version of G ignores the direction of the arcs.
Each cycle in G', after being arbitrarily
assigned an orientation, can be represented by
a vector whose components are 1,-1,0
according to whether and how the edge is
included in the circuit. A cycle matrix Bis a
matrix where each row (column) corresponds
to a cycle (arc) vector, and it is defined by
1, if cycleicontains arc j
and their orientations coincide;
bij =<-1, fif cycleicontainsarc j
but their orientations are opposite;and

0, otherwise.

As implied by Theorem 1, only e —n +1
fundamental cycle vectors with respect to a
spanning tree are independent. A cycle matrix

consisting of e—n+1 fundamental cycle
vectors is called reduced cycle matrix, and it is

denoted by B , which is (e —n +1)x e matrix.

Theorem 2 Let G be a digraph, 4, and

B ; be the reduced incident and cycle matrices,

respectively, using the same order of edges.
Then

T T
A;B; =B A, =0

IV. THE PIPELINE NETWORK FLOW
EQUATIONS

Now let us consider a gas pipeline network
subsystem which consists of nodes and pipes
only, that is with no compressor stations. We
arbitrarily assign a direction for every pipe and
view it as a digraph. Let G be such a digraph
with 71 vertices and e edges.Following notation

from Section 2, w=(W,,...,w,)" denotes the

flow vector with w; the mass flow rate

through the j th edge. The flow W is positive

if the directions of the flow and the edge
coincide, negative otherwise. Let

T
$=(8,...,5,) be the source vector

satisfying (2). Given that no compressor
stations are considered, the compressor flows

u ; can be ignored so that system (3) can now

be restated as:



Aw =s A
{Afpz - pw) @

In many network flow problems functions
{¢ ;} describing the relationship between arc
flows and node variables at end points of the
arc are nonlinear. In the case of gas

transmission networks, the most commonly
used functions are of the following form:

¢j(wj):cjwj‘wj , 1<j<d

with ¢, >0. In some cases, ¢f ’s could

also be of the form:
¢, (w,;) = cjwj‘wj
where ¢ >0 .

Now suppose a source vector § is given
satisfying the zero sum condition (2) and a
reference vertex has been selected whose
pressure is also given (which is a necessary
condition to solve system (4)). The number of
the unknowns is e+ #n—1 and the number of
flow  equations is e+n . Since
rank(A)=n—1 , only n—1 node flow

a

, 1<j<d

balance equations are linearly independent. Let
A, be the reduced incident matrix with
respect to the selected vertex; let B ’ be the
reduced cycle matrix with respect to some
spanning tree.  Since BfAT =0 (from

9,Theorem 2), system (4) is equivalent to:

A,w=s,
B,g(w)=0 )
A'p? = p(w)

Where 8, is an (n—1) -vector formed by

removing from S the source term
corresponding to the selected reference vertex.
The advantage of system (5) is that the first
two sets of equations:

Afw:sf
B, g(w)=0

contain only the flow vector w . Notice that
system (6) consists of e equations and
eunknowns. If it has a unique solution, the
flow vector w can be solved separately from
the pressure vector p, and the pressure vector

(6)

p can be directly computed from the third

equation of system (5) if the pressure at a
reference vertex is given. We now address the
question on whether system (6) has a unique
solution.

V. UNIQUENESS AND EXISTENCE OF
THE SOLUTION

In this section, we show that system (6) has
a unique solution. A direct corollary of this
result is that system (4) has a unique solution if

the source vector § . and the pressure value at

a reference node are given. We begin with
some definitions. Let H be a Hilbert space

with a scalar product (.,.) , and let "”

denote the associated norm, i.e. ||x|| =4/(x,x)
forany xe H .

Definition 1. A mapping ¢: H — H is said
strongly monotonic if there exists a constant
a > 0, such that, for every x,y € H we have

((x)=d(y),x—y)2a(x-y,x-y)
Definition 2. A mapping ¢: H — H is said
strictly monotonic if for every x,y e H we
have

(P(x)—p(»),x—y)=20
and equality holds if and only if x =y .

Definition 3. A mapping ¢: H — H is said
to be a basin if for every x, € H , the set
X, ={xeH:($(x)x—x,)<0}

is bounded.

Now we prove some basic results related to
the above concepts.

Lemma 1 If ¢:H — H is strongly

monotonic, ¢ is a strictly monotonic basin.

However, a mapping ¢ that is a strictly

monotonic basin is not necessarily strongly
monotonic. Here is an example.

