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Abstract: the integration of natural gas and electricity sectors has increased sharply in the last decade 
as a consequence of combined cycle natural gas thermal power plants. In some countries such as 
Brazil, gas-fired generation has been a major factor in the overall growth of natural gas consumption. 
When related to the operations planning, in some hydrothermal systems a National System Operator 
dispatches these gas-fired plants (along with other thermal sources such as coal, oil and nuclear) in 
conjunction with the country’s hydroelectric plants using a production-costing model based on 
stochastic programming. The algorithm determines the optimal hydro-to-thermal energy production 
ratio based on the expected benefit of reducing thermal plant generation over a large number of 
hydrological scenarios, along a planning horizon of some years. This means that the optimal 
scheduling decision today depends on assumptions about future load growth and future entrance of 
new generation capacity. Stochastic dynamic programming models are extensively used. However, the 
hydrothermal scheduling models usually do not take into account the possibility of future fuel supply 
constraints, either in production or in transportation. The assumption of fuel supply adequacy is felt to 
be reasonable for the more mature markets such as coal and oil. However, due to the fast growth of the 
natural gas market, it is possible that demand outpaces supply and/or transportation investments. 
Indications that gas-related constraints could be relevant were observed in New England, in the US, 
and Brazil in 2004, where several MW of combined-cycle generation could not be dispatched when 
needed due to constraints in pipeline capacity. The objective of this work is present a methodology for 
representing the natural gas supply, demand and transportation network in the stochastic hydrothermal 
power scheduling model. The application of the integrated electricity-gas scheduling model is 
illustrated in case studies with realistic configurations of the 90 GW Brazilian system. 
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1. Introduction 
The integration of natural gas and electricity sectors was intensified in the last decade as consequence 
of a widespread construction of new gas-fired power plants, both combined-cycle and single-cycle. 
Several countries in South America, Europe, Asia and the US built a lot of gas-fired generation in 
order to have a more economical and clean resource than the standard coal and oil-fired resources. 

On the operational side, the integration between gas-fired and hydro plants in hydro-based systems is 
usually not straightforward (due to the low cost of hydro), as opposed to the case of thermal systems. 

In some hydro-based systems, specially those in South America (such as Brazil, Chile, Argentina, etc), 
both hydro and thermal plants are dispatched by the country’s National System Operator with basis on 
a production-costing model. This model determines the optimal hydro-to-thermal energy production 
ratio based on the expected benefit of reducing thermal plant generation over a large number of 
hydrological scenarios, along a planning horizon of five year and based on stochastic dynamic 
programming techniques. This means that the optimal scheduling decision today depends on 
assumptions about future load growth and future entrance of new generation capacity. However, the 
hydrothermal scheduling model does not take into account the possibility of future fuel supply 
constraints, either in production or in transportation. The assumption of fuel supply adequacy is felt to 
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be reasonable for the more mature markets such as coal and oil. However, due to the fast growth of the 
natural gas market, it is possible that demand outpaces supply and/or transportation investments. 

This actually has been observed in some countries. Brazil, for example, built over 7,000 MW of gas-
fired generation in the last five years. These gas-fired plants, along with other thermal sources such as 
coal, oil and nuclear, correspond to 15% of the country’s installed capacity; the major source of power 
production being hydroelectric power. A first indication that gas-related constraints could be relevant 
took place in January 2004, when 800 MW of combined-cycle generation (out of a total capacity of 
1200 MW) could not be dispatched due to constraints in pipeline capacity. In the same vein, the ISO 
New England commanded the dispatch of about 3000 MW of gas-fired generation in 2004 which 
turned out to be not available due to lack of natural gas [13]. 

Coordinating these two sectors, especially for hydro systems is a critical issue. If gas production and 
transportation constraints are ignored, the scheduler may be optimistic with respect to the firm 
capacity of the thermal plants, and jeopardize the supply reliability: hydro reservoirs may be depleted 
faster today based on the availability of future gas-fired generation that may not occur. 

The objective of this work is present a methodology for representing the natural gas supply, demand 
and transportation network in the stochastic hydrothermal power scheduling model used to schedule 
real hydro-power systems.  This will be done in two steps. The first step consists in developing a 
model to examine the feasibility of the gas-based generation resulting from a hydrothermal scheduling 
tool from the gas sector side. The objective of the model is to schedule the natural gas supply to meet 
the total natural gas demand in each node of the gas network, while minimizing the total amount of 
gas for use by the power sector that is rationed. The second step consists in explicitly introducing the 
natural gas constraints in the dynamic programming recursion of the energy planning model. Gas 
demand in each node is given by the sum of non-power gas consumption forecasts plus gas 
consumption factors for the gas-fired power plants; gas production in each node is represented as 
minimum and maximum production levels, depending for example if the gas field is associated with 
oil production. Finally, fuel transportation is modeled both through pipelines and through LNG. 

An application illustrating the proposed methodology will be done using the 90 GW Brazilian hydro 
system as example. The Brazilian system provides good case-studies for the methodology because it 
has a large-scale hydro system, but, on the other hand, the gas sector is developing at aggressive 
growth rates and gas-fired plants account for an important share of overall thermoelectric resources. 
Therefore, it concentrates several characteristics and challenges which are of interest to several other 
power systems worldwide. 

