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ABSTRACT. This paper is a survey of greedy randomized adaptive sgammtedures
(GRASP). GRASP is a multi-start or iterative procedure weteach GRASP iteration con-
sists of a construction phase, where a feasible solutioaristaucted, followed by a local
search procedure that finds a locally optimal solution. Tdwstruction phase of GRASP
is essentially a randomized greedy algorithm. Repeateticafipns of the construction
procedure yields diverse starting solutions for the loealrsh. We review a basic GRASP,
followed by enhancements to the basic procedure. We coaddydsurveying operations
research and industrial applications of GRASP.

1. INTRODUCTION

Optimization problems that involve a large finite number of altereatioften arise in
industry, government and science. In these problems, one is giveneadiittion seX
and a real-valued functiof: X — R, and one seeks a solutiah € X with f(x*) < f(x),

v x € X. Common examples include designing efficient telecommunication networks
constructing cost effective airline crew schedules. To find the optimatiso in a com-
binatorial optimization problem it is theoretically possible to enwateethe solutions and
evaluate each with respect to the stated objective. However, from a practiga¢grs,
it is infeasible to follow such a strategy of complete enumeration bedheseumber of
combinations often grows exponentially with the size of problem.

Much work has been done over the last five decades to develop optimal seeking met
ods that do not explicitly require an examination of each alternative. rHsisarch has
given rise to the field ofombinatorial optimizatiotisee Papadimitriou and Steiglitz [55]),
and an increasing capability to solve ever larger real-world problems. Neless, most
problems found in industry and government are either computatiomaiidtable by their
nature, or sufficiently large so as to preclude the use of exact algoritmmich cases,
heuristic methods are usually employed to find good, but not necesgasianteed opti-
mal solutions. The effectiveness of these methods depends upon thigjrtataldapt to a
particular realization, avoid entrapment at local optima, and exploit thie baacture of
the problem, such as a network or a natural ordering among its compofRentsermore,
restart procedures, controlled randomization, efficient data structuregraprbcessing
are also beneficial. Building on these notions, various heuristic seactimitjues have
been developed that have demonstrably improved our ability to obtaid golutions to
difficult combinatorial optimization problems. The most promisifgsuch techniques
include simulated annealing [35], tabu search [27, 28, 29], genetic #lgwi[30] and
GRASP (Greedy Randomized Adaptive Search Procedures) [21, 22].

In this article, we review GRASP. The components of a basic GRASHdtieuare
addressed and enhancements proposed to the basic heuristic are discussqmhpdrh
concludes with a brief literature review of applications of GRASP.
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2. ABAsic GRASP

A GRASP is a multi-start or iterative process, in which each GRASP iteratbnsists
of two phases, a construction phase, in which a feasible solution daipeadl, and a local
search phase, in which a local optimum in the neighborhood of the cetesfreolution is
sought. The best overall solution is kept as the result. The psewtobatow illustrates a
GRASP procedure for minimization in whictaxi t r GRASP iterations are done.

proceduregrasp(f(-),g(-),maxitr,x*)
1 X" =oo;
2 fork=12,... ,maxitrdo

3 construct (g(+),a,X);
4 | ocal (f(+),X);

5 if f(x) < f(x*)do

6 X =X;

7 end if;

8 end for;

end gr asp;

In the construction phase, a feasible solution is iteratively consimiione element at a
time. The basic GRASP construction phase is similar to the semi-ghsedtistic proposed
independently by Hart and Shogan [31]. At each construction iteratiorghtbiee of the
next element to be added is determined by ordering all candiate elementsogettiat can
be added to the solution) in a candidate Gswith respect to a greedy functig: C — R.
This function measures the (myopic) benefit of selecting each element. Thetiueisri
adaptive because the benefits associated with every element are updated at each iteratio
of the construction phase to reflect the changes brought on by the selefctienprevious
element. The probabilistic component of a GRASP is characterized by rapdbousing
one of the best candidates in the list, but not necessarily the top camdidhe list of
best candidates is called thestricted candidate listRCL). This choice technique allows
for different solutions to be obtained at each GRASP iteration, but doesatessarily
compromise the power of the adaptive greedy component of the method.4-#, 1] be
a given parameter. The pseudo code below describes a basic GRASP consphate.

