
A New Heuristic

for the Capacitated Vertex p-Center Problem

Dagoberto R. Quevedo-Orozco and Roger Z. Rı́os-Mercado

Universidad Autónoma de Nuevo León, Graduate Program in Systems Engineering,
Cd. Universitaria, San Nicolás de los Garza, NL 66450, México

{dago,roger}@yalma.fime.uanl.mx

Abstract. A metaheuristic for the capacitated vertex p-center problem
is presented. This is a well-known location problem that consists of plac-
ing p facilities and assigning customers to these in such a way that the
largest distance between any customer and its associated facility is min-
imized. In addition, a capacity on demand for each facility is considered.
The proposed metaheuristic framework integrates several components
such as a greedy randomized adaptive procedure with biased sampling
in its construction phase and iterated greedy with a variable neighbor-
hood descent in its local search phase. The overall performance of the
heuristic is numerically assessed on widely used benchmarks on location
literature. The results indicate the proposed heuristic outperforms the
best existing heuristic.

Keywords: Combinatorial optimization, discrete location, metaheuris-
tics, GRASP, IGLS, VND.

1 Introduction

The vertex p-center problem can be defined as the problem of locating p facilities
and assigning customers to them so as to minimize the longest distance between
any customer and its assigned facility. The term vertex means that the set of
candidate facility sites and the set of customers are the same. In the capacitated
version (CpCP) it is required that the total customer demand assigned to each
facility does not exceeded its given capacity. The CpCP is NP-hard [1]. Practical
applications of p-center problems can be found in school districting planning or
system design in health coverage, to name a few.

The uncapacitated version of the problem has been widely investigated from
both exact and approximate approaches. Elloumi et al. [2] provide an extensive
review of the literature. The CpCP has received less attention in the literature.
From an exact optimization perspective, Özsoy and Pınar [3] presented an exact
method based on solving a series of set covering problems using an off-the-shelf
mixed-integer programming (MIP) solver while carrying out an iterative search
over the coverage distances. More recently, Albareda-Sambola et al. [4] proposed
an exact method based on Lagrangian relaxation and a covering reformulation.
From the heuristic perspective, the work of Scaparra et al. [5] stands as the

C. Bielza et al. (Eds.): CAEPIA 2013, LNAI 8109, pp. 279–288, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

280 D.R. Quevedo-Orozco and R.Z. Ŕıos-Mercado

most significant. They developed a heuristic based on large-scale local search
with a multiexchange neighborhood represented by an improved graph exploit-
ing principles from network optimization theory. In this paper, we present a
metaheuristic framework that integrates several components such as greedy ran-
domized adaptive procedures with biased sampling in its construction phase and
iterated greedy with a variable neighborhood descent in its local search phase.
The empirical work indicates our heuristic outperforms the best existing method.

2 Problem Formulation

Let V be the set of nodes representing customers or potential locations for the
p facilities. The integer distance between nodes i and j is represented for dij .
Each node j ∈ V has a demand or weight wj and each node i ∈ V has a capacity
defined by si. For the combinatorial model, a p-partition of V is denoted by
X = {X1, ..., Xp}, where Xk ⊂ V is called a subset of V . Each subset Xk is
formed by a subset of nodes such that

⋃
k∈K Xk = V and Xk ∩ Xl = ∅ for all

k, l ∈ K, k �= l where K = {1, ..., p}. The set of centers is denoted by P ⊂ V
such that P = {c(1), ..., c(p)} where c(k) is the active location for subset Xk,
i.e., the node that hosts the facility serving the customers in Xk. The problem
can be represented by the following combinatorial model.

min
X∈Π

max
k∈K

f(Xk) (1)

where Π is the collection of all p-partitions of V . For a given territory Xk

its cost function, also called the bottleneck cost, is computed as f(Xk) =
maxj∈Xk

{dj,c(k)} where the center c(k), taking into account the capacity, is
given by

c(k) = arg min
i∈Xk

⎧
⎨

⎩
max
j∈Xk

⎧
⎨

⎩
dij :

∑

j′∈Xk

wj′ ≤ si

⎫
⎬

⎭

⎫
⎬

⎭
(2)

Here, by convention, if for a given Xk there is not any i ∈ Xk such that∑
j∈Xk

wj ≤ si then f(Xk) =∞.

