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1 INTRODUCTION

PREFACE

In the classical production line only products with the same op-

tions were processed at once. Products of different models, pro-

viding distinct options, were either processed on a different line or

major equipment modifications were necessary. For today’s pro-

duction lines, this is no longer desirable and more and more rise

the necessity of manufacturing a variety of different models in the

same line. Mixed model production lines consider more than one

model being processed in the same production line in an arbitrary

sequence. Setup time/cost then becomes relevant, resulting in an

additional time/cost, each time a model change occurs.

Procedures, which sequence products in optimal order, can min-

imize considerably the sum of setup time/cost. Arrangements,

taking into account the possibility of resequencing the products

within the line, are even more convincing. Buffers can be used to

let jobs bypass the buffered jobs, resequencing takes effect.

1 INTRODUCTION

A production line structured as a flowshop requires all jobs (products) to

visit the workstations in the same sequence. A conveyor belt transports

the jobs past the fixed stations having designated operators. The reverse

arrangement would also be possible in which the operators move from one job

to the next, this however is more common in production lines with products

having large dimensions and extensive weight. The current market demands

greater flexibility and variety of products together with the reduction of life

cycles. This leads to the use of multi model or mixed model production

lines. In the multi model production the products form lots of the same

model, whereas in the mixed model production the job sequence may be

arbitrary. The model mix may be as simple as providing various options for

a basic product.

Each station of the production line performs different tasks. The assignation

of these tasks to the stations, subject to technological precedence relations,

is called the line balancing problem. The process of balancing the load

results in the design of the production line, usually implying the minimiza-
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1 INTRODUCTION

tion of the station number and the determination of a cycle time, obtained

by calculating, e.g., an average of the task-times, necessary to assemble

the various models. The balancing procedure in many cases results in the

prevention of the occurrence of bottlenecks so that the final production line

will not experience stoppage and unnecessary inventory will not accumulate.

Studies on the production line balancing problem are numerous and may be

object to various criteria like cost-oriented or profit-oriented approaches, as

described in the survey of Becker and Scholl, 2003, and in Scholl, 1995. The

survey of Erel and Sarin, 1998, explains different measures for balancing

problem with respect to its complexity; furthermore, it gives an extensive

classification with related solution procedures, such as heuristics as well as

optimum seeking algorithms. Further comprehensive studies are found in

Ghosh and Gagnon, 1989.

Once the line is balanced and the design of the line is obtained, it is necessary

to achieve a reasonable, if not optimum, order for the jobs to be processed

consecutively. Most of the existing literature mentions the optimization of

line balancing and job ordering in a consecutive order and therefore focus on

one of the two. Kim and Kim, 2000, present a genetic algorithm, optimizing

the two at the same time. It has to be mentioned that in a productive

industry it actually makes sense having the two problems separated. It

would be very inefficient if a minor change in demand results in a new order

and also in the re-assignation of the tasks to the stations.

Within the problem of determining the order of the jobs two confusing terms

are used by various authors; sequencing and scheduling. We assume that

the sequencing problem determines an appropriate order for the jobs to

be processed within, e.g., the shortest possible time called makespan, used

e.g. by Bard et al., 1992, Bolat, 1994 and Lahmar et al., 2003. Whereas

we assume that solving the scheduling problem results in prioritizing the

order of the jobs due to resource usage and due-date-limits of the jobs, see

for example Sun et al., 2003, for a survey of static scheduling problems.

Due to the fact that the sequencing problem also results in a schedule for

the jobs on the stations, many authors use the term scheduling instead of

sequencing. The work of Beaty, 1992, highlights that the two problems are

either intimately tied together or irrelevant to each other and many times are

used interchangeably. In order to clarify the topic, the author also discusses

various combinations of the two.
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2 SEQUENCING IN FLOWSHOPS

The present document discusses solution techniques for the sequencing prob-

lem of mixed-model flowshop productions. Such type of production line is

found in an increasing number in real production industry, resulting from

the increased necessity of customer orientated product spectrums. This im-

plies that orders are no longer accumulated to lots of the same models and

then stored until a customer orders the product of this exact model, but

are rather produced on short notice demand in production lines allowing

the possibility of producing various models at the same time. The great

majority of published research done in this field limits the solutions to per-

mutations sequences where the order of jobs is determined before the jobs

enter the production line and maintain unchanged until the end of the line.

Following the introductory chapter, the general structure and characteris-

tics of the sequencing problem in mixed model flowshops is presented in

chapter 2, also discussing problems that consider setup time and setup cost

whenever a model change occurs at a station. Chapter 3 is devoted to

discussing the challenges that arise in flowshop problems that consider rese-

quencing of products rather than permutation sequences. Chapter 4 deals

with the difference between static and dynamic demands. In chapter 5 a

short summary of optimization methods is given and finally in chapter 6 a

summary of the flowshop with resequencing considerations is given.

2 SEQUENCING IN FLOWSHOPS

The sequencing problem in flowshops appear when variations of the same

basic product are produced in the same production line. These variations

imply that the processing times on the individual stations differ, dependent

on the model to be processed. This type of problem is called the mixed model

flowshop and is defined by various parameters which reflect the complexity

of the possible layouts and the different operation modes of the production

line. This chapter of the document gives an overview of the nomenclature

of common parameters, the diversity of flowshops presented in the litera-

ture, common objective functions and finally characteristics of sequencing

problems of flowshops.

3



2 SEQUENCING IN FLOWSHOPS

2.1 Definition of classical flowshop

The sequencing problem in the classical mixed model flowshop consists in a

set of n jobs (J1, J2, ..., Jj , ..., Jn) which have to be sequenced on m stations

(I1, I2, ..., Ii, ..., Im), arranged in series. Each job has m sets of operations

and requires its first set of operations on station 1, its second on station

2, and so on. The set of sequences Π (Π1, Π2, ...,Πi, ...Πm) describes the

order in which the jobs are processed on the m stations; in a permutation

flowshop the sequence Π of jobs in station i is the same for all stations,

i.e., Π1 = Π2 = ... = Πi = ... = Πm.

Furthermore, the processing time pij of job j on station i is known and

constant. The time job j enters the system is called start time Sj , similarly,

the time job j exits the system is called completion time Cj . If setup

time is concerned, an additional time stfgi may occur, necessary to change

the setup of station i, in order to be able to process job j + 1, which is of

model g, after job j, which is of model f . The setup cost scfgi is defined

respectively. An extensive survey on setup considerations is presented by

Allahverdi et al., 1999. Due to additional complexity most algorithms do

not consider setup-time nor -cost, assuming that setup-time/cost is sequence

independent and can simply be added to the processing time/cost. Another

simplification is used by algorithms for batch processing which pool jobs of

the same model and process them in lots.

2.2 Nomenclature of parameters for flowshops

The nomenclature presented here is according to the nomenclature found

in the literature, however, the terms used in the literature not always are

coherent or unique. In order to prevent misunderstanding and improper use,

the nomenclature used here is given.

Pinedo, 1995, arranges these parameters into a triplet α|β|γ that helps clas-

sifying sequencing and scheduling problems. The triplet determines the spe-

cific problem with α describing the station environment, β providing details

of the processing characteristics and constraints and γ containing the objec-

tive to be minimized. The first and the second field usually have one entry

and the third various or none. The most relevant parameters for flowshop

sequencing are presented at next:

4



2 SEQUENCING IN FLOWSHOPS

Task t: Non-divisible activity which is performed in either station. The

balancing problem solves the problem of assigning tasks to stations and

therefore often is called the assignment problem. In the Sequencing problem

this task assignation is already performed and only stations are considered.

Job j: A part, subassembly or assembly, processed by a station is called

job. In a mixed model production line the jobs belong to different models

which include different processing times at the stations, depending on the

model type. The number of jobs to be processed is n.

Station i: One or more tasks may be assigned to station i. In the classical

flowshop problem m stations are aligned in series and all jobs j have to pass

the stations in the same order. The length of station i is Li. A station may

be open or closed, depending on whether or not the operator working in it

is allowed to cross its boundary.

Operation: Processing of a job in a station is called operation. This oper-

ation can include various performed tasks at one and the same station and

is determined by the processing time pij .

Processing time pij : Also called assembly-time, is the time that job j

maintains at station i while being processed. Due to the nature of a flowshop,

job j that is not processed at station i has to pass this station with a

processing time equal to zero.

Preemptive/Nonpreemptive: Preemptive operation means that process-

ing times may be interrupted and resumed at a later time, even on another

station. Furthermore an operation may be interrupted several times. If

preemption is not allowed, the operation is called nonpreemptive.

Setup time stfgi: Setup time is concerned if an additional time appears to

change the setup of station i, in order to be able to process job j+1 which is

of model g after job j which is of model f . If the setup time is independent

of the model, it can be simply added to the processing time.