procedureconst ruct (g(+),0,X)

1 x=0

2 Initialize candidate sé&Z;

3 whileC#0do

s=min{g(t) |t € C};
s=max{g(t) [t eC};

RCL ={seC|g(s) <s+a(s—s)};
Selects, at random, from th&CL;
X=XU{s};

7 end while;

end construct;

0o~NO O b~

The pseudo-code shows that the parameteontrols the amounts of greediness and
randomness in the algorithm. A valae= 0 corresponds a greedy construction procedure,
while a = 1 produces random construction.

As is the case for many deterministic methods, the solutions genenated3RASP
construction are not guaranteed to be locally optimal with respect to singijhborhood
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definitions. Hence, it is almost always beneficial to apply a local search to atterinpt
prove each constructed solution. A local search algorithm works in an terfashion by
successively replacing the current solution by a better solution inglghborhood of the
current solution. It terminates when no better solution is found énéighborhood. The
neighborhood structure Nor a problemP relates a solutios of the problem to a subset
of solutionsN(s). A solutionsis said to bdocally optimalif there is no better solution
in N(s). The key to success for a local search algorithm consists of the suitatileech
of a neighborhood structure, efficient neighborhood search techniqueshearstarting
solution.

While such local optimization procedures can require exponential time droarbitrary
starting point, empirically their efficiency significantly improves as ithitial solution im-
proves. Through the use of customized data structures and careful impéimenan
efficient construction phase can be created which produces good initialoswlditir effi-
cientlocal search. The resultis that often many GRASP solutions are genartéitedame
amount of time required for the local optimization procedure to convieoge a single ran-
dom start. Furthermore, the best of these GRASP solutions is ggngalificantly better
than the single solution obtained from a random starting poine g$eudo-code below
describes a basic local search procedure.

procedurel ocal (f(-),N(-),x)

1 H={yeNX) |f(y)<f(x)};

2 while|H| >0do

3 Selecix € H;

4 H={yeNX|fly) <f(x)}
5 end whilg;

end | ocal ;

It is difficult to formally analyze the quality of solution values faliby using the
GRASP methodology. However, there is an intuitive justificatiost thews GRASP as
a repetitive sampling technique. Each GRASP iteration produces a sargiersérom
an unknown distribution of all obtainable results. The mean and varirihe distribution
are functions of the restrictive nature of the candidate list. For @anf the cardinality
of the restricted candidate list is limited to one, then only one smwtiill be produced and
the variance of the distribution will be zero. Given an effective greedgtion, the mean
solution value in this case should be good, but probably subaptitha less restrictive
cardinality limit is imposed, many different solutions will be prmed implying a larger
variance. Since the greedy function is more compromised in this case, theswlation
value should degrade. Intuitively, however, by order statistics aadktct that the samples
are randomly produced, the best value found should outperform the vadan Indeed,
often the best solutions sampled are optimal.

An especially appealing characteristic of GRASP is the ease with which it camgbe-i
mented. Few parameters need to be set and tuned, and therefore developmentscan focu
implementing efficient data structures to assure quick GRASP iterafiomally, GRASP
can be trivially implemented in parallel. Each processor can be initialized itgitbwn
copy of the procedure, the instance data, and an independent random numleeiceequ
The GRASP iterations are then performed in parallel with only a sintfbad variable
required to store the best solution found over all processors.
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3. ENHANCEMENTS TO THEBASIC GRASP

A number of enhancements to the basic GRASP, presented in the previdos deate
been proposed in the literature. In this section we review the use @atking, long-term
memory, the proximate optimality principle, and bias functions inRASP. We discuss a
parallelization scheme and the use of GRASP in hybrid meta-heuristics.