This work is organized as follows: Section 2 presents an overview of the electricity and gas sectors in 
Brazil. Section 3 describes and motivates the main issues in the energy-gas integration in the country. 
Section 4 presents a procedure that has been developed for assessing the feasibility of the schedules of 
the gas-fired power plants. Section 5 presents the integrated representation of the electricity-gas 
sectors in a hydrothermal scheduling model and Section 6 concludes. 

2. Overview of Electricity and Gas Sectors 
Brazil is the largest electricity market in South America, accounting for 40% of the continent’s energy 
consumption. As mentioned in the Introduction, the country is hydro-dominated: 85% of the 90 GW 
installed capacity and more than 90% of the electricity production (44 average GW) comes from 
hydropower. Thermal generation includes nuclear, coal, diesel, biomass and, more recently, natural 
gas plants. The country is fully interconnected at the bulk power level by a 80,000 km meshed high-
voltage transmission network, shown in Figure 1. The direct international interconnections are the 
back-to-back links with Argentina (2,200 MW) and smaller interconnections with Uruguay and 
Venezuela.   
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Figure 1 – Power Transmission 
network, (source ONS) 

On the natural gas side, Brazil has proven gas 
reserves of 320 bcm [1,2]. The country also has a 
natural gas production1 of about 27 MMm3/day 
available to the market, mostly associated with the 
exploration of oil. Since 1999 up to 30 MMm3/day 
of imported natural gas has been flowing into the 
country through pipelines from Bolivia and 
Argentina. In 2003 a discovery of a large offshore 
natural gas field (Santos field), capable of more than 
doubling the country’s reserves, was announced. 

In contrast with Argentina and Chile, Brazil’s gas 
market is relatively undeveloped. One of the reasons 
is that there is no market for space heating, which is 
an important factor in the other countries. 

Figure 2 shows the gas pipelines and the areas of 
exploration and production. There are three separate 
systems: the largest comprises the South and 
Southeast regions; coastal cities from the Northeast form the 
country’s second natural gas system; the third system is in 

the Amazon region. 

Finally, a Natural Gas law which regulates pipeline access 
and other topics is currently being discussed in Congress. 

3. Electricity-natural gas integration issues 
As mentioned previously, Brazil has 7000 MW of gas-fired 
plants. Their potential gas consumption is quite significant: if 
dispatched simultaneously, the gas-fired plants would use 35 
MMm3/day of gas, about the same amount as the entire “non-
power” gas demand. Also as mentioned previously, the 
thermal plants’ dispatch depends on the hydrological 
conditions: if the system is “wet”, the entire electricity load 
can be met with hydro generation alone. 

In other words, power-related gas consumption is both large 
and stochastic. This creates a complex problem for 
investment decisions in new gas fields and in new pipelines, 
which may be either excessive or insufficient, depending on 

hydrological conditions. Although take or pay contracts 
can alleviate part of the financial uncertainty, a mismatch 
between gas supply and demand can have significant 

consequences for power scheduling. One example of this mismatch happened in January 2004, when a 
shortage of hydropower in the Northeast of Brazil made ONS command the dispatch of 1,200 MW of 
gas-fired plants of the region and only a third of this (400 MW) was delivered due to gas production 
and transportation constraints. This episode showed the need for greater coordination between the 
electricity and the natural gas sectors’ operations planning. This will be discussed next. 

                                                      
1 This number excludes reinjection, E&P consumption and flares & losses 
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4. Probabilistic evaluation of gas-fired plant schedules 
We initially developed a probabilistic model for evaluating whether the sum of gas consumption 
requirements resulting from the hydrothermal dispatch and of “non-power” gas consumption forecasts 
could be adequately supplied by the existing and planned gas fields and pipeline network. Figure 3 
shows the information flow.  
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Figure 3 – data flow procedure 

The lower shaded area shows the first step of the process: the use of a production-costing tool for 
hydrothermal scheduling based on Stochastic Dynamic Programming – it will be discussed next – that 
dispatches the power system for a given electric supply x demand configuration. The main driver of 
uncertainty is hydrology. 

The result of interest is a set of power generation scenarios for each gas-fired power plant in each 
stage and simulated hydrological scenario for the study horizon. From these results and the 
consumption rates of each plant, a projection of the gas consumption for power generation is 
immediately obtained. The simulation is carried out for a set of hydrological scenarios, yielding a 
corresponding set of natural gas consumption scenarios. The shaded area in the upper part of Figure 3 
represents the scheduling of the gas sector and verifies the “feasibility” of these scenarios under the 
gas sector point of view. 

Each step will be discussed next. 

4.1. Stochastic hydrothermal scheduling  
Systems with considerable share of hydropower such as Brazil, Colombia, Norway and New Zealand, 
have been using hydrothermal scheduling tools for at least two decades. The objective of hydrothermal 
scheduling is to determine an operation strategy of a hydrothermal system that for each stage of the 
planning period produces generation targets for each plant (hydro releases and thermal production). 
This strategy should minimize the expected value of the operation cost along the period, composed of 
fuel cost and penalties for failure of load supply.  

