

Abolfazl Jalilvand

Department of Electrical
Engineering

Zanjan University
Zanjan, Iran

ajalilvand@tabrizu.ac.ir

Sohrab Khanmohammadi
Faculty of Electrical and
Computer Engineering

University of Tabriz
Tabriz, Iran

khan@tabrizu.ac.ir

Fereidoon Shabaninia
Faculty of Electrical and
Electronics Engineering

University of Shiraz
Shiraz, Iran

shabani@shirazu.ac.ir

Abstract

This paper presents a new branch-and-bound
algorithm for minimizing the make-span of a job-shop
scheduling problem where n jobs must be scheduled
on m machines. It is assumed that the jobs are
available at time zero and have sequence-dependent
setup times on machines. For solving the scheduling
problem we develop a new Branch and Bound system
which constructs its search tree gradually and does
not need a large size memory. An upper-bound cost
(UBC) is introduced to initialize the root node in
search tree which reduces Branch and Bound
computations .For modeling the manufacturing
system and applying the desired sequence-dependent
schedule on it, a supervisor Petri net is introduced.
The proposed methods will be verified through a
computational experiment.

Keywords: Multiprocessor system, Scheduling,
Petri nets, Branch and Bound.

1. Introduction

Applications of sequence-dependent
scheduling are commonly found in
manufacturing environments. In the printing
industry, for example, presses must be cleaned
and settings changed when ink color, paper size
or receiving medium differ from one job to the
next. In the container manufacturing industry
machines must be adjusted whenever the
dimensions of the containers are changed, while
in printed circuit board assembly, rearranging
and restocking component inventories on the
magazine rack is required between batches. In
each of these situations, sequence-dependent
setup times play a major role and must be

considered explicitly when modeling the
problem [1].
 The search for a solution to the
multiprocessor scheduling problem is performed
with the aid of a search tree that represents the
solution space of the problem. That is, all
possible permutations of task–to–processor
assignments and schedule orderings. The
Branch-and-Bound (B&B) strategy has been
successfully used for searching such a solution
space and finding optimal or near-optimal
solutions [2-4].
 In a manufacturing system, for example,
many machines may be able to process a job but
with different speeds depending on the
machine's technology. For such a system when
no precedence constraints exist between tasks,
the number of goal vertices in a search tree
is nmn! for a multiprocessor system with n tasks
and m processors [2]. In such a system
constructing the search tree thoroughly needs

∑ ∏
=

−

=
−

n

k

k

l

k lnm
1

1

0
)(memory cells, so that even for

low number of jobs and machines, using B&B
algorithm needs a large size of memory.
 In this paper we introduce a new method
which enables us to construct the search tree
gradually. Using this new algorithm vertices are
generated just when the B&B algorithm needs to
explore them. For initializing the root node in
the search tree a heuristic upper bound cost will
be introduced which reduces the branch-and-
bound computations. To apply the desired
schedule on the manufacturing system a
supervisor Petri net is used.

0-7803-9247-7/05/$20.00 ©2005 IEEE

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

334

zulfiqar
Scheduling of Sequence-Dependant Jobs on Parallel Multiprocessor Systems Using a Branch and Bound-Based Petri Net

2. The Multiprocessor System

The multiprocessor system consists of a set of
processors (manufacturing cells) indexed by

{ }mIi ,...,2,1=∈ and a set of jobs, indexed by
{ }nJj ,...,2,1=∈ where each of jobs can be

processed by each of the machines. It is assumed
that the required processing time of each job is
different for each of machines. Furthermore it is
assumed that there are sequence-dependent setup
times on machines. The main problem is to
determine which sequence of jobs must be
processed by any machine so that overall make-
span of the system is minimized. We can
summarize all of the (processing + setup) times
in m nn× time matrices as follows:

 (1)}...21{ :][mIitT nn
i
kj

i =∈= ×

Where i
kjt represents the (setup + processing)

time of ith machine on jth job whereas it has
processed kth job already. If a machine isn't
eligible to process a specific job it can be
considered by setting the elements of the
corresponding row and column in it's time
matrix to infinity. We introduce iC as the
completion time of the last job scheduled on ith
machine which can be defined as follows:

 (2)∑
=

=
iN

j

i
kji tC

1

Where iN is number of jobs scheduled on

machine i and i
kjt is the (setup + processing)

time of job j on machine i whereas it has
processed kth job already. By using all iC the
make-span (maxC) is defined as:

 (3))(maxmax i
Ii

CC
∈

=

Where the objective of scheduling is to minimize
maxC .