3 Proposed Heuristic

To solve the problem we propose a metaheuristic framework with several com-
ponents such as a greedy randomized adaptive [6] procedure with biased sam-
pling in its construction phase and Iterated Greedy Local Search (IGLS) with
a Variable Neighborhood Descent (VND) in its local search phase. IGLS is a
method related to the Iterated Local Search (ILS) originally proposed by Ruiz
and Stützle [7]. IGLS takes a solution as an input and iteratively applies destruc-
tion and reconstruction phase, in a special way focusing on the space of solutions
that are locally optimal. Instead of iterating over a local search as done in ILS,
IGLS iterates over a greedy reconstruction heuristic.

A New Heuristic for the Capacitated Vertex p-Center Problem 281

The VND is a variant of Variable Neighborhood Search (VNS) proposed by
Hansen and Mladenovic [8, 9]. VNS is a metaheuristic for solving combinato-
rial and global optimization problems whose basic idea is a systematic change
of neighborhood both within a descent phase to find a local optimum and in
a perturbation phase to get out of the corresponding valley. VND method is
obtained if a change of neighborhoods is performed in a deterministic way. The
proposed approach is presented in Algorithm 1. An initial solution is obtained
on Steps 2–3. Within the main loop (Steps 5–14), the local search (Steps 6–7)
is performed as long as the solution keeps improving. By improving we mean
that either the new solution has a better objective function than the previous or
if it reduces the number of bottleneck customers while not worsening the total
cost, without creating new bottleneck subsets and new bottleneck customers. If
the solutions does not improve, then a shake of the solution is applied, this is
defined as removing several bottleneck subsets that meet a given criteria and
reconstructing a new solution from the partial solution. These components are
described next.

Algorithm 1. GVND

1: procedure GVND(V, p, α, β, Itermax,LB)
2: X ← Construction(α, p)
3: X ← VND(X)
4: Xbest ← X
5: while ¬(stopping criteria) do
6: X ← IGLS(β,X)
7: X ← VND(X)
8: if X is better that Xbest then
9: Xbest ← X
10: else
11: X ← Shake(α,X)
12: end if
13: Itermax ← Itermax − 1
14: end while
15: return Xbest

16: end procedure

Construction: The construction phase is comprised of two sub-tasks: (a) center
location and (b) customer allocation. First, p nodes are chosen as centers. The
choice of these centers is made through a greedy randomized adaptive construc-
tion procedure, taking into account the distance factors and the capacity of each
vertex j ∈ V . This phase is based on the greedy method proposed by Dyer [10]
for the p-center problem. The location phase starts by choosing the first cen-
ter randomly. Then, we iteratively choose the next center seeking a node whose
weighted distance from its nearest center is relatively large. The motivation of
this is to try to obtain centers that are as disperse as possible, but also to favor
the choice of centers with large capacity such we can assign more customers to

282 D.R. Quevedo-Orozco and R.Z. Ŕıos-Mercado

it in the allocation phase. Within a greedy randomized procedure method this is
done as follows. Let P be a partial set of chosen centers. Then for each j ∈ V \P ,
its nearest center is given by i∗ = argmini∈P {dij}. The we compute the greedy
function as

γ(j) = sjdi∗j (3)

A restricted candidate list (RCL) is built by the elements whose greedy function
evaluation falls, within α% of the best value. RCL = {j : γ(j) ≥ γmax−α(γmax−
γmin)}, where α ∈ (0, 1).