Setup cost scfgi: In a similar way, setup cost is concerned if an additional

cost appears to change the setup of station i, in order to be able to process

job j + 1 which is of model g after job j which is of model f . If the setup

cost is independent of the model, it can be simply added to the processing

cost.
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2 SEQUENCING IN FLOWSHOPS

Start-time Sj : The time job j enters the system is called start-time.

Completion-time Cj : The time job j exits the system is called completion-

time and is the completion time on the last station on which it requires

processing.

Demand D: The demand describes the total volume of n jobs to be pro-

cessed. In the scheduling problem the individual jobs can furthermore be

specified by start-date and due-date. These values describe the earliest pos-

sible point of time to start working on a particular job and when the finished

products has to be delivered to the customer. In order to fulfill the due-

dates a penalty may be applied for delivering too early or too late. In the

sequencing problem it is frequent to release customer orders to production

once a certain number of jobs has been accumulated, and then sequence and

produce these orders together as a lot, see for example Burns and Daganzo,

1987. The demand in this case is static and only depends on the volume of

jobs and the objective usually is to minimize the processing time to complete

the entire order, called makespan.

Model M : In the mixed model flowshop several variations, called models,

of the same basic product are manufactured. The difference from one model

to another may be due to an option that is not applied to all models or

likewise in a variation of an option. Therefore the mixed-model sequencing

problem consists of the determination of the consecutive order of the models.

Mi determines the model of job i. Minimal-Part-Set (MPS): The MPS is

denoted by the vector d(d1, d2, ..., dk) which represents a product mix, such

that dM = DM/h. DM being the number of units of model type M which

needs to be assembled during an entire planning horizon and h being the

greatest common divisor of D1, D2, ..., DM . Obviously, h times repetition of

the MPS sequence meets the total demand. With the MPS the number of

possible sequences is reduced to D!/(d1! ·d2! · ... ·dk!), Korkmazel and Meral,

2001. The MPS is considered to be a good choice, however, Klundert and

Grigoriev, 2001, show that many times reducing the sequence to the one of

the MPS does not result in the optimal sequence.

Launch-interval λ: The time between two consecutive jobs entering the

production line is called launch-interval. Usually it is a constant value, also

called cycle time. A constant launch-interval results in a fixed production

rate (production quantity per unit of time).
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2 SEQUENCING IN FLOWSHOPS

Job sequence Πi: The job sequence defines the order of jobs at station i.

A job sequence that is the same for all stations is called a permutation se-

quence. In flowshops the station sequence, the order in which the individual

jobs visit the stations, is the same for all jobs.

Machine breakdown/maintenance: Machine breakdown/maintenance

describes the state of a station which does not permit processing of any

job due to failure or failure prevention. In real production systems the

breakdowns occur in a stochastic way and can be simulated using the values

Mean-Time-Between-Failure (MTBF) and Mean-Time-To-Repair (MTTR).

Precedence: The precedence gives a dependency of jobs in respect to the

processing. A job j is said to be predecessor of job k if job j has to be

processed before job k. An immediate predecessor then is a job that has to

be processed immediately before another job.

Rework operations: The detection of defective jobs may cause either

rework operations or removal of the job from the line. The occurrence of

defective jobs in the production is of probabilistic nature.

Paced/unpaced production line: In a paced production line the mechan-

ical material handling equipment like conveyor belts couple the stations in

an inflexible manner. The jobs are either steadily moved from station to

station at constant speed or they are intermittently transferred after pro-

cessing. The available amount of time for the operation is the same in

both cases. In the unpaced line, in contrast, the stations are decoupled by

buffers. In a specific case this buffer stores jobs that can not be passed to

the downstream station which is still occupied with processing the previous

job.

Deterministic-stochastic models: The deterministic model is charac-

terized by the fact that the elements, e.g. processing-time, do not involve

variation and that the consequences of any given decision can be predicted

in a precise manner. The stochastic model is characterized by its explicit

recognition of variation and uncertainty, which could exist in one or more

of the elements with known probabilistic behavior. This may result, for

example, in a variation of the operators performance.

Buffer: Buffers were originally introduced between two consecutive stations

to decouple them in order to avoid blocking and starving. Buffers are of-

ten located before and after bottleneck stations. The reason is that this
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2 SEQUENCING IN FLOWSHOPS

already critical part of the production usually is the limiting section. In au-

tomobile productions buffers of enormous dimensions can be found, which

in principle decouple the main successive production sections. This buffer

is, furthermore, used to reorder the jobs, available in the buffer, on a large

scale.

Static/dynamic demand: A static demand refers to the fact that the

entire demand necessary to produce in a time window is produced in an

accumulated lot, known beforehand. Whereas a dynamic demand implies

that the customer orders arrive continuously or at least are not completely

determinable beforehand.

2.3 Objective Functions

Within the sequencing problem of mixed-model production lines a variety

of objective functions are to be found, the most common being time and

cost orientated objectives. As a basic principle of optimization, the con-

sidered solutions are part of a set of feasible solutions and with the use of

additional objectives lead to the optimal solution. For example, the method

proposed by Dar-El and Cucuy, 1977, minimizes the overall line length and

first determines the feasible solutions that result in a non-idle-time schedule.

2.3.1 Time orientated objectives

Makespan Cmax: One of the most common objective functions in sequenc-

ing is to minimize the maximum completion time necessary to process the

entire demand, called makespan or total production time. The makespan

optimization generally ensures high utilization of the production resources,

early satisfaction of the customer demand and the reduction of in-process

inventory by minimizing the total production run.

Makespan:

max{Cj |j = 1, ..., n}

Maximum flow time Fmax: The minimization of the flow time leads to

stable and even utilization of resources, rapid turn-around of jobs and the

minimization of in-process inventory. French, 1982, mentions that in the
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2 SEQUENCING IN FLOWSHOPS

case where all release dates are zero, Cmax and Fmax are identical. The

weighted flowtime includes a weight related to the station.

Maximum flow time:

max{Cj − Sj |j = 1, ..., n}

Weighted flow time:

n∑

J=1

ωj(Cj − Sj)

Mean flow time F : Allahverdi, 2003, highlights and proves with a simple

example that that the maximum flow time and the mean flow time are of

different kind.

Mean flow time:

n∑

j=1

(Cj − Sj)/n

Weighted mean flow time:

n∑

j=1

ωj(Cj − Sj)/n

Setup time: In a mixed model production, setup time stfgi may occur

when at station i a job j + 1 of model type g follows job j of model type f .

Minimizing total setup time, furthermore, tends to decrease the total flow-

time.

Setup time:

n∑

j=1

stfgi

Idle time: Idle time Iij at station i occurs when an operator is kept waiting

for job j. This may be caused by a job that has not yet arrived, or because

an auxiliary operator is still occupied with the job. When setup time occurs,

that is separable from the processing time, the operator can benefit from

this idle time in order to perform the necessary changes for the next job to

9



2 SEQUENCING IN FLOWSHOPS

be processed. French, 1982, highlights that the mean and the maximum for

idle time are taken over the stations rather than over the jobs.

Idle time:

m∑

i=1

n∑

j=1

Iij

Mean idle time:

m∑

i=1

n∑

j=1

Iij/m

Utility time: Utility time Uij at station i occurs when an operator has to

continue with job j + 1 before finishing with job j. In this case an auxiliary

operator finishes the job; the time the auxiliary operator requires is called

utility time. As well as the idle time, here the mean is taken over the

stations. The minimization of idle and utility time is, for example, applied

by Sarker and Pan, 2001, varying the station length and using individual

weights for the calculation of idle and utility time.

Utility time:

m∑

i=1

n∑

j=1

Uij

Mean utility time:

m∑

i=1

n∑

j=1

Uij/m

Deviation: In general for all of the above mentioned time oriented objec-

tives it is possible to use the deviation, or the squared deviation, over stations

or over jobs, in order to equalize the deviation and to avoid solutions that

provide extreme values for single stations or jobs, see e.g. Bukchin, 1998.

Regular/non-regular objective: Baker, 1974, explains that an objec-

tive function is called regular objective if the function increases only if at

least one of the completion times of the jobs increases. Surveys on non-

regular objective functions are presented by Baker and Scudder, 1990, and

Raghavachari, 1988.
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2 SEQUENCING IN FLOWSHOPS

2.3.2 Cost orientated objectives

Line length: Kim et al., 1996, study the problem of minimizing the overall

length of the production line. The production line in study contains hybrid

stations, being a mixture of open and closed stations.

Line length:

m∑

i=1

Li

Setup cost: The occurrence of setup cost may lead to the objective of

minimizing the total setup cost to keep the production costs small. Setup

cost scfgi may occur when at station i a job j + 1 of model type g follows

job j of model type f .

Setup cost:

m∑

i=1

scfgi

2.3.3 Combined objectives

In the literature, the use of individual objective functions, as mentioned

above, as well as combinations can be found. As an example for combined

objectives in sequencing problems Allahverdi, 2003, uses the bicriteria of

makespan and mean flowtime, whereas Bard et al., 1992, uses makespan

and line length as bicriteria for their algorithm.