3. Branch and Bound Algorithm

Branch and Bound is a common search

technique for combinatorial optimization. B&B
improves over exhaustive enumeration, because
it avoids the exploration of those regions of the
solution space, where it can be certified (by
means of lower bounds) that no solution
improvement can be found. The exploration of
the solution space can be represented by a search
tree where its nodes represent sets of solutions,
which can be further partitioned in mutually

exclusive sets. Each subset in the partition is
represented by a child of the original node.
Whenever a new vertex is generated which could
lead to an optimal solution, it will be referred to
as an active vertex. The power of the B&B
strategy lies in alternating branching and
bounding operations on the set of active vertices.
The branch refers to partitioning of the solution
space (generating the child vertices); the bound
refers to lower bounds that are used to construct
a proof of optimality without exhaustive search
(process of evaluating the cost of new child
vertices). A goal vertex in the search tree
represents a complete solution where all tasks
have been scheduled on the processors. An
acceptable complete solution is also called a
feasible solution. An intermediate vertex
represents a partially complete schedule. The
level of a vertex is the number of tasks that have
been assigned to any processor in the current
schedule. The cost of a vertex is the quality of
the schedule represented by the vertex (Fig. 1).

2 nodeoftree-Sub

root

leaves

0

1

1

1

2

3

3

3

3

2

2 2

2

3

1

1

Fig.1: The structure of a tree.

 The B&B algorithm starts by sequencing one
of the available operations called branching the
node. By branching a node, a new node is
formed and the node is kept in the search space
if its lower bound value is better than the upper
bound value or vice versa. A heuristic is used to
schedule the remaining operations for every
node and the best solution found so far will be
recorded as the upper bound value. The next
node to be branched is the one with the best
lower bound value, as it is deemed to have the
best potential. As more nodes are branched,
more and more operations will be sequenced,
and the upper bound value will become smaller
and smaller [6]. An algorithm that computes a
lower bound on the cost of any solution in a
given subset prevents further searches from a
given node if the best cost found so far is smaller
than the cost of the best solution that can be
obtained from the node (lower bound computed
at the node). In this case the node is killed and
no children need to be searched; otherwise it is
alive.

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

335

 It is well known that Branch-and-Bound
computations can be reduced by using a heuristic
to find a good solution to act as an upper bound
prior to the application of the enumeration
algorithm, as well as at certain nodes of the
search tree [4]. The more accurate the upper-
bound cost is, the faster the B&B algorithm will
get because more vertices can be pruned at each
step. For the mentioned scheduling problem we
introduce a heuristic UBC as follows:
 Consider the jobs one by one from 1 to n .
Related to each job, after adding the make-spans
of scheduled machines to the corresponding
(setup + processing) times related the new job
we select the machine with minimum overall
time and consider it's index as the machine that
the corresponding job is assigned to it. When
this process is completed we have a sequencing
of machines related to jobs. Now we calculated
the make-span of each machine and based on
them we compute maxC of this sequencing as a
UBC using (3).

4. The New B&B Algorithm

In this section we introduce a new B&B
algorithm based on a new method which
constructs the search tree step by step.
Constructing the search tree for this system starts
with from the root (zero level). At the first level
of the tree, mn branches are created. At level l
of this tree, each node contains l jobs assigned,
and can be branched into)(lnm − nodes. When
the last level of the tree is reached, the number
of branches will be zero because at that point

nl = . If this procedure is carried out completely,
nmn! nodes will be generated at level n . For

constructing whole of the search tree for this
multiprocessor system we need

∑ ∏
=

−

=
−

n

k

k
k

l
mln

1

1

0
))((memory cells. In our new

approach, instead of constructing the search tree
thoroughly, we just need two 1×n vectors (D
and B) and one nn × matrix A which reduce
this high size of memory to only)2(+nn
memory cells. The key idea in our proposed
B&B algorithm is to generate nodes of the
search tree one by one and just when the B&B
algorithm needs to explore it. At first we
introduce an algorithm which can produce each
of the possible combinations of m machines
which n jobs assigned on them, one by one.