3.1. Pathrelinking. Laguna and Marti [42] adapted the concept of path relinking for use
within a GRASP. To test their concept, they implemented a GRASP with ngdinking

for the 2-layer straight line crossing minimization problem. A snsall of high-quality,

or elite, solutions is stored to serve as guiding solutions for pathking. Each GRASP
iteration produces a locally optimal solutio®. A solutiony* is chosen at random from
the elite set and a path of solutions linkirgto y* is constructed by applying a series of
changes to the original solution. For example Xet (1,0,0,0) andy* = (0,1,0,1). A

path relinking ofx* andy* is x* = (1,0,0,0) — (0,0,0,0) — (0,1,0,0) — (0,1,0,1) = y*.
Each of these path solutions is evaluated for solution quality. LagndaMarti report that
often improvements to the incumbent are found in this path relinking.

3.2. Long-term memory. Long-term memory is the basis for tabu search. Besides path
relinking, which can thought of as a form of long-term memory, oth@susf long term
memory have been proposed for use in a GRASP. Fleurent and Glovebhj@&jve the fact
that the basic GRASP does not make use of information gathered iropsatérations and
propose a long term memory scheme to address this issue. Prais and Fi8gpmopose
a scheme to learn an appropriate value for the RCL pararoeter

Fleurent and Glover introduced a way to use long-term memory in nalti-seuris-
tics such as GRASP. Their scheme maintains &Ss#telite solutions to be used in the
construction phase. To become an elite solution a solgtinost be either better than the
best member o8&, or better than the worst member 8fand sufficiently different from
the other elite solutions. For example, one can count identical snluéictor components
and set a threshold for rejection. gtrongly determined variables one that cannot be
changed without eroding the objective or changing significantly othéavias. Aconsis-
tent variableis one that receives a particular value in a large portion of the elitdisnlu
set. Letl(e) be a measure of the strongly determined and consistent features of choice
e i.e. I(e) becomes larger asresembles solutions in elite st The intensity function
I(e) is used in the construction phase as follows. Recallgl@ltis the greedy function.
LetE(e) = F(g(e),l(e)) be a function of the greedy and the intensification functions. For
example E(e) = Ag(e) + | (e). The intensification scheme biases selection from the RCL
to those elemeniswith a high value oE(e) by setting the probability of selectirgto be
p(e) = E(e)/ YsecreL E(S). The functionE(e) can vary with time by changing the value of
A, e.g. initiallyA is set to a large value and when diversification is callediis,decreased.
A procedure for changing the value dis given by Fleurent and Glover. See also [11] for
an application of this long-term memory strategy.

3.3. Reactive GRASP. The termReactive GRASRvas introduced by Prais and Ribeiro
[64] for a GRASP that reacts to solutions produced by different settirighe RCL pa-
rametem and seeks to adjustto give the GRASP an appropriate level of greediness and
randomness. At each GRASP iteration, the value i&f chosen from a discrete set of val-
ues{ay,0z,...,0m}. The probability of selecting the valug is p(ay), fork=1,2,... ,;m.
Reactive GRASP adaptively changes the probabilitgsi1), p(az),. .., p(am)} to favor
values that produce good solutions. Consider applying Reactive GRASRinimization
problem. Initially the probabilities are set @gax) = 1/m, fori = 1,2,... ,mso that the
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values are selected uniformly. To adaptively redefine the probabilitiesiedefS") to be

the value of the best solution found so far andAgbe the average value of the solutions
obtained witha;. Prais and Ribeiro propose a period of warm-up iterations to initialize
the A values. Periodically (say evelyy iterations) the quantitieg = (F(S)/A)° are
computed fori = 1,2,... ;m and the probabilities are updatedp¢;) = qi/ z?‘zlqj, for
i=1,2,...,m Observe that the more suitable a vatyes, the larger the value df is

and, consequently, the higher the valug@d;), makinga; more likely to be selected. The
parameted can be used as an attenuation parameter. See also Diaz and Fernandez [16] for
an application of Reactive GRASP.

3.4. Proximateoptimality principle. The Proximate Optimality Principal (POP) is based
on the idea that “Good solutions at one level are likely to be foundécto’ good solutions
at an adjacent level” [29]. Fleurent and Glover [26] provide a GRASP intggifion of this
principle. They suggest that imperfections introduced during ste@8R@{SP construction
can be “ironed-out” by applying local search during (and not only at the EnGRASP
construction. Because of efficiency considerations, a practical implementdtOP to
GRASP is to apply local search during a few points in the constructias@and not during
each construction iteration. See also [11] for an application of the peteimptimality
principle.

