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Abstract. A pickup and delivery vehicle routing problem from a real-
world bottled-beverage distribution company is addressed. The problem
consists of deciding how to load every trailer, how to configure the ve-
hicles in terms of the trailers, and how to route the vehicles, so as to
minimize routing and fixed costs. The problem includes several features
such as time windows on both customers and vehicles, multiple depots,
multiple product delivery, split delivery, heterogeneous fleet, and dock
capacity, to name a few. To solve this problem a GRASP-based heuristic
is proposed. Problem decomposition, vehicle composition and route con-
struction mechanisms, and local search procedures for different types of
neighborhoods are developed. The heuristic is empirically assessed over
a wide set of instances. Empirical results show that the proposed method
obtains solutions of better quality than those reported by the company.

Keywords: Vehicle routing, Pickup and delivery, Multi-commodity,
Heterogeneous fleet, Metaheuristics, GRASP.

1 Introduction

The problem addressed in this paper comes from a bottled beverage distribution
company located in the city of Monterrey, Mexico. This company needs to dis-
tribute its products across several distribution centers. The distribution centers
can also in turn request to withdraw products or relocate products to other cen-
ters. Due to its specific features, this problem is classified as a vehicle routing
problem with pickup and delivery (PDP) with multiple depots.

The problem consists of transporting products among plants and distribution
centers in a network. In each plant, there is a determined number of vehicles that
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can be used to do the routing. In addition, a decision has to be made so as to haul
one or two trailers into a vehicle. This decision has two main effects. As it turns
out, both the cost and time of traveling between two given points depend on
whether the vehicle is single or double. A single vehicle travels faster and costs
less than a double vehicle. However, a double vehicle has more capacity and
can carry a larger amount of product between points. There are time windows
requirements in both distribution centers and vehicles. The later is due to the
fact that a daily maintenance for each vehicle must be performed at specific
times. The orders can be split into several deliveries and vehicles can also visit
several times a distribution center if necessary. The planning horizon is daily. In
addition, there is a dock capacity in each distribution center that must be met.
Each vehicle must return to its original depot by the end of the day.

Each trailer has two compartments: one on the top and one on the bottom. For
each trailer, the capacity of both top and bottom is known, but not necessarily
equal for every trailer. Moreover, some trailers may have a fixed shelf (or division
between the top and bottom compartments) which would become an important
issue when loading the products. There are many different products handled by
the company; however, by and large they can be divided into two main types of
products: returnable (type R) and non-returnable (type N). This distinction is
important because type R products are heavier. As a direct consequence of this,
the following loading rules must be met: (i) if the trailer has a shelf, any product,
regardless its type, can be placed in any part of the trailer compartments; (ii) if
the trailer does not have a shelf, it is strictly forbidden to place a type R product
on top of a type N product due to the weight difference between products. It is
assumed that when a product of type R is delivered to a customer a matching
amount of empty type R bottles is picked up. The goal is to find the best route
configuration that minimizes the total cost associated with the product routing
and vehicle usage. In doing so, decisions so as to what type of vehicle is to be
used and how each trailer must be loaded must be made simultaneously.

Although the field of vehicle routing, particularly the class of PDPs, has been
widely studied (e.g. [3, 6, 8–10]), to the best of our knowledge there is no other
work in the literature addressing a PDP with all the features mentioned previ-
ously simultaneously present, namely, multiple depots, heterogeneous vehicles,
time windows at nodes and vehicles, split deliveries, multiple products, vehicles
with compartments, dock capacity. For recent extensive surveys on PDPs the
reader is referred to the work of Berbeglia et al. [1], Drexl [4], and Parragh
et al. [7].

In this paper, we introduce a mixed-integer linear programming (MILP) model
for this problem. Given its inherent computational complexity, we propose a
metaheuristic framework that combines decomposition, greedy randomized con-
struction, and local search components. The effectiveness of the heuristic is em-
pirically assessed. It was found that the proposed method found better routings
and truck configurations than those reported by the company, resulting in im-
portant cost reductions.
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2 Mathematical Formulation

For modeling the problem we define the following notation.
Sets

T Set of trailers.
Ti Subset of trailers that are initially located at node i.

T e(Tw) Subset of trailers with (without) a shelf.
K Set of vehicles.
Ki Subset of vehicles that are initially located at node i.
V Plants and distribution centers (nodes).
E Edges.
P Products.