2.4 Diversity of flowshops

Once the flowshop production line is designed (balanced), the problem of

ordering the jobs surfaces. If release-dates and due-dates exist, the problem

is called the scheduling problem, otherwise it is referred to as the sequencing

problem. Next to the classical flowshop exist a variety of the same. This

results from the manifold problems, that can be found in real life production

systems and their specific products. In chemical processing, for example, it

is common practice that once a job is started it can not be interrupted and

11



2 SEQUENCING IN FLOWSHOPS

therefore leads to a no-wait flowshop. The more common variations are

highlighted as follows:

Non-permutation flowshop (classical): One of the pioneers who men-

tion the flowshop problem is Johnson, 1954. In the classical flowshop m

stations are arranged in series, according to the technological sequence of

the operations. A set of n jobs has to be processed on these stations. Each

of the n jobs has the same ordering of stations for its processing sequence.

Each job can be processed on one, and only one station at a time and each

job is processed only once on each station. Furthermore each station can

process only one job at a time. Jobs may bypass another job between two

stations. The problem consists in finding a job sequence for each station i.

The case with m = 1 is called the single station case.

Buffers, installed between the stations are generally used for queuing reason

in order to decouple the individual stations from each other and prevent

blocking of a station; depending on the type of buffer, they offer the possi-

bility of changing the sequence downstream of the buffer.

Permutation flowshop: Here the solutions are restricted to job sequences

Π1, ...,Πn with Π1 = Π2 = ... = Πn, that is, the sequence on the first

station is maintained for all stations in the flowshop. A set of permutation

sequences is denoted dominant if no better sequence can be found than the

best permutation sequence. This for example occurs in the no-wait flowshop.

Zero-buffer and no-wait flowshop: These two variations of the classical

flowshop do not allow the jobs to form queues between the stations. The first

case is with buffers of zero capacity. In this case a job j finishing on station i

cannot advance to station i+1 if there is still a job being processed. Station

blocking of station i is the result. The second case, described by Aldowaisan

and Allahverdi, 1998, is more restrictive. Once a job begins its processing

on station 1, that job must continue without delay to be processed on each

of the m stations. Here only sequences are feasible which do not result in

blocking of any station.

No-idle flowshop: This constraint implies that each station, once started

with processing, has to process all operations assigned to it without interrup-

tion. As mentioned by Cepek et al., 2002, a real life situation can be found,

for example, if machines represent expensive pieces of equipment which have

12



2 SEQUENCING IN FLOWSHOPS

to be rented only for the duration between the start of its first operation

and the completion of its last operation.

Flexible/hybrid/compound flowshop: Another variation of flowshops

mentioned in the literature is the one in which parallel stations exist, see e.g.

Li, 1997, Gendreau et al., 2001, Azizoglu et al., 2001, Riane et al., 1998 or

Sun et al., 2003. This type of flowshop is named, by the majority of authors,

flexible, hybrid or compound flowshop. The parallel station reduces cycle

times needed for an operation at a station. Since in the mixed-model case the

processing time of a station is dependent on the model, it gives the possibility

of one job overtaking its predecessor. For this type of flowshop basically two

setups exist: identical parallel stations and non-identical parallel stations.

2.5 Characteristics of flowshops

The flowshop is a widely studied problem. Within these studies not only the

basic arrangement is taken into account but furthermore simplified setups,

the most common being the permutation flowshop or the reduction to single

station. Also variations were studied, amongst these the hybrid or flexible

flowshop, providing stations with parallel stations. In this section some

properties of flowshops, derived from certain setups, are presented.

The classical flowshop permits the sequence of the jobs to change after each

station which then leads to a total number of sequences being (n!)m. For

the simplified case of the permutation flowshop, in which the jobs have a

unique sequence for all stations, the number of sequences is reduced to n!.

In the single station flowshop only permutation sequences are possible and

the same makespan is achieved for all sequences. As shown by Baker, 1974,

the mean flow time is minimized by the shortest-processing-time rule (SPT)

and the weighted flow time is minimized by shortest-weighted-processing-

time rule (SWPT). Furthermore, in the flowshop a common practice is to

first determine the bottleneck station and consider it as being the only sta-

tion.

The single station flowshop considering sequence dependent setup time cor-

responds to what is usually called the travelling salesperson problem (TSP).

Allahverdi et al., 1999, explains that each city correspond to a job and the

13



2 SEQUENCING IN FLOWSHOPS

distance between cities corresponds to the time required to change from one

job to another.

Johnson, 1954, considers a two and three stations flowshop problem (F2||Cmax

and F3||Cmax) with makespan objective. His studies lead to the conclusion

that in the two and three stations case the optimum permutation sequence

is dominant. Also an exact solution for the two stations case is presented,

namely SPT(1)-LPT(2). For the three stations case this method only finds

the optimal solution if station two is dominant. That is, all processing times

on the second station are larger then the largest on the two other stations.

Gupta and Reddi, 1978, proposes improved dominance conditions that are

not limited to the dominance of the second station. Moreover, exist various

heuristics that take advantage of the Johnsons rule in order to solve larger

problems, see for example the CDS heuristic of Campbell et al., 1970 or

Riane et al., 1998. Péridy et al., 1999, points out that the dominance of

the permutation sequence also holds if on the first station exist precedence

relations of jobs.

Baker, 1974, explains certain properties of the classical flowshop. With re-

spect to any regular objective function, it is sufficient to consider only sched-

ules in which the same job sequence occurs on the first two stations. Fur-

thermore, with respect to the makespan objective, it is sufficient to consider

only schedules in which the same job sequence occurs on stations (m − 1)

and m. Hence, for the makespan problem, it is sufficient for the same job

order to occur on stations (m − 1) and m, so that (n!)m−2 schedules con-

stitute a dominant set for m > 2. Thus, for a three-station flowshop with

makespan minimization, the optimal sequence is a permutation sequence.

For the case m > 3, Potts et al., 1991, determined the ratio, for m = 2 · n,

between the best permutation sequence and the optimum sequence being

greater than 1/2 · ⌈√m + 1/2⌉. For a four station flowshop the difference is

already 50%.

Pinedo, 1995, discusses and proofs that inverting the station sequence and

the job sequence j1, ...jm of a permutation flowshop with unlimited inter-

mediate storage to jm, ...j1 results in the same makespan. He presents a

mixed integer program (MIP) for the classical flowshop of m stations with

makespan objective and permutation sequences, known as Fm|prmu|Cmax,

and proves that the classical flowshop with makespan objective and more
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than two stations is strongly NP-hard, see also Garey et al., 1976. Addi-

tionally, two special cases are discussed: station-dominance with increasing

processing times for successive stations, and the proportional-flowshop where

all processing times on the individual stations are the same for all jobs.

Buffers were initially introduced in permutation flowshops to decouple sta-

tions in order to prevent station blocking and starvation, see Pinedo, 1995.

Blocking appears in the case in which the downstream station experiences

problems, and therefore may not be able to process the assigned job. On

the other hand, locating a buffer right after the station being down due to

problems prevents its downstream station from starvation. The reasons for

a station to be down are various, for example preventive maintenance, un-

available subassembled parts or repair of machine, etc. Moreover, bottleneck

stations are generally provided with a buffer to avoid serious problems that

may result in a line stoppage. The decoupling buffer is operated in first-in-

first-out (FIFO) strategy. The flowshop with limited intermediate storage

buffers is the more complex case in which a job may not be discarded from

a station and therefore results in blocking which is the station is kept idle.

In his studies of permutation sequences Pinedo, 1995, discusses a flowshop

with limited buffers by reducing the storage buffers to zero. Reason for this

is that a buffer can be presented by a station with zero processing time.

A directed graph is used for the calculation of the makespan of a permuta-

tion sequence. In the case of infinite buffers the nodes represent the process-

ing time, see for example Ŕıos-Mercado and Bard, 1999, they also include

setup time being the arcs between the nodes. When buffers are finite or not

present, Pinedo, 1995, uses a different directed graph, the processing time

here is presented by the arcs between the nodes. In both cases the makespan

is calculated by the maximum weighted path. Lomnicki, 1965, presents a

branch and bound solution for the three station case. Even though per-

mutation sequences are dominant here, the graph-theoretical interpretation

of Roy, 1962, is presented that allows the calculation of the makespan of a

sequence which is not a permutation sequence.

Most solution techniques for sequencing in flowshop focuses on permutation

sequences. Exact approaches for makespan minimization are presented by

Ignall and Schrage, 1965, Lomnicki, 1965, Szwarc, 1971, Lageweg et al.,

1978, Potts, 1980, Companys, 1992, Carlier and Rebai, 1996.
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In a recent review of Framinan et al., 2002, heuristic methods for sequencing

problems with focus on makespan objective are presented. Framinan and

Leisten, 2003, furthermore present a comparison of heuristics for flowtime

minimization in permutation flowshops. The most promising heuristics for

permutation flowshops seem to be the Nawaz-Enscore-Ham (NEH) heuris-

tic by Nawaz et al., 1983. Allahverdi, 2003, studies makespan and mean

flowtime as multicriteria objective, using a linear combination. He proposes

three new heuristics, AAH1, AAH2 and AAH3 and compares them with a

series of existing heuristics, both for the 2- and for the m-station case.