Instead of choosing the next candidate element to add to the partial solu-
tion uniformly at random, we introduce a biased selection mechanism. In the
construction mechanism proposed by Bresina [11], a family of such probability
distributions is introduced. First, a rank r[j] assigned to each candidate element
j, according to its greedy function value (3). The element with the largest greedy
function value has rank 1, the second largest has rank 2, and so on. In this case,
we defined the bias function using an exponential distribution as b(r[j]) = e−r[j].
Once all elements of the RCL have been ranked, the probability π(j) of selecting
element j ∈ RCL can be computed as π(j) = b(r[j])/

∑
j′∈RCL b(r[j′]).

Once the centers are fixed, the second sub-task consists of allocating the
customers to these centers. This phase is performed in a deterministic greedy
manner. As some preliminary testing showed, performing this step under a ran-
domized greedy strategy did not bring any value to the quality of the solution. In
addition, the pure greedy approach in this phase is more efficient. The customers
are defined by the remaining nodes j ∈ V \ P . To this end we define a greedy
function that measures the cost of assigning a customer j to a center k located
in c(k) as follows:

φ(j, k) = max

⎧
⎨

⎩

djc(k)

d̄
,−

⎛

⎝sc(k) −
∑

j′∈Xk

wj′

⎞

⎠+ wj

⎫
⎬

⎭
(4)

where d̄ = maxi,j∈V {dij} + 1 is a normalization factor. If the capacity con-
straint is satisfied, the function only takes into account the distance factor,
otherwise, the function returns an integer value that penalizes the assignment.
Then assigns each node j to a nearest center, namely Xk∗ ← Xk∗ ∪ {j} where
k∗ = argmink∈K φ(j, k). Finally, once the assignment is done, the centers for
the entire partition are updated using (2).

Local Search: Given an initial solution built by the construction phase, the im-
provement phase applies an IGLS followed by VND with two neighborhoods
based on insertion and exchange. Each procedure is briefly described next.

1. IGLS: This method takes a solution as an input and iteratively applies
destruction and reconstruction phases. In this specific case, deallocating
the β% of nodes located in Xk, with high values of the function ρ(j) =
djc(k)/

∑
j′∈Xk

djc(k). The choice of this function is motivated by the fact
that the nodes farther from the center are the ones affecting more the dis-
persion function. The reconstruction phase reassigns each disconnected node

A New Heuristic for the Capacitated Vertex p-Center Problem 283

to a nearest center, namely Xk∗ ← Xk∗ ∪{j} where k∗ = argmink∈K φ(j, k).
A priority assignment is given to the bottleneck nodes, i.e., nodes whose pre-
vious assignment matched the value of the objective function value.

2. VND: This method is formed by two neighborhoods based on reinsertion and
exchange movements. It is presented in Algorithm 2, where neighborhoods
are denoted as Nk, k = 1, ..., kmax, in this case kmax = 2. For each of the two
neighborhoods, the potential move takes into account the distance factors
and the capacity. Each neighborhood is briefly described next.

Algorithm 2. Variable Neighborhood Descent

1: procedure VND(X)
2: while k ≤ kmax do
3: X ′ ← argminy∈Nk(X) f(y)
4: if X ′ is better that X then
5: X ′ ← X
6: k← 1
7: else
8: k← k + 1
9: end if
10: end while
11: return X
12: end procedure

N1) Reinsertion: This neighborhood considers moves where a node i (cur-
rently assigned to center of set Xq) is assigned to set Xk, i.e., given X =
(X1, . . . , Xp) reinsertion(i, k) = {X1, . . . , Xq \ {i}, . . . , Xk ∪ {i}, ..., Xp}
where i must be a bottleneck node for the move to be attractive.

N2) Exchange: This neighborhood considers moves where two nodes i and j in
different subsets are swaped, i.e., given X = (X1, . . . , Xp), swap(i, j) =
{X1, ..., Xq ∪{j}\{i}, ..., Xk∪{i}\{j}, ..., Xp}, where either i or j must
be a bottleneck node for the move to be attractive.