Hydro plants are dispatched based on their marginal water values, which are computed by a multi-
stage stochastic optimization methodology, Stochastic Dual Dynamic Programming (SDDP) that 
approximates the cost-to-go functions by a set of linear inequalities, known as Benders cuts, avoiding 
the well know curse of dimensionality of traditional SDP models. The major advantage is the 
possibility to represent hydro plants individually. The SDDP approach is reviewed in great details in 
Annex A and it has been applied to the scheduling of large-scale power systems in more than thirty 
countries, including detailing modeling of system components and transmission networks [8].  

However, as mentioned previously, the implementation of the SDDP algorithm in the majority of 
hydro-based countries as a  dispatch model does not consider the gas supply-transportation constraints.  

A simplified formulation of the one-stage problem solved in the SDDP recursion is shown next; 
further details can be found in [7-12] and in the Annex. 
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4.1.1. Objective function 
The objective function is given by the minimization of thermal costs and rationing, plus a term 

that represents the cost-to-go function (also known as “future cost function”). 

αt (vt, at-1) = Min ∑
k=1

K
  ∑

j∈ J

 
 cj×gtk(j) + cδ×δ + αt+1(vt+1,at)   (1.1) 

where: 
k indexes load block in the stage 
K number of load blocks 
j indexes thermal plants 
J set of thermal plants 
cj operating cost of plant j 
gtk(j) Energy produced by thermal plant j (decision variable) 
cδ generic representation of operating constraint violation cost 
δ violation amount (decision variable) 
vt+1 final storage vector in stage t (decision variable) 
at lateral inflow vector in stage t 
 
The Future Cost Function is expressed as a scalar variable subject to linear inequalities (Benders cuts), 
which are determined according to the SDDP algorithm. 

 
αt+1(vt+1, at) = α 

s.t.  α ≥  wt(p) + ∑
i∈ I

 
 λtv(i, p) vt+1(i) + ∑

i∈ I

 
 λta(i, p) at(i) p = 1, …, P  (1.2) 

 
α scalar variable that represents expected future operating cost 
P indexes segments of the piecewise future cost function 
wt(p) constant term of pth segment 
λtv(i, p) plant i’s final storage coefficient in the pth segment 
λta(i, p) plant i’s lateral inflow coefficient in the pth segment 
p number of segments in the piecewise future cost function 

4.1.2. Water balance equations 
The water balance equation represents the coupling between successive stages: the reservoir storage 
vt+1 at stage t+1 is equal to the initial storage vt minus outflow volumes (turbined variable ut and 
spilled variable st) plus inflow volumes (lateral inflow at plus releases from immediately upstream 
plants belonging to set U), all in stage t, for all hydro plants in set K. 

vt+1(i) = vt(i) + at(i) − ε(vt(i)) − ∑
k=1

K
 [utk(i) + stk(i)]  + ∑

m∈M(i)
    ∑

k=1

K
 [utk(m) + stk(m)]  

      for i ∈I    (1.3) 
where: 
i indexes hydro plants 
I set of hydro plants 
M(i) set of upstream plants immediately upstream of plant i 
vt+1(i) final storage of i in stage t (decision variable) 
vt(i) initial storage of i in stage t 
at(i) lateral inflow to plant i  
ε(vt(i)) evaporated volume from reservoir i 
utk(i) turbined outflow volume of plant i along stage t in load block k (decision variable) 
stk(i) spilled outflow volume of plant i along stage t in load block k (decision variable) 
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4.1.3. Bounds on storage, turbined volumes and thermal generation variables 

 v_(i) ≤ vt(i) ≤ v
_
(i)  for i ∈ I     (1.4) 

 utk(i) ≤  u
_

t(i)    for i ∈ I; k = 1, ... , K   (1.5) 
 g_tk(j) ≤ gtk(j) ≤ g

_
tk(j)  for j ∈ J; for k = 1, ... , K  (1.6) 

4.1.4. Load balance equation 
The load supply equation relates total thermal and hydro generation to system load dt (MWh). The 
hydro generation for unit i is given by the product of its production coefficient ρ(i) (MWh/m3) and its 
turbined outflow ut(i), resulting in: 

 

∑
i∈ I

 ghk(i) + ∑
j∈ J

  gtk(j) = Dtk for k = 1, ... , K    (1.7) 

4.2. Probabilistic Gas Scheduling Model 
A gas network consists of supply nodes, where the gas is injected into the system; demand nodes 
where gas flows out of the system due to thermal power or non-thermal use; and intermediate nodes. A 
pipeline is represented by an arc linking the nodes. When modeling gas pipelines for short-term 
scheduling studies, the gas flow through pipelines depends on the pressure difference between the 
entry and exit nodes; also, nonlinear expressions relate flow limits with the pressure in the pipeline 
[see e.g. 3,4,5,6]. For the purposes of the present study – long-term planning, with monthly steps – a 
linear network flow model was felt to be adequate. In this sense, the following constraints are 
modeled: 

4.2.1. Gas Production and flow limits 
Local production sources may be available at each node of the gas system. Operational constraints 
may impose daily minimum and maximum limits, represented by the following set of equations: 

P_t(n) ≤ Pt(n) ≤ P
_

t(n)  for n ∈ N    (2.1) 

where Pt(n) is the gas production at node n (decision variable), stage t and the pair {P_t(n),P
_

(n)} is 
respectively the minimum and maximum production limits at node n, stage t represents the production 
curve of the gas field. Finally N is the set of gas nodes. 
The nodes of the gas system are interconnected by pipelines. Each pipeline can be characterized by its 
maximum and minimum flow limits under equilibrium (steady state) conditions, originating the 
following constraints: 

f_t(n,l) ≤ ft(n,l) ≤ f
_

t(n,l)  for n,l ∈ N    (2.2) 
 
where ft(n,l) is natural gas flow in the pipeline (decision variable) that connects nodes n and l and the 

pair { f_t(n,l), f−t(n,l)} is respectively the minimum and maximum flow limit between nodes n and l. 