3.5. Global convergence. Mockus et al. [52] pointed out that GRASP with a fixed nonzero
RCL parametent is not asymptotically convergent to a global optimum. During con-
struction, a fixed RCL parameter may rule out a candidate that is presentaptatial
solutions. Several remedies have been proposed to get around thisrprolbhe most
straightforward is the use of a randomly seleatef¥2]. In this approach, the parameter
is selected at random from the continuous intef@al] at the start of each GRASP iter-
ation. That value is used during the entire iteration. Since a subgheadferations are
random, the algorithm becomes asymptotically globally convergent. Red8RASP, as
described above, can also be made asymptotically globally convergent by ngkiag,

i.e. allowing the choice of a value that produces a random GRASP iterd&iesina [13]
introduced the concept of a bias function to select a candidate element to beeith¢h
the solution. Bresina’s method, which is directly applicable to GRASRstruction, also
allows for purely random construction and is therefore asymptotic#lyajly convergent.

At each construction step, the elements in the candidaté aet ranked by their greedy
function values. A bias valueias(r) is assigned to the-th ranked element. Bresina
proposes several bias functions. In logarithmic bisisas(r) = 1/logr+1. In linear
bias,bias(r) = 1/r. In polynomial bias of orden, bias(r) = 1/r". In exponential bias,
bias(r) = 1/€. Finally, in random biasyias(r) = 1. During construction, the probabil-
ity of selecting ther-th ranked candidate ilsias(r)/zi‘glbias(i). See also [11] for an
application of this bias function strategy.

3.6. Parallel GRASP. Parallel implementation of GRASP is straightforward. Two gen-
eral strategies have been proposed. In search space decomposition, the gaegcis s
partitioned into several regions and GRASP is applied to each in parallelexample

of this is the GRASP for maximum independent set [23, 69] where thelsegace is
decomposed by fixing two vertices to be in the independent set. In itenadicileliza-
tion, the GRASP iterations are partitioned and each partition is assipn@grocessor.
See [54, 57, 58, 59, 67] for examples of parallel implementations of &RASome care
is needed so that different random number generator seeds are assigned ftetantdi
iterations. This can be done by running the random number generaboigthan entire
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cycle, recording alNg seeds in @eed array. Iteration is started withseed(i). GRASP
has been implemented on distributed architectures. In [59] a PVM-based iemtizton

is described. Two MPI-based implementations are given in [4, 50]. AMijpfoposes a
general scheme for MPI implementations. A master process manages seeds fprslave
cessors. It passes blocks of seeds to each slave processor and awaitethtstalicate
that they have finished processing the block and need another block. Slsegmss back
to the master the best solution found for each block of iterations.

3.7. GRASP in hybrid metaheuristics. GRASP has been used in hybrid metaheuristic
schemes. Laguna and Gonzalez-Velarde [41] proposed a GRASP in whichdaozh $s

done by tabu search. See also [16, 46] for implementations of GRASE tadin search

as the local search procedure. Simulated annealing can also be used as a GRASP local
search procedure if the initial temperature is low so that it remains neaeigbborhood

of the constructed solution. Ahuja, Orlin, and Tiwari [3] use GRA&IPstruction as a
mechanism for generating the initial population in a genetic algorit@RASP is used

by Lourenco, Paixao, and Portugal [45] in a genetic algorithm to émgint a type of
crossover callegerfect offspring

4. APPLICATIONS OFGRASP

We now turn our attention to a number of GRASP implementations thet &jppeared
in the literature, covering a wide range of applications. An early tat@n GRASP ap-
pears in Feo and Resende [22]. We group the work into two categories;atfupis to
operations research problems and to industrial applications.

4.1. Operationsresear ch problems. Applications of GRASP to operations research prob-
lems can be classified into eight categories: scheduling problems, rgutibpms, logic,
partitioning problems, location problems, graph theoretic problassignment problems,
and nonconvex network flow problems.