Improvement Criteria: We uses a effective improvement criteria propose in [5]
which includes the reduction of bottleneck elements, this is defined as

f(X ′) < f(X) ∨ (f(X ′) = f(X),B(X ′) ⊆ B(X),J (X ′) ⊂ J (X)) (5)

where B(X) denote the set of bottleneck subsets in X , i.e., B(X) = {k ∈ K :
f(Xk) = f(X)} and J (X) contains the demand nodes with maximum distance
from the active location in each subset Xk, i.e., J (X) = {j ∈ Xk : djc(k) =
f(X), k ∈ B(X)}. This criteria is met if it decreases the objective function value
or if it reduces the number of bottleneck customers while not worsening the total
cost, without creating new bottleneck subsets and new bottleneck customers.
The incumbent solution Xbest is updated if a better feasible solution is found
according to the criterion (5) otherwise a shake of the solution X is applied.

284 D.R. Quevedo-Orozco and R.Z. Ŕıos-Mercado

Shake: We define an auxiliary mechanism that performs a partial shake of the cur-
rent solution through an aggressive removal and reconstruction of several subsets,
which diversifies the structure of the solution. The selection criteria of subsets is

L ← {η1(j), η2(j), η3(j) : η1(j) = l(j), j ∈ J (X)} (6)

where η(j) = argmink∈K djc(k). Then η1(j), η2(j), and η3(j) are the first, sec-
ond, and third nearest centers to j, respectively, under the distance criterion. l(j)
is the center serving customer j. Let W ← ∪k∈LXk. We then now remove these
sets from the current solution X ← X \W . Now, using the construction phase,
we construct a new solution X ′ by reassigning the nodes in W with p = |L|.
Finally X ← X ∪X ′ is the new current solution.

Stopping criteria: The approach stops when the maximum number of iterations
is met or if a relative deviation with respect to a known (if any) lower bound
(LB) for the problem is less than a given ε. For our practical purposes a value
of 1.0× 10−8 is used for ε.

4 Computational Results

This section shows the overall performance of the heuristic which is empirically
assessed on widely used benchmarks on location literature. The heuristic was
coded in C++, compiled with gcc/g++ version 4.2 with the “-O3” optimization
level. ILOG CPLEX 12.5 is used in exact method proposed in [3] and we imposed
some resource limitation to every test: computation was halted after 1 hour or in
case of memory overflow. Each of the experiments was carried out on a MacBook
Pro 13” with Intel Core i5 2.4 GHz, 4 GiB RAM under OS X Lion 10.7.5. For
the experiments, we used three different data sets generated for other location
problems.

(Set A) Beasley OR-Library: Contains two groups of 10 instances, with 50 de-
mand nodes and 5 facilities to be located, and 100 demand nodes and 10
facilities to be located, respectively. In all of the problems the capacity is
assumed equal for every facility.

(Set B) Galvão and ReVelle: The set includes two networks that were randomly
generated by for the maximal covering location problem. The set includes 8
instances with size of 100 and 150 customers, and range from 5 to 15 centers.
In this case, the facility capacities are variable.

(Set C) Lorena and Senne: The set includes 6 large instances whose size ranges
from 100 to 402 customers, and from 10 to 40 centers. Also in this case, all
of the facility sites have equal capacity. This set is considered large scale and
therefore more difficult to solve.

Recall fromSection 3 that two important algorithmic parameters areα andβ. In
a preliminary phase, the heuristic was fine-tuned by running the algorithm50 itera-
tions for each possible combination α×β ∈ {0.0, 0.1, . . . , 1.0}×{0.0, 0.1, . . . , 1.0}

A New Heuristic for the Capacitated Vertex p-Center Problem 285

on the three data sets. We choose the best combination (α, β) for each dataset
based on an average of the objective function value for all executions and combi-
nations (α, β). For the remaining experiments, the choices of (α, β) are set to (0.4,
0.3), (0.3, 0.3), and (0.3,0.3), for data sets A, B, and C, respectively.