In what follows we focus on two special types of flowshops, considering setup

cost/time and afterwards non-permutation flowshops that permit to change

the sequence between stations in order to allow further optimization.

2.6 Setup cost/time in flowshops

The mixed model production line produces a variety of products in the same

line. These products may differ only in some optional components that are

applied or not applied at a station. In this case the processing time at this

station differs from one product to the next but does not require a special

setup. In the case in which the operator needs to change the setup of the

station in order to process the next job, the change of the setup may result

in an additional production cost or an additional time, necessary to realize

the change in setup. Pinedo, 1995, presents a proof of the NP-hardness of

the single station case with setup consideration.

2.6.1 Appearance of setup

Burns and Daganzo, 1987, discuss a flow shop with setup costs and distin-

guish between three different types of setup cost/time:

• Wasted material resulting in an additional cost due to, for example,

discard of the paint in the paint shop of an automobile production.

This setup cost has only impact on the objective function that mini-

mizes the production costs.
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• Station downtime and labor required to change the setup. This

occurs for example when the mounting or a tool needs to be changed.

In this case the schedule of the jobs is influenced directly, this means a

sequence without setup time is not possible because some job change

requires additional time for preparation.

• Product quality implications which affect the performance of the

station. For example the paint quality may temporarily decline when

a change of color occurs.

Apart from the differentiation of the setup cost/time, a distinction is done

in respect to the stations. Bolat, 1994, classifies the stations into two types:

Some stations are assigned to do exactly the same operation on every job,

and some allow operations that are not performed on every job or performed

on every job but with some options. In a mixed model production line which

consist of various stations usually both types of stations are found.

2.6.2 Sequencing problems considering setup

A partly efficient but widespread technique to avoid setup is to form batches,

groups of jobs belonging to the same model. In this way the number of

instances in which setup occurs is the number of batches that are to be

processed. This simple method neither permits an advanced optimization

of the sequence, neither additional constraints such as an option can only be

applied on every second job. Nevertheless until now it is a widely applied

method in the industry.

Another approach considers that setup time exists, but the average of the

setup time is added to the processing time. The adapted processing times

are then used to solve the sequencing problem; however, the determined

sequence needs to be revised for feasibility. The method is sensitive to

inhomogeneous distribution of the setup time.

In order to further improve the solution, the setup cost/time is considered

completely separated. Allahverdi et al., 1999, highlight that when setup

cost is directly proportional to setup time, a sequence that is optimal with

respect to setup cost is also optimal with respect to setup time. Their

survey on setup considerations furthermore considers sequencing problems
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in flowshops regarding the following characteristics:

• Batch setup: Here jobs are grouped into batches and a major setup is

incurred when switching between jobs belonging to different batches,

whereas a minor setup is incurred for switching between jobs within

the batches.

• Sequence dependent setup: Including setup cost/time that de-

pends on the succeeding job gives the possibility to further improve

the sequence. In the symmetric case the appearance of setup cost/time

is the same for a change from model f to g and for a change from

model g to f .

• Setup time separable from processing time: The case in which

setup time is separable from processing time leads to the possibility of

further reducing the total processing time. This results from the fact

that once on a station i a job j is finished, the setup can already be

changed way before job j + 1 arrives.

Apart from the single use of these characteristics exist various authors that

incorporate other line considerations. Burns and Daganzo, 1987, discuss the

paced flowshop line with setup costs. In addition, constraints are used to

determine the minimum distance between two jobs of the same model, if

not fulfilled, the station capacity is exceeded. The proposed method uses

grouping and spacing to sequence the jobs. The work does not tempt to

achieve the optimum solution but establishes analytical principles that aid

in developing effective production line job sequencing methods.

The work of Kim and Kim, 2000, proposes two methods for solving the

sequencing problem including setup times necessary for a model-change and

uses closed stations. The first method proposed is a branch and bound

using a lower bound that calculates the lowest possible unfinished work of

the remaining sequence. The authors remark that the method finds the

optimum solution for mid-scale problems. The second method is a heuristic

method called MST (Minimum-Setup-Time) and favors jobs that prevent

idle and unfinished work.

With a genetic algorithm Kim et al., 1996, find near optimal solutions solv-

ing the problem of minimizing the overall length of the production line. The
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production line in study contains hybrid stations which is a mixture of open

and closed stations. They highlight the importance to achieve a proper bal-

ance between exploitation and exploration of the genetic algorithm. These

characteristics describe the good choice of the size of populations and the

technique of forming new populations. The results are then compared with

a conventional, slowly proceeding branch and bound algorithm provided by

standard software packages.

Bolat, 1994, presents next to a branch and bound algorithm a heuristic

technique, applied to an automobile production line which takes into account

setup costs, caused by discarded paint and solvent when a change in color

occurs. Bolat highlight the importance of considering both setup and utility

costs, mainly to evaluate the economic benefit of investments in setup cost

reduction. The used heuristic, TRIM, basically selects jobs that result in

less utility-work without considering setup costs.

3 RESEQUENCING IN FLOWSHOPS

As mentioned in chapter 2, in the classical flowshop with three stations and

makespan objective, the permutation sequence is dominant. Pinedo, 1995,

demonstrates that the problem of three or more stations with makespan ob-

jective is strongly NP-hard and that for a production line consisting of more

than three stations furthermore a permutation sequence is not dominant

and clearly leads to additional complexity.

3.1 Objectives of resequencing

In order to permit a job to overtake another job within a production line,

arranged as a flowshop, normally the line has to undergo essential changes,

many times combined with investment. These changes may result in hard-

ware to be installed, like buffers, but also in additional efforts in terms of lo-

gistics implementations. Clearly, these additional efforts are only reasonable

if the resequencing pays off the necessary investment. This cost calculation

obviously depends on the particular production line and therefore has to be

taken into account for the individual cases.
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The major objective of resequencing a pre-arranged set of jobs in flowshops

is further minimization of production costs, for example resulting in a higher

utilization of the production resources. This is desirable even more when

setup cost/time is involved or the processing times of the individual jobs

diverge among one another.

Apart from the deliberate resequencing of jobs in order to improve the pro-

ductivity, an undesired resequencing, of a permutation sequence, may occur.

Here the objective is to regenerate the original sequence.

3.2 Methods for resequencing

Various possibilities of resequencing jobs in a flowshop exist, some of which

may already be included in the lines setup. Others may require additional

installations:

• Offline or intermittent buffers; the latter not operated in FIFO mode,

• Hybrid/flexible flowshops containing parallel stations,

• Splitting and merging of parallel lines,

• Re-entrant of jobs in the production line and

• Change of job attributes (no physical change).

References on methods for resequencing are summarized in table 1 to table 3

on page 26 to 28.

3.2.1 Buffers

The buffer types, used to temporarily store jobs within a flowshop, basically

have three objectives: decoupling, resequencing and end-product storage.

Here only buffers are concerned that permit resequencing which results in

the use of non-permutation sequences. The usefulness of this type of buffers

is obvious already in the simple case, in which a line is divided into two

parts; a permutation sequence that is optimum for the first part usually is

not optimum for the second part.
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3.2.1.1 Infinite buffers The case of infinite buffers is basically a theo-

retical case in which no limitation exists with respect to the number of jobs

that may be buffered between two stations. Roy, 1962, presents a graph-

theoretical interpretation which allows the calculation of the makespan of a

sequence in the flowshop that is not a permutation sequence.

3.2.1.2 Large ASRS buffers Large buffers are used, for example, in

the automobile industry. Production lines in automobile industry are di-

vided into three parts: body-, paint- and assembly-shop. Two buffers are

located between each part of the production line. The reason for using large

buffers in this case is to resequence the jobs in a large scale. As a result,

batches are formed and each shop is optimized separately. Only in the case

in which the optimal sequence for one shop is the same as for the following,

no resequencing is performed.

Solution techniques using large buffers, called Automatic Storage and

Retrieval System (ASRS), due to Lee and Schaefer, 1997, were intro-

duced in the automobile industry in the 1950s. Choi and Shin, 1997, call

their ASRS-buffer a painted-body-storage (PBS) which uses a dynamic se-

quencing method for the resequencing. Their buffer has various rows and

the jobs arriving at the buffer then get loaded to the row that already has

jobs loaded being similar.

Lee and Schaefer, 1997, present an approach to statically and dynamically

load an ASRS buffer. Two modes are used, in the single cycle a job is

stored or retrieved within one cycle and in the double cycle job is stored

and another retrieved in the same cycle. The objective is to minimize the

total travel time required by processing the entire storage and retrieval.