4.2.2. Gas Balance equations 
At each stage, the sum of the demands at each node must be equal to the sum of the supply – either 
locally produced or imported through the pipelines – and of the deficit – in case there is not enough 
natural gas to completely fulfill the demand. For each node of the gas system, we have: 
 
Pt(n) + ∑

l∈Ω(n)
 [1–wt(n,l)] ft(l,n) – ∑

l∈Ω(n)
  ft(n,l) + ∑

k∈D(n)
 δt(k) + ∑

j∈T(n)
 δt

’(j) = ∑
k∈D(n)

 dt(k) + ∑
j∈T(n)

 φt(j) gt
*(j)  
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Figure 4 – South/Southeast gas network 

     for n ∈ N    (2.3) 

where Ω(n) is the set of nodes of the gas system connected to node n, T(n) is the set of thermal plants 
associated to node n of the gas system and D(n) is the set of non-thermoelectric demands at node n of 
the gas system (distribution companies, refineries, and others). The parameters are: wt(n,l) for the loss 
factor of the pipeline connecting nodes n and l and φt(j) for the gas consumption conversion factor for 
thermal plant j and dt(k) is the non-electric natural gas demand k. The generation of the gas-fired plant 
j, gt

*(j) is also known in this context, as it is obtained from the hydro scheduling simulation.  
 
The decision variables of the problem are: (i) scheduling of gas supply sources; (ii) scheduling of gas 
flows in the pipelines and (iii) deficits of natural gas for non-electrical demand k, δt(k) and the deficit 
of natural gas for thermal power plant j, δt

’(j). They appear in the objective function associated with 
costs ck and cj’ - the deficit cost for the natural gas non-electrical demand k and the electrical demand j, 
respectively. 

4.2.3. Objective Function 
The objective function is to minimize the natural gas rationings costs, thus: 

Min ∑
k

 ckδt(k) + ∑
j

  cj’δt
’(j)       (2.4) 

4.3. Case Study 
The probabilistic evaluation scheme will be illustrated with basis on the (publicly available) power 
system configuration of the Brazilian Monthly Operations Plan (“PMO”) for December 2005-
December 2009. As shown in Figure 3, the stochastic operational policy for 2005/2009 was calculated 
(with five additional years as a buffer to prevent depletion at the end of the period) using the SDDP 
hydrothermal dispatch algorithm previously described. Monthly steps were used, with three demand 
blocks in each step. Once the hydrothermal operational policy was calculated, the system operation 
was simulated for a set of hydrological scenarios, resulting in 
energy production schedules for each 
gas-fired power plant, for each month 
and for each hydrological scenario. 

Next, these energy production 
schedules were transformed into gas 
consumption schedules, though the 
use of efficiency factors for each 
power plant. Finally, these gas 
schedules were added to the “non-
power” gas consumption forecasts at the 
appropriate consumption nodes. 

Table 1 shows the gas supply projections, including production increase in local fields and imports. 
Figure 4 shows the pipeline network for the South-Southeast region. A similar procedure was applied 
for the Northeast network (remember that the gas networks are not integrated yet). 

Finally, the “non-power” gas consumption was estimated for each sector (industrial, automotive, 
commercial, residential and co-generation), in addition to Petrobras (Brazil’s oil and gas company) 
internal consumption in refineries and fertilizer plants. Figure 5 compares total supply and demand for 
the years of study. We see that the gas consumption from thermal plants is crucial for the demand x 
supply balance: if the thermal plants are not dispatched at all along the year (zero consumption of 
power-related gas), supply exceeds demand; at the other extreme, if the thermal plants are 100% 
dispatched along the year (base-loaded), supply cannot match demand. Given that the thermal plant 
dispatch depends, as seen previously, on hydrological conditions and on the overall supply s demand 
balance of the electricity sector, the question is then to assess the likelihood and severity of the gas 
supply shortfalls. 
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Table I – Gas supply projection available to market 
 (MMm3/day) 2006 2007 2008 2009 
South/Southeast 

Campos 14.4 14.9 15.5 15.0 
Merluz

a + Lagosta 1.2 1.9 1.9 1.9 

Gasbol 30.0 30.0 30.0 30.0 
TSB 0.0 0.0 0.0 0.0 
Santos 0.0 0.0 12.0 12.0 

Total 45.6 46.8 59.4 58.9 
Espírito Santo 

Total 4.4 6.6 10.0 10.0 
Northeast 

Total 14.2 15.4 14.4 13.4 
Brazil 

Total 64.2 68.8 83.8 82.3 
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Figure 5 – Gas supply x demand balance 