For the next experiments every run of our heuristic was done using 30 repeti-
tions with different random seeds and using 500 as iteration limit. No lower
bound (LB) was used. We perform a comparison of the proposed approach
(Heuristic QR) with the heuristic by Scaparra et al. [5] (Heuristic SP) and the
exact method by Özsoy and Pınar [3] (Exact OP). These methods have been ex-
ecuted over the same machine, under the conditions specified for each method,
to ensure a fair comparison.

Table 1. Comparison of methods on data set A

n p Instance Optimal
OP SP QR

gap % Time (s) gap % Time (s) gap1 % gap2 % Time (s)
50 5 cpmp01 29 0.00 0.19 0.00 0.45 0.00 0.00 0.45

cpmp02 33 0.00 1.13 0.00 0.72 0.00 0.00 0.49
cpmp03 26 0.00 0.20 0.00 0.56 0.00 0.00 0.48
cpmp04 32 0.00 0.53 0.00 0.61 0.00 0.00 0.53
cpmp05 29 0.00 1.02 0.00 0.69 0.00 0.00 0.50
cpmp06 31 0.00 1.62 3.23 0.75 2.90 0.00 0.49
cpmp07 30 0.00 0.51 0.00 0.91 0.67 0.00 0.53
cpmp08 31 0.00 0.61 0.00 0.73 0.00 0.00 0.49
cpmp09 28 0.00 0.74 3.57 0.91 3.33 0.00 0.49
cpmp10 32 0.00 2.14 12.50 1.74 13.75 0.00 0.48
Average 0.00 0.87 1.93 0.81 2.07 0.00 0.49

100 10 cpmp11 19 0.00 2.91 21.05 5.4 8.25 0.00 1.41
cpmp12 20 0.00 2.91 10.00 5.74 4.17 0.00 1.39
cpmp13 20 0.00 3.46 5.00 5.46 0.33 0.00 1.36
cpmp14 20 0.00 2.15 10.00 5.28 2.50 0.00 1.37
cpmp15 21 0.00 4.06 9.52 5.9 3.49 0.00 1.41
cpmp16 20 0.00 6.96 10.00 7.04 3.83 0.00 1.43
cpmp17 22 0.00 30.14 9.09 6.03 4.55 4.55 1.41
cpmp18 21 0.00 6.50 4.76 4.74 1.75 0.00 1.34
cpmp19 21 0.00 9.30 9.52 6.25 5.40 0.00 1.42
cpmp20 21 0.00 12.25 0.00 5.93 8.89 0.00 1.44
Average 0.00 8.06 8.90 5.78 4.31 0.45 1.40
Overall average 0.00 4.47 5.41 3.29 3.19 0.23 0.94

Tables 1–3 display the comparison of methods for each data set. In each table
the first two columns represent the instance size measured by number of nodes
n and number of partitions p. “Instance” is the name of the particular problem
instance and “Optimal” indicates the optimal value of the instance. For each
method column “gap (%)” expresses the percent of relative deviation or gap
with respect to the optimal value and “Time (s)” gives the execution time in
seconds. It should be noted that for the proposed method QR, we show the
time average performance over the 30 independent repetitions, also “gap1 %”
and “gap2 %” denote the average and best gap, respectively, over all repetitions.
Table 4 summarizes the comparison among methods for the three data sets in
terms of their average relative optimality gap, running time, and memory usage.
The memory statistic indicates the maximum resident set size used [12], in bits,
that is, the maximum number of bits of physical memory that each approach
used simultaneously.

286 D.R. Quevedo-Orozco and R.Z. Ŕıos-Mercado

Table 2. Comparison of methods on data set B

n p Instance Optimal
OP SP QR

gap % Time (s) gap % Time (s) gap1 % gap2 % Time (s)
100 5 G1 94 0.00 4.49 3.19 4.71 1.88 1.06 1.39
100 5 G2 94 0.00 5.90 3.19 4.48 1.60 0.00 1.23
100 10 G3 83 0.00 121.44 9.64 8.01 8.72 4.82 1.58
100 10 G4 84 0.00 25.03 8.33 8.28 8.73 5.95 1.54
150 10 G5 95 0.00 190.95 5.26 22.61 4.95 3.16 2.70
150 10 G6 96 0.00 120.46 5.21 21.21 4.38 3.13 2.37
150 15 G7 89 0.00 60.62 8.99 28.31 8.35 5.62 3.53
150 15 G8 89 0.00 213.61 10.11 26.52 8.84 6.74 3.48