Algorithm I:

1- Get n as the number of jobs and m as the
number of machines.

2- Set []T111 K=D as the initial value of D
and set nf = as a temporary flag.

3- Set 1)()(+= ff DD .
4- IF mf >)(D and 1>f THEN set 1)(=fD and

1−= ff then go to step 3 ELSE go to step 5.
5- End.

This algorithm only needs a 1×n vector D
hence the size of required memory reduces
considerably. Now we introduce another
Algorithm for producing each permutation of the

!n distinct sequences at each step. Using this
Algorithm each permutation of jobs is developed
by just using a nn× matrix (A) and a 1×n vector
(B) [9].

Algorithm II:

1- Select an arbitrary sequence of the n jobs as the
first permutation and save it in array S .

2- Set []TnK21=B as the initial value of B ,

[]TTTT SSSA K= as the initial value of A
and nF = as a temporary flag.

3- Set :),(nAP = where P indicates the
permutation of S and :),(nA indicates the nth
row of A .

4- Set 1)()(+= FF BB .
5- IF nF >)(B and 1>F THEN set FF =)(B , set

1−= FF and return to step 4 ELSE go to step 6.
6- Exchange))(,(FF BA by),(FFA . Set rows F+1

to N of A equal to :),(FA .
7- IF nF ≤)(B THEN set nF = , go to step 3 ELSE

go to step 8.
8- End.

Now based on algorithms I and II we introduce a
new B&B algorithm to solve the mentioned
scheduling problem.

Algorithm III:

1- Get n as the number of jobs, m as the number

of machines and IiT i ∈ : as the matrix that
includes machining (setup + processing) times on
jobs.

2- Select an arbitrary sequence of the n jobs as the
first permutation and save it in array S .

3- Set []TnK21=B as the initial value of B ,

[]TTTT SSSA K= as the initial value of A ,
F=n as a temporary flag.

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

336

4- Set []T111 K=D as the initial value of D
and set nf = as a temporary flag.

5- Get :),(nA as the sequence of jobs and D as the
sequence of machines which are assigned jobs
respectively and Calculate the make-span
(maxC) based on formula (3) then set MC
(minimum make-span) equal to maxC .

6- Get):1,(fnA as the sequence of jobs and):1(fD
as the sequence of machines which are assigned
jobs respectively and calculate the make-span
(maxC).

7- IF MCC ≥max THEN go to step 9 ELSE go to
step 8.

8- IF nf = THEN set maxCMC = and go to 9
ELSE set 1+= ff and return to step 6.

9- Set 1)()(+= ff DD .
10- IF mf >)(D and 1>f THEN set 1)(=fD and

1−= ff then go to step 9 ELSE go to step 11.
11- IF mf ≤)(D THEN go to step 6 ELSE go to step

12.
12- Set 1)()(+= FF BB .
13- IF nF >)(B and F>1 THEN set FF =)(B then

set F=F-1 and return to step 12 ELSE go to step
14.

14- Exchange))(,(FF BA by),(FFA . Set rows F+1
to N of A equal to :),(FA .

15- IF nF ≤)(B THEN set F=n and []T111 K=D ,
go to step 6 ELSE go to step 16.

16- End.

This B&B method performs a depth first search
in an exhaustive manner. In this algorithm each
node is constructed when it must be tested and
there isn't need to construct the whole search tree
at once.
 For modeling of the manufacturing systems
and to apply the optimum sequence which is
obtained trough B&B algorithm we can use Petri
nets [10].

5. Petri Nets

A Petri Net (PN) is a 5-tuple,
()0,,,, MWFTPPN= where [11]:

{ }mpppP K21= is a finite set of places.
{ }ntttT K21= is a finite set of transitions.
() ()PTTPF ××⊆ U is a set of arcs (flow

relations)
 { }K321: →FW is a weight function.

{ }K210:0 →PM is the initial marking .
Φ=TPI and Φ≠TPU .

The dynamical behavior of a system is
modeled by changing the state or marking in
Petri nets according to the following (firing)
rules:

1- A transition t is said to be enabled if each
input place p of t is marked with at least
()tpw , tokens, where ()tpw , is the weight of

the arc from p to t .
2- An enabled transition may or may not fire

depending on whether or not the event
actually takes place (firing conditions are
ok).