GRASP has been applied to several scheduling problems, including opsrstiguenc-
ing in discrete parts manufacturing [7], flight scheduling [18], junstime scheduling in
parallel machines [41], printed wire assembly scheduling [17, 9], singichine schedul-
ing with sequence dependent setup costs and delay penalties [24], field teckolean
uling [79], flow shop with setup costs [76, 77], and bus-driver salird [45].

Applications of GRASP to routing problems include vehicle routiith time windows
[38], vehicle routing [32], aircraft routing [5], inventory routj problem with satellite
facilities [10], and permanent virtual circuit (PVC) routing [66].

Problems in logic have been approached with GRASP. These include thfgabdity
problem [68], maximum satisfiability [59, 71, 72], and inference gidal clauses from
examples [15].

GRASP has been applied to partitioning problems, including graph a#itipn [40]
and number partitioning [6].

Applications of GRASP to location problems inclupgéaub location [36], pure integer
capacitated plant location [14], location with economies of scale [33], sisglirce ca-
pacitated plant location [16], location of concentrators in network accessd@4ij and
maximum covering [67].

GRASP has been used for finding approximate solutions to a numbeapff gneo-
retic problems, including set covering [21], maximum independent 8¢62], maximum
cligue with weighted edges [47], graph planarization [73, 75], 2-layaigitt line crossing
minimization [42], sparse graph coloring [43], maximum weighted exidmgyraph [48], the
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Steiner tree problem in graphs [49, 50], feedback vertex set in directedgyia®h maxi-
mum clique [1, 61], and the capacitated minimum spanning tree problem [2]

Several assignment problems have been approached with GRASP. A GRASR-was i
troduced for the quadratic assignment problem (QAP) in [44]. A para#iedion of this
GRASP is described in [58]. Fortran subroutines for dense and sp#&iBs €an be found
respectively in [70] and [60]. A modified local search for the GRASP for @g\Broposed
in [65]. GRASP has been used to generate the initial population of a gegdirithm for
the QAP [3]. Long term memory schemes have been adapted to a GRASP foAEhmQ
[26]. A GRASP for the biquadratic assignment problem is describe8lh [GRASP has
been applied to two multidimensional assignment problems [53, 78]atietradio link
frequency assignment problem [62].

GRASP has been used for finding approximate solutions to a concaveetwstk flow
problem [34].

4.2. Industrial applications. Industrial applications of GRASP can be classified into
seven categories: manufacturing, transportation, telecommunicatidos)atic drawing,
electrical power systems, military, and biology.

GRASP has been applied to several manufacturing problems, includingioperse-
guencing in discrete parts manufacturing [7], cutting path and tool sefeicticomputer-
aided process planning [19], manufacturing equipment selection [8], coempgrouping
[37], and printed wire assembly scheduling [17, 9].

Applications of GRASP in transportation include flight scheduling amaintenance
base planning [18], intermodal trailer assignment [20], and aircraftrgin response to
groundings and delay [5].

In telecommunications, GRASP has been applied to the design of SDH méstainées
networks [63], the Steiner tree problem in graphs [49, 50], permarignal/circuit (PVC)
routing [66], location of concentrators in network access design [7ffidrscheduling in
satellite switched time division multi-access (SS/TDMA) system$, [84ation of points
of presence (PoPs) [67], and to the multi-criteria radio link frequensigament problem
[62].

GRASP has been applied to automatic drawing problems, including seavingria
mosaicking of aerial photographic maps [25], graph planarization [7],affs 2-layer
straight line crossing minimization [42].

An application to electrical power systems is transmission expansioniptafil2]. A
military application of GRASP is in multi-target multi-sensor trawki[53]. GRASP has
been applied in biology for protein structure prediction [39].

5. CONCLUSION

We have surveyed the literature on greedy randomized adaptive search pesd@RASP)
in the last ten years. In these years many enhancements to the basic GRA8&ced in
1988 have been proposed. The number and variety of applications hasajrdwantinues
to grow.
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