Overall average 0.00 92.81 6.74 15.52 5.93 3.81 2.23

The first thing to notice is that for all instances tested, an optimal solution
was found by the exact method, such that the “gap” column in all tables rep-
resents the true relative optimality gap found by any method. As far as data
set A is concerned, the exact method was found very efficient for the smaller in-
stance group (size 50× 5), performing better than any heuristic. However, when
attempting the larger group (size 100 × 10), there are a couple of instances for
which the exact method struggled. The performance of both heuristics was more
robust than that of the exact method as they both took less than 1.5 seconds
to solve each instance. In terms of solution quality, the proposed heuristic found
better solutions than the ones reported by the SP heuristic.

Table 3. Comparison of methods on data set C

n p Instance Optimal
OP SP QR

gap % Time (s) gap % Time (s) gap1 % gap2 % Time (s)
100 10 SJC1 364 0.00 195.16 26.67 8.79 23.24 7.478 0.68
200 15 SJC2 304 0.00 74.30 10.48 39.60 7.37 1.599 1.95
300 25 SJC3a 278 0.00 136.49 38.73 125.03 16.41 7.184 6.12
300 30 SJC3b 253 0.00 152.20 35.59 119.65 13.16 3.661 8.38
402 30 SJC4a 284 0.00 522.63 30.99 283.18 9.76 5.219 11.39
402 40 SJC4b 239 0.00 157.52 44.12 241.68 10.94 2.346 18.56

Overall average 0.00 206.38 31.10 136.32 13.48 4.58 7.85

When analyzing data set B we can observe that the exact method takes con-
siderably longer than both heuristics to reach an optimal solution. On average,
the exact method takes about an order of magnitude longer. In terms of solution
quality, again our heuristic obtains better solutions (average gap of 5.93 %) than
the SP heuristic (average gap of 6.74%). Regarding data set C, we can observe
that the exact method takes on average above 4 minutes while our heuristic takes
less than 9 seconds. When comparing our heuristic with the SP heuristic, we can
see that ours is faster and finds solutions of significantly better quality. Figure
1 shows a comparison of the methods in terms of their asymptotic running time
and used memory resources with respect to the number of nodes. As can be seen,
the resources used by the proposed approach are lower than those used by the
other two methods.

There exist a recent data set added to the OR-Library that features values
of p proportional to the number of nodes. This is regarded as a very hard set to

A New Heuristic for the Capacitated Vertex p-Center Problem 287

Table 4. Summary of comparison among methods on data sets A, B, and C

Dataset
Average gap (%) Average time (s) Average memory (bits)

OP SP QR1 QR2 OP SP QR OP SP QR

A 0.00 5.41 3.19 0.23 4.47 3.29 0.94 2.59E+07 4.37E+07 5.12E+05
B 0.00 6.74 5.93 3.81 92.81 15.52 2.23 4.78E+07 2.12E+08 5.57E+05
C 0.00 31.10 13.48 4.58 206.38 136.32 7.85 1.38E+08 4.70E+08 7.96E+05

−50

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 300 402

S
ec

on
ds

Number of nodes

Time Complexity

QR
SP
OP

 0

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 7e+08

 8e+08

 50 100 150 200 300 402

B
its

Number of nodes

Memory Complexity

QR
SP
OP

Fig. 1. Comparison of methods in terms of asymptotic running time and memory usage

solve for capacitated location problems such as p-median and p-center problems.
In our preliminary experiments, we have observed that the exact method fails
to find optimal solutions for some instances. Table 5 displays the results on this
data set. As can be seen, the exact method is unable to find a feasible solution in
all five instances either by reaching the time limit of 1 hr (instances 1 and 3) or
by running out of memory (instances 2, 4, and 5). Heuristic SP fails in delivering
an optimal solution in 3 out of 5 instances. Our heuristic finds a feasible solution
in 4 out of 5 instances.