Inman, 2003, study how to undo undesired scramble of the original sequence

for automotive production. The scrambling is caused by parallel inspection

stations with random inspection times and repair loops. The ASRS size here

depends on the most negative sequence displacement, the goal is to obtain

a 90% service level.

Ding and Sun, 2004, utilize a buffer, placed between two successive parts of

the automobile production, to resequence a fixed number of vehicles. The

algorithm determines a loading sequence for k incoming vehicles to a buffer
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with k storing places and then releases them downstream. The resequencing

can also be used to overcome unintentional sequence alternation caused by

rework or equipment breakdowns. An exact and a heuristic solution are

presented. The method can only be used with a large buffer because the

number of vehicles to be resequenced at once is depending on the buffer size.

Furthermore, the method overlooks the fact that it might be beneficial to

incorporate the possibility of determining an improved sequence already at

the beginning of the line that would result in a better overall solution.

3.2.1.3 Small buffers The buffer, initially used for decoupling, basi-

cally forms a serial chain of the incoming jobs. Two operation modes exist:

The free-access operation permits to remove any stored job from the

buffer, in contrast to the FIFO operation where only jobs can be removed

from the buffer in first-in-first-out sequence. The buffer location can be

intermittent, located between two stations, or offline, removing the job

from the line. An intermittent buffer of size larger than one can be used

for resequencing, if not operated in FIFO mode. The offline buffer may

be operated in either mode; jobs remaining in the line bypass the buffered

jobs and resequencing takes effect. As compared to the large ASRS buffers,

the use of essentially smaller sized buffers conduces to a completely different

implementation. It has to be clarified how removing or adding a job affects

the line. As explained by Pinedo, 1995, mathematically a buffer is a station

with zero processing time.

Lahmar et al., 2003, and Lahmar and Benjaafar, 2003, study the problem

of resequencing a pre-arranged set of jobs with the objective of minimizing

changeover costs. The example under study is the paint shop of an automo-

bile production, a setup cost appears every time a color change occurs and

paint is flushed. For example the cost for a metallic paint is higher than for

an ordinary paint. The study considers pull-off tables, originally designed

for rework, which allow pull-off one car at a time. A color assignment matrix

is used to define the possible colors with which a car may be painted. The

problem with 1 buffer is solved optimally and with N buffers the problem is

decomposed to N problems with 1 buffer, not guaranteeing optimality. The

conclusion shows that the biggest amount of cost saving is achieved by only

implementing few pull-off tables in the line.
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The introduction of buffers to a production line also has negative effects.

Amongst these are the increase of work-in-process, the additional cost for

installation and maintenance and the increase of necessary area. All of these

factors are cost or time relevant issues and should not be overlooked in the

design of the production line.

3.3 Hybrid or flexible flowshop

Hybrid flowshop problems overcome one of the limitations of the classical

model of flowshops by allowing parallel stations. As described earlier, the

use of parallel stations in a mixed-model production line gives the possibility

of one job overtaking its predecessor. The parallel station may also serve as

a buffer with no processing time, and let various jobs pass by the buffered

job. This however is not a desirable case because the actual parallel station

may block a job from being processed and therefore provides only limited

resequencing possibilities in terms of cost savings.

Sawik, 2000, presents a mixed integer programming formulation for a flexible

flowshop with one or more identical parallel stations. Also blocking due to

infinite intermediate buffers, alternative routing and reentrant of products is

included. Additional constraints are introduced by Riane et al., 1998, which

include jobs that are assigned to a certain parallel station and therefore

the flow can not freely be determined. Next to the mixed integer program-

ming formulation two heuristic procedures are proposed, based on dynamic

programming and on branch and bound.

Pinedo, 1995, explains the heuristic method used at IBM for a flexible

flowshop with limited buffers and bypass, called flexible-flow-line-loading

(FFLL). The loading of job j is determined by minimizing the overload that

is cumulated until job j. Further heuristics are described by e.g. the forward-

and-backward heuristic of Li, 1997, and the divide-and-merge heuristic of

Gendreau et al., 2001, and Sun et al., 2003.
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3.4 Merging and splitting

Engstrőm et al., 1996, report the introduction of parallel segments of stations

to the automobile manufacturer Volvo that permit to resequence jobs where

the line split and merge. The splitting of a production line is somewhat

more challenging due to the fact that two parallel lines may not perform

the same options and constraints exist that may additionally influence the

sorting.

3.5 Re-entrant flowshops

Within the studies of Sawik, 2000, also the re-entrant flowshop is considered

that manufacture double sided printed-circuit-boards (PCBs). The PCBs

run twice through the same line, first to assemble the bottom side and then

to assemble the top side. Instead of assembling all PCBs on one side first,

the optimum sequence may consist in interleaving the first PCBs already

having finished the first run on the bottom side.

3.6 Change of job attributes (no physical change)

Instead of physically changing the job order Rachakonda and Nagane, 2000,

mention the solution implemented in the automobile production of the Ford

assembly plant in Wixcon, USA. Here a dynamic resequencing system is

used, involving the swapping of cars by changing their attributes. Conse-

quently it is not necessary to physically change the job position within the

sequence.

3.7 Undesired resequencing

Undesired resequencing occurs in many real life arrangements in which jobs

require repair, exist parallel inspection stations with unequal processing time

or a problem occurs in the part delivery, necessary to process the sequence

in the correct order.

Inman, 2003, and Korkmaz et al., study how to undo undesired scram-

ble of the original sequence for automotive production. The scrambling is
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caused by parallel inspection stations with random inspection times and re-

pair loops. Inman uses a large buffer, ASRS-automated storage and retrieval

system. Choi and Shin, 1997, call their ASRS-buffer a painted-body-storage

(PBS) which uses a dynamic sequencing method for the resequencing. The

considered buffer has various rows and arriving jobs then get loaded to the

row that already has jobs loaded being similar.

3.8 Related work on resequencing

Péridy et al., 1999, uses a selection of elimination rules to reduce the search

tree of the branch and bound algorithm proposed by Potts, 1980, for the

permutation flowshop and by Carlier and Rebai, 1996, for the classical flow-

shop. The idea is to calculate improved bounds by not including certain

sequences that result infeasible due to the elimination rules. The simplest

elimination rule is for example the rule by Johnson. Pugazhendhi et al., 2002

and Pugazhendhi and Thiagarajan, 2004, study non-permutation sequences

in flowline-based manufacturing system. The line is similar to the classical

flowshop with some or all jobs having missing operations in some stations.

This leads to a property which is not proper of the flowshop, i.e. the station

precedence are not the same for all job. Hence, an optimum sequence can

be obtained that is not feasible if the processing time would be infinitesimal

small instead of zero.
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Table 1: Resequencing Methods I

Type Reference Shop
Static

Method Objective
Sequence-

Observation
Dynamic Type

Infinite

buffers

Roy, 1962 FS S - - Non-perm Graph-theoretical interpretation for

makespan calculation in a FS.

Péridy et al., 1999 FS S E Makespan Perm/

Non-perm

Elimination rules for lower bounds.

Pugazhendhi et al.,

2002

FBMS S H Makespan Non-perm Station precedence not same as for

flowshop.

Pugazhendhi and

Thiagarajan, 2004

FBMS S H Makespan

Flowtime

Non-perm Station precedence not same as for

flowshop. Also considering sequence-

dependent setup times.

AS/RS

buffer

Lee and Schaefer,

1997

FS S/D E/H Traveltime of

jobs in buffer

Non-perm AS/RS buffer operates in single- or

double-cycle mode for load and un-

load.

Choi and Shin,

1997

FS D H Deviation from

ideal sequence

Non-perm Measures deviation of leaving jobs

from the desired and sequences due to

spacing constraints between jobs.

Ding and Sun,

2004

FS S E/H Sequence

restauration

Non-perm Buffer with k storing places to rese-

quence k jobs.

Inman, 2003 FFS S/D E/H Sequence

restauration

Non-perm AS/RS buffer size depends on most

negative sequence dspacement. Un-

wanted sequence-change occurs due to

repair loops and parallel stations

Korkmaz et al., FS D H Sequence

restauration

Non-perm Unwanted sequence-change occurs due

to part shortage or inspection sta-

tions.

Shop: Method:

FS Flowshop M Mixed integer programming formulation

FBMS Flowline-based Manufacturing system I Integer programming formulation

FFS Flexible Flowshop E Exact method

FS-PL Flowshop with parallel lines H Heuristic method
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Table 2: Resequencing Methods II

Type Reference Shop
Static

Method Objective
Sequence-

Observation
Dynamic Type

Small buffers

Lahmar et al.,

2003

FS S I/E/H Setup cost Non-perm Resequencing with feature assign-

ment. Decomposition of problem with

N buffers to N problems with one

buffer.

Lahmar and Ben-

jaafar, 2003

FS S I/H Setup cost Non-perm Study of resequencing limited by the

number of jobs a certain job can move

forward or backward.