PR(PN ) Subset of returnable (non-returnable) products.
H Time index (usually hours) set.

Parameters

ctopt Capacity (number of pallets) on top compartment of trailer t.
cbott Capacity (number of pallets) on bottom compartment of trailer t.
τ lt Time in which trailer t can start its route.
τut Time in which trailer t must return to its plant.

σ (t) Original location of trailer t.
σ (k) Original location of vehicle k.
n+
ip Amount of product p (number of 12-bottle boxes) that must be picked

up from node i.
n−
ip Amount of product p that must be delivered to node i.

(ai, bi) Time window for servicing node i.
op Number of 12-bottle boxes of product p that fit in a pallet.
csij Travel cost from node i to j using a single vehicle.

cdij Travel cost from node i to j using a double vehicle.
ssij Travel time from node i to j using a single vehicle.

sdij Travel time from node i toj using a double vehicle.
S Customer service time at each node.

fih Available dock capacity in node i at time h.
C Fixed cost for vehicle use.

Binary variables

wkt = 1, if trailer t is assigned to vehicle k; 0, otherwise
xijk = 1, if vehicle k travels directly from node i to j; 0, otherwise
yikh = 1, if vehicle k arrives at node i at time h; 0, otherwise
zk = 1, if vehicle k is used; 0, otherwise

Integer variables

vtopk Number of pallets on top of vehicle k.
vbelk Number of pallets on bottom of vehicle k.
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vtypek Configuration of vehicle k (=-1/0/1 if unassigned/single/double).
g−ikp Amount of product p (number of 12-bottle boxes) that vehicle k will deliver

at node i.
g+ikp Amount of product p that vehicle k will pickup at node i.
qikp Amount of product p in vehicle k after servicing node i.

Note: At the start of a route, g−σ(k)kp = 0 and qσ(k)kp = g+σ(k)kp, for k ∈ K, p ∈ P .

Real variables

(lk, uk) Starting and finishing time of vehicle k.
sik Starting service time of vehicle k at node i.
cik Accumulated cost of vehicle k up to node i.

OCk Total travel cost for vehicle k.
OTk Total travel time for vehicle k.

Model

Minimize
∑

k∈K

OCk +
∑

k∈K

Czk (1)

subject to
∑

t∈Tσ(k)

wkt ≤ 2 k ∈ K (2)

∑

k∈Kσ(t)

wkt ≤ 1 t ∈ T (3)

vtypek =
∑

t∈Tσ(k)

wkt − 1 k ∈ K (4)

uk ≤ τut +MT (1− wkt) k ∈ K, t ∈ Tσ(k) (5)

lk ≥ τ ltwkt k ∈ K, t ∈ Tσ(k) (6)

vtopk ≤
∑

t∈Tσ(k)

ctopt wkt k ∈ K (7)

vbelk ≤
∑

t∈Tσ(k)

cbelt wkt k ∈ K (8)

xijk ≤ zk i, j ∈ V, k ∈ K (9)
∑

t∈Tσ(k)

wkt ≥ zk k ∈ K (10)

∑

i:(i,j)∈E

xijk −
∑

i:(j,i)∈E

xjik = 0 j ∈ V, k ∈ K (11)

∑

i:(i,j)∈E

xijk ≤ 1 j ∈ V, k ∈ K (12)

ai
∑

j:(j,i)∈E

xjik ≤ sik ≤ bi
∑

j:(j,i)∈E

xjik i ∈ V, k ∈ K (13)

aσ(k)zk ≤ OTk ≤ bσ(k)zk k ∈ K (14)

lk −MT (1 − zk) ≤ sσ(k)k ≤ uk +MT (1 − zk) k ∈ K (15)
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lk −MT (1− zk) ≤ OTk ≤ uk +MT (1− zk) k ∈ K (16)
∑

h∈H

hyikh ≤ sik
60

≤
∑

h∈H

(h+ 1)yikh k ∈ K, i ∈ V \ {σ(k)} (17)

∑

h∈H

hyσ(k)kh ≤ OTk

60
≤

∑

h∈H

(h+ 1)yσ(k)kh k ∈ K (18)

∑

h∈H

yikh ≤ 1 i ∈ V, k ∈ K (19)