Figure 6 shows the frequency of gas supply shortfalls in volumes higher than 5% of the gas-to-power 
demand. Figure 7 shows the cumulative duration curve of the gas volumes shortfall, expressed in 
average MW (in other words, assuming that the supply of “non power” demand has priority over the 
supply of power-related consumption). We see in Figure 6 that in 2007, 19% of the scenarios had 
shortfalls; in turn, Figure 7 shows that the severity of the shortfalls in concentrated in fewer scenarios, 
which is consistent with the skewed probability distribution of droughts (“wet” scenarios are more 
likely than dry scenarios). 
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   Figure 7 – Gas deficit distribution in 2007

5. Integrated electricity-gas modeling in hydro scheduling models 
The previous study showed that the probability of dispatch failures of gas-fired plants due to fuel 
supply problems could be significant. Given that the hydrothermal dispatch model did not “know” 
about this possibility when calculating the water value of the hydroelectric plants, this means that the 
hydrothermal dispatch is not fully optimized: the system reservoirs will be depleted faster than 
expected, thus increasing the risks of energy deficits or of dispatching more expensive thermal plants 
such as fuel oil and diesel. One clear possibility for improving this situation is to incorporate the gas 
supply equations and constraints into the stochastic hydrothermal model, as described next. 

5.1.1. Gas pipeline equations 
The set of equations (2.1)-(2.3) is added to the one-stage presented problem formulation above. The 
only change lies in equation (2.3): thermal generation values gt

*(j) were known values in problem 
(2.1)-(2.4) and are decision variables gt(j) here. The modified equation becomes: 

Pt(n) + ∑
l∈Ω(n)

 [1–wt(n,l)] ft(l,n) – ∑
l∈Ω(n)

  ft(n,l) + ∑
k∈D(n)

 δt(k) + ∑
j∈T(n)

 δt
’(j) - ∑

j∈T(n)
 φt(j) gt(j) = ∑

k∈D(n)
 dt(k)  

 
    for n ∈ N    (3.1) 
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5.2. Case study 
The integrated electricity-gas hydrothermal scheduling was applied for the same electricity-gas 
configuration and data of the previous analysis. Also as in the previous study, we gave more priority 
for the “non power” gas supply than for gas-fired generation, in case of fuel shortages.  

Figure 8 shows the yearly short-run marginal cost (SRMC) of electricity (averaged over all months, 
load levels and hydrological scenarios) of the Southeast system for two situations: unrestricted gas 
supply and supply constraints. We see that the fuel supply constraints had an important effect on 
electricity costs. Figure 9 shows the distribution of yearly SRMC over the hydrological scenarios, 
again for the fuel-constrained and unconstrained cases. We see that fuel constraints did not affect 
electricity prices in most hydrological scenarios, which are “wet” and do not require thermal 
generation. However, they had a large impact on the remaining dry scenarios. 
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Figure 8 - Annual SRMC – Southeast region 
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Figure 9 - Distribution of the Southeast System 

marginal cost in 2008 
 
The impact of the natural gas constraints to the gas-fired thermal generation is shown in Figures 10 
and 11. Figure 10 compares the maximum and mean total generation for both cases  - with and without 
the constraints. The maximum generation of the case with no constraints is nearly twice as much as the 
one with the constraints. The mean generation, in turn, is more similar in both cases. The likely reason 
for this is that when constraints are included in the policy calculation of the stochastic dual dynamic 
programming algorithm, there is a tendency for the occurrence of preventive thermal generation to 
compensate for a smaller firm power availability caused by the gas constraints. The end effect is not a 
big change in the mean generation, but rather, in the tails of the distribution. In other words, the 
consideration of the gas constraints will be result in less generation for the critical scenarios, but a 
higher generation for the moderate scenarios. This effect can be clearly seen in Figure 11. Notice that 
the case with the generation constraints has much less amplitude then the other (values are sorted 
following the results of the simulation without gas constraints). 
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Figure 11 - Distribution of the gas-fired thermal 

power generation in 2008 
 
The impact of gas supply constraints on electricity prices could be alleviated by other measures, which 
can also be evaluated by the integrated gas-electricity scheduling model. One possibility is to 
transform the gas-fired plants into bi-fuel plants (the other fuel being diesel oil). Another possibility, is 
to negotiate interruptible (flexible) gas contracts with industry, which would switch to an alternative 
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fuel or even decrease production in case the gas-fired plants were dispatched. These alternatives bring 
more flexibility to the electricity-gas market and should be evaluated in a future work. 

6. Conclusions 
The vigorous growth of the natural gas market in hydro-dominated countries poses special challenges 
for planning and operations scheduling of both the electricity and gas sectors due to the substantial 
oscillation in power-related gas consumption when hydrological conditions vary from “wet” to “dry”. 
In this paper, we examined two alternatives for coordinating these sectors. In the first one, power 
dispatch assumes that there are no fuel constraints and produces a (stochastic) gas consumption 
schedule which is added to the “non power” gas consumption forecasts, all to be managed by the gas 
dispatch. In the second alternative, power and gas are dispatched jointly. It is shown that both 
alternatives can be modeled by stochastic optimization techniques, and their application is illustrated 
in case studies based on realist data from the Brazilian power system. It should be noted that this type 
of modeling and analysis, introduced by these authors, are being the basis of the studies and 
evaluations currently carried out by Brazilian authorities on this subject in the country. 
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ANNEX A: HYDROSCHEDULING AND THE SDDP ALGORITHM 
The objective of hydrothermal scheduling is to determine the sequence of hydro releases, which 
minimizes the expected thermal operation cost (given by fuel cost plus penalties for rationing) along 
the planning horizon. Nevertheless, the availability of this hydro energy is limited by reservoir storage 
capacity. Therefore, there is a relationship between the operative decision in a given stage and the 
future consequences of this decision. For example, if the stored hydroelectric energy is used today, and 
a drought occurs, it may be necessary to use expensive thermal generation in the future, or even 
interrupt the energy supply. If, on the other hand, reservoir levels are kept high through a more 
intensive use of thermal generation today, and high inflows occur in the future, reservoirs may spill 
and waste energy, resulting in increased operation costs. Figure A.1 illustrates this decision tree. 