3- Firing of an enabled transition t removes
()tpw , tokens from each input place p to t

and adds ()ptw , tokens to each output place
p of t , where ()tpw , and ()ptw , are the
weights of the arcs from p to t or t to p
respectively.

 In graphical representation of a Petri net,
places are represented by circles and transitions
are shown by hollow bars. The relationship
between places and transitions is represented by
directed arcs. For example the Petri net of Fig. 2
depicts the firing of a transition.

OH 2

H

O

t2

OH 2

H

O

t2

a b

Fig.2: Transition (firing): (a) Marking before firing
(b): Marking after firing.

 In un-timed Petri net one can prohibit
controlled transition from firing but cannot force
the firing of a transition at a particular time. In a
timed Petri net controlled transitions are forced
to fire, by considering the time dependent firing
functions. In timed Petri nets, each transition has
its specific time which determines the
transition's holding time. When a transition is
fired during its holding time the network's
marking is not changed and as soon as its
holding time elapsed the marking of network
will be changed based on the mentioned firing
rules [12].

6. Applying B&B Using Petri Nets

For modeling the mentioned multiprocessor

job-shop system it is considered that each

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

337

machine has an input buffer and an output buffer
as shown in Fig. 3.

M oBiB

Fig. 3: Schematic diagram of a machine

Fig. 4 shows the Petri net model of each
machine regarding its input and output buffers.

1bp

2bp

3bp

4bp
4t

3t2t

1t

2mp

1mp

Fig.4: Petri net model of the machine.

In this model the places are defined as:
p1b: the input buffer is empty.
p2b: the input buffer is full.
p3b: the output buffer is empty.
p4b: the output buffer is full.
p1m: the machine is idle.
p2m: the machine is busy.
Also each transition in Fig. 4 is defined as:
t1: A part enters the input buffer.
t2: A part enters the machine.
t3: The part exits the machine.
t4: The part leaves the output buffer.

 Based on this Petri net model we can model
the multiprocessor system by considering m
identical models which are parallel together. For
applying the optimum sequencing obtained by
B&B algorithm we introduce a Petri Net model.
Fig. 5 shows this Petri net model. In this model
related to each job we consider a place
(njp j ,...,2,1 , =). Regarding that each job can

be assigned to each of the machines hence we
consider m output arcs from each of these places
(one output arc is related to one machine). To
apply the optimum sequence it is needed to
determine which job will be assigned to each
machine. For this purpose we consider m
additional places mip ji ,...,2,1 , = for each job

j (totally mn× places). We can apply the
desired sequencing by putting one token in
related place. In this Petri net model we can
assign the (setup + processing) time of each job
by each machine to corresponding transition
from the set of transitions labeled:

minjt ji ,...,2,1 , ,...,2,1 , == . In such a case

other transitions will be un-timed.

1p np

1mp nmp11p n1p

11t
n1t 1mt nmt

'pm'p1

1b
p

2b
p

3b
p

4b
p

4 t

3 t
2 t

1 t

2m
p

1m
p

1b
p

2b
p

3b
p

4b
p

4 t

3 t
2 t

1 t

2m
p

1m
p

KKK

K

K

Based -B&B

1M mM

Net Petri Supervisor Net Petri Supervisor
Based -B&B

Fig. 5: Petri net-based application of the desired

sequencing.

 Because assigned jobs to each machine are
sequence-dependent, we must put the token in
the corresponding places in different instants and
according to the sequence of the jobs scheduled
on the machine. To solve this problem we
introduce a B&B-based supervisor Petri net
which enables us to put all tokens related to each
machine simultaneously. Fig. 6 shows the Petri
net model of the optimum sequencing by using
B&B algorithm for n distinct jobs.

1
1p

K

K

KK

K

K

K
1
2p 1

np 2
1p 2

2p 2
np n

npn
2pn

1p0p

KKKK

KK

K

K

O O O

Fig. 6: B&B-based supervisor Petri net.