∑

k∈K

yikh ≤ fih i ∈ V, h ∈ H (20)

sik + S + ssij
(
1− vtypek

)
+ sdijv

type
k k ∈ K,

−MT (1 − xijk) ≤ sjk (i, j) ∈ E|j �= σ(k) (21)

sik + S + ssiσ(k)
(
1− vtypek

)
+ sdiσ(k)v

type
k

−MT (1 − xiσ(k)k) ≤ OTk i ∈ V, k ∈ K (22)
∑

k∈K

g+ikp ≤ n+
ip i ∈ V, p ∈ P (23)

∑

k∈K

g−ikp ≥ n−
ip i ∈ V, p ∈ P (24)

g+ikp ≤ n+
ip

∑

j:(j,i)∈E

xjik i ∈ V, k ∈ K, p ∈ P (25)

g−ikp ≤ n−
ip

∑

j:(j,i)∈E

xjik i ∈ V, k ∈ K, p ∈ P (26)

qikp + g+jkp − g−jkp i ∈ V, k ∈ K, p ∈ P,

−ML(1− xijk) ≤ qjkp j ∈ V \ {σ(k)} (27)

qikp + g+jkp − g−jkp i ∈ V, k ∈ K, p ∈ P,

+ML(1− xijk) ≥ qjkp j ∈ V \ {σ(k)} (28)
∑

p∈P

qikp
op

≤ vtopk + vbelk i ∈ V, k ∈ K (29)

∑

p∈PN

qikp
op

≤ vbelk +
∑

t∈Tσ(k)∩T e

ctopt wkt i ∈ V, k ∈ K (30)

cik + csij
(
1− vtypek

)
+ cdijv

type
k

−MC(1− xijk) ≤ cjk i ∈ V, k ∈ K, j ∈ V \ {σ(k)}
(31)

cik + csiσ(k)
(
1− vtypek

)
+ cdiσ(k)v

type
k

−MC(1− xiσ(k)k) ≤ cjk i ∈ V, k ∈ K (32)

wkt = 0 k, t|σ(k) �= σ(t) (33)

g−σ(k)kp = 0 k ∈ K, p ∈ P (34)
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qσ(k)kp = g+σ(k)kp k ∈ K, p ∈ P (35)

wkt, yikh, zk ∈ {0, 1} i ∈ V, t ∈ T, k ∈ K,h ∈ H (36)

xijk ∈ {0, 1} (i, j) ∈ E, k ∈ K (37)

vtypek ∈ {−1, 0, 1} k ∈ K (38)

vtopk , vbelk , g−ikp, g
+
ikp, qikp ∈ Z+ i ∈ V, k ∈ K, p ∈ P (39)

lk, uk, sik, cik ≥ 0 i ∈ V, k ∈ K (40)

Here ML, MT , and MC are large enough big-M constants to make the corre-
sponding constraints redundant. The objective is to minimize the sum of vehicle
routing cost and vehicle usage cost (1). Constraints (2) limit the number of trail-
ers that may be assigned to a vehicle. Constraints (3) ensure that a single trailer
can be assigned to at most one vehicle. Constraints (4) are used to identify the
type of vehicle configuration. Constraints (5)-(6) set the vehicle time windows.
Constraints (7) and (8) set the vehicle capacity on top and bottom compart-
ments, respectively. Constraints (9) and (10) set the relationship between the
zk and the xijk and wkt variables, respectively. Flow balance is assured by (11).
Constraints (12) ensure that a vehicle may visit a node at most once. Constraints
(13)-(14) and (15)-(16) guarantee the time windows for both customers and vehi-
cles, respectively. Constraints (17)-(19) set the correct relationship between the
binary time index variables yijk and the time variables sik and OTk. The dock
capacity constraints are given by (20). Constraints (21) and (22) are used to en-
sure that the time variables are consistent with travel and service times. Product
availability and demand are set by (23) and (24), respectively. Constraints (25)
and (26) ensure that a vehicle can load or unload product at node i only if it
visits that node. Constraints (27)-(28) establish the connection on vehicle load
between nodes i and j when vehicle k indeed travels directly from i to j. Vehicle
capacity is set by (29) and (30), the latter considering that type N products can
be placed in the bottom compartment of any vehicle or in the top compartment
of vehicles with a shelf. Constraints (31)-(32) ensure the consistency of the cost
variables. Conditions (33) make it impossible to assign trailers to vehicles in
different starting locations. Constraints (34) and (35) establish initial delivery
and pickup conditions for a vehicle at the start of its route. The nature of the
decision variables are set in (36)-(40).