Hybrid or

flexible

flowshop

Sawik, 2000 FFS S M Makespan Non-perm Limited intermediate buffers. Sta-

tion blocking and alternative process-

ing routes are possible.

Riane et al., 1998 FFS S M/H Makespan Perm/Non-

perm

Exist jobs assigned to a certain paral-

lel station.

Pinedo, 1995 FFS S H Makespan Non-perm Exist unlimited intermittent buffers.

Li, 1997 FFS S H Makespan Non-perm Forward-and-backward heuristic.

Considers major and minor setups,

part families and batch splitting.

Only single station case.

Gendreau et al.,

2001

FFS S H Makespan Non-perm Divide-and-merge heuristic. Consid-

ers setup-time. Only single station

case.

Sun et al., 2003 FFS S H Makespan Non-perm Exist jobs assigned to a certain paral-

lel station.

Shop: Method:

FS Flowshop M Mixed integer programming formulation

FBMS Flowline-based Manufacturing system I Integer programming formulation

FFS Flexible Flowshop E Exact method

FS-PL Flowshop with parallel lines H Heuristic method
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Table 3: Resequencing Methods III

Type Reference Shop
Static

Method Objective
Sequence-

Observation
Dynamic Type

Mergin and

splitting

Engstrőm et al.,

1996

FS-PL Non-perm Various parallel stations lead to the

possibility of resequencing.

Re-entrant

flowshop

Sawik, 2000 FFS S M Makespan Non-perm Limited intermediate buffer. Also re-

entrant of jobs is considered.

Change of job

attributes

Rachakonda and

Nagane, 2000

FS S H Setup cost Non-perm Swapping of cars in the sequence,

without changing their physical lo-

cation, but changing their other at-

tributes.

Shop: Method:

FS Flowshop M Mixed integer programming formulation

FBMS Flowline-based Manufacturing system I Integer programming formulation

FFS Flexible Flowshop E Exact method

FS-PL Flowshop with parallel lines H Heuristic method
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4 STATIC AND DYNAMIC DEMAND

The production planning for mixed model flowshops can be various and

usually depends on the planning horizon and in some cases on the possibility

of decoupling the customer orders from the production planning. In the

latter case the incoming customer orders may only give a guideline for what

needs to be produced in the plant. For example, it might be advisable to

produce a second part of a single-part order. This results from the fact that

a negligible additional cost occurs, and in case of a quality problem with

one part, a second one is available as reserve. On the other hand it might

be advisable for a production not to start the production of this single-part

order until a reasonable number of the same parts have accumulated.

Even though many sequencing procedures take into account a fixed, static,

demand, it would also be desirable to include urgent customer orders when

the production is already up and running. This then leads to the need of

dynamic planning.

Engel et al., 1997, distinguish between the two cases of build-to-plan and

build-to-order production. The two terms describe the dynamics of the

input sequence. In the first case the demand is well known in advance and

only a few model types are produced repeatedly. In the latter case each

product is determined by an individual selection of options corresponding

to a customer order.

In what follows, more detailed explanations of the characteristics of static

and dynamic production planning are given. These individual cases lead to

intermediate cases that may be found in the transition from the static to

the dynamic case.

4.1 Static demand

In a sequencing problem a demand is called static if the information required

forming a feasible but not necessarily optimal sequence is known before the

first job is processed. In this case the sequencing and the execution of

the sequence are considered consecutively. Dı́az et al., 2003, mentions that

this type of production planning is often referred to as off-line sequencing

(scheduling). The static production planning accumulates customer orders
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to lots; the lot then is sequenced and released to the production. Burns

and Daganzo, 1987, highlight that an increased lotsize allows more efficient

sequences to be identified, whereas longer lead times for customer orders are

necessary.

Minimal-part-set (MPS): One of the most common representations is

the use of the MPS which is the least common multiple of the individual

models for the entire demand. Repetition of the MPS leads to the required

demand. See for example Sarker and Pan, 1998, Bard et al., 1992, or Hyun

et al., 1998.

The MPS is considered to be a good choice, however, Klundert and Grig-

oriev, 2001, show that many times it is not the best choice. They use a

travellings salesperson problem (TSP) where the cities are to be visited var-

ious times in order to resolve the problem and conclude that better sequences

are possible which obviously result in extended computational effort. Sea-

sonal production is a classical example of a static production planning which

refers to a production demand that is known for a predetermined period of

time, i.e. the season.

4.2 Dynamic demand

A sequencing problem is called dynamic if the sequence is constructed while

jobs are already entering the flowshop, the sequence is determined online.

This is typically the case if the total demand or production relevant param-

eters are not known in advance, but becomes available during the execution.

The sequencing is then only possible for jobs we have already knowledge of,

i.e. it can only be done on the basis of a limited planning horizon; while

new jobs arrive, the current sequence has to be updated appropriately. This

uncertainty of timing in the production leads to the difficulty of control-

ling efficiently the material supply of the line and respond to the customer

orders in a predictable manner. In order to apply an adequate measure of

performance, the objective functions, presented in part 2.3, may be modified.

Rather than the absolute value, the objective function should determine the

mean value over the jobs.
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Smed et al., 1999, mention various reasons that lead to dynamic demand

planning: machine breakdown, component shortage and maintenance delay,

urgent prototype series surpassing normal production, and the production

plan itself which can be subject to sudden alterations during the production

period.

Vieira et al., 2003, in their framework of resequencing (rescheduling), mainly

for the dynamic case, furthermore present common performance measures

of resequencing procedures. A separation is done into measures of schedule

efficiency, schedule stability, and cost.

4.3 Transition from pure static to dynamic demand

The above mentioned separation into static and dynamic demand is not

always realistic and leads to the use of models that share properties of both

of the two individual cases. In fig.1 three different cases demonstrate the

transition from the static to the dynamic demand. In the first case (1) the

demand is known beforehand and permits an off-line optimization, (2) is

the intermediate case in which the demand is known with a limited time

horizon. (3) then is the dynamic case in which the orders arrive without

advise.

Demand-Horizon

Flowshop
1

2

3

Figure 1: Illustration of the demand horizon. 1) entire demand is known

beforehand and permits an off-line optimization 2) demand is known with a

limited horizon and 3) demand is not known. The last case is the most dynamic

one and does not permit sequencing before the jobs enter the first station of

the flowshop and therefore has to be calculated on-line.
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4 STATIC AND DYNAMIC DEMAND

These variations lead to different solution techniques that focus on arranging

the job order before the jobs enter the line (sequencing) or involve the option

of reordering the jobs in the line (resequencing). In what follows, the distinct

configurations of possible demands is listed which also are shown in fig.2.

• Static case (permutation sequence): Determination of the op-

timal permutation sequence. The demand may be defined by the

Minimal-Part-Set.

• Static case (non-permutation sequence): Determination of the

overall optimal sequence, also including resequencing within the line.

The demand may be defined by the Minimal-Part-Set.

• Semi-Dynamic case: The focus here is the determination of a better

sequence for a given incoming sequence by using e.g. buffers, except

in the first station. In the case in which the demand is completely

known, the resequencing is calculated off-line.

• Nearly-Dynamic case: Determination of introduction of jobs to the

plant with dynamically changing demand. A predetermined number of

jobs ready to enter into the plant is given which can be ordered before

entering into the line. In this case not only sequencing before the

line (permutation) but also resequencing in the line (non-permutation)

might be considered.

• Dynamic case: Here the jobs enter the first station without the

possibility of sequencing beforehand. This predetermined sequence

then is resequenced within the line in order to improve the production.

4.4 Solution techniques

Solution techniques are various and basically are separated depending if a

static or dynamic case is studied. Furthermore, it depends on the size of the

problem. In the static case with moderate size optimum seeking algorithms

like branch and bound or dynamic programming is applied; see for example

Dar-El and Cucuy, 1977, Sarker and Pan, 2001, or Stafford and Tseng, 2002.

Larger sized static problems are generally solved with heuristic procedures
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Figure 2: Sectioning of Static and Dynamic demand as a function of se-

quencing possibilities and the demand horizon.

that for the sake of computation do not ensure an optimal sequence, see for

example Bard et al., 1992, some of which are derivations of exact solutions,

see Ŕıos-Mercado and Bard, 1999. In the more complex case of dynamic

process planning procedures are used called dispatching rules that give pri-

orities in the selection of jobs in a queue formed in the buffers before the

stations. These dispatching rules also find application in scheduling prob-

lems and in jobshop applications where the routing of the individual jobs is

different for each job.

5 OPTIMIZATION METHODS

Various attempts with distinct approaches exist to solve the problems oc-

curring in flowshops. The simplest attempt would be an enumeration of

all the possible solutions, obviously leading to total number of (n!)m. This

would result in over 24 billion possibilities for a problem as simple as 5 jobs

and 5 stations. All attempts have in common to start with taking apart

the entire problem in order to isolate the static part of the problem, namely

the line itself. The optimization routine then applies the input data for the

line, together with the data for demand, resulting in a measure of efficiency,

obtained by some objective function.