This Petri net considers different possible
sequences of jobs by proper marking of places:

},...,2,1{,: njkp k
j ∈ , where k indicates the

ordering of jobs in the sequence and j
represents the index of jobs. There isn't any
restriction about simultaneous marking of the
corresponding places. One of the places:

},...,,{ 11
2

1
1 nppp must be marked depending on

the beginning job of the sequence. Marking one

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

338

place from each of sets: },...,,{ 22
2

2
1 nppp , … and

},...,,{ 21
n
n

nn ppp determines the next jobs of the
sequence respectively. If we classify the places
to n sets: },...,,{ 11

2
1
1 nppp , },...,,{ 22

2
2
1 nppp , …

and },...,,{ 21
n
n

nn ppp or },...,,{ 1
2
1

1
1

nppp ,

},...,,{ 2
2
2

1
2

nppp , … and },...,,{ 21 n
nnn ppp , it can

be seen that for each sequence only one place
from each set is marked. In Fig. 6 this supervisor
Petri net is used for supervision of the ordering
of the jobs sequence assigned to each machine.

7. Computational Results

In order to evaluate performance of the
heuristic approaches developed in this paper, a
computational experiment was conducted. The
results are provided in Table 1. In this
computational experiment, for each testing
problem, instances were generated and for each
instance, the matrix of machining times was
randomly generated. The minimum make-spans
of the schedules obtained by the B&B were
compared with the upper bound cost (UBC) by

using %100)
MC

MCUBC
(×

− . It can be seen from

table 1 that in worst case the difference between
UBC and MC is less than 100% of MC.

Table 1: Computational results
 n m UBC MC %100)

MC
MUBC

(×
− C

 8 8 52 35 48.57
 8 6 65 33 96.96
 8 4 86 53 62.26
 8 2 236 131 80.15
 8 1 284 190 49.47
 6 6 57 46 23.91
 6 4 48 36 33.33
 6 2 120 94 27.66
 6 1 285 161 77.02
 4 4 63 48 31.25
 4 2 101 61 65.57
 4 1 215 168 27.98

8. Conclusions

A new branch-and-bound algorithm was

introduced to minimize the make-span of a
parallel job-shop scheduling problem where it is
assumed that the jobs are available at time zero
and have sequence-dependent setup times on
machines. In the developed new Branch and

bound, nodes of the search tree were produced
gradually and when the B&B algorithm needs to
explore them. This causes that running the
algorithm by computer doesn’t need large size of
memory. For modeling the manufacturing
system and applying the desired sequence-
dependent schedule on it a supervisor Petri net is
introduced. The proposed methods were verified
through a computational experiment.

9. References

[1] R. Z. Rios Mercado, and J. F. Bard. A Branch and

Bound Algorithm for Permutation Flow Shops with
Sequence Dependent Setup Times”, IIE Transactions,
(31): 721-731, 1999.

[2] S. Fujita, M. Masukawa, and S. Tagashira. A Fast
Branch-and-Bound Algorithm with an Improved
Lower Bound for Solving the Multiprocessor
Scheduling Problem. Proc. of 9th international
conference on parallel and distributed systems
(ICPADS02), 2002, pp. 611-616.

[3] J. Jonsson, and K. G. Shin. A Parameterized Branch-
and-Bound Strategy for Scheduling Precedence-
Constrained Tasks on a Multiprocessor System. Proc.
of International Conference on Parallel Processing,
August 11-15, 1997, pp. 158-165.

[4] X. Wang, and J. Xie. Branch and bound algorithm for
flexible flow shop with limited machine availability.
Asian Information-Science-Life, 1(3), 2003.

[5] D. He, A. Babayan, and A. Kusiak. Scheduling
manufacturing systems in an agile environment.
Robotic and Computer Integrated Manufacturing,
17(1-2): 87-67, 2001.

[6] P. Y. Gan, K.S. Lee, and Y. F. Zhang. A Branch and
Bound algorithm based process planning system for
plastic injection mould bases. The international Journal
of Advanced Manufacturing System, 18: 624-632,
2001.

[7] S. Olaffson, and L. Shi. A method for scheduling in
parallel manufacturing systems with flexible resources.
IIE Transactions, (32): 135-146, 2000.

[8] S. Khanmohammadi. Single array Branch and Bound
method. Iranian Journal of Engineering, 3(1-2): 71-72,
1990.

[9] A. Jalilvand, and S. Khanmohammadi. Task
scheduling in Manufacturing Systems Based on an
Efficient Branch and Bound Algorithm. Proc. of IEEE
Conference on Robotics, Automation and
Mechatronics (RAM2004), December 2004,
Singapore, pp. 271-276.