OK

spillage

rationing

scheduling

use hydro

save hydro

wet

dry

wet

dry

OK

 
Figure A.1 - Decision Process for Hydrothermal Systems 

In contrast with thermal systems, whose long-term operation is decoupled in time, hydro system 
operation is coupled in time, so a decision today affects operating costs in the future. Also, since future 
inflows are unknown and difficult to forecast, the scheduling of hydrothermal systems is essentially 
stochastic.  

The scheduling problem is decomposed into several one-stage subproblems, where the objective is to 
minimize the sum of immediate and future operating costs, where the tradeoff between immediate and 
future operating costs is illustrated in Figure A.2. 

immediate
operating
cost

future
operating
cost

turbined outflow  
Figure A.2 - Immediate and future operation costs as a function of final storage 

 
The immediate cost function (ICF) is related to thermal generation costs in the present stage. The more 
the stored water is used for energy production, the cheaper the ICF will be today, since less thermal 
generation is needed to meet the load. However, using more water today leaves less storage for future 
use. So, in terms of the final storage, the ICF increases for higher final storage values. In turn, the 
future cost function (FCF) is associated with the expected thermal generation expenses from the next 
stage to the end of the study period. We see that the FCF decreases with final storage, as more water 
becomes available for future use. 

Conceptually, the FCF can be obtained by simulating the system operation in the future for different 
starting values of initial storage and calculating the operation costs. If the capacity is relatively small, 
as in the Spanish or Norwegian system, the impact of a decision is diluted in several months. If the 
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capacity is substantial, as in Brazil, the simulation horizon may reach five years. The simulation must 
take into account the variability of inflows to reservoirs, which fluctuate seasonally, regionally and 
from year to year. Inflow forecasts are generally inaccurate, in particular when it comes from rainfall, 
not snowmelt. Therefore, inflows are usually modeled as a multivariate stochastic process which 
preserves relevant serial and spatial dependencies observed in the past. As a consequence, FCF 
calculation has to be carried out on a probabilistic basis, using a large number of hydrological 
scenarios. 

The optimal use of stored water corresponds to the point that minimizes the sum of immediate and 
future costs. As shown in Figure A.3, this is also where the derivatives of ICF and FCF (in absolute 
value) with respect to storage are equal. These derivatives are known as water values. The optimal 
hydro dispatch is at the point that equalizes immediate and future water values. 
 

ICF

FCF

final storage

water
value

ICF + FCF

optimal
decision  

Figure A.3 - Optimal hydro scheduling 

 

A.1 Formulation of One-Stage Hydrothermal Dispatch 
The immediate cost is given by the thermal operating costs in stage t, ∑j∈J c(j)gt(j), where J denotes the 
set of thermal plants, c is the vector of thermal unit operating costs and variable gt (MWh) is the vector 
of thermal generations in stage t. In turn, the future cost is represented by the function αt+1(vt+1), where 
variable vt+1 is the vector of reservoir levels in stage t+1. Let us consider independent inflow 
scenarios. Given the initial storage vector vt, the objective of the one-stage hydroscheduling problem is 
to minimize the sum of immediate and future discounted operating costs (β is the discount factor): 

(1) zt(vt) = min ∑j∈J c(j)gt(j) + β αt+1(vt+1) 

Plant operation is modeled through the following constraints. The water balance equation (shown in 
Figure A-4) represents the coupling between successive stages: the reservoir storage vt+1 at stage t+1 is 
equal to the initial storage vt minus outflow volumes (turbined variable ut and spilled variable st) plus 
inflow volumes (lateral inflow at plus releases from immediately upstream plants belonging to set U), 
all in stage t, for all hydro plants in set I: 

(2)  vt+1(i) = vt(i) – ut(i) – st(i) + at(i) + ∑m∈U(i) [ut(m) + st(m)], i∈I 

 

upstream

plant outflow

lateral inflow

 outflow
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Figure A.4 - Reservoir water balance 

The load supply equation relates total thermal and hydro generation to system load dt (MWh). The 
hydro generation for unit i is given by the product of its production coefficient ρ(i) (MWh/m3) and its 
turbined outflow ut(i), resulting in 

(3) ∑i∈I ρ(i)ut(i) + ∑j∈J gt(j) = dt  

Finally, there are bounds on thermal generation (gmax), maximum storage (vmax) and turbine capacity 
(umax) for each hydro plant: 

 

(4) gt(j) ≤ gmax, j∈J 

(5) vt+1(i) ≤ vmax(i), i∈I 

(6) ut(i) ≤ umax(i), i∈I 

For simplicity, network constraints are not represented in the above formulation. These constraints are 
not coupled in time, and are expressed as linearized power flow equations with transmission limits. 