The separation of the numerous optimization methods with all its modifica-

tions usually concerns two major divisions. Primarily exist exact, optimum
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seeking, methods which by nature are limited in problem size. On the other

hand the non-exact methods, namely heuristics and metaheuristics. In the

latter case the literature presents detailed algorithms, as well as general rules

on how to proceed with the search of good solutions. Obviously, gaining a

reduction in computational time results in a reduction of quality. This re-

duction, however, can many times lead to near optimum solutions which for

real life problems are indispensable.

5.1 Elements of optimization

The assembly line optimization consists of several parts which can firstly be

treated separately in order to establish a consistent and structured model.

Fig.3 shows the main parts: demand, optimization variables, line pa-

rameters, line efficiency, and the optimization procedure.

Demand

- Static demand

- Dynamic demand

e.g. Minimal Partset

Result

Sequence

Start-Point

Station Lengths

…

Optimization

Variables

Sequence

Start-Point

Station Lengths

…

Measure of

Efficiency

Makespan

Completion-

Optimization

Procedure

- Exact methods

- Heuristic methods

e.g.  Branch and Bound

e.g.Genetic Algorithm

Simulated Anealing

TABU-search

Line

Parameters

Processing Time

Setup Time

Launch Interval

…

Figure 3: Structure of the sequencing problem in assembly line.

As described in the previous parts of this document, two lines may have very

distinct aspects and objectives to optimize. Nevertheless, before starting

with the simulation and optimization, it is necessary to model the line and

define all the surrounding parameters that concretize and limit the problem

in question.
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• Demand: The demand is synonym to customer order. No matter if a

static or a dynamic case is studied, the demand describes the amount

of products that need to be processed. This is true for sequencing

problems; in scheduling problems the demand may furthermore be

accompanied by start- and due-date.

The customer orders may be accumulated to lots and then be processed

all at once, which is the most static case and many times the Minimal-

Part-Set (MPS) is used to work only with the least-common-multiple

of the different models to be produced. More dynamic cases imply

that customer orders arrive while the production has already started.

• Optimization variables: The optimization variables in principle are

nothing else than line parameters, with the difference that they define

the pool of variable parameters that are to be optimized by the opti-

mization procedure. It is desirable to keep the number and ranges of

optimization parameters relatively small in order to limit the consid-

ered problem to a tractable one. Many times an initial set of param-

eters that describe a feasible solution is found by a fast heuristic and

serves as an initial bound. Depending on the objective of optimization

and the possibilities that provide a line-arrangement, the optimization

parameters can be various, such as launch interval, station length,

buffer size, etc.

• Line parameters: The line parameters describe the pool of static

parameters that are defined beforehand and are fixed for the entire

optimization procedure. For example, the sequencing problem in flow-

shop optimization in general uses a constant launch interval that is

obtained by the design and balancing procedure, performed before-

hand. Other line parameters may be assembly-time, setup cost/time,

buffer location, precedence relations, etc.

• Line efficiency: The line efficiency is a measure of performance and is

calculated with the objective function to be optimized. This measure

of efficiency in the general case is based on a single objective, but also

combined objectives are possible that, e.g., minimize makespan as well

as the idle time of operators.
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• Optimization procedure: Once the line is defined with all its in-

put and output parameters, an optimization procedure is needed to

optimize the line efficiency by, e.g., varying the line parameters, al-

ways taking into account that the demand has to be satisfied. Exist

basically two groups of methods: the exact methods that obtain the

optimal solution, if existent, and approximation methods which for

computational merit not necessarily obtain the optimal solution.

5.2 Complexity of problems

For the classification of combinatorial problems, such as sequencing in flow-

shop, a concept is used that represents the computational effort related

with the problem in question. A problem is assigned to the P-problem

(polynomial-time) class if an algorithm exist which solves the problem in

polynomial time. Thereafter, a problem is assigned to the NP-problem

(nondeterministic polynomial-time) class if it is possible to solve it within

polynomial time on a hypothetical non-deterministic Turing machine, allow-

ing parallel executions. The class of P-problems is a subset of the class of

NP-problems, but there also exist problems which are not NP.

In the problem classification of Pinedo, 1995, several sequencing problems in

flowshop production lines are specified. Polynomial time solvable problems

F2|block|Cmax and F2|nwt|Cmax are two station cases with blocking and no-

wait respectively. Also a special case for m stations, Fm|pij = pj |
∑

Cj with

equal processing times for a product j at all stations is part of these prob-

lems. Within the strongly NP-hard problems F2||
∑

Cj is the two station

case with total flowtime optimization and F3||Cmax and F3|nwt|Cmax are

three station cases with and without no-wait sequences and the makespan

objective. Extended explanations on computational complexity can be found

in Garey and Johnson, 1979.

5.3 Exact methods

Exact methods always lead to the optimal solution. Clearly exists a limit

on problem size for exact methods that is way inferior compared to heuristic

methods. In order to reduce the complexity for the necessary computation
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it is advisable to isolate the problem as tight as possible, i.e. when dominant

rules can be used such as permutation sequences are sufficient for the two

station case, it is not necessary to consider all possible sequences at all

stations.

In order to find the minimum or maximum of an objective function the

most obvious approach would be of analytical nature, using its derivation

(Calculus and Lagrange multipliers). It is important that the function

and its first derivation is continuous. As highlighted by Nicholson, 1971,

these methods can be used only on small problems containing few continu-

ous variables with simple objective functions and no constraints, therefore

clearly is not applicable to flowshop sequencing problems.

• Complete enumeration: The simplest way to solve the sequencing

problem in flowshops is the complete enumeration. The solution for

all sequences on all stations is calculated. The method is not very

efficient and as described before has a complexity of (n!)m.

• Branch and bound: A widely used and very promising strategy in

many problems seem to be the branch and bound approach, being an

implicit enumeration or tree search method which can find an optimal

solution by systematically examining the subsets of feasible solutions

(Bellman et al., 1982).

The branch and bound method was developed by Little et al., 1963, for

the use on the travelling salesperson problem and modified by Ignall

and Schrage, 1965, and Lomnicki, 1965, for application to flowshop se-

quencing. It is also called back-track programming and uses generally

one of the three seeking strategies: depth first which first explores a

feasible sequence, breadth-first which completely explores the branches

of the same level before descending in the tree, and frontier or branch-

from-lowest-bound which explores the solution space in terms of the

most promising branch. French, 1982, highlights that the first method

results in more computational expense but at the same time requires

less storage, compared to the latter.

Ignall and Schrage, 1965, as well as Lomnicki, 1965, independently

developed a branch and bound method for the three station case which

is presented by French, 1982. A considerable analysis of tree search

methods, related with branch and bound is presented by Pastor, 1999,
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also including a resolution method called branch and win (Pastor and

Corominas, 2004).

• Linear, integer and mixed integer programming: With the help

of linear programming large problems with continuous variables can be

solved, provided that the objective function is linear and constraints

are in the form of linear equalities and inequalities. The simplex

method, first published by Dantzig in 1948 (Dantzig, 1948), solves

problems of this type. Nicholson, 1971 and Luenberger, 1984 give

detailed introductions on linear programming.

Integer and mixed integer programming finds its application on prob-

lems which consider that all or some of the variables are constrained

to integer values. In contrast to linear programming the solution of

these problems is NP-hard.

• Dynamic programming: This method originates from Bellman,

1957, and can be used in multi-stage decision processes, in particular

types of problem structures. Just as the branch and bound method

it is limited to comparatively small problems. The method tries to

reduce the dimensionality of a problem and one of the challenges is

to convert the actual problem to a multi-stage decision process in or-

der to solve it recursively. Bautista et al., 1996, furthermore present

an algorithm based on bounded dynamic programming (BDP) for the

sequencing problem in JIT, known as the Monden problem (Monden,

1983). Dynamic programming is used here with the additional use of

bounds, obtained solving the problem with a heuristic algorithm.

5.4 Approximate methods

These methods do not guarantee an optimal solution. The idea is to reach

solutions that, for the sake of computation or storage, are near optimal so-

lutions. In order to exhaustively study their performance it is indispensable

to compare the obtained solution with the optimal solution obtained by an

exact method. Challenging problems are found when non-linear objective

functions are given. Nicholson, 1971, highlights that here the difficulty lies

in the fact that a non-linear objective function is used that may have local

minima and therefore usually finds solutions that describe local optima and

do not result in the optimal solution.
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5.4.1 Heuristics

Exist a wide range of heuristic methods and some of them are based on

exact methods. The simplest being the randomly generated solutions.