The problem is NP-hard [2]. The largest instance we could solve exactly after
several hours of computing time by CPLEX branch-and-bound algorithm was in
the order of 6 nodes, 7 trailers, and 5 products. Given real-world instances are
significantly larger, we develop a heuristic framework for this problem.

3 Proposed Heuristic

GRASP [5] is a multi-start metaheuristic that has been widely used for finding
good quality solutions to many hard combinatorial optimization problems. It
relies on greedy randomized constructions and local search.
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The proposed method is depicted in Procedure 1. The problem involves many
decisions at different levels. Thus, to make the problem more tractable a de-
composition approach is taken. The main idea is first to estimate point-to-point
requests (done in Step 5), and then, based on this information, to apply the it-
erative GRASP phases of construction (Step 7) and local search (Step 8). Each
of these components is described next.

Procedure 1. GRASP( Δβ, α, limit iter )

Input: Δβ, step parameter for cost matrix; α, RCL quality parameter; limit iter,
number of iterations

Output: Xbest, best solution found
1: Xbest ← ∅; f(Xbest)← +∞
2: find shortest paths(G, Cs, Cd, Ss, Sd)
3: β ← 0
4: while ( β ≤ 1 ) do
5: R← solve TP(β)
6: for ( iter = 1 to limit iter ) do
7: X ← constructSolution(α, R)
8: X ← localSearch(X)
9: if ( X is better than Xbest ) then
10: Xbest ← X
11: end if
12: end for
13: β ← β +Δβ
14: end while
15: return Xbest

Preprocessing: Construction of the optimal cost and time matrices: Initially we
have an undirected graph where the edges handle two types of costs (csij and

cdij) and two types of times (ssij and sdij), for single and double vehicles. In this
preprocessing phase (Step 2 of Procedure 1), we find optimal shortest paths be-
tween all pairs of nodes for each of the four matrices by applying the well-known
Floyd-Warshall algorithm. Let cs[ij] and cd[ij] be the cheapest cost of traveling
from node i to node j using a single and double vehicle, respectively. Similarly,
let ss[ij] and sd[ij] represent the shortest time of traveling from i to j for a single
and a double vehicle, respectively. This information on optimal paths is used in
other components of the algorithm and needs to be computed only once.

Decomposition: Point-to-point request generation: As mentioned before, to make
the problem more tractable we first attempt to estimate point-to-point requests.
Each request or order is identified by a vector (i, j, p, rijp), where rijp is the
amount of product p (measured in number of 12-bottle boxes) to be picked up at i
and delivered to j. To compute these requests, we solve a transportation problem,
where we take as input the information on pickup and delivery quantities at every
node (given by parameters n+

ip and n−
ip, respectively), and the “cost” between

nodes i and j. Now, we must bear in mind that this cost depends on whether
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single or double vehicles are used which is unknown at this point. However, we
can construct a cost function as a convex combination of the optimal costs for
single and double vehicles parameterized by a weight β ∈ [0, 1]. The output, for
a fixed value of β is a set of requests R.

Let yij a binary-decision variable equal to 1 if at least one request from i to j
exists and 0 otherwise. Then, the transportation problem TP(β) given below is
solved in Step 5 of Procedure 1. Here, M = maxi∈V,p∈P {n+

ip} is a large enough
constant to make the constraint (44) redundant when yij = 1. The problem is
not quite a classical transportation problem. Here we have a fixed cost rather
than a variable cost. Also, we have several capacity/demand constraints for the
different products. However, time is not an issue since this problem is easy to
solve even for large instances. Note that different values of β give rise to different
cost structure among nodes, and therefore, we proceed to generate different TPs
for a variety of values of β. As can be seen in Procedure 1 we use a step size Δβ
that allows us to discretize the range for β and try out different matrices and
have therefore more diversity.

Model TP(β)

Minimize f(r, y) =
∑

i,j∈V

(
βcs[ij] + (1− β)cd[ij]

)
yij (41)

subject to
∑

j∈V

rijp ≤ n+
ip i ∈ V, p ∈ P (42)

∑

i∈V

rijp ≥ n−
jp j ∈ V, p ∈ P (43)

∑

p∈P

rijp ≤ Myij i, j ∈ V (44)

rijp ≥ 0 i, j ∈ V, p ∈ P (45)

yij ∈ {0, 1} i, j ∈ V (46)

Construction phase: Given a set of requests R, this phase is where these requests
are assigned to vehicles, and, as a consequence, where routes are determined for
these vehicles. The construction procedure is depicted in Procedure 2.