Table 5. Comparison of methods on data set D

Subset Instance n p
OP SP QR

Best LB Time (s) Objetive Time (s) Objetive Time (s)

D 27 150 60 10 3600.00 - - 55 22.94
D 32 200 80 11 959.04 - - - -
D 33 200 80 7 3600.00 10 49.72 14 47.95
D 35 200 80 8 964.56 12 59.91 16 41.18
D 40 200 80 8 2846.75 - - 18 41.39

5 Conclusions

We have proposed a metaheuristic framework that integrates several components
such as a greedy randomized adaptive procedure with biased sampling in its

288 D.R. Quevedo-Orozco and R.Z. Ŕıos-Mercado

construction phase and iterated greedy with a variable neighborhood descent in
its local search phase. The preliminary results are very promising. The results
indicate the proposed heuristic outperforms the best heuristic in terms of both
solution quality and running time. The performance of the proposed approach is
more robust than that of the exact method, requiring less seconds and memory
to solve each instance obtaining reasonably good objective values.

Acknowledgements. This work was supported by the Mexican National Coun-
cil for Science and Technology (grant CONACYT CB-2011-01-166397) and Uni-
versidad Autónoma de Nuevo León (grant UANL-PAICYT CE728-11). We also
thank Maria Scaparra for providing us with the source code of her heuristic.

References

[1] Kariv, O., Hakimi, S.L.: An algorithmic approach to network location problems,
Part I: The p-centers. SIAM Journal on Applied Mathematics 37, 513–538 (1979)

[2] Elloumi, S., Labbé, M., Pochet, Y.: A new formulation and resolution method for
the p-center problem. INFORMS Journal on Computing 16(1), 84–94 (2004)

[3] Özsoy, F.A., Pınar, M.Ç.: An exact algorithm for the capacitated vertex p-center
problem. Computers & Operations Research 33(5), 1420–1436 (2006)

[4] Albareda-Sambola, M., Dı́az-Garćıa, J.A., Fernández, E.: Lagrangean duals and
exact solution to the capacitated p-center problem. European Journal of Opera-
tional Research 201(1), 71–81 (2010)

[5] Scaparra, M.P., Pallottino, S., Scutellà, M.G.: Large-scale local search heuristics
for the capacitated vertex p-center problem. Networks 43(4), 241–255 (2004)

[6] Feo, T.A., Resende, M.G.C.: Greedy randomized adaptive search procedures. Jour-
nal of Global Optimization 6(2), 109–133 (1995)

[7] Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Re-
search 177(3), 2033–2049 (2007)

[8] Hansen, P., Mladenović, N.: Variable neighborhood search: Principles and appli-
cations. European Journal of Operational Research 130(3), 449–467 (2001)

[9] Gendreau, M., Potvin, J.Y. (eds.): Handbook of Metaheuristics, 2nd edn. Interna-
tional Series in Operations Research & Management Science, vol. 146. Springer,
New York (2010)

[10] Dyer, M.E., Frieze, A.: A simple heuristic for the p-center problem. Operations
Research Letters 3(6), 285–288 (1985)

[11] Bresina, J.L.: Heuristic-biased stochastic sampling. In: Proceedings of the Thir-
teenth National Conference on Artificial Intelligence, AAAI 1996, Portland, USA,
vol. 1, pp. 271–278. AAAI Press (1996)

[12] Loosemore, S., Stallman, R.M., McGrath, R., Oram, A., Drepper, U.: The GNU
C Library Reference Manual: For version 2.17. Free Software Foundation, Boston,
USA (2012)

	A New Heuristicfor the Capacitated Vertex p-Center Problem
	1 Introduction
	2 Problem Formulation
	3 Proposed Heuristic
	4 Computational Results
	5 Conclusions
	References