A.1.1 Calculation of Future Cost Function 
The future cost function calculation is naturally the key aspect of the state-space scheme. In theory, 
αt+1(vt+1) could be calculated by simulating system operation in the future for different starting values 
of initial storage and calculating the operating costs, as illustrated in Figure A.5. 
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rationing

replaces
thermal
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max. storage

storage

 
Figure A.5 - “Brute Force” FCF Calculation 

However, this “brute force” approach has the same computational drawbacks as the explicit stochastic 
formulation. Therefore, the future cost function in each stage is calculated through a more efficient 
stochastic dynamic programming (SDP) recursion: reservoir levels are discretized, and starting from 
the last stage T, problem (1-6) is solved assuming the first storage level for each reservoir. Since we 
are at the last stage, the FCF is zero. Because of inflow uncertainty, the hydro scheduling problem is 
successively solved for N different inflow scenarios and the expected operation cost is calculated as 
the mean of the costs over the N scenarios. For each remaining storage states in stage T, repeat the 
calculation of expected operation costs and interpolate in order to produce the FCF αT(vT) for stage T-
1. This process is then repeated for all states is stages T-1, T-2 etc. Note that the objective in those 
stages is to minimize immediate operation plus expected future cost, given by previously calculated 
FCF. The final result of the SDP scheme outlined above is the set of future cost functions αt+1(vt+1) for 
each stage t.  

The procedure can be depicted as follows: 

initialize the end-of-horizon future cost function αT+1(vT) ← 0 

for t = T, T-1, ..., 1 
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for each storage value vt = v1
t, ..., v

m
t  , ... , vM

t  

for each inflow scenario at = a1
t, ..., a

k
t, ..., a

K
t  

solve the one-stage problem (4.1) for initial storage vm
t  and inflow ak

t: 

α
k
t(v

m
t ) = Min ct(ut) + αt+1(vt+1) 

subject to      (4.2) 
vt+1 = vm

t  - ut - st + ak
t 

vt+1 ≤ v
_

 

ut ≤ u
_
 

next 

calculate the expected operation cost over all inflow scenarios: 

αt(v
m
t ) = ∑

k=1

K
 pk×α

k
t(v

m
t ) 

next 

create a complete future cost function αt(vt) for the previous stage by interpolation on the discrete 
values {αt(v

m
t ), m = 1, ..., M} 

next 
However, due to the discretization, the SDP computational effort increase exponentially with the 
number of reservoirs, the well-known “curse of dimensionality” of DP. Therefore, it is not practical 
for systems with many reservoirs.  

For this reason, it has become necessary to develop computationally feasible state-space schemes. The 
traditional approach, still adopted in many countries, has been to reduce system dimensionality by the 
aggregating system reservoirs into one reservoir that represents the energy production capability of the 
cascade. This scheme is in some cases coupled with the use of partial dynamic programming schemes 
(typically, calculation of separate future cost functions for each basin). 

More recently, an approach based on the analytical representation of the future cost function, known 
as stochastic dual dynamic programming (SDDP) has been applied in several countries in South and 
Central America, plus USA, New Zealand, Spain and Norway2. The SDDP scheme does not require 
discretization of the state space and, as a consequence, alleviates the computational requirements of 
the stochastic DP recursion. It will be described next. 

A.2.2 The Dual Dynamic Programming Scheme 
The stochastic dual DP scheme (DDP) proposed  independently by [10] and [14] is based on the 
observation that the FCF can be represented as a piecewise linear function, so there is no need to 
create an interpolated table. Furthermore, the slope of the FCF around a given point can be analytically 
obtained from the one-stage dispatch problem (1-6).  

The last-stage dispatch problem is shown below (note that the FCF in this stage is zero): 

(7) zT = min ∑j∈J c(j)gT(j) 

(8) vT+1(i) = vT(i) – uT(i) – sT(i) + aT(i) + ∑m∈U(i) [uT(m) + sT(m)], i∈I 

(9) ∑i∈I ρ(i)uT(i) + ∑j∈J gT(j) = dT 

                                                      
2 A related scheme, called constructive dynamic programming, has been applied to the Australian system . 
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(10)  gT(j) ≤ gmax, j∈J 

(11)  vT+1(i) ≤ vmax(i), i∈I 

(12)  uT(i) ≤ umax(i), i∈I 

The Lagrange multiplier vector πh associated to the water balance equation (8), also known as the 
water value, represents the derivative of zT with respect to a variation in the initial storage vT, and 
corresponds to the slope of FCF for stage T-1. Figure A.6 shows the calculation of the operation cost 
and FCF slopes for each state in stage T. It can be seen that the FCF for stage T-1 corresponds to the 
piecewise cost surface produced by taking the linear segment with the highest cost value in each state 
(the convex hull). 