The procedure starts by initializing the set of vehicle routes Xπ = {πk|k ∈ K}
as the empty set (Step 1) and by assigning each trailer t ∈ T to a vehicle
k ∈ Kσ(t) (Step 2), that is, initally we have single vehicles. In a later stage
we consider merging two single vehicles into one double vehicle. Then a set
R′ containing all possible point-to-point pairs that need to be served and a
set P̄ containing all feasible routes are formed. Here, the latter is defined as
P̄ = {(i, j, k) : (i, j) ∈ R′∧ (i, j, k) is a feasible route}, where the term feasibility
means that vehicle k can deliver the products from node i to j within the vehicle
and node time windows. Let Pk be the set of all feasible routes associated with
vehicle k. Then, the actual route construction takes place within the while loop
(Steps 5-11). Following the GRASP philosophy, a greedy function that measures
the cost of assigning pair (i, j) to vehicle k is computed as follows:
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Procedure 2. constructSolution( α, R )

1: Xπ ← ∅
2: K ← T
3: R′ = {〈i, j〉 : (i, j, p, rijp) ∈ R}
4: P̄ ← getFeasiblePaths(K,R′)
5: while ( R 	= ∅ ) do
6: ϕmin ← min{ϕ(i, j, k) : (i, j, k) ∈ P̄}
7: ϕmax ← max{ϕ(i, j, k) : (i, j, k) ∈ P̄}
8: RCL = {(i, j, k) ∈ P̄ : ϕ(i, j, k) ≤ ϕmin + α(ϕmax − ϕmin)}
9: (i, j, k)← chosen randomly from RCL
10: (Xk, R)← assignProducts(i, j, k, R,X)
11: end while
12: returnToDepot(XΠ)
13: return X

ϕδ(i, j, k) = cδ[u(k)i] + cδ[ij] + cδjσ(k)]

where δ = s(d) if k is a single (double) vehicle. This function estimates the cost
of traveling from the vehicle k current location u(k) to node i then to j and then
back to its depot σ(k). Then, a restricted candidate list (RCL) is built (Step 9)
with those elements whose greedy function value falls within α % of the best
possible value. An element from RCL is randomly chosen. Step 10 performs the
assignment of route (i, j) to vehicle k, and figures out the amount of product to
be loaded by first assigning the non-returnable items without exceeding the non-
returnable capacity, and then filling the vehicle with the returnable products,
performing the necessary time updating for vehicle k and remaining orders to be
served R. By proceeding this way, we guarantee that the product type priority
rule (i.e., not placing type N products on top of type R in vehicles with no shelf)
is met. Finally, in Step 12, we make sure that every vehicle returns from its
current location to its depot.

Improvement Phase: A solution delivered by the construction phase might not
necessarily satisfy the dock capacity constraints (20). Therefore, the goal of the
local search is to attempt to improve the quality of the solution or to repair in-
feasibility if needed. The proposed improvement phase (depicted in Procedure 3)
includes three different methods, which are described next.

Procedure 3. localSearch()

1: mergeV ehicles()
2: transferShipment()
3: repairDocks()
4: return

Method 1: Merging single vehicles. The idea behind this method is to iden-
tify those pairs of single vehicles that use the same route and merge them
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into a double vehicle (see Figure 1). This step is done only if feasibility with
respect to the time window constraint is kept and the resulting cost of the
merge is less than the sum of the cost of both single vehicles.

a) Before b) After

A

B

C

D

A

B

C

D

1

2

, , , ,
, , , ,
A B C D A

A B C D A
1 , , , ,A B C D A

Fig. 1. Merging two single vehicles into one double vehicle

Method 2: Transfering loads between vehicles. The idea behind it is to
analyze vehicles (either single or double) emanating from the same plant
and try to combine both routes into a single route by one of the vehicles.
This move is allowed only if the vehicles to be combined are of the same
type and the resulting route is feasible with respect to the time window
constraints. The method is depicted in Procedure 4, where u and v denote
the vehicles to be combined with corresponding routes πu = {u1, u2, . . . , uū}
and πv = {v1, v2, . . . , vv̄}, respectively. Here, the neighborhood of possible
moves is N2 (Step 1).