[10] A. Jalilvand, and S. Khanmohammadi. Modeling of
Flexible Manufacturing Systems by Timed Petri Net.
International Conference on Computational
Intelligence (ICCI-2004), December 2004, Istanbul,
Turkey, pp. 141-144.

[11] Tado Murata. Petri nets: properties, analysis and
application. Proc. of IEEE, 77(4): 541-580, April 1989.

[12] A. Jalilvand, and S. Khanmohammadi. Using Petri
Nets and Branch and Bound Algorithm for Modeling
and Scheduling of a Flexible Manufacturing System.
WSEAS Transaction on Systems, Issue 7, Vol.3, 2580-
2585, Sept. 2004.

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

339

Khubaib Ahmed Qureshi
SZABIST

Karachi, Pakistan
khubaib_ahmed@yahoo.com

Abstract

Business Integration (BI) has become a key issue for
many companies to extend business market by
integrating and streamlining processes both internally
and with partners. To address this issue, whole
marketplace has emerged for software solution that can
help to achieve improved business integration which is
referred as EAI. Originally EAI was only focused
around integrating ERP with other applications within
enterprise but now it is generally used as a catch-all
term to cover all the other aspects of business
integration. Major EAI approaches and evolution of
enabling technologies ranging from EDI to Web
Services and XML based process integration are
analyzed to provide flexible, scalable and adaptable
EAI framework. Solution comprises the challenge of
efficiently integrating diverse business processes and
data across the enterprises, allowing the organizations
to keep pace with and respond to market changes.

1. Introduction

Due to the explosive growth of Internet, complex
business expansion, competitive pressures, new
business models, and the need to streamline business
processes both internally and with partners or suppliers;
has made BI key issue for many companies.

Enterprises need the level of internal and community
based integration solution to help reduce cycle times,
minimize the cost, and risk of connecting to entire value
chain [1], increase response and outpace the
competition. Every business need to constantly adapt
and reconfigure their IT assets, systems, and business
operations to meet changing customer demands;
compress business cycles; and differentiate from
competition. However, most enterprises have invested
in packaged, legacy, and custom applications that
perform specific business functions. Which operate
within an extremely complex, inflexible, and mostly
ad-hoc architecture consisting of monolithic silos,

point-to-point connections and coupled hard coded
interfaces. This makes it difficult to quickly assemble
and reassemble the services, they provide as part of
internal business processes or external business
processes that support new and changing business
requirements.

The ultimate goal of BI is therefore to have inter-and
intra-enterprise applications evolve independently, yet
allow them to effectively and conveniently use each
other’s functionality. Major challenge in business
integration is interaction, which can be defined as
consisting of interoperation and integration with both
internal and external enterprise applications. Because
enterprises applications are composed of autonomous,
heterogeneous, and distributed components therefore
offer challenges because of issues like scalability,
volatility, autonomy, heterogeneity, and legacy systems.
Real BI/EAI also requires conversion of varied data
representations between partners’ systems and
connecting proprietary/legacy data sources, ERP,
applications, processes, and workflows to the Web, and
trading partners’ systems [2].

Physiology is explained through continuum of EAI
enabling technologies [3, 4], which has been used to
solve business integration problem and classified as
EDI based, component based message oriented
middleware, workflows, XML framework, and Web
Services. The study demands state of the art
complementary EAI framework based on business
process management harnessing the Event Driven &
Service Oriented Architecture (EDA & SOA) [5].

Entire study of EAI approaches provide basis for
proposed EAI framework that provides inter-and
intra-enterprise wide process and data integration to
enable real time business. It is recommended that
real-time framework offer following Architectural
features: (scalability, security, heterogeneity,
adaptability, manageability, distributivity, decoupling,
autonomy), real-time requirements: (asynchronous,
publish/subscribe), and Business requirements:
(flexibility, agility, usability, reliability) for
productivity.

Purpose of this paper is twofold, first; highlight the

0-7803-9247-7/05/$20.00 ©2005 IEEE

September 17-18, Islamabad
IEEE --- 2005 International Conference on Emerging Technologies

340

mailto:khubaib_ahmed@yahoo.com
zulfiqar
Enterprises Application Integration