1 2 T-1 T cost

FCF for stage T-1

 
Figure A.6 - Calculation of Piecewise FCF for stage T-1 

The dispatch problem for stage T-1 is now 

(13)  zT-1(vT-1) = min ∑j∈J c(j)gT(j) + β αT 

(14) vT(i) = vT-1(i) – uT-1(i) – sT-1(i) + aT-1(i) + ∑m∈U(i) [uT-1(m) + sT-1(m)], i∈I 

(15) ∑i∈I ρ(i)uT-1(i) + ∑j∈J gT-1(j) = dT-1 

(16) gT-1(j) ≤ gmax, j∈J 

(17) uT-1(i) ≤ umax(i), i∈I 

(18) αT ≥ ϕT
n vT + δT

n, n=1,…,N 

The future cost function is represented by the scalar variable αT and the N linear constraints {αT≥ ϕT
n 

vT+δT
n}n=1,N where N is the number of linear segments. A shown in Figure A.7, these inequalities 

represent the piecewise characteristic of this function. 

vT

ϕn
T

δN
T

δ1
T

δn
T

 
Figure A.7 - Piecewise linear FCF for stage T 

Therefore in general, for each stage t, the FCF is represented by the scalar variable αt and N linear 
constraints. 

A.2.1.1 Backward Recursion and Lower Bound Calculation 
The recursive calculation of the piecewise linear FCF is very similar to the standard SDP scheme. In 
order to take into account that future inflows are unknown consider K inflow scenarios. The backward 
recursion scheme is shown below: 
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Set N equal to M, the number of initial storage values; 

initialize the FCF for stage T as zero: δn
T+1 and ϕn

T+1 are null, for n=1,…,N; 

for t=T,T-1,…,1 

 for each storage value vt
m, m=1,…,M 

  for each inflow scenario at
k,k=1,…,K 

  solve the one-stage scheduling problem for initial storage vt
m and inflow at

k : 

(19) zt
k(vt

m) = min ∑j∈J c(j)gt(j) +β αt+1 

(20) vt+1(i) = vt
m(i) – ut(i) – st(i) + at

k(i) + ∑m∈U(i) [ut(m) + st(m)], i∈I 

(21) ∑i∈I ρ(i)ut(i) + ∑j∈J gt(j) = dt 

(22) gt(j) ≤ gmax, j∈J 

(23) ut(i) ≤ umax(i), i∈I 

(24) αt+1 ≥ ϕn
t+1 vt+1 + δn

t+1, n=1,…,N 

end; 

calculate the volume coefficients and constant term for the mth linear segment of FCF in the 
previous stage by taking averages over all scenarios (scenario k at stage t has conditional 
probabilility pkt): 

(25) ϕt
m = ∑k pkt πht

k  

(26) δt
m = ∑k pkt αt

k(vt
m) - ϕt

m vt
m 

 end; 

end. 

At first sight, there are no substantial differences between the Dual DP procedure in and the traditional 
DP scheme. Note, however, that the traditional scheme had to create a new future cost function table 
in each stage by interpolation of the discrete values {αt(v

m
t )}. As a consequence, the required number 

of points in the table for a system of I hydro plants is at least equal to the 2I combinations of extreme 
points (full/empty). In the Dual DP scheme, the piecewise linear segments can be used to extrapolate 
the future cost function values, i.e. it not necessary to use all combinations of points to obtain a 
complete (although approximate) future cost function. Moreover, if a smaller number of initial storage 
values is used, a smaller number of linear segments will be generated. As seen in Figure A-7, the 
resulting future cost function, which is based on the maximum value over all segments, will then be a 
lower bound to the “true” function. 

As a consequence, the future cost function for the first stage is a lower bound z_ to the optimal solution 
of the hydrothermal scheduling problem: 
(27) zL = z1(v1) 

A.2.1.2Forward Simulation  and Upper Bound Calculation 
If we use the FCF produced by the backward recursion scheme, an upper bound to the optimal solution 
of the hydrothermal scheduling problem can be obtained by Monte Carlo simulation of system 
operation ([14] uses a complete representation of the piecewise linear function; his approach was 
limited to two reservoirs). This is due to the fact that the only FCF that can result in the optimal 
operation cost is the optimal function itself; all others, by definition, will have higher operation costs. 
The simulation scheme is shown below. 

Define inflow scenarios at
m, m=1,…,M for all stages t=1,…,T; 
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for each inflow scenario at
m, m=1,…,M 

 initialize storage value for stage 1 as vt
m = v1; 

 for t=1,…,T 

solve the one-stage scheduling problem (19-24) ; 

calculate the total operating cost zm for scenario m as the sum of all immediate thermal costs 
along the study period; 

end; 

end. 

An upper bound for the expected operation cost is estimated as the mean total cost over all scenarios: 

(28) zU = M-1 ∑m=1,M  zm 

This estimator is unbiased, converging to the population value. Due to the sampling variation, there is 
an uncertainty around the “true” expected value. A 95% confidence interval [zU-1.96σ, zU+1.96σ] can 
be derived by estimating the variance of the estimator as 

(29) σ2 = M-1 ∑m=1,M (zm- zU)2 

A.2.1.3..Optimality Check and New Iteration 
Optimality is achieved when the lower bound zL is within the confidence interval of the upper bound. 
Note that because of sampling variation, the lower bound may exceed the upper bound mean estimate 
zU. 

If the lower bound is outside the confidence interval, the backward recursion step described previously 
is repeated with an additional set of storage values. These values are produced by the forward 
simulation step. Note that all linear constraints produced along the iterative process are retained, since 
the piecewise FCF is given by the convex hull. Therefore, the representation of the FCF is gradually 
improved along the process until convergence is achieved. 
 