Note in Steps 5-9, when combining these routes πu and πv, if vehicle u has
still some load that must be delivered back to its depot σ(u) or if vehicle v
must pickup some load in σ(k) then the resulting combined route would have
to go through the depot resulting in πu′ = {u1, . . . , uū, v2, . . . , vv̄}; otherwise,
the combined vehicle may skip the depot to have πu′ as in Step 8.

Procedure 4. transferShipment()

1: N2 = {(k1, k2) ∈ K ×K : σ(k1) = σ(k2) ∧ vtypek1
= vtypek2

}
2: while ( |N2| > 0 ) do
3: (u, v)← chose one element of N2; N2 ← N2 \ {(u, v)}
4: πu = 〈u1, . . . , uū〉; πv = 〈v1, . . . , vv̄〉
5: if

(∑
p∈P g−σ(u)up > 0 ∨∑

p∈P g+σ(v)vp > 0
)
then

6: πu′ = 〈u1, . . . , uū, v2, . . . , vv̄〉
7: else
8: πu′ = 〈u1, . . . , uū−1, v2, . . . , vv̄〉
9: end if
10: if ( πu′ is a feasible route path and f(πu′) < f(πu) + f(πv) ) then
11: πu ← πu′

12: K ← K \ {v}
13: N2 ← N2 \ {(k1, k2) : k1 = v ∨ k2 = v}
14: end if
15: end while
16: return
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Method 3: Repairing dock infeasibility. The solution delivered after ap-
plying the previous methods may not satisfy all dock capacity constraints.
In that case, this method attempts to repair this possible infeasibility by
making the necessary time shift adjustments. To perform this task, we de-
fine J(h, i) = {k ∈ K : �sik/60�} as the set of vehicles that arrive at node i
during time index h (measured in hours). We now can determine the set of
conflict nodes, that is, those nodes where the dock capacity constraints are
violated at time h, as Ψ(h) = {i ∈ V : fih < |J(h, i)|}.

The method works as follows. Starting from the lowest value of h for which
there are conflicts, we first choose one conflicting node i. Now, for this node
we must determine what is the least critical vehicle, that is, the vehicle that
possesses the largest amount of time adjustment flexibility. To do this, we
compute for each vehicle the maximum amount of time that can be added
to this vehicle without violating the future time window constraints in the
remainder of its route (i, . . . , k̄) as follows

Υ (i, k) = min
u∈(i,...,k̄)

{bu − suk}.

Then the vehicle with the largest possible value of Υ (i, k) is chosen and
its future arrival times at every node in its remaining route are updated.
By doing this, we guarantee that no more conflicting nodes for any time
earlier than h arise, and this time adjustment may bring the current vehicle
k at node i back into feasibility. The method is depicted in Procedure 5. If
no vehicle can be found, the current iteration stops reporting an infeasible
solution.

Procedure 5. repairDocks()

1: for h = 0, . . . , |H | do
2: while ( Ψ(h) 	= ∅ ) do
3: i← choose one element of Ψ(h) arbitrarily
4: while ( |J(h, i)| > fih ) do
5: k∗ ← argmax

k∈J(h,i)

{Υ (i, k)}
6: for all (u ∈ [i, . . . , 
n]) do
7: suk∗ = suk∗ + 60− (sik∗ − 60 · �sik∗/60)
8: end for
9: end while
10: end while
11: end for
12: return

4 Empirical Results

The procedures were implemented in C# on Visual Studio 2010 environment.
All experiments were performed on an Intel Core i7 computer running the Win-
dows 7 operating system. CPLEX 12.1 was used for solving the transportation
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subproblem. For each of the three data sets described below 20 instances were
randomly generated based on distributions from real-world instances provided
by the industrial partner.

Set A (small-size instances): 10 nodes, 20 trailers, 10 products.
Set B (medium-size instances): 15 nodes, 50 trailers, 40 products.
Set C (large-size instances): 25 nodes, 150 trailers, 300 products.
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Fig. 2. Algorithm behavior as a function of α and β

Fine-Tuning of Parameters
The first experiment aims at finding appropriate values for algorithmic param-
eters α and β. To this end, we run a full two-factorial design. Parameter β was
fixed at values in the [0.00, 1.00] range with increments of 0.25. Parameter α
was fixed at values in the range [0.00, 0.80], [0.00, 0.50], and [0.00, 0.20] for the
small-, medium-, and large-size instances, respectively, with increments of 0.01.
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This results in 15,300 runs. The iteration limit was set at 1000 iterations for
each run.