Lemma 2 Let H = R with the Euclidean
scalar product, where d is a positive integer.

Let ¢: R — R’ be a mapping as follows:
for every X =(x,,X,,...,x,)" € R’,

¢(X) = (¢1 (x1 ), ¢2 (xz ): SRR ¢d (xd ))T

where
¢, (x;)=cx, ‘xj

with ¢; >0 and @ >0 .Then @ is a strictly

a

, 1<j<d

monotonic basin.

Remark: ¢ is not strongly monotonic if
a>0.If a =0, we obtain the following.

Corollary 1 The identity function
¢: R* >R, ¢(x)=x is a strictly
monotonic basin.

The following lemma can be found in [11].



Lemma 3 Let H be a Hilbert space. If
¢:H —>H is continuous and strongly

monotonic, then ¢ maps H onto H .

Let >0, t>0, be two integers, and
d=r+t. We say an rxd matrix 4 and a
t x d matrix B are perpendicular to each other
if they satisfy the following hypothesis.

Hypothesis P.

1. rank(A) =r,rank(B)=t.

2. AB" =BA" =0

Theorem 3 (Uniqueness) Let matrices A
and B be perpendicular to each other. Suppose

¢ : R* > R%is strictly monotonic, then, for

every 8§ € R” ,the solution to the system of

equations
Aw =s
(7
Bp(w)=0
is unique.
Lemma 4 Suppose ¢: R — R‘ is
continuous and strongly monotonic. Then, for

every s € R ,system (7) has a solution.
Theorem 4 Let matrices 4 and B be
perpendicular  to each other. Let

¢: R — R’ be continuous. Suppose
(i) @ is strictly monotonic;
(i) ¢@ is a basin.
Then system (7) has a solution for

everyse R’ .
Corollary 2 System (6) has a unique

solution for every s, € R,

Systems of nonlinear equations can have
very strange behaviors. Even a single
nonlinear equation could have no solution or
more than one solution. Interestingly, some
systems of nonlinear equations which arise
from industrial and engineering problems have
a unique solution as do (6) and (7) proposed in
this paper.

For gas pipeline network flow problems, the
presented result is quite interesting itself. One
additional fact is that, since the function ¢

involved in gas pipeline network problems is
monotonic, solving the system (6) by
Newton’s method is very stable, fast, and
accurate. These facts lead us to introduce the
Network Reduction Method for networks
consisting of nodes, pipes, and compressor
stations.

We will show in the next section that this
method can greatly reduce the size of the

problem, without modifying its mathematical
structure.

VI. THENETWORK REDUCTION
METHOD

The main result obtained in the previous
section is that, when all the sources (that is, the
mass flow rates at all the nodes of the network
going into or out of the network) are given, all
the flows in the pipes are completely
determined, while the pressures at the nodes
can be determined if the pressure at one
(reference) node is given. It must be pointed
out that this result is based on two facts:

1. Each node has a mass flow balance
equation.

2. Each pipe has a pipe flow equation
defining the relation between the flow rate and
the pressures at the two end nodes.

This result is valid in networks consisting of
pipes only. Let us take a step further and
consider now a network consisting of pipes
and compressor stations too. The mass flow
balance equations must still be satisfied at each
node, and a pipe flow equation must be
satisfied at each edge representing a pipe;
however, for each edge representing a station
there is no equation relating the flow rate
through the station and the pressures at its
suction and discharge sides. Flow rate, suction
pressure, and discharge pressure of a station
are actually independent of each other, and
there are only certain inequalities these
variables must satisfy. Hence, the result
obtained in the previous section can not be
directly applied to such networks. In this
section, we will introduce the Network
Reduction Method for networks consisting of
nodes, pipes, and compressor stations. In the
sequel, we refer to the latter simply as
“stations.”

Let us first start by introduing the concept of
a reduced network. By removing all the
stations’ arcs from a network, which consists
of nodes, pipes, and compressor stations, we
are left with several disconnected components,
each of them called a subnetwork, consisting
of only nodes and pipes. By construction, there
are no stations in any subnetwork. On the other
hand, if we view each subnetwork as a single
(big) node for the network, i.e., shrinking each
subnetwork to a node, and placing back the
compressor arcs we had previously removed,
we get a new network which consists only of
the (big) nodes, each representing a
subnetwork, and the stations. There are no
pipes in this network because all the pipes are
encapsulated in the (big) nodes. This new
network is called a reduced network (where
each node represents a subnetwork, and each



edge represents a station). It is easy to see that
there is a unique (connected) reduced network
associated to a given (original) network. The
structure of the undirected graph associated
with the reduced network can be either a tree
or a graph with cycles, depending on the
configuration of the compressor stations in the
network.