Lee and Shaw, 2000, mention that heuristic methods either belong to im-

provement heuristics, also called neighborhood search, or construc-

tive heuristics. Improvement heuristics attempt to continuously improve

the solution by modifying the sequence, whereas constructive heuristics build

a sequence of jobs and once a decision is taken, it cannot be reversed. The

first usually generates better sequences at the expense of larger computa-

tion. The most simple neighborhood search starts with a feasible initial

solution that is used as initial seed. In the next step solutions are evaluated

that are part of the neighborhood of the seed. If none of the solutions is

better than the seed with respect to the performance measure it is the final

solution. Otherwise the solution that was proved to be better is used as the

new seed. This procedure obviously is not capable of avoiding falling in a

local minimum.

Silver, 2004, additionally annotates the separation to inductive methods,

which first solve a mathematically related problem and extends it to the

actual problem, reduction of solution space, here the possible solutions

are drastically cut back, and approximation methods, here a solution for

the approximated mathematical model is to be calculated.

A special case of heuristic technique is the priority dispatching rules which

are used for a production with buffers between the stations that provide the

possibility of selecting any of the stored jobs. Priority dispatching stands for

the procedure of selecting a job from a queue with the highest priority. The

priority may be calculated depending on various measures. The rules can

be as simple as ”first come first serve” (FCFS), ”shortest processing time”

(SPT), ”longest total remaining processing on other machines” (LTROM)

but also may be a combination of simple rules. Dispatching rules are also

called greedy-procedure since it makes the selection in the most favorable

way, without regard to the possibilities that might arise later. Collections

of existing rules can be found in Pinedo, 1995, or Blackstone et al., 1982.

These dispatching rules also find application in jobshop arrangements where

the routing of the individual jobs is different for each job.
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5.4.2 Metaheuristics

The survey of Silver, 2004, describes metaheuristics as high level heuristic

procedure which are designed to guide towards achieving reasonable solu-

tions. Metaheuristics are particularly concerned with not getting trapped

at a local optimum. Metaheuristics have one or more adjustable parameters

which permits flexibility, but for any application requires careful calibration.

• Simulated annealing: This method goes through number of itera-

tions, comparing the current best sequence with a neighbor, see e.g.

Kirkpatrick et al., 1983. Further a probability indicates if a worse

sequence is chosen next. The major difference with the general neigh-

boring search is that worse solutions are allowed in order to find an

optimum that is not the next local optimum.

• Tabu search: Exist a Tabu-list that prevents returning to a local min-

imum. The procedure stops when a predetermined number of moves

are performed without having improved the seed, see e.g. Glover, 1990.

An essential parameter of the technique is the list size; if chosen wrong

the search may result in cycling or may be constrained unduly.

• Genetic algorithm: Rather than using a single initial solution this

technique uses an increased number of initial solutions, see e.g. Kim

et al., 1996 or Hyun et al., 1998. These solutions, called individuals,

form a generation. The succeeding generation is generated through

reproduction and mutation of individuals that were part of the previ-

ous generation. Individuals are also referred to as chromosomes and

are characterized by their fitness, which is measured by the associated

objective function. Mutation then is achieved by cross over of chro-

mosomes. Hyun et al., 1998, highlights the two characteristics of the

genetic algorithm which are exploitation and exploration. Exploita-

tion is the ability to find good solutions quickly, whereas exploration

describes the behavior of maintaining a set of diverse individuals.

• Beam search: Beam search is a partial branch and bound with the

basic idea to eliminate the branches of the tree that are likely to not

include the optimal solution, see Morton and Pentico, 1993. The used

parameter is the beam width that is the number of nodes that are

retained at each level.
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• Ant colony: The basic concept is to mimic the pheromone trail used

by real ants as a medium for communication and feedback among ants

and was first proposed by Dorigo et al., 1996. The algorithm is a popu-

lation based, cooperative search procedure which iteratively construct

solutions, guided by (artificial) pheromone trails. Solution components

are defined which the ants use to iteratively construct solutions, the

ants mark the utilized components with pheromone. The pheromone

then indicate the intensity of ant-trails with respect to solution compo-

nents,and such intensities are determined on the basis of the influence

or contribution of each solution component with respect to the ob-

jective function. Rajendran and Ziegler, 2004 apply the concept on

permutation flowshop.

• GRASP: The GRASP (greedy randomized adaptive search proce-

dure) is an iterative process, in which each iteration consists of two

phases. A construction phase, in which a feasible solution is produced,

and a local search phase, in which a local optimum in the neighbor-

hood of the constructed solution is sought. The best overall solution

is kept as the result. The heuristic is adaptive because the benefits

associated with every element are updated at each iteration of the

construction phase to reflect the changes brought on by the selection

of the previous element. The probabilistic component of a GRASP

is characterized by randomly choosing one of the best candidates in

the list, but not necessarily the top candidate. The list of best candi-

dates is called the restricted candidate list (RCL). A recent survey on

GRASP is presented by Festa and Resede, 2004.

5.5 Evaluation of the performance of a heuristic

Dannenbring, 1977, uses a set of six different evaluation measures for testing

of heuristic procedures: (1) Relative error, (2) Consistency, (3) Error Poten-

tial Ratio (4) Percentage of solution equaling the optimum, the estimate of

the optimum or the best heuristic solution, (5) Improvement Potential and

(6) Sampling quality.

Silver, 2004, furthermore explains that two main measures of performance

exist to evaluate the performance of a heuristic method. First, compar-
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ing the obtained value of the objective function to the achievable by the

optimal solution or some other benchmark procedure, already mentioned in

Dannenbring, 1977. Then, second, the computational requirements in terms

of computational effort and memory consumption for realistic sized prob-

lems. In particular, for what percentage of the problem instances does the

heuristic obtain the optimal solution. If the results are found to be sensitive,

then it is helpful to specify under which conditions the heuristic should or

should not be used.

In case no optimal solution is available the heuristic solution can, for a

minimization, be compared with the lower bound. For a small gap the

difference to the optimal solution is small. For a large gap, however, a poor

lower bound was used, or heuristic solution is far away from the optimal

solution.

5.6 Literature providing input data

For the case of larger problem sizes it is more difficult to find adequate

input data. This is contingent on the great variety of existent problems and

the fact that many times only results are presented rather than input data.

Rajendran and Chaudhuri, 1992, use a test-bed of 670 problems considering

5, 10, 15, 20 and 25 stations as well as 5, 6, 7, 8, 9 and 10 jobs, also used

by Framinan et al., 2002.

Taillard, 1993, presents a widely used test-bed. A detailed explanation

on the generation of input data for various production lines, including the

flowshop problem is given. A random number generator is used, based on

Bratley et al., 1983, that produces evenly spread values and problems with

5, 10 and 20 stations and from 20 to 500 jobs are proposed. The advantage

of this generator is the repeatability in the generation of the test-bed.

6 SUMMARY

The problem of sequencing in mixed model flowshops is known to be

NP-hard already for the simple case of three stations. Johnson, 1954, one of

the pioneers, proposed a solution that solves the case of two stations with

optimality, known as the Johnson-rule. Here permutation sequences are
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dominant, i.e. the job sequence is the same for all stations. This simplifica-

tion indeed is only valid until three stations case with makespan objective.

If more than three stations exist Potts et al., 1991, show that considerable

improvements are possible, using resequencing capacities. This is even more

evident when setup cost/time, necessary when changing from one product

model to the next, appears.

In the present work a literature overview was given on solutions techniques

considering basic as well as more advanced and consequently more complex

arrangements of mixed model flowshops. We first analyzed the occurrence

of setup time/cost; existing solution techniques are mainly focused on

permutation sequences. Thereafter we discussed objectives resulting in the

introduction of a variety of methods allowing resequencing of jobs within

the line. The possibility of resequencing within the line ranges from 1) offline

or intermittent buffers, 2) parallel stations, namely flexible, hybrid or com-

pound flowshops, 3) merging and splitting of parallel lines, 4) re-entrant

flowshops, to 5) change of job attributes without physically interchanging

the position. In continuation the differences in the consideration of static

and dynamic demand was studied. Also intermittent setups are possible,

depending on the horizon and including the possibility of resequencing, four

problem cases were highlighted: static, semi dynamic, nearly dynamic and

dynamic case. Finally a general overview was given on existent solution

methods, including exact and approximation methods. The approxima-

tion methods are furthermore divided in two cases, known as heuristics and

metaheuristics.

Reviewing the literature regarding sequencing considerations in mixed model

flowshops, it seems that extended work is done on the classical flowshop,

mainly focusing on permutation sequences. Furthermore exist a remarkable

amount of publications solving flowshops with setup time/cost; in contrast

to arrangements taking into account resequencing capabilities within the

line, resulting in non-permutation sequences. Besides the fact that solution

methods in the literature are not numerous, it seems that production lines

in the industry are not yet considering the advantages that come with the

possibilities of resequencing jobs in a mixed model production. This may

either be caused by additional hardware to be installed, like buffers, but also

due to extra efforts in terms of logistics complexity. Clearly, these additional

efforts are reasonable if the resequencing pays off the necessary investment.
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