Figure 2 plots the results for the different values of α and β. The vertical axis
indicate the average relative deviation from the best known feasible solution for
each instance. One of the first observations we can make from the plot is that the
parameter α has more influence over the solution quality than β does. This of
course is a normal behavior in many GRASP implementations; however, we can
also observe that the best possible value of this α depends on the instance size.
For the smaller instances, the best solutions were obtained when α lies around
0.7. As the size of the instances grows, we can see how this best value of α
goes down to around 0.20 for the medium-size instances, and 0.03 for the large-
size instances. This means that reducing diversity in favor of more greedy-like
solutions as instances get large provides a better strategy for finding solutions
of better quality. For the remainder of the experiments we fixed α at 0.70, 0.20,
and 0.03 for the small-, medium-, and large-size instances, respectively.

In the following experiment, we try to determine the effect that the step
size Δβ has on algorithmic performance. While it is true that providing a finer
discretization (i.e., reducing the step size Δβ) could lead to more and better
solutions, it is also true that the computational burden increases. Moreover,
when the step size is sufficiently small, solutions obtained from different values
of β will look alike, resulting in very little gain. Therefore, the purpose of this
experiment is to investigate this effect. To this end, we run the heuristic fixing
Δβ at different values as Δβ = 1/x with x ∈ {1, 2, . . . , 10}. The iteration limit
was set at 1000.
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Fig. 3. Algorithm behavior as a function of Δβ

Figure 3 displays the results plotting in the vertical axis the average deviation
from the best known solution for every instance. The horizontal axis shows the
different values of Δβ. As can be seen from Figure 3, for the large-size instances
the choice of Δβ did not have much impact; however, a slight improvement is
observed at values around 1/8, which in fact matches the best value found for
the small- and medium-size instances.
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Feasibility Analysis
There is not guarantee that, in a given iteration of the algorithm the final solution
delivered be feasible. Therefore it becomes important to assess the success rate
of the heuristic in terms of its feasibility. To this end, we proceed to compute
the percentage of times a feasible solution was obtained per iteration, and, given
the algorithm returns the best solution found over all iterations, the percentage
of times the algorithm delivered a feasible solution.

Table 1 shows the results for the different data sets. Columns 2-3 indicate the
average and maximum success rate per iteration over all instances tested. The
last column shows the success rate of the entire heuristic. As can be seen, even
though some individual iterations may fail, it is empirically observed that the
heuristic is always successful.

Table 1. Feasibility success rate (%)

Per iteration Per algorithm
Data set Ave Max execution

Small 99.6 100.0 100.0
Medium 68.0 100.0 100.0
Large 60.0 100.0 100.0

Comparison with Current Practice
Finally, we present a comparison between the solution found by our heuristic
and the solution reported by the firm in a particular case study.

Table 2. Comparison between current practice and proposed heuristic

NV NVS NVD NT RC FC Total cost

Firm solution 47 9 38 85 $186,018 $70,500 $256,518
Heuristic solution 50 28 22 72 $167,020 $75,000 $242,020

Table 2 shows this comparison itemizing the individual costs and vehicle us-
age, where NV, NVS, NVD, and NT stand for number of vehicles, single vehicles,
double vehicles, and trailers used, respectively. RC and FC are the routing and
fixed cost, respectively, and the last column is the total solution cost. The re-
duction of the heuristic solution is about 6%. It can be seen this is due in great
deal to a better arrangement of the single and double vehicles. The new solu-
tion uses 3 more vehicles; however, the main difference comes from the number
of single- and double-vehicles used. The new solution uses more single-vehicles
which yield lower traveling costs overall. It is clear the contrast with the current
practice where it was firmly believed that using fewer vehicles (i.e, more double
vehicles) would be a better choice.

5 Conclusions

In this paper we studied a vehicle routing problem with pickup and delivery
from a real-world application in a bottled-beverage distribution company. Given
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the inherent problem difficulty, we have proposed a metaheuristic framework
to obtain feasible solutions of good quality. The heuristic and its components
were empirically assessed over a wide range of instances. When compared to
current practice, it was found that the proposed method obtained solutions of
better quality in very reasonable times. The different local search neighborhoods
explored in this study can be improved if they can be cast into a more sophisti-
cated local search engine such as tabu search or variable neighborhood search,
for instance. This is a subject of follow-up work.
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