For real-world instances of pipeline
networks, we have found that the topology of a
reduced network is much less complicated than
that of the original network. Although a
network may have a number of cycles,
especially cycles in pipes, its associated
reduced network is, most of the time, a tree.
Even if the associated reduced network is not a
tree, the number of cycles in the reduced
network can be significantly less than that in
the original network. We distinguish two cases
in terms of the network topology.

VLI. CASE 1: REDUCED GRAPHIS A
TREE

In this section we assume that the reduced
graph is a tree. In this case, since each node in
the reduced network represents a subnetwork,
we can define the source value at this node as
the sum of the source values at all the nodes
included in this subnetwork. In this sense, the
sources at all the nodes in the reduced network
are fixed. Since the reduced network is a tree,
all the flow rates through the edges of the
reduced network are uniquely determined (by

Corollary 2, with B =0). Since each edge in
the reduced network represents a station in the
original network, it means that the flow rates
through all the stations are known.

Now let us look at the subnetworks. We can
see that, for each subnetwork, the sources at all
the nodes, including the nodes connecting to
stations are all known. By Theorem 4, we
conclude that the flow rates through all the
pipes in the subnetwork can be uniquely
determined. Moreover, the pressures at all the
nodes in the subnetwork are uniquely
determined by the pressure at one node, the
reference node. These pressures will also be
increased or decreased as the pressure at the
reference node is increased or decreased,
respectively. Hence, we have the following
fundamental theorem of the network reduction
method.

Theorem 5 Suppose that
(1) The pipeline network consists of only
nodes, pipes, and stations;

(ii) the sources at all the nodes are given; and
(iii) the associated reduced graph is a tree.

Then
1. Flow rates through all the pipes and stations
are known.

2. For each subnetwork, pressure p at any

node is related to the pressure p, at a reference

node by
2 2
p —p.=c
Where
o
Cc= ZCjuj‘uj
jeJ

is a constant, where J is an index set of pipes
in a path connecting the node and the reference

node, ¢ /.and « are constants, U /.is the flow

rate in the j th pipe which is known.

Note that the constant ¢ is independent of
the selection of the path because the flow rate

u; ’s are solved from the equations such that

o
along any cycle

summation ZI/EJ C ju J ‘u J

in a subnetwork is zero. Hence, if a network is
divided into b subnetworks, the total number
of independent variables in the network is b,
i.e., the pressure variables  p at the

b reference nodes.

In this case, the number of measurement
points is equal to the number of subnetworks,
since we need to know the pressure value at
the reference nodes.

VLII. CASE 2: REDUCED GRAPH HAS
CYCLES

Since the reduced network is a digraph with
cycles, the flow rates cannot be uniquely
determined, although the network reduction
method can still be successfully used. In this
case, the mass flow rate v through the stations
satisfies a simple system of linear equations:

Av =8, (8)

Where 4 is the node-edge incidence
matrix for the super-network and S is the
vector of sources at the nodes in the reduced
network. The i th element of S is the sum of
the sources at all the nodes in the I th
subnetwork.

Theorem 6 The number of independent
variables in system (8) is equal to the number
of fundamental cycles in the associated
reduced network.

Therefore the number of measurement
points, we need, is equal to the number of
fundamental cycles. Also it is necessary to
have one measurement point for each reference
node in each subnetwork. So the total number
of measurement points is the number of
fundamental cycles plus the number of
subnetworks in the reduced graph.



VII. SIMULATION RESULTS

The algorithm is simulated for data's of gas
transmission network in Belgium.
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Figure 1: Schematic Belgium gas network

We can see that, for this real-life network,
the reduced graph has one cycle. So we need
one measurement point for one of the
compressor stations. Also the reduced graph
has 3 subnetworks so we need 3 measurement
points for 3 reference nodes, each of them for
one subnetwork.

VIII. CONCLUSIONS

We have proposed a reduction technique for
gas pipeline optimization problems. The
justification of the technique was based on a
novel combination of graph theory and
nonlinear functional analysis. The reduction
technique can decrease the problem size by
more than an order of magnitude in practice,
without disrupting its mathematical structure.
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